
R O B U S T O B J E C T D E T E C T I O N
F O R S E RV I C E R O B O T I C S

tim de jager

ica-3698823

submitted for the degree of msc .

Multimedia and Geometry
Computer Sience

Utrecht University

October 17, 2013

Tim de Jager: Robust object detection
for service robotics, with the AMIGO service robot, © October 17, 2013

thesis code:
ICA-3698823

supervisors:
Dr. Robby T. Tan
Msc. Sjoerd van den Dries

reviewer:
Prof. Dr. Remco Veltkamp

location:
Utrecht

date:
October 17, 2013

A B S T R A C T

In the near future robotics will become a much larger part of our
society, and more robots will be developed to execute a range of gen-
eral tasks, so that they are able to assist human operators in their
day to day work. At the Technical University of Eindhoven (TU/e),
the AMIGO robot is designed to perform such general service tasks,
with a special focus on health care applications. A general purpose
service robot, such as AMIGO, needs a certain skill set to perform
tasks autonomously. One of these skills, is being able to perceive ob-
jects in the world. Using this information AMIGO can act accordingly,
e. g., by bringing the required object back to its operator.

This thesis describes a system for detecting household objects in
domestic environments. The object detection system has been devel-
oped for AMIGO, and is based on the object detection method, LINE-
MOD, presented by hinterstoisser et al. [1]. To make the system appli-
cable for both the general service tasks performed by AMIGO and the
RoboCup competition, an annual event encouraging robotic research,
LINE-MOD is extended by adding extra color modalities to the detec-
tion system, testing different normal extraction routines and enabling
the use of additional features. The detection module is subsequently
included in a framework with a different set of tools, making it of
practical use for the AMIGO project and its users, and is integrated
with existing systems used currently used in the AMIGO project. The
detection module is evaluated with household objects that AMIGO
encounters while performing service related tasks and competing in
the RoboCup competition.

The system is discovered to be able to recognize most household
objects with reasonable accuracy, the use of an added color modality
results in the increased accuracy of the detection of household objects
at a small performance penalty. However, it may still fail in situations
where objects are highly textured, resulting in false positives inside
object instances, and when object models are too similar in shape
or color a problem which is primarily caused by the use of highly
quantized feature types.

iii

Our vision for robotics depends on perception..
— Gary Bradski

A C K N O W L E D G M E N T S

This thesis could not have been realized without the support of a
number of key people. I would like to thank the Robotics group at
the Technical University of Eindhoven for providing an enthusiastic
environment for working on projects in Robotics. You are the best!
The group includes a number of very talented individuals that are
making service robotics possible, some of which I would like to thank
specifically.

A special thanks goes out to my supervisor, Sjoerd van den Dries,
for fruitful discussions on the late night train back to Utrecht, for hav-
ing a great number of intuitive ideas to share, and for having a won-
derful sense of humor and thus never failing to make people smile. I
especially admire the way you can motivate and activate people work-
ing with you, as well as your ability to tackle complex projects with
ease. Your enthusiasm is infective, I hope you can continue to inspire
people and wish you the best of luck with your research.

Another big thanks goes to the other Phd. candidates (Jos, Janno
and Rob) in the AMIGO project, without you AMIGO probably would
never have come this far, let alone capture the third position at the last
Robocup.

I would also like to thank fellow master student Bas Coenen espe-
cially. Whom I have have come to know, as an absolutely inspiring,
talented and friendly person that is able to express himself and his
ideas with absolute clarity. Thank you for the inspiring discussions
about our projects that could sometimes span hours, and for always
providing a place to sleep after having some beers in Eindhoven. The
past year has not been easy for you, but I have seen that you have
endured past hardships with such resilience that I know all will be
well, I wish you only the best.

I would like to thank my parents and sister for keeping their faith in
me, even when my graduation project has taken on much longer than
it was supposed to. Without your unending patience, great advice
and unconditional support, I would not even have made it halfway.
You are my favorite people on this earth, I loved spending the week-
ends with all of you and will always be grateful that you always
welcomed me back into my former home with open arms. I hope that
we get to spent many more days together the coming years.

iv

The University of Utrecht also receives my gratitude for providing
a great master program, with another thanks going out to my super-
visor dr. Robby Tan, I wish you and your future research all the best!

Finally, I would like to thank AMIGO for performing so admirably
when I have asked him to, always trying to detect objects to the best
of his ability. Thank you, you have been a star!

v

C O N T E N T S

i introduction 1

1 introduction 2

1.1 AMIGO 3

1.1.1 Project motivation 4

1.2 Object detection 5

1.2.1 Detection of categories or instances 5

1.2.2 Brief overview 5

1.3 Object detection on AMIGO 10

1.3.1 Problem description 10

1.3.2 Requirements 11

1.3.3 Advocated method 12

1.3.4 Research Questions 12

1.4 Contributions 13

1.5 Thesis organization 13

ii method 15

2 core detection module 16

2.1 Introduction 16

2.1.1 Notation 16

2.1.2 Similarity calculation 17

2.2 Module overview 18

2.2.1 Module pipeline 18

2.3 Feature extraction 20

2.3.1 Feature representation 20

2.3.2 Feature types 21

2.3.3 2D gradient modality 21

2.3.4 3D gradient modality 23

2.4 Detecting an object 28

2.4.1 Similarity measure 28

2.4.2 Modified similarity measure 30

2.4.3 Similarity 35

3 method additions 36

3.1 Introduction 36

3.2 3D Normal extraction 36

3.2.1 Cross products 37

3.2.2 Principle Component Analysis 38

3.3 Color feature 41

3.3.1 Hue gradient 42

3.3.2 Color names 43

3.4 Color feature similarity 46

3.4.1 Hue gradient similarity measure 47

vi

contents vii

3.4.2 Color names similarity measure 47

3.5 Matching addition 49

3.5.1 Speed increase 49

3.5.2 Cache miss reduction 49

4 software on amigo 51

4.1 Introduction 51

4.1.1 Third party software 51

4.2 System goals 52

4.3 Detection on AMIGO 52

4.3.1 Learning an object model 53

4.3.2 Learning GUI 55

4.3.3 System Configurations 55

4.3.4 Run-time detection 57

4.3.5 Summary 60

iii evaluation & conclusions 61

5 evaluation 62

5.1 Introduction 62

5.1.1 Overview of the evaluation 62

5.2 Object dataset 63

5.2.1 Object Annotations 66

5.2.2 Matching criteria 66

5.3 Detection benchmark 66

5.3.1 Color Modalities 68

5.3.2 Standalone color modalities 71

5.3.3 Summary 71

5.3.4 Normal estimation 71

5.4 Discussion and drawbacks 74

5.4.1 Quantization 74

5.4.2 Spreading 75

5.4.3 Modality separability 76

5.4.4 Cross-similarity 77

5.4.5 Separability 78

5.4.6 Influence of background 83

5.5 Running time performance 84

5.6 Conclusions 87

6 conclusions and future work 88

6.1 Introduction 88

6.2 Research Questions 88

6.2.1 Research Questions 88

6.3 Future Work 90

iv appendix 93

a sse instruction set 94

a.1 Introduction 94

a.1.1 SSE for image processing 95

a.2 Using SSE instructions 96

contents viii

a.2.1 Memory alignment 97

a.2.2 Small example 97

a.3 Further reading 99

b object data set 101

b.1 Objects 101

b.1.1 Object instances 101

b.1.2 Locations 102

bibliography 104

Part I

I N T R O D U C T I O N

1
I N T R O D U C T I O N

Since the 20th century robotics is becoming an increasingly active
field of research. With both the software and hardware becoming
more advanced, we will continue to see an increase of robots in our
direct environment. The focus in robotic research has always been a
combination of both structurally sound hardware and sufficiently ad-
vanced software, to make a given task feasible. Industrial robots have
been actively for three decades now. However, because robots are now
also being applied in commercial, domestic and military applications,
the encountered environments are not always as well conditioned as
industrial environments, which increasing the need for generic and
robust systems. Domestic service robots are required to perform a
number of autonomous tasks, e.g. serving food and drinks, which
requires a large amount of sophistication in both the hardware and
software. Domestic service robots will need to be accurate, safe and
fast. Ideally performing a task at least the rate and efficiency of a hu-
man. Although a significant amount of steps have been made, we are
not quite there yet. Software is still insufficiently robust and accurate,
and the costs for producing a robot are high. Furthermore there is
some amount of compatibility issues between different robotic sys-
tems, research done on a specific robot can often not be applied to an-
other. These issues are being improved in a number of ways: events
like the annual RoboCup [2], aim to improve and promote current
research into robotics and autonomous behavior. Standard platforms
like the PR2 [3] and the Robotics Open Platform (ROP)1, aim to bring
down costs and provide a standard for the hardware. On the other
hand, the Robotics Operating System (ROS) [4], facilitates the sharing
of knowledge between both scientific instances and commercial ven-
tures. The Technical University of Eindhoven currently participates
in the RoboCup and the Autonomous Mate for Intelligent Operations
(AMIGO) is the current iteration of the robotic platform for service
robotics and makes use of ROS. AMIGO is designed to be able to ex-
ecute general service tasks with the focus on healthcare applications.

1 http://www.roboticopenplatform.org/

2

http://www.roboticopenplatform.org/

1.1 amigo 3

1.1 amigo

AMIGO is a custom robot designed by the university of Eindhoven.
AMIGO features a holonomic base, human-like arms, movable torso
and multiple sensory input. The sensors currently used are multi-
ple Laser Range Finders (LRF) mounted on the base and a Microsoft
Kinect [5] serving as the head. A figure of AMIGO is displayed in
Figure 1. As can be seen AMIGO has a distinct appearance with a
some human-like features.

(a) AMIGO handing over flowers (b) AMIGO grasping a bottle

Figure 1: The Amigo robot in action, performing its task that usually re-
quires interaction with humans.

Because AMIGO is aimed to be used as an autonomous service
robot, it is specifically designed to perform tasks in a unconstrained
domestic human environment. AMIGO should be able to take orders
from humans and execute them correctly. These requirements place
a number of demands on the hardware, software and the general ap-
pearance of AMIGO. Within the AMIGO project a number of research
area’s can be identified, which address these demands:

actuation & control AMIGO should be able to control his actu-
ators robustly and safely. The focus of this research is to remove
any inherent instabilities and providing an interface which high
level components should be able to access.

task planning & execution When AMIGO is given a task, it
should be able to create a plan of execution, potentially splitting

1.1 amigo 4

up the task and assigning priorities. When a plan has been gen-
erated, AMIGO should execute this plan correctly and safely.

knowledge & reasoning AMIGO should be able to keep a cer-
tain amount of knowledge available, and should be able to rea-
son about this knowledge, enabling him to answer questions
about his environment, e.g. “Are there any drinks nearby” or
“Have you seen this human before?”

human machine interfacing AMIGO should be able to com-
municate with humans, in a correct and natural manner. Pro-
vide feedback during task execution and ask for additional in-
formation if required.

motion coordination AMIGO should be able to plan and exe-
cute his movements, which can be required while performing a
task. For example moving an arm to a correct position or plan-
ning and executing a motion plan to a designated location.

perception AMIGO should be able to identify and recognize his
environment and potential operators, and translating this seem-
ingly unstructured environment into a model, from which knowl-
edge can be extracted and reasoned.

Most of the work being done on AMIGO, as of writing this thesis,
involves one of these subjects. This thesis will focus on the last point,
i.e., perception.

1.1.1 Project motivation

Perception is a broad concept that can be interpreted in various ways,
but in any case it involves the detection of certain elements in a scene.
Eventually, the goal of perception on a robot is to get a total under-
standing of a scene, which means that all information is processed
so that irrelevant information can be discarded and relevant infor-
mation can be used. The robot would then be able to integrate this
into a single model, from which it could query the necessary informa-
tion, which is similar to humans who have ready access to a certain
amount of knowledge about an environment. However, this is still
infeasible; currently there is a focus on recognizing different types of
elements in a scene such as people and objects and presenting this
information to higher-level modules. As such, this thesis will present
an object detection module that will be able to do just that. The need
for such a system is high, as a lot of interaction between AMIGO and
the environment will consist of the manipulation of various objects.
Also in the RoboCup@home league2, a number of challenges focus on

2 A RoboCup league focusing on service robotics.

1.2 object detection 5

interacting with humans by locating, retrieving and presenting vari-
ous objects. In the rest of the chapter general object detection will be
discussed, as well as its relation to robotics and AMIGO.

1.2 object detection

In this section, general object detection and its history will be dis-
cussed, as well as some common techniques used in object detection
systems. First a brief overview will be given of past research in the
area, followed by a format for general detection frameworks. After
this general overview, we will explore the invidual components of
an object detection method. Finally, closing off with by applying this
knowledge on a specific application, namely AMIGO. This final sec-
tion will explore the possibilities and the eventual choice for an exist-
ing detection method.

1.2.1 Detection of categories or instances

However, before the general overview will be given, the distinction of
the detection of instances opposed to categories will be discussed, as
this choice limits the amount of available methods. The detection of
object categories or the detection of specific instances of objects, can
be viewed as two distinct problems. Categorizing and detecting an
object in an image is generally a much harder problem, object that
share the same semantic category may look completely different. The
problem remains largely unsolved for difficult categories, e.g. chairs.
The PASCAL VOC Challenge [6] focuses on detecting categories in
images using state of the art implementations, where the results vary
per category. For instance, chairs have a precision score of 19% as
opposed to cats which have a 53% precision score3. Detection of spe-
cific instances in an image, is a somewhat simpler problem, as the
appearance of the object will remain similar. The hard task is to make
a system robust to variations in the environment, which receives the
largest amount of attention in research papers. The trade-off is gener-
ality versus accuracy and speed, and the specific applications should
decide which goal it finds more important.

1.2.2 Brief overview

Generic object detection has been an open problem since the advent
of Computer Vision. A multitude of different approaches have been
taken to solve the detection problem, some of which will be discussed
below. As early as the work done by Roberts [7], there has been an

3 See the website http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/

results/index.html for the results of the most recent competition.

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/results/index.html
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/results/index.html

1.2 object detection 6

interest in detecting objects from images. In subsequent years a lot
of progress has been made in detecting objects in images. Thanks
to classification techniques like the Hough transform [8, 9], template
matching and the Normalized Correlation Coefficient [10, 11] and
more general Machine Learning[12, 13, 14] (ML) methods, the possi-
bilities to make practical object detection systems have become sig-
nificantly larger. In the last two decades an increase can be seen in
probabilistic/statistical classification approaches that coincide with
the increasing use of Machine Learning methods. These approaches
are distinct when compared to older approaches like approaches pre-
sented by Roberts [7] or Huttenlocher & Ullman [15], which seem to
think of object detection as more of an Image Alignment4 task, while
modern methods regard the problem more as a general classifica-
tion task. When Lowe et al. [16] presented the scale-invariant feature
transform (SIFT), a feature description was provided that could be
used reliably for a number of Computer Vision tasks, accelerating
the research done in Computer Vision to a next level. The two dis-
cussed research area’s: classification and feature extraction, seem to
have the largest impact on object detection research. The current sys-
tems could be considered practical applications of the combination
of these area’s, which can provide new insight into the established
theories.

When regarding recent object detection techniques one can extract
a general format. In this section such a format will be given, followed
by a detailed explanation of each step in which different solutions
and methods will be briefly discussed. During training the objective
is to create a classifier that will be able to detect either instances or
categories of objects.

1. Obtain input from sensors 1.2.2.1.

2. Extract a (sparse or dense) number of features 1.2.2.2.

3. Repeat first and second steps, until enough data is collected to
form an object model 1.2.2.3.

4. Train one or multiple classifiers using the object models. Using
positive samples and optionally negative samples 1.2.2.4.

During detection we want to test an image and determine if it con-
tains the object we are looking for. The steps are summarized as fol-
lows:

1. Obtain input from sensors 1.2.2.1.

2. Extract the features that we want to test 1.2.2.2, and combine
these into a model that the classifier is able to accept.

4 Matching image features to another image defined by a (linear) transformation.

1.2 object detection 7

3. Consider multiple image locations to test, perhaps discarding
some improbable locations. 1.2.2.5

4. Test the image locations using the classifier(s). A classifier is
function that can produce a probability, similarity or binary de-
cision, which determines if an image location is also an object
location 1.2.2.6.

5. Post-process the detection results, to make a decision on whether
an object is present in the image 1.2.2.7 .

These steps are very general and there are some ways that a method
can deviate from the mentioned steps. For example, when employing
unsupervised learning or semi-supervised learning, the training and
detection steps are often combined and the object model or classifier
is able to adapt online. This is opposed to supervised methods the
training is done offline, with a stable classifier during online detection
that evaluates the input. The Predator tracking and generic detection
system [17] is a successful method that takes the former approach.
Object detection approaches without tracking capabilities more often
take the latter approach [18, 19].

1.2.2.1 Input

Up until recently seminal work on object detection have been done
on 2D images [20, 11, 21, 16, 22, 23, 19]. Single or multiple calibrated
[24] cameras can be used to estimate pose and position, and enable
techniques like depth from stereo. Depth was often ignored in object
detection, because depth from stereo techniques were relatively im-
precise and good stereo cameras were expensive. However, with the
release of the Microsoft Kinect, the availability of a cheap sensor with
relatively high accuracy was suddenly a reality.The product has been
very successful in robotics producing a lot of new research in object
detection [25, 26, 27, 1, 28], and in related fields including the very
impressive Kinect Fusion 3D reconstruction method [29], a feat that
has been made possible, primarily by the introduction of the Kinect.

1.2.2.2 Features

Features play a very important role in object detection, as they can
change the performance of a detection algorithm significantly. Fea-
tures should ideally be descriptive and invariant: descriptive so that a
collection of features can describe and object or object class, and in-
variant so that the detection can handle varying environmental con-
ditions or different object poses. Prince noted in his book [30] that
there are recurring ideas in feature extraction to achieve invariance
and descriptiveness. Namely, to make a descriptor invariant to inten-
sity changes we can filter and pool responses over a region. To obtain

1.2 object detection 8

descriptiveness and uniqueness, we can maximize the response of a
descriptor over different orientations and scales. To create invariance to
small translations, local responses are pooled. The creation of a descrip-
tor usually uses a combination of these techniques. A large number of
popular 2D descriptors exist, with SIFT [16] being the most common.
Since the release of the Kinect there has also been an increase of in-
terest into 3D descriptors. Recent methods are using 3D gradients [1],
3D SURF [31] and 3D Heat Kernel Descriptors [32] and augmenting
methods with depth information [28].

1.2.2.3 Object model

An object model is a collection of image features that either retain
spatial information or discard it, in most detection systems the spatial
information is retained. A model is usually given a label like ‘car’ or
‘coke’, the objective of a object detection system is to find this model
in an image. There are different ways an object can be represented, a
few of which will be discussed.

A simple way to represent an object are collections of features in
rectangular region annotated with coordinates, this is called a Tem-
plate model. The Template model often contains multiple templates
per object. It has been used in both older and more recent work
[11, 20, 18, 17, 1]. The part-based model, which was also recently
used by Felzenszwalb et al. [19], builds upon the template model it
encodes the relative positions of detectable parts as opposed only the
absolute feature locations. Bag of Visual Words (BoW) approaches,
discard spatial information and combine the features into a visual vo-
cabulary, this visual vocabulary can then be considered to represent
the object model.

1.2.2.4 Training a classifier

Object detection typically defines a classification scheme to detect an
object instance or category in an image. Successful works from the
last decade like Lowe’s et al. object detection system [16], Viola and
Jones face detection system [18], Felzenszwalb et al. object detection
system [19]. Are using Machine Learning (ML) techniques to create
and train a classifier to classify an image or image patch. Some ML
classifiers have been successfully applied in literature, with boosting
[12] being one of the first [18, 33, 34], Support Vector Machines [14, 35]
(SVM) also producing successful works [20, 19], and more recently
Random Forests [13] (RF) are getting attention with successful ap-
plications [5, 36, 37, 22]. It is also possible to evaluate the similarity
or probabilities directly. Successful hough detection systems [9, 38]
and template matching techniques [11, 23, 1, 17] have been used in
this regard. Alternative models, like Bag of visual Words approaches,

1.2 object detection 9

use Nearest-Neighbor methods or SVM’s for performing the classifi-
cation.

1.2.2.5 Exhaustive Image Search

During run-time when an input image is provided, an object detec-
tion system should decide if an object is present in the image. This
can be done by doing an exhaustive image search at each location,
or using a heuristic/scheme to quickly disregard possible object lo-
cations. The Viola-Jones [18] detector uses a cascade of boosted de-
tectors, each with a significant false positive rate, to rule out image
patches. The combined cascade results in low false positive rate. This
kind approach has also more recently be used in Predator [17], which
rules out image patches based on simple thresholding decisions, and
uses increasingly complex detectors to detect the correct object. Alter-
native approaches evaluate the objectiveness of an image patch [39],
or rule out image patches based on context [40]. There is also research
being done in speeding up the detections directly, by using discrete
optimization techniques like branch-and-bound [41] or regarding the
problem as a convolution in the frequency domain [42]. Modern hard-
ware can also be utilized to speed up the process directly [23, 1], often
requiring the problem to be formulated differently when compared
with traditional hardware because these devices are best when pro-
cessing data in parallel.

1.2.2.6 Detection

When suitable locations have been selected, an object detection mod-
ule typically detects an object by evaluating an image patch with the
learned classifier. Binary classifiers typically output a decision, either
the object is present or it is not. Classifiers can also output a mea-
sure of similarity, which expresses a certain amount of confidence in
the outputted decision. Some classifiers can also output a probabil-
ity, e. g.LDA [43]), which can be either Bayesian or point estimates
depending on the classifier. Other classifiers can be adapted to do so
even though they did not output a probability originally, e. g.SVM
[44].

