UTRECHT UNIVERSITY
FACULTY OF SCIENCE
MASTER’S PROGRAM IN DRUG INNOVATION

Master’s Thesis

The ERK pathway in the autistic synapse

Troubled in translation control?

Author: Examiner:
Theodora Panagaki Prof. Peter Burbach

Second Reviewer:
Dr. Jacob Vorstman

November, 2013



Abstract

Autism is unequivocally a complex genetic disorder. However, its complexity converges
into the activity-dependent synapse plasticity. Compelling evidence suggests that the local
dendritic protein synthesis constitutes a critical molecular mechanism underlying synapse
plasticity. In this regard, the extracellular signal-regulated kinase (ERK) pathway has re-
cently attracted considerable attention in ASD pathogenesis. At synapses, ERK regulates
the recruitment of components of local translation machinery and thus stimulates protein
synthesis in response to activity. Mutations in multiple ERK components occur in autism
and disrupt ERK signaling. In vivo, these mutations disturb synapse function and cogni-
tion. Dysfunction of the ERK pathway additionally lies upstream of altered translation and
contributes to synapse pathology in syndromic forms of autism. Collectively, these find-
ings suggest that activity-dependent and ERK-mediated local protein synthesis may be an
important component of the molecular basis of ASD.



Contents

1 Introduction 2
2 Local Protein Synthesis Regulation in Synapse Plasticity 6
2.1 Protein synthesis mechanism . . . . . . .. .. .. 0oL 7
2.2 ERK and mTORCI1 in local translation regulation . . . . .. ... ... ... 9
3 ERK pathway in the autistic synapse 12
3.1 Aberrant ERK signaling in syndromic autism . . . . ... .. ... ... ... 12
3.2 More genetic hints for the involvement of the ERK pathway in autism . ... 15
4 ERK and mTORC1 may regulate the translation of separate pools of mR-
NAs in dendrites 17
5 Possible Convergence of other ASDs into the “two-pool hypothesis” and
translation regulation 20
6 Concluding remarks 22
Acknowledgments 23



1 Introduction

In 1943, the psychiatrist Leo Kanner first described the autistic disorder [51] of which diag-
nosis nowadays relies on a triad of core behavioral deficits: impairments in social reciprocity,
disturbances of verbal and nonverbal communication, and stereotyped and repetitive pat-
terns of behavior accompanied by restrictive interests. Manifestation of clinical signs typi-
cally occurs prior to the age of three years [71]. Beyond this unifying definition, however,
the phenotypes considerably vary among individual cases, ranging from deliberating behav-
ioral impairments to mild personality traits. Additionally, intellectual disability and seizure
disorder accordingly impact ~ 70% and 25% of the autistic individuals while co-morbid
anxiety and mood disorders often occur in autism. Thus, autism is not a single disease en-
tity. Instead, it describes a clinically heterogeneous group of neurodevelopmental disorders,
collectively termed “autism spectrum disorders” (ASDs) [109, 128]. ASDs encompass the
classic autistic disorder (Kanner’s autism), Asperger and Rett syndromes, pervasive devel-
opmental disorder not otherwise specified (PDD-NOS), and childhood disintegrative disorder
(see Table 1 for differential diagnostic features of ASDs) [3]. They are unequivocally among
the most heritable neuropsychiatric disorders (estimated heritability up to 90%) [1]. In-
sights into ASD genetic etiology, though, reveal substantial heterogeneity and complexity.
An impressive array of genetic studies has identified rare, single-gene mutations yielding
syndromes with highly-penetrant features of ASD (syndromic autism) or causing idiopathic
(non-syndromic) autism, and de novo copy number or single nucleotide variants in multiple
loci which accordingly impact gene dosage expression or function and synergistically enhance
ASD susceptibility [1, 55, 89, 93, 99]. These known genetic causes account for the minority
of ASD cases (< 20%) and, yet, much of the ASD genetic basis remains unexplained.

Identification of molecular pathways in which rare, highly penetrant, and common ge-
netic variations overlap is essential to gain mechanistic insights into ASD neurobiology and
further devise effective therapeutic strategies. Interestingly, recent findings suggest that
these known genetic causes interfere with the activity-dependent synapse development and
plasticity — events that determine the structural establishment and functional refinement of
neuronal connectivity in the brain as the latter learns and adapts to a changing environment
(for review, see; [26]). Particularly, experience triggers the release of neurotransmitters at
and stimulates specific synapses. Synaptic activity, in turn, can induce long-lasting changes
in synaptic strength, namely long-term potentiation (LTP) and long-term depression (LTD).
During neonatal life, the mechanisms of LTP and LTD accordingly drive the stabilization
and elimination of nascent synapses. In addition, their coordinated regulation refines trans-
mission efficacy between synaptic contacts that underlies memory storage and behavioral
plasticity throughout postnatal life and adulthood [9, 49, 76]. Persistent changes in synaptic
strength involve modifications of actin cytoskeletal organization in the spine and protein
composition at the contact site which impact volume and amplitude of synapse [14, 68, 69].
Thus, they are highly dependent on protein synthesis and function [14, 68, 69]. In this regard,
the extracellular signal-regulated kinase (ERK) pathway has recently attracted considerable
attention in ASD pathogenesis. It is a highly-conserved cascade pathway that, in neurons,
plays a key role in trancription and translation regulation underlying synapse plasticity and
memory consolidation [56, 114, 118, 124].

Neuronal ERK signaling corresponds to a variety of extracellular stimuli and, most no-
tably, to membrane depolarization following synaptic glutamate release and to neurotrophin
stimulation (Figure 1) [114]. These last two stimuli profoundly control many aspects of
synapse plasticity [14, 34, 69]. Signal transduction occurs via the sequential phosphorylation
and activation of protein kinases at three distinct tiers of ERK cascade. Initially, ligand bind-
ing to the cell surface receptor stimulates the exchange of guanosine-5’-diphosphate (GDP)



Autism Asperger’s syndrome PDD-NOS

Age of onset 0-3 years > 3years Variable

Age of diagnosis 3-5 years 6-8 years Variable

Social reciprocity Poor; > 2 DSM-IV Poor Variable

Communication Delayed & deviant; No early delay, though qualitative Variable
might be not verbal and pragmatic impairments later

Behavior More impaired than in Variable (restrictive interests) Variable

Asperger’s sydrome or PDD-NOS
(includes stereotypy)

ID > 60% Mild to none Mild to severe
Seizures 25% over lifespan ~ 10% ~ 10%
Prevalence (per 10% )  1-2 0.6 3.7
Sex Ratio 4:1 >11:1 N/A
(Male:Female) (more males)
Regression ~ 25% No Variable
(social or communication)
Outcome Poor to fair Fair to good Poor to good

Table 1: Differential diagnostic features of autism spectrum disorders. Table was adapted
and reprinted by Levy et al. [71]. According to the Diagnostic and Statistical Manual for Mental
disorders (DSM-1V, 4" edition [3]), Rett syndrome and childhood disintegrative disorder (CDD) are
subsets of the pervasive developmental disorders (PDDs) in autism spectrum. Rett is a rare cause
for severe intellectual disability in females accompanied by seizure dirorder and autistic core traits.
CDD is additionally rare neurophychiatric disorder characterized by late onset of developmental
delay in communication, social reciprocity, and motor skills. The diagnostic strategies applied in
Rett syndrome and CDD are different and not addressed in the current table. Abbreviations: ID
— intellectual disability; N/A — not applicable; PDD-NOS — pervasive developmental disorder not
otherwise specified.

for guanosine-5’-triphosphate (GTP) on and activates the small G protein protein Ras. Bio-
chemical mechanisms for Ras activation involve the enhanced activity of guanyl nucleotide
exchange factors (GEFs, which directly catalyze the exchange of GDP for GTP on Ras), the
inhibition of GTPase-activating proteins (GAPs, which accelerate the slow Ras-catalyzed in-
trinsic hydrolysis of GDP to GTP), the altered cytoplasmic localization of these enzymes or a
combination of all these processes depending on the activated type of receptors (for detailed
description of the biochemical mechanisms, see [77, 114]). Thus, this GDP/GTP exchange
elicits a conformation change in Ras (i.e., into its active GTP-bound form) that enables
Ras protein to interact with and promote the activation of the protein kinase Raf. In turn,
Raf phosphorylates and activates the mitogen-activated protein kinases (MAPK) MEK1 and
MEK?2 (MEK1/2). MEKs lie upstream of the activation of the protein kinases ERK1 and
ERK2 (also known as p44 and p42 MAPK, respectively). ERKs are serine/threonine kinases
of which downstream targets include nuclear proteins and transcription factors for gene ex-
pression, cytoskeletal components, and, most importantly, other kinases for translation and
transcription control (Figure 1) [118, 124].

