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Chapter 1: 

General Introduction 
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1. 1. Outline 

A Bayesian network is a graphical model that encodes probabilistic relationships among 

variables of interest. When used in conjunction with statistical techniques, the graphical 

model has several advantages for data analysis. One, because the model encodes 

dependencies among all variables, it readily handles situations where some data entries 

are missing. Two, a Bayesian network can be used to learn causal relationships, and 

hence can be used to gain understanding about a problem domain and to predict the 

consequences of intervention. Three, the model has both a causal and probabilistic 

semantics; it is an ideal representation for combining prior knowledge (which often 

comes in causal form) and data. And finally, Bayesian statistical methods in conjunction 

with Bayesian networks offer an efficient and principled approach for avoiding the 

overfitting of data [Heckerman, 1996]. 

Validation of a Bayesian network is done to establish its practical value. To do so, a 

Bayesian network is typically subjected to an evaluation study using data from the 

domain of application. Such a study amounts to entering the data available for each 

problem case into the network and computing the most likely outcome. There exist 

different measures which help us in establishing a network’s quality by comparing its 

outcome against a given standard of validity.  

In Part-I of the thesis, we design and validate Bayesian networks for evaluation of the 

fingerprint general pattern. These networks have two applications in forensic science. 

Firstly, it will help the fingerprint examiner reduce the number of reference fingerprints 

he has to search (to find the donor of the fingermark), by ascertaining from which 

finger(s) is it more likely for the general pattern(s) of the fingermark(s) to occur. 

Secondly, it will help the fingerprint examiner to quantify the strength of evidence of the 

general pattern, in terms of likelihood ratios.   

To perform validation, we sometimes need to find the best explanation for a set of 

evidence. In Bayesian network, finding the best explanation amounts to finding a value 

assignment to some of the variables in the network that has highest posterior 

probability given the available evidence (i.e. the best explanation is a most likely one). 
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This problem is known as most probable explanation or maximum a posterior 

assignment which is NP-hard in general. In Part-II of this thesis, we propose two 

heuristics and based on experiments on some synthetic data, we show that they 

converge approximately to the true MAP assignment. 

 

 

  



 

Utrecht University and Netherlands Forensic Institute | 12 

 

  



 

Utrecht University and Netherlands Forensic Institute | 13 

 

 

Part I: 
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Validation of Bayesian Networks 

for fingerprint general pattern 
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Chapter 2:  

Introduction and background of 

study  
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2. 1. Introduction 
Forensic examiners value the contribution of each piece of evidence for forensic 

evaluation, since it may strengthen the support for the prosecution or the defence 

hypothesis.  

When a fingerprint examiner 

compares a fingermark 

recovered from a crime-scene to 

a reference fingerprint of a 

suspected person, he exploits all 

the available information to 

assess the strength of evidence: 

for example the properties of 

the ridge flow (level 1 details), 

the spatial configuration of 

minutiae or major ridge path 

deviations (level 2 details) and 

of the ridges themselves (level 3 

details) (Figure 2.1.1). The 

fingerprint examiner processes 

all this information and uses his experienced knowledge to assign the strength of the 

evidence. While tools have been developed to assist the fingerprint examiner in 

quantifying the strength of evidence for the spatial configurations of minutiae (level 2 

detail) [Neumann et al., 2011], currently no tools exist which are able to assist in the 

quantification of the evidential value of the general pattern of the ridge flow (level 1 

detail). 

In the investigation phase, a fingerprint examiner searches for a fingerprint in the 

reference dataset which can be linked (identification) to the fingermark found on the 

crime scene. Before the introduction of the automatic fingerprint identification systems 

(AFIS), general pattern classifications were only used to narrow down the search space 

by using fingerprints which had the same general pattern as found on the fingermark. 

 

Figure 2.1.1: Example of fingerprint with the 3 levels of 
fingerprint detail.  
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This is also done with the AFIS. However in the AFIS, to further reduce the number of 

fingerprints to search, fingerprint examiners also use the general pattern information to 

infer from which finger it is more likely for that general pattern classification to occur. 

This can only be performed by Fingerprint examiners, who use their knowledge 

acquired through experience gained in case work. 

Forensic evaluation is a process of describing the evidential value resulting from the 

study, using a comparative approach, of the similarity and the distinctiveness of a 

fingermark recovered on a crime scene and a fingerprint of a candidate selected during 

the forensic investigation process [Stoney, 1991]. In this phase, the strength of evidence 

of a correspondence between the general pattern of the fingermark and the general 

pattern of a reference fingerprint is considered implicitly but not quantified since there 

is no tool to assign the strength of evidence to this. 

This chapter focuses on developing such a tool by using Bayesian networks. On one side 

the networks will assist the fingerprint examiner in the investigation phase to know the 

distinctiveness of the general pattern (from which finger(s) is it more likely for the 

general pattern(s) of the fingermark(s) to occur). On the other side, they will help the 

fingerprint examiner in quantifying the evidential value of the general pattern. Similar 

to DNA analysis [Meuwly & Veldhuis, 2012], the strength of evidence is expressed as a 

likelihood ratio which compares the probability of the observation, given two 

alternative hypotheses. The strength of evidence of the general pattern can in a later 

stage of forensic evaluation be combined with the evidential values obtained from the 

2nd level detail of fingerprints as well as forensic evidence related to other biometric 

modalities. 

In the next section we briefly discuss the terminology used in this thesis. Followed by a 

description of the two police datasets used. Finally we conclude this chapter by briefly 

discussing the Bayesian networks created in a previous project.  
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2. 2. Terminology 

The Henry classification method [Henry, 1900], developed by Sir Edward Richard Henry 

in 1894, allows for categorization of fingerprint records into primary groups, based on 

fingerprint general pattern types. In the following paragraphs we introduce the 

labelling convention for finger number and general pattern in accordance with Henry’s 

classification. 

Finger Number: The fingers are numbered from 1 to 10, starting from the right thumb 

(labelled as finger 1) and ending at the left little finger (labelled as finger 10) as shown 

in the figure below. 

 

Figure 2.2.1: Fingers numbered according to Henry Classification System 

General Pattern: Numerous systems exist to assign a general pattern classification to 

the shape of the ridge flow of a finger. In this thesis we follow a modified version of the 

classification codes of the [ANSI/NIST-ITL 1-2011] format, which are named arch, 

tented arch, left loop, right loop, whorl and unclassifiable (illustrated in Figure 2.2.2).  

   

Arch Left Loop Whorl 

   

Tented Arch Right Loop Unclassifiable 

Figure 2.2.2: General pattern classification 
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[ANSI/NIST-ITL 1-2000] uses the nomenclature of radial and ulnar loops which relate 

to the two bones (radius and ulna) in the forearm. This classification makes the general 

pattern dependent on which hand they come from, which makes it impossible to 

determine if it is an ulnar or radial loop just from the reference print. For this reason the 

denomination right loop and left loop is preferred (Table 2.2.1). The direction of the 

loop (right or left) can be easily determined from the print, thus making the general 

pattern classification not dependent on which hand it comes from [F.B.I. United States, 

1985]. 

When a print is taken from the finger, the hand is flipped from the front to the back and 

so a loop is inversed. A radial loop on the left hand is a right loop (Figure 2.2.3) and an 

ulnar loop on the left hand is a left loop (Figure 2.2.4). Similar observations hold for the 

right hand i.e. a radial loop on the right hand is a left loop and an ulnar loop on the right 

hand is a right loop. 

  

Figure 2.2.3: 

Radial loop on left hand is a right loop 

Figure 2.2.4: 

Ulnar loop on left hand is a left loop. 

 Ulnar Loop Radial Loop 

Right hand Right loop Left loop 

Left hand Left loop Right loop 

Table 2.2.1: Conversion of Ulnar Loop and Radial loop to Left Loop and Right loop 

Sometimes fingerprint examiners face difficulty in assigning a fingerprint general 

pattern class. This is something caused by ambiguities such as the presence of a scar or 

fingerprints of people suffering with dysplasia. Another reason could be that the general 

pattern is too complex to classify, meaning that the general pattern has characteristics 

of several classes. To reduce the risk of misclassifications, a pattern is classified as 

‘unclassifiable’ when it can not be assigned to only one of the other classes.  



 

Utrecht University and Netherlands Forensic Institute | 20 

 

Fingermark vs. Fingerprint: In the literature, confusion exists between the terms 

fingerprint and fingermark. This thesis uses the following terminology: the standard 

rolled inked impressions captured from the finger papillary ridges are named 

fingerprints whereas recovered traces left by unprotected fingers in uncontrolled 

conditions are named fingermarks.  
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2. 3. Datasets 

The ‘Politie Landelijke Dactyloscopie Eenheid’ is the entity that operates the Dutch 

national police AFIS system and that is the custodian of the criminal fingermark and 

fingerprint datasets in the Netherlands. The fingermark dataset contains information 

about the identified fingermarks on the crime scene. Whereas the fingerprint dataset 

contains the reference fingerprints of criminals collected in the Netherlands. Since a 

selected subset of the fingerprint dataset is used, it is possible that the same subjects are 

not present in both the datasets i.e. subjects whose marks are found in the fingermark 

dataset may not be present in the fingerprint dataset and vice-versa. 

2. 3. 1 Fingermark Dataset 

The fingermark data used in this research reflects the operational activity on crime 

scenes as processed by the national police force in the field of fingermark examination 

in the year of 2010 and 2011. It contains a total of 11,555 identified fingermarks from 

the years 2010 (4,032 identifications) and 2011 (7,523 identifications). These identified 

fingermarks belong to 6,523 subjects. It is important to note that in studies of crime-

scene fingermarks no formal ground truth exists for an identification (or match) 

established between a fingermark and a reference fingerprint. Fingerprint examiners in 

the Netherlands use the numerical standard of 12 points to make a decision of 

identification [Evett & Williams, 1996; Champod, 2009]. In their decision, they try to 

minimize the false acceptance ratio1. We as researchers consider, that such datasets of 

pairs of identified fingermark and fingerprint images constitute sets of data with an 

acceptable ground truth by proxy. Moreover these fingermark latents were found on (1) 

different crime scenes, or (2) different objects on the same crime scene or (3) different 

positions on the same object. For this reason we assume that these cases were 

generated independently. 

                                                 
1
 The false acceptance ratio (FAR) is a unit used to measure the average number of false acceptances 

within a biometric security system. It measures and evaluates the efficiency and accuracy of a biometric 

system by determining the rate at which unauthorized or illegitimate users are verified on a particular 

system. 
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For each identified fingermark in this dataset, the finger number, general pattern, 

gender and nationality of the donor is derived from the corresponding reference 

fingerprint from the police fingerprint dataset (section 2.3.2). The relative frequency of 

occurrence of fingers over the dataset is summarized in table 2.3.1.1. Considering all the 

11,555 identified fingermarks together, the proportions of the general pattern for arch 

is 5.64%, 22.79% for the right loop, 27.8% for the left loop, 40.32% for the whorl and 

3.41% for unclassifiable. No tented arches were observed in this dataset. According to 

fingerprint examiners this could be because tented arch general pattern (around 5% of 

all fingers) is uncommon and due to the fact that the data represents the operational 

activity for only 2 years. Regarding gender, 92.8% of the data originates from male 

criminals and 2.2% from female criminals. In 5% of the cases the gender was labelled as 

unknown. A more detailed study of this dataset is presented in [Doekhie, 2012].   

We will see later that we want to extract the information of the frequency of which 

finger(s) left the fingermark from this dataset. Though we have more fingermarks than 

subjects, there is no information in the data which can help us to determine the 

frequency of occurrence of two (or more) consecutive fingermarks. By consecutivity we 

mean that the fingermarks where left on the crime scene in a single act of touch 

(simultaneously imposed by the perpetrator) and that fingers are adjacent to each other 

and that they come from the same hand (right or left) of the suspect.  

 

  

 Finger Number 

 1 2 3 4 5 6 7 8 9 10 

Police 

Identified 

Fingermarks 

15.59 16.97 10.64 6.9 2.1 15.26 9.62 11.67 8.07 3.18 

Table 2.3.1.1: Proportions (in percentage) of identified fingermarks in Police identified fingermarks 
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2. 3. 2. Fingerprint Dataset 

The dataset consists of inked, digitized, automatically encoded and manually checked 

10-print cards of the police fingerprint dataset. The general patterns of these prints 

have been manually assigned by fingerprint examiners. For each print, additional 

information regarding the finger number, gender and second level details (minutiae) of 

the donor is available. In this research, 10-print cards from 306,105 criminals have been 

selected from the original dataset to study the distribution of the general pattern over 

the 10 fingers (Data selection and refinement is described in Appendix A).  

Considering all fingers together, the proportions of the general pattern for arch was 

3.35%, 5.40% for  the tented arch, 29.09% for the right loop, 30.97% for the left loop, 

30.76% for the whorl and 0.43% for unclassifiable. Around 72.5% of the data originated 

from male donors and 27.1% from female donors. For 0.7% of the data the gender was 

not stated (unknown).  The following table shows the distribution of the general pattern 

on the different fingers. 