1.2.2.7 Post-processing

In some cases, when the classification has been made some post-
processing is required, usually when the output could contain a num-
ber of false positives which can be eliminated. One of the more com-
mon post-processing steps is Non-Maxima Supression, which involves
sliding a window across the image and suppresses all points which
are not a maxima for that region. NMS is commonly applied on a
Response Map, which is a 2D array that determines the similarity per

1.3 object detection on amigo 10

location. NMS can be used for suppressing false positives when de-
tecting multiple instances. Hough detection systems [22], for example,
often require this operation to perform robustly. Another common
operation is the specification of a threshold on the similarity or prob-
ability, which can be used to create a binary decision regarding the
presence of an object given a location in the Response Map. After per-
forming the necessary operations, the detections can be propagated
to a higher level module. This module can subsequently make use
of the given information and will be able to update its state of the
world.

1.3 object detection on amigo

In the past section we have looked at object detection in computer
vision, as well as the steps that are required when trying to detect an
object in an image. Now that we have obtained a better view of object
detection, we will discuss object detection in robotics and specifically
on AMIGO. In robotics we want to detect objects so that they can be
interacted with, and the requirements dictate which object detection
module should be selected. If we were to build a industrial robot that
should only recognize coins then perhaps a circular hough detector
would be sufficient. However, AMIGO will be required to detect ob-
jects in different environments as well as detect object robustly and
interact with them by picking them up. This will require a somewhat
more complex solution. In the next section we will discuss the prob-
lem of detecting an object on AMIGO and the requirements that an
object detection system will have to meet. These will both be general
requirements relevant for robotic solutions and requirements specific
for AMIGO.

1.3.1 Problem description

The problem that we are aiming to solve is to detect household ob-
jects in a domestic environment. A typical use-case would be the fol-
lowing: AMIGO is asked to ‘clean up’ a room. AMIGO processes
this command and proceeds to detect objects in different locations,
grasps these objects and brings them to their designated locations. To
be able to do this, multiple components will have to work together.
Specifically, the perception module will have to recognize and com-
municate the type of objects and their location in the world to other
modules, which enables the arm control to determine a grasping loca-
tion and subsequently grasp the object. This specific use-case is also
a RoboCup challenge. To be able to perform such tasks, a number
of different aspects will have to be considered as to decide how to
do the detection robustly and accurately. The goal of this project is
to provide an object detection module that is both usable as general

1.3 object detection on amigo 11

object detection system for a service robot and can be used directly in
the RoboCup challenges. Therefore, the system will have to meet cer-
tain theoretical and practical demands. These requirements are listed
below.

1.3.2 Requirements

Some theoretical considerations:

robustness The system should be robust in home/office environ-
ments. This entails that the detection should function under rea-
sonable (no large illumination changes, enough light available)
lighting conditions. Objects can be assumed to be placed on typ-
ical locations, e.g. a table or a couch.

accuracy The system should be accurate enough to detect and dis-
tinguish objects that are typically found in a household envi-
ronment. Non-deformable objects are not a focus yet so can be
considered out of project scope.

database size The system should be able to recognize enough ob-
jects to participate in the RoboCup@home league, normally fea-
turing about 20 to 25 objects.

sensors AMIGO is equipped with a Kinect which should be able to
provide both RGB and depth images. These images have a VGA
resolution, i.e. 640 pixels in width and 480 pixels in height. An
LRF is also available if needed.

speed The speed of the system should be quite high, ideally being
to detect objects in near real-time.

generality . The system should be general enough to function in a
domestic environment. The household objects to be considered
can be both textured and untextured, e.g. food packaging or a
coffee mug. Ideally the system should be able to handle both.

Some practical considerations:

usability The system should be easy enough to be used by novices.
Providing modules for learning and detection based on ROS.
Ensuring a fast setup during a RoboCup competition.

integration The system should integrate with the existing code
base and make use existing modules for communication as well
as higher level reasoning.

extensibility The system should be extensible, so that future stu-
dents can use and further extend the system.

1.3 object detection on amigo 12

The proposed system will need to meet most of these requirements.
In this thesis, a system will be presented which is based on an existing
object detection algorithm.

1.3.3 Advocated method

The method that is built upon in this thesis is chosen to be the LINE-
MOD object detection method, presented by Hinterstoisser et al. [1].
LINE-MOD was deemed suitable for our purposes because of the
following considerations:

• The method is fast, providing object detection capabilities in
real-time.

• The method provides support for multiple modalities, i. e.both
RGB and Depth types, as well as being tested on a sensor that
is currently being used, viz. the Microsoft Kinect [5].

• The method supports the detection of non-textured objects, which
can often be found in household locations.

• The method needs little training time. This is especially advan-
tageous because objects often need to be learned in a small time
frame.

• According to the original paper the method does not need a lot
of tuning to perform well, which is often hard to do for dynamic
environments.

These listed considerations, made LINE-MOD seem a suitable can-
didate to base the new object detection system on Amigo, and will be
used during the course of this thesis.

1.3.4 Research Questions

In the work presented by Hinterstoisser, a algorithm is given for the
detection of objects. By combining multiple modalities and making
use of the new Kinect hardware, a method has been presented that
appears to be robust enough to utilize in a Robotics environment. The
interest of Eindhoven in the project is mostly the application of this
method on AMIGO. Object detection is a task that AMIGO should be
able to perform robustly. The following questions remain:

1. LINE-MOD was created for detecting texture-less objects, How
well does LINE-MOD generalize to objects used in the RoboCup
competition? What are the current deficiencies and how could
these be tackled?

1.4 contributions 13

2. Is LINE-MOD a suitable candidate for the integration into the
AMIGO infrastructure and could it be used for everyday tasks?
Additionally, is LINE-MOD suitable for use in general service
robotics, and not just the AMIGO project?

1.4 contributions

The main contributions of this thesis are the implementation, exten-
sion and evaluation of LINE-MOD, as well as the creation of a frame-
work for object detection on Amigo. These can be summarized as the
following:

1. Provided a complete object detection system for AMIGO, which
provides the following additional features:

a) Automatic loading/saving of the object database

b) online loading of configurations for runtime switching

c) Learning and detection frameworks

d) Extensible system, automatic loading of different modali-
ties

e) online visualizations

f) Integration with ROS and existing systems

2. Inclusion of an extra modality, i. e.color, which includes both a
Hue and a Color Name [45] descriptor.

3. Different estimation schemes are provided for 3D gradient (nor-
mal) calculation.

4. Small extension: multi-threading of input process and the rais-
ing the amount of features that can be used.

5. Small extension: sorting of the gradients by location on the tem-
plate, reducing cache misses

6. Provided an evaluation of the current system, as an application
on AMIGO.

7. Practical Application of the method on the RoboCup.

1.5 thesis organization

The system described in this thesis is largely based off the existing
work done by Hinterstoisser et al. [1], a custom implementation is
provided that has been integrated into AMIGO as a new system with
a number of extensions. In the following chapters we will discuss the
implemented system in detail. First, an introduction and overview is
provided of the implemented system. This is followed by a detailed

1.5 thesis organization 14

discussion of the steps of the object detection module, as well as a
discussion regarding the implementation running on AMIGO. Visu-
alizations are provided, to showcase the different steps of the object
detection module.

The Object Detector implemented on AMIGO is described in the
subsequent chapters:

chapter 2 will focus on the description of the core detection mod-
ule, based on the LINE-MOD detection module [1].

chapter 3 explains the additions made to LINE-MOD, to make it
more suitable for household environments and the RoboCup
challenge

chapter 4 will detail the Object Detector as a whole and how it has
been integrated on AMIGO, focusing especially on the AMIGO
ecosystem and the integration with existing systems.

chapter 5 will focus on testing the system with objects encoun-
tered by AMIGO and will evaluate these results.

chapter 6 will conclude this thesis by answering the research ques-
tions and providing future work.

Part II

M E T H O D

2
C O R E D E T E C T I O N M O D U L E

2.1 introduction

This chapter will mainly focus on the original implementation as it
has been presented [1]. However, some notation will differ as to what
has been used in the original paper, so as to accommodate the subse-
quent chapters. All visualizations have been produced by the custom
implementation, but some images have been taken from the original
paper to help clarify portions of the text.

LINE-MOD as it is presented in the work by Hinterstoisser [1] is
a template matching method at its core. The contribution was the
fact that the method can be easily linearized and can therefore make
use of low-level optimizations. Also a number of steps can be prepro-
cessed offline which further increases the processing speed. LINE-
MOD is an instance based detection method, this entails that the
method needs to learn the object instances itself and does not gen-
eralize to categories. Another feature of the method is that the it can
perform quite well in cluttered scenes, mainly because of the use of
multiple modalities, which in the case of LINE-MOD means both 2D
and 3D gradient information1. If only a single modality is used for
the classification, the false positive rate is high. However, the combi-
nation of the two proves effective, bringing down the false positive
rate drastically.

2.1.1 Notation

2.1.1.1 Pixels and Points

In this thesis we wil refer to the input image as X, X contains 2D
points (pixel coordinates) x = (x, y), such that x ∈ X, and x ∈ R2

if X is a 2D image. Coordinates in three dimensions (points), are
contained in a pointcloud P, and are denoted by p = (x, y, z), such
that p ∈ P, and p ∈ R3.

1 A gradient in a RGB image is related to the intensity change of a Color or Gray-scale
channel in the x and y direction, producing a vector in the direction of the greatest
intensity change

16

2.1 introduction 17

2.1.1.2 Objects and Templates

The Object Detector implemented on AMIGO, concerns itself with
detecting an object from a series of input frames. The Object Detector
uses multiple inputs streams, called the RGB (2D) and Depth (3D)
frames, to detect and report objects. The input of the Object Detector
are these input frames, as well as a number of known objects O that
are to be found in that frame. The output of the Object Detector is a
series of binary detections, detailing which objects have been found
and how similar, denoted by E , these objects are when compared to
their model.

The detection modules works with templates that are combined into
an Object Model. A template is a set of features:

T = (F0, . . . , Fn) (1)

Fi = (d, r) (2)

Where each feature F is a binary feature descriptor d and a 2D po-
sition r. These positions are relative to the bounding box that defines
the template size. The feature descriptor d is binary descriptor that
can be captured in a single byte i.e d = {0, 0, 0, 0, 0, 0, 0}. An Object
Model is a collection of n templates for each modality m:

O =

T0

...

Tm

 (3)

O =

T0

0 · · · T0
n

...
. . .

...

Tm
0 · · · Tm

n

 (4)

Note that original paper by Hinterstoisser et al. [1], has no concept
of Object Models, only of templates. The extension of templates into
an object model is straightforward, and necessary if we want to con-
sider the detection of an object in its entirety.

2.1.2 Similarity calculation

During the detection phase, the system loads these models from disk
and proceeds to detect these objects in a scene by evaluating the sim-
ilarity function. For each template Ti ∈ O and x, where x is a number
of possible object positions, the following is evaluated:

E(O, x) (5)

2.2 module overview 18

which is the similarity for object O at image location x.
The object detector makes use of a number of quantized input im-

ages and optimized representations, that are used for calculating the
similarity. The method makes use of two quantized representations
of the input images, these are listed below:

• Q represents the quantized input image.

• J represents the spread image Q.

When a feature from either Q or J , is compared to template T,
this is termed a response. The sum of these responses is the object
similarity as specified by Equation 5. To optimize the calculation of
these responses, two intermediate representations are created that are
conditioned on i ∈ (0, . . . , 7), which is the bit index of d:

• Si represents all possible feature responses for i

• τi is a Lookup Table (LUT), which is used during the calculation
of Si

Most of these notations, will not make more than an intuitive sense
at this point. However, during the course of this chapter, it will be-
come apparant how these are used and calculated.

2.2 module overview

The current detection system is visualized in Figure 2, the figure
shows an overview of the core detection module.

The object detection module is divided into a learning and detec-
tion phase, similar to those described in Section 1.2.2. The part of the
figure that is labeled with ‘offline’ is concerned with the calculation
of static data. This data does not change at run-time and can be cal-
culated once per modality. The goal of the learning phase, is to learn
an object O and add this object to the database.

2.2.1 Module pipeline

In this section a short birds-eye overview is provided of the detection
module, after which we will go into more detail for some of the steps.
The goal of this section is to provide a clear overview that will sim-
plify the understanding of the more detailed explanations that are to
follow. When running the module, the first step of doing a detection is
the preprocessing phase. The primary objective of the preprocessing
phase is to present the features in such a way that the detection can
be used for the detection of an object. The steps can be summarized
as follows:

2.2 module overview 19

Preprocessing

Learning Detection

Input
images QuantizationFeature

extraction Filtering

Quantized
Image (Q)

Offline

Possible
features

Table
generation

Response
tables

Process
Input
Output

Spreading

Response
map creation

Matching Similarity

Template
extraction

Combining
modalities

Object models

Store

Object detection framework

Quantized
Image (J)

Response
Map (S)

Figure 2: The current detection module. The green nodes represent the input
used by the system, the orange nodes the processed output, and the
blue nodes represent processing steps.

1. Feature extraction. Perform a number of low-level image process-
ing operation on the entire input image, extracting the features
F.

2. Filtering. Eliminate features F that can be considered noise.

3. Dimensionality reduction. Quantize the remaining features into
the descriptor d.

4. Pooling over a region. Consider a neighborhood and only keep
dominant descriptors d. Collect these features into Q

Note that the preprocessing is done for each modality separately,
producing multiple binary images. The preprocessing is done for
both the detection and learning phases, which is related to the feature
extraction step as introduced in 1.2.2.2. After the image Q is created,
we can move on to the detection phase. During the detection phase
we want to use the binary images to decide whether a specific object
instance is present. The steps can be summarized as follows:

1. Spread the features in Q over a region, effectively pooling the
local features.

2. Creating the Response Maps Si. Determining the response for
each feature descriptor d, by cross-referencing an entry in the
image Q with the precalculated Response Table τi.

2.3 feature extraction 20

3. Matching each template Ti ∈ O by concatenating responses for
image locations x, where the number of locations is determined
by the amount of spreading. Outputting a similarity map E ,
which specifies the amount of similarity per location x, and is a
discrete approximation of Equation 5.

From the Similarity map it is possible to determine the image lo-
cation containing the maximum similarity and decide, with a user
defined threshold, if an object has been detected.

As described, the detection phase makes use of different object
templates Ti, which should be learned offline. Note, that this is not
discussed in detail in the paper so a new implementation has been
created. During learning the goal is to learn an object model O by
collecting templates for each modality. The steps summarized below:

1. Given a binary image Q and a bounding box, extract a number
of features from the binary image Q.

2. Combine the templates for each modality and save this as an
object model. Store the object model to disk.

3. Use detection to determine the object model in a new input im-
age, if a detection in which the similarity is between two thresh-
olds tlow and thigh is found then save to disk. Repeat steps 1 and
2 until enough templates have been collected to describe the
object.

We will discuss the features and extraction methods in more detail
in Section 2.3. Followed by a discussion of the actual detection in
Section 2.4 The process of learning an object model is discussed in
Section 4.3.1, because learning templates is not fully discussed in the
main paper, the implementation could differ from the original, and
will therefore discussed in Chapter 4.

2.3 feature extraction

LINE-MOD extracts different feature types for different modalities.
Because the focus of LINE-MOD is on non-textured rigid objects, the
features that it uses should work well with these objects. One of the
main intuitions held by the original authors is that combined modali-
ties should outperform a single modality. Figure 3, demonstrates how
these modalities can be combined.

2.3.1 Feature representation

Recall that the descriptor d is binary descriptor, captured in a sin-
gle byte i.e d = {0, 0, 0, 0, 0, 0, 0}. Although it is possible to capture
256 configurations with a byte, LINE-MOD uses a single value for

2.3 feature extraction 21

Figure 3: The combination of multiple modalities. The first two images
showing both a separate 2D gradient and 3D normal feature rep-
resentation. The last image on the right showing the combined
modalities. Source [1]

each bit because of the spreading and the low-level optimizations. Im-
plying a total of 8 configurations. Section 2.4 examines the matching
operation done with the quantized representation, and will clarify
this restriction. This can be seen as a trade-off, as this means that we
are forced to quantize a potentially high-dimensional feature into just
8 configurations, but this enables a large speed increase.

2.3.2 Feature types

In the next sections the different feature types that have been used
will be described as well as the routines used to extract the features,
for both the RGB and Depth images.

2.3.3 2D gradient modality

The intuition behind the color gradient modality is that it should de-
scribe the shape of the object, i.e. the contour. Edge features tend to de-
scribe the boundaries of the object reasonably well. Furthermore, for
textureless objects other feature types like SIFT or SURF, are often un-
available as there is simply not enough information on the surface of
the object. The choice for this feature type is inspired by the features
presented in the Histogram of Oriented Gradients (HOG) framework
[20], which have proven effective in practice, and earlier work done
by the authors in [23]. In Figure 4 a typical scene is illustrated that is
used during the learning of an object. The figure shows the two input
images that are processed by the system.

The feature F, as introduced in 2.1.1 is the orientation of the gradi-
ent, these can be described in 2D by the following procedure:

• Given pixels positions x ∈ X, where X is the input image, we
can define the image intensity I(x) = I(x, y) of the 2D image

2.3 feature extraction 22

(a) RGB Image (b) Depth Image

Figure 4: A scene with a single coke can. The visualizations in this chap-
ter are all based on these input images. (a) Shows the RGB in-
put image. (b) Shows the Kinect depth map which ranges from
(0.0, . . . , 5.0) meter but are remapped to (0, . . . , 255) intensity val-
ues to display the image.

• The partial derivatives can be calculated from the intensity I(x, y):

∇I(x, y) = (
∂I
∂x

,
∂I
∂y

) (6)

• The function ∇I(x, y)C is approximated with a Sobel filter2,
combined with a Gaussian Blur to eliminate noise.

• This can be done for the grayscale intensity I(x, y) or the calcu-
lation can be done per color channel c:

∇I(x, y)C = (
∂IC

∂x
,

∂IC

∂y
) where c ∈ {R, G, B} (7)

which means that we should apply the sobel filter per channel
C.

• Let GC denote the vector output evaluated at a specific coordi-
nate x for color channel C:

∇I(x)C = GC =
[

∂Ic
∂x , ∂Ic

∂y

]T
(8)

these can be calculated for all x
• After which the largest gradient over all color channels is se-

lected per x:

||GC|| =
√

G2
Cx + G2

Cy (9)

G = arg max
GC

(||GC||) for C ∈ {R, G, B} (10)

2 A Sobel filter is a convolution with a central difference kernel, which calculates
numerical derivatives in the x and y directions, enabling an easy calculation of the
gradient

2.3 feature extraction 23

The calculation of derivatives on multiple independent color chan-
nels C, has been done before for HOG [20] and [19], and seems to en-
hance discriminative power [1]. The reason that a Sobel filter is used
as opposed to a more sophisticated edge detector, e.g. a canny detec-
tor, is probably because of the high speed of this filter. To transform
G into the quantized descriptor d, and quantize into the appropriate
value the following transformations are used:

• Convert the gradient into an angle and calculate the index:

θ = atan(
Gy

Gx
) (11)

index = θ ∗ (16/2π) (12)

• Only use the indexes that should not be considered noise we
make use of the gradient intensity ||G|| to filter out noise and
non-descriptive gradients.

• To map the index to the descriptor d, assign the index to the
correct bin and possibly truncate the value into 8 bins:

d = 1� (index & 7) (13)

• This is equivalent to binning the orientation into equally sized
bins. The symmetric gradients which have a negative y compo-
nent are mapped to positive y values, as has been visualized in
Figure 5.

• After the quantization we employ a noise reduction step. The
non-dominant gradient orientations are filtered, by sliding a
small window over the image and filtering out any gradients
that occurs less than 5 times in the neighborhood.

• Once the gradient suppression step is completed the binary im-
age Q is created by assigning Q(x) := d, for all x ∈ X that
passed the filtering steps.

The binary image Q, is further utilized during the detection phase.
The color gradient extraction routine only makes use of Figure 4a.

Figure 6, shows the processed gradients, Figure 6a, as well as the
intensity image, Figure 6b , as is returned by the Sobel filter. The
intensity image is used for the filtering step. Note that the colors in
the image correspond to those in Figure 5, also note that symmetric
gradients are mapped into their corresponding counterparts.

2.3.4 3D gradient modality

The intuition behind the depth gradient modality, is that it should
describe the shape of the object. 3D gradients or normal vectors give
some rough description of the surface of the object and can be eas-
ily utilized in the LINE-MOD framework, as will be seen in 2.4. The

2.3 feature extraction 24

Figure 5: The quantized 2D color gradients, the negative y gradients and
mapped to the (mirrored) positive y bins. Each gradient is mapped
to a bin of 22.5 degrees or π

8 . The colors represent the quantized
gradients as they are visualized by the system, note the mirroring
of the colors.

(a) Binary Image (b) Intensity Image

Figure 6: The processed scene, as seen in Figure 4.

depth map as shown in Figure 4b is used as an input. Starting with
the depth map we will have to reconstruct a point cloud that is lo-
cated in the Camera Frame. For each pixel coordinate x, and the depth
map D(x) (provided by the Kinect), which returns the depth at coor-
dinate x:

• The point p ∈ R3 in the Camera Frame can be reconstructed, by
first evaluating D(x) and subsequently constructing the point

pim =
[

x, y, D(x, y)
]T

.

