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Abstract

Short-time fluctuations in oceanic systems which cannot be resolved in models but might have influence on
larger-scale phenomena, can be incorporated als stochastic (white or red) noise. However, this requires solving
stochastic partial differential equations, which means that one has to perform calculations for a large number of
realisations. The Dynamically Orthogonal (DO) field method has been developed to deal with such systems in an
efficient way, namely by decomposing the realisations ψ(ω) into a mean ψ̄ and modes ψi as

ψ(ω) = ψ̄ +

Nmode∑
i=1

ψiYi(ω)

where Yi(ω) are (stochastic) coefficients, and then considering only the most dominant modes of variability. The
modes have to be kept orthogonal by means of a projection in each time step [Sapsis, Lermusiaux 2009].

In this master project, the DO method is applied to two oceanic systems, the Kuroshio-current (wind-driven
circulation) and El Niño.

The Kuroshio-current can be simulated in a (rather simplistic) Double Gyre system on the βplane. The gov-
erning equations, basin geometry and boundary conditions all have a mirror symmetry for North-South reflection
against the middle line of the basin. For low Reynolds numbers, solutions are symmetric, but the symmetric state
becomes unstable at Re = 30 (pitchfork bifurcation). This is believed to explain the bimodal behaviour of the
Kuroshio-current. The stable branches of the pitchfork become unstable at Re = 53 because of a Hopf bifurcation
[Dijkstra,Katsman 1997].

For the Double Gyre system a DO-computer code already existed and parts of the parameter space (low Reynolds
number) were already investigated [Sapsis, Dijkstra 2013]. The main focus in this project lies on the region between
the pitchfork bifurcation and the first Hopf bfurcation which destabilises the pitchfork branches.

It turned out that the mean is a more or less symmetric state and the first mode describes the difference between
the pitchfork branches and the mean. Other modes describe transient deviations from these pitchfork branches. In
particular, one finds a Gyre mode, which is associated to the second Hopf bifurcation at Re ≈ 80, with a period of
about one year, and Rossby basin modes, associated with the first Hopf bifurcation, which have a period of about
2 months. The latter seems to show coherence resonance behaviour, being excited more easily the closer one comes
to the Hopf bifurcation, while the former can even be excited at rather low Reynolds numbers Re = 42.

For El Niño the DO equations had to be derived and implemented them into an existing (DO-free) code for
the Zebiak-Cane model of El Niño. In particular, an inner product for the orthogonality projection had to be
defined. It turned out that in case of a non-trivial inner product, the procedure for obtaining the initial conditions
as described in [Sapsis, Lermusiaux 2009] has to be generalised. Also the question arose whether it is consistent to
take the co-called long-wave limit (neglecting the time derivative in the meridional momentum equation) before or
after applying the DO method; these two procedures are indeed equivalent.

Unfortunately, time was running out before the code run reliably, but a few preliminary studies with the original
code suggest that the Zebiak-Cane equations contain a Hopf bifurcation in the parameter governing the heating of
the atmosphere by the ocean. Variability before this bifurcation increases significantly when applying noise - espe-
cially red noise -, and the empirical orthogonal functions associated with this variability indeed resemble El Niño.
This suggests that El Niño might be described as a system before the Hopf bifurcation, which can be excited by noise.
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1 Introduction

1.1 Noise in Ocean Models
Even though the governing equations of fluid flow are known, it is impossible to resolve all phenomena in ocean models.
This is due to the enormous range of scales - from ocean currents extending over thousands of kilometers and with time
scales of months or years down to turbulence at a scale of centimeters and seconds. It is not possible to cover an ocean
basin of thousand kilometers width with a grid with a cell length of a centimeter, or to run a model over thousand
years with time steps of a second. Also, when dealing with large-scale phenomena, one is usually not interested in the
details of small-scale processes. The only thing that matters is their influence on the large-scale phenomenon.

An interesting way to incorporate short timescale processes without actually resolving them is to implement them
as stochastic noise. This is actually not correct - for example, synoptic-scale fenomena are predicted daily in the
weather forecast, so they are not stochastic. Yet from the point of view of slow processes, like climate changes or ocean
dynamics, the atmosphere undergoes some rapid changes of which the underlying mechanisms are not relevant for the
slow process. So one can just as well describe the fast process as noise.

In this thesis, I will deal with two ocean-atmosphere systems, the wind-driven circulation and El Niño. In both
cases it will be the atmosphere which is responsible for the noise. Even though it is partially governed by long timescale
processes such as the global circulation or (in case of ENSO) coupling to the ocean surface temperature, the atmosphere
can exhibit short-time phenomena such as high- and low pressure areas. The ocean is more inert because of its higher
heat capacity and slower velocities.

Including noise means that instead of deterministic partial differential equations we have to solve stochastic partial
differential equations (SPDE’s). One method to deal with them is the Dynamically Orthogonal Field (DO) method,
which yields both the most dominant patterns (modes) of variance and probability density functions associated to
these modes.

1.2 Choice of the example systems
1.2.1 The Kuroshio currrent (Double Gyre System)

The Kuroshio current is part of the wind-driven circulation in the Northwestern Pacific ocean; a westward current near
Japan which forms the northern branch of the subtropical gyre (clockwise circulation driven by the winds around the
subtropical high pressure area) and the southern branch of the -rather deformed- counterclockwise subpolar gyre. In
this thesis the double gyre will be treated as a purely wind-driven circulation; density effects are ignored.

The Kuroshio current shows a bimodial behaviour; it switches from the ‘small meander state’ to the ‘large meander
state’ (see fig. 1) once in a few years. On top of that, it also displays fluctuation on shorter (intermonthly) timescales,
such as the 7monthly fluctuation in fig. 1 which is caused by Rossby basin modes (Rossby waves in a bounded basin, i.e.
obeying boundary conditions). The double gyre system can be described with a comparatively simple set of equations,
which nevertheless capture both features. The bimodal behaviour is associated to a pitchfork bifurcation at Reynolds
number Re ≈ 30 , whereas intermonthly oscillations are associated with Hopf bifurcations. [Dijkstra 2005].

Apart from the climatologic winds which cause the gyre, there are strong short-time fluctuations - noise - , for
example due to mid-latitude cyclones. The effect of this atmospheric noise on the variability of the gyre can be studied
using the DO method. Some studies at low Reynolds number have already been performed[Sapsis, Dijkstra 2013]
and a computer code also exists. The focus in this thesis lies on the behaviour before the first Hopf bifurcation, in
particular on the question whether - and how - it is possible to excite Hopf modes by noise before actually reaching
the bifurcation (coherence resonance). Apart from being interesting in itself, studying the double gyre might also be
usefull preliminary work for the more complex ENSO (El Niño - Southern Oscillation) system, which also has a Hopf
bifurcation.

1.2.2 El Niño

El Niño’s (major warm water anomalies in the eastern equatorial Pacific) occur with a preferred frequency of 1/(3 −
4years), but in a very irregular manner (see fig. 2). The order of magnitude of the recurrence time is given by oceanic
quantities which are inherent to the system: the time it takes for a Kelvin wave (carrying the warm/cold signal of a
beginning El Niño/La Niña) to cross the Pacific ocean and to be reflected at the eastern coast into Rossby waves which
then travel back.

But the irregularity is harder to explain. There are two possible explanations [Kleeman 2010]:

1. The ‘optimist’s view’: The system has strong couplings and is sufficiently non-linear that the slow modes interact
in a chaotic manner. If we are smart enough to unravel the dynamics, we can predict El Niño.
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Figure 1: Left and middle panel: Paths of the Kuroshio current in its small (left) and large (middle) meander state.
Taken from [Schmeits, Dijkstra 2001].
Right panel: Hovmoller diagram of the sea surface height anomaly (in m) associated with a Rossby basin mode along
35oNorth. The period is 7 months. Taken from [Schmeits, Dijkstra 2002]

Figure 2: Timeseries of the sea surface at the Nino3 region. Positive anomalies correspond to El Niño.

2. The ‘pessimist’s view’: The system might be rather weakly-coupled and is mainly noise-driven. Atmospheric
effects, like the Madden-Julian oscillation, might be needed to trigger El Niño’s. The predictability of a noise-
driven system is naturally limited.

Mathematically speaking, there is a Hopf bifurcation in the heating parameter which couples the sea surface temperature
to its response in the atmosphere. In case of the ‘optimist’s explanation’, the system is past the Hopf bifurcation and
oscillates without external input; in the second case, it is just before the Hopf and Hopf-like modes can be excited by
noise forcing.

El Niño has not been studied with the DO method before. Within this project I derived the DO equations for El
Niño and implemented them into an existing version of a code of the Zebiak-Cane (ZC) model [Zebiak, Cane 1987],
a comparatively simple model capturing the main features of El Niño. Unfortunately, there was not enough time to
finish the computer code for ENSO. However, a few preliminary studies were performed with the original ZC model
which suggest that the Hopf-like modes can indeed be triggered by noise.

2 Dynamically Orthogonal Field Method
When working with stochastic noise, one is interested in stochastic properties of the system, like mean states or modes
of variability or probability density functions (pdf’s). This means that one has to perform computations for a whole
ensemble of realisations. However, this takes a lot of computation time and is therefore not practicable.

But it is often observed that most of the variance of a stochastic system comes from only a few dominant modes.
Together with the mean, they capture most of the features of the system. The DO method is based on only considering
the dominant Nmode modes and decomposing the realisations according to
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ϕ(x, t, ω) = ϕ̄(x, t) +

Nmode∑
i=1

Yi(t, ω)ϕi(x, t)

where ω denotes the realisation, ϕi the modes, and ϕ̄ the mean. The Yi(ω) are called stochastic coefficients.
Instead of computing the time evolution of a large number of realisations, one only has to solve (deterministic)

PDE’s for the mean and the modes, and stochastic ODE’s for the coefficients.
I will now briefly describe the DO formalism, following [Sapsis, Lermusiaux 2009].

2.1 Stochastic Partial Differential Equations (SPDE)
A general stochastic partial differential equation is of the form

∂ϕ(x, t, ω)

∂t
= L̃[ϕ(x, t, ω), ω] (1)

where ϕ denotes the fields, ω a realisation from probability space Ω, L̃ a (spatial) differential operator which in general
depends on the stochastic event.

In our case L̃ can be written as L[ϕ(x, t, ω)] +F (x, t, ω), that is, it can be decomposed into deterministic part plus
a stochastic (white or red noise) forcing.
The initial condition is given by

ϕ(x, t0, ω) = ϕ0(x, ω) (2)

and the boundary condition

B[ϕ(y, t, ω)] = h(y, t, ω) y ∈ ∂D (3)

where B is a linear differential operator and D the domain, so ∂D is the boundary of the domain.

2.2 Definitions
Notation The Einstein sum convention will be applied for double indices, i.e.

∑
i aibi will be written as aibi . If no

summation is intended, this is indicated by a bar on top of the indices, aībī.
Greek letters like ϕ, χ can denote a whole vector of fields, such as ϕ = (u, v, p)T , where the superscript T indicates a
transition from row to column vector.

Mean Value Operator The mean over stochastic space of any quantity, like, for example, the vector ϕ, is calculated
like this:

ϕ̄(x, t) = Eω[ϕ(x, t, ω)] =

ˆ
Ω

ϕ(x, t, ω)dP(ω) (4)

where ω denotes the realisation, Ω the space of all realisations, and P(ω) a probability measure.
The deviation from the mean is given by ϕ̃(x, t, ω) ≡ ϕ(x, t, ω)− ϕ̄(x, t).

Spatial Inner Product The spatial inner product is given by

< ϕ(., t, ω), χ(., t, ω) >=

ˆ
D

ϕa(x, t, ω)Aabχb(x, t, ω)dx (5)

where the latin indices denote field components (remember, ϕ is in general a vector of several fields) and Aab , the
inner product metric, is a positive symmetric matrix. A natural choice is to make the scalar product proportional to
the energy of the system - it is positive definite, inherent to the system, and conserved. The exact form of the metric
will be discussed for each system below.
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Covariance Operator In [Sapsis, Lermusiaux 2009], the following definition is used for the Covariance operator:

Cϕ(.,t,ω),χ(.,t,ω)(x, y) = Eω[ϕ̃(x, t, ω)⊗ab χ̃(y, t, ω)] (6)

It will turn out that in case of a non-trivial metric (not a multiple of the unity matrix) this definition should be
generalised (see part4.3.3).
The symbol ⊗ab denotes the tensor product1 in the field component space; for example, if ϕ = (u, v, p)T then a, b stand
for u, v or p.
The fields which obey

´
ω

[ϕT (x, t, ω), ϕ(x, t, ω)]dx <∞ form a Hilbert space with Cϕ as bilinear form.

