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Abstract

In this thesis data from two separate methods, shape from diffuse polarization and rapid
shape acquisition using color structured light are combined into a single point cloud. Several
improvements to the structured light method are proposed which decrease the negative impact
of textured surfaces and enable sub-pixel accuracy. The improvements of the structured light
method are tested by comparison with a ground truth model. The results fall within a 0.8 mm
standard deviation of the ground truth, with outliers to 0,6 mm accuracy for some models
when all improvements are used.

The accuracy of the polarized light method is also tested in several situations. The accuracy
of this method increases in areas that are almost parallel to the light direction, leading up to
30% less noise when compared to areas where the light is perpendicular to the light direction.

The combination of the methods results in a ten times higher resolution pointcloud than
would be possible with only the rapid shape acquisition. Unfortunately, there is a significant
increase in noise as compared to the unmodified method, because if one of the methods
provides incorrect data, the combination propagates these mistakes. Better results should
be obtainable with a different gradient to depth algorithm and multiple viewpoints for the
polarised light. The implemented system is modular, enabling easy modification and switching
of methods.
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Chapter 1

Introduction

1.1 Introduction

Technological developments are often inspired by solutions found in nature. A considerable
number of high tech solutions are based upon biological phenomena or derived from obser-
vations of certain animals and plants. Seeing that animals and humans alike are experts at
recognizing shapes in 3d space, it becomes a logical step to look at how this ability is achieved.
Humans combine several depth cues in order to achieve this reconstruction. The most accu-
rate of these cues as used by the human vision is the stereoscopic effect. By analyzing which
points are the same in both images the depth can be triangulated. Due to its accuracy and
its simple basic principle, this is also the process which drives the majority of 3D scanning
algorithms.

Using multiple image sources in the form of cameras in order to obtain depth information,
even though this is most similar to human perception, is difficult due to problems matching
corresponding parts in the images. These difficulties are caused by the different lighting
conditions, occlusions, lack of matchable features and differences between the devices used to
capture the image. However, we only need to take inspiration from how the problem is solved
in nature. A computer algorithm does not need to constrain itself to using similar methods
as human perception. In order to simplify the process of matching the two images, one of the
two cameras can be removed and replaced by a lightsource.

Much of the principles of a (digital) camera can be found in a projector, such as the usage
of lenses and image planes. The main difference between these two is that the projector
projects light instead of capturing it. A projector can therefore be treated as the inverse of a
camera. This has one notable advantage in the usage of scanning applications, as it allows the
complete control of at least one of the observed images. The images used for the projector are
the so called patterns, which can vary greatly between structured light this kind of methods.
Subsequently, the projected image will also influence the scene, which can be used to create
easy to match feature points. The same process of matching both images or image points
that is used for normal stereographic vision, in order to triangulate depth, can be used. This
area of 3D scanning is referred to as structured light (SL).

The usage of different patterns has been explored intensively and so has using multiple images
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Chapter 1: Introduction

for a single depth estimation. The pattern types that are used can be subdivided into 1D
patterns; such as line lasers or phase shift patterns [14] and 2D patterns; such as used by the
Microsoft Kinect [13] and m-arrays[10]. In all methods there is a tradeoff between accuracy,
number of measured points, computational time, number of images required and handling of
sub-surface reflection and or inter-reflection1.

Aside from using triangulation other cues to obtain depth information can be used. Human
vision, for instance, does not only rely on the disparity between the two eyes, but also combines
this with the usage of shading (photometric stereo), vagueness (depth from focus) and parallax
(depth from motion) in order to obtain depth information.

Another potential source of information can be found in polarized light. It is believed that
some insects already use the polarization of light as an aditional source of information [23].
The polarization of light changes when it is reflected from a surface and its change is dependent
on the material of the surface and its orientation. Once the type of surface is known, or an
assumption is made how it reflects light, the surface orientation can be determined. This
method, shape from polarization, does not directly result in depth information. A second
step is required, wherein the surface orientation is converted into relative depth. Because the
polarization angle can only be measured in the range of [0,180] degrees, there is an ambiguity
in the estimated surface normal.

Several solutions have been suggested in academic literature to solve this ambiguity, such as
using multiple views [3], combining information from shape from shading [24] and smoothness
constraints [2].

There has been some research on shape from polarization for 3D scanning [4] and polarization
in the field of robotics [5], but compared to methods such as photometric stereo and structured
light, little research is being performed in this field.

1.2 Rationale

The last few years have been marked by significant technological progress in the field of
consumer 3D printing [20]. These printers have improved in print quality, reduced in cost
and can print larger objects. As a direct result of the technological improvements and greatly
reduced costs, the 3D printer has shifted from being used exclusively workshops and research
laboratories to being used by tech savvy early adopters. The recently released 3D printers by
Ultimaker [21] and Makerbot [22] indicate that a further shift towards mainstream consumers
is in progress.

In order to use these printers a 3D model is required. To enable full replication of objects a
method to obtain such a model or at the very least a 3D point cloud2 from a physical model
is needed.

We’ve specifically opted to combine two areas of research; structured light (SL) and shape
from polarization (SFP). Because of the fundamentally different nature of both methods a
framework needs to be constructed that utilizes both methods. Ideally, this framework is a

1Light reflected by the object onto another part of the object
2A set of data points in some coordinate system.
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Chapter 1: Introduction

modular system. This modularity enables the switching of one or both of the modules with a
method that results in the same type of data, such as switching the shape from polarization
with photometric stereo. This flexibility is especially important for sustainable open source
development, as each module can be handled as a separate smaller project. As these projects
are smaller, they should also be easier to resolve, as less specialized in-depth knowledge is
required. The development of packages such as PCL and openCV have proven that open
source development can increase the speed of complex software. The modularity will also
prove important for further research, as the situations for which the scanning is performed
will vary and can benefit from different methods.

The depth information obtained from structured light can be used to assist in the ambiguity
solving of the surface normals, as even from a sparse point cloud it is possible to estimate
rough surface normals.

1.3 Overview

Our work is based on two methods; the structured light method as proposed by Zhang et
al.[1] and the shape from polarization method as proposed by Miyazaki et al.[2]. In its most
basic form, the method of Zhang et al. employs a 1D color coded pattern which requires
only a single image. A more sophisticated method is also provided by Zhang which has
increased accuracy but requires multiple images and has a significantly increased running
time. Because the method uses edges of the 1D pattern to match the camera and projector
image, the resulting point cloud is rather sparse. Increasing the resolution of the projected
pattern or the captured image can be achieved by using the more sophisticated method or by
projecting multiple shifted patterns.

The method of Miyazaki uses a rotating linear polarization filter mounted in front of the
camera. By taking three images of the object under the same lighting conditions where
the filter is rotated by 45 degrees per image, polarization data is collected. Based on the
intensities observed in the three images the rotation of the polarization of the reflected light
can be interpolated. This resulting degree of polarization (DOP) can be used to calculate
surface normals, up to an ambiguity of 180 degrees. In order to obtain depth information,
the integrability assumtion is made, so the gradient field can be converted to a depth map.