• These reconstructed values are located in the Image Frame, to
reconstruct the original pointcloud P we transform each point
pim ∈ Pim into the Camera Frame:

P = K−1Pim (14)

using the Camera Matrix K
• Because the Infrared projector and Infrared camera on the Kinect

are translated by a few centimeters, the images will have to
be aligned before doing this transformation. Fortunately, the
calibration of the Kinect is done during the production of the

2.3 feature extraction 25

camera, this entails that the provided camera matrix K and the
translation between the camera’s is known3

Now that we have obtained P we can continue with the extraction
of the 3D gradients, which will also be referred to as normals, because
the definition is equivalent.

2.3.4.1 Normal approximation

After the point cloud is acquired, we can proceed with the extraction
of gradients from the point cloud, the normal extraction can be done
in a number different ways. Current literature has not yet yielded
an accurate, robust and fast method for the Kinect. The problem is
the large amount of noise on in the depth values, the values become
more inaccurate as the depth increases, and that the measurements
are incoherent at object edges.

The approach presented in LINE-MOD is based on a least-squares
approximation. An obvious approach would be to use the fact that
a normal can be used to define a plane for two neighboring points
(p1, p2) ∈ P, i.e:

v = p2 − p1 (15)

〈n, v〉 = 0 (16)

Using this intuition we can create a neighborhood of points that de-
fines the normal using a system of equations. Unfortunately, this will
not work, as the outcome of such a system would have to be An = 0,
where A is a set of vectors on the plane p. Obviously the normal vec-
tor should not be the null vector. Thus, we know that if the null space
of the system contains more than the null vector, then we are dealing
with a linear dependent system. This linear dependency is obvious,
because we are trying to approximate the normal that is orthogonal
to a plane. So there is no least squares solution by applying the nor-
mal equations naively. However, another approach is to look directly
at the depth function D(x) = z. Using this function it is possible to
make the following first-order Taylor approximation [1]:

D(x + dx) = D(x) + dxT∇D

D(x + dx)− D(x) = dxT∇D
(17)

Where x are the (x, y) image coordinates. Now we can create a
neighborhood of points from P, denoted as A to approximate the
gradient ∇D:

3 The details can be found in a number of places, e.g. http://pille.iwr.

uni-heidelberg.de/~kinect01/doc/index.html

http://pille.iwr.uni-heidelberg.de/~kinect01/doc/index.html
http://pille.iwr.uni-heidelberg.de/~kinect01/doc/index.html

2.3 feature extraction 26

• Formulate the problem as a least-squares optimization problem,
by approximating the new vector of points y with ∇D:

A∇D = y (18)

• Take the inverse to acquire ∇D:

∇D = A−1y (19)

• Rewrite A = X and apply the normal equations:

(XTX)∇D = XTy (20)

∇D = (XTX)−1XTY (21)

• Calculate (XTX)−1 using Cramer’s Rule, obtaining ∇D which
can be considered the gradient at that point.

Smoothing is done automatically, because we are considering a
neighborhood of points.

2.3.4.2 Quantization

camera

n

n'

v

v'

Z

X

Y

θ

Figure 7: Quantization of the 3D gradients, the two gradients n, v are
mapped onto the XY plane, the mappings are denoted as n′, v′.
The colored bins represent the quantization of range of angles (θ
from (0, . . . , 2π)) into the XY plane, each descriptor is associated
with a unique angle.

The quantization for the 3D modality is similar to the 2D case. How-
ever, in 3D we have an extra degree of freedom, meaning that there
are 2 angles to consider to parameterize a vector. The quantization
is visualized in Figure 7. We only take the half of the sphere into ac-
count that faces the camera. Because the point cloud is created with
the Kinect the normals should always face the viewer, hence they are
located in the +z region of the space in Figure 7. The calculation of

2.3 feature extraction 27

the index of d is similar to Equation 12, except that the 8 orientations
are mapped over the range of 2π instead of π. The quantization can
be seen as mapping a normal from 3D to a 2D plane, this plane is
split up into parts defined by 2π

8 angular parts, the angle θ is defined
on this plane. The mapping is done on the XY plane because of the
three possible planes it is the most descriptive, covering the largest
space that can be viewed from the camera.

Figure 8: The normal approximation method based on least squares.

After the quantization operation the gradient is mapped onto the
descriptor: d = 1 � index, and is combined into the image Q. Note
that a filtering step cannot be applied in 3D, because there is no such
measure as gradient intensity in 3D, as every gradient ||G|| = 1, cor-
responding to a unit normal vector. This entails that Q will be more
dense in 3D. However, we can still choose a dominant orientation, this
done in exactly the same way as in the 2D case, which provides some
measure of robustness. To eliminate noise, neighboring points that
have a depth difference larger than 0.5 cm are ignored, as well as Not
a Number (NaN) values which indicate that no depth information is
available.

In Figure 8 the estimated normals are shown, where the normal
x, y, z components are mapped to the respective r, g, b components.
In Figure 9, the quantized values are shown for the least squares
method, the color codes correspond to those introduced in Figure 7.

2.4 detecting an object 28

Figure 9: The quantized normals, the orientations have been mapped into 8
bins.

2.4 detecting an object

After we have extracted the features into the binary images Q, the
next step is to perform a matching over the entire input image with
an object model O. Naively, one could slide each template in the
model over the entire image, which is called a sliding window detec-
tor. The problem is that this is inherently slow, because to determine
the exact location one would have to perform (640× 480)× f eatures
operations for the Kinect. Early detectors would use the Normalized
Correlation Coefficient (NCC)4 to compare pixel values, making opti-
mization hard. However, modern detectors often make use of a sparse
template representation to do the actual detection, enabling different
optimization options. The latter is the approach taken in the current
system.

2.4.1 Similarity measure

To perform a detection, we will have to specify a measure of simi-
larity E(O, x), for an object O on an image location x. The similarity
measure will have to be defined for each modality so that a similarity
can calculated:

• We want to determine a similarity per modality m, implying
that we need a definition for Em(O, x)

4 See http://tev.fbk.eu/TM/html/tmCodeCompanionse10.html

http://tev.fbk.eu/TM/html/tmCodeCompanionse10.html

2.4 detecting an object 29

• Having this definition the individual similarities can be summed
per location:

E(O, x) =
m

∑ Em(O, x) (22)

• To find the maximimum similarity at this location, only the tem-
plate T is considered that maximizes the similarity at that loca-
tion:

arg max
Tm

i

Em(Tm
i , x) (23)

• Allowing us to rewrite Equation 22:

E(O, x) =
m

∑ arg max
Tm

i

Em(Tm
i , x) (24)

Equation 22 states that the final similarity for a location x, is the
combined similarity over different modalities for the maximum tem-
plate argument. These combined similarities are represented in a map
of similarities E , which is a discrete representation of Equation 22.
To be able to use a feature in the object detection framework, the
similarity measure Em must be defined for all possible values of the
descriptor d.

2.4.1.1 Gradient similarity measure

The gradient similarity measure currently being used was provided
in a paper by Steger [46]. In this paper, Steger provides measure for
comparing edge orientations between a 2D gradient found in the im-
age Gim and the template Gt:

E2d(Gt, Gim) =
〈Gt, Gim〉
‖Gt‖‖Gim‖ (25)

Which can be viewed as the cos(θ), where θ is the angle between
the two gradient vectors Gt

i and Gim. The measure returns a similarity
of 1 if gradients are tangent and 0 if they are orthogonal. So for a single
template:

E2d(Tm
i , x) =

1
N ∑

(r,d)∈Tm
i

E2d(Gt, Gim) (26)

For the N number of features in a template. In our specific case we
can retrieve G′ which approximates the original gradient G using the
descriptor d:

2.4 detecting an object 30

θ = bin_index(d) ∗ (π

8
) (27)

G′ =

[
cos(θ)

sin(θ)

]
(28)

G′ can be approximated with a descriptor d taken from either the
feature d ∈ Fm

i ∈ Tm
i or from the quantized image at Q(x) = d.

Steger notes that this measure is robust against local illumination
changes and occlusion. Hinterstoisser, extended the measure to 3D by
assuming that the similarity holds for the 3D case as well. Note that
the π in Equation 27, has to be replaced with 2π in the 3D case. The
advantage of the high discretization of the gradient angle becomes
apparent, as we can calculate the similarities from Equation 26 offline,
this is discussed in the Section 2.4.2.3.

2.4.2 Modified similarity measure

In [1], the authors observe that while the similarity measure intro-
duced by Steger is robust to local illumination changes and occlusion
it does not respond well to small translations. Which is why a new
measure is introduced, based on their prior work [23]. It is derived in
the following manner:

• Given a region R of the quantized image where R:

R(x) =
[

x− T /2, y− T /2
]
×

[
x + T /2, y + T /2

]
(29)

• Where QT ×T = {d ∈ Q(x, y)|(x, y) ∈ R(x)} for which we de-
fine the following similarity based on Equation 25:

E2d(Gt, Gim) = max
Gim∈QT ×T

(
〈Gt, Gim〉
‖Gt‖‖Gim‖) (30)

Which finds the maximum for the similarity function in the
specified region. Note that for ease of notation d has been con-
verted back into Gim according to Equation 27 and Equation 28.

By using a region for the modified similarity the number of com-
putations that need to be done is increased. Because of this drawback,
another approach was presented by Hinterstoisser to calculate the
similarity that is considerably faster, this optimization is described in
the next section.

2.4.2.1 Spreading

By spreading the descriptor in multiple directions the similarity from
the previous section can be calculated more efficiently. To spread a

2.4 detecting an object 31

Figure 10: The features are spread into the final image J , by a binary ‘OR’
operation. In this case, T = 2 is used. Source [1].

descriptor, which is a single activated bit in a byte, it is appended
into a final descriptor with a binary ‘OR’ operation. This explains the
fact that only 8 descriptor values can be used, as only 255 unique
combinations are contained in a byte. The process of spreading the
features is visualized in Figure 10. The resulting input image J is the
final binary image that is used for the actual matching process. Figure
11, depicts different J images for different modalities. The colors in
the image correspond to their non-spread counterparts. The amount
of white of determines the amount of descriptors at that location. A
completely white pixel indicates a descriptor value of 255, this entails
that a completely white image, would have a maximum similarity for
each value of d.

2.4.2.2 Response maps and Memory linearization

Before the detection and linearization will be discussed, the concept
of a Response Map S will be explained. A Response Map is a map
that contains the feature responses (Equation 25), which have been
discussed in the previous sections. To speed up the creation of S we
can create the lookup table τ. These contain feature responses that
can be calculated offline. Because we know that for each modality
there are 8 features, and there are a maximum of 255 unique feature
descriptors to be found in the binary image J . It is possible to con-
struct a lookup table τ per feature type (which are 8 lookup tables
per modality) offline.

The index of this lookup table τ is the integer value of J (x). The
associated value is the maximum similarity for the given feature type
in the region T × T , this evaluates the Equation 30 efficiently.

To construct S , we can simply evaluate τ at each location of J for
each feature type orientation i:

Si(x) = τi(J (x)) (31)

Figure 12, shows the creation of the lookup table and the associated
Response Map. The Response Map can be seen as single lookup table
τi back projected onto the input image J .

2.4 detecting an object 32

(a) 2D gradients J (b) 2D binary image Q

(c) 3D gradients J (d) 3D binary image Q

Figure 11: Two binary images J , are shown. (a) Shows the quantized and
spread 2D gradients. (c) Shows the quantized and spread 3D gra-
dients. (b), (d) The unspread counterparts are shown as a refer-
ence.

Using these Response Maps, it is possible to calculate the similarity
for a template Tm

i on a given location x in the input image, by sum-
ming each corresponding response from the correct Response Map:

E2d(Tm
i , x) = ∑

(r,d)∈Tm
i

Sd(x + r) (32)

The use of S and τ allows us to precalculate the values, and re-
moves the need to evaluate Equations (30, 28, 27) for each template.

linearization of the response map The goal of the lineariza-
tion is to make as much of the data accessible in a single line of mem-
ory, which essentially eliminates a large number of cache misses and
enables the use of SSE instructions (see the Appendix A for a tuto-
rial). To achieve this, we can make use of the Response Maps that
we have created. Normally, one would slide the template over the
image, and compare each feature in the template to the features in
the input image at location x + o f f set, where the offset is defined by
the location of the feature Fi in the template. However, this method
is unfeasible because the features Fi need not be adjacent in memory.

2.4 detecting an object 33

Figure 12: Two lookup tables τi and τj are shown with the associated Re-
sponse Maps Si and Sj. The binary descriptor is used as an index,
and the response (maximum similarity in a region) is stored. The
integers i and j denote the feature index. Source [1].

Therefore, will have to transform the representation of the Response
Map, so that we can make this assumption. Because of the spreading
procedure T , we will only have to perform a detection at each offset
T . Knowing this we can split up the Response Map into T × T linear
memories, this process is visualized in Figure 13. To represent these
linear memories internally we can employ a two-dimensional array.

Figure 13: The Response Map Si is linearized into T × T linear memories.
The linear memories are a collection of one dimensional memory
lines which span the rows and the columns of the Response Map.
In this case T := 2, has been chosen. Source [1].

2.4.2.3 Matching

The advantage of these linear memories is that the templates can be
processed in such a way that we will only have to read a single mem-

2.4 detecting an object 34

ory line per feature, because we have now organized the Response
Map by the spreading parameter T . To utilize this we use a different
matching scheme as opposed to regular template matching. In our
case, we reverse the process and first loop over the features Fi and
then the image locations x instead. Listing 1, defines this procedure.

for Fi in Tm
i do

begin

idxMemory := (row_size mod T2) + rx mod T;
offset := (ry / T) * (im_width/T) + (rx / T);

for i:=0 to image_area/T2 do

begin

E[i] := memory[idxMemory][offset + i]

end

end

Listing 1: The matching procedure

The index of the linear memory to be used with Fi, depends on
the offset of this feature in the template r = (rx, ry). The offset is
needed because the feature offset can cross the boundaries created by
the spreading parameter T, in which case we should discard the first
part of the linear memory. Note that the second loop that iterates over
the image locations, is executed by SSE instructions, this enables the
parallel processing of 16 values.

Figure 14: The Similarity Image E visualized. The amount of white is de-
pendent on the amount of similarity at that location. The position
in the similarity map is anchored to the top left of the template
bounding box.

2.4 detecting an object 35

2.4.3 Similarity

This process produces a similarity image E . However, to combine
modalities the similarity maps are appended per modality Em. To
be able to do this quickly SSE instructions are used, which processes
the additions in parallel. This results in a final similarity image which
could contain the detected object. If multiple instances can be found,
non-maxima suppression must have to be performed to eliminate
false positives. The detection is obtained by finding the maximum (or
maxima if regarding multiple instances) and checking if this higher
than a user defined threshold. If this is the case we consider the loca-
tion (x ∗ T , y ∗ T), where x and y are the locations of the maximum
in the similarity image, as a possible instance of the object O. The
Similarity Image E , is visualized in Figure 14. The original implemen-
tation uses a user defined threshold, which considers a maximum a
detection, when it exceeds this threshold.

3
M E T H O D A D D I T I O N S

3.1 introduction

During the evaluation of the implementation of the original method,
we noticed a few issues concerning the accuracy of the method. The
problem is the large number of false positives that can be found. This
is especially apparent for objects of similar shape, this mainly has to
do with the quantization of the gradient descriptors and the loss of
precision, a problem also touched upon in the original paper. This
problem will be further elaborated in Chapter 5. Unfortunately, some
objects in household and RoboCup settings are quite similar in shape.
Which is why a few additions and changes have been made to the
original system to increase the discriminative power of the method.
These are summarized below:

• Other normal extraction routines are integrated, to see if an-
other extraction scheme would yield discriminative power or a
speed increase. As well as changing the selection criteria for the
features.

• Addition of another modality, i.e. a color modality to the current
system. Two descriptors have been implemented: a hue based
descriptor and a descriptor based on the concept of color names
introduced by Weijer et al [45].

• The original method is limited to 64 features because of the
representation of a feature by a byte. An extension is proposed
which increases this limit, but retains the high performant match-
ing scheme.

• The addition of a modality slows down the system. Because of
this a straightforward optimization is proposed by parallelizing
the processing of the input images.

3.2 3d normal extraction

To determine if other quantization schemes increase discriminative
power of the detection method, two different extraction schemes have

36

3.2 3d normal extraction 37

been implemented to determine if these yields either an performance
or speed increase. These two methods have been implemented next
to the original estimation method based on least-squares inspired by
the original paper. The first is a simpler albeit faster extraction routine
than the original, that has been inspired by Kinect Fusion [29]. This
method uses regular cross products, which are also often used in
graphics programming, and can thus also be easily outsourced to the
Graphical Processing Unit if needed. The second is a method based
on the Principle Component Analysis (PCA) [47, 48] of a neighbor-
hood of points, a natural candidate for dense point clouds, discussed
in the thesis by Rasu [49].

3.2.1 Cross products

A simple but widely used technique in computer graphics to calcu-
late surface normals is using the fact that the cross product of two
vectors in plane yield an orthogonal vector. This operation is then
subsequently performed on a 2D surface mesh using neighboring
vertices. To perform this operation on a point cloud we can use a
neighborhood of points:

• Let {p̄, p1, p2} ∈ Pk×k be three neighboring points taken from a
neighborhood of points Pk×k. The center point is denoted as p̄.
The two neighboring points of p̄ are denoted as p1, p2.

• Let Pk×k be a region containing the nearest points in the point
cloud P for a query point pq.

• Because the point cloud is extracted from the Kinect, we know
that the point cloud is ordered, so finding these nearest points
is trivial. This reduces to Pk×k = {(x, y, z) ∈ P|(x, y) ∈ R(x, y)},
where R(x, y) is a region as defined in Equation 29 with T = k

• The normal vector of these three points can be calculated by
calculating two vectors v1, v2 on the plane and considering the
result of the cross product between these vectors:

v1 = p1 − p̄

v2 = p2 − p̄

n = v1 × v2

(33)

• To make the method more robust to noise, the normals are
summed and normalized in a small neighborhood of k normal
vectors, calculated for all {p̄, p1, p2} in the region Pk×k:

n′ =
k

∑
i=0

ni (34)

n̂ =
n′

||n′|| (35)

3.2 3d normal extraction 38

Where n̂ is the final normalized vector. Intuitively each normal
ni, is calculated by applying Equation 33 in a k = (3× 3) region,
using p̄ as the region centroid.

Because the same similarity measure, which has been given in
Equation 26 will hold, the same quantization scheme (Section 2.3.4)
can be used for both new methods. Note that for all these methods,
points are discarded that have a depth difference of larger than 0.5
cm, as to eliminate noise and create robustness around edges. Depth
values where no information is available, typically identified in the
depth map as Not a Number (NaN) are also ignored.

3.2.2 Principle Component Analysis

The second extraction scheme is based on the PCA analysis of a neigh-
borhood of points. This transformation is more expensive, than the
previously described methods. However, according to Rasu [49] it pro-
vides an accurate estimation method for point clouds, which made at
an interesting candidate for inclusion in the framework. Essentially,
the PCA projects the data into a new basis, this basis can be used to
define the normal vector.

• A PCA [47, 48] transformation on a point cloud region Pk×k,
returns the following:

(λj, vj) for j ∈ {0, 1, 2} (36)

which are three vector components vj and three scalars weights
λj.

• The components v, are chosen so that the variance:

var(〈vT
j , p〉) (37)

is maximized between the data p ∈ Pk×k and the new space
(v0, v1, v2)

• The value of an associated weight λj, indicates an ordering
of components that maximize the aforementioned variance. To
find these components vj and λj, we can look at the eigenvectors
and eigenvalues of a covariance matrix.

• For a point cloud the following covariance matrix C3×3 is cre-
ated from Pk×k:

C =
1
k

k

∑
i=0

(pi − µ) · (pi − µ)T (38)

3.2 3d normal extraction 39

• µ is defined as the average point in the neighborhood of the
covariance matrix:

µ =
1
N

k

∑
i=0

pi where N = number of points (39)

• The eigenvectors and eigenvalues of C correspond to Equation
3.2.2. To calculate the described process, the built in PCA func-
tion of the OpenCV library [50] is used.

• To obtain the normal vector n̂, the component vj is selected with
the smallest corresponding weight λj.

• Unfortunately, the normals returned by the PCA method are
not ordered consistently. They can either be facing away from
the viewer or towards it. However, knowing that the data has
been captured by a Kinect depth sensor, we are able to assume
that each normal should be located in the half sphere facing the
viewer.

• Using this knowledge and if we know the vector from the object
to the viewer vp, which is the z basis vector in the Camera Space,
we can calculate:

v = vp − p̄ (40)

The normal has to satisfy the equation:

〈v, n̂〉 > 0 (41)

the inner product will be less than zero if the normal is oriented
away from the viewer, in that case the normal can be flipped by
changing it sign.

Taking the principle component with lowest variance my seem un-
intuitive, as this is contrary to the component that is normally used in
data analysis. However it is actually quite logical, because by doing
the PCA transformation we are obtaining the vectors vj that corre-
spond to the tangent, bitangent and normal of the neighborhood of
points. The normal is used in the plane equation to constrain the
points, meaning that the points belonging to the same plane will share
a similar normal vector, so the variance in the direction of the normal
will be close to zero. Theoretically, the variance would even be zero
for a plane, however, this is not possible because of noise and outliers
in the point cloud data.

Figure 15, shows multiple normal estimation methods and the cor-
responding quantized features.

3.2 3d normal extraction 40

(a) Least Squares method

(b) Cross method

(c) PCA

Figure 15: The quantized image for the three normal approximation
schemes as visualized in Figure 8.

3.3 color feature 41

3.3 color feature

Gradient modality Color modality Combined

Figure 16: The combination of a color modality with the shape based de-
scriptors.