2.3 DO Decomposition and Equations
Decomposition Any stochtasic ϕ-field of the Hilbert space can be decomposed as

ϕ(x, t, ω) = ϕ̄(x, t) +

∞∑
i=1

Yi(t, ω)ϕi(x, t) (7)

where Yi(t, ω) are zero-mean and the ϕi obey
ˆ
D

Cϕ(.,t,ω),(.,t,ω)(x, y)ϕi(x, t, ω)dx = λ2
ī (t)ϕī(y, t) (8)

In eq.7 ϕ can be arbitrarily well approximated using a finite2, but sufficiently large, number of modes (Nmode),
associated with the Nmode largest eigenvalues:

ϕ(x, t, ω) = ϕ̄(x, t) +

Nmode∑
i=1

Yi(t, ω)ϕi(x, t) (9)

One defines Vs = {ϕi(x, t)}Nmode
i=1 - it is the space of the modes which are considered in the approximation of ϕ.

Eq. 9 contains a redundancy because if the ϕi(x, t) change in time in such a way that the change is in the span
of the ϕi(x, t) , i.e. in Vs, then one could have achieved the same change in ϕ by just varying the Yi(t, ω). Hence one
imposes dVs

dt ⊥Vs which implies

< ϕi(., t),
∂ϕj
∂t

(., t) >= 0 (10)

This also ensures that the modes remain orthogonal to each other [Sapsis, Lermusiaux 2009].

Equations Notation:
The generalised (more than two variables) covariance matrix between two or more modes is defined by

Cijk... = Eω[YiYjYk...]

In particular, Cij is a matrix in the space of DO-modes: Cij = Eω[YiYj ]; this two-variable case will simply called the
covariance matrix.

It will also be handy to define the projection operator,

Πv⊥s
[χ(x)] = χ(x)− < χ(•), ϕk(•, t) > ϕk(x)

which projects a vector χ onto the space perpendicular to all DO-modes ϕk.
The mean flow, modes and stochstic coefficients Yi evolve according to the following evolution equations:

dYi(t, ω)

dt
=< L̃[ϕ(•, t, ω);ω]− Eω[L̃[ϕ(•, t, ω);ω]], ϕi(•, t) > (11)

∂tϕ̄ = Eω[L̃[ϕ(•, t, ω);ω]] (12)

1the tensor product of two vectors is given by a⊗ b =

a1b1 a1b2 ...
a2b1 a2b2 ...
... ... ...

 or a bT .

2in case of discretised fields, the number of possible modes is finite anyway, but far larger than the number of modes one wants or needs
to consider in the DO method.
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∂tϕi = Πv⊥s
[Eω[L̃[ϕ(•, t, ω);ω]Yi(t, ω)]]C−1

i,j (13)

Note that the mean flow and the DO-modes are deterministic, i.e. they do not depend on the stochastic variable ω.
The stochasticity of ϕ lies entirely in the stochastic coefficients, Yi, which follow from ODE’s. Hence one has to solve
Nmode + 1 deterministic PDE’s and Nmode stochastic ODE’s.

The boundary conditions become

B[ϕ̄(y, t)]|y∈∂D = Eω[h(y, t, ω)] (14)

B[ϕi(y, t)]|y∈∂D = Eω[h(y, t, ω)Yi(t, ω)]C−1
i,j (15)

and the initial conditions are

Yi(t0, ω) =< ϕ̃0(•, ω), ϕ0i(•) > (16)

where still ϕ̃ ≡ ϕ− ϕ̄.

ϕ̄(x, t0) = ϕ̄0(•) ≡ Eω[ϕ0(x, ω)] (17)

ϕi(x, t0) = ϕi0(x) (18)

where ϕi0 are the eigenfields of the covariance operator, Cϕ(•,t0),ϕ(•,t0). Note that at later times the DO-modes neend’t
be eigenmodes of the correlation operator anymore.

3 Wind-driven Circulation: Double Gyre System

3.1 The Double Gyre System
3.1.1 System Equations

The derivation of the model equation is only sketched very roughly here. For details, I refer to [Dijkstra 2005].
For the double gyre system, we assume constant water density and apply the β-plane approximation, that is, we

assume limited meridional extend and use Cartesian coordinates, but include the meridional variation of the Coriolis
parameter up to first order in Taylor expansion: f = f0 + β0y. With these approximations one obtains the following
non-dimensional equations (parameters are listed in table 1):

εDtu− v(1 + βεy) + ∂xp = EH [∂2
xu + ∂2

yu] + EV [∂2
zu] (19)

εDtv + u(1 + βεy) + ∂yp = EH [∂2
xv + ∂2

yv] + EV [∂2
zv] (20)

∂zp = 0 (21)

∂xu+ ∂yv + ∂zw = 0 (22)

For brevity ∂x denotes the partial derivative ∂
∂x , and Dt the total time derivative Dt = ∂t + u∂x + v∂y + w∂z.

Note that p denotes the dynamic (and dimensionless) pressure, that is, the hydrostatic component due to the depth
below the average sea surface is substracted from the physical pressure (pphys = ρ0Uf0Lp− ρ0gDz where z = 0 at the
surface and z = −1 at the bottom, and pphys is the dimensionfull pressure). The pressure depends now only on the
(dimensionless) surface height η:

p = ε Fr η (23)

There is one more boundary condition at the surface, namely continuity of stress:

EV ∂zu = αSW τ
x , EV ∂zv = αSW τ

y (24)

where (τx, τy) denotes the wind stress,
while at the bottom, there is no flow through the sea floor (height ηb), i.e. a fluid element on the boundary remains
there:
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parameter explanation composed parameter formula
U typical horiz. velocity ε (Rossby number) U/f0L
L typical horizontal length scale Fr (Froude number) gD/U2

D Depth αSW τ0/(f0ρ0DU)
τ0 typical wind stress scale EH (horizontal Ekman number) AH/f0L

2

AH , AV horiz./vert. friction coefficient EV (horizontal Ekman number) AV /f0D
2

f0 Coriolis parameter Re (Reynolds number) EH/ε = UL/AH
β0 beta parameter (dimensional) αQG τ0L/ρ0DU

2

rb (bottom friction parameter)
√
EV /ε

F (rotational Froude number) f2
0L

2/gD

β (dimensionless beta parameter) β = β0
L2

U

Table 1: List of the parameters used in the Double Gyre model

Dt(z − ηb) = 0 (25)

Assuming small Ekman numbers EV , EH and small Rossby number ε, one can do an expansion in ε:

χ = χ0 + εχ1 + ε2χ2...; χ = u, v, p, ...

and obtains that to zeroth order, the velocities are depth-independent:

u0 = −∂yp , v0 = ∂xp

However, this means that the boundary conditions cannot be satisfied. Near the upper and lower boundary, however,
the typical vertical scale is smaller, so ∂2

z terms become large there. So while in the bulk of the ocean the system is,
to zeroth order, in geostrophic equilibrium, one needs to include the EV ∂2

zu terms (u = (u, v)) in the top and bottom
layers (Ekman layers). This makes it possible to simplify the equations by performing vertical integration and using
the results of the Ekman dynamics for the boundary conditions:

εD̃tu− (1 + βεy)v = −ε Fr ∂xh+ EH∇2u+ αSW τ
x/h (26)

εD̃tv + (1 + βεy)u = −ε Fr ∂yh+ EH∇2v + αSW τ
y/h (27)

∂th+ ∂x(hu) + ∂y(hv) = 0 (28)

with the two-dimensional total time derivative D̃t = ∂t + u∂x + v∂y. (From now on, the tilde will be omitted while
describing gyres, because only a two-dimensional set of equations will be used.) h denotes the ocean depth, including
bottom topography and surface deviation. u, v are now depth-averaged velocities.

In the case of small Rossby number and small bottom topography (ηb = O(ε)), the equations can be simplified
further still. Using the same expansion as above, one finds

u0 = −∂yp0 ≡ −∂yψ , v0 = ∂xp0 ≡ ∂xψ

where ψ is the stream function. Denoting by ζ the vorticity,

ζ = ∂xv − ∂yu = ∇2ψ

then one can eliminate the pressure by taking ∂y(eq. 27)-∂x(eq. 27) and obtains to first order in ε the quasi-geostrophic
vorticity equation:

Dt[ζ − Fψ + βy] = 1/Re ∇2ζ − rb∇2ψ + αQG(∂xτ
y − ∂yτx) , ζ = ∇2ψ (29)
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Figure 3: Domain and wind forcing of the gyre system: The basin is rectangular, with no-slip boundary conditions
at the meridional sides and no-slip conditions at the zonal boundaries. The wind forcing, indicated by blue arrows, is
zonal and has a sinusoidal y-dependence.

3.1.2 Symmetry and Bifurcation Diagram

In this project, eq. 29 is solved in a very idealised domain, namely a quadratic basin (Lx = Ly = 1 in non-dimensional
quantities) with constant depth. No flow is allowed through the boundaries:

u(0, y) = u(1, y) = 0 , v(x, 0) = v(x, 1) = 0 (30)

No-slip conditions are assumed along the western and eastern boundaries, where the ocean bounded by continents, and
slip conditiond at the northern and southern boundaries, where basin is open to the rest of the ocean:

v(0, y) = v(1, y) = 0 , ∂xu(x, 0) = ∂yu(x, 1) = 0 (31)

This can be summarised in terms of the stream function:

ψ(0, y) = 0 , ∂xψ = 0 , (x = 0, 1) (32)

ψ = 0 , ∂2
yψ = 0 , (y = 0, 1) (33)

The deterministic wind forcing is idealised, too; we assume zero meridional (north-south) wind and sinusoidal zonal
wind: τx = −τ0 cos(2πy) , τy = 0.

With this wind forcing, basin geometry and boundary conditions, the eq. 29 is symmetric with respect to reflection
about the line y = 1/2. It is interesting to see whether the solutions also have this symmetry R:

R(ψ(x, 1− y)) = −ψ(x, y) (34)

which manifests itself in the velocity field as

R(u(x, 1− y)) = u(x, y) , R(v(x, 1− y)) = −v(x, y)

Dijkstra and Katsman performed an analysis of the bifurcation diagram of the system, using a pseudo-arclength
continuation method [Dijkstra,Katsman 1997]. It turns out that a stable symmetric solution, the Sverdrup solution
with western boundary intensification, exists at small enough Reynolds numbers (see fig. 4). At Re = 30 a pitchfork
bifurcation occurs, making the symmetric state unstable and giving rise to two stable, asymmetric states, one of which
is shown in fig. 4 c The two states are each other’s mirror image (ψ1 = R(ψ2)). The asymmetric states become
unstable themselves at Re = 53, where they both have a Hopf bifurcation; more Hopf bifurcations follow at still higher
Reynolds numbers. These are the bifurcations which are of interest in this project. In particular, it will be investigated
whether the oscillatory modes of the Hopf bifurcations can be excited by noise before actually reaching the bifurcation.

9



Figure 4: Solutions to eq. 29 with deterministic double gyre forcing. Panel a) shows the bifurcation diagram, where
the (dimensionless) stream function ψ at location x = L/4 , y = L/4 is plotted against the Reynolds number Re.
Stable (unstable) branches are depicted by solid (dashed) lines. Further explanations are given in the text. - Panel b-d
show the stream function at various points in the bifurcation diagram: b) at the symmetric branch S1, c) on one of the
asymmetric branches (A1u) and d) on the asymmetric branch A2u. The plots are taken from [Sapsis, Dijkstra 2013].
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3.2 DO Equations for the Double Gyre System
The DO equations can be constructed quite easily, based on the equations 26-28 for the velocities. It is assumed that
the equilibrium water depth, H, is very large (H � η) and bottom topography as well as bottom friction can be
neglected. The Double Gyre equations then become (after a reshuffling of scaling factors; see also 1)

Dtu− (f̄ + y)v = −∂xp+
1

Re
∇2u+ τx (35)

Dtv + (f̄ + y)u = −∂yp+
1

Re
∇2v + τy (36)

∂xu+ ∂yv = 0 (37)

The wind stress contains a deterministic and a stochastic part, which will be explained in more detail below.
As described in section 2.3, we assume to solve the equations for Nreal ocean basins simultaneously by following

the mean, modes and stochastic coefficients. The only two prognostic quantities are u and v, while the pressure can be
calculated from the velocities at any time: inserting eq. 35 and 36 into the time derivative of eq. 37 gives a nonlinear
spatial PDE for the pressure. Hence u and v are considered “DO-variables”, i.e. they are expanded as

u(ω) = ū + Yi(ω)ui (38)

where u = (u, v).
The expansion of the diagnostic quantity p is not of this form but follows from inserting eq. 38 into the pressure

PDE.
As a metric the (depth-averaged) kinetic energy can be used:

< u1,u2 >=

ˆ
basin

u1u2(x, y) + v1v2(x, y) dxdy (39)

Note that the potential energy is not part of the metric. This is handy because the metric then does not contain
diagnostic quantities (pressure/sea surface height), and consistent because the kinetic energy is proportional to the
water depth (the velocity is constant with depth because it is depth-averaged, and the mass of the water colums is
proportional to depth), while the potential energy - rather, its deviation from the rest state - is not (it depends on
surface deviations only). In the limit of very large water depth the kinetic energy dominates. More about diagnostic
quantities is said in section 4.3.1.

The stochastic part of the wind forcing can in principle depend on the realisation ω: τ(t, x, y, ω) = τd(t, x, y) +∑Snoise

k=1 Zk(t, ω)σk(t, x, y) where the σk are spatial patterns of the noise component k, i.e. the noise is only stochastic
in time.