The impact of combining SL and DOP are twofold. First, we expect that the impact of the
noise is diminished, due to the usage of the SL data as anchor points. Secondly, we expect
that less assumptions are required. Most notably, the continuity assumption that is used
in the reconstruction of depth from gradient fields can be lessened. Because a far greater
number of points can be retrieved from the shape from polarization, the overall resolution of
the point cloud will be greatly increased.

1.4 Contributions

We have implemented both methods into a single framework that is capable of merging the
results into a single point cloud. Several experiments have been performed to measure the
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Chapter 1: Introduction

accuracy of both methods.

� Method to solve normal ambiguity.

� Simple calibration for camera / projector setup.

� Improved the results of rapid shape acquisition.

� Method to merge the two datasets.

� Experiments on the accuracy of shape from polarization and structured light.

1.5 Organization

This thesis is organized in several chapters; In chapter 2 we discuss the related work and
provide general background information required for understanding and implementing both
methods. Chapter 3 explains the methods as used by the main reference papers and states
the drawbacks and advantages of both methods. At the end of the chapter we explain several
improvements to each method and explain how both methods are integrated into one solution.
Chapter 4 gives an evaluation of the accuracy of the methods and improvements and in chapter
5 several conclusions are drawn and recommendations for further research are made.
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Chapter 2

Related work & background

Some background knowledge on polarization and structured light is required before the meth-
ods from both reference papers and improvements to these can be discussed. Section 2.1
provides background information into (digital) cameras. In section 2.3 the basic principles of
structured light are provided and finally in 2.2 an overview of polarization of light and how
it changes upon reflection is given.

2.1 Camera

Both methods use cameras, either to measure the change in intensities in the case of shape
from polarization or to observed the projected pattern in the case of structured light. As
cameras are the workhorse of most computer vision algorithms the mathematical models to
represent them are quite sophisticated. The Pinhole model is covered in section 2.1.1, which
is used to describe both the used cameras and the projector. The standard calibration of
pinhole devices is explained in 2.1.2. Due to the importance of color for the used structured
light method, the color perception of CCD sensors is explained in 2.1.3.

2.1.1 Pinhole model

The pinhole model is a simplification of a model for a contemporary camera. The definition
as used by openCV [9] is used for each point in the scene, one ray enters the camera through
a single point (the pinhole). This light is then projected onto an image plane behind the
pinhole. An example of such a scene can be seen in figure 2.1. The distance of the pinhole
to the image plane is the focal length (fx and fy), where the center of the image plane is
expressed by cx and cy. These parameters form the intrinsic matrix A.

There are two focal length parameters (one for each axis) as in most cases the pixels on the
ccd sensor and thus the image plane are not perfectly square. The principal point formed by
cx and cy is introduced as the ccd sensor is not always perfectly aligned with the optical axis.

In practice, lenses will also have a certain distortion, which is not included in the intrinsic
matrix. In order to account for these distortions a distortion model is included. The two
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Chapter 2: Related work & background

Figure 2.1: Example of single captured chessboard pattern..

types of distortion which are non-negligible are radial distortions (barrel and fisheye), which
are cause by the (imperfect) shape of the lens and tangential distortion, which is caused by
the lens not being exactly parallel to the image plane.

The radial distortion can be corrected by using

(2.1)

xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6) ,

ycorrected = y(1 + k1r
2 + k2r

4 + k3r
6) .

The tangential distortion can be corrected by

(2.2)

xcorrected = x+ [2p1xy + p2(r
2 + 2x2)] ,

ycorrected = y + [p1(r
2 + 2y2) + 2p1xy] .

Where x and y are the original coordinates in the input image and xcorrected and ycorrected are
the undistorted coordinates. This means that by using 5 parameters (k1, k2, p1, p2 and k3) we
can account for these distortions.

The intrinsic matrix, combined with the distortion coefficients convert a 2D image point into
a 3D coordinate on the image plane of the camera. In order to project these coordinates to
world coordinates an extrinsic matrix is needed. This intrinsic matrix holds a 3x3 rotation
matrix and a 3x1 translation matrix.

The total conversion from image points to world coordinates is given by:

(2.3) s

uv
1

 =

fx 0 cx
0 fy cy
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



X
Y
Z
1


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Chapter 2: Related work & background

Where:

� (X,Y, Z) are the coordinates of a 3D point in the world coordinate space.

� (u, v) are the coordinates of the projection point in pixels. These are the image coordi-
nates

� (cx, cy) is the principal point that is usually at or near the image center.

� (fx, fy) are the focal lengths expressed in pixel units.

� (R11, . . . , R33) form the extrinsic rotation matrix.

� (t1, t2, t3) form the extrinsic translation vector.

2.1.2 Calibration

OpenCV provides a simple to use calibration method based on the work of Zhang et al. [8].
This method uses multiple images of a printed checkerboard (or other pattern with several
easily distinguishable points). In order to obtain an as accurate as possible calibration, its
required to take as many calibration images as possible, each with different position and
rotation. For most uses it is sufficient to use 10-20 patterns. An example of a detected
chessboard pattern can be found in figure 2.2. A more in depth explanation of the calibration
procedure as used by openCV can be found in the openCV book [9].

Figure 2.2: Schematic representation of the pinhole model.

2.1.3 Bayer pattern

Most color CCD chips use a mosaic color filter on a grid of photo sensors [12]. In theory,
all but a single color should be filtered out by the colored filters. Each pixel has 4 of these
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photo sensors, two with a green filter, one with a red filter and one blue filter. Because of this
composition, the CCD chip is more sensitive to green light. This was implemented to better
mimic the human vision, which is also more sensitive to green light. A schematic overview of
this layout can be seen in figure 2.3.

Figure 2.3: Ideal case Bayer pattern filter.

In practice, the used filters are far from perfect filters, especially with lower quality CCD
sensors. Imperfect filters allow small amounts of differently colored light to pass. This effect
is known as colorcrosstalk. Fortunately, the influence of this effect can be partially removed
by a procedure aptly called color crosstalk removal, which is discussed more in chapter 4.

2.1.4 Gamma correction

In order to compensate for differences between human vision and CCD sensors, most images
are gamma encoded. Instead of using a linear function to encode the perceived values of light
an approximate power function is used. This function is more alike to the human vision, which
ensures that more data that is perceivable for humans can be encoded while using the same
amount of data. If an image is not gamma encoded, it needs to have more bits/bandwidth in
order to maintain the same perceived image quality.

In the case of measuring the amount of reflected light, the calculated gamma encoded values
are less suitable for our purposes, since specifically the original amounts of reflected light are
of interest. As most cameras automatically convert images to the gamma corrected s-RGB1

1Standard RGB color space
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format, the data needs to be converted back into the linear RGB space.

The s-RGB format is slightly different from simple gamma correction. Where standard gamma
correction only uses a power to encode the intensities, s-RGB encodes the first few values linear
before switching to a power. The effective difference between the two encoding schemes can
be seen in figure 2.4.

