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Preface

This is my thesis for the conclusion of my master program Computing Science at the Utrecht
University. During my two years of study I have specialized in algorithm design and complexity.
At the very start of my master phase I have attended the course Algorithms & Networks
thaught by Hans Bodlaender. This course further ignited a pre-existing interest in algorithms
and complexity resulting from my bachelor program studies.

At the start of this year I have completed an Experimentation Project as part of the master
track under supervision of Hans Bodlaender and with support by Jesper Nederlof. In this
project I have performed an experimental evaluation of a recent result in which the powerful
notion of representative sets is used to speed up dynamic programming algorithms. The results
of this evaluation where very positive and we have submitted a paper to the 8th International
Symposium on Parameterized and Exact Computation (IPEC 2013) which I was also fortunate
enough to attend.

This thesis is the result of further study into the implementation of dynamic programming
algorithms using representative sets. The first contribution is the result of a successful effort
to improve a computational step that was observed to be expensive in practice during the
aforementioned evaluation. This first part of the thesis is presented in an extended version of
the IPEC 2013 paper in which the algorithms described in the previous version of the paper
are discussed in some more detail and the new improvement is described and evaluated. In
the second part of this thesis a method is discussed that is alternative to the usual bottom-up
calculation of tables in dynamic programming algorithms.

The past year in which I have worked on the experimentation project and master thesis has
been exhilarating and I would like to thank both Hans and Jesper for their unyielding support.
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Abstract

In the rank based approach introduced by Bodlaender et al. [5] the notion of representative
sets is applied to dynamic programming algorithms for connectivity problems parameterized by
treewidth. In this approach the tables in which partial solutions are stored are intermittently
reduced in size. This results in a speed-up of these algorithms yielding running times single
exponential in treewidth. We build this thesis upon earlier work, given an experimental study
of these algorithms. In particular, in [13], we compared the performance of a classic dynamic
programming algorithm for Steiner Tree with the performance of its counterpart in which
the rank-based approach is applied.

The first contribution of the thesis is an alternative representation of the partial solutions
generated during the dynamic programming, with which we can eliminate a computational step
of the reductions that is expensive in practice. We discuss the adaption of operators introduced
in the framework by Bodlaender et al. in order to apply them to this new representation. This
allows us to use the new representation for any of the connectivity problems for which a dynamic
programming algorithm can be described using these operators. In an experimental evaluation
for Steiner Tree we find that this representation yields very positive results.

The second contribution of the thesis is an algorithm which calculates partial solutions in
order of optimality instead of calculating entire tables at a time. We do this in order to avoid
calculating partial solutions that do not contribute to the optimal solution of the full problem.
We give a detailed description of this algorithm for Steiner Tree and perform an experimental
evaluation. We find some mixed results, where the algorithm performs well in a few instances
and badly in others.
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Introduction
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1.1 Contributions of this Thesis

In computational complexity theory it is assumed that a polynomial time algorithm with which
we can solve a problem that is classified as NP-hard can not be found. One way to deal with
some of these problems is the study of fixed parameter tractable algorithms. Such an algorithm
spends time exponential in the size of a fixed, preferably small, parameter of the input and
polynomial in the size of the input.

For problems on graphs, treewidth can be a very useful parameter. The treewidth of a
graph measures how much it resembles a tree. This parameter is typically used in dynamic
programming algorithms in which the input graph is first transformed into a tree decomposition.
These algorithms then calculate tables of partial solution for each node in the decomposion in
a bottom-up fashion. The partial solutions in a table represent the choices that where made
in the subgraph induced by the decendents of a node. Ultimately, a full solution for the graph
problem can be found in the table calculated at the root of the tree decomposition.

For many local graph problems, e.g. Vertex Cover, Dominating Set, exact deter-
ministic algorithms running in single exponential time in treewidth are known. However, such
algorithms have only recently been found for connectivity problems, e.g. Steiner Tree, Trav-
eling Salesman by Bodlaender et al. [5]. The rank based approach described in their paper
applies the notion of representative sets in order to intermittently reduce the size of tables
calculated during dynamic programming.

In an experimental evaluation [13] we compared the performance of the classic dynamic
programming algorithm for Steiner Tree on tree decompositions to its counterpart in which
the rank based approach is applied to reduce the size of tables. During this evaluation we found
that the rank based approach works very well in practice, giving significant speed-ups even for
instances of relatively small treewidth. Building upon this earlier work, we further explore the
implementation of dynamic programming algorithms with representative sets.

The first contribution of this thesis is the direct result of an unanticipated observation
during the aforementioned experiments. In the reduction steps of the rank based approach a
special matrix is used in which rows correspond to partial solutions. A representative table of
partial solutions is found by finding a basis of minimum weight in this matrix using Gaussian
elimination. While the asymptotic worst case running time of the Gaussian elimination step is
the bottleneck of the reduction step in theory, we have observed that in practice a significant
portion of the time is spent calculating the entries of these special matrices. Inspired by this
observation, we have designed a version of the algorithms in which we identify partial solutions
directly by their row elements of its matrix. This new representation of partial solutions in
which we use weighted bit strings allows us to calculate the matrices for parent nodes directly
from rows in matrices obtained from child nodes. We show that we can use this representation
for any of the connectivity problems that may defined using the framework presented in [5].
We then perform an experimental evaluation in which the performance of algorithms using the
original and new representation are compared.

The second contribution of this thesis is an algorithm which evaluates partial solutions
computed during straightforward dynamic programming in order of optimality. We do this in
order to avoid calculating partial solutions that do not contribute to the optimal solution of the
full problem. Instead of calcuting tables in a bottom-up fashion we allow each node in the tree
decomposition to request partial solutions from its children in order of optimality. It can then
use these to calculate partial solutions for its parent. Once a solution is found at the root node
we can terminate the algorithm since this solution is optimal. We give a detailed description
for Steiner Tree and provide an experimental evaluation.
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1.2 Thesis Overview

The results of the experimental evaluation peformed in [13] where to submitted in a paper to
the 8th International Symposium on Parameterized and Exact Computation (IPEC 2013). This
paper was co-authored by Hans L. Bodlander and Jesper Nederlof. The first contribution of the
thesis is presented in an extended version of this paper which we will submit to the special issue
of Algorithmica dedicated to IPEC 2013. We give an introduction to the rank based approach
and provide a detailed description of the weighted bit string representation of partial solutions.
We then provide implementation details and show results of the experimental evaluation. The
contents of this extended paper are presented in Chapter 2.

We present the second contribution of the thesis in Chapter 3. We show a detailed description
of the algorithm for Steiner Tree in which partial solutions are calculated in ascending order
of weight. We then provide some pointers for the implementation and discuss results of the
experimental evaluation for this algorithm.
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Chapter 2

Speeding Up Dynamic Programming
with Representative Sets
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2.1 Introduction

The notion of treewidth provides us with a method of solving many NP-hard problems by
means of dynamic programming algorithms on tree decompositions of graphs, resulting in al-
gorithmic solutions which are fixed-parameter tractable in the treewidth of the input graph.
For many problems, this gives algorithms that are linear in the number of vertices n, but at
least exponential in the width of the tree decomposition on which the dynamic programming
algorithm is executed. The dependency of the running time on the width of the tree decompo-
sition has been a point of several investigations. For many problems, algorithms were known
whose running time is single exponential on the width, see e.g., [25]. A recent breakthrough was
obtained by Cygan et al. [11] who showed for several connectivity problems, including Hamil-
tonian Circuit, Steiner Tree, Connected Dominating Set (and many other problems)
that these can be solved in time, single exponential in the width, but at the cost of introducing
randomization and an additional factor in the running time that is polynomial in n. Very re-
cently, Bodlaender et al. [5] introduced a new technique (termed the rank based approach) that
allows algorithms for connectivity problems that are (i) deterministic, (ii) can handle weighted
vertices, and (iii) have a running time of the type O(ckn) for graphs with a given tree decom-
position of width k and n vertices, i.e., the running time is single exponential in the width, and
linear in the number of vertices.

The main ideas of the rank based approach are the following. (Many details are abstracted
away in the discussion below. See [5] for more details.) Suppose we store during dynamic
programming a table T with each entry giving the characteristic of a partial solution. If we
have an entry s in T , such that for each extension t of s to a ‘full solution’, s · t, there is an
other entry s′ 6= s in T , that can be extended in the same way to a full solution s′ · t, and
solution s′ · t has a value that is as least as good as the value of s · t, then s is not needed for
obtaining an optimal solution, and we can delete s from T . This idea leads to the notion of
representativity, pioneered by Monien in 1985 [23]. Consider the matrix M with rows indexed
by partial solutions, and columns indexed by manners to extend partial solutions, with a 1 if the
combination gives a full solution, and a 0 otherwise. A table T corresponds to a set of rows in M ,
with a value associated to each row. (E.g., for the Steiner Tree problem, a row corresponds to
the characteristic of a forest in a subgraph, and the value is the sum of the edges in the forest.)
It is not hard to see that a maximal subset of linear independent rows of minimal cost (in case
of minimization problems, and of maximal value in case of maximization problems) forms a
representative set. Now, if we have an explicit basis of M (the characteristics of the columns
in a maximal set of independent columns in T ) and M has ‘small’ rank, then we can find a
‘small’ representative set efficiently, just by performing Gaussian elimination on a submatrix of
M . Now, for many connectivity problems, including Steiner Tree, Feedback Vertex Set,
Long Path, Hamiltonian Circuit, Connected Dominating Set, the rank of this matrix
M when solving these problems on a tree decomposition is single exponential in the width of the
current bag. This leads to the improved dynamic programming algorithm: interleave the steps
of the existing DP algorithm with computing representative sets by computing the submatrix
of M and then carrying out Gaussian elimination on this submatrix.

The notion of representative sets was pioneered by Monien in 1985 [23]. Using the well
known two families theorem by Lovász [21], it is possible to obtain efficient FPT algorithms
for several other problems [22, 14]. Cygan et al. [10] give an improved bound on the rank as
a function of the width of the tree decomposition for problems on finding cycles and paths in
graphs of small treewidth, including TSP, Hamiltonian Circuit, Long Path.