The DO equations One can now combine the general DO-equations with the equations and definitions given above.
This yields [Sapsis, Dijkstra 2013]
for the mean3:

∂tū = −ū ·∇ū−∇p0 +
1

Re
∇2ū−fez× ū+τd− (∇pij +1/2 (ui ·∇uj +uj∇ui))Cij +Eω[

Snoise∑
k=1

Zk(t, ω)σk(t, x, y)] (40)

∇·ū = 0 (41)

for the modes:
∂tui = Qu,i− < Qu,i,uj > uj (42)

∇·ui = 0 (43)

with the definitions

Qu,i = ∇pi +
1

Re
∇2ui − ui · ∇ū− ū · ∇ui − fez × ui + (∇pmn −

1

2
(um · ∇un + un · ∇um))C−1

ij Cjmn +

Eω[Yj(ω)Zr(ω)](−∇br + σr)C
−1
ij (44)

3the last term in eq. 40 drops out if the forcing is chosen to be zero-mean.
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and constraints for the pressure:

∇2p0 = ∇ · (−ū · ∇ū− fez × ū + τd) (45)

∇2pi = ∇ · (−ui · ∇ū− ū∇ · ui − fez × ui) (46)

∇2pij =
1

2
∇ · (ui · ∇uj + uj∇ · ui) (47)

∇2br = ∇ · σr (48)

also recall the definition for the correlation operator:

Cijk... = Eω[Yi(ω)Yj(ω)Yk(ω) ...] (49)

For the evolution of the stochastic coefficients, the following equation holds:

dYi/dt = AijYj +BijkYjYk +Di (50)

with

Aij =<
1

Re
∇2uj − uj · ∇uj , ui > (51)

Bijk = −1

2
< uj · ∇uk + uk · ∇uj , ui > (52)

Di = BijkCjk+ < σr , ui > Zr (53)

3.3 Simulation settings
In this project, the basin length is 1000km and a grid of 96 × 96 points; this is a rather coarse resolution but in
[Sapsis, Dijkstra 2013] it is demonstrated that the difference betweenruns with 64, 96 and 128 grid points is only a few
procent, so 96 × 96 gid points seems a good compromise between computation time and resolution. The integration
time is T = 11 (dimensionless time), which corresponds to approximately 22 years; this time is chosen because it is
well after the spinup. As time step size, 10−4 is used, except for very high Reynolds numbers (Re = 54), for which this
proved to coarse. The number of realisations is 1000 and the number of modes is fixed to be 6.

The deterministic part of the wind stress is given by

τx = −τ0 cos(2πy) , τy = 0

where τ0 = 1000/2π.
The stochastic part, which in general has the form

∑Snoise

k=1 Zk(t, ω)σk(t, x, y) consists of one noise component (spatial
pattern), i.e. Snoise = 1, and the stochastic amplitude of it does not depend on the realisation here. The noise forcing
is given by

τxstoch = τ0Aη(t)f(x, y) , τystoch = 0 (54)

with the spatial pattern

f(x, y) = α/
√
π [λErf(1/2λ)]−1 exp[

(x/L− 1/2)2 + (y/L− 1/2)2

2λ2
] (55)

where α = 1/f(0, 0) is a normalisation constant and λ determines the spatial extension of the noise; here it is taken
to be λ = 1/3. A is a scaling factor for the noise amplitude. In this project A = 0.05, even though this is rather low
compared to the determinitic part of the wind stress, because otherwise the code crashes - at least for this rather low
time resolution.

The temporal pattern of the noise is given by η, where η is either white noise W (t) (Gaussian random number at
each time step) or red noise, which is given by [Sapsis, Dijkstra 2013]:
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dη(t) = −1

τ
η(t) dt+

√
2/τ dW (t) (56)

Note that in principle, η and W depend on the realisation ω.
Before actually taking data, a few preliminary runs with no noise were performed in order to to verify the location

of the first Hopf bifurcation - this can vary a little, depending on resolution. It as found that the Hopf bifurcation
indeed lies near Re = 53. This was concluded from the appearence of non-decaying oscillatory modes.
Since the main focus lies on the behaviour of the double gyre system before the first Hopf bifurcation, calculations were
performed for the Reynolds numbers Re = 42, 46, 50, 52, for zero noise, white noise and red noise. The decorrelation
time of the red noise is τ = 0.5 (roughly one year), τ = 1 and τ = 2. Finally, two runs were performed for Re = 54
(just after the first Hopf) for red (τ = 0.5) and white noise.

As the modes and coefficients usually do not vary at the time scale of the time step dt, data is written out every
100 timesteps, in dimensional time units this means 100 times in 2 years or about once per week.
The parameter space up to Re = 40 has already been investiated [Sapsis, Dijkstra 2013].

3.4 Results Double Gyre
In this section I only show a selection of the plots made of the mean and modes; the complete plots are given in the
appendix.

3.4.1 Bimodality

In fig. 5, the mean, first mode and histogram of the coefficients for the first mode are shown. The settings for this
figure are Re = 46, white noise, and the time is t = 9.5 (about 19 years), but very similar results are found for all runs
except Re = 54, white noise.

The mean state is symmetric against mirror reflection around y = 1/2, while the first mode is antisymmetric and
has a bimodal probability distibution. This behaviour is due to the pitchfork bifurcation at Re ≈ 30. From fig. 6 one
can see that after an initial spin-up the variances

V ari =

NReal∑
ω=1

(Yi(ω))2

of all but the first mode decrease very rapidly (exponentially), while the variance of the first mode equilibrates to
values near the energy of the mean4. This means that the realisations equilibrate towards one of the two stable
pitchfork branches. The pitchfork branches of this Double Gyre model correspond to the two modes of the Kuroshio
current. However, the realisations do usually not ‘switch’ between pitchfork branches after the spinup time in my data
(something which does happen in the real Kuroshio current), but they might do so for larger noise amplitudes. For
example, for Re = 54, red noise (τ = 0.5) and Re = 42, τ = 2 the decay starts much later then for smaller Re before
the Hopf.

Apart from decaying, the time series of the variance of the transient modes also shows oscillatory behaviour, at
periods of about a year (mode 2,4) and a few months (mode 5). It is interesting that one sees oscillations in the
variance which is a quantity formed by all realisations together: The realisations have to behave somehow collectively.

For Re = 54 and white noise, mean and first mode are very different from the other cases (fig. 7), because the
model landed in the ’inertial’ regime (panel d of fig. 4).

Bimodality has also be found for lower Reynolds numbers in [Sapsis, Dijkstra 2013]

3.4.2 Variance

In order to see how noise forcing affects the variability, the variance of different quantities (zonal and meridional
velocities and kinetic energy) was calculated at several locations, x1 = (1/6, 1/2),x2 = (1/4, 1/4),x3 = (2/3, 1/2),x4 =
(1/4, 3/4) and times t = 8, 10.99 (i.e. after the spinup). The dominant, but not very interesting contribution to the
variance comes from the pitchfork mode; in order to filter this out, the realisations were sorted according to their
pitchfork branch and then the variance was calculated per branch. The results for the first two locations are shown in
fig. 8-9; the other two yield very similar outcomes; one can also see from the figure that the results are very robust
against the choice of quantity or location.

4since the energy is used as metric and the modes are normalised to < ϕ,ϕ >= 1, the variance of a mode equals the energy associated
with the mode, hence it makes sense to compare the energy of the mean to the vatiance of the modes.
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Figure 5: Results for Re = 46, white noise. The top left panel shows the mean state, the bottom left one the first
mode. The bottom left panel shows the histogramm over the realisatons for the stochastic coefficients associated to
the first mode, and the top right panel shows one realisation. Since all but the first mode have a very small variance,
the realisation is mainly dominated by the mean and the first mode.
Colours depict vorticity: blue corresponds to negative and red to positive vorticity. The contours are streamlines.
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Figure 6: Timeseries of the energy of the mean state (black) and the variance associated to the modes for Re = 46,
white noise and Re = 42, red noise (τ = 2).

Figure 7: mean state for Re = 54, white noise. Colors depict vorticity: blue corresponds to negative and red to positive
vorticity. The contours are streamlines.
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Figure 8: The total variance of zonal/meridional velocity and kinetic energy at the locations (x1 = 1/6, y1 = 1/2) and
(x2 = 1/4, y2 = 1/4) , plotted against Reynolds number for all noise types (green symbols: no noise; blue: white noise;
red, magenta, black: red noise with τ = 0.5, 1, 2), and crosses/circles are used for the two pitchfork branches), at time
t = 8.
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Figure 9: The total variance of zonal/meridional velocity and kinetic energy at the locations (x1 = 1/6, y1 = 1/2) and
(x2 = 1/4, y2 = 1/4) , plotted against Reynolds number for all noise types (green symbols: no noise; blue: white noise;
red, magenta, black: red noise with τ = 0.5, 1, 2), and crosses/circles are used for the two pitchfork branches), at time
t = 10.99.
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At t = 8 the variance is much higher than at t = 10.99, which is no surprise because the moderwise variance decays
for all but the first mode There is an exception, though, namely R = 42, τ = 2. For t = 8 the range of variances is
smaller than for t = 10.99 - less time has elapsed since the end of the spin-up, where the variance is rather similar for all
runs - and the difference between Reynolds numbers less large, with high Re reaching slightly larger variances. There
is no clear result about how the variance depends on the noise and Re. At t = 10.99 the variances are comparable
for Re = 52, Re = 50, and Re = 42 with red noise, while Re = 46 produces far smaller variances. Higher variance at
high Re is to be expected, because one is closer to the Hopf bifurcation that is supposed to be excited. The fact that
Re = 42 gives larger variances than Re = 46 for all noise types, and even the highest variances of all runs (τ ≥ 1) is
harder to explain, it might for example be that the ’potential well’ causing the pitchfork is shallower at Re = 42 - the
excitation might then not be related to the Hopf at Re = 53.

The dependence of the variance on the noise type is very strong, but not very systematic. At Re = 42, red noise
produces the largest variances, while at Re = 52 the variance is largest for white noise and decreases with decorrelation
time for red noise. This might suggest that at low Re variance is associated with low-frequency fluctuations, while
at high Re fluctuations have higher frequencies. At Re = 46 red noise with τ = 0.5 generates the highest variance,
while both white noise and red noise with longer decorrelation time are less efficient. A very puzzling result is that for
Re = 50 the variance is highest for zero noise. This certainly requiress closer investigation.

3.4.3 Fourier spectra of the energy

Hopf bifurcations cause oscillatory behaviour, hence it is interesting to have a look at Fourier spectra of the kinetic
energy (fig. 10-11), both with and without the modes included. In the latter case, the absolute values of the Fourier
coefficients of the mean state energy at the four locations x1 = (1/6, 1/2),x2 = (1/4, 1/4),x3 = (2/3, 1/2),x4 =
(1/4, 3/4) are calculated and the mean is taken over the locations. In the first case, the same is done for all realisations
seperately and then the mean is also taken over the realisations. The time range is 8.5 < t < 10.5 (dimensionless time),
i.e.after the spinup, except for Re = 54 where 9.5 ≤ t < 11 is chosen in order to avoid the spin-up during which the
pitchfork is not yet developed (so the results are not comparable to the other Re)

The energy of the spectrum is higher for the realisationwise Fourier transform than for the mean. This suggests
that the mean is more ’static’ while the modes contribute strongly to the fluctuation in time. The difference between
realisationwise and mean spectra is especially large for Re = 54 where the variance has not yet decayed so much.

The fact that the mean state shows time variability at all might be due to interaction with the modes, or to direct
forcing, because the noise is not zero-mean (as it is the same for all realisations).
For all Reynolds numbers there is a rather strong peak near frequency 0.1months−1 (10 months period). It exists for
almost all types of noise, but the values are several orders of magnitude higher for red noise of short decorrelation time
than for white or zero noise - even for high Reynolds numbers, where the variance is highest for zero (Re = 50) or
white (Re = 52) noise. The peak is also strong in the Fourier spectrum of the mean state. This peak will turn out to
belong to the second Hopf bifurcation. Due to its long period it is excited more easily by red noise.

Another noticeable peak lies at 0.5months−1(period 2 months). It appears at all Reynolds numbers but is less
pronounced at Re = 42 and most significant for Re = 50. For low Reynolds numbers it is a actually a double peak with
a marked dip; for Re = 52 the dip becomes weaker. At low Reynolds numbers it is only seen in the presence of noise,
while at Re = 50 and Re = 52 it is especially strong for zero noise. This peak is linked to the first Hopf bifurcation.
Interestingly the two-monthly peak at Re = 54 (beyond the Hopf bifurcation!) is not very pronounced.

It is necessary to perform a significance test here in order to be sure that these peaks are not - possibly - just noise.
Due to lack of time this has been omitted.

3.4.4 Transient modes

Comparing the Fourier spectra of the Y to the plots of the modes, one can reconstruct which modes belong to which
frequencies.

Apart from the pitchfork mode there are two interesting modes which have a transient behaviour. They are linked
to the first two Hopf bifurcations on the pitchfork branches. Only a few nice examples of these modes are shown here;
when looking at all modes, one will also find many deformed or hybrid versions.