Figure 2.4: s-RGB versus gamma with normalized data.

The following pseudo code converts s-RGB into l-RGB:

function convertToLinear(int c)
if c ≤ 0.03928 then

lin← c/12.92
else

lin← (c+ 0.055)2.4

end if
return lin
end function

2.2 Polarized light

Polarization is a property of light and by extension of all electromagnetic radiation which
refers to the orientation of the transverse electric field. We will provide a global overview of
polarized light and explain the Fresnel theory, which is used to describe how light is polarized
(eg; how its polarization changes) when it is reflected from a surface [11].

2.2.1 Introduction

There are three types of polarization; Linear polarization, circular polarization and elliptical
polarization. When the wave of the electric field can be place on a single plane it is called
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linear polarization. This linear polarization is expressed by a single rotation. If the plane
rotates while the field travels, it is called rotational or elliptical polarization, depending on
type of rotation. An example of these waves can be seen in figure 2.5.

The focus of this research will rest solely on linear polarization. Not only is this type of
polarization easy to measure by utilizing a simple rotating linear polarization filter. All
previous methods, such as those by Atkinson et al. [3] and Miyazaki et al. [2], only measure
the linear polarization.

We assume that the used linear filters are ideal filters; only the component that is parallel and
every rotation + 180 degrees, to the orientation of the filter is let through. Linear polarization
can’t distinguish between two angles 180 degrees apart, therefore, it is required to calculate
both possible outcomes and resolve the resulting ambiguity in a later stage.

Figure 2.5: Different polarization states of light.

Most light sources will emit a large number of waves. When the orientation of their electric
fields have no correlation, the light is said to be unpolarized. When a partial correlation
can be found, the light is partially polarized. The degree of polarization (DOP) is used to
differentiate between the two; The DOP is 0% for perfectly polarized light and 100% for
perfectly polarized light. The DOP is calculated by using the total power of the polarized
component of the wave.

2.2.2 Fresnel theory

The Fresnel equations give the ratios of the observed light compared to the projected light.
This ratio is dependent on angle of incidence i and the refractive index nt of the surface, as
we know that the object is placed in air, we can use ni = 1.

As can be seen in figure 2.6, when the light is polarized perpendicular to the surface, the
resulting light will also be (somewhat) perpendicular. When the light is polarized parallel to
the surface, the light will not be polarized perpendicular. The degree of polarization ρ is the
amount of polarized light reflected from the surface. This degree of polarization is dependent
on the angle of incidence. Because the light can always be resolved into two perpendicular
components, the Fresnel equations can be used for all polarization states.

10
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Figure 2.6: Refraction and scattering

The Fresnel equations, as applicable to figure 2.6, are given by the following two formulas;

(2.4)

r ⊥(ni, nt, θi) ≡
E0r⊥
E0i⊥

=
nicosθi − ntcosθt
nicosθi + ntcosθt

r ‖(ni, nt, θi) ≡
E0r‖

E0i‖
=
nicosθi − ntcosθt
nicosθi + ntcosθt

Where the first gives the reflection ratio for the light that is polarized perpendicular to the
plane of incidence and the second for parallel to the plane.

The diffuse reflection needs less strictly controlled lighting conditions, but has the disadvan-
tage of being noisier and lacking the ability to be used on glossy surfaces such as metal. In
order to use specular reflection, the object needs to be placed in a enviorement where all light
sources can be controlled. Diffuse reflection does not require such strict enviorement to be
correctly meassured. As the the method is intended to work together with structured light,
the lighting conditions need to be similar as much as possible. The used structured light
method is not capable of working with very glossy objects, so losing this information will
have little impact. In all cases where polarization or reflection is mentioned, diffuse reflection
is meant.

2.3 Structured light

2.3.1 Introduction

One of the most commonly used techniques for 3D object scanning is the so called active
stereoscopic vision. Where passive stereoscopic vision uses at least two capture devices and
uses the disparity between the two images to calculate the depth of the scene, active stereo-
scopic vision uses at least one light source and one capture device. This allows for much
simpler detection of correspondence between the two or more images, as the features needed
to match the images are created in the scene. It also provides the added benefit of being able
to modify the projected pattern based on the scene that is being observed.
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Compared to passive stereoscopic vision, active stereoscopic vision has the option to project
several images in sequence and use the combined data to compute a depth map. However,
dependent on the capturing interval, it may not be feasible to use this method. When objects
move and/or deform during scanning, assumptions about consistency will not hold, resulting
in increased complexity in data processing. In these cases it would be impractical to use
multiple images taken in sequence.

2.3.2 Projector calibration

Because the projector is unable to capture images as a camera, the calibration method as
implemented by openCV is insufficient. However, several steps can be taken to create a
dataset that can be used to calibrate the projector, as if it were a camera. For this to work,
only the intrinsic parameters of the camera need to be known beforehand.

In order to calibrate the camera, a checkerboard pattern is projected on a physical checker-
board pattern. To simplify the extraction of the two checkerboards from the camera image,
a red checkerboard is projected on a blue printed checkerboard. The corner points can then
simply be extracted by looking at the red and blue color channels as obtained from the camera
feed.

Figure 2.7: Red checkerboard pattern projected onto blue printed checkerboard.

Because the corner points of the red projected checkerboard are projected on a flat plane,
they are transformed in a certain way. Examples of this effect can be found in figure 2.7.

If the projector was capable of taking images, the red checkerboard image would be un-
transformed (eg; exactly as it was projected). Because its known what the captured image
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looks like and should look like, an perspective transformation can be performed on the image
to convert the camera image into a projector image.

This perspective transformation results in image as if it were taken from the location of the
projector. The (transformed) blue printed corner points can then be used for the standard
calibration as implemented in openCV. Figure 2.8 displays an uncorrected image and a warped
/ transformed image.

This method is far less complex than comparable methods [19] and requires similar number
of images to calibrate.

Figure 2.8: Original image and warped image. Left: Original image of printed
checkerboard (blue) with projected checkerboard (red). Right: Image transformed
so the red checkerboard corners are aligned. Detected (blue) corner points are
drawn.

2.3.3 Optical triangulation

The main problem that is solved by structured light is the matching of two points on two
different viewpoints. Once such a correspondence is found, they need to be triangulated in
order to find a depth. The camera matches a single pixel, which can be seen as a vector from
the center of the camera to the point on the image plane. Because the projector projects
vetical stripes, we can not distinguish a single point that is matched. However these stripes
can be seen as planes that are formed from the center of the projector and all image points of
that vertical stripe. A least square fitting algorithm is used on the image points to find the
planes for the projector. This method ensures that the possible distortion of the projector is
accounted for. The intersection point between the projector plane and camera vector is the
resulting point, which can be placed in the point cloud. The image points are generated using
the pinhole model.

The projected vertical lines can be seen as planes projected from the center of the projector
through all points.
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Theory

In this chapter the two reference papers Rapid shape acquisition using color structured light
and multi-pass dynamic programming and Polarization-based Inverse Rendering from a single
View are discussed. The methods from these papers are analyzed and improvements are
proposed to the structured light method. Finally the combination of the data-sets is discussed
and a method to handle this is proposed.