Compelling evidence suggests that the local dendritic protein synthesis constitutes a
critical molecular mechanism for synapse plasticity [12, 14, 20, 44, 50, 69]. This hypothe-
sis originates from the discovery of polyribosome complexes selectively accumulated at the
distal processes beneath the post-synaptic sites on neuron dendrites in a rosette-like struc-
ture [111]. The polyribosome complexes consist of a cluster of ribosomes, which are the
translation units, bound to a strand of a messenger RNA (mRNA) and surrounded by mem-
branous cisterns [111]. Subsequent immunohistochemical studies have identified ribosomal
proteins, translation regulators, initiation and elongation factors, and endoplasmic reticulum
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Figure 1: ERK signal transduction and major downstream targets upon synapse activ-
ity. Figure was adapted and reprinted by Wiegert and Bading [124]. Many extracellular stimuli,
such as neurotrophic factors, norepinephrine, dopamine, acetylocholine, glutamate and calcium in-
flux can trigger ERK activation in neurons [114]. Although the specific components of the cascade
vary greatly among the different stimuli and activated type of receptors (the biochemical mechanisms
have been extensively reviewed elsewhere [77, 114]), these stimuli result in an increase of the active,
GTP-bound form of the small G protein Ras. In turn, Ras-GTP triggers the activation of the protein
kinase Raf, which lies upstream of the activation of MEK1/2. MEKSs subsequently phosphorylate
and activate ERK1/2 [118]. Phosphorylated ERK1 and ERK2 dissociate from MEKs and further
form a dimer with another ERK molecule or remain monomeric. ERK monomers can probably enter
the nucleus where they phosphorylate local kinases (i.e., MSK1) and transcription factors to reg-
ulate gene expression [124]. In the cytoplasm, ERK1/2 regulate AMPAR trafficking and neuronal
excitability through phosphorylation of the receptor subunits (GluR1 and GluR2) and of the voltage-
dependent KT channel K, 4.2, respectively [112, 114]. Additionally, ERKs phosphorylate and activate
other kinases (e.g., RSK and Mnk1/2) which, in turn, promote protein synthesis and gene transcrip-
tion [118]. Abbreviations: AMPAR — a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor;
BAR — 8 adrenergic receptor; DAR — dopamine receptor; ERK — extracellular signal-regulated kinase;
KT — potassium; mAChR — muscarinic acetylcholine receptor; MEK — mitogen-activated protein ki-
nase (MAPK); mGluR — metabotropic glutamate receptor; Mnk — MAPK-interacting protein kinase;
MSK1 — mitogen- and stress-activated protein kinase 1; NMDAR — N-methyl-D-aspartate receptor;
RSK — ribosomal S6 kinase; TrkB — tropomyosin receptor kinase B for neurotrophins; VGCC —
voltage-gated calcium channel.

(co-translational sorting membranous organelle) in dendrites. In situ hybridization and RNA
amplification studies have further revealed that mRNA families encoding glutamate recep-
tor subunits, cell adhesion molecules, scaffolding proteins, compartment-specific cytoskeletal
components (e.g., microtubule-associated protein 2 — MAP2), other regulatory proteins for
plasticity (such as the activity-regulated cytoskeleton-associated protein — Arc which reg-
ulates actin dynamics and receptor trafficking), and transcription factors concentrate in
the post-synaptic vicinity of hippocampal neurons (for review of these studies, see; [113]).
Markers of RNA translation have revealed that synapse activity triggers protein synthesis
locally at or near the synapses [78, 113] while the peak of the translation rate occurs during



postnatal life [92]. Targeted disruption of local protein synthesis impairs the persistence of
hippocampal LTP and results in long-term memory and behavioral deficits both in juvenile
and young rodents [56, 80]. Collectively, these findings underscore the importance of lo-
cal protein synthesis in synapse modification underlying memory formation and behavioral
plasticity throughout lifetime.

The current thesis explores the relative contribution of the ERK signaling in the ASD
etiology. Mutations in multiple ERK components occur in autism and disrupt pathway
activity [38, 55, 66, 93, 123]. In vivo, these mutations defect synapse plasticity and result in
behavioral deficits [37, 57, 63]. Conversely, ERK pathway plays a key regulatory role in the
recruitment of the protein-synthetic-machinery components and translation initiation locally
in dendrites [56]. Although the current weight of scientific evidence is not conclusive, aberrant
ERK signaling and subsequent dysregulation of the ERK-dependent local protein synthesis
upon activity may be an important component of the molecular basis of ASD. In support
of this proposal, robust ERK1/2 activation in response to synapse stimulation lies upstream
of the aberrant protein synthesis and contributes to the synapse pathology and phenotypic
outcome in syndromic forms of autism [84, 85]. Thus, in the following sections, I discuss
seminal studies in ERK signaling and defects of these molecules with respect to local dendritic
translation and synapse modification. As mentioned above, ERK profoundly regulates gene
transcription required for synapse plasticity and memory consolidation. However, this topic
has been systematically reviewed in normal conditions [114, 118, 124] and recently in ASD
etiology [48]; hence, it is beyond the scope of the current essay.



2 Local Protein Synthesis Regulation in Synapse Plasticity

Protein synthesis has been extensively studied in the context of memory formation and
activity-dependent cortical development [39, 61]. In both contexts, the information pro-
cessing and its temporary storage (~ 1 — 2h) within the circuits are independent on pro-
tein synthesis. However, its retention for longer periods, lasting hours to days, requires
gene expression [39]. Like memory, synapse plasticity exhibits short- and long-lasting forms
with distinct molecular requirements and temporal characteristics. Specifically, LTP and
LTD occur in persistent late phases (L-LTP and L-LTD, respectively) which require gene
transcription and de novo protein synthesis, and in transient early phases (E-LTP and E-
LTD, respectively) which solely depend on post-translational modifications of preexisting
proteins [18, 96].

Compelling evidence suggests that the local dendritic protein synthesis constitutes the
critical mechanism underlying long-lasting synapse modification [12, 20, 44, 50, 80, 120].
Specifically, Kang and Schuman have demonstrated that the brain-derived neurotrophic fac-
tor or neurotrophin-3 application triggers long-lasting enhancement of synaptic transmission
in hipocampus which characteristically exhibits an immediate requirement for protein syn-
thesis [50]. This translation-dependent, neurotrophin-evoked LTP persists even after the
dendritic layers of CA1l and CA3 pyramidal neurons have been surgically severed from their
cell bodies in hippocampal slices [50]. In a similar slice preparation, isolated dendrites
effectively support protein-synthesis-dependent LTD upon pharmacological or paired-pulse
low-frequency stimulation of group I metabotropic glutamate receptors (Gp I mGluRs) [44].
Similarly, subsequent work has demonstrated that local translation is both sufficient and nec-
essary for the establishment and maintenance of L-LTP in hippocampus [20, 120]. Consistent
to this hypothesis, genetic and pharmacological evidence has revealed that local translation
inhibition impairs L-LTP in an earlier temporal window than the gene transcription in-
hibition [5, 56]. The latter further suggests that local upregulation of the translation of
preexisting mRNAs mediates the transition from E- to L-LTP (establishment of L-LTP)
while the local translation of newly transported mRNAs from neuron soma to the activated
synapse promotes the long-lasting persistence of synapse potentiation [12].