The Gyre mode The Gyre mode [Simmonet, Dijkstra 2002]can be found for many runs, in fig. 12 the example
Re = 42, red noise is chosen. For this run, mode 2 and 3 are approximately each other’s mirror image (one has to
multiply one of the modes by −1, which does not alter the realisations - the physical quantities - if one simultaneously
switches the sign of the stochastic coefficients Yi). When considering the scatter plots of the Yi(i ∈ {2, 3}) against Y1,
one sees that mode 2 (3) only has a strong variance at the pitchfork branch with positive (negative) coefficients Y1.
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Figure 10: Fourier spectra for the energy. In the upper four plots, the Fourier spectrum is calculated realisationwise,
and the mean of the absolute values is taken; in the lower plots, the energy of only the mean state is taken. In both
groups, the top left plot is for Re = 42, top right: Re = 46, bottom left/right: Re = 50/52.
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Figure 11: As figure 9 but for Re = 54, red noise with τ = 0.5. The realisationwise spectrum is in the left panel, the
mean state in the right one.

Figure 12: The Gyre mode. The upper plots show the mode 2 and 3 for Re = 42, red noise. The lower panels are
scatter plots of the coefficients Y2 (Y3) against Y1.
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Figure 13: Rossby basin mode. The plots are for Re = 42,red noise (left) and Re = 50, white noise (right).

So apparently there is one Gyre mode for each pitchfork branch. This result is in agreement to earlier research (see
[Dijkstra 2005]). However, the ‘sorting’ according to the pitchfork branch is not always as clear as for this run (see,
for example, Re = 42, white noise)

The Gyre modes are associated to the second Hopf bifurcation (at Re ≈ 80). Physically, they strengthen and
weaken the jet periodically. The actual period is about 3 years, but in these simulations the period is reduced to about
one year (dimensionless time: 0.5), as one can see when looking at spectra of the Y belonging to that mode. The
reduction in period is due to the smaller basin length (1000km).

Interestingly this mode can be excited even very far from the corresponding Hopf bifurcation.

The Rossby basin mode The Rossby basin modes are similar to free Rossby waves, but in a bounded domain, i.e.
they have to fullfill boundary conditions. In a square basin, they obey

ψ(x, y, t) = A sin(nπx) sin(mπy) exp[−i(σnmt+
βx

2σnm
)]

with
σnm = −2β/

√
(nπ)2 + (mπ)2

(Constant density is assumed, hence only the barotropic case is considered). With β = β0L
2/U ≈ 10−11(ms)−1×(106m)2/

1m/s =

10 and m = n = 2 one obtains
The 7-monthly variability in fig. 1 is due to Rossby basin modes. As for the Gyre modes the period in my

simulations is reduced by a factor of about 3 with respect to observational data; the peak at 2 months period in the
Fourier spectra comes from the Rossby basin modes.

The Rossby basin mode belongs to the Hopf bifurcation at Re = 53. In order to find out whether it shows coherence
resonance behaviour, one can compare the variance of the highest mode resembling a Rossby basin mode for various
Re and the noise type. Unfortunately there are some doubtfull cases where it is hard to decide whether the mode is
a Rossby basin mode or not. Also the spin-up takes more time in certain runs, for example, Re = 42 and long noise
correlation times. Thus the data is a bit insufficient but seems to suggest that Rossby basin modes can be excited at
lower Reynolds numbers by red noise with τ . 1 , while for Reynolds numbers closer to the Hopf bifurcation they even
occur without noise (having been excited during the spinup). This hints at coherence resonance behaviour.
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Figure 14: Synchronisation of the stochastic coefficients in the time range 8 ≤ t ≤ 8.99; left: negative, right: positive
correlation. In all cases, NC(A)/NP (number of (anti)correlated pairs over total number of pairs) is plotted against the
mode.

For Re = 54, i.e. past the Hopf bifurcation, all but the first (pitchfork) mode look like Rossby basin modes - in fact,
they bear a rather close resemblance to the various phases of the Rossby basin mode described in [Dijkstra,Katsman 1997].
Not surprisingly, modes 2-5 have a much higher variance than for lower Re. However, in fig. 6 one sees that also for
Re = 54, τ = 0.5 their variances start to decay, but later than for most other runs. It is not clear from the data
whether the decay continues or an equilibrium is reached. One would expect the variance of the Rossby basin modes
to equilibrate to a non-zero value past the Hopf bifurcation.

3.4.5 Synchronisation

While looking at time series of different realisations the Yi one can see that they often look quite ’synchronised’. In
order to quantify this observation, the correlation in time (for 8 ≤ t ≤ 8.99 and for 10 ≤ t ≤ 10.99) of all possible
pairs formed of the first 200 realisations (with Npair = 200 × 199/2) was calculated. When two realisations have a
correlation higher then L ≡ 0.9 (lower then −L) they are considered (anti)‘linked’. The number of (anti)correlated
pairs is denoted by NA, NC . In fig. 14, NA

NP
and NC

NP
are plotted for each mode, Reynolds number, noise type and time
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Figure 15: Synchronisation of the stochastic coefficients in the time range 10 ≤ t ≤ 10.99; left: negative, right: positive
correlation. In all cases, NC(A)/NP (number of (anti)correlated pairs over total number of pairs) is plotted against the
mode.
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range. 5

It turns out that mode 1 has very high (anti)links, namely both around 1/2: the realisations are divided into two
groups which evolve in an opposite way. (It migth be interesting to check whether these groups are connected to the
pitchfork branches.) For the other modes, the number of (anti) linked pairs is about (0-20%) 10-30% of the possible
pairs. There is no strong trend in time. Globally, white noise produces the most positive links, followed by red noise
with τ = 0.5. Noise with high correlation time and zero noise produce less (positive) links in general, but there are
exceptions (mode 4, zero noise, 10 ≤ t < 11). For Re = 54 there are very few positive links for 8 ≤ t < 9 but
significantly more at 10 ≤ t < 11. Compared to the other runs, the decay of the variances starts much later in this
run; maybe synchronisation is an effect which only sets in after the spin-up.

I suspect that synchronisation is due to the fact that the ‘stochastic’ forcing does not depend on the realisations.
So the realisations only differ in their initial conditions but get the same ‘input’ during the time evolution. During the
decay, when the variance becomes small and hence there is little interaction between the modes, the synchronisation
effect is probably especially large.

I also suspect that synchronisation might lead to a decrease in the variance. After all, if many realisations fluctuate
in the same way, this becomes a fluctuation of the mean. One could check this by calculating the energy transfer
between the modes and the mean. It would also be interesting to do a run with realisation-dependent forcing.

4 El Niño/Southern Oscillation

4.1 ENSO and the Zebiak-Cane model
The Zebiak-Cane model is a rather simple model which nevertheless captures the main features of ENSO. It contains
a reduced-gravity model oceanic part, with the thermocline as boundary between the less dense active layer and the
dense lower layer; within this upper layer, it has a surface layer with the sea surface temperature (SST) and Ekman
dynamics; and an atmosphere which, for simplicity, is described by a shallow water model.

As the model area does not extend too far off the equator (about 30o ), a β-plane approximation is made, i.e. one
uses Cartesian coordinates and the Coriolis parameter f = 0 + βy.

In this thesis, the model is run in an anomaly mode, i.e. one calculates the deviations from a prescribed, season-
dependent background state.

In the following I will briefly explain the equations of the Zebiak-Cane model. Note that here all quantities are
dimensional.

4.1.1 System Equations

The ocean is modelled as an 1.5layer or reduced gravity model where the active upper layer (average depth H) obeys
shallow water equations as a whole but is subdivided into a main part (depth H2) and a well-mixed surface layer (depth
H1). This is done to incorporate Ekman dynamics. Also it will be the mixed layer whose temperature is coupled to
the atmosphere.

We define the following oceanic velocities:

u1 =
1

H1

ˆ 0

−H1

udz , u2 =
1

H2

ˆ −H1

−H2

udz , um =
1

H

ˆ 0

−H
udz , H = H1 +H2

The “extra Ekman effect” in the mixed layer is described by us = u1 − um. From now on, um will be denoted by u.

Reduced gravity model The momentum balance equations (first, in the zonal direction, than meridional) read:

∂tu+ amu− β0yv + g′∂xh =
τx
ρH

(57)

η∂tv + amv + β0yu+ g′∂yh =
τy
ρH

(58)

5When dealing with timeseries of Y one has o take into account that the code always numbers the modes according to their contribution
to the variance, i.e. the dominant mode is called mode 1 etc. When mode i becomes more dominant than mode i− 1, they will exchange
their indices. One therefore has to re-order the modes, with a procedure based on the orthonormality of the modes at any time and assuming
that the modes do not change strongly in time, in order to obtain proper time series of the Y .
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Here u and v denote the zonal and meridional velocity component, respectively. The terms describe, from left to right:
the time derivative, (frictional) damping, the Coriolis effect on the β-plane, pressure gradient force due to deviations
of the thermocline depth, and the wind stress. Note that the non-linear advection terms have been ignored.

Since the zonal scale of ENSO is so much larger than the meridional scale, one can leave out the time derivative
term in the meredional momentum balance (η = 0). This will remove short waves. (See [Dijkstra 2005] chapter 7)

The variations in thermocline depth are described by

∂th+ amh+H(∂xu+ ∂yv) = 0 (59)

The terms describe: the time derivative, frictional damping, and the convergence of currents. Again, advection has
been ignored.

The wind stress can be calculated from the wind U using ~τ = ρairCD|U|U. Since the model is run in the anomaly
mode, one can linearise the wind stres around the background state.

Boundary conditions At the boundaries the flow has to obey:
ˆ ∞
−∞

u(0, y, t)dy = 0 (60)

(no net mass flow through western boundary,x = 0), and

u(L, y, t) = 0 (61)

(no flow at eastern boundary, x = L). In the y direction, where the system is open to the rest of the ocean, all
quantities should be bounded.

Surface layer, Ekman dynamics and upwelling In the surface layer, Ekman-like currents are superimposed on
the shallow-water dynamics described above. The Ekman currents us and vs are given by

asus − βyvs =
H2

H

τx
%H1

(62)

asvs + βyus =
H2

H

τy
%H1

(63)

where the upper equation describes zonal, and the lower meridional momentum balance. The terms describe damping,
Coriolis effect, and wind stress. There is no time derivative, that is, the Ekman currents are always in an equilibrium
between the wind stress, damping and Coriolis effect. They can be calculated directly from the wind stress.

In case of horizontal convergence in the surface layer ((∂xu1 + ∂yv1) 6= 0) a vertical velocity is needed to fulfill the
continuity equation:

w1 = H1(∂xu1 + ∂yv1) (64)

The causing of vertical velocities by horizontal convergence is called upwelling.

Sea surface temperature We assume the surface (Ekman) layer to be well-mixed (eg. by surface waves) and
therefore to have a homogeneous temperature (the SST).

The SST is modelled by the following equation:

∂tT + u1∂xT + v1∂yT + aT (T − T0) +
M(w1)

Hu
(T − Tsub(h)) = 0 (65)

The terms describe: The time derivative of the SST; advection (for which the velocities in the surface layer, u1,
are relevant); a damping term (‘Newtonian cooling’) whose effect is to bring the temperature to a background state
of radiative equlibrium T0 (the temperature one would have without ocean dynamics), by effects such as horizontal
mixing, transport of sensible/latent heat to the atmosphere, and radiation; and an upwelling term. This term describes
the upward transport of cool water from below the surface layer (temperature Ts(h) ) by the vertical velocities caused
by upwelling. M(χ) ≡ H(χ) · χ where H is the Heaviside function (physically this implies that temperature change
through upwelling only takes place for positive w), Hu is a scale height chosen such as to well represent the temperature
gradient.
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Since the temperature equation is non-linear, its form changes in the anomaly mode. (It is assumed that the
background state in absence of anomalies obeys the model equations). Letting χ be some field, let then

χ = χ̂+ χ′

where χ̂ is the background and χ′ the anomaly. The temperature equation then becomes, chosing T0 = T̂ ,

∂T ′+û1∂xT
′+u′1∂x(T̂+T ′)+v̂1∂yT

′+v′1∂y(T̂+T ′)+aTT
′+[M(ŵ1+w′1)−M(ŵ1)]·∂zT̂+

M(ŵ1 + w′1)

Hu
(T̂+T ′−Tsub(h)) = 0

(66)
In the linear equations, one can simply replace the total quantities by their anomalies. From subsection 4.2 onward,
only the anomaly mode will be considered, so the primes indicating the anomalies are omitted in order to keep the
notation simpler.

Atmosphere Since we are not interested in a vertical resolution of the atmosphere, it can be described by a shallow-
water model. Uand V denote the zonal and meridional wind, Θ the geopotential. The momentum balances read:

(∂tU) + aMU − β0yV + ∂xΘ = 0 (67)

∂tV + aMV + β0yU + ∂yΘ = 0 (68)

where the various terms describe the time derivatives, linearised damping, Coriolis effect, and pressure gradient force.
The geopotential obeys:

∂tΘ + aMΘ− c2a(∂xU + ∂yV ) = −αT (T − T0) (69)

where the terms describe the time derivative, damping, horizontal convergence, and heating of the atmosphere due to
deviations of the SST from radiative equilibrium T0 (heating causes - via three dimensional circulation processes not
resolved in the shallow water model - a decrease in surface pressure/geopotential).