3.1 Rapid shape acquisition

3.1.1 DeBruijn pattern

The structured light system as described by Zhang et al. uses colored bands as a pattern.
This allows for multiple edges to be detected from a single projected image, but introduces
the problem of matching the right projected edge with the detected edges. By only using
unique colors, only a handful edges are projected, but ensures that the matching is a trivial
task.

If only globally unique edges are used, only a very limited resolution can be achieved, as fully
saturated colors are needed to decrease the impact of the texture and color of the object. In
order to increase this resolution, instead of unique colored stripes, a number of unique sets
are projected.

Each set of n stripes needs to be unique in order to be identified. Such a pattern can be
generated by using a deBruijn sequence, which ensures that every set of n stripes that can
have k values per stripe that are unique for the entire pattern. Because the algorithm uses
edges, an unique set of stripe transitions is required. The direct use of the deBruijn sequences
does not guarantee this, so an additional step is needed.

Figure 3.1: Section of the generated de Bruijn pattern with k = 5 and n = 3.
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In order to construct this pattern, a tuple consisting of 7 colors {001, 010, . . . , 111} is created,
where a 0 in a channel means that RGB color is not in the stripe and a 1 means its at the
maximum value. By starting at a certain color and performing an XOR operation on that
color with another color a third color can be obtained. For example, an XOR operation of
{1, 0, 0} performed on {0, 1, 0} (green) would result in {0, 1, 1} (yellow).

The following formula is used to compute the final deBruijn projection pattern:

(3.1) pj+1 = pj ⊕ dj

Where pj is the color of a single projector stripe and dj is the color of the deBruijn sequence.
This ensures that every subsequent stripe is different from its direct neighbours and still
satisfies the local window uniqueness property.

3.1.2 Crosstalk removal

In an ideal world a certain ray of colored light would only agitate corresponding colored camera
pixels. In practice the Bayer filter is not perfect and will let small amounts of differently
colored light through. This phenomenon is known as color crosstalk. As we have no prior
knowledge of the surface from which the light reflected from, which could have influenced the
spectrum of the light its quite difficult to remove this crosstalk. Even if such information
would be known, objects could have multiple types of surfaces which further complicate the
removal.

Caspi et al [7]. have formed a model that relates the observed color s to the projected color
p as;

(3.2)

srsg
sb


A

=

x11 x12 x13
x21 x22 x23
x31 x32 x33


X

ρt 0 0
0 ρg 0
0 0 ρb


F

prpg
pb


p

+

orog
ob


o

Where X is the color crosstalk matrix, F is the scene albedo at a single point of the scene
and O is the ambient light for the same point. By pre-multiplying the observed colors with
the inverse of the crosstalk matrix, we can largely factor out the influence of the crosstalk.
Even though this is not a perfect crosstalk removal, it moves the observed colors much closer
to the actual colors of the projected image.

(3.3) s̃ = X−1s =

 ρrpr + õr
ρgpg + õg
ρbpb + õb


The color crosstalk matrix can be obtained by taking three images of a white plane on which
red, green and blue light is projected. The averaged observed RGB values form the nine
values of X. An example of an image with the crosstalk removal can be seen in figure 3.2 and
3.3. Note the far greater intensity of the colors, even if they are almost indistinguishable in
the original image. The image with the crosstalk removed is, due to the linearity assumption,
not perfect. The assumption results in oversaturated colors. The matching benefits from this
assumption, as it allows for easier matching.
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Figure 3.2: Before and after color crosstalk removal; Original pattern.

Figure 3.3: Before and after color crosstalk removal; Original pattern.

3.1.3 Edge detection & scoring

In order to detect the edges, a gradient function is computed for every horizontal row of the
camera. This gradient function consists of the sum of the squares of all the color channels.
Edges are placed at the maxima of this gradient function. An user-defined threshold is used
to ignore small peaks in this gradient field.

Correctly identifying the correspondence between the projection and the captured image hold
two main difficulties; mislabeling and occlusions.

The mislabeling of edges can occur because of the surface properties of the scanned object.
The color, surface reflectance, viewing direction, crosstalk and noise of the CCD all influence
the observed color. It is therefore impossible to fully match all edges with 100% certainty.

Occlusions provide another problem of the edge matching, because it can result in (large) parts
of the projected pattern not being visible to the camera and can introduce inconsistency in
the observed sequence. The first step is to perform general edge detection on the captured
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image. For each of the color channels a 1D gradient is created. These gradients are combined
and the local maxima of this combined gradient are used to obtain the edge candidates. Note
that this set might contain false detections due to texture and occlusion. A fixed threshold
can be used to filter out very small changes, as they are not likely to be real edges in the first
place.

In order to match the edges, a scoring function is used, which calculates the match of any
given observed edge with any given projected edge. This is done by defining the function
score(q, e) of a projected edge q and an observed edge e. This function calculates the score
match between the provided edges, with the score being -1 for a very poor match and 1 for
a perfect match. These values are calculated by taking the lowest value of the consistencies
of each channel;

score(q, e) = min
c∈r,g,b

{consistency(qc, ec)}

Let e = (er, eg, eb), where ec ∈ [−1, 1], which is the 1D intensity gradient of e in a single
color channel and q = (qr, qg, qb), where qc ∈ {1, 0,−1}. The consistency(1, ec) should be 1
if ec is sufficiently large, 0 if |ec| is sufficiently small and negative when ec is negative. The
consistency is expressed by:

(3.4)

consistency(1, ec) = CLAMP (
ec − α
β − α

;−1, 1)

consistency(0, ec) = CLAMP (1− |ec|−α
β − α

;−1, 1)

consistency(−1, ec) = consistency(1,−ec)

Where

CLAMP (x;x0, x1) =


x0 if x < x0
x if x0 < x ≤ x1
x1 x1 < x

and α ≤ 0 ≤ β are used as soft thresholds which are chosen based on the uncertainty of the
edge measurements. All measurements in the domain of [α, β]are classified by values that
reflect the uncertainty, where sufficiently small or large values are classified with -1, 0 or 1.
The consistencies lead to graphs in figure 3.4.

3.1.4 Multi pass dynamic programming

By using the probability of two edges being a match as calculated by the score function, we
can create a n ∗m sized grid that hold all the possible matches between the projection and
camera image.
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Figure 3.4: Consistency graph.

A final matching between e and q is found by finding a path through the score grid, where
each edge can only be matched once. Without additional constraints, there are far too many
possible paths to calculate. In order to decrease this, we adopt the monotonicity assumption.
This assumption holds that all matches must be depth ordered. This assumption could lead
to dropouts in the reconstructed point cloud as occlusions can violate the depth ordering. We
can reconstruct these dropped areas by using multiple passes of the dynamic programming
that is used to find the optimal path.

The optimal path of the sub-grid Gji that is defined by [0, j]X[0, i] must be either of three
possible configurations;

� It holds the vertex(j, i) and the optimal path (j − 1, i− 1).