The original paper limited the features to 2D and 3D gradients, rep-
resenting the change in intensity and depth respectively. With some
small adaptations we can regard LINE-MOD as a system that trans-
forms a feature description into an intermediate representation. This
intermediate representation, the image Q, can then be used to per-
form a generic matching routine. This way we can integrate other
modalities such as color or perhaps texture representations, while we
only need to specify a new extraction routine.

The intuition behind the color feature that has been added to the
LINE-MOD framework is that it should describe another modality of
the object. As we will see during the evaluation in Chapter 5, some
objects may appear similar that are not so to the human eye. One of
the ways to distinguish such objects are to include color information.
This has been exemplified in Figure 16.

The color modality is employed as an early fusion detection step,
which means that the color information is used in combination with
other feature types. This is opposed to late fusion, in which color infor-
mation is used as a verification step after performing an initial detec-
tion. Early fusion was chosen as an approach, because this entails that
color can directly be used as a modality in the framework. Templates
may also have a different color appearance when regarding different
orientations, making it a natural candidate for direct inclusion in the
template.

The color modality has been added to the framework with two
distinct feature types. The first is a Hue angle feature type inspired by
the gradient angle features that have been discussed above. The other
modality is based on color names as described in the papers by Weijer
and Khan et al. [45, 51].

3.3 color feature 42

(a) Quantized hue gradient (b) Saturation image

Figure 17: Quantization of the Hue descriptor. (a) Represent the quantized
hue values, most colors are located in the red spectrum, dividing
the pixels over the last two bins. (b) Saturation image, the white-
ness determines the amount of saturation, these values are used
during thresholding

3.3.1 Hue gradient

The Hue gradient is extracted from the 2D input image. The following
extraction routines are used to extract the different color channels
give an image pixel in the RGB color space, derivation and notation
taken from Hanbury [52]:

• Calculate the angles of the cylindrical color space, α and β, to
be able to define the color values:

α = (2R− G− B)

β =
√

3(G− B)
(42)

• Calculate the Hue H and Saturation S:

H = atan2(β, α) (43)

S =

√
α2 + β2

max(R, G, B)
(44)

• The Hue H can be directly used as a gradient angle similar as
has been discussed with the 2D and 3D gradients. Equation 12

can be used to generate the index, which is mapped onto the
descriptor d = 1� index.

• A threshold on the saturation S is used during filtering, to filter
any non-discriminative color regions. S is commonly defined as

S = C
V =

√
α2+β2

max(R,G,B) , which is the chroma C divided by the value
V.

• Chroma describes the colorfulness relative to the brightness of
a similarly illuminated white. When divided by V, the maxi-
mum R, G, B component, value we create a mapping for differ-
ent color ranges that fit into [0, 1] range, making the saturation

3.3 color feature 43

a suitable candidate for thresholding, as a single threshold can
be selected.

• After the quantization, the feature is filtered by regarding its
neighbors as was done for the 2D and 3D gradients in Section
2.3.3, and the descriptors combined into the binary image Q,
which is visualized in Figure 17.

After we have defined the imageQ, we can use this image in exactly
the same way for the matching procedure described in Section 2.4.

3.3.2 Color names

color names are presented in the paper ‘Learning color names from
real-world images’ bij Weijer et al. [45] (and is further elaborated on in
Weijer et al. [53]), in which they present the theory that humans give
the color of the object a certain name, for example Green.

These color names are a mapping from a continuous set of RGB
values into a discrete number of labels or topics. These labels don’t
share an equal volume in the RGB cube; the labels green, red and blue
span a much larger volume than either white or black. The distribu-
tion of the color names over the Munsell1 color space can be seen in
Figure 18, as can clearly be seen the label area’s are unequal. In [45]
the authors have used images labeled and gathered by Google as a
training set to estimate the probability of a color name.

Thus, given a point z ∈ Z, where z is a point of the CIELAB color
space Z, the authors define a random variable containing the color
names C = {c0, . . . , c10}, to approximate the probability:

P(C = c|Z = z) (45)

Which is the probability for a certain color label c given a certain
color value z.

Figure 18: The distribution of color names over the Munsell color array. The
colors of the bordered regions correspond to the most likely color
label for that region. Source [53].

1 Munsell was an american artist, that devised an early color system on which later
color systems like CIELAB are based.

3.3 color feature 44

The color names have been learned using a variant of the Probabilis-
tic Latent Semantic Analysis (PLSA) [54] technique, which is similar
to the popular Latent Dirichlet Allocation (LDA) [43] except that it
does not include the Dirichlet prior. The output of the learning pro-
cess is an CN = (32× 32× 32) quantized RGB table that contains the
multinomial distribution for the point z ∈ ZRGB. So for a given point
z the following distribution is returned from the table:

CN(z) = PC(C = c|Z = z) (46)

The Color Name attributes have been used in the HOG framework
[51], and have also been utilized successfully in the recent Pascal VOC
2012 challenge. An example of a few annotated images are given in
Figure 19. These images were taken from the Google Images database.

The advantage of the color names descriptor as opposed to the Hue
descriptor is that, according to [51], it should less variant for lighting
and more appropriate for real-life scenes, which means provide more
semantically correct labels. Another advantage is that, unlike the Hue
descriptor, black and white can be represented. To be able to repre-
sent these colors in the HSV space, both hue and value are needed.
These advantages and the successful application, makes this feature
an interesting candidate for a color modality.

3.3.2.1 Extraction

To use the color names feature in the framework a couple of choices
will have been made. First we assume, like in the original feature
extraction, that the pixels in the image and their associated probabili-
ties are independent. Furthermore, in the original implementation by
Weijer et al. 11 Color name attributes have been used. A previously
discussed requirement of our detection method is that we can only
use 8 feature types. The choice of the used colors have been deter-
mined by experimentation, the colors names that are currently being
used are: Yellow, Blue, Brown, Green, Pink, Purple, Red, Orange. In other
cases the most likely Color Name label is extracted from the table and
used instead:

• Given an RGB value z ∈ RGB. The RGB values are floored to the
closest quantized value in the table, we extract the conditional
probability:

r = bzrc, g = bzgc, b = bzbc (47)

CN(z) = CN(r, g, b) = pC(c|Z = z) (48)

• This provides a conditional probability per color name Cn = c,
for which we define the labeling function:

label(z) = arg max
c

pC(c|Z = z) (49)

3.3 color feature 45

(a) Ground truth (b) Pixels are annotated with color names

Figure 19: (a) The ground truth (images before the transformation) is in-
cluded as a reference. (b) The color names are visualized, where
each color corresponds to its Color Name label, the pixels are
processed independently. Source [53].

3.4 color feature similarity 46

which is the color name which is considered the peak of the
multinomial distribution.

• This can subsequently be used to generate an index by activat-
ing one of the bits corresponding to the index d = 1 � index.
The index corresponding to an arbitrary ordinal that denotes
the index of the color name in the set of used color names.

• To filter the color names the conditional probabilities are used.
Such that only pixels are used that adhere to:

P(C = c|Z = z) > 0.5 for a known c and z (50)

to filter non-descriptive color values.

Figure 20, shows the imageQ for the quantized color names as well
as the probability map used for filtering. The conditional probabilities
are high around the coke and the red door. Most of the image is fil-
tered out because of the low probabilities, these regions are also more
prone to the switching and therefore unstable, switching between la-
bels in during multiple frames.

(a) color names image (b) Conditional probability map

Figure 20: The Color Name feature. (a) Shows the quantized color name im-
age, with white included for clarity. (b) Shows the conditional
probabilities, a higher intensity denoting a higher condition prob-
ability

3.4 color feature similarity

For the 2D and 3D gradients, we can take advantage of the fact that
most of the features are gradient measures. Thus, we are able to use a
single similarity measure for these feature types. The color name fea-
ture has a probability measure which we are able to use directly. For
the additional feature types introduced in this chapter, new lookup
tables τ have to be generated, as the values will naturally be different
from the original modalities.

3.4 color feature similarity 47

3.4.1 Hue gradient similarity measure

Since the Hue is also a 2D gradient in the color space, the angle θ can
be calculated similarly as for the other gradient features. Therefore,
Equation 26 is used directly. A similar approach can be found in re-
lated literature [51, 55]. To make use of the optimizations presented in
the previous chapter, the modified Steger similarity, found Equation
30, that is used for the gradient modalities is also applied to the Hue
gradient.

3.4.2 Color names similarity measure

To use the color names feature in the current framework a measure
of similarity has to be specified. To find this similarity we have to
regard the labeling function described in Equation 49. Because during
the matching process we have only access to the quantized descriptor
d, which represents the label of the pixel from the binary images Q
and J . So we are seeking a function that returns a similarity between
two labels: the image label lim and the template label lt. Consider the
event l ∈ L, where the event is assigning the label of a certain c ∈ Cn

to the RGB values z ∈ Z. The assumption is made that the pixels in
the RGB space are uniformly distributed:

pZ(z) ∼ U(0, M) =
1
M

for M pixels (51)

With this definition, it’s possible to describe the conditional proba-
bility for labeling a point z with l, using Equation 49 and the indicator
function I:

pL(l|Z = z) = I(l = label(z)) (52)

It is also possible to calculate the prior probability for a certain label:

pL(l) = ∑
z∈Z

pL(l|Z = z)pZ(z) (53)

pL(l) =
1
N ∑

z∈Z
pL(l|Z = z) (54)

Equation 54, expresses the prior label probability as the amount of
pixels z ∈ Z labeled l. To define the similarity seen in Equation 24

and Equation 25, we need to calculate the probability:

P(Cn = c|L = l) (55)

which indicates the probability of detecting a color name c given
that the a point z is labeled l. Writing this as a similarity function:
Ecn(Tm

i , z), we obtain:

Ecn(Tm
i , x) =

1
N ∑

(r,d)∈Tm
i

P(C = d|L = l) (56)

3.4 color feature similarity 48

To calculate P(C = c|L = l), we need to calculate the conditional
probability distribution:

pC(c|L = l) =
pCL(c, l)

pL(l)
(57)

To calculate this distribution, consider the joint probability of c and l,
conditioned on the point z:

pCL(c, l|Z = z) = ∑
z∈Z

pC(c|Z = z)pL(l|Z = z) (58)

For which is assumed that pC(c|Z = z) and pL(l|Z = z) are con-
ditionally independent. This makes sense considering that both the
labeling is solely dependent on the labeling function and the condi-
tional color name is not influenced by the label given to the pixel.
Finally, now that all values are known, we can calculate the condi-
tional distribution from Equation 57.

pC(c|L = l) = ∑z∈Z pC(c|Z = z)pL(l|Z = z)
PL(l)

(59)

The final equation essentially calculates an probability that a pixel
is differently labeled. Unfortunately, there is still a problem with us-
ing this equation directly as a similarity measure. Similarities, are not
probabilities, while similarities do range from 0 to 1 they need to re-
turn a value of 1 if the feature is of the same type, the calculated
probability need not return 1 when calculating:

pC(c|L = l) when c = l (60)

The other similarity measures discussed in this thesis do. To rem-
edy this problem we make use of the likelihood ratio between two
color names c0, c1:

pC(c1|L = l)
pC(c0|L = l)

(61)

Where the label l is fixed for both the denominator and the numera-
tor, and c1 is varied for the different color names that are used. When
c1 = c0, the ratio will be equal to 1 and if c1 6= c0 the ratio is less than
1. A similar ratio measure is used for naive bayesian spam filtering
[56], so this works best when assuming a uniform prior.

Now that we have obtained a measure of similarity between color
name features, we can calculate the tabel τ per feature. Enabling the
method to provide the spread image J and the Response Maps S .

3.5 matching addition 49

3.5 matching addition

Because the addition of an extra modality means that we will require
more features, an extension has been made to the current system. The
similarity map E is represented as shorts instead of bytes/chars that
the original method used. This allows us to have a higher similarity,
which effectively means that we can use 116384 features instead of
64. This proves especially significant in our case because additional
modalities have been added, which need to be represented by a cer-
tain amount of features. Doing this naively would slow down the al-
gorithm significantly, which is why the appropriate SSE instructions
should be used.

Recall that the linear memory is an array of bytes, using SSE we can
process 16 bytes in parallel. The similarity is represented as an array
of shorts, which means we can process 8 shorts at a time. However,
we can make use of multiple registries to load the bytes into two
short registries, by interleaving the bytes with zeros into the most
significant bytes. If we do this for the upper and lower part of the
registry, we create two registers of shorts which we can add to the
similarity image.

3.5.1 Speed increase

Because each modality has its independent input image J , we are
able to speed up the computations by multi-threading the input. Since
the input images are processed each frame, this parallelization results
in a significant speedup. To make this possible, the images captured
from the RGB and Depth streams should be temporally synchronized.
When receiving the images, we can pass copies of the images to the
processing functions which can be executed in parallel. The The pro-
cessing time is generally the time it takes to process the most compu-
tation intensive image, which in the current method can range from
60 to 80 milliseconds.

3.5.2 Cache miss reduction

The Central Processing Unit (CPU) has different levels of memory
which it can quickly access: RAM being the slowest; the on die mem-
ories caches L1 and L2, being the fastest respectively. A cache miss
occurs when the CPU has to load memory into a higher cache level.
The CPU loads the memory into the cache, in multiple bytes depen-
dent on your system architecture. However, the CPU cache size is
much smaller that your average RAM size: a few megabytes opposed
to a few gigabytes. Thus, it has to load data into the cache multiple
times during the execution of a program. A cache miss is when the

3.5 matching addition 50

data cannot be found in the CPU cache, a further distinction can be
made regarding the nature of the cache miss2:

compulsory misses are those misses caused by the first reference
to a location in memory.

capacity misses are those misses that occur regardless of associa-
tivity or block size, solely due to the finite size of the cache.

conflict misses are those misses that could have been avoided,
had the cache not evicted an entry earlier.

The linearization discussed in the previous chapter reduces the
amount of cache misses when matching the template. To further re-
duce the amount of Conflict matches we can sort the gradients by
their descriptor d and their position in the template. Which means
that the Response maps Sj are accessed in order, which means they
are only evicted from the cache when all templates with the descrip-
tor d = j have been processed. Effectively reducing the amount of
cache misses by 30%. This result has been verified using cachegrind
[57], an open-source cache analysis toolkit, which is part of the val-
grind suite [58].

2 distinctions made by Mark Hill, http://www.cs.wisc.edu/~markhill

http://www.cs.wisc.edu/~markhill

4
S O F T WA R E O N A M I G O

4.1 introduction

Because the software will have to run on AMIGO in real-time and the
learning and detection should be easy to startup during a RoboCup
challenge, demo or when AMIGO has to perform a task, a framework
has been developed that contains the detection module and provides
an infrastructure for the detection of objects. The detection framework
should function within the AMIGO eco-system, which means that it
should be able to communicate with the rest of the software running
on AMIGO. This chapter contains a description detailing the practical
considerations which were regarded during the development of the
detection module.

4.1.1 Third party software

Whenever AMIGO performs a task, usually one of the steps to en-
sure a successful completion of a task requires the detection of ob-
jects. However, this in it self is often not enough. Even if a successful
detection has been made, this has to be communicated to the other
systems so that AMGIO can decide and act on this new set of infor-
mation. Two important third party modules, used on AMIGO, are the
Executive and the Reasoner, both of which are described below:

Executive The Executive is a planning and decision making module.
AMIGO needs to plan and decide tasks in different situations,
these situations arise when performing a challenge or a general
service task. The executive provides a high-level interface into
the robot, which runs in combination with a state-machine that
uses this interface. The executive decides when to activate the
perception module to learn more about the environment.

WIRE The WIRE module maintains a model of the current world
state and enables reasoning about the state of the world. The
details of this system are described in a paper by Elfring and
van den Dries [59]. The World Model fuses sensor information
into a model using multiple probabilistic hypotheses, and per-
forms tracking using a Kalman Filter [60]. WIRE is able to main-

51

4.2 system goals 52

tain multiple object hypotheses which it can collapse or expand
into a single or multiple hypotheses respectively. The detection
module communicates directly with this component.

To make the detection module to useful for AMIGO it should be able
to communicate directly with these systems, in either a direct or indi-
rect manner.

4.2 system goals

Another important requirement was to achieve some of the goals that
were set in Section 1.3.2, specifically pertaining to: the Robustness, Us-
ability, Integration and Extensibility. To achieve these requirements the
following goals were kept in mind when the detection software was
developed:

• The system should be easy to startup and be used with the
rest of the robotics software, providing a seamlessly integrated
whole.

• The system should be easy enough for novices to use, and should
be quick to setup during competitions like the RoboCup or dur-
ing a more general execution of a task.

• The system is going to be used by other (novice) users, so tool-
ing should be available to make detection and learning easy.

• The system should be extensible, lowering the threshold for fur-
ther research. Thus, making it easy to change parameter set-
tings, provide information during detection and make it easy to
add different modalities or other extensions.

• The system should be efficient, not wasting CPU cycles and
should be able to run idly. This is important because other soft-
ware may need to obtain processor priority.

4.3 detection on amigo

Now that the goals and requirements have been described, a de-
scription is given of the integration into the current infrastructure
on AMIGO. The entire system has been developed in the ROS [4]
framework from the start, which is a framework that makes it easier
to develop applications for mobile robotics, and is used throughout
the AMIGO project.

Figure 21, illustrates the infrastructure of the detection system, and
how it fits in the current robotic infrastructure. The blue modules
are modules that are used during detection and the orange depict
external modules. The blue modules (and some other offline tools)

4.3 detection on amigo 53

Detection Node

Executive

Start/Stop

Models
Load

WIRE

Reasoner

Learning

 Config

Configure

Detections

Network

Offline

Template viewer

Save

View

Visualization

Online

Detection system

Third party (direct)

Third party (indirect)

Misc tools

Figure 21: The infrastructure in which the detection module operates. The
diagram is divided into three areas: Online, modules running on
the robot in real-time; Offline, modules for processing of the tem-
plates and viewing these; Network, this module does not need
to run on the robot but can also run on a remote computer. The
color depicts the dependency in the system: blue is a direct de-
pendency, orange has direct communication with the system and
green has no direct connection.

have been developed during the production of this thesis. The green
modules are indirectly related to perception, that is, there is no di-
rect communication between blue and green. Because the output is
passed to the Executive indirectly (communication is one-way), an
independence between perception and executive can be established,
which enables the use of different perception modules.

Now that an overview of the detection system has been established,
two important processing steps will be discussed. The offline learning
of the objects including the corresponding object database, and the
online detection phase and its output is discussed.

4.3.1 Learning an object model

To learn an object model a file database system was developed to
record and load the models. A collection of templates is saved per
modality, and these are combined into an object model O. To learn
these objects an application was developed to record templates in
real-time. Because the system is fast enough to record these templates

4.3 detection on amigo 54

in real-time, we can reuse the steps described in 2.2.1 for the learning
process.

To record a template:

• Start the learning module by providing a category and name for
the object.

• Initialize the position and location with a user defined bounding
box.

• Perform a match to find the object.
• Determine if the template should be added to the database. We

will have to make sure that the template is different enough
to provide extra information, but should not be too different
because the detection could have been a false positive. Currently,
this is ensured by checking that the detection falls between the
threshold tlow and thigh.

• Should this be the case than the template is added to the current
database. An object model is saved with both a category and a
name, which is subsequently used to identify the model when
loading from disk, and is used as an object name (label) during
detection.

To create the object database the user has to manually learn mul-
tiple objects from different angles for the detection to perform op-
timally. To load the database onto AMIGO, a System Configuration
will have to be specified, this is detailed in Section 4.3.3

4.3.1.1 Plane Extraction

Because the bounding box contain background information, we should
aim to eliminate this information from the template. To do this depth
map is transformed into a point cloud P, using the inverse camera
matrix K−1, as was demonstrated in Section 2.3.4. The point cloud is
then used as input to a Random Sampling and Consensus (RANSAC)
[61] method, which estimates a plane equation Ax + By+Cz+ D = 0
from a set of points. We use this to eliminate the points belonging to
the plane by evaluating the equation for the point cloud, and only
regard the object we are trying to learn, essentially masking the input
image. The resulting image is shown in Figure 22

4.3.1.2 Feature selection

To create the templates, the system must select the appropriate fea-
tures. Currently, features are selected based on their spreading in
the template. To obtain a good response, features should typically be
spread evenly. A good spreading ensures more distinctive templates,
similar feature types are often clustered in a small region, and it en-
sures that the position in the template makes for a stronger constraint.
Because of the spreading, the position of a feature in a template is

4.3 detection on amigo 55

(a) Unmasked 3D binary image J (b) Masked 3D binary image J

Figure 22: The unmasked (a) and masked (b) processed depth image. The
same process is applied in the processed RGB image.

generally less of a constraint. A heuristic is used for the selection of
the feature based on the distance to features that have already been
selected, and is combined with a selection on the highest certainty,
which can be either the gradient magnitude (gradient modalities) or
the posterior probability (color names). In the case of the 3D gradients,
only distance is taken into account. Because intensity has no distinc-
tive meaning, as the 3D gradient is equal to a normal vector for which
the length equals 1. The effect of different spreading parameters can
be seen in Figure 23.

4.3.2 Learning GUI

The GUI for learning Object Models is visualized in Figure 24. This
GUI is used for training object models, which are then utilized for the
detection of objects. A user is able to learn a new model by defining
a new bounding box, or add templates to an existing model with a
new bounding box. Existing bounding boxes that have been learned
for similar objects, can also be used to either create a new model or
add templates to an existing model. The learning module automati-
cally creates the appropriate file database for storing and loading the
object models. The Learning GUI can easily be used by novices, with
minimal instructions.