 

 

Table 2.3.2.1: GP distribution (%) on the 10 different fingers. 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

1 2 3 4 5 6 7 8 9 10 
Arch 2.7 6 4.1 1.2 0.8 4.6 6.1 5.4 1.6 1.1 

Left Loop 0.4 15.3 1.2 0.9 0.2 55.3 33.8 64.7 55.9 82.1 

Right Loop 49.4 31.4 67.5 46.5 79.2 0.6 14.8 1.2 0.5 0.1 

Whorl 46.1 35.4 19.7 48.2 16.2 37.5 33.1 20.6 38.4 12.8 

Tented Arch 1.2 11.4 7.1 3 3.2 1.7 11.8 7.8 3.2 3.4 

Unclassifiable 0.2 0.5 0.3 0.3 0.4 0.2 0.4 0.3 0.3 0.4 
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2. 4. Existing Bayesian networks 

Bayesian networks are statistical models that belong to the family of probabilistic 

graphical models. A Bayesian network has a graphical structure that allows us to 

represent and reason about an uncertain domain [Korb & Nicholson, 2010]. In 

particular, each node in the graph represents a random variable, while the arcs between 

the nodes represent probabilistic dependencies among the corresponding random 

variables. The strengths of these conditional dependencies in the graph are captured by 

(conditional) probabilities which are often estimated by human experts or by using 

statistical and computational methods. 

More formally, a Bayesian network B is defined as a pair B = (G, P), where 

G = ( V(G), A(G) ) is an acyclic directed graph with the set of vertices V(G) = {X1, . . . , Xn} 

and the arcs A(G) ⊆ V(G) × V(G), and P is a joint probability distribution defined on the 

variables corresponding to the vertices V(G), as follows: 

                            

 

   

 

where π(Xi) stands for the set of parents (direct ancestors) of Xi. All variables in a 

Bayesian network are typically discrete and the conditional probability-               is 

distribution often represented as a table, listing the probabilities that a child node (    

takes on each of its feasible values, for each combination of values of its parents (      . 
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In a previous project, [Doekhie, 2012] designed two Bayesian to assist the fingerprint 

examiner in the investigation phase and evaluation phase as described in the 

introduction. In this section we first briefly discuss the two Bayesian networks designed 

by Doekie, followed by our observations concerning these two networks. 

2. 4. 1. Existing one finger BN 

Figure 2.4.1.1 presents the structure of a Bayesian network that was modelled at NFI for 

assisting the fingerprint examiner in forensic studies when a single fingermark is found 

on the crime scene [Doekhie, 2012; Haraksim et al., 2013]. 

 

Figure 2.4.1.1: Bayesian network structure for one fingermark 

 

For the Finger node, the categorical states 1 through 10 are defined, representing the 

ten finger numbers. For the Hand node, the states Right and Left are defined. The states 

of the General_Pattern node are Arch, Tented arch, Right loop, Left loop, Whorl, and 

Unclassifiable. The states of the Gender node are Male, Female and Unlabelled.  

The independencies in the network were modelled by discussions with fingerprint 

examiners. However, Doekhie did not provide any specific details of this discussion with 

fingerprint examiners on the qualitative modelling of the network. The probability 

distribution of the Finger is obtained from the fingermark dataset. This information of 

the frequency of which finger left the fingermark was used to refine the equiprobable 

prior of 1/10 to a more realistic prior. The conditional probability distribution for Hand 
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given Finger is a deterministic relationship: any finger number between 1 to 5 belongs 

to the right hand otherwise the fingers belong to the left hand. The prior probability 

distribution of Gender and the conditional probability distributions for General_Pattern 

were extracted from the fingerprint dataset by simple frequency counting. 

2. 4. 2. Existing two fingers BN 

The previous network was modelled for a single fingermark found on a crime scene. 

When multiple fingermarks are left on the crime scene in a single act of touch, these 

fingermarks are conditionally dependent, since they are from the same individual. A 

multiple consecutive fingermarks network should therefore be able to give stronger 

inferences than processing each fingermark separately using a single fingermark 

network. 

[Doekhie, 2012] therefore extended the one finger network for two consecutive 

fingermarks by constructing a 

structure as illustrated in figure 

2.4.2.1. The nodes Finger and 

General_Pattern of the one finger 

Bayesian network were duplicated 

and re-named to FingerA and 

FingerB for the Finger node, and 

General_PatternA and 

General_PatternB for the 

General_Pattern node. The arrows 

from the Gender node point 

towards both general pattern 

nodes in which the conditional 

probability distributions are 

identical to the distribution in the 

one finger network. In this Bayesian network, the prior on the Hand node is obtained 

from the fingermark dataset (Right_Hand- 52.17%, Left_Hand- 47.81%). We know that 

fingers 1 to 5 come from the right hand, so P(FingerMark = Finger1| Hand = Right), 

 

Figure 2.4.2.1: Bayesian network structure for two 
fingermarks 
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P(FingerMark = Finger2| Hand = Right) to P(FingerMark = Finger5| Hand = Right) are 

the relative frequency of occurrences of fingers 1 to 5 in the fingermark dataset. While 

the conditional probability values for the other fingers (finger 6 to 10) given it is the 

right hand is zero, since these fingers cannot occur on the right hand. Similarly, given 

that it is a left hand, the conditional probability values for the fingers 6 to 10 are 

obtained from their relative frequency of occurrence in the fingermark  dataset (as 

shown in Table 2.4.2.1).  

 

  Finger Number (Fingermark) 

H
a

n
d

  1 2 3 4 5 6 7 8 9 10 

Right 0.299 0.325 0.204 0.132 0.040 0 0 0 0 0 

Left 0 0 0 0 0 0.319 0.201 0.244 0.169 0.067 

Table 2.4.2.1: Conditional probability table of P(Fingermark | Hand) 

 

Sometimes in casework fingerprint examiners can make the assumption that the two 

fingermarks found on the crime scene were left by two consecutive fingers of the same 

hand. Under this assumption, there are eight possible finger combinations. [Doekhie, 

2012] used finger number 1 and 2, 2 and 3, 3 and 4, 4 and 5, 6 and 7, 7 and 8, 8 and 9, 9 

and 10 as the eight possible combinations for the FingerCombinations node.  The 

conditional probability values for the FingerCombinations are assessed as follows: 

fingerX and fingerY can hold values according to the 8 possible combinations of fingers 

discussed above. Therefore P(FingerCombinations = fingerX_and_fingerY | 

GeneralPatternA, GeneralPatternB, Hand) is the frequency of the GeneralPatternA to 

occur on fingerX and GeneralPatternB to occur on fingerY, divided by the frequency of 

obtaining GeneralPatternA and GeneralPatternB on all the four finger combinations of 

each hand. These frequencies were obtained from the fingerprint dataset.   
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2. 4. 3. Observations about existing BNs 

We will discuss below our observations concerning Doekhie‘s two Bayesian networks. 

 In Bayesian networks only domain variables whose states are mutually exclusive 

and collectively exhaustive can be modelled. In the previously designed networks 

the states of the Gender variable were Male, Female and Unlabeled. In this case, 

unlabeled corresponds to individuals whose gender information is not known. Since 

in reality people are either male or female, the Gender node can only be modelled 

correctly in the network if the state unlabeled is removed (with the assumption that 

the gender information is missing at random). 

 [Doekhie, 2012] claimed that ‘there were no major differences between the general 

pattern distributions of the different genders’ without any statistical tests. If this is 

true, the Bayesian networks would not require an arc (arrow) connecting the gender 

and general pattern. On discussion with the forensic examiners, we found out that 

the Gender variable had been incorporated in the network ‘just to show in the court’ 

that the additional evidence of gender does not impact the distribution over the 

fingers given some general pattern. We will perform some statistical tests (section 

3.1.2) to get a better understanding of this. 

 Recall that the fingermark database does not have any information which can help 

us in determing the frequency of two or more consecutive fingermarks. Though 

[Doekhie, 2012] (incorrectly) used information from the fingermark database to 

assess the probabilities of FingerA and FingerB- without any motivation for this 

choice. 

 The General_Pattern nodes and Hand node form a Markov Blanket over the 

FingerCombinations i.e. the General_Pattern nodes and Hand node shield the 

FingerCombinations node from the rest of the network. Hence hypothetically given 

the markov blanket of FingerCombinations, any information about the FingerA, 

FingerB or Gender will not affect FingerCombinations. Similar to section 2.4.1 if we 

refine the equiprobable prior which fingers left the fingermarks to a more realistic 
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prior (provided that in future our fingermark dataset contains consecutivity 

information) then that information will not influence the FingerCombinations. 

 For real life applications, the combination 

set to denote consecutive fingers should be 

according to the spatial position of the 

fingers as shown in Figure 2.2.1. Since, for 

example, when two fingermarks (leftmost 

fingermark and rightmost fingermark as 

shown in figure 2.5.3.1) are found on the 

crime scene, then finger numbers 6 and 5 

can never be the finger which left the 

leftmost fingermark. Similarly finger 

numbers 10 and 1 can never be the finger which left the rightmost fingermark. This 

spatial arrangement of fingers is not taken into account in the FingerCombinations 

node in [Doekhie, 2012].  

 A disadvantage of generalising the 2 fingers BN to more than two fingers is that the 

conditional probability table (CPT) of the joint node (FingerCombinations) will 

increase exponentially with the number of fingers. For 2 fingers, the size of the CPT 

of the FingerCombinations node is: 8 possible finger combinations x 6 possible 

general patterns in FingerA x 6 possible general patterns in FingerB x 2 for the Hand 

= 576.  Similarly, for 3 fingers the size of the CPT of the FingerCombinations node 

would become: 6 possible finger combinations x 6 possible general patterns in 

FingerA x 6 possible general patterns in FingerB x 6 possible general patterns in 

FingerC x 2 for the Hand = 2,592. The size of the CPT of the FingerCombinations node 

for 4 fingers would be 10,368 (4 x 64 x 2) and for 5 fingers would be 41,472 (2 x 65 x 

2). Therefore if we take the same approach as [Doekhie, 2012] for generalization, 

then the CPT will explode. 

 

In the subsequent chapter, we will try to resolve the above mentioned issues. Moreover 

we will also extend the problem to multiple (3, 4 and 5) finger networks. 

 
Figure 2.5.3.1: Figure showing the leftmost 
and rightmost fingermark. 

Leftmost              Rightmost  
fingermark                  fingermark 
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Chapter 3: 

Extension to multiple finger 

networks 
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3. 1. Motivation 

Like software engineering, building a Bayesian network is a cyclic process that iterates 

over the following tasks: 

 Identifying variables and values 

 Constructing the acyclic digraph (or directed graph) 

 Assessing the probabilities 

This process is continued until validation shows that the results of the network are 

considered satisfactory for the domain.  

In this thesis, the problem at hand is to establish what finger(s) is most likely to be the 

source of some general pattern(s) of a fingermark(s). On discussions with fingerprint 

examiners at NFI, we understood that when multiple fingermarks are left on the crime 

scene in a single act of touch, these fingermarks are conditionally dependent, since they 

are from the same individual. This would mean that a multiple consecutive finger 

network would be able to give stronger inferences than processing each fingermark 

separately using a single finger network.  

In this chapter we discuss the modelling of multiple finger networks. In the next section 

we first identify the relevant domain variables. Followed by discussing how we 

generalised the 1 finger network to multiple finger networks.  
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3. 2. Relevance of Variables 
When modelling Bayesian networks for a certain problem domain, the first step is to 

identify the essential domain variables and their possible values. This means that before 

we start constructing a network, we need to know which variables are relevant to solve 

the problem. Because on the one hand adding irrelevant variables will uselessly 

increase the complexity of the network, and on the other hand not including the 

essential variables may lead to incorrect modelling of the problem.  

In the project domain, it can be undoubtedly seen that the General_Pattern and 

Finger_No variables are relevant. As mentioned in Section 2.2.2, the General_Pattern 

variable can hold six possible values (Arch, Tented_Arch, Whorl, Right_Loop, Left_Loop 

and Unclassifiable); the state Unclassifiable is assigned only when the fingerprint 

examiner is unable to assign one of the other five classes defined. And the FingerNo can 

hold a subset of all 10 possible fingers. 

In this section we discuss the relevance of the two other variables Hand and Gender 

included in the previous networks. After which we discuss the construction of new 

networks with the variables we considered relevant.  