� The optimal path is the same as the optimal path of (j − 1, i).

� The optimal path is the same as the optimal path of (j, i− 1).

The calculation of every optimal path to every possible match takes O(nm) space and time
and a final path of all possible paths can be backtracked in O(n+m) time.

The highlighted path value in the table is 1.1 because the path value of (1, 1) plus the score
of (2, 2) is higher than the path value of (1, 2) and (2, 1) respectively.

3.1.5 Drawbacks

The system has several major drawbacks. The encoding only allows for a limited number of
stripes to be used, which decreases the numbers of retrieved points. This can be partially
addressed by projecting multiple patterns that are shifted in between, but this increases the
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number of images required. While it is possible to take a large number of images, a less
complicated pattern with a less complex consistency matching, is preferred.

Another drawback is the usage of color in the projected pattern. The correct identification of
the projected colors plays an important role in the correct depth estimation. When scanning
a white object, this can mostly be solved by using color calibration, such as the proposed color
crosstalk matrix. This method however, fails when the object has bright colors, as the camera
is no longer to pick up the stripe pattern. Such objects would be retrievable by a binary scan
or phase shift pattern, as only the intensity of the observed pixels is of importance.

The algorithm only matches a 1D coordinate for the projector, only a ray-plane intersection
is possible. This gives less accurate results when compared with ray-ray intersections, as the
plane is created using a least square matching, which generalizes the distortion of the lens.
While this effect is barely noticable on the overal shape of the object, it could influence small
details.

The total time that the algorithm needs, including the capture time, is larger than that of
phase shift of binary pattern. Especially the proposed multi shot method suffers from long
running time, in the order of 10-15 minutes for a single scan when tested on the setup as
described in 4.1.

Aside from these method specific drawbacks, there are several cases in which almost all
structured light algorithms fail. Its not possible or very difficult to scan highly reflective
surfaces (such as shiny metals), transparent objects (such as glass and to a lesser extent wax
or polystyrene) or objects with much internal scattering (such as the inside of bowls).

3.2 Polarization-based inverse rendering from a single view

3.2.1 Degree of polarization

From the Fresnel theory, we know that the intensity of polarized light reflected from an object
will vary based on the refractive index of the object and the orientation of the surface. By
observing the object with a linear polarizer mounted camera, we can obtain a sinusoidal curve
of the intensity with respect to the orientation of the linear polarizer. A schematic overview
of this can be seen in figure 3.5.

Figure 3.5: Schematic overview of Linear polarizer and observed intensities.

As we are looking for a 3D orientation, we must find two different rotations; the zenith angle
and the azimuth angle. For the zenith angle, we must first retrieve the DOP (degree of
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polarization). The DOP represents how much of the light has been polarized, where 0 means
that the light is unpolarized and 1 means the light has been perfectly polarized. The degree
of polarization is given by;

(3.5) ρ =
Imax − Imin

Imax + Imin

However, this assumes that we would have a large set of images, in which the filter was
rotated by small steps. As this is not feasible and will not result in discrete results, we use
three images taken at three distinct polarization filter angles (I0, I45andI90). More images
could be used to obtain results, but this will be much more time intensive and prone to
small shifts of the setup. The following equation is used to calculate the DOP from the three
images.

(3.6) ρ =
I90 − I0

(I90 + I0)cos2φ

3.2.2 Refraction index

The refraction index describes how much of the light that is reflected by the object is refracted
and polarized in the internal scattering. This refraction index is dependent on not only the
material of the object, but also on the smoothness of the object. Rougher surfaces tend to
have much higher refraction indexes. This can be explained by the fact that higher degrees of
polarization are found on edges that are aligned more parallel to the light rays. A rough surface
has much more of these surfaces and a higher refraction index is required to compensate for
this.

The DOP is related to the zenith angle by the following equation;

(3.7) ρd =
(n− 1/n)2sin2θ

2− 2n2 − (n+ 1/n)2sin2θ + 4cosθ
√
n2 − sin2θ

Where ρ is the DOP of diffuse light, is the zenith angle and n is the refraction index of
the object to air. By numerically solving this equation we can retrieve the zenith angle. In
order to get correct zenith estimations a correct refraction index is needed. For the sake
of simplicity, all results are generated with the assumption that the refractive index is 1.5.
Figure 3.6 maps the DOP versus the zenith angle and shows the effect of different refractive
indexes.

3.2.3 Phase

The phase is defined to be the angle at which the maximum intensity is observed. From the
Fresnel coefficients it follows that the azimuth angle is either the same as the phase or the
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Figure 3.6: Graph that maps the degree of polarization versus the emittance angle
with different refraction indexes.

phase + 180 degrees, due to the ambiguity. Using the three intensity images, we can calculate
the phase by using the following formula:

(3.8)

φ =
1

2
arctan(

I0 + I90 − 2I45
I90 − I0

) + 90°

if(I90 < I0)[if(I45 < I0)φ = φ+ 90°elseφ = φ− 90°]

Figure 3.7: Degree of Polarization and Phase of a rubber duck. Left: Degree of
polarization. Dark areas indicate a higher DOP. Right: Phase
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3.2.4 Drawbacks

As can be seen in figure 3.6, the zenith angle is quite different when another reflection index
is chosen. Even if a correct reflection index can be obtained (by knowing the material of the
object beforehand), the reflection index assumes a smooth surface. A rough surface composed
of the same material will have a different reflective index.

In figure 3.7, another of the drawbacks of the system is visible. The resulting normals suffer
from noise where the degree of polarization is low. This is caused by the small differences of
the intensity images when this is the case.

A final drawback is caused by the angle ambiguity. In the case of smooth objects this can be
solved with a relative simple normal propagation and a smoothness assumption. In most cases
however, there will be discontinuities in the scanned object and the smoothness constraint
cannot be used.

3.3 Improvements

Based on our implementation and subsquent use of the SL algorithm, several improvements
haven been made to the method. These improvements include simplifications to the method,
an improved pattern and several noise removal operations.

3.3.1 Consistency threshold

The consistency stage of the algorithm uses two thresholds (α and β) in order to clamp the
consistency values. This clamping has an impact on the global optimisation stage as it could
lead to a different path being chosen. By setting these values to 0 and 1 respectively, all
scores will have a gradient confidence. This also removes the need to tweak these parameters
for different observed scenes. Despite that very low and high values will no longer receive a
discrete consistency, the pathfinding will still try to find the most optimal path, which will
likely ignore low values and match high values.

3.3.2 deBruijn Pattern

The original pattern includes both white and black stripes, which both lead to false classifica-
tions. The edges where one of the stripes is black are indistinguishable from shadows caused
by occlusion, thus leading to false classifications near shadows.

The white and black edges both also suffer from intensity differences when compared to the
other stripes. The white stripes are much brighter than the colored edges and the black
stripes are much darker. In order to capture both these edges, the range of values that need
to be captured is much greater, leading to less accurate results for the values in between.