In this paper, we perform an experimental evaluation of the rank based approach, targeted
at the Steiner Tree problem, i.e., we discuss an implementation of the algorithm, described
by Bodlaender et al. [5] for the Steiner Tree problem and its performance. We test the
algorithm on a number of graphs from a benchmark for Steiner Tree, and some randomly
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generated graphs. The results of our experiments are very positive: the new algorithm is
considerably faster compared to the classic dynamic programming algorithm, i.e., the time that
is needed to reduce the tables with help of Gaussian elimination is significantly smaller than
the gain in time caused by the fact that tables are much smaller. Furthermore, we propose
an alternative representation for partial solutions using weighted bit strings. This allows us to
avoid a computational step in the table reductions that is expensive in practice. Again, the
experimental evaluation of this bit string representation shows very positive results.

The Steiner Tree problem (of which Minimum Spanning Tree is a special case) is
a classic NP-hard problem which was one of Karp’s original 21 NP-complete problems [17].
Extensive overviews on this problem and algorithms for it can be found in [16, 30]. Applications
of Steiner Tree include electronic design automation, very large scale integration (VSLI) of
circuits and wire routing. In this paper we consider the weighted variant, i.e., edges have a
weight, and we want to find a Steiner tree of minimum weight. It is well known that Steiner
Tree can be solved in linear time for graphs of bounded treewidth. In 1983, Wald and Colbourn
[27] showed this for graphs of treewidth two. For larger fixed values of k, polynomial time
algorithms are obtained as consequence of a general characterization by Bodlaender [4] and
linear time algorithms are obtained as consequence of extensions of Courcelles theorem, by
Arnborg et al. [2] and Borie et al. [7]. In 1990, Korach and Solel [20] gave an explicit linear
time algorithm for Steiner Tree on graphs of bounded treewidth. Inspection shows that the
running time of this algorithm is O(2O(k log k)n); k denotes the width of the tree decomposition.
We call this algorithm the classic algorithm. Recently, Chimani et al. [8] gave an improved
algorithm for Steiner Tree on tree decompositions that uses O(B2

k+1 · k · n) time, where
the Bell number Bi denotes the number of partitions of an i element set. Our description of
the classic algorithm departs somewhat from the description in Korach and Solel [20], but the
underlying technique is essentially the same. We have chosen not to use the coloring schemes
from Chimani et al. [8], but instead use hash tables to store information. While the coloring
schemes give a better worst case running time, we also spend time with these on ‘non-existing
table entries’, and thus we expect faster computations when using hash tables. Wei-Kleiner
[29] gives a tree decomposition based algorithm for Steiner tree, that particularly aims at
instances with a small set of Steiner vertices.

In this paper, we compare five different algorithms:

• The classic dynamic programming algorithm (CDP), see the discussion above. On a nice
tree decomposition, we build for each node i a table. Tables map partitions of subsets
of Xi to values, characterizing the minimum weight of a ‘partial solution’ that has this
partition of a subset as ‘fingerprint’.

• RBA: To the classic dynamic programming algorithm, we add a step where we apply
the reduce algorithm from [5]. With help of Gaussian elimination on a specific matrix
(with rows corresponding to entries in the DP table, columns corresponding to a ‘basis
of the fingerprints of ways of extending partial solutions to Steiner trees’, and values 1,
if the extension of the column applied to the entry of the row gives a Steiner tree and 0
otherwise), we delete some entries from the table. It can be shown that deleted entries
are not needed to obtain an optimal solution, i.e., the step does not affect optimality of
the solution. This elimination step is performed each time after the DP algorithm has
computed a table for a node of the nice tree decomposition.

• RBC: Similar to RBA, but now the elimination step is only performed for ‘large’ tables,
i.e., tables where the theory tells us that we will delete at least one entry when we perform
the elimination step.

• BSA: Similar to RBA, but here we use a weighted bit string representation for partial
solutions. These bit strings directly represent the rows of the matrix on which Gaussian
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elimination is applied during the reduction step. The entries in this matrix are thus
acquired implicitly during the building of tables in the dynamic programming algorithm.

• BSC: Similar to BSA, but again the elimination step is only performed for ’large’ tables.

Our software is publicly available, can be used under a GNU Lesser General Public Licence,
and can be downloaded at:
http://www.staff.science.uu.nl/∼bodla101/java/steiner.zip

This paper is organized as follows. Some preliminary definitions are given in Section 2.2.
In Section 2.3, we briefly describe both the classic dynamic programming algorithm for Steiner
Tree on nice tree decompositions, as well as the improvement with the rank based approach
as presented in [5]. We then show how the operators used to define dynamic programming
formulations in [5] can be applied to sets of weighted bit strings as opposed to sets of weighted
partitions. In Section 2.4, we describe the setup of our experiments, and in Section 2.5, we
discuss the results of the experiments. Some final conclusions are given in Section 2.6.

2.2 Preliminaries

We use standard graph theory notation and quite some additional notation from [5]. For a
subset of edges X ⊆ E of an undirected graph G = (V,E), we let G[X] denote the subgraph
induced by edges and endpoints of X, i.e. G[X] = (V (X), X).

For two partitions p and q of a set W , we say that p is a coarsening of q (or, q is a refinement
of p) if every block of q is contained in a block of p, and we let pu q denote the finest partition
that is a coarsening of p and of q. (In graph terms: take an edge between v ∈W and w ∈W iff
v 6= w and v and w belong to the same block in p or to the same block in q. Now, the classes
of p u q are the connected components of this graph.)

The Steiner Tree problem can be defined as follows.

Steiner Tree
Input: A graph G = (V,E), weight function ω : E → N \ {0}, a terminal set K ⊆ V and a nice
tree decomposition T of G of width tw.
Question: The minimum of ω(X) over all subsets X ⊆ E of G such that G[X] is connected
and K ⊆ V (G[X]).

Definition 1 (Tree decomposition, [24]). A tree decomposition of a graph G is a tree T in which
each node x has an assigned set of vertices Bx ⊆ V (called a bag) such that

⋃
x∈TBx = V with

the following properties:

• for any e = (u, v) ∈ E, there exists an x ∈ T such that u, v ∈ Bx.

• if v ∈ Bx and v ∈ By, then v ∈ Bz for all z on the (unique) path from x to y in T.

The treewidth tw(T) of a tree decomposition T is the size of the largest bag of T minus one,
and the treewidth of a graph G is the minimum treewidth over all possible tree decompositions
of G.

Definition 2 (Nice tree decomposition). A nice tree decomposition is a tree decomposition with
one special bag z called the root and in which each bag is one of the following types:

• leaf bag: a leaf x of T with Bx = ∅.

• introduce vertex bag: an internal vertex x of T with one child vertex y for which Bx =
By ∪ {v} for some v /∈ By. This bag is said to introduce v.

• introduce edge bag: an internal vertex x of T labelled with an edge e = (u, v) ∈ E with
one child bag y for which u, v ∈ Bx = By. This bag is said to introduce e.

11



• forget vertex bag: an internal vertex x of T with one child bag y for which Bx = By \ {v}
for some v ∈ By. This bag is said to forget v.

• join bag: an internal vertex x with two child vertices y and y′ with Bx = By = By′.

We additionally require that every edge in E is introduced exactly once.

Nice tree decompositions were introduced in the 1990s by Kloks [18]. We use here a more
recent version that distinguishes introduce edge and introduce vertex bags [11]. To each bag x
we associate the graph Gx = (Vx, Ex), with Vx the union of all By with y = x or y a descendant
of x, and Ex the set of all edges introduced at bags y with y = x or y a descendant of x. There
are also many heuristics for finding a tree decomposition of small width; see [6] for a recent
overview. Given a tree decomposition T of G, a nice tree decomposition rooted at a forget bag
can be computed in n · twO(1) time by following the arguments given in [18], with the following
modification: between a forget bag Xi where we ’forget vertex v’ and its child bag Xj , we add
a series of introduce edge bags for each edge e = {v, w} ∈ E and w ∈ Xj . We also assume that
root bag z is a forget node with Bx = ∅ and that the vertex that is forgotten at the root bag is
a terminal.

A collection of operators on sets of weighted partitions is presented in [5]. It is shown that
we can apply the rank based approach to any dynamic programming algorithm that can be
formulated using these operators and maintain correctness. Let Π(U) denote the set of all
partitions of some set U . Let A ⊆ Π(U) × N denote a set of weighted partitions, i.e. pairs
(p, w) ∈ A consist of a partition p of U and a non-negative integer weight w. The operators are
then defined as follows.

Definition 3 (Operators on sets of weighted partitions).

• Union. For B ⊆ Π(U) × N, define A ∪↓ B = rmc(A ∪ B). Combine two sets of weighted
partitions and discard dominated partitions.

• Insert. For X ∩ U = ∅, define ins(X,A) = {(p↑U∪X , w)|(p, w) ∈ A}. Insert additional
elements into U and add them as singletons in each partition.

• Shift. For w′ ∈ N define shft(w′,A) = {(p, w + w′)|(p, w) ∈ A}. Increase the weight of
each partition by w′.

• Glue. For u, v, let Û = U ∪ {u, v} and define glue(uv,A) ⊆ Π(Û)× N as

glue(uv,A) = rmc(
{

(Û [uv] u p↑Û , w)
∣∣∣(p, w) ∈ A

}
).

Also, if ω : Û × Û → N, let glueω(uv,A) = shft(ω(u, v), glue(uv,A)). In each partition
combine the sets containing u and v into one; add u and v to the base set if needed.

• Project. For X ⊆ U let X = U \X, and define proj(X,A) ⊆ Π(X)× N as

proj(X,A) = rmc(
{

(p↓X , w)
∣∣∣(p, w) ∈ A ∧ ∀e ∈ X : ∃e′ ∈ X : p v U [ee′]

}
).

Remove all elements of X from each partition, but discard partitions where this would
reduce the number of blocks/sets.

• Join. For B ⊆ Π(U ′)× N let Û = U ∪ U ′ and define join(A,B) ⊆ Π(Û)× N as

join(A,B) = rmc(
{

(p↑Û u q↑Û , w1 + w2)
∣∣∣(p, w1) ∈ A ∧ (q, w2) ∈ B

}
).

Extend all partitions to the same base set. For each pair of partitions return the outcome
of the meet operation u, with weight equal to the sum of the weights.

Here rmc(A) = {(p, w) ∈ A|@(p, w′) ∈ A ∧ w′ < w} denotes the set obtained by removing
non-minimal weight copies. The partition that is the same as p but with sets containing a and
b merged is obtained by p u U [ab] and p v U [ab] is true when a and b are in the same set in p.
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2.3 Dynamic Programming Algorithms for Steiner Tree Param-
eterized by Treewidth

In this section we briefly sketch both the classic dynamic programming algorithm on (nice) tree
decompositions for (the edge weighted version of) Steiner Tree and its variant with the rank
based approach. Finally we will show how the operators from [5] can be modified to work on
weighted bit strings. We will not present full proofs of correctness for the algorithms but will
show the fundemantal intuition behind these proofs.