Local protein dendritic synthesis is also crucial for the persistent spine enlargement that
accompanies long-lasting changes in synaptic strength upon activity [14, 52, 68]. Spines
are small protrusions on the dendrites which consist of the postsynaptic excitatory (glu-
tamatergic) machinery, postsynaptic density (PSD), actin cytoskeleton, and membranous
organelles [110]. They are highly dynamic structures of which morphology is subject to
rapid alteration in response to neuronal activity and glutamate receptor activation. For
instance, induction of LTD causes rapid spine enlargement. Larger spines have larger and
more complex (PSDs), higher surface content in glutamate receptors, better sensitivity to
glutamate release and calcium influx, and subsequently better postsynaptic responsivity to
LTP [110]. Activity-dependent spine growth and remodeling depend on signal transduc-
tion pathways that modulate actin dynamics through post-translational modifications of
regulatory proteins, as previously reviewed [68]. However, like synapse plasticity, spine en-
largement displays immediate and gradual phases. Gradual phase and persistent forms of
spine remodeling are sensitive to protein synthesis inhibitors and thus dependent on mRNA
translation [116]. In addition, BDNF application and Gp-I mGluR stimulation which both
induce mRNA translation locally at synapses [44, 50] trigger a protein-synthesis-dependent
lengthening of spines [14, 68]. Finally, many mRNAs synthesized locally encodes proteins
that regulate actin polymerization and stability (e.g., Arc and MAP1B) or signaling compo-
nents of the spine morphogenesis pathways [14, 68].



An understanding of the molecular mechanisms by which synaptic activity regulates lo-
cal protein synthesis is beginning to emerge. Local protein synthesis occurs in response to
synaptic glutamate release. Current evidence implicates two types of the post-synaptic glu-
tamate receptors in translational regulation; the calcium-permeable N-methyl-D-aspartate
receptors (NMDARs) and the Gg-coupled (Gpl) mGluR1 and mGluR5 [12, 20, 44, 50, 56].
NMDAR stimulation additionally triggers the release of the brain-derived neurotrophic fac-
tor (BDNF). BDNF binds to TrkB receptors and further induces local protein synthesis [50].
Stimulation of these receptors triggers downstream mammalian target of rapamycin-raptor
complex (mTORC1) and ERK signaling pathways [18, 96]. mTORCI1 activation occurs
in a sequential signaling cascade downstream of phosphoinositide-3 kinase (PI3K) [96] or
ERK [75] (Figure 3). Both pathways regulate the recruitment of components to the trans-
lation machinery and thus stimulate protein synthesis [18, 96]. Below, we point out the
critical events of translation process and further discuss their regulation by neuronal ERK
and mTOR signaling.

2.1 Protein synthesis mechanism

The translation of a given mRNA comprises three sequential phases — initiation, elongation,
and termination. Initiation constitutes the rate-limiting event in the translation process and
thus serves as the principal target for regulation. It requires a pool of separated ribosomal
units and diverse eukaryotic initiation factors (elFs). For the vast majority of mRNAs,
translation initiation occurs in a cap-dependent way in which m”G cap (also termed as
7-methylguanosine cap) present at 5 end of the mRNA and added during transcription
facilitates recognition and ribosome attachment. Alternatively, initiation on few mRNAs
follows a cap-independent mechanism which involves ribosome recruitment at an internal
position within the mRNA 5’ untranslated region (UTR), termed internal ribosome entry
site (IRES) [47, 18]. However, both the relative importance of this mechanism in synaptic
plasticity and its regulation remain currently unknown. Cap-dependent initiation consists of
three key events — the formation of 43S ribosomal preinitation complex, recruitment of the
43S complex to the 5 end of the mRNA, and the assembly of 80S ribosomal complex [18]
(Figure 2).

Initially, eIF2 binds to GTP and initiator methionyl-tRNA (Met-tRNAM¢!) to form a
ternary complex (elF2 TC). Subsequently, elF2 TC associates with the small 40S ribosomal
subunit, which carries elF1, elF3, and probably elF5, to assemble the 43S preinitiation com-
plex. Loading of the 43S preinitiation complex onto the 5’ end of a given mRNA requires the
formation and cooperation of elF4F complex. The latter consists of the cap-binding protein
elF4E, the ATP-dependent RNA helicase elF4A which unwinds the secondary structure of
the 5’UTR of the mRNA to facilitate ribosome attachment, and the el[F4G protein which
interacts with elF3 and couples 43S preinitiation complex to the mRNA. Thus, the assembly
of elF4F complex is a critical event in cap-dependent translation while its regulation lies
within the phosphorylation state of e[F4E-bindings proteins (4E-BPs), as discussed below.
Once attached to the 5 end, 43S ribosomal complex scans the mRNA downstream of the
cap to the initiation codon (in a direction 5’— 3’) to form the 48S complex. Subsequently,
elF5 along with elF5B promotes the hydrolysis of elF2-GTP, elFs displacement, and the
joining of 60S ribosomal subunit. The subsequent formation of 80S ribosomal complex sig-
nals the termination of the initiation phase and the initiation of the elongation phase. For
elongation of the polypeptide chain, the eukaryotic elongation factor 1A (eEF1A) recruits
aminoacyl-tRNA into the ribosome while the elongation factor eEF2 mediates the transloca-
tion of the ribosome along the mRNA after peptide formation. Upon stop codon recognition,
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Figure 2: Schematic representation of cap-dependent mRNA translation initiation. Figure
was adapted and reprinted by Jackson et al. [47]. Abbreviations: AUG - initiation codon; elF —
eukaryotic initiation factor; eRF — eukaryotic release factors; m”G — 7-methylguanosine cap; PABP
— poly-A-binding protein; UGA — stop codon;. See text for translation mechanism description and
further abbreviations.



various release factors terminate the translation process, release the polypeptide chain from
the mRNA and ribosome, and recycle ribosomal complexes) [18, 47, ?7].
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Figure 3: Neuronal signaling pathways in regulation of translation initiation. Figure was
adapted and reprinted by Darnell and Klenn [21]. The Ras/ERK and PI3K-mTORC1 couple Gp I
mGluRs, NMDARs, and TrkB receptors (not depicted in the figure) to the local translation machin-
ery. Regulation of the availability and activity of the mRNA cap-binding factor eIF4FE represents the
principal effector mechanism through which ERK and mTORC1 pathways modulate local protein
synthesis [56]. Nevertheless, the ERK-dependent eIF4E phosphorylation plays a pivotal role in hip-
pocampal plasticity and memory formation [6, 56]. Mutations in multiple ERK components (such as
NF1 and SynGAP1) and in the mTORCI regulator TSC1/2 result in monogenic disorders with a high
prevalence of cognitive impairments and ASD. FMRP is an mRNA-binding protein highly enriched
at synapses where it represses the translation of specific mRNAs. Loss of FMRP leads to FXS —
the most common form of inherited intellectual disability and autism. Red asterisks symbolize the
mutations discussed in the current thesis. Abbreviations: ERK — extracellular signal-regulated ki-
nase; FMRP — fragile X mental retardation proten; FXS — fragile X syndrome; Gpl mGluR — Group
I metabotropic glutamate receptor; mTORC1 — mammalian target of rapamycin-raptor complex;
NMDAR — N-methyl-D-aspartate receptor; TSC — tuberous sclerosis complex. NF1 — Neurofibro-
matosis 1; TrkB — tropomyosin receptor kinase B for neurotrophins. See text for details and further
abbreviations.