3. 2. 1. Hand 

Firstly if we know from which finger(s) the fingermark is from, then implicitly we also 

know which hand it is from (by following Henry’s convention). However, generally it is 

not possible for the fingerprint examiners to be able to infer which hand was at the 

origin of the fingermark(s) recovered from the crime scene from a mere observation of 

the fingermark(s), though additional traces of the palm print and print of the second 

joint in the fingers could help the fingerprint examiners make a reliable estimation. In 

these situations, the fingerprint examiner could narrow down the possibilities from 

which finger(s) the general pattern belonged to. These situations can be dealt with in a 

better way using the concept of soft evidence [Bilmes, 2004] (or negative evidence) on 

the finger nodes, instead of just using another variable for Hand. Therefore, we decided 

not to include the Hand node in our networks to keep them simple and compact.  
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3. 2. 2. Gender  

The relevance of the gender variable is important to study since two the datasets 

(fingermark and fingerprint) have very different distributions of gender. 92.8% of the 

fingermarks where from male suspects compared to only 72.5% of male criminals in the 

fingerprint dataset. Also 2.2% of the marks belonged to female suspects, whereas the 

fingerprint dataset contained around 27.1% female criminals. If we remove the 

criminals whose gender is unlabelled then we get 97.7% male suspects and 2.3% 

suspects in fingermark dataset. And 72.75% male criminals and 27.25% female 

criminals in the fingerprint dataset. It’s important to note that we do not take into 

account the criminals whose gender is unlabelled, since we assume that they are 

missing at random.  

The aim of this project is to obtain a distribution over the fingers (in order to establish 

the most likely one) given evidence about some general pattern. In this section we 

analyse how significantly the additional evidence of gender impacts the distribution 

over the fingers. To perform this analysis we use the fingerprint dataset, since the small 

number of only 247 female suspects compared to 10,722 male suspects in the 

fingermark dataset could mean that the dataset is not suitable for performing a gender 

analysis. 

We know that the fingerprint dataset contains all information about all the 10 fingers 

for both males and females. This means that in this dataset the Gender and Finger_No 

variables are not correlated (independent). However given some evidence of general 

pattern, Gender and Finger_No become dependent. 

We first analyse the strength of the dependency between gender and general pattern 

using the chi-square test for independence (section 3.2.2.1 and 3.2.2.2). If the gender 

and the general pattern are independent, then gender will not influence the distribution 

over the fingers (since gender is also independent of the distribution over the fingers).  

After which we look at how strongly the additional evidence of gender influences the 

distribution over the fingers, given evidence of the general pattern (section 3.2.2.3).  



 

Utrecht University and Netherlands Forensic Institute | 35 

 

3. 2. 2. 1. Dependence of general pattern on gender 

The issue of the dependency between gender and general pattern has hardly been 

studied by researchers. We are only aware of the study by [Nithin et al., 2009], who 

found that ‘irrespective of the sexes the fingerprint general pattern did not show any 

difference’. The problem with this study, however, is that they conclude this from the 

results of a t-test. Which is not a suitable test for independence when the data consists 

of nominal variables. We will therefore analyse the dependency between the two 

variables Gender and General_Pattern using the chi-square test for independence. 

Pearson’s Chi-square test of independence assesses whether paired observations on 

two nominal random variables, expressed in a contingency table, are independent of 

each other. Table 3.2.2.1 gives an example of a contingency table for the variables 

Gender and General_Pattern; the entries for the 12 possible combinations of the 

variables’ values are called bins.  The Pearson chi-squared statistic for testing the null 

hypothesis H0 that there is no association between the two variables, is  

    
       

 

  
     

where    is the observed frequency for bin i and    is the expected frequency for bin i 

calculated assuming the null hypothesis of independence is true. In the Chi-Square test 

of Independence, the degree of freedom (df) equals to (r-1)(c-1)2, in our situation r is 

the number of values for gender and c is the number of values for general pattern. 

The larger the differences between observed and expected frequencies, the larger the 

deviation from the null hypothesis, the more unlikely it becomes that the variables are 

independent. We will reject the null hypothesis if the p-value of the chi-squared test 

statistic, which indicates the probability that the deviations are due to chance alone, is 

less than the significance level of 0.05. 

 

                                                 
2
 This formula is derived from the definition of degree of freedom, which is the difference between the 

number of parameters under the alternative hypothesis (not independent) and null hypothesis H0 



 

Utrecht University and Netherlands Forensic Institute | 36 

 

 

  General Pattern  

 

 Arch Left_Loop Right_Loop Whorl 

Tented

_Arch 

Un 

classifiable 

Total per 

gender 

G
e

n
d

e
r 

Male 63223 687928 620760 713087 118881 7941 2211820 

Female 38219 253810 264653 224844 45010 2114 828650 

 
Total 

per GP 101442 941738 885413 937931 163891 10055 3040470 

Table 3.2.2.1.1: Contingency table showing the distribution of general pattern on males and females 

 

As mentioned before, we intend to analyse the dependence between gender and the 

general patterns on all the fingers together. Our null hypothesis in this case is that there 

is no dependence between gender and the general pattern. 

Using the contingency table with observed frequencies from the fingerprint dataset 

(Table 3.2.2.1.1), convincing evidence was found rejecting the null hypothesis that 

gender is independent of the general pattern distribution (χ-squared = 13999.82, df = 5, 

p < 2.2e-16). We therefore conclude that Gender and General_Pattern are dependent, i.e. 

P(GP) ≠ P(GP | Gender), or equivalently, P(Gender) ≠ P(Gender | GP). Our results are 

contrary to that of [Nithin et al., 2009] because they incorrectly used the t-test to 

perform this study. 
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3. 2. 2. 2. Dependence of general pattern on gender per 

finger 

In the previous section we saw that the general pattern, measured over all fingers 

together, depends on the gender of a person. However [Doekhie, 2012] stated that ‘they 

extracted the general pattern distributions of the different fingers for the male, female 

and unlabeled populations and found no major differences between the general pattern 

distributions of the different genders’. Since this was stated without any statistical tests, 

we performed chi-squared tests to gain more insight into the dependence of gender on 

the general patterns per finger.  

For each finger, our null hypothesis in this case is again that there is no dependence 

between gender and the general pattern. In other words, the null hypotheses assume 

that the distributions per finger of general pattern for males and females are the same. 

It should be noted that we are testing the dependence between two variables- gender 

and general pattern, in context of a third variable- finger. Which is the reason why we 

perform a chi-squared test for each finger; i.e. 10 chi-squared tests in total 

 Finger Number 

C
h

i-
sq

u
a

re
 t

e
st

 r
e

su
lt

s  1 2 3 4 5 
χ-squared 2875.121 2683.625 2332.715 2570.287 2293.06 
df 5 5 5 5 5 
p-value < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 
 

 6 7 8 9 10 
χ-squared 1221.239 1111.452 1326.545 939.5194 1037.213 
df 5 5 5 5 5 
p-value < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 

Table 3.2.2.2.1: Results of Chi-squared tests for independence between the gender and the distribution of 
the general patterns per finger performed using R statistical package 

Using the 10 contingency tables with observed frequencies from the fingerprint dataset 

(Appendix B), convincing evidence was found rejecting the null hypotheses that, per 

finger, gender is independent of the general pattern (values for χ-squared, df and p are 

summarised in Table 3.2.2.2.1; note that p < 2.2 e-16 for all fingers). We therefore 
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conclude that Gender and General_Pattern are dependent, even per finger, i.e. P(GP | 

Finger_no) ≠ P(GP | Gender, Finger_no). We obtained results contrary to that of 

[Deokhie, 2012], since Doekhie may have remarked by just superficially comparing the 

probability distribution of P(GP | Finger_no) and P(GP | Gender, Finger_no). 

3. 2. 2. 3. Influence of gender on the distribution of fingers 

given some general pattern  

In the previous sections we saw that the general pattern (over all or per finger) depends 

on the gender of a person. Our aim in this project is to obtain a distribution over the 

fingers given evidence about some general pattern. We now look deeper into this, by 

analysing how strongly the additional evidence of gender influences the distribution of 

fingers, given evidence of the general pattern. More formally, we want to know whether 

or not P(Finger_no|GP) equals P(Finger_no|GP, Gender).  

It can be seen from Figures 3.2.2.3.1 to 3.2.2.3.6 that there are only small absolute 

differences (around 0.01%) in the probability distributions over the fingers given both 

the general pattern and gender, and the probability distributions over the fingers given 

just the general pattern. We will test the apparent equalities using the Kullback-Leibler 

(KL) divergence. We choose to use KL divergence, instead of the chi-square test (used 

previously), since we want to compare two probability distributions. 

KL divergence can be used to measure the information gain in moving from a prior 

distribution to a posterior distribution [Cover & Thomas, 1991]. More specifically, the 

KL divergence measures the information change between distributions before and after 

applying some influence.  The lower the KL divergence score, the more similar the 

probability distributions are; a zero KL divergence score is obtained for two identical 

distributions. However in extreme situations, the KL divergence score can also tend to 

infinity.  

We measure the information gained on the distribution over the fingers with the 

additional evidence of gender i.e. compute  

                                                  for each general pattern.  



 

Utrecht University and Netherlands Forensic Institute | 39 

 

Since the KL divergence scores (see Table 3.2.2.3.1) are in the range of 10-3, we can say 

there is hardly any information gain by the additional evidence of Gender = Male, i.e. 

P(Finger | General Pattern, Male)   P(Finger | General Pattern). Moreover for the female 

gender the two distributions are in fact identical for all general patterns except for the 

Arch, which gets a KL divergence score of 0.003. Hence, given a specific general pattern, 

the additional evidence of the gender has a very weak influence on the finger 

distribution. Or in other words there is hardly any information gain in the distribution 

over the fingers given some additional evidence of gender. 

 

Figure 3.2.2.3.1: Distribution of the fingers for all genders, given General Pattern = Arch 

1 2 3 4 5 6 7 8 9 10 

Male 0.076 0.186 0.129 0.034 0.021 0.136 0.184 0.161 0.047 0.027 

Female 0.090 0.169 0.109 0.036 0.029 0.141 0.176 0.160 0.050 0.040 

Uninstantiated 0.081 0.180 0.122 0.035 0.024 0.138 0.181 0.161 0.048 0.032 
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KL Divergence given 
Male from the Prior 
(uninstantiated gender) 

Value  KL Divergence given 
Female from the Prior ( 
uninstantiated gender) 

Value 

Arch 0.0016 Arch 0.0029 
Left_Loop 0.0027 Left_Loop 0 
Right_Loop 0.0019 Right_Loop 0 
Whorl 0.0049 Whorl 0 
Tented_Arch 0.0086 Tented_Arch 0 
Unclassifiable 0.024 Unclassifiable 0 

Table 3.2.2.3.1: KL Divergence measure of information gain i.e.  
KLdiv (  P(Finger_no|GP, Gender) ||  P(Finger_no|GP) ) 
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Figure 3.2.2.3.2: Distribution of the fingers for all genders, given General Pattern = Left Loop 

 

Figure 3.2.2.3.3: Distribution of the fingers for all genders, given General Pattern = Right Loop 

 

Figure 3.2.2.3.4: Distribution of the fingers for all genders, given General Pattern = Whorl 

1 2 3 4 5 6 7 8 9 10 

Male 0.001 0.053 0.004 0.003 0.001 0.178 0.110 0.208 0.178 0.264 

Female 0.001 0.039 0.002 0.003 0.001 0.180 0.108 0.210 0.188 0.268 

Uninstantiated 0.001 0.039 0.002 0.003 0.001 0.180 0.108 0.210 0.188 0.268 
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Male 0.169 0.105 0.234 0.157 0.277 0.002 0.051 0.004 0.001 0.000 

Female 0.172 0.114 0.227 0.166 0.260 0.003 0.050 0.005 0.002 0.001 

Uninstantiated 0.172 0.114 0.227 0.166 0.260 0.003 0.050 0.005 0.002 0.001 
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Male 0.151 0.113 0.067 0.158 0.056 0.119 0.105 0.067 0.123 0.042 

Female 0.144 0.122 0.055 0.151 0.042 0.131 0.116 0.068 0.131 0.041 

Uninstantiated 0.144 0.122 0.055 0.151 0.042 0.131 0.116 0.068 0.131 0.041 
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Figure 3.2.2.3.5: Distribution of the fingers for all genders, given General Pattern = Tented Arch 

 

Figure 3.2.2.3.6: Distribution of the fingers for all genders, given General Pattern = Unclassifiable 

3. 2. 2. 4. Discussion 

Although the evidence of gender is not found on the crime scene, the Gender variable 

was incorporated in the previous networks [Doekhie, 2012] ‘just to show in the court’ 

that, given some general pattern, the additional evidence of gender does not affect the 

distribution over the fingers. 

We have seen in this section that the dependency between gender and general pattern 

is strong. Once we know the general pattern, however, there is hardly any change in the 

distribution over the fingers if additional evidence of gender is given. So in the current 

project context, since the interest is always to get a distribution over the fingers given 

some general pattern, we can do without the variable gender.  
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3. 3. Multiple finger networks 

We saw in the previous section that for modelling a 

simple and compact network to predict the most likely 

finger that left a fingermark with a certain general 

pattern, we can assume that only the General_Pattern 

and Finger_No variables are relevant. This results in the 

single-finger network illustrated in Figure 3.3.1.  