As the atmosphere has little ‘memory’, compared to the ocean, one can make the approximation that the state of
the atmosphere follows instantaneously from the ocean, that is, one omits the time derivatives.

The Cane-Zebiak model allows for the following interactions between its components:

• wind stress: atmosphere transferring momentum to both the oceanic shallow water part and the surface layer
(Ekman dynamics).

• temperature advection: the currents in the surface layer (~u1 = ~u+ ~us) lead to horizontal temperature advection.
This interaction is not linear.

• upwelling: horizontal convergence in the upper layer leads to vertical velocities which, when directed upward, can
bring cold water from greater depth (depending on thermocline height) upwards. This interaction is non-linear,
too.

• heating: the atmosphere is heated by the ocean (SST), with heating leading to a decrease in geopotential
(‘pressure’). The heating is linear.

The strength of the coupling between SST and heating is essential for the formation of El Niño’s. If it is too weak,
then the feedback chain ‘SST anomaly→ heating→ wind stress anomaly→ current/thermocline anomaly→ SST’ will
be disrupted and the ENSO dies off. If the coupling is strong enough, however, the ENSO can go on forever without
external forcing. Mathematically speaking, there is a Hopf bifurcation in the SST-heating coupling.

The oceanic part of the model allows for two types of waves, eastward travelling equatorial Kelvin waves with a
maximum at the equator and slower westwards travelling Rossby waves. Their travel time sets the internal time scale
of variability.

4.2 The original Zebiak-Cane Code
I used an existing code of the Zebiak-Cane model into which I implemented the additional DO features. In the
following a brief description of the original code will be given before dealing with the DO part. Some minor changes
and simplifications made in the original code will also be described. A more detailed description of the model can be
found in [Zebiak, Cane 1987]. A few results obtained with this code are given in fig. 16.
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Figure 16: Top: Temperature anomaly of 4 years simulated with the original Zebiak-Cane code, plotted at 3-monthly
intervals. There is a La Niña in year 1 and El Niño in year 3-4. The strong asymmetry around the equator near the
eastern boundary is caused by the very asymmetric background upwelling.
Bottom: Hovmoller diagram of the temperature anomaly along the equator. The first four years of the Hovmoller plot
are those in the top panel. Clearly the ZC code produces very irregular results, with two strong El Niños in the first
10 years, and no strong events in the next 10 years.
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Figure 17: The scheme of the original Zebiak-Cane code. Uo and Vo are the zonal and meridional wind component, τ
the wind stress, UB , Hb, AKB , V the non-Kelvin zonal velocity, non-Kelvin thermocline depth, Kelvin wave amplitude
and zonal velocity of the ocean, and T the sea surface temperature.

4.2.1 Description of the code

Discretisation and grids The original code is explicit; the time discretisation resembles an Euler foreward method.
During one time step, the code first calculates the temperature changes, then uses the updated temperature to calculate
the atmospheric quantities and the wind stress, and finally uses those for updating the oceanic quantities. This use of
already updated quantities within one loop is not classically Euler foreward. The scheme of the code is visualised in
fig. 17. The time step is set to 10 days (or rather, 1/36 years, where one year consists of 12 equal months) and can
unfortunately not be adjusted.

The code operates on two spatial grids. The first one, which will referred to as ‘oceanic grid’, is for the quantities
of the oceanic reduced gravity model, i.e. u, v, h. It is actually a staggered grid with 79 (78) zonal and 115 (116)
meridional gridpoints for u and h (v). The other grid is much coarser, with grid cells of 5.625o in longitude and 2o in
latitude, and covers an area from 29oS to 29oN and 129.375oE to 84.375oW . It has no staggering. On this grid, all
other quantities are specified, such as SST, winds, wind stress, and Ekman related quantities. It will be referred to as
‘atmospheric grid’.

Like the time step, grid sizes are not adjustable. The model performs two grid transformations per time step: It
computes an ocean-grid wind forcing from the wind stress given on the atmospheric grid, which is used in the reduced
gravity model, and it averages the oceanic quantities back onto the coarser atmospheric grid. 6

SST dynamics After performing spatial averages of the oceanic fields, further quantities have to be calculated: The
Ekman velocities are computed from the wind stress, and the upwelling from the divergence of the total velocities in

6This averaging was not done neatly, because some oceanic grid points where used for several atmospheric points and hence where given
more weight. The staggering of the v grid was not paid attention to, so that a v which is symmetric on the oceanic grid would not remain
so on the atmospheric one. I corrected this.
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the well-mixed layer. One also needs the subsurface temperature (the temperature at the depth from which water is
supposed to be upwelled):

Tsub = γsubT
∗
sub + (1− γsub)T (70)

where
T ∗sub = Tai[tanh(bi(ĥ+ h))− tanh(biĥ)] (71)

with i = 1 if h > 0 and i = 2 if h < 0.
The temperature subroutine needs a finer time resolution, hence NSST subtimesteps are taken for this calculation,

i.e. one computes the temperature change, divides by NSST , adds the change to the temperature field, and repeats
this NSST times. The currents and windstress are not updated in between.

Furthermore, due to some instability, the temperature can become very high at a few locations and times. This is
prevented by artificially not letting the total temperature T̂ + T rise above 30oC.

Stress The winds - and hence the wind stress - are determined by heating from the ocean and convection.
In the heating term, −αTT , the coefficient is given a dependence on the background temperature,

αT = α∗T e
(T̂−30oC)/16.7OC

The convection loop is non-linear and is supposed to capture the fact that converging winds are linked to rising air,
convection, and latent heat release, which again influences the winds. In this project the convection loop is switched
off because it is nonlinear and would cause the DO decomposition of atmospheric quantities very complicated.

The atmospheric quantities can either be updated by calculating the changes, or be recalculated completely, based
on the temperature. The latter is more costly but the former might lead to a development of unphysical modes. Since
the model runs fast enough on modern computers, one can easily choose for recalculation at every time step and hence
avoid complicated criteria.

Oceanic quantities The Zebiak-Cane code splits the oceanic zonal velocity and thermocline depth into a Kelvin
wave part and a ’rest’ part. Since Kelvin waves have a fixed meridional dependence, given by φK(y), one needs to give
only the zonal dependence AK(x, t):

χKelvin(x, y, t) = AK(x, t) ∗ ϕK(y) (72)

where χKelvin stand for the Kelvin-related zonal velocity or thermocline depth (they are equal in the dimensionless
system). For the ‘rest’ part I will use the variables uB(x, y, t) and hB(x, y, t). The total zonal velocity and thermocline
depth are given as:

u(x, y, t) = uB(x, y, t) +AK(x, t) ∗ ϕK(y) ; h(x, y, t) = hB(x, y, t) +AK(x, t) ∗ ϕK(y) (73)

where ϕK(y) ∝ e−y2/2 in non-dimensional units (ydim = ynondim ×
√
g′H/β0 ).

The Kelvin and ‘rest’ parts are treated as seperate variables in the oceanic part of the model. For SST dynamics,
the sum is used.

Friction is applied in a non-explicite way, namely after updating the oceanic quantities, i.e. after performing calcu-
lations including all other processes affecting the oceanic quantities, the result is multiplied with a friction coefficient.

Background Background quantities are all in the atmospheric grid, as they are used for the calculation of the
temperature, winds and wind stress (non-linear processes). The following quantities have a background state: zonal,
meridional and vertical ocean velocities, SST, zonal and meridional wind, and wind divergence (the latter is not used
with the convction being switched off). The background state is season-dependent, with values given for each month;
as there are 3 timesteps per month, interpolation is used for the intermediate steps.

For the computation of Tsub, a season-independent background thermocline depth is used.

Spin-up and external forcing In the absence of external forcing, it is a solution to have zero anomalies. Hence
the model needs either non-zero anomalies as starting condition, or some external forcing for a spin-up. The latter is
realised by letting a westerly wind burst around the equator blow for a few months. Once the model is spun-up, it
keeps producing El Niños (in an irregular fashion with 3-4 years as preferred period) on its own, i.e. without further
external forcing.
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parameter meaning value parameter meaning value
am oceanic friction (2.5 yr)−1 g′ reduced gravity parameter 0.0561
as Ekman layer friction (2 days)−1 aT SST damping (125 days)−1

aM atmospheric friction (2 days)−1 γ used in Tsub 0.75
H background thermocline depth 150m Ta1,Ta2 used in Tsub 28oC,−40oC
H1 ekman layer deph 50m b1,b2 used in Tsub 1/(80m) ,1/(33m)

Hu depth in vert. SST gradient = H1 α SST-heating coupling 0.031 m2

s3K

β β parameter (Coriolis)

Table 2: list of most important model parameters
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Figure 18: Hovmoller plots of the temperature anomaly along the equator for the modified ZC code. In the left panel,
the convergence loop is switched off; in the right panel, the wind stress is linearised. See also fig.16.

4.2.2 Modifications of the ZC code

In oder to implement the DO formalism, it was necessary or handy to make some changes to the original code. The
effect of each change on the outcome of the old model was checked. In fig.18 the consequences of these changes are
illustrated.

Convergence loop The convergence loop is non-linear and complicates the equations a lot; it would cause difficulties
when expanding atmospheric quantities into modes. Furthermore, the computation of this effect involves an iteration
with an adaptive number of iteration steps. It would be hard to find a neat way to translate the iteration criterion to
modes. Fortunately, the model gives reasonable results without convergence loop, even though the El Niños behave
more regularly - in fact, the temperature anomaly becomes almost perfectly periodic, with a period of 4 years (see fig.
18, left), but it still produces El Niño’s and La Niña’s.

Wind stress The wind stress is also non-linear, while it is desirable to limit non-linearities to the temperature
equation. Hence the wind stress

τi ∝ |Û + U′| × (Û + U′)

is linearised around the background state, which gives the wind stress anomaly:
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τ ′i ∝ (|Û|+ Û2
i

|Û|
)Ui +

ÛiÛk

|Û|
Uk (74)

where bold face denotes vectors, and for the indices (i, k) ∈ {(x, y), (y, x)}. The prime will be omitted from now on.
Linearising the wind stress also makes El Niño more regular, but not as much as omitting the convergence loop.

(see fig. 18, right)

Timestep When applying the DO method, the timestep of 1/3 month might be to coarse. It is known that the
stochastic coefficients can diverge in case of too large time steps. Unfortunately, the time step size cannot be adjusted
in the code. Hence I implemented a substimestep into the whole calculation loop (temperature - wind - stress - ocean):
Let Nloop be the number of subtimesteps, then the temperature change calculated in the SST-subroutine is divided
by Nloop. With the updated temperature, the atmospheric quantities and the wind stress are calculated in the usual
manner (these are recalculated every time step, based on the temperature field). The change in the oceanic quantities
is also divided by Nloop. The loop is repeated Nloop times within one time step. For the original Zebiak-Cane code,
the difference between the solutions with Nloop = 1 and Nloop = 5 is far below one procent.

Background seasonal dependence It is usefull to remove the seasonal dependence of the background when wishing
to find equilibrated modes (seasonal variation would act as an additional forcing). One can easily run the model with
conditions specific for one month, or an annular mean backgrond.

Failed attempts: It was also tried to remove the artificial constraint that the temperature may not exceed 30oC .
This caused occasional spots of very high temperatures. If one doesn’t want the ocean to boil, one should not remove
this part of the code.

Also my experiments with linearising or smoothening the upwelling (removing the Heaviside function in the up-
welling term and using only one function, instead of cases, for the subsurface temperature in eq. 71) gave absurd
results.

4.3 DO Equations for ENSO
4.3.1 Aside: diagnostic quantities in the DO formalism

When trying to write down the DO equations for the ZC model, I wondered about how to deal with the meridional
velocity, which becomes a diagnostic quantity in the long-wave limit. Recall, the equation for v is

η∂tv + amv + β0yu+ g′∂yh =
τy
ρH

and in the long wave limit, η → 0. The meridional momentum equation becomes some algebraic (∂t-free) constraint
on v. For diagmostic quantities one cannot write down a DO equation (one can at most express it via prognostic
quantities)

What was puzzling to me were the following questions:

• Can a diagnostic quantity contribute to the metric?

• What happens for small but non-zero η, i.e. is the diagnostic variable case the limit of the prognostic variable
case with η → 0?

The first question at least is more important for the ocean than the atmosphere, because the atmosphere stores far
less energy, and the metric is chosen to be related to the total energy.

The sea surface height in the double gyre system The double gyre system is easier and also contains a diagnostic
variable, the sea surface height (SSH) deviation. The total water depth is given by htot = H + h, where h = ζĥ is
the dimensional and ĥ the non-dimensional sea surface height deviation, and H the average water depth (no bottom
topography), where ζ is the typical scale of sea surface height deviations. The mean water depth is much larger than
the SSH deviation.