2.3.1 Classic Dynamic Programming

The classic dynamic programming algorithm computes for each bag x a function Ax. This
function is represented by a table, with only trivial entries (e.g., partitions mapping to infinity,
as there are no forests corresponding to the partition) not stored.

The function Ax maps a subset W ⊆ Bx to a collection of pairs. Each pair consists of a
partition p of W and a weight w. If (p, w) is in the collection associated to W , then w is the
minimum weight over all forests F in Gx with the following properties: (1) For all v ∈ Bx,
v ∈ W iff v belongs to F ; (2) each terminal in Vx belongs to F ; (3) each tree in F contains at
least one vertex in W ; and (4) two vertices in W belong to the same class in the partition p,
iff they belong to the same tree in F . I.e., for each partition p, we store at most one weight; if
for set W and a partition p, no forest exists that fulfills the properties, then we have no pair in
Ax(W ) of the form (p, . . .).

In the full paper [13] we can find a more formal description with slightly different notation
(based on the notation in [5]), and recurrences for A for each of the types (leaf, introduce vertex,
introduce edge, join, forget) of nodes in nice tree decompositions. As an example let us consider
an introduce edge e = uv node x with child node y. For each partial solution in the child table
we can choose whether or not to use the edge. Given the child table Ay we can build table Ax

using the following recurrence.

Ax(W ) =

{
Ay(W ) if u /∈W ∨ v /∈W
Ay(W ) ∪↓ glueω(uv,Ay(W )) otherwise.

We include each partial solution from Ay in Ax and where possible we include partial so-
lutions from Ay modified to use the edge. This may yield multiple solutions with the same
partition, in which case we keep the one with minimum weight. In bottom-up order, we com-
pute for each node x in the nice tree decomposition a table for Ax. The minimum value of a
Steiner tree in G can be directly observed given the table for the root node.

In our implementation, we use two levels of hash tables: one with keys the different subsets
W of Bx, and for each W with at least one partial solution, we have a hash table storing for
each p the value z of the pair (p, z) ∈ Ax(W ), in case such a pair exists.

2.3.2 Rank Based Table Reductions

The main idea of the rank based approach from [5] is that after we have computed a table for
a bag x in the nice tree decomposition, we can carry out a reduction step and possibly remove
a number of entries from the table without affecting optimality. A table is transformed thus
to a (possibly smaller) table whose weighted partitions are representative for the collection of
weighted partitions in the earlier table. Let us consider partitions p representing the connectivity
of partial solutions in the subgraph Gx induced by edges introduced in descendents of bag x.
Then for partitions q that are extensions, i.e. in the case of Steiner Tree, forests containing
the other terminals using edges not in Gx and some vertex in bag x for each tree, we have a
full solution if p and q together form a single connected component, pu q = U . Since we do not
explicitly know all extensions q, the goal is to find representative sets A′x(W ) where for each

13



pair (p, w) ∈ Ax(W ), for any partition q on W , if p u q = W then there is a (p′, w′) ∈ A′x(W )
such that p′ u q = W ∧w′ ≤ w. This ensures that if a partial solution can be extended to a full
solution, then a partial solution in the representative table can be extended to a full solution of
at most the same weight in the same way, thus maintaining optimality.

For each W ⊆ Bx we consider a matrixM with a row for each partition p appearing in a pair
in Ax(W ), and a column for each partition q of W , withM(p, q) = 1 if and only if puq = W . In
order to get a good rank bound the matrixM can be written as the product of two cutmatrices
C which are defined as follows. Let cuts(W ) := {(V1, V2)|V1 ∪ V2 = W ∧ w ∈ V1} for some
arbitrary fixed w ∈ W . Then C is a matrix with a row for each partition p and with a column
for each cut in cuts(W ), with C[p, (V1, V2) = 1 if (V1, V2) v q. For z = puq we have (V1, V2) v z
if and only if (V1, V2) v p∧ (V1, V2) v q. Furthermore, the cuts that z is a refinement of can be
enumerated by fixing an arbitrary block from z in V1, and then choosing for every other block
in z whether to include it in V1 or in V2. Then z is a refinement of 2#blocks(z)−1 cuts, which
is odd when z = W and even if z consists of multiple blocks. The product CCT counts the
number of cuts of which both p and q are a refinement. Therefore, it follows that M≡ CCT in
arithmetic modulo two.

Now, from [5], it follows that it is sufficient to keep a minimum weight basis of rows in
C. The rank of C is bounded by the number of cuts of W , i.e. 2|W |−1. The reduction step
is performed as follows: for each W ⊆ Bx, we calculate cutmatrix C. With help of Gaussian
elimination, we compute such a minimum weight basis (after first sorting the rows with respect
to their weights), and then delete all other entries from the table. Correctness follows from
the analysis in [5]. In our experiments, we consider both the case where we always apply the
reduction step, and the case where we only apply it when |Ax(W )| ≥ 2|W |−1. Both cases give
the same guarantees on the size of tables and worst case upper bound on the running time, but
the actual running times in experiments differ, as we discuss in later sections.

2.3.3 Representing partial solutions with weighted bit strings.

When we first performed our experimental evaluation [13] we have found that during the reduc-
tion steps most time is spent calculating the entries of cutmatrices. While the asymptotic worst
case running time of the Gaussian elimination step dominates this time for the calculation of
the cut matrices, in our experiments, we observed that the actual time for the latter is signif-
icantly larger than the actual time for Gaussian elimination. Inspired by this observation, we
designed a version of the algorithms where we avoid most of the work to compute the entries of
the cutmatrices. More precisely, we identify partial solutions not with help of a partitions, but
directly by the row elements of its cut matrix. The partition thus is implictly represented by
this row. This new representation allows us to calculate rows in cutmatrices for parent nodes
directly from rows in cutmatrices obtained from child nodes.

We will now formally introduce the weighted bit string representation for partial solutions.
For each of the operators used in the framework introduced by Bodleander et al. [5] we show
an adaptation for weighted bit strings. The effects that each of these operators have for partial
solutions on entries in a cutmatrix should now be captured directly as manipulations on these
weighted bit strings. Thus, we show that this alternative representation can be used for any of
the connectivity problems presented in [5], as well as any other connectivity problem that can
be represented with recurrences using these operators.

Let (s, w) ∈ Ax(W ) be pair consisting of a bit string s directly representing a row in a
cutmatrix and w be its weight. Let l(s) = 2|W |−1 denote the length of this bit string and let
si ∈ {0, 1} denote the value of the bit at index i ∈ {0..l − 1}. In order to capture the effects
that the operators have on this bit string we should first make a strict assumption about which
specific cut corresponds to entry si. Without loss of generality let us assume an arbitrary
fixed ordering W = {v0, . . . , v|W |−1} of vertices in W . Now let cuts(W ) = {c0, . . . , cl−1} be
cuts corresponding to index i in the bit string. Intuitively, at some point during the dynamic
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Figure 2.1: Emerging pattern in ordered cuts. The edges depict cuts that are identical if the
corresponding vertex is left out.

programming algorithm we have a set W = {v0} where cuts(W ) contains a single cut (v0|∅).
This set of cuts is gradually expanded when introducing other vertices by fixing the new vertex
to the left- and righthand side of the cuts represented by columns in the previous table, i.e.

cuts({v0}) = {(v0|∅)}

cuts({v0, v1}) = {(v0, v1|∅), (v0|v1)}

cuts({v0, v1, v2}) = {(v0, v1, v2|∅), (v0, v1|v2), (v0, v2|v1), (v0|v1, v2)}

etc.

As an invariant we will assume that for any given pair (s, w) ∈ Ax(W ) the indices of s
correspond to cuts ordered this way. We can now proceed with the adaption of the operators on
sets of weighted partitions (see Section 2.2). First let us trivially adapt the definition of rmc(A)
and the union operator where A is now a set of weighted bit strings.

rmc(A) =
{

(s, w) ∈ A
∣∣@(s, w′) ∈ A ∧ w′ < w

}
• Union. For a table of weighted bit strings B, define A ∪↓ B = rmc(A ∪ B). Combine two

sets of weighted bit strings and discard dominated bit strings.

The insert operator is more involved. Suppose we have a bit string s based on cuts of set
W and extend this set with a single vertex v, i.e. W ′ = W ∪ {v}. We then want to capture the
effect of adding this vertex as singleton in our partial solution. The resulting bit string s′ will
have length l(s′) = 2·l(s) since we have twice as many cuts. If we have a cut (V1, V2) ∈ cuts(W )
where V1 ∪ V2 = W then (V1 ∪ {v}, V2), (V1, V2 ∪ {v}) ∈ cuts(W ′). If a partial solution is a
refinement of the old cut then it must be a refinement of the two new cuts once we add a vertex
as singleton since no change in connectivity is introduced. Likewise, if a partial solution is not
a refinement of the old cut then it cannot be a refinement of the new cuts when we add a vertex
as singleton.

When we have a bit si we are left with finding the position for two copies of this bit in s′ such
that the invariant holds. Suppose vj ∈W ′ is the inserted vertex. Then we need the position of
cuts (V1 ∪ {vj}, V2), (V1, V2 ∪ {vj}) ∈ cuts(W ′). If vj 6= v0 then according to our invariant we
have pairs of cuts that are next to each other in cuts(v0, . . . , vj) which are identical except for
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the side on which vj is fixed. When we expand cuts(v0, . . . , vj) to cuts(W ′) these pairs are at a
distance of d = 2|W

′|−1−wj appart since we expand for |W ′| − 1 − wj more vertices, each time
fixing a vertex left or right. These pairs are packed in blocks of size b = 2|W

′|−wj (see Fig. 1).
We calculate the new bit string by iterating over indices i of string s. The block containing the
new bits corresponding to si starts at index p · b where p = i/d indicates in which of the blocks
we are currently working. Note that we use integer division for p. In this block we find the first
bit after k = i mod d more indices and the second bit d indices later. So we have the following.

• For a single element vj ∈W ′ = W ∪ vj where vj 6= v0, define
ins(vj ,A) =

{
(s′, w)

∣∣(s, w) ∈ A ∧ s′p·b+k = s′p·b+k+d = s′i
}

where

b = 2|W
′|−wj , d = b

2 , p = i/d and k = i mod d, ∀i ∈ {0..l(s)− 1}

In the case that vj = v0 we have pairs of cuts that are identical except for the side on which
v0 is fixed. These cuts are pushed to opposite sides at every expansion since cuts({v0}) = (v0|∅)
starts out asymetrically (see Fig. 2.1), i.e.