A disadvantage of generalising to multiple finger 

networks in line with the approach used by Doekhie, is that it would result in the 

conditional probability table (CPT) of the joint node (FingerCombinations) to increase 

exponentially with the number of fingers. Hence we generalise to multiple finger 

networks in a different way. 

On discussions with fingerprint examiners at NFI, we found that they believe that there 

is no significant dependency (or correlation) between the general patterns on different 

fingers. Modelling the General_Pattern nodes as independent is not very easy, since 

firstly we will have to change the direction of causality between General_Pattern and 

Finger_No, and secondly like Doekhie’s 2 Finger network the CPT for the FingerNo(s) 

would increase exponentially). For this reason we will model the network in such a way 

that the General_Pattern nodes for the different marks found are independent given the 

Finger_No nodes (i.e. not marginally independent). 

  

 
Figure 3.3.1: 1 Finger network 
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3. 3. 1. A straightforward approach 

With the above assumption in mind, the easiest way to extend to n>1 fingers is to 

replicate the single finger network from Figure 3.3.1 n-times, where n is the number of 

fingermarks found on the crime scene.  The two finger network, for example, will then 

have the structure shown in Figure 3.3.2. As per our assumption there is no arc between 

the LeftMost_GeneralPattern and RightMost_GeneralPattern.  

 

Figure 3.3.2: 2 Finger network made by replicating the 1 Finger network 

The advantage of this approach is that the probability distribution P (GeneralPattern | 

FingerNo), of the 1 Finger Network can be replicated in P(LeftMost_GeneralPattern | 

LeftMost_FingerNo) and P(RightMost_GeneralPattern | RightMost_FingerNo). Hence we 

do not need to go back to the data to determine these distributions. We do, however, 

need to determine the prior probability distribution on the LeftMost_FingerNo and the 

conditional probability distribution P(RightMost_FingerNo | LeftMost_FingerNo).  

If we consider the general case, i.e. when two fingermarks are found on the crime scene 

and the fingerprint examiner can say that they have been left on the crime scene in a 

single act of touch and come from the same hand. Then according to the spatial 

arrangement of the fingers the LeftMost_FingerNo can never be the left thumb-6 or right 

pinky finger-5. Whereas the RightMost_FingerNo will depend on the LeftMost_FingerNo. 

For example if the RightMost_FingerNo is left ring finger-9, then the LeftMost_FingerNo 

can only be left middle finger-8, index finger-7 or thumb-6.  

However for fingerprint examiners, this general case is very difficult to determine. It is 

more practical and realistic for them to say something about the consecutivity of the 

two fingermarks. This is the main reason why we focus on consecutive fingermarks 
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from the same hand. Apart from the fact that elicitation of the conditional probability 

distribution of P(RightMost_FingerNo | LeftMost_FingerNo) i.e. 100 (10 finger x 10 

finger) probability estimates from fingerprint examiners could be a difficult process. 

Though in reality we would only need to assess the probability estimates for a subset of 

these cases, since the spatial arrangement of the fingers makes a lot of cases impossible 

(like the RightMost_FingerNo can never be right thumb-1 or left pinky finger-10 etc.). 

This assumption of consecutivity of fingers makes the parameterisation of the FingerNo 

variables quite simple. We use an equiprobable prior represented by the fingerprint 

dataset (since the fingermark dataset does not have information on the distribution of 

consecutive fingermarks found on the crime scene). For two consecutive fingers there 

are 8 possible finger combinations (Table 3.3.1). This means that all fingers in the 

LeftMost_FingerNo (except finger 5 and 6) have an equal prior probability of 1/8. The 

conditional probability distribution of P(RightMost_FingerNo | LeftMost_FingerNo) is 

deterministic according to the table 3.3.1, i.e. for example if the LeftMost_FingerNo is 

finger 1 than the RightMost_FingerNo can only be finger 2. 

It should be noted that in the general case, we would want to find the maximum joint 

assignment to LeftMost_FingerNo and RightMost_FingerNo which would best explain the 

evidence of the general patterns. This problem is known as the maximum a posteriori 

(MAP) or most probable explanation (MPE) in Bayesian networks. This is one of the 

other reasons why we looked at this problem in more details in part II of this thesis. 

  

 8 possible finger combinations (2 Finger network) 
LeftMost_FingerNo 1 2 3 4 7 8 9 10 
RightMost_FingerNo 2 3 4 5 6 7 8 9 

Table 3.3.1: Possible values of RightMost_FingerNo given LeftMost_FingerNo for two consecutive fingers. 
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3. 3. 2. An alternative approach to consecutivity 

specific modelling 

Since we are only focussing 

on consecutive fingermarks, 

a better alternative to the 

network we just introduced 

in Figure 3.3.2 would be the 

network illustrated in 

Figure 3.3.3. Since in the 

previous network the 

relationship between LeftMost_FingerNo and RightMost_FingerNo is deterministic, we 

can combine the two variables as Two_FingerNo. This would lead to computationally 

less complex inference in Bayesian networks since we combine the two nodes.  

Similar to the previous network (illustrated in Figure 3.3.2) since there are 8 possible 

consecutive finger combinations, an equiprobable prior probability of 1/8 is assigned to 

the Two_FingerNo. However the conditional probability distributions 

P(LeftMost_GeneralPattern | Two_FingerNo) and P(RightMost_GeneralPattern | 

Two_FingerNo) are different from the previous network. If the two consecutive fingers 

are X and Y, P(LeftMost_GeneralPattern | Two_FingerNo) would be the probability 

distribution of general patterns on Finger_X and similarly P(RightMost_GeneralPattern | 

Two_FingerNo) would be the probability distribution of general patterns on Finger_Y. All 

theses conditional probability distributions are obtained from the fingerprint dataset. 

Hence we can see that extending to multiple fingers using this network is not that 

trivial. However this network is computationally less complex and simpler for forensic 

examiners to understand, since they have to look at the probability distribution of a 

single variable- Two_FingerNo instead of looking at conditional joint distribution of 

LeftMost_FingerNo and RightMost_FingerNo (of the network illustrated in Figure 3.3.2). 

  

 
 
 

Figure 3.3.3: 2 Finger Network 
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Similarly we can model the 3 finger network (figure 3.3.4) with 6 possible finger 

combinations, the 4 finger network (figure 3.3.5) with 4 possible finger combinations 

and finally the 5 finger network (figure 3.3.6) with 2 possible finger combinations. It 

should be noted that the 5 finger network basically distinguishes from which hand the 

general patterns of the five fingermarks originate. 

 
 
 

Figure 3.3.4: 3 Finger network 

 

 
 
 
 

Figure 3.3.5: 4 Finger network 

 
 
 
 

Figure 3.3.6: 5 Finger network 
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3. 3. 3. Discussion 

We have extended the 1 Finger network to multiple (2, 3, 4 and 5) Finger networks. 

Depending on the number of finger marks found on the crime scene, the appropriate 

Finger network can be used; for example if three fingermarks considered as consecutive 

are found on the crime scene then the 3 Finger network will be used. Fingerprint 

examiners can assess if the fingermarks are consecutive or not, depending on the 

placement of the prints of the phalanx bones (distal, middle and proximal) in a finger, 

ridge flow or palm print. If the fingerprint examiners are not able to assess (assume) 

that the fingermarks are consecutive, then it is best to use the 1 Finger network and 

treat each mark independently. 

Note though that if only 2 fingermarks can be seen on the crime scene, but if from their 

spacing the fingerprint examiner can say that there should be a another fingermark in 

between the two obtained- then to get a posterior probability distribution on the 

Three_FingerNo, we can enter the general pattern evidence only for the 

LeftMost_GeneralPattern and RightMost_GeneralPattern (leaving the 

Centre_GeneralPattern uninstantiated). 

In the next chapter we propose a validation framework for validating these networks. 
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Chapter 4: 

Validation  

and  

strength of evidence 
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To be able to use a Bayesian network in practical scenarios, an evaluation study is 

needed, for example, using data from the domain of the application. Such a study 

amounts to entering the data available for each problem case into the network and 

computing the most likely outcome. This outcome is then compared against a given 

standard of validity. 

In the next sections, the validation framework along with the results for this domain 

will be discussed. First the appropriate measures used to validate the network will be 

introduced. Followed, by the validation results for the the investiagtive stage and 

quantifying the strength of evidence at the finger level. We also show how we can 

quantifying the strength of evidence of a particular general pattern at the person level. 

Validation of this part is left for future research. 

4. 1. Validation framework 

In this section, we present a validation framework, which will be used to validate the 

networks we created. These measures were recommended by forensic scientists 

4. 1. 1. Measures using the posterior probability 

distribution 

Bayesian networks are typically used to compute the posterior probability distribution 

over some variables of interest given a set of observations. The following two measures: 

(1) Percentage correct using posteriors and (2) Brier score provide two ways of 

evaluating the practical value of a Bayesian network. The percentage correct treats 

outcomes as deterministic, whereas the Brier score takes the actual uncertainties into 

account. 
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Posterior Accuracy 

Bayesian networks can be considered probabilistic forecasters; hence the method 

similar to forecast verification method can be used to assess the quality of their 

forecasts.  

Let’s assume that there are i ∈ {1, ... N} cases in the test data used for validation. Let’s 

assume that the class variable   
  is the set of class values produced by the model for 

case i which has the most likely value   
 , and    is its true value. 

           
 

 
       

       

 

   

 

 

Where      
          if   

     and 0 otherwise. In other words the percentage of cases 

where the outcome predicted by the network is correct according to the standard of 

validity is called the percentage correct. 

Brier Score 

Bayesian networks do not yield a deterministic outcome. Instead, they produce a 

posterior probability distribution for their outcome variable(s). This distribution 

reflects the network’s doubt as to the most likely outcome. Since the percentage of 

correct outputs of a Bayesian network does not take the computed posterior 

distribution into consideration, it does not reveal the extent of uncertainty in the 

outcome. To incorporate the network’s doubt in the assessment of its practical value, 

evaluation scores from the field of statistical forecasting are used. In the context of 

Bayesian networks the use of the Brier score [Panofsky, 1968] was introduced by [van 

der Gaag & Renooij, 2003]. 

The uncertainty expressed in the outcome can be taken into account in the evaluation. 

Let     be the probability returned by the network for case i and value j of the outcome 

variable. Let     be a function that returns a 1 if for case i the value j of the outcome 

variable is correct according to the used standard of validity and 0 otherwise. 

The Brier score for case i is                 
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Posterior 
probability ratio 

Likelihood 
ratio (LR) 

Prior 
probability ratio 

The average Brier score over N cases or forecasts is 

  
 

 
    

 

   

 
 

 
               

 

 

 

   

 

The Brier score lies within the interval [0, 2], where 0 indicates a perfect prediction. 

4. 1. 2. Measures using Likelihood Ratios 

[Robertson et al., 1995] claim that the presentation of expert evidence should be 

restricted to a likelihood ratio, which is the ratio of the probability supposing that the 

evidence for the given hypothesis is true to the probability supposing that the evidence 

for the contrary mutually exclusive hypothesis is true. This form of presentation of 

evidence is now becoming more common in many areas of scientific evidence, such as 

DNA, glass fragment analysis or speaker recognition.  

Conditional probabilities can assist when estimating the probability that evidence came 

from an identified source. The probability estimate is based on calculation of a 

likelihood ratio [Aitken & Stoney, 1991].  In the likelihood-ratio framework the task of 

the forensic scientist is to determine the ratio of two probabilities of the same 

observation (general pattern information in our case) under different hypotheses. The 

likelihood ratio is calculated from the posterior and prior odds as follows: 

            

           
                

           

           
                         

       

       
 

 

where    is the likelihood ratio,   is the evidence, and in general hypothesis#1    ) and 

hypothesis#2    ) are a pair of mutually exclusive hypothesis about the origin of the 

trace material. However more specifically for calculating the evidential value, the first 

hypothesis    can be considered as   which is the support by the prosecution and 

states that the trace material originates from the suspected person. The second 

hypothesis    can be considered as    which is supported by the defence and states 

that the trace material originates from another individual, randomly chosen within the 
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relevant population of potential sources of the trace. In other words, evidential value is 

calculated as the ratio of two probabilities: the probability of the evidence when the 

prosecution hypothesis is true divided by the probability of the evidence when the 

defence hypothesis is true.  

LR Accuracy 

The [NRC Report, 2009] and [Koehler, 2008] recommend the use of correct-

classification rates/classification-error rates for measuring the validity of a forensic-

comparison system. A likelihood ratio greater than one lends support to the 

hypothesis#1    . Similarly, a likelihood ratio less than one lends support to the 

hypothesis#2 in the denominator. From the testing dataset, as a ground truth if we 

know that hypothesis#1 is true, then a LR > = 1 supports hypothesis     and hence is 

correct. Whereas an LR < 1 supports the other hypothesis (      and hence is classified 

as an error. In case of assigning strength of evidence to a trace on the crime scene, LR 

accuracy is the complement of the rate of misleading evidence in favour of the defence 

(RMED).  