The more difference between two neighboring stripes, the easier the resulting edge can be
detected. By taking this into account, we constructed a pattern that uses no white and black
edges and two successive stripes always change in at least two color channels. This leads to
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a much higher local uniqueness property as each stripe can only be followed by three other
colors.

Figure 3.8: Extract of the improved deBruijn pattern.

The difference between the results as obtained by both the new and old pattern are shown
and explained in chapter four.

3.3.3 Single shot sub-pixel accuracy

One of the main disadvantages of the single shot method is the lack of subpixel accuracy.
As only discrete pixel values are used to calculate the depth, a strong anti-aliasing effect
can be seen in the point cloud. The main reference solves this by using space-time analysis
to calculate a subpixel match. This space-time analysis is done by smoothing the projected
pattern with a gaussian blur, combined with a horizontal shift between patterns. Instead
of a consistency function a cost function is used. This cost can then be used to calculate a
score, which can be used by the path finding algorithm. Due to the very greedy nature of this
algorithm, this increases the computational time from 30-60 seconds towards 20-60 minutes.

Due to the greedy nature of the algorithm, we not only have a score of how well an edge
matches with its final match, but also a score of how well that edge matched with the neigh-
bouring camera pixels. If the score to the right of the matched camera pixel is much higher
than the score of the matched pixel to the left, it is most likely caused that the true value
of the match is in between the matched pixel and the right pixel. This is the same as done
for the space-time analysis, but only using a single image. The usage of multiple images will
theoretically give a more accurate match, but the truthful retrieval of color is also much more
important. Especially areas with (intensely) colored texture influence the space-time analysis.

In order to find this match, we match a parabola through the three values. We can then use
the maximum of the parabola as the new sub-pixel value of the match.

3.3.4 Noise removal

As digital cameras rely on the counting of photons, which always results in an discrete value,
the measured RGB values are subjected to some noise. This noise can be decreased by using
long exposure times, low ISO values or even average multiple images, but all of these assume
either a reasonably complex camera system and/or the ability to take multiple images.

The most simple noise reduction is to use the surrounding pixels, combined with a certain
weight, to calculate the new pixel value. This method assumes that nearby pixels are also
nearby in the scene and thus influence each other. This assumption does not hold for our
specific case and would also lead to blurring of the image, which is problematic for the stripe
edge detection.

A more elegant solution is used by Antoni Buades et al. in Non-local means denoising [6].
Instead of assuming that nearby pixels are related, they assume that similar pixels are related.
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This results in noise removal in which the edges are blurred far less, but is significantly more
computationally expensive. For a more detailed explanation of the algorithm, we refer to the
original paper.

Weve used the implementation of this algorithm as provided by the openCV library, using
the default parameters.

3.3.5 Point cloud

Even with the improved noise removal, there will still be a significant amount of noise in the
resulting point cloud. Some of this noise can be handled by performing statistical outlier
removal (SOR). This method looks at the n neighbours of each point and removes the point
if it does not meet a certain criteria. In this case, we calculate the mean distance from the
point to its n neighbours. By assuming that this results in a gaussian distribution with a
mean and standard deviation, we can remove all points of which their standard deviation to
its neighbours is more than a user-defined threshold.

3.3.6 Subtraction method

The method suffers from influences of texture and object color. In order to remove the effects
of this influence, we need to know what part of the observed image is caused by the projected
image and what part is caused by the original color and texture of the scene. In other words,
we need to look at the change of the object being illuminated by the pattern and without it.

Taking an image completely without projection and one with the pattern projected does not
always give accurate results, as the camera range is set to perform best with the object brightly
illuminated. Taking an image without illumination in a dark environment will therefore have
very little effect on the overall result. To solve these problems, we propose the subtraction
method.

Instead of taking a picture without illumination, we take an image with full white illumination
and look at the absolute difference between the two images. This subtraction results in an
inversion of the color pattern, so instead of comparing with the original pattern, we compare
the subtracted image with the inverse pattern. The improvements of this method are discussed
in more detail in chapter four.

3.4 Ideas

The only way to retrieve normals from a point cloud is through neighbouring point estimation.
By using the nearby points, a normal can be estimated for each point. This, however, requires
a user defined neighbourhood. A large neighbourhood leads to over smoothed normals, but
a too small neighbourhood leads to incorrect normals.

Another issue with this method is that its not well equipped to handle sparse point clouds.
Due to the sparse data points, there can be too little data for correct normal estimation. An
example of such a situation can be seen in figure 3.10, where the black lines are the ground
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Figure 3.9: Pointcloud before and after SOR.

truth of the surface, the red points the calculated depth, the red lines the estimated normals
(using the neighbours) and the green is the estimated surface. The estimated normals in
the figure do not represent the ground truth normals, which will lead to an incorrect mesh
reconstruction.

The shape from polarization method suffers from angle ambiguity, which could be solved by
using the estimated angles from the nearest point. This does not completely remove the
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Figure 3.10: Schematic drawing of failed normal estimation.

smoothness constraint, but does lessen the impact of this constraint considerably, as only a
local smoothness is used instead of a much stricter global smoothness.

3.5 Proposed method

The combined method is composed of two stages; the polarization normal ambiguity solver
and depth reconstruction.

The normal ambiguity can be solved by using the structured light points as a scaffold. The
point cloud itself holds no normal estimation, so it needs to be estimated from the neighbour-
ing points. For each point in the cloud a covariance matrix needs to be created using:

(3.9) c =
1

k

k∑
i=1

·(pi − p̄) · (pi − p̄)T , c · −→v j = λj · −→v j , j ∈ {0, 1, 2}

Where k is the number of points considered in the neighbourhood of pi,which is user defined.
p̄ represents the centroid of of the nearest neighbours, λj the j-th eigenvalue and vj is the
j-th eigenvector. There is no mathematical way to solve the sign of the normal, an ambiguity
exists in the calculated normals. Because the normals must face the viewing direction, the
ambiguity can be solved by orienting the normals toward the viewpoint.

When the normals of the (sparse) point cloud are known, they can be used as a scaffold
to solve the ambiguity in the normals from polarization. The polarization normal that has
the lowest angular difference between the average normal of the nearest estimated normals is
used.

A local, patch based method is used to reconstruct the depth. The patches are generated by
using known depths of the structured light as the corner points and the normals obtained by
the polarization method.

The patches are generated by starting at the left topmost pixel of the image that holds the
detected edges. Once a pixel is found with a known depth, all pixels to the right are checked
until another pixel with a known depth is found. Finally all pixels directly below the rightmost
found pixel are checked until a pixel with a depth value is found. This subdivides the image
into patches where at least three of the corners have a depth. An example of this can be seen
in figure 3.11.