• For a single element vj ∈W ′ = W ∪ vj where vj = v0, define
ins(vj ,A) =

{
(s′, w)

∣∣(s, w) ∈ A ∧ s′i = s′l(s′)−i−1 = si
}
, ∀i ∈ {0..l(s)− 1}

We now have an adaptation of the insert operator for bit strings where we insert a single
vertex. Finally, in order to insert a set of vertices we can insert them one at a time, i.e.

• Insert. For X ∩W = ∅ and x ∈ X, define
ins(X,A) =

{
ins(X\x, ins(x,A)

}
The project operator is somewhat similar, but here the length of a bit string decreases

by half. In this case, if we project for a single vertex v, we have pairs of bits corresponding
to (V1 ∪ {v}, V2), (V1, V2 ∪ {v}) ∈ cuts(W ) and end up with a single bit corresponding to
(V1, V2) ∈ cuts(W ′) where W ′ = W ∪ {v}. Now, if a partial solution is a refinement of either
of the old cuts then it must be a refinement of the new cut since connectivity with v is lost.
Likewise, if a partial solution is a refinement of neither of the old cuts then it cannot be a
refinement of the new cut since there must be some other connectivity between vertices in V1

and vertices in V2. Now we must make sure that the partial solution is removed if removing v
would have reduced the number of blocks in the original partition. We can do this by finding
out if v is a singleton, which we can achieve by checking if the partial solution is a refinement
of the cut (W\v|v). Suppose we project vj ∈ W . Assuming our invariant holds we can find
the bit corresponding to this particular cut at index 2|W |−vj−1 if vj 6= v0 and at index l(s)− 1
otherwise. The project operator for bit strings is then as follows.

• For a single element vj ∈W where vj 6= v0, define
proj(vj ,A) = rmc(

{
(s′, w)

∣∣(s, w) ∈ A ∧ ¬singleton(vj , s) ∧ s′i = sp·b+k ORsp·b+k+d

}
)

where b = 2|W |−wj , d = b
2 , p = i/d and k = i mod d,∀i ∈ {0..l(s)− 1}

• For a single element vj ∈W where vj = v0, define
proj(vj ,A) = rmc(

{
(s′, w)

∣∣(s, w) ∈ A ∧ ¬singleton(vj , s) ∧ s′i = si ORsl(s)−i−1
}

),
∀i ∈ {0..l(s)− 1}

• For a single element vj and bit string s define

singleton(vj , s) =


true vj 6= v0 ∧ s

2|W |−vj−1 = 1

true vj = v0 ∧ sl−1 = 1
false otherwise.

• Project. For X ⊆W and x ∈ X, define
proj(X,A) =

{
proj(X\x, proj(x,A))

}
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Figure 2.2: Emerging pattern in ordered cuts. The arrows depict on which side of the cuts the
corresponding vertex is fixed.

Let us now consider the join operator. Suppose we have some cut c and join the connectivity
of partitions p and q. If either p or q is not a refinement of c then there is at least one block b
in either partition with vertices in both the left- and righthand side of the cut. When we join
the connectivity of these partitions a block in the resulting partition z = p u q will contain all
vertices in b and therefore c 6v z. Vice versa, if c v p and c v q then each block in p and q is
contained either completely in the left- or righthand side of the cut. Joining the connectivity
would not result in blocks containing vertices from both sides. Therefore the z is a refinement
of c, i.e. c v z if and only if c v p and c v q. Assuming our invariant holds for (sa, wa) ∈ A
and (sb, wb) ∈ B where A and B are based on the same set of vertices W , we know that sai and
sbi correspond to the same cut ci. If A and B are not based on the same set of vertices we can
extend them using the insert operator. We can then adapt the join operator as follows.

• Join. For a table of weighted bit strings B corresponding to a set of vertices W ′, define
join(A,B) = rmc(

{
(s, wa + wb)

∣∣si = (sai AND sbi) ∧ (sa, wa) ∈ ins(W ′\W,A) ∧
(sb, wb) ∈ ins(W\W ′,B)

}
)

For the glue operator, combining sets with vertices vj , vk ∈W in a partial solution is equal
to performing the meet operator with a partition which contains a single class {vj , vk} and all
other vertices as singletons. This partition is a refinement of a cut if vj and vk are fixed on the
same side. In cuts(W ) we have alternating blocks of 2|W |−vj cuts where vertex vj is fixed to
the left side and then on the right (see Fig. 2.2). Using l

vj
i to indicate if vj is contained in the

left side of the cut corresponding to bit i we can then build a bit string s(vjvk) for the partition
as follows.

• For vertices vj and vk, define
s(vjvk)i = l

vj
i XNOR lvki where

l
vj
i =

{
1, i mod bvk <

bvk
2

0, otherwise.
,

lvki =

{
1, i mod bvj <

bvj
2

0, otherwise.
,

bvj = 2|W |−vj and bvk = 2|W |−vk .

This gives us a bit string where a bit is set to 1 if both vj and vk are completely contained
in either the left- or righthand side of the corresponding cut. We then use this bit string in the
adaptation of the glue operator.

• Glue. For vj, vk ∈W , define
glue(vjvk,A) = rmc(

{
(s′, w)

∣∣(s, w) ∈ A ∧ s′i = si AND s(vjvk)i
}

)

Finally we trivially adapt the shift operator.
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• For w′ ∈ N, define
shft(w′,A) =

{
(s, w + w′)

∣∣(s, w) ∈ A
}

)

And the glue with weight operator.

• For ω : W ′ ×W ′ → N where W ′ = W ∪ {vj , vk}, define
glueω(vjvk,A) = shft(ω(vj , vk), glue(vjvk,A))

This concludes the introduction of the representation of partial solutions using weighted bit
strings. For each of the operators defined for weighted partitions we have shown an adaption
for the weighted bit string representation. We can now use this representation in any of the
connectivity problems for which we can apply the rank based approach. By implicitly repre-
senting the partition by its row in the cut-matrix we can compute entries of the cutmatrices
more efficiently.

2.4 Implementation

In this section, we give some details on our implementation of the algorithms described in the
previous section. We have implemented the algorithms in Java. For each of the test graphs,
we used the well known (and quite simple and effective, see e.g., [6]) Greedy Degree heuristic to
find a tree decomposition. These tree decompositions were subsequently transformed into nice
tree decompositions, using the procedure which was previously described in Section 2.2. The
algorithms were executed on the thus obtained nice tree decompositions.

The recursions for the different types of nodes were implemented such that we spend linear
time per generated entry (before removing double entries, and before the reduction step). For
most types, this is trivial. The computation for join bags contains a step, where we are given
two partitions, and must compute the partition that is the closure of the combination of the two
(i.e., the finest partition that is a coarsening of both). We implemented this step with a breadth
first search on the vertices in the bag, with the children of a vertex v all not yet discovered
vertices that are in the same block as v in either of the partitions.

Sets W ⊆ Bx are represented by a bitstring. In the computations of join, introduce edge, and
forget nodes, it is possible that we generate two or more entries for the same W and partition
p of W . Of these duplicate partial solutions, we need to keep only the one with the smallest
weight. In order to find such duplicate partial solutions we have represented the partial solution
tables in a nested hash-map structure. First we use sets of vertices that where not used in a
partial solution as keys, pointing to tables of weighted partitions, effectively grouping partitions
consisting of the same base set of vertices together. These weighted partition tables are then
represented by another hash-map where the partitions, which are represented as nested sets,
are used as keys, pointing to the minimum weight corresponding to the partial solution. This
allows us to find and replace any duplicate partial solution in amortized constant time. Java
provides hash-codes for sets by adding the hash-codes for all objects contained within a set,
which works well enough for the outer hash-table used in our structure. This standard approach
breaks down when we use it to calculate hash-codes for partitions however, as it effectively adds
all hash-codes of vertices used in the partition together. This results in the same hash-code
for all partitions used in the same inner hash-map. To resolve this problem we disrupt this
commutative effect by multiplying indexes of vertices contained in each block, and then taking
the sum of these values of blocks in order to calculate hash-codes for partitions. We apply
the multiplications modulo a prime number to avoid integer overflows. In our experiments,
we observed that this approach results in approximately 3% collisions for large tables. In the
implementation using weighted bit strings we can directly use the value of these strings as hash
codes.

In the implementation of the rank based approach, for each bag, we first compute a table
as in the classic algorithm, and then compute the corresponding matrix C, as discussed above.
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When we use the weighted bit string representation we fill rows in this matrix by directly copying
values from the strings stored in the table. We perform the steps of Gaussian elimination with
rows in order of nondecreasing weight. I.e., first we order the rows of C in order of nondecreasing
weight. find the first 1 in the row, and now add the values in this row to all later rows with a 1
in the same column (modulo 2). (This is precisely one step of Gaussian elimination). When a
row consists of only 0’s, it is linearly dependent on previous processed rows (of smaller weight),
and thus safely eliminated. We stop when all partial solutions have been processed, or when
we have processed 2|W | rows, since all remaining partial solutions are linearly dependent on
solutions in A. Any time a partial solution is processed we can eliminate the column containing
its leading 1, since all elements in this column are 0.

Chimani et al. [8] give an efficient algorithm for Steiner tree for graphs given with a tree
decomposition, that runs in O(B2

k+2kn) time, with k the width of the tree decomposition. We
have chosen not to use the coloring scheme from Chimani et al. [8], but instead use hash tables
(as discussed above) to store the tables. Of course, our choice has the disadvantage that we
lose a guarantee on the worst case running time (as we cannot rule out scenarios where many
elements are hashed to the same position in the hash table), but gives a simple mechanism
which works in practice very well. In fact, if we assume that the expected number of collisions
of an element in the hash table is bounded by a constant (which can be observed in practice),
then the expected running time of our implementation matches asymptotically the worst case
running time of Chimani et al.

2.5 Experimental Results

In this section, we will report the results for experiments with the algorithms discussed in
Section 2.3. We will denote the classic dynamic programming algorithm as CDP. With RBA,
we denote the algorithm where we always apply the reduction step, whereas RBC denotes the
algorithm which only applies the reduction step when we have a table whose size is larger than
the bound guaranteed by reduction. Similarly, we denote the algorithms using the bit string
representation with BSA and BSC where we always apply the reduction step in the former and
conditionally in the latter. We will compare the runtime of these five algorithms. Furthermore
we will compare the number of partial solutions generated during the execution of CDP, RBA
and RBC algorithms to illustrate how much work is being saved by reducing the tables. The
number of partial solutions generated for BSA and BSC are comparable to RBA and RBC
respectively.