Log likelihood ratio cost Cllr 

An appropriate metric of validity for use within the likelihood ratio framework, is 

gradient metric based on likelihood ratios, such as the log-likelihood-ratio cost (Cllr). 

The log-likelihood-ratio cost was developed for use in automatic speaker recognition by 

[Brümmer & Preez, 2006] and [van Leeuwen & Brummer, 2007] and has subsequently 

been applied to many domains of forensic science. 

In order to calculate Cllr a test dataset is required from which one can draw a large 

number of pairs of samples known to have the same origin and a large number of pairs 

of samples known to have different origins. The pairs of test samples are presented to 

the system and the knowledge about the same source origin or different source origin 

status of the test pairs is compared with the output of the system.  

The log-likelihood-ratio cost is calculated using the formula 
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where     and     are the number of same-origin and different-origin comparisons 

respectively, and      and      are the likelihood ratios derived from test pairs known 

to be same source origin and different source origin comparisons respectively. Note that 

part of the equation is the mean of the output of a function applied to all the likelihood 

ratios derived from same-origin comparisons (left side within the outer brackets), 

another part is the mean of the output of a function applied to all the likelihood ratios 

derived from different-origin comparisons (right side within the outer brackets), and 

Cllr is the mean of these two means. A plot of the 

same-origin and different origin penalty 

function is shown in Figure 4.1.2.1. Ideally, a 

same source comparison should result in a large 

positive log likelihood ratio and would 

contribute a very small penalty value to Cllr. For 

a same source comparison, a positive log 

likelihood ratio close to zero would not provide 

as much support for the same-origin hypothesis 

as a large positive log likelihood ratio, and it would contribute a somewhat larger 

penalty value to Cllr. For a same-origin comparison, a negative log likelihood ratio would 

contrary-to-fact lend support to the different-origin hypothesis and would contribute a 

larger penalty value to Cllr, with that penalty value increasing as the magnitude of the 

negative log likelihood ratio increases and lends greater support to the contrary-to-fact 

different-origin hypothesis. Mutatis mutandis for the different origin comparison. 

 

Tippet Plots 

Tippet plots have been classically used for empirical performance assessment [Evett & 

Buckleton, 1996], and consist of the cumulative distributions of LR values for same-

source, and different-source experiments. In particular, two curves are plotted, one for 

same-source  

 

Figure 4.1.2.1: Plot of Cllr functions for same-
origin and different-origin comparisons 
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LR values (Hp is true) and one for 

different-source LR values (Hd is 

true). For each curve, and for each 

value x0 in the Logarithmic x-axis, the 

proportion of LR values which are 

greater than x0 is represented. It is 

worth noting that Tippet plots include 

the values of the rates of misleading 

evidence, which are determined by 

the value of each curve at x0 =0 as 

shown in figure 4.1.2.2.  

This Figure shows also an example of 

how Tippet plots yield more 

information about performance than 

the rates of misleading evidence. RMEP/RMED is the rate of misleading evidence in 

favour of the prosecution/defence. In an ideal system, the: Hp true curve > LR=1,  Hd 

true curve < LR=1. Moreover the tippet plot shows the discriminative power by the 

separation between the two curves. 

Empirical Cross-Entropy  

ECE is a derivation of an information theoretical generalization of the Cllr value. These 

plots have an attractive and simple interpretation: the higher its value, the more 

information the factfinder needs in order to know the true value of the hypotheses. This 

information should be interpreted on average over different forensic cases 

(comparisons in the experimental set). If the LR values of the evidence evaluation 

process are misleading to the fact finder, then the ECE will grow, and more information 

on average will be needed in order to know the true values of the hypotheses. The 

details about the derivation and interpretation of ECE can be found in [Castro Ramos, 

2007].  

As shown in Figure 4.1.2.3, the solid red curve is the ECE (average information loss) of 

the LR values computed by the evidence evaluation method under assessment. This is 

 
Figure 4.1.2.2: An example tippet plot, which is a 
graphical representation appropriate for the evaluation 
of the performance of the forensic recognition system 
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the value which represents the overall performance 

of a set of LR values, and the lower its value, the 

better. ECE in terms of information theory is as 

follows: the higher this ECE curve, the higher the 

information needed in order to know the true 

hypotheses on average over cases, and therefore 

the worse the method. The dotted black curve 

represents the performance of a method always 

delivering LR=1, referred to as a neutral method. This performance is achieved when 

the evidence gives no information about whether Hp or Hd is true. If the ECE curve of the 

method under analysis presents a value greater than the curve of neutral performance, 

then the method will lose more information on average than basing the decisions only 

on the prior information, i.e., not using the evidence at all. In the range of prior 

probabilities where this happens, the method at hand should not be used for evidence 

analysis. Finally the dashed blue curve represents the calibrated performance, 

calculated by transforming the LR values in the experimental set. This calibration 

transformation can be conducted using a Pool Adjacent Violators algorithm (PAV). 

Analysis of this is beyond the scope of this thesis. 

Detection error trade-off (DET) curves 

In the case of biometric systems, a modified ROC curve known as a “detection error 

trade-off” curve is preferred. A DET curve plots error rates on both axes, giving uniform 

treatment to both types of error. The graph can then be plotted using logarithmic axes. 

This spreads out the plot and distinguishes different well performing systems more 

clearly. 

 

 

 

 

 

  

 
Figure 4.1.2.3: An example ECE plot. 
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4. 2. Validation results for investigative 

stage 

In this section, we present the results of validation of the network, when used in the 

investigation phase (i.e. a fingerprint examiner will search for a fingerprint in the 

reference dataset which can be linked to the fingermark found on the crime scene). 

Hence, if a fingermark containing a general pattern is recovered from the crime scene, 

then the Bayesian network calculates the probability for this general pattern to have 

been left by each finger of a random person (i.e. gives a distribution over the fingers). 

This distribution will allow searching the dataset per finger number, starting from the 

most common finger.  

To perform validation we use the measures proposed in our validation framework using 

the posterior probability distribution. We use 20% (61221 individuals) of fingerprint 

dataset which was kept aside to perform the validation (testing set). This dataset, which 

contains information of the general pattern of all the 10 fingers, will be used to test the 

different finger networks. 

For example if case-i in our data has a whorl on finger 1. Then we compare the most 

likely value of the finger or the distribution over fingers (given the general pattern of 

whorl) with the ground truth (i.e. finger 1). 

Recall that our testing data contains 61221 individuals with all the 10 fingers. Hence for 

the 1 Finger network, we have 61221 * 10 cases. However for the 2 Finger network, 

since we assume that the two fingers are consecutive, we have 8 possible finger 

combinations possible. Hence for the 2 Finger network, we validate using 61221 * 8 

cases. Similarly for the 3 Finger network we validate using 61221 * 6 cases (since for 3 

consecutive fingers there are 6 possible combinations). And finally for the 4 Finger 

network and the 5 Finger network, we validate using 61221 * 4 and 61221 * 2 cases 

respectively.  
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To compute the posterior accuracy we compare the most likely finger(s) with the 

ground truth (finger number) in the data. 

We know that the higher the posterior 

accuracy of the network, the better the 

network performs in prediction. We can 

see from figure 4.2.1 that the posterior 

accuracy improves with the number of 

(general pattern of) fingermarks found 

on the crime scene i.e. more information. 

The 5 finger network is able to predict 

the correct hand from which those 5 

general patterns originated correctly 

97% of the time. On the other hand to compute the Brier score we compare the 

distribution over the finger(s) with the 

ground truth in the data. We know that 

the lower the Brier score, the better is 

the quality of the network. Similar to 

the posterior accuracy, as shown in 

figure 4.2.2, the Brier score improves 

(decreases) with the number of 

(general pattern of) fingermarks found 

on the crime scene i.e. more 

information. And for the 5 finger 

network it becomes nearly zero. 

  

 
Figure 4.2.1: Graph showing the posterior accuracy 
for 1, 2, 3, 4 and 5 finger networks. 

 
Figure 4.2.2: Graph depicting the average Brier score 
for the 1, 2, 3, 4 and 5 finger networks. 
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4. 3. Validation results for quantifying 

strength of evidence  

Recall that we can quantify the strength of evidence in terms of likelihood ratios (which 

is the ratio of the probability supposing that the evidence for the given hypothesis is 

true to the probability supposing that the evidence for the contrary mutually exclusive 

hypothesis is true). This strength of evidence can be quantified at the level of finger by 

computing how likely is it for the fingermark to originate from fingerX compared to the 

other fingers. Moreover this strength of evidence can be quantified at the level of person 

by computing how likely is it for the suspect to be the donor of the fingermark 

compared to any random person in the population.  

4. 3. 1. At level of finger 

At the level of finger the propositions to be tested are:  

H1 : The fingermark was left by the specific finger fi of a random person 

H2: The fingermark was left by another finger f~i of a random person 

   
 
  

  
 

 
         

         
  

                    

                     
  

                                 

                                   
 

In our example, it would mean the mark originates from donor’s finger 4 vs. the mark 

originates from any other finger (1-3, 5-10) of the same donor. The evidential value for 

a whorl observed on a fingermark paired to the finger number 4 (vs. on any other 

finger) is 1.67. In other words, it is 1.67 times more likely to observe a whorl if it 

originates from the finger number 4 than if it originates from any other finger number 

of a random person.  

This concept can be similarly extended to multiple fingers. For example if two 

consecutive fingermarks were found on the crime scene, then the 2 finger network will 

be used for inference. The propositions for this would be that 

H1: The fingermarks were left by the specific fingers fi and fj of a random person. 

H2: The fingermarks was left by any other finger combination of a random person. 
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To validate these networks we use the measure proposed in our validation framework 

using likelihood ratios. To perform experiments using likelihood ratios, we have to 

assume that we know which finger the general pattern is from (in real life case- we use 

the 2nd level information etc; in validation- we know which finger has the general 

pattern from the test dataset).  

Similar to the previous section we use 20% (61221 individuals) of fingerprint dataset 

which was kept aside to perform the validation (testing set). This dataset, which 

contains information of the general pattern of all the 10 fingers, will be used to test the 

different finger networks. Similarly, we have 61221 * 10 cases for 1 Finger network, 

61221 * 8 cases for 2 Finger network etc. 

Though for evaluation for likelihood ratio systems in forensic science we need to be able 

to compute the same source and the different source likelihood ratios. This was done 

under the guidance of forensic scientists at NFI. We will explain how we get the same 

source and different source likelihood ratios with help of an example. Let’s assume that 

a left loop is found on finger 1. Then the same source likelihood ratio would be how 

likely is it to find the left loop on finger 1 compared to the rest of the fingers 

LRSS   
                       

                          
. In our situation, we do not have an explicit different 

source comaprison possible; therefore we implicitly create a different source 

comparison. In our example the different source comparison would be how likely is it to 

find a left loop on finger 2 (or other fingers) compared to a left loop on finger 1.  

 LRDS    
                       

                       
 , 
                       

                       
   

                        

                       
 

In ideal scenarios we would get LRSS > 1 and LRDS < 1. The measures we presented in 

the framework tell us how well our network performs by plotting these numbers in 

different ways (described in the framework). Moreover this concept can be easily 

extended to multiple fingers.  
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We see in Figure 4.3.1.1, that the LR accuracy (or 1-RMED) is above 80% for all the 

networks. Though to compute this we do not need the LRDS. Also the Cllr value as shown 

in Figure 4.3.1.2, decreases as we get more evidence (general patterns). As mentioned 

before the lower the Cllr the better the network performs. A Cllr of 1 would indicate that 

the evidence gives no information if H1 or H2 is true. Moreover lower the Cllr value, more 

is its discriminatory power. 

We also assess the performance of the LR values using tippet plot, ECE plot and DET 

curves. As we know the discriminatory power of the LR system is depicted in the tippet 

plot by the distance between the two curves. Moreover in the equal error rate 

decreasing as we increase the complexity of the network (i.e. find more fingermarks on 

the crime scene). 

 
Figure 4.3.1.1: Graph depicting the LR accuracy for the 1, 2, 
3, 4 and 5 finger networks. 

 

 
Figure 4.3.1.2: Graph depicting the Cllr values for the 
1, 2, 3, 4 and 5 finger networks. 
 

 
Figure 4.3.1.3: ECE plots for the 1, 2, 3, 4 and 5 finger network. 
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Figure 4.3.1.4: Tippet plot for the 1, 2, 3, 4 and 5 finger network. 

 
Figure 4.3.1.5: DET curve for the 1, 2, 3, 4 and 5 finger networks. 
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4. 3. 1. 1. Discussion 

In the previous section we have presented the validation results for quantifying the 

strength of evidence at the level of finger for the 1, 2, 3, 4 and 5 Finger networks. 

Fingerprint examiners and forensic scientist would now need to assess if these results 

are satisfactory to be used in case-work analysis. 

4. 3. 2. From level of finger to level of person 

In the previous section we validated the networks which produced an evidential value 

at the level of the finger. This evidential value in itself is not of much help since it does 

not give any information for the prosecution or defence.  