Consider the system eq. 26 - 28.
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Combining a few coefficients that are not important for the general form into b, c, and α, and writing η = ζ/H,
the equations can be rewritten as

Dtu = fv − b∂x(ĥ) + c∇2u+ ατx/(H(1 + ηĥ)) (75)

Dtv = −fu− ∂y(ĥ) + c∇2v + ατy/(H(1 + ηĥ)) (76)

∂t(Hηĥ) + ∂x(H(1 + ηĥ)u) + ∂y(H(1 + ηĥ)v) = 0 (77)

Note that η is a small parameter because H � h = ζĥ. In the momentum equations, b is supposed to contain all
scaling factors already, so no ζ is appears there.

In the case η → 0 (physically: H →∞), using

∂t(Hηĥ) +H∂x((1 + ηĥ)u) +H∂y((1 + ηĥ)v) = η[∂tĥ+ ∂x(ĥu) + ∂y(ĥv)] + ∂xu+ ∂yv

the equations become

Dtu = fv − b∂x(ĥ) + c∇2u+ ατx/H (78)

Dtv = −fu− ∂y(ĥ) + c∇2v + ατy/H (79)

∂xu+ ∂yv = 0 (80)

The question is, what happens when writing down the DO equations for the first set of equations and taking the limit
afterwards?

One can write down the DO equations for this system easily (just insert into the general DO equations), apart from
the fact that the metric is not a priori known. Let φ = (u, v, ĥ)T , and φ2 = (u, v)T . The inner product in first case is
< φ2, χ2 >=

´
V
φ(x, y)2

,aAabχ
2
b(x, y)dxdy where the indices a, b denote components of the field vector. The metric is

of the form A =

(
1/2 0
0 1/2

)
(see eq. 39, except that a trivial factor 1/2 is introduced here because the inner product

then resembles the kinetic energy better). The same formulation can be applied to φ = (u, v, ĥ)T , where I leave the
form of the metric undetermined at first:

< φ,χ >=

ˆ
V

φ(x, y),aAabχb(x, y)dxdy

with

A =

1/2 0 Auh
0 1/2 Avh
Auh Avh Ahh


The equations for the DO modes illustrate best what happens when taking the infinite waterdepth limit.

In the case of η 6= 0, one can expand ĥ =
¯̂
h + Yiĥi. If η = 0 one has to use expansions similar to those given

in eqs. 45-47. Within the momentum equations, I will leave ĥ unexpanded. I will also insert the stochastic forcing,
F = (Fu, Fv, ηFh) and F 2 = (Fu, Fh). The scaling of the Fh with η is a requirement, not derived from something.

With
Bj ≡ Eω[(L(φ) + F )Yj ]

(B has 3 components, for u, v, ĥ) and

Ijl ≡< Bj , φl >=

ˆ
V

BjAφldxdy

the DO equations become

∂tui = (Bj)uC
−1
ij − IjlC

−1
ij ul (81)

∂tvi = (Bj)vC
−1
ij − IjlC

−1
ij vl (82)
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∂tĥi = (Bj)hC
−1
ij − IjlC

−1
ij ĥl (83)

Bj is given by:

Bj =



{(−u∂xuk − uk∂xu− v∂yuk − vk∂yu+ fvk + c4uk)Ckj
+(−uj∂xuk − vj∂yvk)Clkj + Eω[(−b∂xĥ+ ατx

H(1+ηĥ)
+ Fu)Yj ]}

{(−v∂yvk − vk∂yv − u∂xvk − uk∂xv − fuk + c4uk)Ckj
+(−vj∂yvk − uj∂xuk)Clkj + Eω[(−b∂yĥ+ ατy

H(1+ηĥ)
Fv)Yj ]}

{(−(H/η + ĥ)∇ · uk − ĥk∇ · u− u · ∇ĥk − uk · ∇ĥ)Ckj
+(−ĥk∇ · ul − ul · ∇ĥk)Clkj + Eω[FpYj ]}


(84)

inserting the DO expansions for u and v and using Eω[χ̄Yj ] = 0 for any quantity χ, and Eω[YjYkYl...] ≡ Cjkl...
When taking η = 0 before writing the DO equations, one obtains

∂tui = (B2
j )uC

−1
ij − I

2
jlC
−1
ij ul (85)

∂tvi = (B2
j )vC

−1
ij − I

2
jlC
−1
ij vl (86)

and the constraint ∇ · u = 0 which leads to ∇ · ū = 0 by taking the mean of the equation, and ∇ · ui = 0 applying

0 = C−1
ij E

ω[Yj(∇ · u)] = C−1
ij E

ω[Yj(∇ · ū + Ykuk)] = C−1
ij Cjk(∇ · uk) = ∇ · ui

B2
j is defined as

B2
j =


{(−u∂xuk − uk∂xu− v∂yuk − vk∂yu+ fvk + c4uk)Ckj

+(−uj∂xuk − vj∂yvk)Clkj + Eω[(−b∂xĥ+ ατx

H + Fu)Yj ]}

{(−v∂yvk − vk∂yv − u∂xvk − uk∂xv − fuk + c4uk)Ckj
+(−vj∂yvk − uj∂xuk)Clkj + Eω[(−b∂yĥ+ ατy

H Fv)Yj ]}

 (87)

When taking η = 0 in the three-component system, the equations for u and v take the same form as in the two-
component system, but the Ijl - term might take different values. The last equation, when considering only terms to
leading order in η i.e. (O(η−1)), becomes

∇ · ui −
ˆ
V

∇ · ui[Auhul +Avhvl +Ahhĥl]ĥl +O(η) = 0

If now the metric components containing h are all at most O(η), then one obtains ∇ · ui = 0 to leading order. This
maens that all terms in (Bj)h are O(η0) and hence with the corresponding metric components Auh, Avh, Ahh being
O(η1) , the ĥ equation does not contribute to Ijl anymore and thus the two cases become equivalent.

Energy density for the double gyre The inner product should give the energy. Furthermore, the energy density
should fulfill

∂te+∇ · (u(e+K)) = 0 (88)

for arbitrary scalar K. (Here u and ∇ are two-dimensional!). With suitable boundary conditions, like no flow through
the boundary, the energy is then conserved:

dE

dt
≡
ˆ
V

∂te dxdy = −
ˆ
V

∇ • (u(e+K)) dxdy = 0 (suitable bc.) (89)

One can easily check that ekin = H
2 (u2 + v2) fulfills this condition in the η = 0 case, in absence of friction and

forcing. For η 6= 0, one needs to take potential energy into account, and the energy density becomes

e = ekin + epot =
H(1 + ηĥ)

2
(u2 + v2) +

b

2
(Hηĥ)2
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Dividing by H and remembering that η = ζ/H, where ζ is finite, one obtains

e =
1 + ηĥ

2
(u2 + v2) +

b

2
ζηĥ2

so the potential part is O(η).
The metric then is

Agyre =

1/2 0 0
0 1/2 0
0 0 bζη/2

 (90)

Mechanical energy density for ENSO For ENSO, there is an oceanic diagnostic quantity, v. As in the gyre
case, this could lead to inconsistencies except if the v-components of the metric vanish in the long-wave limit. In order
to show that this is the case, one can derive the mechanical energy density in the reduced gavity model, and then take
te limit.

Consider the oceanic momentum and continunity equations 57-59, removing terms that obviously do not conserve
the energy of this subsystem (friction, wind stress), but taking into account advection (which is actually neglected in
the model because it is non-linear). This leads to

∂tu+ u · ∇u− βyv + g′∂xh = 0 (91)

η(∂tu+ u · ∇v) + βyv + g′∂yh = 0 (92)

∂th+ u · ∇h+ h∇ · u = 0 (93)

Now consider the sum

hu× [zonal momentum eq] + hv × [meridional momentum eq] + (u2 + ηv2)/2× [continuity eq] (94)

which yields
∂tekin +∇ · (uekin) + g′hu · ∇h = 0 (95)

with ekin = h
2 (u2 + ηv2).The last term in eq.95 can be rewritten, using continuity in the second step:

g′hu · ∇h = g′∇ · (uh2)− g′h∇ · (uh) = g′∇ · (uh2) +
g′

2
∂th

2 (96)

Inserting this into eq.95 yields:

∂teocean +∇ · (ueocean) +
g′

2
∇ · (uh2) = 0 (97)

with the mechanical (kinetic plus potential) mechanic energy eocean ≡ ekin + g′

2 h
2 = h

2 (u2 + ηv2) + g′

2 h
2 . Clearly

eocean fullfills the energy conservation condition, eq.88 so it is really a conserved energy density. Therefore the contri-
bution of the mechanical energy to the metric is

Amech =

h
2 0 0

0 ηh
2 0

0 0 g′

2

 (98)

with the scalar product < ϕ1, ϕ2 >=
´

(u1, v1, h1)Aocean(u2, v2, h2)T dx . When taking η = 0, one can simply take
v out of the inner product altogether.
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4.3.2 The metric for ENSO

The atmosphere is considered not to contribute to the energy density because of its small density and heat capacity,
and v does not contribute either, but the SST certainly does.

There is no obvious choice - from a physical point of view - for an expression for the thermal energy. (Ideally
one would have a formulation which filters out the part of the thermal energy that can be converted into mechanic
energy, and which depends on the SST.) So a mathematically simple choice is made, namely etherm = CT 2 ; C > 0
The advantage of this formulation is that it is positive definite, and fits naturally into an inner product. C is some
coefficient whose numerical value has to be determined in such a way as to obtain modes which make sense - that is,
involve both temperature and mechanical quantities in some weighed manner (see subsection 4.4.1). (Unfortunately
we do not have a main balance, equivalent to, say, geostrophic balance in other systems, to which we can tune C.)

Wishing the metric to be time-independent, the factor h in the first metric component is replaced by the typical
thermocline depth scale, H.

The complete metric now reads:

A =

H
2 0 0

0 g′

2 0
0 0 C

 (99)

with the scalar product

< ϕ1, ϕ2 >=

ˆ
(u1, h1, T1)A(u2, h2, T2)T dx (100)

4.3.3 DO equations for ENSO

The prognostic quantities u, h, T 7can be decomposed in mean and modes immediately: u = ū + Yiui etc: but
the expansion of other quantities depends on the expansion of these three fields. Fortunately, after the linearisa-
tions/simplifications described in 4.2.2, v, us, vs, Θ, U , V all depend on the other quantities linearly, hence they can
be decomposed in the same way: U = Ū + YiUi etc.

The windstress anomaly is still given by

τx ∝ (|Û|+ Û2

|Û|
)U +

Û V̂

|Ũ|
V , τy ∝ (|Û|+ V̂ 2

|Û|
)V +

Û V̂

|Û|
U

Mean The linear equations remain in their original form:

∂tū+ amū− β0yv̄ + g′∂xh̄ =
τ̄x
ρH

(101)

amv̄ + β0yū+ g′∂yh̄ =
τ̄y
ρH

(102)

∂th̄+ amh̄+H(∂xū+ ∂y v̄) = 0 (103)

The Ekman layer equations become

asūs − βyv̄s =
H2

H

τ̄x
%H1

(104)

asv̄s + βyūs =
H2

H

τ̄y
%H1

(105)

For the temperaure, I define

Aupwell(ω) = [M(ŵ1 + w1(ω))−M(ŵ1)] · ∂zT̃ +
M(ŵ1 + w1(ω))

Hu
(T (ω)− Tsub(h(ω)))

With this, the mean temperature evolves as

∂tT̄ + aT T̄ + Eω[Aupwell] + Eω[(u1 + û1)∂xT + (v1 + v̂1)∂yT ] + ū1∂xT̃ + v̄1∂yT̃ = 0 (106)
7In the code of the ZCmodel, there are four prognostic quantities, because the Kelvin wave amplitude is treated seperately. This willbe

described this in the next section, beause here I want to keep things independent of the implementation.

35



and the atmospheric equations become

aM Ū − β0yV̄ + ∂xΘ̄ = 0 (107)

aM V̄ + β0yŪ + ∂yΘ̄ = 0 (108)

aM Θ̄− c2a(∂xŪ + ∂yV̄ ) = −αT (T̄ − T0) (109)

The stochastic forcing does not appear in the mean equations, because it is zero-mean (this means that one has to
make it realisation-dependent or zero).