Each of the five algorithms receives as input the same nice tree decomposition of the input
graph; this nice tree decomposition is rooted at a forget bag of a terminal vertex. The experi-
ments where performed on sets of graphs of different origin, spanning a range of treewidth sizes
of their tree decompositions, and where possible diversified on the number of vertices, edges and
terminals. Our graphs come from benchmarks for algorithms for the Steiner Tree problem
and for Treewidth. The graphs from Steiner tree benchmarks can be found in Steinlib [19],
a repository for Steiner Tree problems. These are prefixed by b, i080 or es. Graph instances
prefixed by b are randomly generated sparse graphs with edge weights between 1 and 10; these
were introduced in [3] and were generated following a scheme outlined in [1]. The i080 graph
instances are randomly generated sparse graphs with incidence edge weights, introduced in [12].
We have grouped these sparse graphs together in the results. The next set of instances, pre-
fixed by es, were generated by placing random points on a two-dimensional grid, which serve
as terminals. By building the grid outlined in [15] they where converted to rectilinear graphs
with L1 edge weights and preprocessed with GeoSteiner [28]. The last collection of graphs are
often used as benchmarks for algorithms for Treewidth. These come from Bayesian network
and graph colouring applications. We transformed these to Steiner Tree instances by adding
random edge weights between 1 and 1000, and by selecting randomly a subset of the vertices
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as terminals (about 20% of the original vertices). These graphs can be found in [26].
All algorithms have been implemented in Java and the computations have been carried out

on a Windows-7 operated PC with an Intel Core i5-3550 processor and 16.0 GB of available
main memory. We have given each of the algorithms a maximum time of two hours to find a
solution for a given instance; in the tables, we marked instances halted due to the use of the
maximum time by a *.

instance tw(T) |V | |E| |T | CDP RBA RBC BSA BSC

b01.stp 4 50 63 9 63 55 19 26 22
b02.stp 4 50 63 13 12 30 12 9 8
b08.stp 6 75 94 19 592 122 73 10 7
b09.stp 6 75 94 38 88 55 38 6 6
b13.stp 7 100 125 17 1552 548 892 95 240
b14.stp 7 100 125 25 2001 515 336 43 32
b15.stp 8 100 125 50 15860 1695 1503 161 169
i080-001.stp 9 80 120 6 477716 13386 9279 1571 1251
i080-003.stp 9 80 120 6 1996394 21598 19250 3077 3019
i080-004.stp 10 80 120 6 2283606 74845 74464 14464 18197
b06.stp 10 50 100 25 1449534 36041 28389 6021 5379
I080-005.stp 11 80 120 6 * 815457 723720 236683 293567
b05.stp 11 50 100 13 * 341862 275824 137917 118226

Table 2.1: Runtime in milliseconds for instances from Steinlib (1)

instance tw(T) |V | |E| |T | CDP RBA RBC BSA BSC

es90fst12.stp 5 207 284 90 76 130 65 19 11
es100fst10.stp 5 229 312 100 116 177 93 20 16
es80fst06.stp 6 172 224 80 308 329 185 30 22
es100fst14.stp 6 198 253 100 133 179 93 19 14
es90fst01.stp 7 181 231 90 684 351 201 29 20
es100fst13.stp 7 254 361 100 1594 1351 804 112 84
es100fst15.stp 8 231 319 100 2069 1470 826 120 101
es250fst03.stp 8 543 727 250 3320 2343 1484 206 162
es100fst08.stp 9 210 276 100 5088 2588 2165 309 321
es250fst05.stp 9 596 832 250 35961 14521 8322 1550 1109
es250fst07.stp 10 585 799 250 127681 60701 37042 7508 5942
es500fst05.stp 10 1172 1627 500 145408 51504 34684 5972 4933
es250fst12.stp 11 619 872 250 * 138073 99427 23311 20045
es100fst02.stp 12 339 522 100 * 365800 299014 150013 143582
es250fst01.stp 12 623 876 250 * 395694 288476 105810 91650
es250fst08.stp 13 657 947 250 * 2469463 2208040 1257730 1236192
es250fst13.stp 13 713 1053 250 * 2725460 2416867 1684224 1557617

Table 2.2: Runtime in milliseconds for instances from Steinlib (2)

In Tables 3.1 – 3.3, we have gathered the results for the runtimes of the five algorithms for
the aforementioned graph instances. We immediately notice that RBC outperforms RBA in all
cases. In Table 3.4 –3.6 we give the number of partial solutions (table entries) computed for
each of the CDP, RBA and RBC algorithms. If we investigate these tables we notice that the
number of partial solutions computed during RBA is not significantly smaller compared to the
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instance tw(T) |V | |E| |T | CDP RBA RBC BSA BSC

myciel3.stp 5 11 20 2 8 9 5 1 <1
BN 28.stp 5 24 49 4 7 15 8 2 2
pathfinder.stp 6 109 211 21 599 281 157 26 18
csf.stp 6 32 94 6 1135 254 165 19 15
oow-trad.stp 7 33 72 6 803 601 371 50 36
mainuk.stp 7 48 198 9 10040 3925 2444 291 214
ship-ship.stp 8 50 114 10 6015 3929 2465 352 254
barley.stp 8 48 126 9 3000 1836 1248 168 142
miles250.stp 9 128 387 25 37745 14099 8444 1761 1291
jean.stp 9 80 254 16 17988 20404 9231 1907 1175
huck.stp 10 74 301 14 18652 37696 20376 3829 2657
myciel4.stp 11 23 71 4 1602408 86183 83358 16385 23824
munin1.stp 11 189 366 37 * 521081 501164 162717 227469
pigs.stp 12 441 806 88 * 1130537 1071765 1469987 1791343
anna.stp 12 138 493 27 * 5515952 4822620 2357740 2398758

Table 2.3: Runtime in milliseconds for instances on graphs from TreewidthLib

instance tw(T) |V | |E| |T | CDP RBA RBC

b01.stp 4 50 63 9 1921 1654 1654
b02.stp 4 50 63 13 1948 1628 1638
b08.stp 6 75 94 19 99740 11654 12005
b09.stp 6 75 94 38 18615 5302 5302
b13.stp 7 100 125 17 279852 47032 58717
b14.stp 7 100 125 25 318744 37406 38146
b15.stp 8 100 125 50 2248833 76681 93161
i080-001.stp 9 80 120 6 65460491 570132 571425
i080-003.stp 9 80 120 6 249390279 1279544 1282358
i080-004.stp 10 80 120 6 256761016 2687590 3507987
b06.stp 10 50 100 25 151246080 723392 754926
I080-005.stp 11 80 120 6 * 25194893 29825246
b05.stp 11 50 100 13 * 6827459 6955686

Table 2.4: Number of generated partial solutions for instances of Steinlib (1)

number computed during RBC. From these results and their running times we can conclude
that it is preferable to use the reductions more sparingly in order to decrease runtime, since
applying the reductions when the tables are already smaller than their size guarantee does not
seem to have a noteworthy effect. In the case of BSA and BSC the prefered strategy is less clear,
since we inherently perform part of the reduction step, i.e. the filling of cutmatrices, during the
table calculations.

We also notice that, while RBA outperforms CDP in numerous cases, RBC outperforms
CDP in all but one (discussed below). For example, in the case of i080-004 we see a significant
speed-up: the classic DP uses 38 minutes to find the optimal solution, but RBC uses just 74
seconds. Furthermore we see a strong increase in the runtime difference when the width of the
tree decompositions increases. This is further reflected in Table 3.4, where we see that when the
width of the tree decompositions increases, the difference in the number of of generated partial
solutions grows significantly. Again, for algorithms BSA and BSC we see further significant
speed-ups compared to RBA and RBC for all but the smallest instances. In the case of i080-
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instance tw(T) |V | |E| |T | CDP RBA RBC

es90fst12.stp 5 207 284 90 25817 17693 17706
es100fst10.stp 5 229 312 100 34612 22181 22204
es80fst06.stp 6 172 224 80 73436 31721 32301
es100fst14.stp 6 198 253 100 35664 21947 21971
es90fst01.stp 7 181 231 90 137705 30097 30139
es100fst13.stp 7 254 361 100 323259 99203 99420
es100fst15.stp 8 231 319 100 388118 100469 100487
es250fst03.stp 8 543 727 250 593651 151722 151802
es100fst08.stp 9 210 276 100 724207 84869 90006
es250fst05.stp 9 596 832 250 5283073 739953 740698
es250fst07.stp 10 585 799 250 15397120 1664352 1665205
es500fst05.stp 10 1172 1627 500 17953689 1790843 1791361
es250fst12.stp 11 619 872 250 * 3771954 3772893
es100fst02.stp 12 339 522 100 * 4909388 4909500
es250fst01.stp 12 623 876 250 * 4715125 4715631
es250fst08.stp 13 657 947 250 * 18954259 19509166
es250fst13.stp 13 713 1053 250 * 15870380 16101777

Table 2.5: Number of generated partial solutions for instances of Steinlib (2)

instance tw(T) |V | |E| |T | CDP RBA RBC

myciel3.stp 5 11 20 2 2382 1295 1347
BN 28.stp 5 24 49 4 2346 1670 1700
pathfinder.stp 6 109 211 21 128163 21206 22073
csf.stp 6 32 94 6 206434 21111 21215
oow-trad.stp 7 33 72 6 164723 39318 39327
mainuk.stp 7 48 198 9 1691584 202454 210694
ship-ship.stp 8 50 114 10 1093800 144493 144682
barley.stp 8 48 126 9 472223 77799 84125
miles250.stp 9 128 387 25 5524562 273711 278717
jean.stp 9 80 254 16 2932817 292577 302644
huck.stp 10 74 301 14 3238678 526947 531597
myciel4.stp 11 23 71 4 203990952 1876695 3482635
munin1.stp 11 189 366 37 * 19289467 23535116
pigs.stp 12 441 806 88 * 13488332 16814404
anna.stp 12 138 493 27 * 82060857 99551566

Table 2.6: Number of generated partial solutions for instances on graphs from TreewidthLib

004 we now see that BSA uses just 14 seconds and BSC uses 17 seconds.
The huck instance is the only example where using a straightforward implementation of

the rank based approach does not pay off. Upon further inspection we found that the tree
decomposition for this instance has only one bag of size 11, while most of the other bags are
of size 7 and below. This is also reflected by the difference in the number of generated partial
solutions, where the improvement factor is not comparable to the other cases. Conversely we
found that the i080-004 case included 18 bags of treewidth 11 of which 6 where join bags, which
explains the extreme difference. In practice, when we run dynamic programming algorithms
on tree decompositions, the underlying structure of the decomposition has a large influence on
the performance, which is not always properly reflected by the treewidth of a graph. In general
however, the rank based approach is more and more advantageous as the treewidth increases,
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even allowing us to find solutions where CDP does not find any within the time limit. The
implementation of the rank based approach using bit strings gives us an even better performance.
However, when comparing the proportion of decrease in running times between straightforward
and bit string implementations we see slight diminishing returns as the treewidth increases. As
treewidth increases the Guassian elimination step which is the bottleneck of the algorithm in
theory starts to have more influence on the running time of the algorithms. Nevertheless, in a
practical setting the bit string representation seems to be very advantageous.