Each patch is used as a local area of which the depth needs to be calculated. In order to
calculate the depth we use trapezoidal integration [15]. The polarized normals are used for
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Figure 3.11: Schematic representation of the patch creation. The black squares
represent pixels with a known depth and the colored lines the extracted patches.

the gradient field. When starting from the leftmost top corner the following algorithm is used
to fill the horizontal and vertical depth;

(3.10)

Zi,1 = Zi−1,1 + pi−1,1

Z1,j = Z1,j−1 + q1,j−1

Where Zij is the depth of the image coordinate (i, j). When a single line of horizontal and
vertical depth of the patch are filled, the rest of the patch can be populated by using:

(3.11) Zi+1,j+1 =
1

2
(Zi,j+1 + Zi+1,j) +

1

4
(pi,j+1 + pi+1,j+1 + qi+1,j + qi+1,j+1)

Because the depths are propagated through the grid, noise in the normals from polarization
will result in error propagation. To lessen the impact of the noise on this propagation the
algorithm is repeated for each corner of which a depth is known. If for example the algorithm
starts at the top right corner, the horizontal depth is first propagated from right to left and
the vertical depth from top to bottom. The average of the three or four calculated depths are
used as the final depth.

Most pixels will have depths calculated by multiple patches due to overlap. This adds an
aditional smoothing of the error propagation, both of the errors due to incorrect normals as
errors in the estimated depth from structured light.
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Experimentation

Several experiments have been conducted in order to test the accuracy of the methods sper-
ately. Each of the improvements to the SL method have been tested sperately in order to
quantify the improvements. The combined method has been tested with a simple model.

4.1 Setup

The computer system used in all tests is an Alienware M11x R3 laptop with 6GB of RAM
and an Intel I5-2467M cpu that is clocked at 1.6GHz. The software does not utilize threads,
so only a single core is used.

All images are taken with a Canon D650 DSLR camera that is controlled through the software
using the EDSDK API provided by Canon. The rotating linear polarizer filter in front of the
camera is a glass filter that is manually rotated to the correct position.

The beamer is an Optoma DLP beamer, with a maximum supported resolution of 1024 X
786. If a polarized image source is mentioned, this beamer is used with a plastic linear filter
placed in front of this projector. Because of the perfect filter assumption, it is also assumed
that this results in a perfect polarized lightsource.

4.2 Structured light

4.2.1 Improved pattern

In section 3.3.2 we propose a new encoding scheme for the structured light pattern. This
pattern attempts to solve some of the problems with the old pattern. The difference between
a scan made with the old pattern and the new pattern

Because of the new constraint that between the two colors of an edge there need to be two
changes in a color channel, there is far less noise in the image. Even though the window of
colors is much larger (n = 5 instead of 3), there is only a very small area near the foot that
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could not be reconstructed. The lack of any notable difference can be attributed to the global
optimization scheme, as it fixes most of mistakes caused by the larger window.

The new pattern also lacks white stripes, as they are brighter than their neighbours. This
brightness influences nearby stripes, which could lead to false classifications. Because the
difference between two neighbouring stripes is guaranteed to be at least two color channels
edges more edges are detected, especially in regions that are almost perpendicular to the
projector image plane.

Figure 4.1: Resulting point clouds of two different projection patterns. Left: Old
pattern. Right: New pattern.

Because the robot is 3D printed, we have the original 3D model that was used to fabricate it
in the first place. This allows for easy comparison between the scans and the ground truth.
The improved pattern results in 1.65 mm standard deviation with a sigma of 5.88422. The
old pattern has a standard deviation of 2.1 and a sigma of 8.1. Part of this standard deviation
can be attributed to limitations of geometrical tolerances of the manufacturing process.

Figure 4.1 shows a comparison of the point clouds created with both projection patterns and
figure 4.2 shows the pattern matched to the ground truth. Blue colored points have little to
no difference to ground truth and red points have a large difference when compared to the
ground truth.

4.2.2 Polarized filters

Polarization is an excellent method to reduce the specularities of a surface. When using an
unpolarized light source, a larger part of the specular light will be filtered when compared to
the diffuse reflection. If a polarized light source is used, which is obtained by placing a linear
polarizing filter in front of the source, the angle of the filter in front of the camera becomes
important. If both hold the same orientation more specular light is captured. When the angle
is at 90 degrees difference, almost all specular light is filtered. The difference between these
two states can be seen in figure 4.4.
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Figure 4.2: Differences to ground truth Left: New pattern. Right: Old pattern.

0 Degrees 45 Degrees 90 Degrees No polarization

Mean dist 0.605 0.739 0.851 0.727

Sigma 1.447 1.770 2.6 1.549

Table 4.1: Standard deviation and sigma of point clouds to ground truth in mm

Because specularities tend to result in oversaturated pixels, these specularities need to be
avoided as much as possible. Almost all common objects have at least a small amount of
specular reflection.

In order to test the impact of the polarization of light on the structured light method, four
different scans of the same object (the robot) have been made. These have been compared
with the ground truth of the robot model.

The results in table 4.1 indicate that using the polarization increases the accuracy of the
results when compared to no polarization. The accuracy decreases when the polarization is
set at 90 degrees, which is most likely caused by less light reaching the camera. The decrease
of the pixel intensities leads to lower matching certainties, which in turn lead to poorer global
matching.

4.2.3 Substraction

The subtraction method mostly has influence on edges of objects, where the intensity of the
projected pattern is much less. In these areas, the projected light has much less influence on
the perceived color. As the subtraction method scales the observed colors, the effect of the
object color is factored out somewhat.
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Figure 4.3: Point cloud results with different polarization filter ortientations. Left:
0 degrees. Middle: 45 degrees. Right: 90 degrees.

Figure 4.4: Images taken with polarized light. Left; filter at 0 degrees. Right:
Filter at 90 degrees.

The method improves the results for both the original and the improved pattern. The results
of the scans are displayed in figure 4.5 and 4.6. No quantified test were performed, as the
method results in previously unmatched edges being matched correctly.

The images have been taken with the polarization filter at 90 degrees and a ≈30 degrees angle
between camera and projector. The distance between both is ≈20 cm.
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Figure 4.5: Scan of rubber duck with the new pattern. Left: Original method.
Right: With subtraction method.

Figure 4.6: Scan of rubber duck with the old pattern. Left: Original method.
Right: With subtraction method.

4.3 Polarization

All polarization images are taken with an exposure time of 0.25 seconds, an aperture of 9.0
and an iso value of 100.

4.3.1 Accuracy

By scanning a flat sheet of paper that has been attached to a wooden board, we’ve created
a surface in which all normals should point in the same direction. In order to measure the
accuracy of the method, we made several scans of that image. Each of the three intensity
images used per scan are combined averages of 3 images taken in succession.