DO modes Here one can make use of the fact that

Eω[χkYk(ω)Yj(ω)]C−1
ij = χi ∀χi

Defining Ijl =< Bj , ϕl > with

Bj =

 −amuj + β0yvj − g′∂xhj +
τj,x
ρH + Eω[Fu(ω)Yk(ω)]C−1

jk

−amhj −H(∂xuj + ∂yvj) + Eω[Fh(ω)Yk(ω)]C−1
jk

−û1∂xTj − v̂1∂yTj − aTTj + Eω[{u(ω)1∂x(T̂ + T (ω))− v1(ω)∂y(T̂ + T (ω))−Aupwell(ω) + FT (ω)}Yk(ω)]C−1
jk


With this, the evolution of the DO modes can be formulated:

∂tui = −amui + β0yvi − g′∂xhi +
τi,x
ρH

+ Eω[Fu(ω)Yk(ω)]C−1
ik − Iilul (110)

0 = −amvi − β0yui − g′∂yhi +
τi,y
ρH

+ Eω[Fv(ω)Yk(ω)]C−1
ik (111)

∂thi = −amhi −H(∂xui + ∂yvi) + Eω[Fh(ω)Yk(ω)]C−1
ik − Iilhl (112)

The temperature modes follow

∂tTi = −û1∂xTj− v̂1∂yTj−aTTj+Eω[{u(ω)1∂x(T̂+T (ω))−v1(ω)∂y(T̂+T (ω))−Aupwell(ω)+FT (ω)}Yk(ω)]C−1
ik −IilTl

(113)
The Ekman and atmospheric equations keep their form also in case of the modes:

aMUi − β0yVi + ∂xΘi = 0 (114)

aMVi + β0yUi + ∂yΘi = 0 (115)

aMΘi − c2a(∂xUi + ∂yVi) = −αTTi (116)

In the last equation, the term αTT0 is dropped because Eω[T0]− T0 = 0.

Stochastic coefficients The stochastic coefficients change according to

dYi(ω)/dt =

< (1− Eω)

 −amu(ω) + β0yv(ω)− g′∂xh(ω) +
τj,x(ω)

ρH + Fu(ω)

−amh(ω)−H(∂xu(ω) + ∂yv(ω)) + Fh(ω)

−û1∂xT (ω)− v̂1∂yT(ω) − aTT(ω) + u(ω)1∂x(T̂ + T (ω))− v1(ω)∂y(T̂ + T (ω))−Aupwell(ω) + FT (ω)

 ,

uihi
Ti

 >

(117)
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Initial conditions The initial modes are the eigenvector of the covariance operator, which in case of a trivial metric
(proportional to unity matrix) reads

Cϕ(.,t0,ω),ϕ(.,t0,ω)(x1,x2) = Eω[ϕ̃(x1t0, ω)⊗ab ϕ̃(x2, t0, ω)] (118)

where ϕ are Nreal possible initial realisations and ϕ̃(ω) = ϕ(ω) − ϕ̄ and ⊗ab denotes the tensor product in the field
component space (the indices a, b stand for the field components u, h, T ).

In case of a non-trivial metric, a complication arises which is not considered in [Sapsis, Lermusiaux 2009]. The
modes are supposed to be orthonormal with respect to the metric, i.e.

< ϕi, ψj >≡
ˆ
V

ϕi,a(x, y)Aabψj,b(x, y) = δij

where δij is the Kronecker delta. However, the Cϕ(.,t0,ω),ϕ(.,t0,ω)(x1,x2) that is given above is symmetric (in the
combined field component and spatial space) and positive definite, and hence its eigenvectors are orthonormal with
respect to the unity metric.

The problem can be solved by using the Cholesky decomposition of the metric. (Any symmetric positive definite
matrix A, such as the metric, can be written as A = LLT , where L is a lower triangular matrix.) The first step is to
multiply ϕ by LT prior to computing Cϕϕ. This yields

Ĉϕ(.,t0,ω),ϕ(.,t0,ω)(x1,x2) = Eω[LT ϕ̃(x1t0, ω)⊗ab LT ϕ̃(x2, t0, ω)]

= Eω[LT ϕ̃(x1t0, ω) ϕ̃T (x1t0, ω)L] = LTCϕ(.,t0,ω),ϕ(.,t0,ω)(x1,x2)L

This has also the advantage that Cϕϕ has the same dimensions in each component.
Ĉϕϕ is still symmetric positive definite, hence any two eigenvectors vi, vj are orthonormal with respect to the

standard inner product: < vi, vj >STD≡
´
V
ϕi,a(x, y) Iabψj,b(x, y) = δij with the identity matrix I. Now consider

< vi, vj >STD=< vi, L
−1LLTLT−1vj >STD=< LT−1vi, AL

T−1vj >STD=< LT−1vi, L
T−1vj >

Since vi is an eigenvector of Ĉϕϕ, LT−1vi is an eigenvector of LT−1ĈϕϕL
T = CϕϕLL

T = CϕϕA.
The covariance operator in case of a non-trivial metric A is thus

CAϕ(.,t0,ω),ϕ(.,t0,ω)(x1,x2) = Eω[ϕ̃(x1t0, ω)⊗ab ϕ̃(x2, t0, ω)]A

4.4 Implementing DO Evolution into the Zebiak-Cane model
The model is rewritten, using the subroutines of the original version whenever possible, in such a way as to perform a
DO analysis of the ENSO system. The maximal number of modes is 10, the maximal number of realisations is 10000.

4.4.1 The inner product

Numerical values of the metric coefficients The metric has 3 non-zero components. It is always possible to
rescale the metric by a scalar factor S2 (the modes are than rescaled by 1/S). Furthermore, the coefficient C for the
thermal energy is not known. Hence all that is given is the ratio between Auu and Ahh, which is Ahh/Auu = g′/H ≡
b = 3.75× 10−4s−2 (see also eq. 99).The metric can then be written as

A =

a 0 0
0 ab 0
0 0 c


with two unknowns, a and c.

With the notation Sχ = 1
V

´
V
χ2dxdy 8 the square of the norm of φ = (u, h, T ) can be written as

< φ, φ >= aSu + abSh + cST

Typical values for the Sχ can be determined using the original ZC code.
Now a and c are chosen such that

8in the discrete case: 1
Ngrid

∑
grid points χ

2
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• for typical Su, Sh, ST the thermal contribution to the innerproduct is as large as the kinetic one, cST = a(Su+bSh)

• for typical Su, Sh, ST the norm is 1. Since modes have norm 1 in the DO formalism, this ensures that the modes
have reasonable magnitues.

With Su = 0.0223(m/s)2 , Sh = 626m2, and ST = 0.877K2 the first requirement leads to

c/a = (Su + bSh)/ST = 0.2929(
m

sK
)2

and the second to
a = 1.946(m/s)2

The metric is:

A =

1.946(s/m)2 0 0
0 7.29× 10−4m−2 0
0 0 0.5701K−2

 (119)

The code calculates a half-nondimesionalised unit system, giving temperatures in K, thermocline heights in m, and
currents in 2cm/s. In these units, Auu = 7.784× 10−4(s/2cm)2 (almost the same value as Ahh).

The discretised version of the inner product Let NA be the number of atmospheric grid points and NO the
number of oceanic grid points. The grid points can be given two indices ix and iy for each spatial direction, or one
collective index i (i = (iy − 1)Nx + ix). The inner product then becomes

< ϕ1, ϕ2 >=
1

NO

NO∑
i=1

Auuu1(i)u2(i) +Ahhh1(i)h2(i) +
1

NA

NA∑
i=1

ATTT1(i)T2(i) (120)

4.4.2 Time evolution

The existing parts of the code have to be modified such as to compute mode and mean, and new subroutines have to
be written for performing the projection of the change in the mode onto the space perpendicular to the modes, and
for computing the stochastic coefficients and the forcing.

The new code first calculates the temperature change and the atmospheric quantities and wind stress, then the
stochastic forcing and the change in the oceanic grid-quantities. Next, the changes in the prognostic quantities are
projected to the space perpendicular to the modes. Finally, the stochastic coefficients and covariance matrix and its
inverse are computed.

The background states are not season-dependent here, in order to avoid additional time-dependent forcing. Instead,
an average is taken over all 12 months.

Temperature change As in the original version, the deterministic temperature change (i.e. not including stochastic
forcing) is calculated first. This has do be done realisationwise, because the upwelling term cannot be expanded as a
finite powerseries in Y . So rather than using an equation of the form

∂tTi = A+BϕiYi + CϕiYiϕjYj + ...

(as is done in the double gyre system), one has to express all fields that contribute to the temperature in realisations,
ϕ(ω) = ϕ̄+ Yiϕi.

The temperature check (total temperatures above 30oC are put to 30oC) also has to be done realisationwise.
Averaging over the realisationwise temperature change contributions LT (ϕ) 9 gives the change of the mean, and the
changes of the modes are obtained applying Eω[LT (ϕ)Yj ]C

−1
ij . The realisationwise contributions are saved for the

computation of the stochastic coefficients.

Atmosphere, wind stress, and ocean Due to the linearity of these processes, all necessary quantities are expressed
in mean and modes, and all calculations can be done as in the old code, except that they are performed Nmode + 1
times, namely once for each of the Nmode modes en once for the mean.

9LT (ϕ) is not the realisationwise temperature change but the realisationwise result of applying the operator L. The temperature change
of a realisation is given by dT̄ + YidTi.
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Stochastic forcing The spatial pattern FS = (FS,u, FS,h, ...) of the stochastic forcing is an external input. For
example, one can force the original model for 1-2 months with a wind burst and take the solutions for uB , v, hB , AK , T
after this time as spatial pattern (up to a scaling factor). 10

A Gaussian-distributed random number W (ω) (in case of white noise) or η(ω) with

dη(t) = −1

τ
η(t) dt+

√
2/τ dW (t)

(red noise) is multiplied with the spatial pattern to give the (realisationwise) stochastic forcing.
The realisationwise forcing is converted into modewise forcing using Fi = Eω[Yj(ω)FS(ω)]C−1

ij . The modewise
forcing is added to uB , v, hB , AK , T .

Projection The solutions for uB , v, hB , AK , T form the end of the previous time step have been saved (uB,old etc),
so that the change duB ≡ uB − uB,old can be calculated. With

ϕ(x.y) = (uB(x, y) + φK(y)AK(x), hB(x, y) + φK(y)AK(x), T (x, y))

and χ ∈ {uB,v, hB , AK,T} , the projection is:

χi → χi− < dϕi, ϕold,j > χoud,j

Note that v, despite not being a prognostic quantity and hence not appearing in the innerproduct, also undergoes
projection. Otherwise, (uB,v, hB , AK,T ) would not form a solution anymore.11

In principle, the projection should be sufficient to keep the modes orthonomal, but in practice, they can become more
and more parallel due to numerical errors. Therefore a Gram-Schmidt orthonormalisation of the modes is performed
after the projection. The mode which has currently the second largest variance (Eω[Y 2

i (ω)]) is projected onto the
space orthogonal to the mode with the largest variance, the third largest mode is made orthogonal to these two, and
so on. This way, the most important modes are manipulated least. Again, even though v does not contribute to the
innerproduct, it undergoes the same projections as the other quantities.

The last thing to do is to save the modes as .old for use in the next time step.

Stochastic coefficients and covariance matrix The coefficients are computed by calculating the contributions
from stochastic noise, and deterministic parts of temperature and oceanic field changes seperately.

The stochastic forcing part yields [dYi(ω)]stoch < FSW (ω), ϕi >. The deterministic temperature part yields

[dYi(ω)]T =< (0, 0,LT (φ(ω))), ϕi >

the LT (ϕ) have been saved from the temperature calculation. The mean of these contributions is substracted. Due to
linearity, the oceanic quantities u and h fulfill L(u(ω)) = Lū+ YiL(ui). Hence one can write the deterministic oceanic
contribution as

[dYi(ω)]u,h < (Lu(φj),Lh(φj), 0), ϕi > Yj(ω)

which is already zero-mean. (One could also first construct the L(u(ω)) but the other formulation is a bit faster to
compute).

Adding up these changes to the old coefficients yield the new ones.
Now one calculates the variance matrix Cij = Eω[Yi(ω)Yj(ω)] and its inverse.

4.4.3 Initial conditions

Discrete covariance operator (without metric) In order to calculate the initial mean, modes and coefficients,
one needs initial states χ(ω) 12from which to obtain the covariance operator.

Here, the χ(ω) are obtained by running the old code with a small stochastic wind forcing and taking data once in
35 timesteps (one year is 36 timesteps, so that values from all seasons are obtained).

10Directly applying a stochastic wind stress within the programme, as done for the gyre, leads to technical difficulties due to the splitting
of u and h into Kelvin- and non-Kelvin part.

11If v were solved for by using other oceanic quantities after the projection of these oceanic quantities, then a projection of v would not
be necessary, but the ZC code solves for u, v, h simultaneously, so the only possibility is to project v, too, afterwards.

12these χ are not identical to the later initial realisations ϕ, because the realisations contain only the most dominant modes. Only in case
of Nmode = Nreal, one would have χ(ω) = ϕ(ω).
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Since the time evolution splits u and h into uB , hB , AK , one has to create initial condition for these split variables.
So by χ I denote (uB , hB , T, AK). In the discrete case one can consider χ as one N ≡ (NO + NO + NA + NXO)
dimensional vector, where NXO is the number of zonal gridpoints (AK only depends on x) in the oceanic grid, and as
before, NO(NA) are the total number of oceanic (atmospheric) gridpoints. Letting I = 1, 2, ...N denote the index of
this vector, then for example χI with I = 2NO + 3NXA + 5 would be T (iy = 4, ix = 5) .

The discrete version of

Cχ(.,t0,ω),χ(.,t0,ω)(x1,x2) = Eω[χ̃(x1t0, ω)⊗ab χ̃(x2, t0, ω)]

is an N ×N matrix with

Cχ(.,ω),χ(.,ω)(I, J) = Eω[χ̃I(ω) χ̃J(ω)] (121)

or in matrix form Cχ(.,ω),χ(.,ω) = Eω[χ̃(ω) ⊗IJ χ̃(ω)].