2.2 ERK and mTORCI1 in local translation regulation

Regulation of the availability and activity of the mRNA cap-binding factor elF4E repre-
sents the principal effector mechanism through which ERK and mTORC1 pathways modu-
late local protein synthesis. Availability of eIF4E is critical for the assembly of the eIF4F
complex and thus the ribosome recruitment to the mRNA. 4E-BPs sequester elF4E, hin-
der elF4F complex formation, and suppress the cap-dependent translation in vitro and in
vivo. The 4E-BPs and eukaryotic factor eIF4G share a canonical motif (YXXXXL®; X
stands for any amino acid and ® for a hydrodrophic residue) through which they compete
for binding to and interact with the cap-binding factor elF4E. The phosphorylation state



of 4E-BPs defines their affinity for elF4E and thus the availability of this eukaryotic fac-
tor. Specifically, hyperphosphorylation of 4E-BPs strongly weakens their binding affinity
for eIF4E which subsequently enable the latter to interact with the eIF4G protein and as-
semble the elF4F complex. mTORC1 is the primary kinase that phosphorylates 4E-BPs.
Pharmacological inhibition of mTORC1 activity in hippocampus attenuates 4E-BP phos-
phorylation and translation-dependent translation impairing long-lasting potentiation and
BDNF-mediated LTP. In addition, mTORCI1 signaling pathway facilitates elF4F complex
formation and translation initiation by phosphorylating and activating p70 ribosomal pro-
tein S6 kinase 1 (S6K1). In turn, S6K1 phosphorylates downstream targets, such as the
ribosomal protein S6 (component of the 40S ribosomal subunit) and the eukaryotic factor
elF4B (Figure 3). Notably, EIF4B phosphorylation potentiates the RNA-helicase activity of
elF4A and stimulates elF4F complex assembly [18].

The ERK signaling cascade can additionally modulate the phosphorylation state of 4E-
BPs and elF4B, and facilitate translation initiation [56]. Specifically, ERK phosphorylates
and activates a different subfamily of S6K, namely the p90 S6K (RSK, also known as MAPK-
activated protein kinase 1). In turn, RSK recruits and activates the PI3K-dependent kinase
(PDK) [30] which lies upstream of the activation of the serine/threonine kinase Akt. Akt
can directly phosphorylate and activate mTORC1 or indirectly through inhibiting tuberous
sclerosis complex (TSC1/2) [18]. TSC2 subunit functions as GAP protein against the small
GTPase Ras homolog enriched in brain (Rheb). Akt-mediated TSC2 phosphorylation sup-
presses its GAP activity, promotes Rheb activation, and subsequently activates mTORC1
(Figure 3) [18]. In addition, ERK or RSK can directly phosphorylate TSC2 subunit and
induce mTORCI1 activation (Figure 3) [75, 97]. This ERK signaling pathway to mTORC1
appears to be particularly important for translation regulation linked to hippocampal L-
LTP [56]. Curiously, the ERK signaling pathway modulates phosphorylation state and, in
turn, the activity of the cap-binding factor eI[F4E. Particularly, MAPK-interacting kinase 1/2
(Mnk1/2) is a downstream target of ERK signaling that selectively phosphorylates elF4E
at a single serine site [18]. Phoshorylated eIF4E exhibits four-fold lower affinity for the
5’ cap structure which correlates with translation suppression of bulk mRNAs [103, 129].
Nevertheless, previous studies have implicated ERK-dependent elF4E phosphorylation in
hippocampal plasticity and memory formation [6, 56]. For example, mGluR-LTD induction
triggers elF4E phosphorylation via ERK-dependent activation of Mnk1. Conversely, mGluR-
LTD displays a rapid requirement for local protein synthesis. Thus, these findings suggest a
regulatory mechanism in which the ERK signaling cascade may function as a cellular switch
to differentially modulate translation of subset of mRNAs under certain conditions [34]. 1
will return to this point in a later section.

Although initiation usually constitutes the rate-limiting event in the translation process,
local protein synthesis regulation can also occur in the elongation phase. Peptide chain elon-
gation is a highly consuming process of which regulation relies on the phosphorylation of
the eEF2 factor by the eEF2 kinase (eEF2K) [53]. eEF2K is a Ca?* /calmodulin-dependent
kinase activated in response to NMDAR and mGluR stimulation [53, 102]. It phosphory-
lates and inhibits the activity of the elongation factor eEF2. In turn, eEF2 phosphorylation
attenuates the translation of the bulk of mRNAs. Conversely, S6K can phosphorylate and
inhibit eEF2K activity to reverse translation inactivation [53]. Taken together, these findings
propose an attractive model for how synapses establish translation specificity upon activity;
calcium influx would repress local protein synthesis at all synapses upon stimulation. How-
ever, parallel activation mTORC1 could reverse this effect at specific synapses [18]. Paradox-
ically, eEF2 phosphorylation correlates to enhanced synthesis of a subset of proteins. While
the underlying molecular mechanism remains elusive, current hypothesis suggests that the
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inhibition of elongation releases rate-limiting initiation factors (i.e., eIF4F) which, in turn,
facilitates the initiation of poorly translated mRNAs [18, 35, 87, 102]. Recent findings im-
plicate elongation inhibition in the translation regulation of specific transcripts critical for
mGluR~induced LTD. Specifically, neuronal eEF2K deletion impairs LTD upon mGluR stim-
ulation and local synthesis of Arc or MAP1B in vivo and in vitro, respectively [23, 87]. 1
will return to these proteins later in this thesis.
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3 ERK pathway in the autistic synapse

An impressive array of human genetic studies, including high-throughput screening and ex-
ome sequencing of parent-child trios has correlated functional genetic variations in multiple
components of the ERK pathway, e.g., Ras-associated proteins and ERK1/2 kinase, with
ASD [38, 55, 66, 93, 123]. In vivo, these mutations perturb cognitive functioning and adaptive
behavior plasticity [37, 57, 63]. Furthermore, aberrant ERK signaling underlies the patho-
genesis of neurological syndromes symptomatically overlapping with ASD [72, 104, 125]. It
additionally contributes to the synaptic plasticity defects in Fragile X syndrome — a distinct
syndromic form of autism — of which the causative gene product interferes with local pro-
tein synthesis [84, 85]. Below I discuss recent insights into the defects of these molecules
(summarized in Figure 3) with respect to synapse modification and local translation.

3.1 Aberrant ERK signaling in syndromic autism

Fragile X Syndrome (FXS). FXS is among the most prevalent causes of inherited intel-
lectual disability and autism in humans. Epidemiological data estimates that it impacts one
per 4,000 males and one per 8,000 females of which 15 — 30% entirely meet the diagnostic
criteria of ASD while approximately 5% of autistic children suffer from FXS. It results in
a spectrum of cognitive impairments and neuropsychiatric symptoms that include learning
and memory deficits, attention deficit and hyperactivity, social anxiety, mood liability, (self-)
aggressive behaviors, motor in-coordination, and seizures. Patients with FXS may addition-
ally exhibit a physical phenotype characterized by elongated forehead, large or protruding
ears, macroorchidism (in males), and hyperflexible joints. An abnormal trinucleotide (CGG)
repeat expansion which triggers hypermethylation and transcriptional silencing of the Fmri
gene typically underlies FXS etiology. Fmrl gene is located on the X chromosome (one of
the two sex chromosomes) and encodes the fragile X mental retardation protein (FMRP).
Variations in CGG repeat size and the subsequent fluctuations in FMRP expression levels
along with germline mosaicism and X inactivation in females define syndrome phenotypic
severity and clinical outcome [83]. FMRP is an mRNA-binding protein highly enriched at
synapses where it negatively regulates the protein synthesis of specific transcripts. Specifi-
cally, it functions to repress initiation or stall ribosome movement along the mRNA stands
during elongation, though the precise mechanisms are poorly understood [7, 10].