4.3.3 System Configurations

Before the models can be used for the detection of objects during an
execution of a task, AMIGO first has to know which objects it should
detect. With the current method it is infeasible to use a database of
more than 30 objects, an amount which certainly has a large nega-
tive influence on the performance, and can have a negative influence
on the accuracy as well. Therefore, it is possible to define an Object
Configuration, which details the objects to use and the associated pa-

4.3 detection on amigo 56

(a) Coke Template: low feature spread

(b) Coke Template: high feature spread

Figure 23: Three modalities with their corresponding templates for a single
view, visualized by the Template Viewer application. Note that
by changing the heuristic we influence the spreading of the 2D
feature types, as these both have a measure for the intensity of a
template

rameters: like the modalities (2D, 3D and Color) that are to be used,
and the threshold at which the detection module considers a detec-
tion a match. These possibility to create these configurations also im-
proves usability, as the models can be reused in multiple situations.
This makes an interesting use-case possible, in which the Reasoner
could deduce in which room AMIGO is located and make use of
this information. For example, the reasoner decides that AMIGO is
in the kitchen and changes the configuration at run-time to only de-
tect items that could be found in the kitchen. These kind of situations
come up often during the course of a RoboCup competition, as the
environments are modeled similarly to human homes, so that each
room contains different object types.

Listing 2 shows such a configuration. Object models are identified
through a category and a name. The System Configuration name can
directly be supplied to detection module to load these object models
automatically.

4.3 detection on amigo 57

Figure 24: The user interface for learning an object. The left side shows the
input images, as well as the bounding box where we have found
the latest object. The right part shows the image J , and the com-
bined Similarity Image E . The visualization can be switched dur-
ing run-time.

4.3.4 Run-time detection

The concepts of a Executive and a World Model (WIRE) have been
previously introduced. To enable the communication with these de-
scribed components, the detection module must provide an interface
to the former and use the interface of the latter. It should be able to ac-
tivate and deactivate on command, as well as process detections and
publish a higher level description of the detection. The detection mod-
ule is currently implemented as a ROS Node, which is an executable
which runs concurrently with other nodes on the robot.

4.3.4.1 Networking

Because the detection software is running on AMIGO, it is hard to
debug the process if no visualizations are available. AMIGO, unlike
other robots, does not have a screen to display information, every-
thing is done remotely. To provide visualizations and information,
the object detector makes use of an Client-Server architecture that
is visualized in Figure 21, the server is the Detection Node and the
client as the Visualization module. The client makes connection with
the server, which in turn informs the client what visualizations it is
able to run. After this initial handshake, the server proceeds to sent

4.3 detection on amigo 58

1 - systemConfiguration: eval_cross_cn

2 dashboardConfiguration:

3 modalities: [1, 2, 4]

4 defaultCategory: eval_cross_cn

5 objects:

6 - name: aa_drink

7 score: 80.0

8 - name: beer

9 score: 80.0

10 - name: coke

11 score: 80.0

12 - name: crackers

13 score: 80.0

Listing 2: A System configuration example, specifies what objects to use and
the corresponding parameters.

raw data to the client regarding current detections and images to vi-
sualize, these are visualized on the client side and the detections are
shown on-screen. This makes it easy to visualize the procedure with
multiple clients and offloads processing time from the server other-
wise spent on visualizations. The images sent over the wire, are 33%
of the input image size, as they have been discretized into a data line
of single bytes.

During run-time the detection module follows the following proce-
dure:

1. The module is started with some specific settings regarding
which modalities and normal estimation it should use, and a
link is provided to the object database. At this time the exist-
ing System Configurations are loaded from a settings file. A
System Configuration is collection of objects O and associated
thresholds t.

2. After initialization, the detection module is in idle mode, which
means that it does do any detections at the moment.

3. When the Executive requires the perceiving of objects, it makes
a direct call to the detection module. The detection module is
then activated with the current System Configuration. Note that
these can be switched at runtime, depending on the Configura-
tion required at that moment.

4. The object module continuously perceives objects by preprocess-
ing the input images and performing a detection using the cur-
rent database. Note that the Depth and RGB images are pub-
lished separately by the sensor, so we need to make sure that

4.3 detection on amigo 59

the images are being temporally synchronized, i.e. using images
that are as close to each other in the time domain as possible.

5. After the aggregation of the detections, we pass these on to
WIRE. WIRE requires us to give a probability which expresses
the confidence of our detection. Similarity cannot be directly
converted to a probability, as the probability to detect object O
at position x, given input I:

p(O, x|I) (62)

has to take into account the prior probabilities p(I) and p(x),
which similarity does not do.

6. However, we can make use of an heuristic: (sim− (max/2))/(max/2),
to estimate a measure that is constrained between (0, 1). This
heuristic is used because the spreading has a side effect that
causes highly textured areas to have high similarity. For many
objects there is at least part of scene which has around 50% sim-
ilarity, so we should only consider regions that have a similarity
that is at least as high as these regions.

7. The system keeps processing and sending detections to the world
model, perceiving each frame as independent.

8. The system is stopped by the executive, which can send a com-
mand to return the detection node back into idle mode.

Figure 25, shows the detection module in action, detecting an object
in the same scene that was used throughout the last chapters.

4.3.4.2 Scenario

To give a clearer picture, let’s illustrate a small typical scenario for
AMIGO. Recall that the Executive can interface with the world state
through a Reasoner, this Reasoner provides an interface which can
be used to query the world state, which are different hypotheses con-
tained in the world model (WIRE).

Consider the following scenario, AMIGO wishes to find a coke can
at a designated location. AMIGO turns on its object detection system:

• The detection module, processes the scene and publishes the
positive detections to WIRE, this proceeds as has been described
above.

• WIRE integrates other received information and tracks the po-
tential objects in the world model. WIRE also decides the matter
of trust to put in the received detection, and decide to create a
new hypothesis or decides to update an existing hypothesis. Af-
ter each processing step a state of the world is updated.

4.3 detection on amigo 60

• The Reasoner is now able to query WIRE, e.g: “The robot is
at x, are there any coke cans nearby?”. WIRE determines if an
hypothesis exists by regarding the received information, and
returning the most likely world state. WIRE responds positively.

• The Executive, which activated the Reasoner to acquire this
knowledge, now knows of the existence and position of the coke
can. It can proceed to actuate AMIGO to grasp and return the
object.

• Thus, completing the loop and allows AMIGO to move on to
the next task.

Figure 25: The visualization node, showing a detection of a coke with it asso-
ciated category, both of which can be configured. The information
visualized is provided by a separate detection process.

4.3.5 Summary

We have discussed the infrastructure and seen some of the tooling
that is available. In the end, an entire object detection module is pro-
vided. The system has all the tooling needed to learn and detect ob-
jects, including the ability to provide visualization over network on
multiple computers. The system is easy to use and fully configurable,
with the ability to load multiple object configurations and different
estimation methods and modalities are readily available.

Part III

E VA L U AT I O N & C O N C L U S I O N S

5
E VA L U AT I O N

5.1 introduction

In previous chapters the detection system used by AMIGO has been
described. It is currently being used as the general object detection
system in the AMIGO project. It was used during the RoboCup, ex-
periments and during demonstrations of AMIGO to the general pub-
lic. Figure 26 shows AMIGO interacting with objects at the last RoboCup
event: RoboCup 2013.

(a) Detection of a coke can (b) Grasping an object from the table

Figure 26: AMIGO in action. (a) AMIGO is detecting a coke can. (b) Amigo
has detected the seven up, and continues to grasp the object.

5.1.1 Overview of the evaluation

In this chapter, an evaluation will be done of the detection system
with custom benchmark. The goal is to provide a measure of accuracy
of the developed system, to do this the system described in this thesis
will be compared with the method proposed in the paper by Hinter-
stoisser et al. [1], the normal estimation methods and color names will
be varied to test which configuration has the optimal performance. To
be able to answer the research questions, the performance of the sys-
tem is evaluated with a custom object dataset. We will also look at
what influence the world model has, on the accuracy of the detection
method. W

The remainder of this chapter is organized as follows:

62

5.2 object dataset 63

• First, the dataset and the benchmark, which is used during the
course of the evaluation chapter, will be discussed shortly .

• After which the benchmark will be shown that compares the
original method with the method discussed in this thesis.

• The individual color modalities and normal estimation routines
will also be benchmarked and discussed.

• These benchmarks are followed by an in-depth discussion of the
current system and its drawbacks.

• A final evaluation will measure the processing times of the sys-
tem and the added modalities.

• Finally, conclusions are drawn with regards to the performance
of the system.

5.2 object dataset

(a) AA drink (b) Cup of noodles (c) Red cup (d) Garlic sauce

Figure 27: Four of the objects that were used for detecting objects with
AMIGO. Demonstrating which objects have been used in the past.
Object taken from the Kinect camera, resulting in somewhat low
resolution images.

During the RoboCup, the objects are typically bought in a super-
market so that they resemble actual objects that are found in a house-
hold environment. The amount of objects that AMIGO has to detect
typically ranges from 10 to 25 objects, depending on the challenge.
Note that currently the robots in the challenge are only required to
detect object instances, so no generalization to categorical based detec-
tion is required yet. AMIGO has to detect these instances at different
locations in the so called arena, which is the venue where the event
takes place. The objects are used in the dataset, are similar or the
same as the objects that were used during the last RoboCup events.

5.2 object dataset 64

Some objects that were used during testing have been visualized
in Figure 27, the images were taken from the dataset from which
the objects have been learned. The objects have been chosen as to
resemble objects used in the different RoboCup scenarios. In total 12

objects have been tested in different locations. To test the detection
system, we have used scenes with different amount of clutter at four
locations in the lab at the TU/e Eindhoven. The object dataset in its
entirety, as well as the locations, are listed in Appendix B.

Figure 28, gives an impression of the arena’s where AMIGO is cur-
rently deployed, note that the lighting conditions may vary through-
out the day. During this evaluation we have made use of different
locations in the robotics lab in Eindhoven to test the system, this lab
resembles an environment that can be found during a RoboCup com-
petition.

5.2 object dataset 65

(a) View of the RoboCup arena 2013

(b) View of the German Open 2013 arena

Figure 28: The RoboCup arena’s. Different area’s are allocated where objects
may be located, objects can be set at different positions on mul-
tiple surfaces. (a) Shows the latest arena, AMIGO is picking up
a coke can from the table. (b) Shows the German Open arena,
objects were placed on the tables and near the kitchen.

5.3 detection benchmark 66

5.2.1 Object Annotations

The dataset has been annotated with object locations, annotations are
specified with a bounding box that indicates the (x, y) positions and
the (width, height) in image coordinates. The detection node, that was
introduced in Section 4.3, has been modified to accept custom annota-
tion files, thus enabling the generation of statistics according to these
annotations. The object annotations are created specifically per scene
but can be re-used by multiple configurations. This is in line with one
of the goals, namely to make the system extensible, with this addition
the option is added to recreate the results generated in this chapter
by other students working on the AMIGO project.

5.2.2 Matching criteria

The Pascal VOC bounding box matching criteria [6] has been used
to determine if an detection is a true positive or a false positive. The
measure is described below:

Given the bounding boxes: Bobj, the object bounding box; and Bim
the image bounding box. The matching threshold is specified as:

Bobj ∩ Bim

Bobj ∪ Bim
> 0.5 (63)

which places a threshold on the fraction between the intersection
and union of the bounding boxes, when a detection meets this criteria
than it is considered a detection at the given location. Note that this
criteria is evaluated after a detection exceeds the threshold specified
by the detection system.

5.3 detection benchmark

The dataset described in the previous section has been run using dif-
ferent configurations. Namely, the original method LINE-MOD and
the method extended with color modalities: Hue and Color Names. The
goal was to see whether the original method generalizes to different
object sets, and to what extent the color modalities influence the ac-
curacy of the system. The results have been listed in Table 1. Both the
precision: TP

TP+FP , and the recall: TP
TP+FN , are displayed; which are the

true positives (TP) divided, by the true positive plus false positive
(FP), and the false negatives (FN) respectively.

During the benchmark, a threshold of 0.85 has been used, and the
number of gradients per template was 80 for the gradient modalities
and 40, for the color modalities. The color names and hue modalities
use the least squares gradient approximation for the scores in table 1.
Different scenes have been set up, either containing a single or multi-
ple objects, as this is a situation that AMIGO would encounter. Only

5.3 detection benchmark 67

dataset config uprec fprec urec frec

Single LINE-MOD 0.40 0.90 1.00 1.00

Single Color names 1.00 1.00 0.44 0.44

Single Hue 0.58 1.00 1.00 1.00

Multiple LINE-MOD 0.41 0.73 0.87 0.84

Multiple Color names 0.71 0.94 0.71 0.69

Multiple Hue 0.64 0.90 0.97 0.97

Categories LINE-MOD 0.36 0.71 0.60 0.59

Categories Color names 0.71 0.87 0.40 0.40

Categories Hue 0.64 0.82 0.86 0.84

Table 1: Detection scores for the dataset using different configurations

small scale changes and occlusions have been included in the dataset
as AMIGO is currently not encountering these variations often, as it
can position itself at a fixed distance of the object in most cases. Clut-
ter, as well as some objects not in the dataset, have been included in
the scenes.

False and True Positive ratios, have been generated by employing
a filtering step that is similar to that of the world model used on
AMIGO:

• At each object location, if multiple objects are found (which we
know from the matching criteria from Equation 63, average the
similarity per object over the frames.

• Then look at all possible object locations which object hypoth-
esis seems most likely. Choose this hypothesis as the object at
that location.

• If this decision matches the annotation, regard it as a True Pos-
itive. Should another object is found at this image location, re-
gard this object as a False Positive. When no object is found at
that location, then regard it as a False Negative.

In the columns of Table 1, the tested configuration (which speci-
fies the templates and modalities) is denoted as config. The unfiltered
precision as uprec, which is the true and false positive ratio before the
filtering step. The unfiltered recall is denoted as urec and their filtered
counterparts as fprec and frec. The configuration named LINE-MOD
is the combination of the 2D and 3D gradient modalities, which are
used by the original method. The Color names and Hue modalities are
the original gradient modalities augmented with the color names and
hue color modalities respectively.

We can observe that all configurations do quite well in the dataset
containing only single objects (termed single). This is probably be-

5.3 detection benchmark 68

cause it is a simpler dataset, with a relatively clean workspace. The
low recall score for the color names has to with the fact that it failed to
detect a view from the crackers object, which resulted in a significant
amount of false negatives.

The color modalities add precision to the existing dataset when
compared with using the original modalities exclusively. The color
names modality generally has a higher precision than the hue gradi-
ent. However, when recall is considered, the hue modality performs
better, because the hue gradients tend to change less when the object
pose changes. The addition of the color modalities, and the conse-
quences are evaluated in the next section.

5.3.1 Color Modalities

(a) RGB image of five objects

(b) J image for color names (c) J image for hue

Figure 29: A scene from the detection benchmark. (a) The original image.
(b) and (c), the processed images. Note that the color labels are
somewhat more distinct for (b), but both seem to label the objects
appropriately. Also note that (c), retains some of the background
from (a) on the left in the resulting image.

Table 1, shows that both color modalities seem to perform reason-
ably well. The color names modality has a higher precision but often
a lower recall than the hue modality. This is because hue seems to be
more consistent over the frames, whereas color names can be more
fickle even with the thresholding that is currently being done. How-

5.3 detection benchmark 69

ever, color names do provide a somewhat better separability of the
dataset. Both methods have their advantages and disadvantages. The
advantages of Color Names, are listed below:

• Color names seem to work well for different objects, recognizing
their color correctly and is also able to discern color changes
inside the object. As we can see in Figure 29a, both the transition
between Sprite and the AA-drink inside the object are correctly
labeled. Thus, also making it easier to detect different object
angles, should one want to use this information.

• The background is often filtered out during the thresholding,
while the object boundaries are retained, creating a sharper
boundary between object and background, when compared with
Hue. This is displayed in Figure 29b and Figure 29a, where can
be seen that more of the background is retained for the hue
modality.

• The color names could be used to represent, black and white,
which cannot be done using hue alone. Alas, during testing this
did not seem very robust. Because only 8 color names can be
represented, black and white have not been included in the eval-
uation.

Advantages of using the hue as a feature type, are listed below:

• Calculating the hue gradients requires slightly less computation
time. Because the color names are part of a large lookup table,
cache inconsistencies can make access slow, and the hue calcu-
lation is done using optimized OpenCV functions.

• The hue gradients seem less sensitive when compared with
the color names feature type, making it less prone to False
Negatives. Thus, resulting in higher recall scores that are seen
throughout this chapter.

• The hue modality is more consistent in the framework, and can
use the similarity measures directly as they have been intro-
duced in Chapter 2 to seamlessly fit in with the original modal-
ities.

During the evaluation of the framework, and during the use of the
object detection framework on the different RoboCup events, some
distinct disadvantages of using these color descriptors as modality
have been found:

• The color modalities are both more sensitive to illumination
changes, as color is less invariant to changes in illumination
than the gradient modalities.

• Both modalities, but especially the color names, suffer from de-
bayering1 artifacts, that result in purple borders in the quan-

1 The process of retrieving the RGB grid from the camera CMOS, using a color filter
array

5.3 detection benchmark 70

tized images (Figure 30). The Kinect is supposed to have set-
tings that lessen this effect, however, changing these settings
had no positive effect. This increases the response for the red
and purple color names near the object boundaries.

• The color names modality requires more templates, because the
color names tend to be more descriptive but less stable. They
vary more for changes on object pose.

• The Hue color modality collects a lot of features in the first and
the last byte (bin) of the descriptor, which entails that a lot of
red features are found, often mistaking colors like orange and
purple as red.

(a) Input image, which shows the debayering artifact(b) Result in J image

Figure 30: Debayering artifact: purple border surrounding edges, which re-
sults in purple quantized regions

(a) RGB image of three objects

(b) J image for color names (c) J image for hue

Figure 31: A scene from the detection benchmark. (a) The original image. (b)
and (c), the processed images. For (c), the background filtering is
less successful as the reflections are not filtered from the image.

5.3 detection benchmark 71

dataset config uprec fprec urec frec

Multiple Hue 0.13 0.13 0.49 0.47

Multiple Color names 0.40 0.53 0.80 0.79

Table 2: Detection of a single benchmark for the Hue and Color names
modality only

5.3.2 Standalone color modalities

Table 2, shows the precision and recall scores only using color as
modality for the Multiple objects dataset. These modalities alone per-
form worse than the combined modalities, which is to be expected.
The interesting fact is that the color names by itself perform bet-
ter than the hue. Both suffer from false positives in the background,
greatly bringing down the precision scores, but the color names seems
less sensitive. This is due to the better descriptiveness and the better
thresholding with the background (Figure 31). However, as has been
discussed before an important factor is the ability for the detection,
to have additional means to differentiate between objects, when the
original modalities don’t suffice. Hue suffices to provide this extra
distinction even though it does not perform too well by itself. On the
other hand, the color names can be too strict but generally perform
better, when it is used as the a standalone descriptor.

5.3.3 Summary

Both hue and color modalities increase the accuracy of the detection
method. The difference between using the two modalities, in combi-
nation with the original descriptors, is not very large. The trade-off is
a increased precision against a decreased recall. The recall can be some-
what increased by learning additional templates, which has the neg-
ative effect of increasing the running time. For objects that AMIGO
encounters it is beneficial to add a color modality, as it increases the
performance when compared to the original method. Both Hue and
color modality objects still have problems identifying the coke can
from the Fanta; during learning it was wrongly classified as being
red by the color names modality. However, during testing, because
of the different lighting conditions it has been classified as orange
multiple times, as can be seen in Figure 31b.

5.3.4 Normal estimation

In Section 3.2, the question was raised whether other normal approx-
imation schemes would provide better results. Two extra normal ap-
proximation schemes have been described and implemented. Table 3

5.3 detection benchmark 72

dataset config uprec fprec urec frec

Single LINE-MOD 0.40 0.90 1.00 1.00

Single Cross 0.36 0.70 0.69 1.00

Single PCA 0.40 0.70 1.00 1.00

Multiple LINE-MOD 0.41 0.73 0.87 0.84

Multiple Cross 0.38 0.60 0.85 0.80

Multiple PCA 0.41 0.67 0.80 0.75

Categories LINE-MOD 0.36 0.71 0.60 0.59

Categories Cross 0.45 0.79 0.77 0.75

Categories PCA 0.51 0.67 0.76 0.70

Table 3: Detection scores for the dataset using different normal estimation
methods

shows the different schemes. These have been combined with the 2D
gradients only. LINE-MOD, is using the original least squares method
which has been described in Section 2.3.4, the additional cross and
PCA methods have been described in Section 3.2.