Discretised ‘extended’ metric The metric can also be written as an ‘extended’ N × N -matrix version. One
can obtain it by rewriting eq. 120, inserting i → (ix, iy) where appropriate, and u(i) = uB(i) + AK(ix)φK(iy),
h(i) = hB(i) +AK(ix)φK(iy):

< ϕ1, ϕ2 >=
1

NO

NO∑
i=1

{Auuu1(i)u2(i) +Ahhh1(i)h2(i)} +
1

NA

NA∑
i=1

ATTT1(i)T2(i) =

1

NO

NO∑
i=1

{AuuuB1(i)uB2(i) +AhhhB1(i)hB2(i) + (AuuuB1(i) +AhhhB1(i))φK(iy)AK2(ix) +

(AuuuB2(i) +AhhhB2(i))φK(iy)AK1(ix) + (Auu +Ahh)φ2
K(iy)AK1(ix)AK2(ix)} +

1

NA

NA∑
i=1

ATTT1(i)T2(i)

With ϕ being an N -dimensional vector, one can write the inner product as
< ϕ1, ϕ2 >= ϕ1,IA

ex
IJϕ2,J

(Einstein sum convention), where the N ×N ’extended’ metric Aex can be written as block matrix

Aex =


Aexuu 0 0 Aexuk

0 Aexhh 0 Aexhk
0 0 AexTT 0
Aexku Aexkh 0 Aexkk

 (122)

Aexuu is an NO ×NO block with Aexuu((ix, iy), (jx, jy)) = Auuδix,jxδiy,jy ;

Aexhh is an NO ×NO block with Aexhh((ix, iy), (jx, jy)) = Ahhδix,jxδiy,jy ;

AexTT is an NA ×NA block with AexTT ((ix, iy), (jx, jy)) = ATT δix,jxδiy,jy ;

Aexkk is an NXO ×NXO block with Aexkk((ix), (jx)) = (Auu +Ahh)
∑NY O

iy=1{φ2
K(iy)} δix,jx ;

Aexuk is an NO ×NXO block with Aexuk((ix, iy), (jx)) = AuuφK(iy)δix,jx , similarly for Aexhk;

and Aexku = (Aexuk)T , Aexkh = (Aexhk)T .

Initial mean, modes, and coefficients The initial mean ϕ̄ is simply the mean of all initial states χ(ω).
The initial modes ϕi are the first Nmode eigenvectors of the metric-corrected covariance operator, CAχ(.,ω),χ(.,ω) =

Cχ(.,ω),χ(.,ω)A
ex or in index notation

CAχ(.,ω),χ(.,ω)(I,K) = Cχ(.,ω),χ(.,ω)(I, J)Aex(J,K) = Eω[χ̃I(ω) χ̃J(ω)]Aex(J,K) (123)

This matrix is not symmetric, but it is positive semidefinite, because

CAχ(.,ω),χ(.,ω) = ((Lex)T )−1 Eω[((Lex)Tχ(ω)) ⊗IJ ((Lex)Tχ(ω))] (Lex)T
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hence it formed by applying a base transformation to a mean of tensor products of two identical vectors (Lex)Tχ(ω).
Base transformations do not affect positive definiteness and tensor products of identical vectors are positive semidefinite,
and so are their means. Hence the eigenvalues of CA are positive (or, in some rare cases, zero).

The initial stochastic coefficients are given by Yi(ω) < χ(ω)− ϕ̄, ϕi >.
With NXO = 79, NY O = 115, NA = 540 CA becomes a 18789 × 18789 matrix. Calculating the eigenvectors of

such a matrix is rather costly (>12 hours) , so it is done only once and the initial conditions are read in for the time
evolution runs.

4.5 Results
4.5.1 Initial modes and mean

The initial modes were calculated for a small ensemble of 100 realisations (fig.19-fig.21). The first mode corresponds to
a well-developed El Niño. The third mode looks like a developing El Niño. Some of the lower modes show short-scale
variations, especially in the velocity, which seem to merge at a point near (0oN, 180oE). It might be that the noise
forcing used during the generation of the initial states, which is centered at this point, makes itself felt. It might be
advisable to try a forcing on a larger area with lower amplitude such as not to distort the initial modes too much.

4.5.2 Simulations with the original model

Since the DO code did not run reliably in time, I tried to investigate the behaviour of ENSO in a less elegant way,
namely by using the original ZC code with noise on the wind stress. As in the double gyre case, the aim is to search
for coherent resonance behaviour. In order to study the simplest possible case, most of the modifications explained in
4.2.2 were used, i.e. the convergence feedback was removed and the windstress linearised, but the seasonal variability
in the background was kept.

As mentioned before, there is a Hopf bifurcation in α, the parameter which couples the wind stress anomaly to the
SST anomaly. So the original code was run without noise, and with white and red noise, for various valus of α. The
dimensionless value used by Cane and Zebiak is α = 1.6, which corresponds to 0.031m2s−3K−1; at this value, the
model keeps creating El Niños after an initial spin-up, i.e. it is past the Hopf. Hence values of α between 1.0 and 1.6
were used.

The stochastic noise was given a Gaussian shape centered at (0oN, 180oE) within (6oS − 6oN, 163.125oE −
163.125oW ) and zero outside this domain. The noise amplitudes chosen are 0.5, 1.5 and 4.5 dy/cm2. The coher-
ence time is either zero (white noise) or 0.5 years - this is still significantly shorter than El Niño’s timescale but longer
than most atmospheric variability (Madden-Julian oscillation: 1-3 months). After a spin-up of 60 years (with a short
windburst in the first months in case of zero noise) a time series of 200 years with one measurement per month is
generated for each parameter setting.

As a measure for the ‘El Niño activity’ of the system under certain parameters the variance (in time) of the mean
temperature in the Nino3 index area (6oS− 6oN, 151.75oW − 95.5oW ) was used; in order to filter out seasonal effects,
the data of each month was treated seperately. A plot of the variance is given in fig. 22 for the months march, june,
september and december. The results are very similar for all months.

For α ≤ 1.2 and zero noise, the variance is very small, while between 1.4 and 1.6 the increase is only moderate.
Apparently the Hopf bifurcation is located somewhere near α = 1.3.

In the presence of noise, the variance at small α is several orders of magnitudes larger than without noise, while
for α ≥ 1.4 the noise has no influence anymore. So before the Hopf bifurcation the system is excited by noise, whereas
after the Hopf, the internal oscillations is so large that the noise forcing becomes negligible. It can be clearly seen from
the figure that for small α the variance increases with the noise amplitude, and also that red noise produces higher
variances than white noise with the same amplitude.

In order to check whether the observed variance is really due to El Niño, the dominant five eof’s in the variables T ,
u, v,h were calculated on the atmospheric grid (the atmospheric grid is coarser, so the calculation of the eigenfunctions
is done in minutes rather than hours). In fig. 23-25 the temperature field of the december eof’s is plotted, for α = 1.2
(before the Hopf) and zero, white and red noise with amplitude 4.5.

In absence of noise, there is no organised pattern in the temperature field. For white noise, the first mode shows
a temperatur anomaly along the equator, i.e. it is El Niño-like. For red noise, the pattern becomes even clearer. The
asymmetry around the equator near the coast is due to the asymmetric background upwelling. The rather localised
patch in the western part of the basin is an artefact of the rather localised noise. The very small magnitudes of the
temperatures in the modes is due to the fact that the eof’s were calculated with the variables T , u, v,h , and the
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Figure 19: SST anomaly field of the initial modes (first 10 panels) and mean (bottom middle).
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Figure 20: Total (Kelvin+non-Kelvin) zonal velocity anomaly field of the initial modes (first 10 panels) and mean
(bottom middle).
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Figure 21: Total (Kelvin+non-Kelvin) thermocline depth anomaly field of the initial modes (first 10 panels) and mean
(bottom middle).

44



1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

coupling

lo
g
1
0
 v

a
ri
a
n
ti
e
 n

in
o
3
 i
n
d
e
x

nino3 variance mar

 

 

zero noise

white 0.5

red 0.5

white 1.5

red 1.5

white 4.5

red 4.5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
−20

−15

−10

−5

0

5

coupling

lo
g
1
0
 v

a
ri
a
n
ti
e
 n

in
o
3
 i
n
d
e
x

nino3 variance jun

 

 

zero noise

white 0.5

red 0.5

white 1.5

red 1.5

white 4.5

red 4.5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
−20

−15

−10

−5

0

5

coupling

lo
g
1
0
 v

a
ri
a
n
ti
e
 n

in
o
3
 i
n
d
e
x

nino3 variance sep

 

 

zero noise

white 0.5

red 0.5

white 1.5

red 1.5

white 4.5

red 4.5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
−20

−15

−10

−5

0

5

coupling

lo
g
1
0
 v

a
ri
a
n
ti
e
 n

in
o
3
 i
n
d
e
x

nino3 variance dec

 

 

zero noise

white 0.5

red 0.5

white 1.5

red 1.5

white 4.5

red 4.5

Figure 22: Variance of the SST in the Nino3 area against the heating parameter α for different noise types (green: no
noise, blue: white noise, amplitude 0.5, 1.5, 4.5 , red: red noise with decorrelation time of 6 months, same amplitudes),
for the months march, june, september, december.

velocities and thermocline height take larger numerical values that the temperature. Since the eof’s are normalised to
1, the temperature values become very small. (This does not happen for the initial modes because metric.)

The experiment with the original code suggests that El Niño indeed has a coherence resonance behaviour: The El
Niño-like Hopf mode which is not active for small heating parameter without noise can be excited by noise, where red
noise works better than white noise.

5 Summary and Outlook
The DO method provides an efficient tool to deal with stochastic differential equations which one obtains when dealing
with noise. Not only does it give insight into the effect of the noise, but it also reveals much of the dynamics of the
system - one can obtain modes linked to certain processes for which one was not searching explicitely. (On the other
hand, it does not provide an explanation/interpretation of the modes, so that additional knowledge or research is
needed for understanding the underlying processes.)

The experiments done with the Double Gyre code nicely illustrate this. For the range of Reynolds numbers covered,
one finds both the pitchfork mode, which is linked to the bimodality of the Kuroshio current, and two transient
responses, namely the Gyre mode, which has a period of about 1 year (3 years for larger basins) and is associated to
the second Hopf bifurcation, and the Rossby basin mode, with a 2monthly (7 monthly) period, which is associated to
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Figure 23: Temperature field of the 5 dominant EOF’s and the mean (bottom right), calculated from the runs of the
original ZC code with zero noise for the month december and heating parameter α = 1.2.
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Figure 24: Temperature field of the 5 dominant EOF’s and the mean (bottom right), calculated from the runs of the
original ZC code with white noise (amplitude 4.5dyn/cm2) for the month december and heating parameter α = 1.2.
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Figure 25: Temperature field of the 5 dominant EOF’s and the mean (bottom right), calculated from the runs of the
original ZC code with red noise (τ = 6months, amplitude 4.5dyn/cm2) for the month december and heating parameter
α = 1.2.
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the first Hopf bifurcation. Interestingly, the gyre mode is more easily excited even at low Reynolds number than the
Rossby basin mode. For the latter it was tried to show that it has coherent resonance behaviour. Indeed, it is more
easily excited by red noise than by white noise at low Re, and occurs even without noise (excitation during spinup)
close to the Hopf bifurcation. However, the data is not sufficient to claim with certainty that coherence resonance
behaviour has been found; in addition, some significance tests are necessary in order to be confident that the peaks in
the Fourier spectra are really physical.

Probably due to the rather low temporal and spatial resolution, run the model had to be run with a rather low
noise amlitude. This might explain the decay of the variance after the spinup, even in the preence of noise. It would
be interesting to repeat the experiment at higher resolution and noise amplitude.

An interesting observation is the ‘synchronisation’ of the stochastic coefficients, which might be caused, or enhanced,
by the realisation-independent noise. It might also reduce the variance through energy transfer to the mean. One
might inverstigate this further by calculating the energy transfer between the modes and the mean, as is done in
[Sapsis, Dijkstra 2013], and by performing simulations with a realisation-depenent forcing.

For El Niño, the DO equations were derived. It was shown that taking the limit of a vanishing time derivative
after applying DO is equivalent to treating that equation as a diagnostic constraint from the start, provided that the
corresponding metric components vanish. This is indeed what happens for the Zebiak-Cane model when applying the
long-wave limit to the meridional momentum equation. It was also necessary to find a sensible expression for the
thermal contribution to the metric, and it turned out that for a non-trivial metric A, the initial modes cannot be taken
to be the eigenvecotrs of the covariance matrix C, but of CA.

Due to lack of time, the next step, namely implementing the DO formalism into a deterministic code of the Zebiak-
Cane model, was not finished. However, a preliminary study with the original code suggests that El Niño has coherence
resonance behaviour for the Hopf bifurcation in the heating parameter. I have hope that my code will run properly in
a couple of weeks, so that I can verify and extend these preliminary results using the DO method.
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