Fmrl knockout (KO) mice — a validated animal model for FXS [64], exhibit abnor-
mally high levels of protein synthesis [25, 84] and exaggerated LTD upon Gpl mGluR stim-
ulation [43], suggesting that under normal conditions FMRP serves as ‘brake’ on mGluR-
stimulated local mRNA translation (see also reviews; [7, 10]). In addition, FMRP loss in vivo
manifests a decreased surface expression of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptors (AMPARs) and an overabundance of long, thin, immature spines [7]. Inter-
estingly, pharmacological and genetic inhibition of mGIluR5 signaling has restored excessive
basal protein synthesis, and rescued synaptic, spine, epileptogenic, and behavioral defects
in Fmrl KO mice (for review of the studies and phenotypes corrected, see; [10]). Collec-
tively, these findings demonstrate that excessive protein synthesis downstream of mGluR5
activation forms the pathogenic core of FXS (‘mGLuR theory’ [9]). Given that the FMRP
regulates approximately 4% of the mRNAs in mammalian brain [7], a logical step is to
identify the pathogenic proteins. Among the diverse FMRP targets, Arc and MAP1B have
recently emerged as the major ‘LTD’ candidates [7, 10, 21]. Arc is induced as immedi-
ate early gene upon synaptic stimulation. Once encoded, its mRNA rapidly traffics to and
accumulates at the activated synapses where FMRP regulates its translation. This pro-
tein functions to regulate AMPAR endocytosis through its interaction with the proteins of
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the endocytic system, endophilin and dynamin [13]. mGluR5 stimulation triggers its rapid
translation while the Arc-mediated AMPAR internalization represents the crucial event for
mGluR-LTD [122, 87, 34]. MAPI1B is another critical protein for mGluR-LTD which sta-
bilizes the internalized AMPARs [23]. Biochemical analysis of isolated synapsoneurosomes
from the Fmrl mice have revealed local excessive synthesis of Arc and MAP1B [73, 127],
which seems to underlie the defective AMPAR trafficking. Subsequent deficient surface con-
tent in these receptors exaggerates mGluR-LTD in Fmr! KO hippocamus [7]. Additionally,
Arc and MAP1B regulate polymerization and stability of actin cytoskeleton, suggesting that
they may further contribute to spine pathology in FXS [21].

In the context of translation regulation, ERK and mTORCI1 signaling cascades have been
extensively studied in Fmr! KO hippocampus. Some reports suggest an aberrant ERK activ-
ity [41, 60] while others implicate mTOR dysregulation [42, 105] upon mGluR5 stimulation.
However, none of these studies have directly correlated the aberrant ERK or mTOR signaling
to the excessive local protein synthesis which represent the core pathogenic feature in FXS.
Recently, Osterweil et al. propose that constitutive mGluR5-ERK signaling lies upstream of
the excessive protein synthesis in FXS [84, 85]. Specifically, these researchers employed an
in vitro assay to quantify protein synthesis in Fmr! KO hippocampus and under the same
conditions that exaggerated mGIluR- and translation-dependent LTD occurs in vivo. They
have reported neither basal nor stimulated hyperactivation of ERK and mTOR. pathways
upon mGluR activity. Nevertheless, pharmacological inhibition of ERK1/2 normalizes pro-
tein synthesis rate to wild type (WT) value and eliminates audiogenic seizures in Fmr! KO
model. In contrast, rapamycin treatment (mTORC1 inhibitor) fails to correct the aberrant
protein synthesis and prevent epiloptogenic activity [84]. Collectively, these findings suggest
that the excessive protein synthesis within Fmr! KO hippocampus arises from the hypersen-
sitivity of the translation machinery to ERK signaling (not to mTORC1), basally activated
by mGluR. These findings further highlight the central role of ERK pathway in translation
regulation and epileptogenesis linked to FXS.

Neurofibromatosis type 1 (NF1). NF1 is a neurocutaneous single gene disorder with an
estimated prevalence of one per 3500 individuals. Multiple complex cognitive impairments
occur in a high incidence (40 — 60% of the cases) and include learning disabilities, attention
deficit disorder, autistic features, executive function deficits, and motor coordination prob-
lems, as previously reviewed [106, 112]. Cutaneous symptoms involve skin pigmentation,
skeletal abnormalities, optic gliomas, and an increased risk for a rare leukemia form and
malignant nerve sheath tumor [29]. NF1 arises from inherited or spontaneous (de novo)
loss-of-function mutations in NfI gene which is located on the chromosome 17q and encodes
the neurofibromin protein. Neurofibromin is a Ras-GAP protein that negatively regulates
Ras-ERK signaling [106]. Protein loss results in constitutive activation of the Ras-ERK
pathway [72] impairing LTP and learning in vivo [17, 108]. Particularly, mice carrying an
Nf1 heterozygous null mutation (NfI1/~) exhibit spatial learning and memory impairments,
and deficits in contextual fear memory consolidation and attention [17, 108].

In Nf1r*/~ hippocampus, enhanced intraneuronal ERK signaling increases the activity-
dependent release of the inhibitory neurotransmitter y-aminobutyric acid (GABA). Increased
inhibitory currents in CA1, in turn, prevent sufficient depolarization of NMDARs, perturb
the balance between excitation and inhibition within hippocampal networks, and ultimately
impair LTP during learning [17, 72]. A recent DNA microarray analysis has identified dis-
rupted expression of genes encoding proteins which regulate synaptic vesicle trafficking and
recycling (e.g., dynamins, Rabs and synaptostagmins), glutamate receptors (mGluR5, AM-
PAR4, and NMDAR1), synapse structural proteins (such as neurexin 1, integrin 86 or /37,
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and NCAM1), and signaling molecules (such as «CAMKII) in Nf1*/~ hippocampus [86].
For instance, NF1 deficiency in vivo decreases NMDAR]1 expression whereas it up-regulates
AMPAR4 and mGIuR5 expression [86]. Defects in these molecules along with the down-
regulated expression of Rab proteins involved in synaptic vesicle recycling may account for
the disrupted synaptic transmission noted in the mice.

Nevertheless, excitatory synapses also express NfI [45] while long-lasting synapse mod-
ifications typically require local mRNA translation [12, 18, 56]. Thus, it is interesting to
consider that interfering with the mRNA levels and local translation regulation of proteins
crucial for synapse plasticity and structure may cause changes synaptic connectivity and
compromise network performance. This, in turn, may result in altered excitation/inhibition
ratio underlying cognitive impairments in NF1. Indeed, excessive protein synthesis in FXS
manifests an imbalance between excitation and inhibition in CA1l hippocampal area and
cortex with hyperexcitation favored, as previously reviewed [31]. In addition, Nff/~ hip-
pocampus display decreased aCAMKII expression [86]. Mice in which a«CAMKITI mRNA
restricted to the soma and proximal dendrites exhibit impaired L-LTP and memory deficits
in fear conditioning and spatial tasks. This finding indicates that the dendritic localization
and local translation of this signaling molecule contributes to hippocampal function and
plasticity [80]. Improved understanding of the molecular defects following loss of function
of Nf1 will provide mechanistic insights into syndrome pathology. Furthermore, NfI is a
target of FMRP protein potentially [22] suggesting a clinical relevance between NF1 and
FXS pathological pathways to autism. Thus, an unresolved question is whether disrupted
mGluR5-ERK signaling and aberrant protein synthesis at excitatory synapses underlies NF'1
pathogenesis.

Nooman Syndrome (NS). NS is an autosomal dominant genetically heterogeneous disor-
der [117] with an estimated prevalence of one per 1,000 to 2,000 live births [112]. Clinical
features include craniofacial dysmorphias (including a webbed neck and a flat nose bridge),
short stature, congenital cardiac defects (typically pulmonary valve stenosis and hypertrophic
cardiomyopathy), and skeletal deformations (such as pectus excavatum and carinatum) [117].
Approximately, one third of the patients exhibits mental retardation and learning disabili-
ties [117] while co-morbid autistic traits occur in NS [32]. This disorder primarily arises from
gain-of-function germline mutations in Ptpnl! gene which is located on the chromosome
12g24.1 and encodes the protein tyrosine phosphatase SHP2. SHP2 functions to positively
regulate Ras-ERK signaling in response to growth factor receptor and Trk stimulation [104].
Genetic studies have additionally identified mutations in Sos! (encoding the Ras-GEF pro-
tein, SOS1), Kras (member of Ras family), and Raf! genes causal of NS. Collectively, these
mutations seem to promote Ras-ERK hyperactivity impairing learning abilities [2, 104, 117],
though the mechanisms remain currently unknown. Of note, mutations in transducers up-
stream of Ras appear to correlate less frequently with severe cognitive impairments compared
to mutations in downstream components of the pathway [117].