The processing times of the different extraction methods are listed
in Table 5. Note that these running times are on an average per frame
basis. It can be seen that the cross method proves to be the fastest
and the PCA method the slowest. The running times are listed for 3D
modalities alone and combined with 2D. These running times stay
relatively equal because of the parallelization of the input frames,
the input processing takes as long as the slowest modality, which
is an improvement as the processing of the 2D modality takes 41

milliseconds on average.
Table 3, shows the detection scores for different normal estimation

techniques: LINE-MOD is the original method, and Cross and PCA
are the new estimation techniques introduce in Section 3.2. From the
table a couple of observations can be made:

The PCA gradient performs equally well when compared with the
cross gradient, but is much slower to compute (see Table 6). The prob-
lem is that the region that we are using for the PCA computation, is
a small 3× 3 region, this was chosen mainly because of the high com-
putational costs. Using PCA does not result in better gradients than
just using regular cross products or the least squares method. The
least square method performs the best on this dataset, albeit with a
small margin, the lower precision for the cross gradients is caused
by the large number of false positives in the background. In the case
of the cross gradients the number of background false positives is
43% of the total, whereas in the least square and PCA method these
amount to 30% and 19% respectively. One of the causes is the fact

5.3 detection benchmark 73

dataset config uprec fprec urec frec

Single Cross-CN 1.00 1.00 0.47 0.47

Single Cross-Hue 0.72 1.00 1.00 1.00

Single LS-CN 1.0 1.00 0.44 0.44

Single LS-Hue 0.58 1.00 1.00 1.00

Multiple Cross-CN 0.67 0.94 0.78 0.77

Multiple Cross-Hue 0.66 0.90 0.90 0.89

Multiple LS-CN 0.71 0.87 0.72 0.69

Multiple LS-Hue 0.64 0.90 0.97 0.97

Categories Cross-CN 0.64 0.98 0.72 0.72

Categories Cross-Hue 0.61 0.87 0.89 0.87

Categories LS-CN 0.43 0.93 0.39 0.38

Categories LS-Hue 0.60 0.82 0.86 0.84

Table 4: Detection scores for combined color, 2D and 3D modalities

that the quantization for normals directly facing the viewer is erratic,
often resulting in multiple quantized orientations. This can be seen
in Figure 32, where the Least Square normals produce a more stable
(more uniformly colored) plane that is facing the viewer, resulting in
less false positives.

(a) Least square normals (b) Cross normals

Figure 32: Comparison of the Least square and Cross normals.

Both the least squares and cross estimation techniques provide a
better separability of the data when compared to the PCA method.
The filtered precision rates increase more radically, and due to the
low number of background false positives of the PCA, we can assume
that most of the false positives are generated by false detection at the
object positions. For these reasons and the high computational costs,
only the cross and least squares estimation techniques will be consid-
ered during the combination with the Color modalities. In Table 4,
the results of the detection method can be seen with some different
configurations. The term before the hyphen in the config column de-

5.4 discussion and drawbacks 74

termines the estimation method, i. e., cross or the Least Squares (LS)
approximation. Both these estimation methods have been combined
with the Hue and color names (CN) modalities, to see which datasets
produce the best results. The PCA method has not been included
because of the reasons stated above, and produced no improvement
over the other modalities.

5.4 discussion and drawbacks

While testing the dataset, some problems of the method have been
discovered. This is partly because we are utilizing the method for ob-
ject types that were not originally used, i. e., more textured and more
similar in shape, and because of the quantization method introduced
by LINE-MOD. This section will look at the different factors which
influence the results presented in the previous sections. The quanti-
zation scheme, feature spreading and feature types will be analyzed
and discussed, and some drawbacks of the method will be presented.

5.4.1 Quantization

(a) Coke can (b) Coke can template (c) Tea pack (d) Tea pack template

Figure 33: Comparison of Coke and Tea Pack. (a) and (c), are the reference
images of the templates. (b) and (d), shows their respective tem-
plates in a visualization, note the similarity between the two ob-
jects

Objects that appear to be dissimilar can generate false positives us-
ing the default modalities and settings. Mainly due to the feature type
and quantization scheme. This can be seen from a template example
in Figure 33 (the figure uses the same coloring scheme as explained
in Section 2.3.3). We can see that for both the Tea Pack and Coke,
which appear to be of a different shape, the templates are quite simi-
lar. Both in position and feature distribution. To further motivate this

5.4 discussion and drawbacks 75

example, we can create a histogram of the template collections. Given
a collection of templates:

Tm =
[

Tm
0 , . . . , Tm

n

]
(64)

the feature indexes can be summed into a bin hi, while discarding
the positions in the template:

hi =
1
N ∑

Tm
i ∈Tm

∑
{d,r}∈Fm

I(d = i) (65)

Where N is the total number of features and I(d = i) is the in-
dicator function. The indicator function returns 1 if i and d have the
same feature index, and 0otherwise. This provides an estimate for the
frequency of a feature in the entire collection of templates per modal-
ity m, essentially transforming the set of templates into a histogram
distribution. This is visualized in Figure 34.

Figure 34 gives an indication of the distribution of features, while
33 gives an indication of the distribution and the positions of the fea-
tures in the template. Note that because both the 2D and 3D gradient
features share a similar distribution over the templates that it makes
the position of the feature in the template the differentiating factor.
Figure 33, shows that for some templates the position of features in
the template is almost equivalent, increasing the chance of a higher
similarity between these object instances, thus increasing the chance
of a false positive.

The same problem can occur with background environments, espe-
cially when regarding the 3D gradients. Figure 35 shows a cluttered
scene with both the Tea Pack object and the Coke. The green boxes
indicate wanted behavior, the red boxes indicate unwanted behavior.
The quantization of the 3D gradients makes the Coke appear box-
like, this is because only 8 orientations are available, which causes
the quantization of normals of the cylindrical Coke and the box into
mainly 2 bins. On the other hand, this is expected for the Tea Pack and
the background box as these are of similar structure. These quantiza-
tion issues can lead to false positives for structurally similar objects.

5.4.2 Spreading

The spreading of features can result in false positives being detected,
mainly in highly textured areas. The 3D gradients were specifically
chosen for this reason, namely to compensate for the fact that the
2D gradients can appear ambiguous. However, as we have seen from
the last section this limitation can also apply to the 3D gradients.
Spreading can make the problem more pronounced. For areas with

5.4 discussion and drawbacks 76

2D gradients
3D gradients

0 1 2 3 4 5 6 7
0

0.15

0.3

0.45

0.6

0.75

0.9

Summed (Categorical)

(a) Coke summed histogram

2D gradients
3D gradients

0 1 2 3 4 5 6 7
0

0.15

0.3

0.45

0.6

0.75

0.9

Summed (Categorical)

(b) Tea Pack summed histogram

Figure 34: Histogram of the collection of coke and Tea Pack templates. The
x axis indicates the descriptor d bin index. The y axis shows the
normalized frequency of the bin.

a lot of 2D gradients we have found that the spreading can cause a
high similarity response for multiple objects.

Figure 36, shows that for objects with high textured area’s the
spreading can become significant. This results in objects typically be-
ing detected inside the textured object.

5.4.3 Modality separability

To create further insight into the results of the benchmark, we can
take a look at how the different modalities influence the similarity be-
tween objects. This section will provide a deeper insight into which
features differentiate the different objects in the dataset, and the influ-

5.4 discussion and drawbacks 77

Figure 35: Coke and Tea pack, in a single scene. RGB input shown as ref-
erence on the left, 3D gradient Q image is shown on the right.
Red boxes indicate unwanted behavior, which is caused by the
quantization, such that round objects tend to look like edges of
square objects. Green boxes indicate wanted behavior, both pla-
nar objects seem similar

(a) Reference RGB image (b) J for Noodles, T = 8 (c) J for Noodles, T = 1

Figure 36: Showing a detection frame for the Noodles object. (a) Reference
RGB image. (b) and (c), J image with the default spreading pa-
rameter T and no spreading. The amount of white determines,
the amount of gradients at that location

ence of these modalities on the actual similarity score will be made
more clear.

5.4.4 Cross-similarity

In the original paper by Hinterstoisser the claim was made that it
would be more likely that the three dimensional gradients could yield
ambiguous similarities. We expect that this would hold for our dataset
especially, as the objects are often cylindrical or rectangular. To in-
vestigate this hypothesis, we are going to introduce the concept of
cross-similarity. After we have learned the objects using the method
as described in Section 4.3.2, we can create a corresponding configu-
ration (Section 4.3.3) to detect these objects. We then run the detection
on the dataset, which was used to learn the objects. To find the cross-

5.4 discussion and drawbacks 78

similarity we consider the similarity of objects between themselves in
this dataset, determining with a constrained detection, how similar
object are to one another. The following steps are used:

• Filter out plane as was discussed in Section 4.3.1.1.
• Detect objects in the learning scene and determine location of

maximum, for all objects in the dataset.
• If the bounding boxes of the annotation and the detection, meet

the matching criteria (Equation 63), consider that location for
the calculation of the cross-similarity.

• Should the bounding boxes not meet the matching criteria, then
the object is not at the location of the maximum, in that case con-
sider a window near the annotation position for the maximum
similarity at that location.

• Average the similarity over the frames, essentially averaging for
different object orientations.

The output is a matrix indicating which objects are similar to one
another. An example is given in Figure 38, which shows the matrix
with the cross-similarity of the objects displayed in the cells. This is a
similarity measure between objects and provides information regard-
ing the similarity between objects and not object and background, as we
are only considering the positions of the annotations.

Intuitively, when looking at a row of the cross-similarity matrix, it
displays how much the object in the row looks like the object in the
column. When looking at a column we are considering how likely the
other objects in the table will be seen when the object in the column
is present in the scene. When these values are low, than the dataset
contains objects which appear dissimilar to the detection system and
vice versa. The values in the diagonal do not always equal 1 because
of the learning process: if there is a loss of information, as is the case
for Crackers and this results in a low detections than the template
is not recorded. In this case, the object model will not contain the
template for that angle, which results in missing templates for orien-
tations, which subsequently causes lower scores during the detection
phase for these orientations.

5.4.5 Separability

For our dataset it was found that due the nature of the objects, and
due to the drawbacks described in the previous section, objects are
often incorrectly classified. Figure 39, shows the cross-similarities for
both the 2D and 3D gradients. Note, that these look as expected, the
3D gradients show more similarity between objects and are unable
to differentiate between the cans, but also have high similarity for
other cylindrical objects like peanut butter. The 2D gradients show
a better separation of the data, especially for the stapler because the

5.4 discussion and drawbacks 79

contour is different from the other objects, as it is wider as opposed
to higher. However, some of the ambiguities still remain, cup and
peanut butter, for example, are quite similar because they are both
small and cylindrical.

The effect that was described in Section 5.4.2 can also be observed
from these figures. Looking at the row titled Noodles in Figure 39,
the similarity for Noodles when matched with other object instances
is shown, Noodles is dissimilar to these other objects. However, when
looking at the column containing Noodles, we can see a higher simi-
larity per object, these higher similarity scores are caused in part by
the spreading, such that templates of other objects have high feature
responses inside the Noodles object.

In some cases the non-symmetry of the cross-similarity can clearly
be seen. Take garlic sauce and cup for example, from Figure 39, it
can be noted that the cup is similar to the garlic sauce but not the
other way around. This is probably because cup has less gradients
and is smaller, and garlic sauce is the larger object and has more
gradients to spread, increasing the feature response at that location
thus increasing the response for objects that fit inside the Garlic Sauce
template.

5.4.5.1 Color modalities

Figure 37: The stapler object

The cross-similarity can be calculated for the color modalities as
well, Figure 40 shows the cross-similarity for both color modalities.
We can observe that the Color modalities provide a higher separabil-
ity for the dataset, as cross-similarity score are lower. Objects appear
less similar at the annotation positions for these modalities, which
make sense because similar shaped objects in this dataset often have
a different color. This holds especially for the cans (Coke, Fanta etc.),
because they are almost identical in contour and shape. However, this
fails in the case of Fanta and Coke, these remain similar in spite of
the added color modality. This is because Fanta was misclassified as
being red in the majority of frames during learning, making the deci-

5.4 discussion and drawbacks 80

sion boundary between the two objects slim, and resulting in a higher
cross-similarity score.

The stapler object, displayed in Figure 37, has been included to
specifically show, that objects that have a different shape tend to pro-
duce well-separable data-sets, which it does for all modalities (Figure
40, Figure 39, and combined in Figure 38). This is one of the main
differences with our objects and the objects used by the authors,

As can be seen in the cross similarity figures, adding an extra color
modality provide some extra separability to the dataset. By using
these feature types we are able to combine contour, shape and color
into a single detector. Enabling the method to differentiate objects that
are challenging to detect using just the original gradient modalities.
In the next sections, we will explore the effect of the added modality
during the actual matching process.

aa
_d

rin
k

be
er

co
ke

cra
ck

ers

cu
p

de
od

ora
nt

fan
ta

ga
rlic

_sa
uc

e

no
od

les

pe
an

ut_
bu

tte
r

sp
rite

sta
ple

r

aa_drink

beer

coke

crackers

cup

deodorant

fanta

garlic_sauce

noodles

peanut_butter

sprite

stapler

 0.99

 0.78

 0.82

 0.53

 0.33

 0.75

 0.80

 0.72

 0.64

 0.50

 0.81

 0.13

 0.53

 0.98

 0.50

 0.30

 0.40

 0.74

 0.63

 0.71

 0.45

 0.63

 0.47

 0.06

 0.28

 0.34

 0.99

 0.23

 0.78

 0.76

 0.98

 0.79

 0.66

 0.80

 0.70

 0.03

 0.50

 0.46

 0.39

 0.75

 0.56

 0.42

 0.49

 0.53

 0.66

 0.44

 0.50

 0.39

 0.21

 0.21

 0.43

 0.23

 0.99

 0.41

 0.74

 0.42

 0.60

 0.72

 0.59

 0.21

 0.46

 0.62

 0.70

 0.21

 0.34

 1.00

 0.46

 0.89

 0.36

 0.35

 0.35

 0.04

 0.53

 0.55

 0.98

 0.29

 0.84

 0.64

 0.99

 0.75

 0.65

 0.75

 0.72

 0.08

 0.63

 0.74

 0.85

 0.42

 0.41

 0.89

 0.81

 1.00

 0.68

 0.63

 0.73

 0.08

 0.34

 0.56

 0.90

 0.43

 0.87

 0.65

 0.90

 0.67

 1.00

 0.86

 0.89

 0.70

 0.29

 0.55

 0.82

 0.26

 0.77

 0.62

 0.80

 0.69

 0.72

 1.00

 0.78

 0.36

 0.49

 0.58

 0.85

 0.28

 0.67

 0.70

 0.82

 0.72

 0.64

 0.74

 1.00

 0.02

 0.05

 0.12

 0.20

 0.11

 0.37

 0.10

 0.20

 0.11

 0.32

 0.22

 0.41

 0.88
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 38: The cross similarity matrix. Darker cells indicate less similarity,
lighter cells indicate a higher similarity. The diagonal contains
the self similarity. Note that the measure is not symmetric.

5.4 discussion and drawbacks 81

Cross-similarities 2D gradients

aa
_d

rin
k

be
er

co
ke

cra
ck

ers

cu
p

de
od

ora
nt

fan
ta

ga
rlic

_sa
uc

e

no
od

les

pe
an

ut_
bu

tte
r

sp
rite

sta
ple

r

aa_drink

beer

coke

crackers

cup

deodorant

fanta

garlic_sauce

noodles

peanut_butter

sprite

stapler

 1.00

 0.98

 0.89

 0.89

 0.41

 0.70

 0.83

 0.63

 0.32

 0.44

 0.83

 0.13

 0.81

 1.00

 0.45

 0.71

 0.50

 0.81

 0.58

 0.88

 0.35

 0.85

 0.57

 0.06

 0.40

 0.40

 1.00

 0.56

 0.59

 0.57

 0.99

 0.97

 0.47

 0.97

 1.00

 0.02

 0.79

 0.48

 0.51

 0.70

 0.77

 0.43

 0.55

 0.46

 0.84

 0.79

 0.54

 0.45

 0.11

 0.09

 0.22

 0.27

 1.00

 0.22

 0.65

 0.07

 0.60

 0.69

 0.67

 0.50

 0.36

 0.74

 0.48

 0.65

 0.19

 1.00

 0.67

 0.83

 0.18

 0.27

 0.62

 0.00

 0.22

 0.33

 0.98

 0.69

 0.87

 0.51

 1.00

 0.60

 0.63

 0.97

 1.00

 0.04

 0.50

 0.92

 0.56

 0.80

 0.62

 1.00

 0.68

 1.00

 0.33

 0.91

 0.64

 0.04

 0.38

 0.54

 0.79

 0.67

 0.98

 0.56

 0.82

 0.53

 1.00

 0.97

 0.80

 0.50

 0.33

 0.16

 0.57

 0.45

 0.91

 0.40

 0.80

 0.39

 0.63

 1.00

 0.60

 0.26

 0.37

 0.32

 0.98

 0.66

 0.92

 0.48

 0.99

 0.65

 0.54

 0.96

 1.00

 0.02

 0.07

 0.05

 0.05

 0.08

 0.13

 0.00

 0.11

 0.08

 0.18

 0.17

 0.15

 1.00
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cross-similarities 3D gradients

aa
_d

rin
k

be
er

co
ke

cra
ck

ers

cu
p

de
od

ora
nt

fan
ta

ga
rlic

_sa
uc

e

no
od

les

pe
an

ut_
bu

tte
r

sp
rite

sta
ple

r

aa_drink

beer

coke

crackers

cup

deodorant

fanta

garlic_sauce

noodles

peanut_butter

sprite

stapler

 0.97

 0.94

 0.96

 0.59

 0.53

 0.98

 0.96

 0.93

 0.59

 0.62

 0.96

 0.25

 0.46

 0.87

 0.29

 0.27

 0.25

 0.42

 0.28

 0.44

 0.19

 0.25

 0.31

 0.16

 0.44

 0.39

 0.98

 0.36

 0.72

 0.73

 0.99

 0.62

 0.59

 0.90

 0.97

 0.30

 0.86

 0.78

 0.71

 0.98

 0.71

 0.74

 0.70

 0.79

 0.91

 0.74

 0.83

 0.71

 0.35

 0.36

 0.61

 0.35

 0.97

 0.46

 0.68

 0.57

 0.71

 0.67

 0.71

 0.53

 0.66

 0.82

 0.65

 0.38

 0.45

 0.97

 0.64

 0.83

 0.41

 0.49

 0.70

 0.12

 0.64

 0.71

 0.98

 0.38

 0.74

 0.81

 0.99

 0.72

 0.79

 0.90

 0.98

 0.31

 0.80

 0.94

 0.81

 0.50

 0.68

 0.98

 0.88

 0.99

 0.61

 0.71

 0.85

 0.31

 0.45

 0.49

 0.99

 0.48

 0.78

 0.57

 0.99

 0.65

 0.99

 0.99

 0.99

 0.83

 0.44

 0.42

 0.99

 0.43

 0.77

 0.63

 1.00

 0.61

 0.88

 1.00

 0.99

 0.50

 0.64

 0.60

 0.99

 0.40

 0.71

 0.79

 0.98

 0.66

 0.80

 0.91

 0.99

 0.43

 0.11

 0.18

 0.22

 0.11

 0.28

 0.13

 0.23

 0.14

 0.32

 0.22

 0.27

 0.50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 39: (a) The cross-similarities for the 2D gradient, (b) The cross-
similarities for the 3D gradients

5.4 discussion and drawbacks 82

aa
_d

rin
k

be
er

co
ke

cra
ck

ers

cu
p

de
od

ora
nt

fan
ta

ga
rlic

_sa
uc

e

no
od

les

pe
an

ut_
bu

tte
r

sp
rite

sta
ple

r

aa_drink

beer

coke

crackers

cup

deodorant

fanta

garlic_sauce

noodles

peanut_butter

sprite

stapler

 1.00

 0.83

 0.23

 0.44

 0.42

 0.84

 0.53

 0.75

 0.15

 0.54

 0.35

 0.01

 0.88

 0.96

 0.00

 0.43

 0.60

 0.81

 0.84

 0.74

 0.28

 0.25

 0.59

 0.14

 0.72

 0.74

 1.00

 0.38

 0.91

 0.90

 0.51

 0.72

 0.40

 0.62

 0.75

 0.05

 0.74

 0.55

 0.09

 0.78

 0.18

 0.02

 0.61

 0.29

 0.13

 0.38

 0.07

 0.11

 0.37

 0.39

 0.36

 0.16

 0.95

 0.55

 0.51

 0.29

 0.33

 0.39

 0.49

 0.09

 0.09

 0.31

 0.99

 0.00

 0.32

 0.98

 0.12

 0.60

 0.17

 0.48

 0.52

 0.07

 0.83

 0.80

 0.97

 0.51

 0.94

 0.62

 1.00

 0.54

 0.51

 0.84

 0.61

 0.09

 0.77

 0.64

 0.05

 0.32

 0.39

 0.95

 0.52

 1.00

 0.29

 0.24

 0.62

 0.03

 0.62

 0.68

 0.55

 0.48

 0.94

 0.96

 0.80

 0.73

 0.72

 0.57

 0.95

 0.28

 0.89

 0.73

 0.86

 0.43

 0.93

 0.58

 0.89

 0.64

 0.75

 0.96

 0.71

 0.15

 0.09

 0.26

 0.50

 0.06

 0.51

 0.33

 0.14

 0.39

 0.33

 0.22

 0.98

 0.13

 0.05

 0.21

 0.43

 0.00

 0.60

 0.45

 0.21

 0.28

 0.51

 0.17

 0.87

 1.00
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Cross-similarities Hue

aa
_d

rin
k

be
er

co
ke

cra
ck

ers

cu
p

de
od

ora
nt

fan
ta

ga
rlic

_sa
uc

e

no
od

les

pe
an

ut_
bu

tte
r

sp
rite

sta
ple

r

aa_drink

beer

coke

crackers

cup

deodorant

fanta

garlic_sauce

noodles

peanut_butter

sprite

stapler

 1.00

 0.53

 0.31

 0.17

 0.37

 0.29

 0.30

 0.33

 0.25

 0.26

 0.80

 0.12

 0.26

 0.78

 0.22

 0.23

 0.14

 0.31

 0.25

 0.45

 0.27

 0.35

 0.28

 0.19

 0.20

 0.30

 1.00

 0.16

 0.95

 0.62

 0.98

 0.68

 0.39

 0.70

 0.17

 0.03

 0.17

 0.47

 0.19

 0.42

 0.10

 0.31

 0.19

 0.33

 0.24

 0.27

 0.16

 0.14

 0.19

 0.35

 0.88

 0.24

 1.00

 0.46

 0.85

 0.43

 0.46

 0.48

 0.10

 0.05

 0.19

 0.78

 0.82

 0.15

 0.36

 1.00

 0.74

 0.94

 0.39

 0.45

 0.09

 0.02

 0.32

 0.31

 0.94

 0.22

 0.84

 0.61

 1.00

 0.73

 0.52

 0.61

 0.34

 0.09

 0.42

 0.71

 0.39

 0.26

 0.27

 0.70

 0.45

 0.99

 0.41

 0.40

 0.22

 0.02

 0.41

 0.48

 0.63

 0.40

 0.75

 0.72

 0.76

 0.78

 1.00

 0.89

 0.75

 0.42

 0.12

 0.34

 0.53

 0.25

 0.47

 0.55

 0.50

 0.63

 0.49

 0.98

 0.15

 0.23

 0.22

 0.18

 0.29

 0.13

 0.17

 0.36

 0.29

 0.43

 0.39

 0.39

 0.99

 0.26

 0.16

 0.20

 0.22

 0.32

 0.18

 0.32

 0.30

 0.41

 0.42

 0.42

 0.58

 1.00
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Cross-similarities color names

Figure 40: (a) The cross-similarities for the Hue gradient, (b) The cross simi-
larities for the color names

5.4 discussion and drawbacks 83

5.4.6 Influence of background

In the previous sections results have been shown, which indicate how
well the object detector performs on the dataset. Different normal
estimation methods have been tested, as well as the two color de-
scriptors introduced in this thesis. During the evaluation, a few other
limitations of detecting these specific set of objects with the system
were found. The system could not accurately detect the Noodles (Ap-
pendix B), with any configuration and was almost always misclassi-
fied as a sprite, which is similar in color. The Fanta and Coke, couldn’t
be discerned from each other as Fanta is incorrectly classified as being
red in most of the frames.