In order to test the observation that the degree of polarization has impact on the noise of the
results, two cases are compared. In the first case, the flat plane is placed in such a way that
the degree of polarization is very low. In the second case, the plane is rotated around the X
axis, which results in higher degree of polarization. If the higher DOP results in less noise,
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First Second Third Fourth Fifth

Avg normal
1

0.935046
-0.154976
0.318859

0.922792
-0.162958
0.349128

0.919447
-0.185264
0.346836

0.93509
-0.180557
0.304968

0.91891
-0.167726
0.357034

Avg normal
2

0.933759
0.14678
-0.32642

0.921369
0.154734
-0.356564

0.918192
0.17697
-0.353309

0.934102
0.172335
-0.312656

0.917452
0.159431
-0.364505

Table 4.2: Average normals measured with an zenith of 36 degrees

First Second Third Fourth Fifth

Avg normal
1

0.534614
0.637949
0.554264

0.557549
0.620982
0.550927

0.565878
0.62377
0.539159

0.585443
0.614287
0.529064

0.548423
0.623408
0.557311

Avg normal
2

0.529559
-0.639834
-0.556937

0.552352
-0.623142
-0.553715

0.560657
-0.62596
-0.542073

0.580144
-0.61665
-0.532143

0.543277
-0.625494
-0.560006

Table 4.3: Average normals measured with an zenith of 88 degrees

the differences between the scans should be less.

A patch of 250x250 pixels is taken and the average normals of that patch are used as the
normal of the surface. The normals are ordered as ZYX. Table 4.2 shows the average normals
for a low degree of polarization and 4.3 shows the average normals for a higher degree of
polarization.

In order to see the actual difference between these angles, the dot product was used to calculate
the angle between the normals. The average difference between the angles is 2.3 degrees for
the first test and 1.5 for the second.

This displays the influence the noise has on the smoothed normals of an entire patch. In order
to see what the spread of the individual normals are, their angle to the average of the patch
needs to be calculated. For the first test the angle each normal to the total average is 13.4
degrees, with a standard deviation of 6.3 degrees. The second test has an average difference of
9.3 degrees with a standard deviation of 6.8. The low degree of polarization results in 30.6%
more noise.

The noise has a big impact on the estimated normals, even when all methods to decrease
the noise as proposed by [3] are used. Low degrees of polarization are the main cause of this
noise, as these areas only have small differences in their intensity values. Because the changes
are smaller, they are far more susceptible to noise. A good example for this can be seen in
figure 3.7. The areas where there is a high degree of polarization, such as around the beak
of the duck, there is little noise in the phase. Areas with low DOP, such as around the wing,
have a large amount of noise.
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4.4 Merging

An as simple as possible object was used to show the results of the combination method. A
picture where the object is lighted by a single image source can be seen in figure 4.7. The
shape of the cone results in multiple areas with low degree of polarization, which lessens the
impact of the noise on the normals obtained from polarization.

Figure 4.7: Picture of cone as lighted by lightsource

The method is not perfectly capable of solving the ambiguity, as can be seen in figure 4.8.
The most notable drawback of the method is the lack of solved normals for areas where no
depth is estimated, as is visible for the flat area on which the cone resides. Noise in the results
from structured light also influences, as can be seen in the red patches to the right of the
cone. Due to the depth being incorrectly measured, the normals are incorrectly estimated,
which leads to the wrong choice of normals.

The number of estimated depths used for a single point varies greatly as the patching method
combines a large numbers of patches for areas that are composed of a diagonal, especially
in occluded regions. This has the advantage that the depth of large patches is calculated
from more sources. This lessens the negative impact the larger distance to a known normal
somewhat, due to the averaging of multiple calculated depths. The number of depths used
can be seen in figure 4.9. At the brightest points 20 patches overlap.
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Figure 4.8: Normal ambiguity solving. Normals are displayed in RGB channel.
Left: One of the normal candidates set. Right: normals resulting from ambiguity
solver.

Figure 4.9: Number of depths used. Lighter areas indicate more used depths.

The resulting point cloud has a much higher resolution. Where the original point cloud
contained ≈180.000 points, the point cloud resulting from the combination holds ≈2.000.000
points. The result is significantly more noisy than the original. This is due to the propagating
of the gradient field, as a few erroneous results can influence the entire patch. If one of the
anchor points is wrong, it is almost guaranteed that all results in that patch are wrong, despite
the smoothing used. The patch method does ensure that the global shape is maintained to a
certain degree.

35



Chapter 4: Experimentation

Figure 4.10: Point cloud resulting from combined method.

The current method has hardly any noise reduction or correction. Higher order methods such
as Fourier transformations[17], wavelets[18] or shapelets[19] have far superior results when
compared to this method, but they would require extensive modification to be used with
known depths.

As there is no global optimization or smoothing employed, the patches can clearly be seen
in the results. The areas with a large number of patches are much smoother, but not always
correct. The large patches also result in shadowy regions, where no data is available to be
incorrectly filled in with depth data.
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Figure 4.11: Point cloud as generated by structured light.
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Conclusions and future work

5.1 Conclusions

For this project, both the structured light method as proposed by Zhang et al. and the
polarization method as proposed by Miyazaki et al. have been implemented. The motivation
for this project was to develop an open source framework that would allow for accurate high
resolution 3D scanning.

The scanning method in its current state is unsuited for general 3D scanning, due to its many
constraints and noise even though improvements were made to the reference . However, it
does hold potential, as it provides a solution for the scale retrieval that most gradient to
depth algorithms suffer from.

5.1.1 Structured light

Several improvements have been made to the method of Zhang et al., most notably the sub-
pixel accuracy and subtraction method. Both methods remove some of the drawbacks of
the method, making it more robust and accurate. The method itself is still not usable for
brightly colored objects, as this results in stripes no longer being visible or being identified as
differently coloured stripes. The accuracy of the improved single shot method is less than the
reported accuracy of the multi-shot solution of the reference paper (0.6 mm versus 0.25 mm),
but requires only two images instead of seven and several orders of magnitude less running
time.

5.1.2 Polarization

Based on the experiments we can conclude that the the shape from diffuse polarization is very
susceptible to noise, especially with low degrees of polarization. Even with the lower degrees
of polarization, there standard deviation of normals of a flat plane is about 7 degrees, which
makes it not quite suited for the purpose of recovering details that would not be recoverable
with structured light. Multiple measurements could be used to increase the accuracy, but
this has a significant impact on the running time.
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The selection of a correct refraction index is difficult and has significant impact on the es-
timated normals. Because of the assumption that the refraction index is the same for the
entire model, only objects that consist of a single material with a known refraction index can
be scanned.

5.1.3 Merging

The combination of both methods suffers greatly from noise due to the error propagation. If
one of the methods has wrong results for a certain patch, the entire patch will have wrong
results. Because of this ”additive” nature of the algorithm, the final result sufers from a
very large number of false estimations. Despite this problem, it is able to create very high
resolution pointclouds that require only five images to be taken of the scene.

5.2 Future work

The normals estimated from the polarization could be improved by using multiple viewpoints,
so that multiple estimations can be used to compute a single normal. This also allows for
discarding normals estimated with a low degree of polarization, which suffer more from noise.
Because the usage of multiple views also increases the number of points retrieved from SL,
these normals should also increase in accuracy.

The refraction index could be calculated by minimizing the difference between the normals
as estimated from SL and the polarization. This has an added benefit of providing with an
indication of the type of material that is scanned.

The modularity of the system enables relatively easy switching of methods for each of the sub
problems (Obtaining depth anchors, obtaining normals, combining,etc). It would be valuable
to pursue several other combinations of methods.
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