Overexpression of the constitutively active Rafl in primary cortical neuron cultures re-
sults in a gain of function of ERK signaling. Ras-ERK hyperactivation interferes with den-
dritic spine morphogenesis and maturation in vitro. Particularly, it dramatically decreases
the total number of dendritic spines, as well as the number of the mature mushroom-type
spines [125]. Although I cannot rule out the contribution of small Ras GTPases in the
regulation of spine morphogenesis pathways, local protein synthesis profoundly determines
spine morphology and remodeling, as previously reviewed [68, 113]. Thus, it is tempting
to hypothesize that the aberrant ERK signaling and the subsequent local translation dys-
regulation may account for the spine defects in these neurons. In support of it, impaired
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translational regulation results in immature spines in FXS [7]. Future work should address
how NS-associated mutations, particularly in RafI, potentially disturb local translation rate
and synthesis of specific proteins crucial for spine dynamics. In addition, spine morphol-
ogy defines synapse function [110]; hence, it would be of interest to examine how the spine
defects noted in neurons overexpressing the constitutively active Rafl impact synapse plas-
ticity. Such an approach will clarify molecular mechanisms underlying syndrome’s cognitive
and psychiatric profile and further provide mechanistic links to autism spectrum.

3.2 More genetic hints for the involvement of the ERK pathway in autism

MAPKS3. Comparative genomic hybridization studies have correlated rare copy number
variants (deletion and duplication) of a ~ 598 kb region on the chromosome 16p.11.2 with
an increased ASD risk [66, 107, 123]. Patients with 16p.11.2 copy number variants exhibit
developmental delay in language, intellectual disability, and core autistic traits [107]. Dele-
tion of this region, though, is more penetrant for ASD than the duplication, while it further
correlates with macrocephaly [40, 107]. Macrocephaly describes an abnormally large head
size which results from an excessive brain growth in early infancy and occurs with high in-
cidence in ASDs [19]. Interestingly, this locus encompasses the MAPK3 gene which encodes
the ERK1 kinase [40, 107, 123]. ERK1 homozygous KO mice (ERK1~/~) manifest enhanced
stratium-dependent long-term memory which correlates with LTP facilitation in nucleus ac-
cumbens [79]. At a cellular level, ERK1 ablation results in the enhancement of the ERK2
activity which, in turn, accounts for the plasticity and cognitive phenotypes in ERK1~/~
mice [79]. In normal conditions, ERK1 functions as “a built-in partial agonist” to tightly
regulate ERK2 activation [48]. However, in the ERK1 absence, enhanced interaction of the
ERK2 isoform with its upstream activator MEK derepresses its activity [79]. In contrast,
ERK2~/~ mice were not viable; they died at embryonic state. Nevertheless, mice carrying
a mutation that causes partial loss of ERK2 (~ 20 — 40%) were viable and grew normally.
ERK2~/~ mice manifest hippocampus-dependent spatial learning impairments and associa-
tive long-term memory deficits while no compensatory increase in the ERK1 activity has
been detected in their hippocampus and cerebellum [101]. Collectively, these findings indi-
cate a prominent role of the ERK2 in synapse plasticity and cognitive function. Nonetheless,
data from ERK1~/~ seems further to establish a causal link between the ERK1-dependent
regulation of ERK2 and LTP changes, suggesting that the balanced activity of ERK isoforms
is necessary for synapse plasticity underlying memory at least in some brain areas [79]. Con-
sistent to these findings, loss of one copy of ERK1 due to 16p.11.2. deletion results in the
ERK2 enhancement. Hence, future studies should address the downstream effects of this
increased ERK?2 activity and its relative link to ASD phenotypes.

HRAS. A recent high-throughput screening study has correlated single nucleotide vari-
ants in HRAS gene with idiopathic ASD [55]. Gain-of-function HRAS mutations underlie
Costello syndrome (CS) which is a rare monogenic disorder characterized by delayed physical
growth, cognitive impairments, facial dysmorphism, cardiac defects, and autistic-like behav-
iors [2, 117]. In vivo studies indicate that gain-of-function HRAS mutations may result in
ERK hyperactvity which, in turn, may underlie neurobehavioral and cognitive phenotypes
in CS. However, the precise molecular alterations and mechanisms remain elusive [121]. Of
note, it is also currently unknown how the HRAS variants identified in ASD impact protein
function [55]. Nevertheless, these findings together suggest that rare genetic variations in
the Ras-ERK pathway may increase risk for idiopathic ASD.

SynGAP1. Human genetic screening studies in ASD and sporadic (non-syndromic) intel-
lectual disability have recently identified de novo copy number variants (deletion) and a pre-
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mature “stop” codon sequence in SynGAP1 [38, 93]. These mutations truncate the encoding
protein and abolish functional domains [38]. SynGAP1 encodes the synaptic GAP protein
(SynGAP) which promotes GTP hydrolysis and negatively regulates Ras enzymatic activ-
ity [63]. This protein is brain specific and highly enriched at the excitatory synapses [15, 58].
There, it binds to the PDZ domains of PSD-95 and SAP102 proteins — components of the
NMDAR complex [58], and regulates signal transduction pathways underlying AMPAR traf-
ficking during NMDAR-mediated plasticity [59, 65, 98].

SynGAP1 haploinsufficiency selectively defects hippocampal LTP [57, 63] and results
in cognitive impairments and social deviant behavior [37] in vivo. Particularly, heterozy-
gous KO mice of SynGAP1 (SynGAPJr/ ~) display persistent hyperactivity, startle hyper-
responsiveness, sensimotor gating deficits, impaired spatial learning and memory encod-
ing, propensity to social isolation, and short-term social memory impairments [37]. In
SynGAP*/~ hippocampus, enhanced basal ERK activity occurs [63]. However, it remains
controversial whether the aberrant ERK signaling underlies LTP deficits in these mice. Sub-
sequent work implicates pssMAPK signaling, in addition to ERK [98]. Better understanding
of NMDAR-SynGAP downstream signaling will provide mechanistic insights into sporadic
and ASD-linked intellectual disability. Intriguingly, genetic studies have shown that encoded
SynGAP1 mRNA is another FMRP target [22] while gene mutations possibly converge into
the mGluR~ERK signaling which controls translation in idiopathic autism [55]. Current liter-
ature solely provides evidence on its role in NMDAR-mediated plasticity, as discussed above.
Thus, an unresolved question is whether and how SynGAP truncations impact synapse de-
pression and local protein synthesis.
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4 ERK and mTORC1 may regulate the translation of sepa-
rate pools of mRNAs in dendrites

Despite the identification of mutations within the ERK pathway and recent progress in our
understanding of local translation regulation mechanisms, major gaps in our knowledge re-
main about how the dysfunction of this pathway interferes with activity-dependent protein
synthesis to disturb synapse plasticity and, in turn, to result in autistic manifestations. The
paradigm of FXS has been illuminating in how pathogenic excessive protein synthesis and
altered synaptic signaling defect synapse pathophysiology which subsequently contributes to
ASD pathogenesis. Nevertheless, disentangling ERK and mTORCI contribution in mGluR-
dependent protein synthesis has not been clear. Tuberous sclerosis (TS) is another main
syndromic ASD of which pathogenic mechanism involves activity-modulated mRNA transla-
tion [26]. TS is a monogenic disorder characterized by widespread growth of benign tumors
in multiple systems, high penetrance of ASD and intellectual disability. It arises from auto-
somal dominant loss-of-function mutations of T'sc! and T'sc2 genes which encode hamartin
(TSC1) and tuberin (TSC2), respectively [26, 128]. TSC1 and TSC2 form a complex that
functions as signaling node to modulate mTOR, activation which acts as a positive regulator
of local protein synthesis in neurons [18], as discussed earlier. Deficiency of either TSC1
or TSC2 results in learning impairments and synaptic plasticity defects lying downstream
of excessive mTORCI1 signaling in vivo [4]. These findings motivate us to explore whether
TSC-linked synapsopathy will provide further insights into ERK involvement in ASD.