2.6 Discussion and Concluding Remarks

In this paper, we presented an experimental evaluation of the rank based approach by Bod-
laender et al. [5], comparing the classic dynamic programming for Steiner Tree and the new
versions based on Gaussian elimination. The results are very promising: even for relatively small
values of the width of the tree decompositions, the new approach shows a notable speed-up in
practice. The theoretical analysis of the algorithm already predicts that the new algorithms are
asymptotically faster, but it is good to see that the improvement already is clearly visible at
small size benchmark instances. Furthermore, we have presented an implementation of the rank
based approach using weighted bit strings to directly identify rows in C. This implementation
yields even further significant improvements on the running time.

Overall, the rank based approach is an example of the general technique of representativity:
a powerful but so far underestimated paradigmatic improvement to dynamic programming. A
further exploration of this concept, both in theory (improving the asymptotic running time for
problems) as in experiment and algorithm engineering seems highly interesting. Our current
paper gives a clear indication of the practical relevance of this concept.

We end this paper with a number of specific points for further study:

• The rank based approach also promises faster algorithms on tree decompositions for several
other problems. The experimental evaluation can be executed for other problems. In
particular, for Hamiltonian Circuit and similar problems, it would be interesting to
compare the use of the basis from [5] with the smaller basis given by Cygan et al. [10].

• How well does the Cut and Count method perform? As remarked in [11], it seems ad-
vantageous to use polynomial identity testing rather then the isolation lemma to optimize
the running time.

• In what extent do results change if we use normal (instead of nice) tree decompositions?

• What is the effect of the ratio between the number of terminals and the number of vertices
on the running times?

• Are running time improvements possible by other forms of reduction of tables (without
affecting optimality)? If we exploit the two families theorem by Lovász [21], we obtain a
variant of our algorithm, with a somewhat different reduce algorithm [14] (see also [22]);
how does the running time of this version compare with the running time of the algorithm
we studied?

• Can we use the rank based approach to obtain a faster version of the tour merging heuristic
for TSP by Cook and Seymour [9]? Also, it would be interesting to try a variant of tour
merging for other problems, e.g., ‘tree merging’ as a heuristic for Steiner Tree.

• For what other problems does the rank based approach give faster algorithms in practical
settings?

• Are there good heuristic ways of obtaining small representative sets, even for problems
where theory tells us that representative sets are large in the worst case?
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Chapter 3

Evaluating Partial Solutions in
Order of Optimality
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3.1 Introduction

In a straightforward implementation of dynamic programming algorithms on tree decomposi-
tions complete tables of partial solutions are calculated for nodes in the decomposition in a
bottom-up fashion. In the weighted case of connectivity problems such as those discussed in
the paper by Bodlaender et al. [5] we are only interested in the optimal solution. In an attempt
to exploit this we will now consider an algorithm that calculates partial solutions in order of
optimality.

In the case of Weighted Steiner Tree, which we will again use as the running example
in the second part of this thesis, this means that we will calculate partial solutions as follows.
A node in the tree decomposition is able to request the next smallest partial solution calculated
for any of its children. It may need to do this multiple times in order to ensure that it can
compute the next smallest partial solution which it will then be able to pass along to its parent
node. As soon as the root node has acquired its first partial solution we have a solution for
Weighted Steiner Tree since it is also the solution of minimal weight.

While this approach does not improve the running time of the algorithm in the worst case,
many partial solutions which would be generated when we compute entire tables may possibly
be skipped. For example, any non-minimum weight solution in the root bag and many of the
partial solutions generated in descendent nodes that were at some point used to compute this
non-minimum weight solution will not be considered. In general, we save work at any node
after it has calculated a partial solution which at some point can be extended to a full solution
of minimal weight. The overall effectiviness of this algorithm is instance specific.

An obvious obstacle for this algorithm would be its space efficiency. This is because we need
to keep internal state at every node in the tree decomposition. In the worst case scenario where
we still need to consider every partial solution that would otherwise be generated during the
bottom-up dynamic programming algorithm this could cause us to run out of memory since we
simultaneously store sets of partial solutions at every node. However, we can still apply the rank
based reductions by rank based table reductions by Bodlaender et al. [5] to eliminate linearly
dependent partial solutions. This allows us to keep the amount of generated partial solutions
in check which, besides the decrease in time complexity, results in a more efficient use of space.
Furthermore, we can use the bit string representation from the first part of this thesis which,
besides allowing us to eliminate linearly dependent solutions faster, is also very space efficient
for low treewidth.

In this part of the thesis we will give a detailed description of this new approach applied
to Weighted Steiner Tree. First we will show the internal logic used to calculate partial
solutions in ascending order for each type of node in a nice tree decomposition. We will then
show how to apply the rank based reductions to eliminate linearly dependent partial solutions
piecemeal as they are generated. Finally, we will perform an experimental evaluation of this
algorithm, where we compare its performance to the performance of the algorithms from the
first part of the thesis which use the bit string representation to calculate tables in a bottom-up
fashion.

For brevity we will skip the preliminaries and refer the reader to the first part of the thesis.
The sequel is organized as follows. A detailed description of the new algorithm for Weighted
Steiner Tree will be given in Section 3.2. In Section 3.3, we will discuss the implementation
after which we will present the experimental results in Section 3.4. Finally, conclusions are
given in section 3.5.

3.2 Algorithm for Steiner Tree

As an initialization step we will split each bag in the nice tree composition given in the input
for Weighted Steiner Tree into nodes for every subset of vertices. We do this because a set
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of partial solutions based on some subset W for a given bag is dependent on partial solutions
based on at most two subsets from children of this bag. Splitting the bags into these more
localized nodes will simplify the procedure to find the next minimal weight partial solution in
each node.

Figure 3.1: An example nice tree decomposition containing every type of bag. For each bag its
set of vertices is shown.

Figure 3.2: Structure after splitting bags from the nice tree decomposition in Fig. 3.1 into
nodes for every subset of vertices.

Let us denote the node for some subset W ⊆ Bx in bag x as nx(W ). We split the different
types of bags in a nice tree decomposition (see Fig. 3.1 for an example) as follows. For a leaf
bag x we have a single node nx(∅) for the empty set. For an introduce vertex v bag x we spawn
two nodes for each node ny(W ) in child bag y. The first node nx(W ) will have ny(W ) as a
child and will be able to request partial solutions from this node. The second node nx(W ∪{v})
will also have access to these partial solutions through nx(W ). This ensures that for each node
there is only a single parent for which it has to generate partial solutions. For an introduce edge
e = uv bag x with child bag y we spawn node nx(W ) for each node ny(W ). For a forget vertex
v bag x with child bag y we have pairs of nodes ny(W ), ny(W \ {v}) for which we spawn node
nx(W ) which has this pair of nodes as children. Finally, for join bag x with children y and z
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we have pairs of nodes ny(W ), nz(W ) for which we spawn node nx(W ) which has this pair as
children. Now that we have this new structure of nodes (see Fig. 3.2 for an example) we can
proceed to define the internal procedures of each type of node in such a way that they generate
partial solutions in ascending order of weight.

3.2.1 Evaluating Partial Solutions in Ascending Order of Weight

We will now revisit the recurrence of the classic dynamic programming algorithm for Weighted
Steiner Tree which uses the special set of operators introduced in [5]. As discussed in the
first part of this thesis, this ensures that we can apply the rank based approach and we can
use either the weighted partition representation or the weighted bit string representation of
partial solutions. As we reiterate the recurrence relations for each type of bag in a nice tree
decomposition we will show the procedure of the corresponding nodes in the formerly introduced
structure. In the forget, introduce edge and join bags we may generate multiple partial solutions
that represent the same connectivity between their vertices. In this case we only need to keep
the partial solution of minimum weight. We will ignore this for now and deal with it in Sect.
3.2.2.

For each node nx(W ) corresponding to bag x with subset W ⊆ Bx we define the function
nextPartialSolution(nx(W )) which returns the next partial solution of minimum weight in this
node. Nodes keep some internal state and may call this function from their children in order to
generate these partial solutions. We will first introduce some global variables which nodes may
use to for decision making. Every node nx(W ) has a boolean hasNext(nx(W )) indicating if it
can generate any more partial solutions. If a node has a child ny(W ′), then it may inquire about
hasNext(ny(W ′)). The starting condition of this boolean is hasNext(nx(W )) ← true for each
bag nx(W ) unless stated otherwise. Furthermore, nodes may use a boolean request(ny(W ′))
for each child ny(W ′) indicating if it needs a new partial solution from this child. The starting
condition for these booleans is also request(ny(W ′))← true for each child.

We will start with the trivial procedure of leaf nodes. The recurrence for a leaf bag x is
defined as.

Ax(∅) = {(∅, 0)}

A leaf bag has a single partial solution of weight 0 in which there are no vertices to connect.
In leaf nodes we only return this partial solution, i.e. the procedure for leaf nodes (Alg. 1) is
as follows.

Algorithm 1: nextPartialSolution(nx(∅)) for leaf nodes.

hasNext(nx(∅))← false
return {(∅, 0)}

For an introduce vertex v bag x with child y the recurrence is defined as.