Both the color names and the hue modality have problems with
white and black respectively. The color names modality, often detects
white as blue or purple if there is some amount of blue in the image.
The hue modality, finds large saturation values for black so that it is
not filtered, resulting in the spreading of a large amount of features in
the background that result in high feature responses in these regions.

Some objects, were falsely identified in the background, this has to
do with the problem described in Section 5.4.1. Figure 41, illustrates
this problem for an example case. The stapler, is a blue object with
2D gradients pointing in the y direction, and 3D gradients pointing
either upwards or towards the camera. Because of the quantization,
the gradients will be allocated in two bins. Even though the object is
rounded, and does not possess a sharp corner like the background
it is still wrongly identified at this location because of the quantiza-
tion. Using the current quantized information, which provides in an
insufficient amount of information, these kind of situations are hard
to eliminate completely.

(a) False detection stapler (b) J 2D gradients

(c) J 3D gradients (d) J CN

Figure 41: (a) The false detection. (b), (c), (d) The quantized and spread im-
ages

5.5 running time performance 84

0.0 0.5 1.0 1.5 2.0 2.5
Num of features 1e5

10

20

30

40

50

60

70

80

90

100

Po
ce

ss
in

g
tim

e
pe

r f
ra

m
e

(m
s)

Cross + 3D + CN

Figure 42: Running time of the detection phase, plots the runtime to fea-
ture correspondence, from which can be seen that the relation is
almost linear.

5.5 running time performance

One of the main contribution of the original method was that it was
very fast. When compared to the original, a performance increase has
been obtained because of the parallel processing of the input frames
per modality, this extension can reduce the processing time for the
input images up to a third, in practice it reduces the input processing
time to that of the slowest modality, which is illustrated in Table 5.

AMIGO has four computers, containing either Intel i5 or i7 proces-
sors, the more CPU intensive processes are run on the more powerful
i7 processors. To test the results presented in this chapter we have
used a second generation (Ivy Bridge) Intel i7-3630QM processor run-
ning at 2.4 Ghz, with 8 GB of ram.

Table 5 and Table 6 show the running times of the preprocessing of
the images. These steps happen each frame, the processing of the 3D
gradients generally take the longest time. From Table 6, because of the
parallel processing of the input frames, the speed stays the same for
the added modalities. The bottleneck in this case, is the modality that
takes the longest time to process, which is the 3D modality. Note that
both the Least Squares and Cross product approach take an almost
equal amount of time. The PCA method takes the longest to process,
the calculations involved are more complex than the other two meth-
ods. However, the PCA method does not lead to an improvement in
the detection.

Figure 42, shows a plot of the processing time required to match a
features in a template with an input image. Up to 250, 000 features are

5.5 running time performance 85

processed, the figure shows that the relation between the amount of
templates and the detection runtime, is almost linear. This is expected
as the detection only involves the summation of feature responses.
The addition or removal of an additional modality does not change
this linear relationship.

During testing we noted that depending on the dataset (color names
requires more templates than hue), we are able to run the detection
node at about 6 to 8 frames per second. The detection method, pre-
sented in this thesis, was also deployed during the RoboCup, during
which 22 objects had to be detected. When using the RoboCup dataset
the node runs at around 4 frames per second, using color names as a
color type.

The running times of the different configurations are listed in Table
7. The time scales with the amount of templates used. The amount of
templates depends on the learning phase, as templates are recorded
and saved automatically depending on the threshold. Because color
modalities add further distinction to different object angles (orien-
tation of the object), using a color modality will automatically cause
more templates to be recorded. The table shows that both color modal-
ities, use more templates than the original method. Color names re-
quires significantly more templates, this is because it change of orien-
tation causes a larger change of color templates, when compared with
the Hue modality. The decrease in average running time per frame de-
creases as the amount of templates increase, because the processing
of the input images is a large constant factor.

5.5 running time performance 86

configuration runtime (ms)

Hue 54

Color Names 57

Table 5: Running times (ms) of the hue and color names extraction. Dis-
played running times are calculated an average frame basis for 200

frames.

config 3d 2d, 3d 2d, 3d, cn 2d, 3d, hue

LS 72 72 74 73

Cross 63 65 65 66

PCA 423 419 429 412

Table 6: Running times (ms) of different normal estimations routines. The
columns display the normal estimation, and the combined modali-
ties. Running times are calculated on an average frame basis for 200

frames.

config # templates runtime (ms) ms / #template

LINE-MOD 914 36 0.039

Cross-CN 3261 98 0.030

Cross-Hue 1215 39 0.032

LS-CN 2352 72 0.031

LS-Hue 1266 41 0.032

Table 7: The processing times for the detection procedure (average per frame
basis). Displayed for different configurations. The columns respec-
tively display the configuration, number of templates, and process-
ing time of the detection, and the processing time per template

5.6 conclusions 87

5.6 conclusions

From the results presented in this chapter and the quantitative evalu-
ation done during the course of the project the following conclusions
are drawn:

• The addition of the color modalities generally improve preci-
sion, but does not consistently improve recall. This is expected,
because the detection system is better at differentiating objects
using a color modality, but that does subsequently entail that
the number of False Negatives is also decreased.

• The Color Names seem a promising addition to the detection
system. However, in some cases the color names perform worse
than the hue modality, as we have seen only some measure
of distinctiveness between objects is needed, as this increases
the discriminative power of the method. In most cases the hue
modality provides enough discriminative power, whilst being
less prone to false negatives, resulting higher recall scores.

• Adding a color modality is a trade-off, while it does improve
precision, it also increases the time necessary to detect objects.
For some objects, like a Coke and Fanta can, there may be no
alternative in the current system. Because when using only 2D
and 3D gradients there is not enough discriminative power.

• The Least Squares normal approximation is the most accurate
when only 2D and 3D gradients are used. However, by adding
a color modality, this advantage can become less significant.
Because false positives in the background, which occur when
using the cross estimation, are filtered out. The PCA method
seems unfeasible to use, as it takes the longest time to compute
and does not subsequently improve on the results.

• The filtering done by the world model is important, because this
drastically improves the precision. A limitation of the current
method, is that a large amount of objects still seem similar, caus-
ing them to pass the threshold, and can only be distinguished
when considering both their position and similarity.

6
C O N C L U S I O N S A N D F U T U R E W O R K

6.1 introduction

In this last chapter a short discussion will given about the suitabil-
ity of the described system for detecting objects with AMIGO. The
evaluation and utilization of the system on the RoboCup, has made
it possible to form a number of conclusions regarding the system. In
this thesis we have presented an object detection module based on an
existing detection framework by Hinterstoisser et al. [1], the goal was
to integrate this system into the robot and find out if it could be uti-
lized successfully. The next sections answers the Research Questions
and lists Future Work.

6.2 research questions

6.2.1 Research Questions

LINE-MOD was created for detecting texture-less objects, how well does
LINE-MOD generalize to objects used in the RoboCup competition? What
are the current deficiencies and how could these be tackled?

line-mod LINE-MOD is especially suited for detecting texture-
less objects in relatively controlled environments, one of the problems
regarding our application was the fact that textured objects some-
times caused problems because of the spreading. As well as the fact
that household objects tend to resemble each other in shape. To alle-
viate this problem we have introduced a color modality, which helps
differentiate objects more strongly. The world model also helps in fil-
tering out the false positives that occur during detection. However,
for larger datasets the separability will become more important. As
we have seen in the last chapter less separability can cause more false
positives. The objects used on the RoboCup are also often of a similar
shape, in this case the 2D and 3D modalities will not be sufficient to
describe these objects and the method falls short. Although color can
provide some benefit, in some cases another approach will have to be
taken. Another drawback of the method is that sometimes the back-
ground can resemble an object too closely, e. g.there is no way that

88

6.2 research questions 89

the current implementation of the object detector could differentiate
between a cube that has been learned with a front view perspective
and a similar colored box in the background. Therefore, I think these
modalities are insufficient and should be combined with a texture
based framework, ideally also outputting similarity maps so that the
methods can be combined.

implemented object detector The combined gradient and
color modalities introduced in this thesis result in better precision
score for the dataset, when opposed to the original method. However,
color names can be too strict, creating a larger number of false nega-
tives, but usually do result in better precision scores when opposed
to the Hue modality. Thus, color names are a promising addition the
original modalities, but there should be some research into the best
utilization of the color names, as they are more sensitive to the trans-
lation and scaling of the objects than other features. The original 3D
gradient extraction routine, introduced Hinterstoisser in et al. [1], is
the most appropriate in most cases. However, the choice of the cross
or Least Squares normal routine does not affect the performance by
a large amount when combined with the color modality. The imple-
mented system does not include a method that integrates scaling into
the infrastructure, in the original method image pyramids were used
to incorporate scaling into the detection method. This was specifically
not included, because AMIGO does can position himself at objects at
a particular angle, and the locations are mostly known. Additionally,
the intuition was also held that if there is depth information available,
then scaling over the entire scale space should not be necessary. Un-
fortunately, because of time constraints, a working solution has not
been integrated into the system.

Is LINE-MOD a suitable candidate for the integration into the AMIGO
infrastructure and could it be used for everyday tasks? Additionally, is LINE-
MOD suitable for use in general service robotics, and not just the AMIGO
project?

amigo LINE-MOD is a suitable candidate for integration into the
AMIGO project. However, the system alone will prove insufficient
especially because of our applications. It should be considered a low-
level fast detection module, that could perhaps eventually be used
to generate object hypothesis that a more complex system can verify
later. During our experimentations it proved to work better than the
existing methods that have been used on the AMIGO project, thus it
will continue to be a part of the AMIGO eco-system in the foreseeable
future.

general service robots In the general service robot domain,
the focus should not only be on the detection of objects, but also

6.3 future work 90

regarding the integration between systems, something that has been
elaborated upon on in Chapter 4. I believe it is important to eventually
integrate contextual information into perception architectures. In the
current method the communication is one-way. However, perception
should start utilizing information gathered by the robot to be able to
recognize objects more accurately. If the robot has an indication of the
location (e.g. a table in an office) and other sources of information, so
that the robot has an idea for what and where it should be looking,
it would definitely simplify the problem. Thus, I believe the method
to be accurate enough to be utilized together with other perception
modules on AMIGO. However, future focus should not only be the
creation of more accurate stand-alone perception modules, but also
on the creation of a more general cognitive architecture.

6.3 future work

• Combining probabilities The current detection method makes
use of similarities, these are similar to probabilities but do not
take any prior information into account and do not adhere to
probabilistic axioms and rules. An interesting question is if these
similarities could be replaced by a probabilistic interpretation.
Specifying prior probabilities indicating the chance of a detec-
tion, as well as posteriors that specify how likely an object hy-
pothesis is. Perhaps, a probability could even be formulated that
specifies the probability of a misclassification. Using these prob-
abilities a more informed detection result could be presented
to the World Model. This is desirable as this is an inherently
probabilistic system.

• Method cascade LINE-MOD has problems detecting highly
textured objects. The addition of a more complex (albeit slower)
texture based method, would provide more accuracy for ob-
jects found in household settings. An extenstion would be to
arrange more methods in a cascade, where LINE-MOD does
a first fast detection and generates object hypotheses. Another
method could then provide a more accurate measurement with-
out having to do an exhaustive image search, reminiscent of
other cascaded architectures [18].

• Weighted modalities The Equation 22, weights the modalities
for the Object Models equally. This is not always correct, as in
some cases the detections should be more confident for a cer-
tain modality. It would be interesting if the modalities could
be weighted per object or per scene information. This could be
done by defining an inter-class similarity that estimates which
modality has the largest chance of a misclassification, or by es-
timating the chance of a false positive. Perhaps by looking at

6.3 future work 91

the information entropy of the spread image: the larger the
spreading, the larger the entropy becomes. So that the proba-
bility to find a positive match given a descriptor d with a max-
imum value (wich means that all gradient orientations are rep-
resented), could be seen as a uniform distribution, which max-
imizes entropy. It would be interesting to see if an adaption
could be made to include this information, and if it would pro-
vide more accuracy.

• Template trees The current detection method makes use of
templates for performing the detection of objects. During the
evaluation it has been shown that the method will still run
in real-time for up to 20 objects. However, initiatives like the
Roboearth project [62], are working on the creation of that databases
and methods such that massive amounts of information can be
shared between robots. This will place a larger requirement on
systems that aim to detect objects in real-time. Previous meth-
ods ([63], template tree approach) have made use of tree struc-
tures to accelerate the matching of templates. The object detec-
tor on AMIGO could make use of these methods, if there is a
way of comparing templates with each other a-priori so that a
split criterium can be created, or an exemplar template can be
specified, a tree based approach becomes feasible. As of now,
the amount of templates determines the run-time of the current
system, so an optimization in this area seems likely to succeed.

• 3D features and quantization During the course of this the-
sis, the 3D features that are used consisted solely of normal
vectors. As we have seen in the previous section, these are not
always the most descriptive features. Recently, with the advent
of the Kinect, research into new feature types has been done
[32]. To integrate these into the framework, the biggest obstacle
is that most features even small features like Local Binary Pat-
terns (LBP) require more than 8 feature orientations. Because
the object detector is limited to a single byte, with 8 unique
(unspread) orientations, this places limitations on the feature
that can be used. Nevertheless, it will be interesting to research
the possibility of employing different features within the frame-
work. The Quantization of the 3D normals is not optimal. Other
research based on the compression of normals [64], provide and
test different normal quantization schemes that preserve the
largest amount of information. An especially interesting scheme
uses the geodesic sphere to provide equally spaced regions to
perform the quantization. Unfortunately, a problem with this
approach is that a half of a geodesic sphere (geodesic dome),
cannot be split up into 8 equally spaced regions (number of fea-
ture orientations). Still it would be interesting to see if there is

6.3 future work 92

a workaround that would perform better. These limitations are
hard to overcome, it could be therefore be the case that a byte
will simply not be enough storage space. The SSE instructions
operate on single bytes (char) for features, and on double bytes
(short) for similarities. It would be interesting to see whether
there is an direct improvement when the systems works on two
bytes instead. As this would double the amount of unique quan-
tized orientations that the detection module could handle. It
could also open the possibility for more complex feature types.

Part IV

A P P E N D I X

A
S S E I N S T R U C T I O N S E T

a.1 introduction

Because a large part of the high performance of the system, is thanks
to the use of SSE instruction, it seemed prudent to give an introduc-
tion about the use of SSE instructions. This appendix will mainly ex-
plain the high level concepts and a small code example which show-
cases a simple SSE operation. Note that some knowledge is assumed
of C++ and the reader should be comfortable with lower level mem-
ory operations and pointer arithmetic. Mainly, because the support
that is offered by C++ for SSE is targeted at an audience working
with high performant systems.

(a) SISD (b) SIMD

Figure 43: The SISD (a) and SIMD (b) architecture are illustrated. Source1

The Streaming Single Instruction Multiple Data (Streaming SIMD
or SSE) is an extension to the standard x86 instruction set. SSE in-
structions effectively enable the parallel processing of larger amounts
of data than was possible with the regular x86 instruction set. SIMD is
different from Single Instruction Single Data (SISD), which processes
a single unit of data using a single instruction. Parallelization in the

94

A.1 introduction 95

SISD case is provided by multiple processors, and the pre-fetching of
data and instructions. The difference is indicated by Figure 43.

The SIMD instructions have multiple Processing Units (PU) which
can process the data in parallel. The data to be processed is stored in
registers, these registers can store up to 16 bytes or 128 bits. Hence,
using C-style nomenclature; up to 16 shorts, 4 floats or integers, and
2 doubles can be processed using a single instruction. These sets of
primitives are referred to as SIMD vectors. Different instructions for
different vector types are defined, similarly as to regular x86 instruc-
tions, which can be directly issued to the processor using assembly.
Processors must adhere to the SSEx standard, where x is the version
number, which is at 4 as of writing. Most reasonably modern (2003 on-
wards) processors by both AMD and Intel provide at least SSE2 capa-
bilities. To enhance the performance of an algorithm with SSE instruc-
tions, the programmer has to consider the problem on a conceptually
different level. Because most algorithms are not easily parallelizable,
some work has to be done to convert an existing solution to a parallel
or, in SSE terms, a vectorized format. Note that the compiler is able
to vectorize simple numeric operations automatically. However, auto-
matic vectorization is still an open problem and currently there is no
way to automatically vectorize an entire complicated procedure.

a.1.1 SSE for image processing

SSE are especially useful in image processing and therefore also to
some extent in computer vision, considering the fact that images are
mostly large matrices of data. Processing this data can take up a large
amount of time in an algorithm. By utilizing SSE, one can significantly
speed up the processing of an image using just low-level optimiza-
tions. In the method discussed in this thesis, the matching of a single
template T on a single binary input image Q, takes up to 9 millisec-
onds unoptimized while the SSE version takes just 0.3 milliseconds.
Effectively speeding up the operation by 300%. Unfortunately, some
problems are hard to convert to an SSE version or would perhaps re-
quire a totally different approach. Also some amount of tuning can
be required to obtain the most performant version, both these prob-
lems also hold for inherently similar GPU computing. Some work is
being done to ease this process, for example the Halide language pro-
vides a high level interface which selects appropriate schedules and
parameters [65].

1 Courtesy of wikipedia: http://en.wikipedia.org/wiki/File:SISD.svg and http:

//en.wikipedia.org/wiki/File:SIMD.svg

http://en.wikipedia.org/wiki/File:SISD.svg
http://en.wikipedia.org/wiki/File:SIMD.svg
http://en.wikipedia.org/wiki/File:SIMD.svg

A.2 using sse instructions 96

a.2 using sse instructions

This section discussed how to utilize SSE instructions. In the last sec-
tion, SSE instructions were essentially introduce as assembly instruc-
tions. However, compilers like GCC, Visual C, and Clang provide
SSE intrinsics; intrinsics are a collection of structures and methods
designed that encapsulate the corresponding assembly instructions.
Essentially simplifying the production of SSE code. There are intrin-
sics for loading into SSE registers and performing operations on these
registers.

Memory line

XMM0

Load

0316395127

F0F2 F1F3

0316395127

F0F2 F1F3
XMM1

source

result

Operation

Memory line

Unload

Figure 44: Two corresponding SSE registers, with a source and destination
register. SSE registers are typically labeled as XMM registers.
Data is loaded from the memory line into a source register, an
operation is performed into a resulting register, from which the
data can be loaded back into the memory line.

Figure 44 shows the pipeline for processing SSE instructions. Data
is loaded into a XMM register by an intrinsic, multiple operations
can be performed on these registers, and data can subsequently be
extracted from these registers. Data can only be loaded in 16 bytes,
in the figure the registers are split up into four blocks, most opera-
tions are still defined for floats, as historically the SSE instructions
have been used in combinations with float vectors, and a lot of the
operations are still defined as such. The elements of the register are
processed in parallel, which means processing 16 byte values in par-
allel.

A.2 using sse instructions 97

a.2.1 Memory alignment

Figure 45: Illustrates how the CPU accesses a 4-byte chuck of data with 4-
byte memory access granularity. Source2

When working with SSE it’s best to utilize the memory in blocks
of 16 bytes, because of the size of the SSE register. Data that is loaded
into the register, from which the source is 16 byte aligned is appro-
priately named: aligned memory. Most operating systems, including
those adhering to the POSIX3 standard, provide memory aligned al-
location options. Compiler intrinsics support both aligned and un-
aligned loads, but especially in older SSE standards (SSE & SSE2),
aligned loads are significantly faster. An unaligned load can essen-
tially be seen as a cache miss, where an extra load an shift have to be
done to get the data into the register. This is illustrated in Figure 45.

a.2.2 Small example

A small example is given below, in this piece of code we show a
simplified version the or’ing of the binary image J , as has been ex-
plained in Section 2.4. Two ways of loading memory will be shown,
an aligned version and an unaligned version. A short function will be
shown that or’s a shifted version of the same image.