In the CA1 area of hippocampus of mice carrying heterozygous inactivating mutations
of Tscl (Tsc1t/=) or Tsc2 (Tsc2t/7), excessive mTORCI activation, but not ERK, im-
pairs basal protein synthesis resulting in deficient mGluR-LTD [4, 8]. These findings suggest
that aberrant mTORCI signaling suppresses the translation of mRNAs required for LTD.
Indeed, immunoblotting along with metabolic labeling has revealed decreased Arc synthesis
in Tsc2t/~ hippocampus [4]. A possible interpretation of these biochemical and synap-
tic defects is that mGluR stimulation triggers activation of S6K1 activation downstream of
mTORCI signaling. Subsequently, S6K1 phosphorylates FMRP which, in turn, associates
with stalled ribosomes and represses the translation of its mRNA targets [82, 7]. However,
this explanation is inconsistent with the observation that genetic cross of Tsc2%/~ and Fmr1
KO normalizes LTD to wild type (WT) magnitude and rescues cognitive impairments in vivo.
Furthermore, in (Tsc21/~) mice, allosteric augmentation of mGluR signaling restored bio-
chemical and synaptic defects, and rescued behavioral and cognitive deficits [4]. Collectively,
these findings indicate that FXS and TS show mirror symmetrical alterations in activity-
dependent protein synthesis underlying synapse depression and have beneficial responses to
treatments that modulate mGIluR5 in opposite directions [4]. Considering the ERK involve-
ment in FXS, but not in TS, along with the above findings, Bhakar et al. have hypothesized
that ERK and FMRP favor the translation of a subset of mRNAs that belong to the same
pool (termed as Pool I). A second pool (Pool II) regulated by mTORC1 competes with the
Pool I for access to the local protein synthesis machinery (Figure 4) [10] (for the origin of
this hypothesis, see also; [9]).

Consistent to this hypothesis, insights into local protein synthesis regulation (discussed
on section 2) reveal that translation inhibition of bulk of mRNAs facilitates the synthesis
of specific proteins, including FMRP targets crucial for synapse depression. A case in point
is the translation regulation at the elongation phase. mGluR stimulation triggers eEF2K
activity which phosphorylates the elongation factor eEF2 and, in turn, promotes the trans-
lation of Pool I mRNAs (including MAP1B and Arc) [87]. Conversely, S6K kinase activation
downstream of mTORCI1 signaling phosphorylates eEF2K to hamper its activity [18, 95]
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Figure 4: “Two-pool hypothesis”. Figure has been adapted and reprinted by Bhakar et al. [10].
FXS and TS mirror each other in mGluR5-stimulated protein synthesis underlying synapse depres-
sion [4]. These opposing responses propose that mGlub stimulation triggers the translation of a
subset of mRNAs (Pool I) in an ERK- and FMRP-dependent way. Pool II regulated by mTORC1
competes with Pool T for acccess in the translation machinery. Current evidence suggests that Pool
I comprises mRNAs crucial for LTD establishment (LTD proteins) whereas Pool 1T includes mRNAs
crucial for LTP establishment (LTP proteins) [10]. See text for rationale behind that model. Abbre-
viations: ERK — extracellular signal-regulated kinase; FMRP — fragile X mental retardation proten;
FXS - fragile X syndrome; LTP — long-term potentiation; LTD — long-term depression; mGluR —
metabotropic glutamate receptor; mMTORC1 — mammalian target of rapamycin-raptor complex; TS
— tuberous sclerosis; TSC — tuberous sclerosis complex.

which, in turn, inhibits Pool I and stimulates Pool II [10]. Furthermore, it is interesting to
consider that translation regulation of the FMRP targets, MAP1B and Arc, may also occur
at initiation phase in an ERK-dependent way. Specifically, an experimental model suggests
that mGIluR5 stimulation induces Mnk1 activation via ERK cascade. Mnk1 phosphorylates
elF4E and inhibits general translation [18, 34]. Nevertheless, this potentiates the release
of a non-canonical elF4E binding protein, namely, cytoplasmic FMRP interacting protein 1
(CYFIP1, also termed as Sra-1). In the brain, CYFIP1 forms a complex with FMRP which
binds to elF4E at 3’ end and to poly-A-binding tail at 5’end of Arc and MAP1B mRNAs to
repress their translation (eIF4E-CYFIP1-FMRP). Upon mGluR5 stimulation, CYFIP1 dis-
sociation facilitates e[F4E-eIF4G interaction and thus translation of these mRNAs (Pool I) at
synapses [7, 81]. However, whether and how mTORC]1 can compete this potent mechanism
remains elusive.

A key question arising refers to the identity of Pool II. Recently, Ehninger et al. reported
that excessive mTOR activity results in abnormal persistence of hippocampal L-LTP dis-
rupting cognition and behavior in T'sc2t/~ mice. Interestingly, pharmacological treatment of
Tsc2t/~ mice with Lovastatin did not rescue synaptic and cognitive defects [27]. Conversely,
the same treatment restores excessive protein synthesis and normalizes mGIuR5-LTD to WT
magnitude in Fmr! KO mice [85]. Lovastatin is an inhibitor of 3-hydroxy-3methylglutaryl-
coenzyme A reductase (HMG-CoA reductase) used in treatment of hypercholesterolemia
both in children and adults [24]. It can interferes with Ras-GTPase activity and inhibits
downstream activation of ERK cascade [62]. Collectively, these findings along with deficient
LTD in Tsc2t/~ mice suggest that mTORC1-regulated Pool IT may include mRNAs crucial
for LTP. In contrast, Pool I potentially constitutes mRNAs crucial for LTD regulated by
ERK, FMRP and mGIluR signaling (Figure 4). Thus, we can hypothesize that derepression
of Pool I results in exaggerated LTD in FXS while derepression leads to enhanced LTP in
TS [10].

Such a simplified model could be particular useful for gaining insights into the ele-
ments and mechanisms of specific forms of plasticity. For example, proteomic comparison of
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Tsc2t/~ and Fmrl KO hippocampus may identify the elusive dendritic transcripts impli-
cated in LTP and LTD. Nevertheless, gaps in our knowledge of synaptic signaling currently
poses limitations in validation of this model. Particularly, many of the ERK components
mutated in autism are FMRP targets and, thereby, potentially overlap into Pool I pathway.
However, loss-of-function mutations in NfI result in LTP impairments [17, 72]. Neurofi-
bromin can also modulate PI(3)K - mTORC1 signaling [106]. Thus, it would be of inter-
est to clarify whether NF1-linked synaptic defects reflect aberrant mTORCI1 signaling and
thereby repression of Pool II. Furthermore, a recent study has reported that pharmacologi-
cal inhibition of mMTORC1 stimulates translation of the mRNA encoding the Kv4.2 subunit
of voltage-gated KT channel — an FMRP-regulated dendritic transcript crucial for synapse
plasticity — and thus potentially derepresses Pool I. However, this occurs via dephosphoryla-
tion of FMRP in response to NMDAR stimulation [70]. Another study has implicated ERK
dysfunction in hippocampal plasticity defects and epileptogenic activity of adult Tsc2" /=
mice [94]. Noteworthy is that a hallmark feature of TS is the growth of benign tumors in the
brain. Severity of seizure disorder, which affects up to 90% of TS cases, occurs in function
of tumor growth rate and extent in cerebral cortex [67] and rather correlates to synapse dys-
function signaling underlying autistic manifestations [27]. Altogether, these findings point
out the intricacy of intracellular signaling at synapses. Future studies should clarify how
activity couples to mTORC1 and ERK signaling, though clarity requires consistency in type
of synapses selected, animal age, and in sample preparation procedures.
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5 Possible Convergence of other ASDs into the “two-pool hy-
pothesis” and translation regulation

Notwithstanding the caveats, the model discussed previously could be particularly useful
for identifying possible convergent points with other ASDs. Angelman’s syndrome (AS) is a
neurodevelopmental disorder characterized by intellectual disability, severe language deficits,
motor incoordination, seizures, and high prevalence of autism. It primarily arises from
maternal deletions of the chromosome region 15q11-13 which encompasses Ub3A gene. The
latter encodes the ubiquitin E3 ligase protein (UB3A) which mediates protein ubiquitination
and degradation [26, 128]. Arc protein is an identified substrate of UB3A [36], suggesting
a convergent point among AS, FXS, and TS in ASD etiology [26, 54, 128]. Interestingly,
UB3A deficiency increases Arc expression levels and decreases AMPAR cell-surface content,
impairing glutamatergic transmission in vivo [36]. This finding suggests that aberrant ERK-
mGluR signaling may contribute to ASD phenotype in AS, though current literature provides
evidence solely for impairments in NMDAR-stimulated plasticity forms [100, 126]. Thus,
it would be of interest to examine whether UB3A loss alters ERK activity downstream of
mGluR5 stimulation and whether inhibitors of this signaling pathway can correct phenotypes
in AS animal models.