Ax(W ) =


ins({v}, Ay(W \ {v})) if v ∈W
Ay(W ) if v /∈W ∧ v /∈ K
∅ if v /∈W ∧ v ∈ K

For each partial solution in the child table we can decide whether or not to use v. However,
if v is a terminal then we are forced to use it. For each case we will include a partial solution
in the table for bag x. The procedure for introduce vertex nodes (Alg. 2) is as follows. For a
child node ny(W \{v}) we now have two introduce vertex nodes nx(W \{v}) and nx(W ). Since
there is no change in weight, the former will return partial solutions from ny(W \ {v}) in the
order it receives them. Likewise, the latter will return partial solutions from ny(W \ {v}) in
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the same order while inserting v. Now we must make sure that at any time a partial solution
is returned by ny(W \ {v}) it is recieved by both nx(W \ {v}) and nx(W ).

To this end, both introduce vertex nodes will keep a list in which partial solutions can be
stored. If either node requests a partial solution from the child it is added to both lists. Now
either node can process partial solutions in its list or request more if it is empty. Finally, an
introduce vertex node can not return partial solutions if its child has no more partial solutions
and its list is empty. In the case that v is terminal we set hasNext(nx(W \ {v}))← false since
we cannot return any valid partial solutions in this node.

Algorithm 2: nextPartialSolution(nx(W )) for introduce vertex v nodes.

if v ∈W then
if request(ny(W \ {v})) then

p← nextPartialSolution(ny(W \ {v}))
add p to list

add p to list of node nx(W \ {v})
request(ny(W \ {v}))← false

r ← first element of list
remove r from list

if list is empty then
if hasNext(ny(W \ {v})) then

request(ny(W \ {v}))← true
else

hasNext(nx(W ))← false

r ← ins({v}, r)

else
if request(ny(W )) then

p← nextPartialSolution(ny(W ))
add p to list

add p to list of node nx(W ∪ {v})
request(ny(W ))← false

r ← first element of list
remove r from list

if list is empty then
if hasNext(ny(W )) then

request(ny(W ))← true
else

hasNext(nx(W ))← false

return r

For a forget vertex v bag x with child y the recurrence is defined as.

Ax(W ) = Ay(W ) ∪↓ proj(v,Ay(W \ {v}))

Partial solutions in the child table either use v or do not use v. In the former case we can
simply include it in the table of bag x. In the latter case we only insert it if v is connected
to some other vertex in the partial solution and discard it otherwise. The procedure (Alg. 3)
for forget vertex node nx(W ) with children ny(W ) and ny(W ∪ {v}) is as follows. We consider
partial solutions from both children. If the partial solution from ny(W ) is smaller we return it.
Otherwise, we return the partial solution from ny(W ∪ {v}) after removing v from it. In the
case that this partial solution is invalid we recursively call nextPartialSolution(nx(W )). Finally,
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if either child can no longer return partial solutions we return the remaining partial solutions
of the other child. Once this child is also depleted we can no longer return anything.

Algorithm 3: nextPartialSolution(nx(W )) for forget vertex v nodes.

if ¬hasNext(ny(W )) ∧ request(ny(W )) then
if request(ny(W ∪ {v})) then

r ← nextPartialSolution(ny(W ∪ {v}))
request(ny(W ∪ {v}))← false

else
r ← p2

if ¬hasNext(ny(W ∪ {v})) then
hasNext(nx(W ))← false

r ← proj({v}, r)

else if ¬hasNext(ny(W ∪ {v})) ∧ request(ny(W ∪ {v})) then
if request(ny(W )) then

r ← nextPartialSolution(ny(W ))
request(ny(W ))← false

else
r ← p1

if ¬hasNext(ny(W )) then
hasNext(nx(W ))← false

else
if request(ny(W )) then

p1 ← nextPartialSolution(ny(W ))
request(ny(W ))← false

if request(ny(W ∪ {v})) then
p2 ← nextPartialSolution(ny(W ∪ {v}))
request(ny(W ∪ {v}))← false

if w(p1) < w(p2) then
r ← p1
request(ny(W ))← true

else
r ← proj({v}, p2)
request(ny(W ∪ {v}))← true

if r is invalid then
r ← nextPartialSolution(nx(W ))

return r

The recurrence for an introduce edge e = uv bag x with child y is defined as.

Ax(W ) =

{
Ay(W ) if u /∈W ∨ v /∈W
Ay(W ) ∪↓ glueω(uv,Ay(W )) otherwise.

For each partial solution in the child table we can either ignore the edge or include it. We
can only include the edge in the partial solution if it uses both u and v. We insert partial
solutions for each case in the table for bag x. The procedure (Alg. 4) for introduce edge nodes
nx(W ) with child node ny(W ) is as follows. If u /∈W ∧v /∈W we simply return partial solutions
from the child node in the order we recieve them. In the other case we return partial solutions
from the child node, until at some point we have to return partial solutions in which the edge
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is included. To keep a correct order we will use a list in which we store partial solutions from
the child node. When we recieve a new partial solution p2 we add it to this list. The other
partial solutions in this list, of which p1 is the first and smallest, have already been returned
to the parent. We then consider either including the edge in p1 and returning it or returning
p2. In the former case we remove p1 from the list since we are done with this particular partial
solution. In the latter case we need to request a new partial solution from the child. Finally,
when the child has no more partial solutions we finish processing the list until it is empty, after
which we can no longer return anything.

Algorithm 4: nextPartialSolution(nx(W )) for introduce edge uv nodes.

if u /∈W ∨ v /∈W then
r ← nextPartialSolution(ny(W ))
if ¬hasNext(ny(W )) then

hasNext(nx(W ))← false

else
if hasNext(ny(W )) ∨ ¬request(ny(W )) then

if request(ny(W )) then
add nextPartialSolution(ny(W )) to list

p1 ← first element of list
p2 ← last element of list
if w(p1) + ω(uv) < w(p2) then

r ← glueω(uv, p1)
remove p1 from list

request(ny(W ))← false

else
r ← p2
request(ny(W ))← true

else
p← first element of list
r ← glueω(uv, p)
remove p from list

if list is empty then
hasNext(nx(W ))← false

return r

Lastly, the recurrence for a join bag x with children y and z is defined as.

Ax(W ) = join(Ay(W ), Az(W ))

We have partial solutions from bag y in which vertices are connected using edges introduced
in its decendents. Likewise, we have partial solutions from bag z. For every combination of
partial solutions from bags y and z which share the same base set of vertices W we add a
partial solution in the table of x in which the connectivity is joined and weight is combined.
The procedure (Alg. 5 for join nodes nx(W ) with children ny(W ) and nz(W ) is as follows. We
keep a listy of partial solutions from ny(W ), a listz of partial solutions from nz(W ), and
a queue of pairs of partial solutions which we have yet to return. When we recieve a partial
solution p from ny(W ) or q from nz(W ) we add it to listy, listz respectively. We then add
every new pair (p, q) to the queue. We then return the pair of smallest combined weight and
remove it from the queue. If a partial solution from this pair is the last partial solution that we
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have recieved from either child we must request a new partial solution from this child. We do
this to make sure that there is no undiscovered pair of partial solutions of smaller weight than
anything in the queue.

Algorithm 5: nextPartialSolution(nx(W )) for join nodes.

if request(ny(W )) then
p← nextPartialSolution(ny(W ))
add p to listy
request(ny(W ))← false
for every q in listz do

add pair (p, q) to queue

if request(nz(W )) then
q ← nextPartialSolution(nz(W ))
add q to listz
request(nz(W ))← false
for every p in listy do

add pair (p, q) to queue

(p, q)← pair from queue with minimal w(p) + w(q)
r ← join(p, q)
if p is last element of listy ∧ hasNext(ny(W )) then

request(ny(W ))← true

if q is last element of listz ∧ hasNext(nz(W )) then
request(nz(W ))← true

if queue is empty ∧¬hasNext(ny(W )) ∧ ¬hasNext(nz(W )) then
hasNext(nx(W ))← false

return r

This concludes the recurrence for Weighted Steiner Tree. We have shown procedures
in which partial solutions are generated in ascending order of weight for any type of node which
capture the recurrence given in any type of bag in a nice tree decomposition.

3.2.2 Piecemeal Elimination of Linearly Dependent Partial Solutions

We will now show how to apply the rank based reductions in order to eliminate new partial
solutions that are linearly dependent on previously returned partial solutions. We will also
deal with partial solutions that represent the same connectivity between vertices in which case
we only want to return the partial solution of minimum weight. Once we return a partial
solution we know that we can eliminate any further partial solution that represents the same
connectivity since they are returned in ascending order of weight. The same goes for linearly
dependent partial solutions. Any partial solution that is linearly dependent on a previously
generated partial solution can be eliminated since it cannot be part of a minimum weight basis.

We will eliminate partial solutions as follows. Each node nx(W ) will have a procedure
eliminate(p) which determines if we should eliminate partial solution (p, w). If this procedure
(Alg. 6) returns no we will return (p, w) to the parent node. If it returns yes we will not return
(p, w) but continue until we generate a partial solution which is not eliminated. Each node will
keep a listp of partitions (or bit strings) of partial solutions it has previously returned. We
will eliminate the partial solution if p is in this list and add it to the list otherwise. We also
keep a collection of rows from matrix C on which elementary row operations have already been
applied. We then calculate the row r1 corresponding to p in C and apply row operations on it
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for every row r2 ∈ rows. We eliminate (p, w) if it is linearly dependent, i.e. r1 is all zeros, or
add r1 to rows and return it otherwise.

Algorithm 6: eliminate(p)

if p ∈ listp then
KwRet yes

else
add p to listp

r1 ← row of p in C
for row r2 ∈ rows do

l← leading one in r2
if bit in r1 at position l = 1 then

r1 ← r1 + r2 mod 2

if every bit in r1 is 0 then
return yes

else
add r1 to rows

return no

This concludes the description of the algorithm which evaluates partial solutions for Weighted
Steiner Tree in ascending order of weight, for which we have shown that we can apply the
rank based approach to eliminate linearly dependent partial solutions as they are generated.

3.3 Implementation

In this section, we will discuss the implementation of the algorithm described in the previous
section and show some pitfalls which should be avoided. We have implemented the algorithm
in Java using the bit string representation for partial solutions discussed in the first part of the
thesis.

The queue in join nodes is implemented using a priority queue. While insertion in this queue
takes time logarithmic in the queue size we have observed that adding pairs takes no significant
part in the runtime since the queue stays relatively small.

We keep an extra list at each node containing the position of leading ones in the collection
of rows. We do this in order to save time since we need these positions every time a row is
considered for elimination. Partial solutions will never be eliminated in leaf nodes, introduce
vertex nodes, and the introduce edge nodes in which edges can not be introduced. In these
nodes we directly return partial solutions to the parent node, without considering them for
elimination using the procedure from Sect. 3.2.2, in order to save work.