1 #include <pmmintrin.h>

2

3 void orUnaligned(const void* src, void* dst)

4 {

5 //Load into register a, unaligned

6
__m128i val = _mm_lddqu_si128((const __m128i*) (src));

7 //Load into register b, unaligned

8
__m128i dst_ptr = _mm_lddqu_si128((const __m128i*) (dst));

2 Courtesy of Song Ho Ahn: http://www.songho.ca/misc/alignment/dataalign.

html

3 Portable Operating System Interface, provides a standard between operating sys-
tems.

http://www.songho.ca/misc/alignment/dataalign.html
http://www.songho.ca/misc/alignment/dataalign.html

A.2 using sse instructions 98

9

10 //Perform bitwise or

11 dst_ptr = _mm_or_si128(dst_ptr, val);

12

13 //Store back into memory, unaligned

14
_mm_storeu_si128((__m128i*) (dst) , dst_ptr);

15 }

The function specified above, takes two void pointers as input.
The

__m128i

type, is a placeholder for an SSE register, replaced by C++ compiler
to SSE Assembly instruction. By casting the memory pointer to a SSE
type, we are saying that we want to refer to this as an XMM registry.
Because the data is unaligned we have to load the XMM vector into a
registy by calling:

_mm_lddqu_si128((const __m128i*) (src))

Which takes an XMM registry pointer as input. The actual XMM vec-
tor is returned, and we perform the bitwise OR by calling:

_mm_or_si128(dst_ptr, val)

. Finally, we store the vector back in the original memory location.

1 void orAligned(const void* src, void* dst)

2 {

3 //Use cast to load into register a aligned

4 const __m128i* src_ptr = (const __m128i*)(src);

5 //Use cast to load into register b aligned

6
__m128i* dst_ptr = (__m128i*)(dst);

7

8 //Perform or, and dereference to store values

9 //into memory

10 *dst_ptr = _mm_or_si128(*dst_ptr, *src_ptr);

11 }

The above function, is similar to the first. The big difference is that
we do not need to load the values into the registry explicitly, the cast
is sufficient and the memory is loaded automatically. The same thing
holds for the last line:

*dst_ptr = _mm_or_si128(*dst_ptr, *src_ptr);

which stores the value automatically by dereferencing and assigning
the XMM vector. So the alignment of the memory becomes crucial
either when dereferencing the src_ptr and dst_ptr, or when per-
forming certain SSE operations that expect aligned memory.

A.3 further reading 99

1 void orImageJ(J& image)

2 {

3 //Pointer at (x:0, y:0)

4 char* src_ptr =

5 image.pointerAt(0,0);

6

7 //Pointer at (x:0, y:1)

8 char* dst_ptr =

9 image.pointerAt(0,1);

10

11 size_t size = image.size() - image.row_size();

12 for(int i = 0; i < size; i+=16, src_ptr+=16, dst_ptr+=16)

13 {

14 //Check if aligned to 16 memory

15 if((uintptr_t) src_ptr % 16 == 0 &&

16 (uintptr_t) dst_ptr % 16 == 0)

17 orAligned(src_ptr, dst_ptr);

18 else

19 orUnaligned(src_ptr, dst_ptr);

20 }

21 }

The final function performs on operation on the image J, this de-
scribes a single step in the spreading routine. Suppose that we have
a class J, which is basically an image/matrix of bytes that provides
functionality to obtain a pointer at an image location. In the function,
we are going to use the SSE bitwise OR operation on a shifted ver-
sion of the Image. Note that for simplicity we do not do any bound
checking. On line 5 and 9 we obtain the source and destination point-
ers. Because the data can be either aligned or unaligned we run the
following check:

(uintptr_t) src_ptr % 16 == 0 && (uintptr_t) dst_ptr % 16 == 0

which interprets the pointers as integers, and checks if it falls on the
16 byte boundary. Should this be the case we can use the aligned
OR:

orAligned(src_ptr, dst_ptr);

Otherwise we use the unaligned version:

orUnaligned(src_ptr, dst_ptr);

a.3 further reading

Note that the above example is a bit contrived. The intrinsic types
support direct pointer operations that can be faster than doing the

A.3 further reading 100

cast or load each time. For instance, we could have written the aligned
function as:

1 typedef unsigned int uint;

2

3 void orAligned(const void* src, void* dst, uint size)

4 {

5 //Use cast to load into register a aligned

6 const __m128i* src_ptr = (const __m128i*)(src);

7 //Use cast to load into register b aligned

8
__m128i* dst_ptr = (__m128i*)(dst);

9

10 for(uint i = 0; i < size; i+=16, src_ptr++, dst_ptr++)

11 {

12 //Perform or, and dereference to store values

13 //into memory

14 *dst_ptr = _mm_or_si128(*dst_ptr, *src_ptr);

15 }

16 }

Because we know the memory is aligned, we can use direct in-
crementation of the pointers to move the next 16 bytes into the reg-
istry. Which could speed up the process even further. For the inter-
ested reader there are some good resources on SSE. Especially the
MSDN guide, which is also suitable for GCC development4. Other
suitable tutorials can also be found online. An article on general mem-
ory architecture for programmers can be found at: http://lwn.net/
Articles/250967/

4 http://msdn.microsoft.com/en-us/library/26td21ds(v=vs.100).aspx

http://lwn.net/Articles/250967/
http://lwn.net/Articles/250967/

B
O B J E C T D ATA S E T

b.1 objects

The data set listed below is a custom created data set. Mainly to test
how well the current detection system generalizes to objects typically
encountered by AMIGO.Objects are also selected to be graspable, be-
cause AMIGO and other robots in service environment settings need
to interact with the objects. The object instances are listed below:

b.1.1 Object instances

1. aa_drink

2. beer

3. coke

4. crackers

5. cup

6. deodorant

7. fanta

8. garlic_sauce

9. noodles

10. peanut_butter

11. sprite

12. stapler

The data set which can be made available on request, uses these
object labels and corresponding numbers to differentiate the objects
in the recordings. Three unidentified objects were added, to see if the
detection system would confuse these with the true positives:

• cup_small

101

B.1 objects 102

• tape
• tea_box

Objects have been categorized in categories, mainly because this
is also done during the RoboCup competitions, and because some
categories contain more similar objects than others:

• Drinks:

– aa_drink
– beer
– coke
– fanta
– sprite

• Food:

– noodles
– peanut_butter
– crackers
– garlic_sauce

• Miscellaneous:
• deodorant
• stapler
• Unidentified:

– cup_small
– tape
– tea_box

Figure 46, shows the object dataset. All objects, bounded by a green
bounding box are required to be detected by the object detector. Ob-
jects bounded by a red bounding box are considered unknown.

b.1.2 Locations

The TU/e robotics lab is an area where AMIGO currently operates,
most experiments are currently being done inside the lab. The differ-
ent locations inside the lab that have been used during the evaluation
phase, are listed below:

1. Left_table

2. Middle_table

3. Cupboard

4. Bed_table

B.1 objects 103

Figure 46: The object dataset, the identified objects are bounded by a green
bounding box. The unidentified objects are bounded by a red
bounding box.

B I B L I O G R A P H Y

[1] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua,
and V. Lepetit, “Gradient response maps for real-time detection
of textureless objects,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 34, no. 5, pp. 876–888, 2012.

[2] T. Wisspeintner, T. van der Zant, L. Iocchi, and S. Schiffer,
“RoboCup@Home: Scientific competition and benchmarking for
domestic service robots,” Interaction Studies: Robots in the Wild,
vol. 10, pp. 392–426, Dec. 2009.

[3] S. Cousins, “Ros on the pr2 [ros topics],” Robotics & Automation
Magazine, IEEE, vol. 17, no. 3, pp. 23–25, 2010.

[4] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, 2009.

[5] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio,
A. Blake, M. Cook, and R. Moore, “Real-time human pose recog-
nition in parts from single depth images,” Communications of the
ACM, vol. 56, no. 1, pp. 116–124, 2013.

[6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results.” http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[7] L. G. Roberts, “Machine perception of three-dimensional solids,”
tech. rep., DTIC Document, 1963.

[8] R. O. Duda and P. E. Hart, “Use of the hough transformation to
detect lines and curves in pictures,” Communications of the ACM,
vol. 15, no. 1, pp. 11–15, 1972.

[9] D. H. Ballard, “Generalizing the hough transform to detect ar-
bitrary shapes,” Pattern recognition, vol. 13, no. 2, pp. 111–122,
1981.

[10] J. Lewis, “Fast normalized cross-correlation,” in Vision interface,
vol. 10, pp. 120–123, 1995.

[11] A. K. Jain, Y. Zhong, and S. Lakshmanan, “Object matching us-
ing deformable templates,” Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, vol. 18, no. 3, pp. 267–278, 1996.

104

bibliography 105

[12] Y. Freund and R. E. Schapire, “A decision-theoretic generaliza-
tion of on-line learning and an application to boosting,” Journal
of computer and system sciences, vol. 55, no. 1, pp. 119–139, 1997.

[13] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1,
pp. 5–32, 2001.

[14] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
learning, vol. 20, no. 3, pp. 273–297, 1995.

[15] D. P. Huttenlocher and S. Ullman, “Object recognition using
alignment,” in Proceedings of the 1st International Conference on
Computer Vision, pp. 102–111, 1987.

[16] D. G. Lowe, “Object recognition from local scale-invariant fea-
tures,” in Computer vision, 1999. The proceedings of the seventh IEEE
international conference on, vol. 2, pp. 1150–1157, Ieee, 1999.

[17] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-
detection,” Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, vol. 34, no. 7, pp. 1409–1422, 2012.

[18] P. Viola and M. J. Jones, “Robust real-time face detection,” In-
ternational journal of computer vision, vol. 57, no. 2, pp. 137–154,
2004.

[19] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan, “Object detection with discriminatively trained part-
based models,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 32, no. 9, pp. 1627–1645, 2010.

[20] N. Dalal and B. Triggs, “Histograms of oriented gradients for hu-
man detection,” in Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, vol. 1, pp. 886–
893, IEEE, 2005.

[21] B. Leibe, A. Leonardis, and B. Schiele, “Combined object cate-
gorization and segmentation with an implicit shape model,” in
Workshop on Statistical Learning in Computer Vision, ECCV, pp. 17–
32, 2004.

[22] J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky,
“Hough forests for object detection, tracking, and action recogni-
tion,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 33, no. 11, pp. 2188–2202, 2011.

[23] S. Hinterstoisser, V. Lepetit, S. Ilic, P. Fua, and N. Navab, “Domi-
nant orientation templates for real-time detection of texture-less
objects,” in Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, pp. 2257–2264, IEEE, 2010.

bibliography 106

[24] Z. Zhang, “A flexible new technique for camera calibration,” Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, vol. 22,
no. 11, pp. 1330–1334, 2000.

[25] K. Lai, L. Bo, X. Ren, and D. Fox, “Rgb-d object recognition: Fea-
tures, algorithms, and a large scale benchmark,” in Consumer
Depth Cameras for Computer Vision: Research Topics and Applications
(A. Fossati, J. Gall, H. Grabner, X. Ren, and K. Konolige, eds.),
pp. 167–192, Springer, 2013.

[26] K. Lai, L. Bo, X. Ren, and D. Fox, “Detection-based object label-
ing in 3d scenes,” in IEEE International Conference on on Robotics
and Automation, 2012.

[27] K. Lai, L. Bo, X. Ren, and D. Fox, “Sparse distance learning
for object recognition combining rgb and depth information,” in
IEEE International Conference on on Robotics and Automation, 2011.

[28] M. Sun, G. Bradski, B.-X. Xu, and S. Savarese, “Depth-encoded
hough voting for joint object detection and shape recovery,” in
Computer Vision–ECCV 2010, pp. 658–671, Springer, 2010.

[29] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,
P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, et al.,
“Kinectfusion: real-time 3d reconstruction and interaction using
a moving depth camera,” in Proceedings of the 24th annual ACM
symposium on User interface software and technology, pp. 559–568,
ACM, 2011.

[30] S. Prince, Computer Vision: Models Learning and Inference. Cam-
bridge University Press, 2012.

[31] C. Redondo-Cabrera, R. J. López-Sastre, J. Acevedo-Rodríguez,
and S. Maldonado-Bascón, “Surfing the point clouds: Selective
3d spatial pyramids for category-level object recognition,” in
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Con-
ference on, pp. 3458–3465, IEEE, 2012.

[32] L. Bo, X. Ren, and D. Fox, “Depth kernel descriptors for ob-
ject recognition,” in Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on, pp. 821–826, IEEE, 2011.

[33] P. Viola, J. Platt, C. Zhang, et al., “Multiple instance boosting
for object detection,” Advances in neural information processing sys-
tems, vol. 18, p. 1417, 2006.

[34] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost:
Joint appearance, shape and context modeling for multi-class
object recognition and segmentation,” in Computer Vision–ECCV
2006, pp. 1–15, Springer, 2006.

bibliography 107

[35] C. J. Burges, “A tutorial on support vector machines for pattern
recognition,” Data mining and knowledge discovery, vol. 2, no. 2,
pp. 121–167, 1998.

[36] V. Lepetit, P. Lagger, and P. Fua, “Randomized trees for real-time
keypoint recognition,” in Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 2,
pp. 775–781, IEEE, 2005.

[37] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof, “Prost:
Parallel robust online simple tracking,” in Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 723–730,
IEEE, 2010.

[38] O. Barinova, V. Lempitsky, and P. Kholi, “On detection of mul-
tiple object instances using hough transforms,” Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on, vol. 34, no. 9,
pp. 1773–1784, 2012.

[39] B. Alexe, T. Deselaers, and V. Ferrari, “What is an object?,” in
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Con-
ference on, pp. 73–80, IEEE, 2010.

[40] D. Hoiem, A. A. Efros, and M. Hebert, “Putting objects in per-
spective,” in Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on, vol. 2, pp. 2137–2144, IEEE, 2006.

[41] A. Lehmann, B. Leibe, and L. Van Gool, “Feature-centric efficient
subwindow search,” in Computer Vision, 2009 IEEE 12th Interna-
tional Conference on, pp. 940–947, IEEE, 2009.

[42] C. Dubout and F. Fleuret, “Exact acceleration of linear object de-
tectors,” in Computer Vision–ECCV 2012, pp. 301–311, Springer,
2012.

[43] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet alloca-
tion,” the Journal of machine Learning research, vol. 3, pp. 993–1022,
2003.

[44] T.-F. Wu, C.-J. Lin, and R. C. Weng, “Probability estimates for
multi-class classification by pairwise coupling,” The Journal of
Machine Learning Research, vol. 5, pp. 975–1005, 2004.

[45] J. Van De Weijer, C. Schmid, and J. Verbeek, “Learning color
names from real-world images,” in Computer Vision and Pattern
Recognition, 2007. CVPR’07. IEEE Conference on, pp. 1–8, IEEE,
2007.

[46] C. Steger, “Occlusion, clutter, and illumination invariant object
recognition,” INTERNATIONAL ARCHIVES OF PHOTOGRAM-
METRY REMOTE SENSING AND SPATIAL INFORMATION SCI-
ENCES, vol. 34, no. 3/A, pp. 345–350, 2002.

bibliography 108

[47] L. I. Smith, “A tutorial on principal components analysis,” Cor-
nell University, USA, vol. 51, p. 52, 2002.

[48] I. Jolliffe, Principal component analysis. Wiley Online Library, 2005.

[49] R. B. Rusu, Semantic 3D Object Maps for Everyday Manipulation
in Human Living Environments. PhD thesis, Computer Science de-
partment, Technische Universitaet Muenchen, Germany, October
2009.

[50] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[51] F. Shahbaz Khan, R. M. Anwer, J. van de Weijer, A. D. Bagdanov,
M. Vanrell, and A. M. Lopez, “Color attributes for object detec-
tion,” in Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pp. 3306–3313, IEEE, 2012.

[52] A. Hanbury, “Constructing cylindrical coordinate colour spaces,”
Pattern Recognition Letters, vol. 29, no. 4, pp. 494–500, 2008.

[53] J. Van De Weijer, C. Schmid, J. Verbeek, and D. Larlus, “Learning
color names for real-world applications,” Image Processing, IEEE
Transactions on, vol. 18, no. 7, pp. 1512–1523, 2009.

[54] T. Hofmann, “Probabilistic latent semantic analysis,” in Proceed-
ings of the Fifteenth conference on Uncertainty in artificial intelligence,
pp. 289–296, Morgan Kaufmann Publishers Inc., 1999.

[55] D. Tang, Y. Liu, and T.-K. Kim, “Fast pedestrian detection by
cascaded random forest with dominant orientation templates,”
Recall, vol. 1, no. 3, p. 4, 2012.

[56] P. Flach, ed., Machine learning: The Art and Science that Makes Sense
of Data. Cambridge: Cambridge University Press, 2012.

[57] N. Nethercote, Dynamic binary analysis and instrumentation. PhD
thesis, PhD thesis, University of Cambridge, 2004.

[58] N. Nethercote and J. Seward, “Valgrind: a framework for heavy-
weight dynamic binary instrumentation,” ACM Sigplan Notices,
vol. 42, no. 6, pp. 89–100, 2007.

[59] J. Elfring, S. Van Den Dries, M. Van De Molengraft, and M. Stein-
buch, “Semantic world modeling using probabilistic multiple hy-
pothesis anchoring,” Robotics and Autonomous Systems, 2012.

[60] G. Welch and G. Bishop, “An introduction to the kalman filter,”
1995.

bibliography 109

[61] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography,” Communications of the ACM, vol. 24,
no. 6, pp. 381–395, 1981.

[62] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-
Lopez, K. Haussermann, R. Janssen, J. Montiel, A. Perzylo,
B. Schiessle, M. Tenorth, O. Zweigle, and R. van de Molengraft,
“Roboearth,” Robotics Automation Magazine, IEEE, vol. 18, no. 2,
pp. 69–82, 2011.

[63] D. M. Gavrila, “A bayesian, exemplar-based approach to hierar-
chical shape matching,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 29, no. 8, pp. 1408–1421, 2007.

[64] E. J. Griffith, M. Koutek, and F. H. Post, “Fast normal vector
compression with bounded error,” in ACM International Confer-
ence Proceeding Series, vol. 257, pp. 263–272, 2007.

[65] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe,
and F. Durand, “Decoupling algorithms from schedules for easy
optimization of image processing pipelines,” ACM Transactions
on Graphics (TOG), vol. 31, no. 4, p. 32, 2012.

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of October 17, 2013 (classicthesis version 4.1).

http://code.google.com/p/classicthesis/
http://postcards.miede.de/

	Abstract
	Acknowledgments
	Contents
	Introduction
	1 Introduction
	1.1 AMIGO
	1.1.1 Project motivation

	1.2 Object detection
	1.2.1 Detection of categories or instances
	1.2.2 Brief overview

	1.3 Object detection on AMIGO
	1.3.1 Problem description
	1.3.2 Requirements
	1.3.3 Advocated method
	1.3.4 Research Questions

	1.4 Contributions
	1.5 Thesis organization

	Method
	2 Core Detection Module
	2.1 Introduction
	2.1.1 Notation
	2.1.2 Similarity calculation

	2.2 Module overview
	2.2.1 Module pipeline

	2.3 Feature extraction
	2.3.1 Feature representation
	2.3.2 Feature types
	2.3.3 2D gradient modality
	2.3.4 3D gradient modality

	2.4 Detecting an object
	2.4.1 Similarity measure
	2.4.2 Modified similarity measure
	2.4.3 Similarity

	3 Method Additions
	3.1 Introduction
	3.2 3D Normal extraction
	3.2.1 Cross products
	3.2.2 Principle Component Analysis

	3.3 Color feature
	3.3.1 Hue gradient
	3.3.2 Color names

	3.4 Color feature similarity
	3.4.1 Hue gradient similarity measure
	3.4.2 Color names similarity measure

	3.5 Matching addition
	3.5.1 Speed increase
	3.5.2 Cache miss reduction

	4 Software on AMIGO
	4.1 Introduction
	4.1.1 Third party software

	4.2 System goals
	4.3 Detection on AMIGO
	4.3.1 Learning an object model
	4.3.2 Learning GUI
	4.3.3 System Configurations
	4.3.4 Run-time detection
	4.3.5 Summary

	Evaluation & Conclusions
	5 Evaluation
	5.1 Introduction
	5.1.1 Overview of the evaluation

	5.2 Object dataset
	5.2.1 Object Annotations
	5.2.2 Matching criteria

	5.3 Detection benchmark
	5.3.1 Color Modalities
	5.3.2 Standalone color modalities
	5.3.3 Summary
	5.3.4 Normal estimation

	5.4 Discussion and drawbacks
	5.4.1 Quantization
	5.4.2 Spreading
	5.4.3 Modality separability
	5.4.4 Cross-similarity
	5.4.5 Separability
	5.4.6 Influence of background

	5.5 Running time performance
	5.6 Conclusions

	6 Conclusions and future work
	6.1 Introduction
	6.2 Research Questions
	6.2.1 Research Questions

	6.3 Future Work

	Appendix
	A SSE instruction set
	A.1 Introduction
	A.1.1 SSE for image processing

	A.2 Using SSE instructions
	A.2.1 Memory alignment
	A.2.2 Small example

	A.3 Further reading

	B Object data set
	B.1 Objects
	B.1.1 Object instances
	B.1.2 Locations

	Bibliography
	Colophon