The synaptic proteins neuroligin 3 (NLGN3) and neurexin 1 (NRXN1) are FMRP tar-
gets [22]. NLGNs and NRXNs are cell adhesion molecules at the post- and pre-synaptic
compartment, respectively, where they mediate the trans-synaptic interaction upon neu-
ronal activity. Multiple mutations in these molecules account for rare cases of idiopathic
autism [26, 128]. Notably, recent evidence suggests that NLGNs and NRXNs regulate the
balance between excitatory and inhibitory neurotransmission and thus activity-dependent
synapse specificity and maturation [16, 28, 46]. Knock-in mice expressing an ASD-linked
missense mutation in NGLN3 display exicitation-to-inhibition (E/I) imbalances with the
inhibition favored [115]. Similarly, an ASD-linked deletion of NRXNla selectively impairs
miniature excitatory postsynaptic current (EPSC) frequency and evoked postsynaptic poten-
tial decreasing E/I balance in vivo [28]. Aberrant protein synthesis could similarly disrupt
E/I ratio by altering net strengthening or weakening of excitatory relative to inhibitory
synapses [54]. Indeed, excessive protein synthesis in FXS engenders a shift in E/I ratio to-
wards the hyperexcitation in CA1 hippocampal area and cortex, as previously reviewed [31].
In addition, enhanced activity of the initiation factor elF4E perturbs E/I balance in hip-
pocampus and gives rise to the development of ASD behavioral phenotype in vivo [33].
Specifically, mice with the gene for 4E-BP2 protein knocked out (Eifjebp2 KO mice) exhibit
social interaction deficits and repetitive self-grooming behavior while they bury significantly
more marbles than WT littermates. Of note, marble burying test evaluates repetitive behav-
iors that can become compulsive in mice while pharmacological inhibition of eIF4E rescues
autistic-like behavioral phenotypes noted in Eif/ebp2 KO mice [33]. Interestingly, Fifjebp2
KO hippocampus displays enhanced translation rate and protein levels of NGLNs (including
NGLN3) whereas mRNA levels are similar to WT, thus ruling out transcription effects. In-
creased E/I ratio accompanies aberrant NGLNs protein synthesis while increase mTORC1
activation seems to underlie the synaptic defects and behavioral phenotypes in Eif4ebp2 KO
mice [33]. Collectively, these findings establish a causal link between mTORC1-dependent
translation regulation of NGLNs and neural network performance in ASD pathogenesis. Al-
though the mechanisms through which mutations in NGLNs and NRXNs disturb E/I balance
and result in ASD remain currently unknown, it would be of interest to address how these
mutations and the subsequent perturbed synaptic transmission impact mTOCI1 activity, local
translation protein synthesis, and plasticity at the postsynaptic compartment.
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Phelan-McDermid syndrome (PMS) is a rare, chromosome microdeletion syndrome char-
acterized by severe neonatal hypotonia (i.e., poor muscle tone), intellectual disability, global
developmental delay, severely delayed or absent speech, seizures, aggressive behavior, and
high prevalence of autism. It arises from a microdeletion of the chromosome 22q13 which en-
compasses SHANKS gene encoding the SH3 and ankyrin domain-containing protein (Shank3)
[90, 91]. Human genetic screening studies have additionally identified protein-truncating mu-
tations and deletions in SHANKS3 in ASD and sporadic intellectual disability (for review of
these studies, see; [128]). Altogether, these findings suggest that Shank3 deficits trigger
major neurobehavioral and autism-spectrum related phenotypes. Shank3 is a multi-domain
protein highly enriched in the PSD of the excitatory synapses. There, it functions as a
core scaffold element that regulates the organization and stability of postsynaptic signaling
complexes and further links PSD to the actin cytoskeleton [88, 128]. Interestingly, Shank3
knockdown selectively impairs LTD elicited by mGluR5 stimulation and ERK1/2 activa-
tion in hippocampal neuron cultures [119]. Although it is tempting to speculate that the
reduced mGluR-ERK signaling and the subsequent repression of mRNAs crucial for LTD
may underlie the plasticity defects noted post suppression of Shank3 expression, allosteric
augmentation of mGluR signaling reverses the deficits in LTD and ERK activation in these
neurons — a finding that reminds data from Tsc2t/~ mice (discussed on section 4, pp.15).
In addition, the proline-rich domain of Shank3 interacts with Homer [128] which forms the
central component in coupling mGlub to the downstream PI3K - mTORCI signaling (Fig-
ure 3) [74]. Specifically, upon mGluR5 stimulation, Homer recruits and binds to the GTPase
protein PI3K-enhancer (PIKE) which, in turn, activates PI3K [74]. PI3K is the principal ef-
fector of the mTORCI1 signaling cascade [18, 54]. Protein levels of Homer remain unchanged
in synaptosomes isolated from neurons knocked down for Shank3. This finding raises ques-
tions about the activity and potent contribution of the mTORCI in LTD defects in these
neurons. Thus, a better understanding of the downstream effects of Shank3 suppression
in mGluR signaling will clarify these points. Conversely, heterozygous Shank3 KO mice
(SHANKST / ~) display impairments in basal synaptic transmission, LTP deficits, and un-
changed paired-pulse low-frequency mGLuR-dependent LTD in CA1 hippocampal area [11].
Differences in sample preparation techniques (hippocampal neuron cultures vs. hippocam-
pal slices), mGluR-LTD induction stimuli (pharmacological vs. paired-pulse low-frequency
stimulation), and in Shank3 expression (suppression of Shank3 expression by 70 — 80% in
knockdown neurons vs. by 50% in SHANKST/~ KO mice) may account for the inconsis-
tent findings between these two studies. Notwithstanding the caveats, these findings along
with the requirement of both LTP and LTD for local protein synthesis suggest a causal
link among Shank3 deficits, translation control, and synapse function in ASD etiology which
requires further exploration.
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6 Concluding remarks

Interest in translation has burgeoned the recent years. It is now appreciated that regulation of
protein synthesis is crucial mechanism for synapse plasticity underlying learning and memory
in the brain [18]. ERK pathway has emerged as key regulator of local translation while
mutations in its elements give rise to synapse defects and cognitive impairments linked to
autism. Furthermore, the paradigms of FXS and TS provide interesting insights into the ERK
involvement in ASD etiology. Current evidence suggests that ERK signaling forms the critical
pathway through which mGlu5 stimulates mRNA translation required for LTD [10, 56].
A future task is to validate this point; a promising approach is to address whether and
how the mutations within ERK impact local translation generally and synthesis of specific
proteins. Additionally, FXS and T'S mirror each other [4] suggesting that ERK and mTORC1
regulate different subsets of mRNAs for distinct form of plasticity [9, 10]. Although future
studies should address and validate this model, an important implication of it could refer
to treatment strategy design. Instead of seeking for one pharmacological target, it would be
more beneficial to understand first where a patient lies on the spectrum of synaptic function
and signal transduction pathway, and then devise an appropriate therapy for ASD and other
related psychiatric disorders.
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