Some care should be taken when we eliminate partial solutions. In some cases the node may
not be able to generate any more partial solutions after a partial solution has been eliminated.
This can happen in the procedure of the forget vertex nodes as well when the project operator
returns an invalid partial solution. Therefore, the procedure in each node should be able to deal
with the event that a child does not return a partial solution when one is requested. Since full
description of handling this requirement is somewhat tedious and uninstructive we invite the
reader to view our code for more details.

Our software is publicly available, can be used under a GNU Lesser General Public Licence,
and can be downloaded at:
http://www.staff.science.uu.nl/ bodla101/java/steiner.zip
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3.4 Experimental Results

In this section, we will report the results for experiments with the algorihm discussed in Section
3.2 which we will denote as ORDER. We will compare the performance of this algorithm to the
performance of BSA and BSC from the first part of the thesis. We will compare the runtime
of these algorithms. Furthermore, we will compare the number of partial solutions generated
during the execution of these algorithms to illustrate how much work is being saved by generating
partial solutions in ascending order of weight. We will use the same graph instances from Steinlib
[19] and Treewidthlib [26] that were used in the first part of the thesis.

All algorithms have been implemented in Java and the computations have been carried out
on a Windows-7 operated PC with an Intel Core i5-3550 processor and 16.0 GB of available
main memory. The results of the ORDER algorithm where gathered at the same time as the

instance tw(T) |V | |E| |T | BSA BSC ORDER

b01.stp 4 50 63 9 26 22 31
b02.stp 4 50 63 13 9 8 20
b08.stp 6 75 94 19 10 7 13
b09.stp 6 75 94 38 6 6 7
b13.stp 7 100 125 17 95 240 198
b14.stp 7 100 125 25 43 32 41
b15.stp 8 100 125 50 161 169 337
i080-001.stp 9 80 120 6 1571 1251 2259
i080-003.stp 9 80 120 6 3077 3019 2369
i080-004.stp 10 80 120 6 14464 18197 22040
b06.stp 10 50 100 25 6021 5379 10831
I080-005.stp 11 80 120 6 236683 293567 234546
b05.stp 11 50 100 13 137917 118226 156883

Table 3.1: Runtime in milliseconds for instances from Steinlib (1)

instance tw(T) |V | |E| |T | BSA BSC ORDER

es90fst12.stp 5 207 284 90 19 11 17
es100fst10.stp 5 229 312 100 20 16 19
es80fst06.stp 6 172 224 80 30 22 26
es100fst14.stp 6 198 253 100 19 14 15
es90fst01.stp 7 181 231 90 29 20 37
es100fst13.stp 7 254 361 100 112 84 134
es100fst15.stp 8 231 319 100 120 101 147
es250fst03.stp 8 543 727 250 206 162 264
es100fst08.stp 9 210 276 100 309 321 548
es250fst05.stp 9 596 832 250 1550 1109 2461
es250fst07.stp 10 585 799 250 7508 5942 13197
es500fst05.stp 10 1172 1627 500 5972 4933 9580
es250fst12.stp 11 619 872 250 23311 20045 37366
es100fst02.stp 12 339 522 100 150013 143582 253664
es250fst01.stp 12 623 876 250 105810 91650 109069
es250fst08.stp 13 657 947 250 1257730 1236192 1806706
es250fst13.stp 13 713 1053 250 1684224 1557617 1617842

Table 3.2: Runtime in milliseconds for instances from Steinlib (2)

33



instance tw(T) |V | |E| |T | BSA BSC ORDER

myciel3.stp 5 11 20 2 1 < 1 < 1
BN 28.stp 5 24 49 4 2 2 1
pathfinder.stp 6 109 211 21 26 18 31
csf.stp 6 32 94 6 19 15 15
oow-trad.stp 7 33 72 6 50 36 32
mainuk.stp 7 48 198 9 291 214 271
ship-ship.stp 8 50 114 10 352 254 372
barley.stp 8 48 126 9 168 142 203
miles250.stp 9 128 387 25 1761 1291 1677
jean.stp 9 80 254 16 1907 1175 460
huck.stp 10 74 301 14 3829 2657 863
myciel4.stp 11 23 71 4 16385 23824 3208
munin1.stp 11 189 366 37 162717 227469 99843
pigs.stp 12 441 806 88 1469987 1791343 513948
anna.stp 12 138 493 27 2357740 2398758 509029

Table 3.3: Runtime in milliseconds for instances on graphs from TreewidthLib

instance tw(T) |V | |E| |T | BSA BSC ORDER

b01.stp 4 50 63 9 1653 1653 1284
b02.stp 4 50 63 13 1629 1639 1364
b08.stp 6 75 94 19 11655 12006 6726
b09.stp 6 75 94 38 5292 5292 3840
b13.stp 7 100 125 17 47004 58682 29813
b14.stp 7 100 125 25 37395 37535 21299
b15.stp 8 100 125 50 76692 90363 44150
i080-001.stp 9 80 120 6 570135 571433 284126
i080-003.stp 9 80 120 6 1279586 1282396 339357
i080-004.stp 10 80 120 6 2687824 3507831 1382932
b06.stp 10 50 100 25 723512 750390 602203
I080-005.stp 11 80 120 6 25194937 31197986 6102838
b05.stp 11 50 100 13 6827453 6974959 2741485

Table 3.4: Number of generated partial solutions for instances of Steinlib (1)

results of the first part of the thesis, i.e. under the same circumstances, using the same nice
tree decompositions for the graph instances.

In Tables 3.1 - 3.3, we have gathered the results for the runtimes of the three algorithms for
the graph instances. For the Steinlib instances we see that ORDER is outperformed by BSA and
BSC in all but a few instances, e.g. i080-003 and i080-005 for which we see slight improvements.
This is further reflected in Tables 3.4 - 3.5 in which we see only small differences in the amount
of generated partial solutions except for these instances. In the worst case ORDER takes about
twice as much time. This shows that we lose too much time with the extra overhead used to
generate partial solutions in ascending order of weight in the ORDER algorithm. Generally, for
these instances, we do not see enough pay-off from the decrease in generated partial solution.

The results in Table 3.3 for the Treewidthlib instances seem more positive. For instances
of treewidth 9 and up we see some significant improvement in running times for the ORDER
algorithm. This is further reflected in Table 3.6 where we see a substantial disparity in the
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amount of partial solutions that are generated. This shows that in some instances we can avoid
a lot of work by generating partial solutions in ascending order of weight.

instance tw(T) |V | |E| |T | BSA BSC ORDER

es90fst12.stp 5 207 284 90 17691 17704 15654
es100fst10.stp 5 229 312 100 22181 22207 19645
es80fst06.stp 6 172 224 80 31727 32307 27767
es100fst14.stp 6 198 253 100 21945 21969 19594
es90fst01.stp 7 181 231 90 30083 30124 23606
es100fst13.stp 7 254 361 100 99199 99415 86671
es100fst15.stp 8 231 319 100 100472 100490 86538
es250fst03.stp 8 543 727 250 151732 151810 120721
es100fst08.stp 9 210 276 100 84869 90006 69233
es250fst05.stp 9 596 832 250 739927 740659 622536
es250fst07.stp 10 585 799 250 1664403 1665253 1394474
es500fst05.stp 10 1172 1627 500 1790537 1791036 1486215
es250fst12.stp 11 619 872 250 3772577 3773396 3215275
es100fst02.stp 12 339 522 100 4909234 4909360 3818320
es250fst01.stp 12 623 876 250 4714990 4715219 4065129
es250fst08.stp 13 657 947 250 18954303 19507901 16379865
es250fst13.stp 13 713 1053 250 15870409 16101784 13893935

Table 3.5: Number of generated partial solutions for instances of Steinlib (2)

instance tw(T) |V | |E| |T | BSA BSC ORDER

myciel3.stp 5 11 20 2 1294 1346 555
BN 28.stp 5 24 49 4 1669 1699 1237
pathfinder.stp 6 109 211 21 21205 22072 12253
csf.stp 6 32 94 6 21110 21214 9322
oow-trad.stp 7 33 72 6 39317 39326 21203
mainuk.stp 7 48 198 9 202412 210410 103686
ship-ship.stp 8 50 114 10 144494 144683 88549
barley.stp 8 48 126 9 77798 84124 45446
miles250.stp 9 128 387 25 273710 278716 118480
jean.stp 9 80 254 16 292576 302643 58935
huck.stp 10 74 301 14 526946 531596 101938
myciel4.stp 11 23 71 4 1876694 3482634 188023
munin1.stp 11 189 366 37 19289463 23534527 5288937
pigs.stp 12 441 806 88 13488331 16814403 5251439
anna.stp 12 138 493 27 82060856 99551997 6436710

Table 3.6: Number of generated partial solutions for instances on graphs from TreewidthLib

3.5 Discussion and Concluding Remarks

In this paper, we have presented a new algorithm for Weighted Steiner Tree in which
we evaluate partial solutions from the dynamic programming recurrence in ascending order of
weight. We did this in an attempt to avoid part of the work of a straightforward dynamic

35



programming algorithm which calculates tables in a bottom-up fashion. We have shown that
we can still use the rank based approach and bit set representation which proved to be very
effective in the first part of the thesis. This also allowed us to limit the amount of space used by
the algorithm. During the experimentation we have not encountered any complications caused
by lack of memory for the graph instances.

In practice, when we compare the ORDER algorithm to BSA and BSC we see some mixed
results. For the Steinlib instances we see mostly negative results while for the instances of
Treewidthlib of sufficient treewidth we see a very postive pay-off. We end this paper with a
number of suggestions for further study:

• We see a disparity in results when we consider different types of graphs. What causes the
ORDER algorithm to perform well in some instances and badly in others? Can we find
some properties of graph instances for which this approach works well?

• At first glance it looks like graph density and the number of terminals in a Steiner Tree
instance could have some effect on the effectiveness of the algorithm. If this is the case,
can we find some general rule which tells us when the ORDER algorithm performs well?

• How well would a similar algorithm for different connectivity problems, e.g. Traveling
Salesman, Feedback Vertex Set perform?

• Can we increase the performance in join bags in the bottom-up dynamic programming
algorithms in practice by calculating partial solutions in order of weight? For every base set
of vertices we have to consider every combination of partial solutions from both children.
Many of these combinations will be eliminated when we find a representative set. We could
generate partial solutions in ascending order of weight until we reach the rank bound and
skip all other combinations.
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