However these probabilities can also be used in the method proposed by [Neumann et 

al., 2011], to extract the evidential value of a fingermark using the first level and the 

second level details. Though discussion of this method is beyond the scope of the thesis.  

In forensic evaluations, rarer evidence has a higher strength of evidence. In future 

research, this correlation can be somehow used to quantify the strength of evidence at 

the level of the person.  

4. 3. 3. At person level 

In this section, we make an attempt to quantify the strength of evidence at the level of 

the person. Hence according to forensic scientists the hypothesis for this is framed as 

follows: 

Hp: The fingermark was left by the specific finger of the suspect. 

Hd: The fingermark was left by any finger of any person. 

In forensic science, likelihood ratios are usually constructed with the numerator being 

the probability of the evidence if the identified person is the source of the evidence, and 

the denominator being probability of the evidence if an unidentified person is the 

source of the evidence.  
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Similar to DNA analysis, in dactyloscopy, the fingerprint examiner can conclude that the 

susp ct’s f        match s w th th  f     ma k (it would be obvious that they would 

have the same general pattern) found on the crime scene. In this case the n-finger 

networks would be used to determine the probability that a randomly selected other 

person having the same general pattern will match the fingermark found on the crime 

scene (i.e. the random match probability- RMP). 

Subsequently the examiner will compute the LR, defined as the ratio of the probability 

that the susp ct’s finger left the mark (Hp) versus the probability that an unknown 

person left the mark. Based on this assumption the fingerprint examiner will reason:  

 If the suspect is the donor of the trace, then the general pattern on the fingerprint of 

the suspect and the fingermark match. Then the probability of finding the general 

pattern on the particular finger of the suspect is therefore equal to 1 if hypothesis Hp 

is true i.e.                                   =1. 

 The chance an unknown man is the donor of the fingermark on the crime scene is 

the random match probability of any person having a left_loop on his fingers. 

 

Therefore the evidential value as expressed as a likelihood ration would be as follows: 

LR hp/hd = 
       

       
  

                                 

                          
  

 

             
  

 

This likelihood ratio can be considered as the same source hypothesis. Formulating the 

different source hypothesis is not so trivial and hence has been left for future research. 

Without the same source likelihood ratios, we can only generate on curve of the tippet 

plot (Figure 4.3.3.1). However without the different source results (other curve) we 

cannot perform validation of these networks. 
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Figure 4.3.3.1: Tippet plot for the 1, 2, 3, 4 and 5 finger network 
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4. 4. Comparison with previously 

designed networks  

In this section we compare the validation results for Doekhie’s 1 Finger network 

(Section 2.4.1) with our 1 Finger network. 

Since we do not put any evidence on the Hand and Gender variable, these networks are 

structurally equivalent (in our project context). Though the difference is that in our 

network we obtain the prior distribution (equiprobable) from the fingerprint dataset 

whereas Doekhie’s network prior distribution on the Finger variable is obtained from 

the fingermark dataset (which is done to refine the equiprobable prior to a more 

realistic one). 

The results are depicted in Figure 4.4.1 and 4.4.2. Out network performs slightly better 

in terms of measures using posterior probability distribution. However there is hardly 

any difference when we compare the performance using Likelihood ratios. In the tippet 

plot we can see that the different source curves are identical, whereas there is some 

slight change in the same source curve. 

 Posterior Accuracy Avg. Brier Score Cllr 

Doekhi’s network 0.17 0.88 0.74 

Our network 0.22 0.84 0.74 
Figure 4.4.1: Comparison of Doekhie’s 1 Finger network and Our 1 Finger Network 

In future, we would like to perform a sensitivity analysis on the FingerNo variable, to 

see if how sensitive it is to parameter changes in our network. Therefore to know how 

important is it to use a more realistic prior on the FingerNo. 
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Figure 4.4.2: Tippet plot for  of Doekhie’s 1 Finger network and Our 1 Finger Network 

4. 4. 1. Discussions 

We do not compare Doekhie’s 2 Finger network with our 2 Finger network, (since as 

mention in Section 2.4.3) she has used the prior on FingerA and FingerB from the 

fingermark dataset. Which we feel is not scientifically correct, since the fingermark 

database does not have any information about consecutivity and hence should not be 

used when we want to answer queries regarding consecutive patterns. 
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Chapter 5:  

Concluding remarks 
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5. 1. General Pattern dependence 

In this section we look into the assumption used to model the N-finger networks, that 

the general patterns on different fingers are independent. To do that we learn a network 

on the general patterns for the 10 fingerprints i.e. let the network model the 

dependencies in the data with help of a structural learning algorithm. 

After this we analyze how strong the dependencies between the fingers are by 

comparing the learned network to the network where the general patterns on the 

different fingers are independent. This process will help us in gaining more insight in 

the domain: i.e. if the general pattern on one finger is (in) dependent of the general 

pattern of another finger. If we find that the dependencies are considered important, 

then they can be incorporated into the finger networks (Section 3.3) at a later stage. 

5. 1. 1. Learning Bayesian Networks 

In data rich applications, data collections that are large and reliable enough can be used 

to automatically learn the structure of a probabilistic network [Buntine, 1996]. The 

qualitative part of the network is learnt from the data using an exact Bayesian network 

structure discovery algorithm [Silander, 2012] for complete discrete data i.e. data with 

no missing values. We employ the algorithm by [Silander & Myllymaki, 2012], because it 

is guaranteed to find a globally optimal Bayesian network structure. Moreover, unlike 

some other exact structure discovery algorithms, the source code for this algorithm is 

freely available on the web.  

To get a better insight in the dependence between the general patterns on the different 

fingers, we define a variable General_Pattern_on_FingerX (X ∈ 1 to 10) for each finger. 

The General_Pattern_on_FingerX variables can hold values as defined in Section 2.2. The 

structural discovery algorithm finds the graph illustrated in Figure 5.1.1.1 as one of the 

networks that best fit the data. 
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Figure 5.1.1.1: Structural discovery algorithm used to obtain the dependencies between the General_Pattern variables of 
different fingers 

5. 1. 1. 1. Structural Learning 

In various domains of application like forensic science, data has been collected and 

maintained over numerous years of every-day problem solving. Such a data collection 

implicitly contains highly valuable information about the relationships among the 

variables identified. If a comprehensive dataset is available in the domain for which a 

Bayesian network is to be developed, the construction of the network’s qualitative part 

may be performed automatically: the basic idea of learning the qualitative part 

(digraph) from data is to distil information from the dataset and exploit it for 

constructing a digraph. However it’s important to note that these dependencies 

represent statistical dependencies and not necessarily causal relations. 

The total number of Bayesian networks possible with n variables can be calculated by 

the recursive formula given by [Robinson, 1977]. In our situation, with 10 general 

pattern variables around 4 * 1018 structures are possible. Hence it is computationally 

infeasible to search through all the possible networks.  
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In general, finding the best Bayesian network structure3 is NP-hard [Chickering et al., 

2003]. [Silander & Myllymaki, 2012] developed a Bayesian network structure discovery 

algorithm for complete discrete data which finds a Bayesian network structure without 

any structural constraints. This algorithm guarantees to give a globally optimal network 

for networks with less than 29 variables.  

An optimal Bayesian network has a structure that is most likely given the data. For a 

given network it is possible to compute the probability that the network in fact 

generated the data. The two probabilities are related by Bayes’ theorem. 

       
           

    
  

The normalizing denominator P(D) does not depend on the structure G, so provided 

that the numerator can be calculated, it is possible to compare the relative probabilities 

of Bayesian network structures without calculating the denominator. This makes it 

possible to search for the most probable network structure.  

The search for the best Bayesian network structure is guided by a scoring function that, 

given a data, attaches a real number to any given network. The learning problem is now 

a maximization problem: the better the network, the greater the score. The nature of 

many common scoring functions is such that several different networks may have equal 

scores [Chickering, 1995], so instead of ‘the best’ network a ‘set of best’ networks can be 

produced.  

  

                                                 

3
 Why not use a complete structure (Fully connected): By suitably setting the parameters of a complete 

Bayesian network (i.e., any Bayesian network with the maximum number n(n-1)/2 of directed edges or 

arcs), it is possible to present any distribution, so there is never a way to tell for certain that the data did 

not come from a complete Bayesian network. However, a complete network structure gives little insight 

to the domain of interest, and from the probabilistic inference point of view, it amounts to listing the 

probabilities for all the possible combinations of variables. If it is assumed that the data was generated 

from an unknown Bayesian network, one needs to find the structure of the Bayesian network that 

generated the data sample [Heckerman, 1996]. Also for a complete network a huge amount of conditional 

probability values need to be calculated. This could lead to imprecision. 
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5. 1. 1. 2. Parameter Learning 

After we have learnt an optimal structure for the Bayesian network, we are left with 

parameterizing this network. Theses parameters are assessed from the data using 

simple frequentist approach (i.e. counting). To perform parameter learning we used 

GeNIe (Graphical Network Interface) software package, which is the graphical interface 

to SMILE, a fully portable Bayesian inference engine developed by the Decision Systems 

Laboratory, University of Pittsburgh. 

5. 1. 1. 3. Results 

Structural learning on the General_Pattern nodes was performed using the algorithm of 

[Silander & Myllymaki, 2012]. The KLPD fingerprint dataset was divided into a training 

set (80%, N=244884) and a testing set (20%, N= 61221). The training set was used to 

learn the structure of the network as well as its parameters. 

BDeu (Bayesian Dirichlet equivalence uniform) [Buntine, 1991] score is a popular 

scoring metric for learning Bayesian network structures for complete discrete data. It 

corresponds to a set of plausible assumptions under which the posterior odds of 

different Bayesian network structures can be calculated, thus giving us the opportunity 

to find the maximum posterior structure for the data. Hence maximizing the BDeu score 

equals maximizing the posterior probabilities of the structures. BDeu4 with equivalent 

sample size 1 was used for this analysis. Equivalent sample size expresses the strength 

of our prior belief in the uniformity of the conditional distributions of the network. 

Silander’s algorithm produced 10 best networks (attached in Appendix B). These were 

coincidently in the same equivalent class (i.e. represented the same independencies and 

joint distribution).  Hence these networks give the same predictive distribution for the 

data i.e. are equivalent for inference. There was only some variability observed in the 

direction of the arcs between variables General_Pattern_on_Finger1, 

General_Pattern_on_Finger2, General_Pattern_on_Finger4, General_Pattern_on_Finger6 

                                                 

4
 Though in future, we can use other scoring methods (e.g. information-theorectic scoring function-BIC) 

and compare the difference.  
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(though not all combinations are possible). For this reason only one of the networks 

was used for inference. 

We now find try to find a lower bound to the probability of the set of 10 best networks 

we identified, given the data. We do this to see how well the networks have been 

identified by the learning algorithm. 

Let the probability of a best network (i.e. P(Gbest | D) ) be denoted by p. 

Therefore the sum of the probability of the 10  best networks is 10*p.  

 

The best network was found to be e95 times more probable than the 2nd best network in 

any other equivalence class. If the probability of the second best network is denoted by 

q (i.e. P(G2nd_best | D) ) then           p 

 

It is also known that the probability of all the networks should sum up to 1. 

   p  sum  f  th     tw  ks    

Since we want to compute the lower bound, we assume that all the other networks have 

atleast the same probability as the second best network. N is the number possible 

structures- in our case around 4*1018. 

    p                 

    p          
 

   
 p    

 p              
 

   
     

 p  
 

            
 
   
  

 

 

The probability of the class of best networks (10 networks) 

    p  
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Hence the probability of the most probable equivalence class has a lower bound of 1. 

This shows these 10 networks form the most probable networks and that the learning 

algorithm has identified the networks pretty well. 

 

5. 1. 2. Comparison with independent network 

To check if the dependencies portrayed by the network illustrated Figure 5.1.1.1 are 

strong, we compare it to the network illustrated without any edges, which is a network 

constructed assuming all the general patterns on different fingers are independent.  

We have no assumption of dependency in the 1 finger network. We make this 

assumption only in the consecutive finger networks. In this project, since we are 

interested in 2, 3, 4 and 5 consecutive finger combinations, we only compare the joint 

distributions of these finger combinations for the dependent (Figure 5.1.1.1) and 

independent network using KL divergence distance measure. For example the two 

consecutive finger combinations are Finger 1 and Finger 2, Finger 2 and Finger 3 etc, 

therefore we compare probability distribution of the general pattern on finger 1 (GP_F1 

for short) and finger 2 in the dependent network- Pdep (GP_F1, GP_F2) with the 

independent network-Pind (GP_F1, GP_F2). Using the KL divergence, we measure the 

amount of information lost when the probability distribution of the independent 

network is used to approximate the probability distribution of the dependent network. 

The results are illustrated in the Tables 5.1.2.1, 5.1.2.3, 5.1.2.5, 5.1.2.7 for the 2, 3, 4 and 

5 finger networks respectively. We observe KL divergence scores of > 0.1 and hence can 

conclude that there is some loss of information when the probability distribution of 

independent network is used to approximate the probability distribution of the 

dependent network.  

Apart from KL divergence, we also compare the most likely general pattern combination 

which occurs on these consecutive fingers for both the networks shown in Tables 

5.1.2.2, 5.1.2.4, 5.1.2.6, 5.1.2.8 for the 2, 3, 4 and 5 finger networks respectively.  
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DKL [ Pdep (GP_F1, GP_F2) || Pind (GP_F1, GP_F2) ] 0.09 

DKL [ Pdep (GP_F2, GP_F3) || Pind (GP_F2, GP_F3) ] 0.20 

DKL [ Pdep (GP_F3, GP_F4) || Pind (GP_F3, GP_F4) ] 0.16 

DKL [ Pdep (GP_F4, GP_F5) || Pind (GP_F4, GP_F5) ] 0.13 

DKL [ Pdep (GP_F7, GP_F6) || Pind (GP_F7, GP_F6) ] 0.09 

DKL [ Pdep (GP_F8, GP_F7) || Pind (GP_F8, GP_F7) ] 0.21 

DKL [ Pdep (GP_F9, GP_F8) || Pind (GP_F9, GP_F8) ] 0.18 

DKL [ Pdep (GP_F10, GP_F9) || Pind (GP_F10, GP_F9) ] 0.13 

Avg_DKL [ Pdep (GP_Fi, GP_Fj) || Pind (GP_Fi, GP_Fj) ] 0.15  

Table 5.1.2.1: KL divergence for 2 finger network 

 Dependent Network Independent Network 

arg max P(GP_F1, GP_F2) {Whorl, Whorl} {R_Loop, Whorl} 

arg max P(GP_F2, GP_F3) {R_Loop, R_Loop} {Whorl, R_Loop} 

arg max P(GP_F3, GP_F4) {R_Loop, R_Loop} {R_Loop, Whorl} 

arg max P(GP_F4, GP_F5) {R_Loop, R_Loop} { Whorl, R_Loop } 

arg max P(GP_F7, GP_F6) {L_Loop, L_Loop} {L_Loop, L_Loop} 

arg max P(GP_F8, GP_F7) {L_Loop, L_Loop} {L_Loop, L_Loop} 

arg max P(GP_F9, GP_F8) {L_Loop, L_Loop} {L_Loop, L_Loop} 

arg max P(GP_F10, GP_F9) {L_Loop, L_Loop} {L_Loop, L_Loop} 

Table 5.1.2.2: Most likely general pattern combinations on different finger combinations for 2 finger 

network for dependent and independent network. 

 

DKL [ Pdep (GP_F1, GP_F2, GP_F3) || Pind (GP_F1, GP_F2, GP_F3) ] 0.29 
DKL [ Pdep (GP_F2, GP_F3, GP_F4) || Pind (GP_F2, GP_F3, GP_F4) ] 0.40 
DKL [ Pdep (GP_F3, GP_F4, GP_F5) || Pind (GP_F3, GP_F4, GP_F5) ] 0.29 
DKL [ Pdep (GP_F8, GP_F7, GP_F6) || Pind (GP_F8, GP_F7, GP_F6) ] 0.30 
DKL [ Pdep (GP_F9, GP_F8, GP_F7) || Pind (GP_F9, GP_F8, GP_F7) ] 0.41 
DKL [ Pdep (GP_F10, GP_F9, GP_F8) || Pind (GP_F10, GP_F9, GP_F8) ] 0.32 

Avg_DKL [ Pdep (GP_Fi, GP_Fj, GP_Fk) || Pind (GP_Fi, GP_Fj, GP_Fk) ] 0.34 

Table 5.1.2.3: KL divergence for 3 finger network 

 Dependent Network Independent Network 

arg max P(GP_F1, GP_F2, GP_F3) {R_Loop, R_Loop, R_Loop} {R_Loop, Whorl, R_Loop } 

arg max P(GP_F2, GP_F3, GP_F4) {R_Loop, R_Loop,R_Loop} {Whorl, R_Loop, Whorl } 

arg max P(GP_F3, GP_F4, GP_F5) {R_Loop, R_Loop, R_Loop} {R_Loop, Whorl, R_Loop } 

arg max P(GP_F8, GP_F7, GP_F6) {L_Loop, L_Loop, L_Loop } {L_Loop, L_Loop, L_Loop } 

arg max P(GP_F9, GP_F8, GP_F7) {L_Loop, L_Loop, L_Loop } {L_Loop, L_Loop, L_Loop } 

arg max P(GP_F10, GP_F9, GP_F8) {L_Loop, L_Loop, L_Loop } {L_Loop, L_Loop, L_Loop } 

Table 5.1.2.4: Most likely general pattern combinations on different finger combinations for 3 finger network for 

dependent and independent network. 
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DKL [ Pdep (GP_F1, GP_F2, GP_F3, GP_F4) || Pind (GP_F1, GP_F2, GP_F3, GP_F4) ] 0.51 
DKL [ Pdep (GP_F2, GP_F3, GP_F4, GP_F5) || Pind (GP_F2, GP_F3, GP_F4, GP_F5) ] 0.56 
DKL [ Pdep (GP_F9, GP_F8, GP_F7, GP_F6) || Pind (GP_F9, GP_F8, GP_F7, GP_F6) ] 0.51 
DKL [ Pdep (GP_F10, GP_F9, GP_F8, GP_F7) || Pind (GP_F10, GP_F9, GP_F8, GP_F7) ] 0.55 

Avg_DKL [ Pdep (GP_Fi, GP_Fj, GP_Fk, GP_Fl) || Pind (GP_Fi, GP_Fj, GP_Fk, GP_Fl) ] 0.53 

Table 5.1.2.5: KL divergence for 4 finger network 
 

 Dependent Network Independent Network 

arg max P(GP_F1, GP_F2, GP_F3, GP_F4) {R_Loop, R_Loop, R_Loop, 

R_Loop } 

{R_Loop, Whorl, R_Loop, 

Whorl } 

arg max P(GP_F2, GP_F3, GP_F4, GP_F5) {R_Loop, R_Loop, 

R_Loop, R_Loop } 

{Whorl, R_Loop, Whorl, 

R_Loop } 

arg max P(GP_F9, GP_F8, GP_F7, GP_F6) {L_Loop, L_Loop, L_Loop, 

L_Loop } 

{L_Loop, L_Loop, L_Loop, 

L_Loop } 

arg max P(GP_F10, GP_F9, GP_F8, GP_F7) {L_Loop, L_Loop, L_Loop, 

L_Loop } 

{L_Loop, L_Loop, L_Loop, 

L_Loop } 

Table 5.1.2.6: Most likely general pattern combinations on different finger combinations for 4 finger network for 

dependent and independent network. 
 

DKL [ Pdep (GP_F1, GP_F2, GP_F3, GP_F4, GP_F5) || Pind (GP_F1, GP_F2, GP_F3, GP_F4, GP_F5) ] 0.67 
DKL [ Pdep (GP_F10, GP_F9, GP_F8, GP_F7, GP_F6) || Pind (GP_F10, GP_F9, GP_F8, GP_F7, GP_F6) ] 0.64 

Avg_DKL [ Pdep (GP_Fi, GP_Fj, GP_Fk, GP_Fl, GP_Fm) || Pind (GP_Fi, GP_Fj, GP_Fk, GP_Fl, GP_Fm) ] 0.66 

Table 5.1.2.7: KL divergence for 5 finger network 
 

 Dependent Network Independent Network 

arg max P(GP_F1, GP_F2, GP_F3, GP_F4, GP_F5) {R_Loop, R_Loop, R_Loop, 

R_Loop, R_Loop} 

{R_Loop, Whorl, 

R_Loop, Whorl, R_Loop} 

arg max P(GP_F10, GP_F9, GP_F8, GP_F7, GP_F6) {L_Loop, L_Loop, L_Loop, 

L_Loop, L_Loop } 

{L_Loop, L_Loop, 

L_Loop, L_Loop, L_Loop} 

Table 5.1.2.8: Most likely general pattern combinations on different finger combinations for 8 finger network for 

dependent and independent network. 
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5. 1. 3. Discussion 

There is some difference between the most likely general pattern as classified by the 

dependent network compared to the independent one.  In addition we do not get a low 

(near zero) KL divergence score for all the multiple finger networks. This means that 

the assumption of fingerprint examiners that the dependencies are not important has to 

be reconsidered. Though similar to the gender analysis (in Section 3.2.2.3), these 

dependencies between the general patterns may not influence the finger combination 

distribution. For this to be done, we will have to somehow learn the dependencies 

between the general pattern variables in the Bayesian networks we created in Section 

3.3.3. After which a similar study as Section 3.2.2.3 needs to be performed to see the 

impact of the dependencies of the general patterns on the finger combination 

distribution. We leave this for future work.  



 

Utrecht University and Netherlands Forensic Institute | 79 

 

5. 2. Conclusion 
In this part of the thesis we extended the one finger network to multiple finger 

networks, making the assumption that the general pattern on different fingers are 

independent given the fingers the occur on. These networks have two applications for 

forensic scientists or fingerprint examiners. Firstly, (in investigative stage) it will help 

to reduce the search space, when searching for fingerprints which can be matched to 

the fingermark. Secondly, (in evaluation stage) it will help quantify the strength of 

evidence at the level of finger and level of person. 

We have presented validation results for the investigative stage and evaluation stage at 

the level of finger. However validation of quantifying the strength of evidence at the 

level of person is left for future research. Moreover, we also need to interact with 

forensic scientists and fingerprint examiners to somehow understand if the networks 

w  hav  c  at   a   ‘        u h’  th u h th     s    c  a    f   t    f   ‘     

   u h’  t  b  us      p act s   

In future, we need to det  m    h w ‘s  s t v ’ th    tw  k  s t  cha   s    th  va u s 

of the parameter. Especially for the Finger_No variable, since it will give us an indication 

if a more refined prior on the Finger_No (i.e. from the fingermark dataset) is useful or 

not? Moreover if it is useful, it will give motivation to the fingerprint examiners to store 

information about consecutivity in the fingermark database. 

We also saw that the general pattern on different fingers are not independent. 

Therefore in future we need to learn Bayesian networks from the data (like structural 

learning in 5.1) and evaluate if the dependencies between the general patterns have an 

affect on the distribution over finger. In other words, in forensic science terminology, 

we need to perform a cross validation- i.e. compare the performance of networks 

created with help of experts (and data) to the networks created from data only. 

And finally, we also need to make an attempt to solve an open question in forensic 

sc   c   ‘h w t  c mb    th  st    th  f evidence of different forensic evidence- mainly 

f cuss       th    v     a     v       ta  s  f f     p   ts’  
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Chapter 6:  

Introducing MAP 
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6. 1. Abductive reasoning in Bayesian 

networks 

Since the term Bayesian Network was coined by Judea Pearl [Pearl, 1985] in the mid 

nineteen-eighties, a lot of attention has been to given to probabilistic inference 

problems. This has led to a lot of exact and approximate inference algorithms being 

developed to obtain the posterior probabilities (also known as posterior marginals) of 

variables given evidence. 

More recently, though a more difficult problem known as abductive inference has been 

gaining equal (if not more) attention [Kwisthout, 2011]. Abduction is defined as the 

process of generating a plausible explanation for a given set of observations or facts 

[Pople, 1973]. In the context of probabilistic reasoning, abductive inference corresponds 

to finding the maximum a posteriori probability state of the system variables, given 

some evidence (observed variables) i.e. the configuration of a set of hypothesis or query 

variables that is most likely or best explains the evidence [Gamez & Moral, 2004; 

Neapolitan, 2004]. 

[Cooper, 1990] had shown that the problem of probabilistic inference in general is NP-

hard i.e. from just computing the posterior marginal to a more complex problem of 

abductive inference becomes intractable even for problems with a small number of 

variables. Though generally in real-life scenarios, when the tree-width5 is bounded, just 

computing the posterior probability is not that computationally hard [Kwisthout et al., 

2010]. However it still remains NP-hard to perform abductive inference. 

In the last few years, artificial intelligence researchers have devoted increasing 

attention to the development of abductive reasoning methods in a wide range of 

applications. Probably the most clear application of abductive reasoning is in the field of 

diagnosis (see e.g. [Peng & Reggia, 1987; Reiter, 1987; Lucas et al., 2000; van der Gaag et 

                                                 
5 In graph theory, the treewidth of an undirected graph is a number associated with the graph, which can 

be defined in several equivalent ways, one of them being that it is the size of the largest clique in a chordal 

completion of the graph. 
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al., 2002; Geenen et al., 2006]) where the most likely diagnosis is to be found, given 

(some) clinical observations and test results. Although other applications exist, such as 

in weather forecasting, to predict precipitation based on meteorological evidence 

[Cofino et al., 2002] and in channel coding where messages transmitted over a noisy 

channel are to be decoded [Frey, 1997]. In the latter case, the receiver observes a 

sequence of bits received over the channel, and then attempts to find the most likely 

assignment of input bits that could have generated this observation (taking into account 

the model of the channel noise). This type of query is much better viewed as an 

abductive inference query than a standard inference query (i.e. computing the posterior 

marginal), since the most likely message is more interesting that the most likely values 

for the individual bits. A similar phenomenon arises in speech recognition [Geoffrey & 

Russell, 1998], where the most likely utterance given the noisy acoustic channel is more 

important that the most likely value of individual phonemes uttered. Abductive 

inference has also gained popularity in cognitive task such as vision or goal inference 

[Kumar and Desai, 1996; Yuille & Kersten, 2006; Baker et al., 2009], legal reasoning 

[Thagard, 1989] and computational models of economic process [Gamela, 2001; 

Demirer et al., 2006]. Though superficially these problems appear to be very different, 

they solve the same underlying computational problem, which is, given a Bayesian 

network and a set of evidence, to find the most probable joint value assignment to a set 

of variables. 

Bayesian networks contain information needed to answer any query about the 

distribution. Inference is the process of answering such queries. In the next section we 

introduce the three types of queries: probability query, most probable explanation and 

maximum a posteriori hypothesis. The latter will be used in the following two chapters, 

where we discuss the two heuristics we have designed to compute the approximate 

maximum a posteriori hypothesis.  
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6. 2. Formal definition of queries  

Bayesian networks represent a joint probability distribution; which is used to answer 

any query about the distribution. Subsequently inference is the process of using a joint 

probability distribution over multiple random variables to answer queries, namely: 

probabilistic queries, most probable explanation queries and maximum a posteriori 

probability queries. In this section we will look into these three queries in detail. 

In the remainder of this section we consider a Bayesian network B = (G, P) 6 with acyclic 

digraph G = (V, A). In addition, we assume that the set of variables V is divided into a 

non-empty set of evidence variables X ⊂ V, a non-empty set of query variables Q = { Q1, 

Q2, ... Qn } ⊆ V \ X, and possibly a set of remaining variables Z = V \ ( Q ⋃ X). 

6. 2. 1. Probability Query 

Perhaps the most common query type is the probability query. Where the goal is to 

compute P( Qi | X = x), which is the posterior probability distribution over the values qi 

of Qi, conditioned on the fact that X takes on the value x. This is the most standard type 

of query, which standard inference algorithms are designed to answer. Compared to the 

other two query types, it is relatively easier to compute this query. 

  

                                                 

6 In this thesis we use a standard notation: Variables are denoted by upper-case letters (A) and their 

values by lower case letters (a). Sets of variables are denoted by bold face upper case letters (A) and their 

instantiations are denoted by bold face lower case letters (a). 
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6. 2. 2. Most Probable Explanation 

A second type of query is called the Most Probable Explanation- MPE (Also known as 

MAP in some literature [Koller & Friedman, 2009]). The MPE in a Bayesian Network is a 

complete variable assignment which has the highest probability given current evidence 

[Pearl, 1988; Park & Darwiche, 2004]. In simpler words, the MPE is the most likely 

assignment to a set of variables given complete evidence about the complement of that 

set. The difference of MPE from probability query is that instead of a probability we get 

the most likely value for all remaining variables. 

More precisely, if V = Q ⋃ X, then the most likely assignment to the variables Q given 

evidence X = x, is given by  

 MPE ( Q | x ) = arg maxq P( q | x ) =  arg maxq  P( q , x )/ P( x ) = arg maxq P( q , x ) 

where in general arg maxx f(x) equals a value of x which maximizes f(x). It’s to be kept in 

mind that there might be more than one assignment that has the highest probability, in 

which case MPE returns either a set of possible assignments or an arbitrary member 

from the set. 

Unfortunately, computing the MPE is in general NP-hard [Bodlaender et al., 2002; 

Kwisthout, 2011], and remains NP-hard when the most probable explanation is to be 

approximated rather than exactly computed. [De Waal & van der Gaag, 2007] showed 

that the MPE can be solved in polynomial time if the subgraph of the evidence variables 

has bounded treewidth and the number of query variables is restricted (see their 

Theorem 1). They observed that for most applications the number of query variables 

indeed is much smaller than the number of evidence variables. The number of query 

variables can in fact often be considered constant in terms of the number of evidence 

variables. For example calculating MPE for naive Bayesian classifiers and TAN 

classifiers (which have very small treewidth) can be performed in polynomial time. 
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6. 2. 3. Maximum a posteriori query 

Often we are only interested in finding the most likely assignment to a set of variables, 

given evidence for only a subset of the complementary set. For example, in medical 

diagnosis we may not have evidence for all the possible symptom variables.  In this case, 

we are not interested in the most likely assignment to both the disease and the 

unobserved symptom variables (which is the MPE), but rather in the most likely 

assignment to the disease variable(s) only. This problem is the main motivation to look 

further into a more general query type, known as the Maximum a posteriori query- MAP 

(also known as partial or marginal MAP in some literature [Koller & Friedman, 2009]). 

The MAP problem is very similar to the MPE problem, except that the set Z of non-

evidence, non-query variables is assumed to be non-empty. MPE is therefore a special 

case of MAP with Z = ∅. More formally, the most likely assignment to the variables Q 

given evidence X = x, is given by  

 MAP ( Q | x ) = arg maxq P( q , x )  

Computing MAP is a significantly more difficult problem than computing MPE or the 

query problem [Park & Darwiche, 2004]. All of these problems are NP-Hard, including 

their approximations [Cooper, 1990; Paul & Luby, 1993], but the computational 

resources needed to solve MAP using state-of-the-art algorithms are much greater than 

those needed to compute the MPE.  
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6. 3. Existing approaches to computing 

MAP  

In this thesis we will be focussing on computing the MAP hypothesis. We know that in 

general computing the MAP is NP-hard and remains NP-hard for its approximations 

also. Though complexity results by [Park & Darwiche, 2004] have shown it to lie in a 

more harder complexity class7 NPPP.  

MAP consists of two problems that are hard in general- optimization and inference 

[Park & Darwiche, 2004]. A MAP approximation algorithm can be produced by 

substituting approximate versions of either the optimization or inference component 

(or both). The optimization problem is defined over the MAP variables, and the score for 

each solution candidate instantiation q of the MAP variables is the (possibly 

approximate) probability P(q, x) produced by the inference method. This allows 

solutions tailored to the specific problem. For networks whose treewidth is manageable, 

but contains a hard optimization component (e.g. polytree structure), exact structural 

inference can be used, coupled with an approximate optimization algorithm. 

Alternatively, if both components are hard, both the optimization and inference 

components need to be approximated. 

In this section we review a few of the existing approaches to computing MAP. We first 

discuss algorithms to compute the exact MAP hypothesis. Followed by algorithms which 

approximate MAP hypothesis. 

  

                                                 
7 Defining the complexity class NPPP is outside the scope of this thesis, but it is generally considered very 

hard, since it is known to contain the entire polynomial hierarchy, of which NP is only the first level.  
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6. 3. 1. Exact MAP 

Variable Elimination: We can solve exact MAP and MPE using a variable elimination 

algorithm [Zhang & Poole, 1996; Dechter, 1998]. Although any elimination order can be 

used to compute MPE. Unfortunately only a subset of these orders can be used to 

compute MAP. A good elimination algorithm for MAP needs to eliminate the non-MAP 

variables first- which could lead to a significantly larger width. The complexity of a 

variable elimination algorithm is exponential in the width of the used elimination order. 

The width of an elimination order with respect to a network is defined as the size of the 

maximal clique minus one, in join tree constructed based on the elimination order. It 

can also be equivalently defined as the number of variables minus one, in the largest 

table constructed when running variable elimination using the order.  

Solving MPE using variable elimination is exponential in its treewidth. Whereas solving 

MAP using variable elimination is exponential in its constrained treewidth- which is the 

width of the best constrained elimination order. 

Other algorithms include solving MAP using systematic search [Park & Darwiche, 

2003] and by searching on compiled arithmetic circuits [Huang et al, 2006]. 
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6. 3. 2. Approximating MAP  

Since exact MAP computation is often intractable, approximation techniques are 

needed. We discuss a few approximate techniques below. 

6. 3. 2. 1. Inference is easy 

In this section we assume that performing exact inference is tractable. 

Combination of most likely values: In this crude approximation of MAP, individually 

the most likely assignment P(Qi | X=x) for all the query variables Qi are computed. And 

these individual most likely assignments are considered to be the MAP assignment.  

However, the assignment where each variable individually picks its most likely value 

can be quite different from the most likely joint assignment to all query variables 

simultaneously [Koller & Friedman, 2009]. The phenomenon can occur in the simplest 

case, where we have no evidence. For example, consider a 2 node network ( Q1 ⇾ Q2 ), 

where Q1 and Q2 are both binary, with conditional probability tables as shown in Table 

6.3.1.1. We can see that MAP (Q1, Q2 | ∅) = (q10, q21) with a probability of 0.36. However 

if we apply this heuristic, then the most likely value for Q1: arg maxq1 P(q1) = (q11) and 

the most likely value for Q2: arg maxq2 P(q2) = (q21). Thus we have that  

arg maxq1.q2 (q1, q2) ≠ (arg maxq1 (q1), arg maxq2 (q2)). 

The complexity of computing the MAP using this heuristic is the same as the complexity 

of standard inference O(Probability_Query_Inference) or O(P_Query). This is simply 

computing the posterior marginals for all the query variables, which in general is NP- 

P( Q1 ) 

q10 0.4 

q11 0.6 

P ( Q1, Q2 ) 

 
q10 q11 

q20 0.04 0.3 

q21 0.36 0.3 

     

 
P( Q2 | Q1 ) 

 
q10 q11 

q20 0.1 0.5 

q21 0.9 0.5 

P( Q2 ) 

q20 0.34 

q21 0.66 

 
 
 

Table 6.3.1.1: Conditional probability and joint probability tables  
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hard. 

Approximate with MPE: Another heuristic is to approximate this problem using MPE, 

which is done by finding the most likely configuration of every unknown variable 

(including the query variables and the non-evidence, non-query variables). And then 

MAP is approximated by using projection of the MPE assignment on the query set. 

It easy to see, that this projection is not usually the most likely configuration of the 

query variables [Park & Darwiche, 2004]. In other words it is trivial to see that the 

assignment MAP( Qy | x ) might be completely different from the assignment of Qy in 

MPE( {Qy,Qz} | x ). For example, we again consider the 2 node network ( Q1 ⇾ Q2 ) 

introduced in the previous section. We can see that MAP(Q1 | ∅) = q11, whereas MPE(Q1, 

Q2 | ∅)= (q10, q21). Hence the assignment MAP( Q1 | x ) might be completely different 

from the assignment of Q1 in MPE( {Q1,Q2} | x ). Thus in general the MPE query can’t be 

used to give a correct MAP answer. In other words it may also be said, that MPE is 

subset of the MAP problem i.e. all MPE problems can be classified as a MAP problem, but 

not vice-versa. 

Other algorithms include genetic algorithm by [de Campos et al. 1999], hill climbing & 

taboo search [Park & Darwiche 2001], simulated annealing [Yuan et al. 2004] etc. 

6. 3. 2. 2. Inference is hard 

The algorithms discussed so far depend on the ability to perform exact inference. 

However in some situations, even performing inference is intractable. In these cases, 

approximate inference can be substituted in order to produce MAP approximations. 

Iterative belief propagation is a useful approximate inference algorithm, which can be 

used for approximating MAP. The belief propagation allows all of the techniques for 

approximating MAP for inference tractable (Section 6.3.2.1) networks to be applied 

approximately when inference is not tractable. 
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6. 3. 3. Motivation  

This leads to the main motivation behind this part of the thesis. In the following 

chapters we introduce two heuristics which approximates MAP. These heuristics are 

computationally tractable, when probability query inference is tractable. Also these 

heuristics do not have any structural constraints (like bounded tree-width) under which 

it will run efficiently. We also perform an experimental analysis to investigate the 

difference in performance of our heuristics and the combination of most likely value 

heuristic. 

Though the problem will still remain in the NP-hard category, more detailed complexity 

analysis of our heuristic (which approximates MAP) needs to be performed to see if it 

still lies in the complexity class NPPP.  
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Chapter 7:  

Heuristic I for  

approximating MAP 
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In this chapter, we introduce a heuristic for MAP computations involving binary query 

variables Qi whose values are denoted by qi0 and qi1, respectively; the non-query 

variables (X and Z) can take on any number of values. Recall that, we use B to denote a 

Bayesian network with variables V = X ⋃ Q ⋃ Z, consisting of 

 A set of evidence variables X. 

 A non-empty set of query variables Q = {Q1, Q2, ... Qn}. 

 A set of non evidence and non query variables Z.  

7. 1. Algorithm  
Figure 7.1.1 describes the heuristic we designed to compute the MAP assignment. 

Heuristic_Algorithm Greedy_MAP_I ( Bayesian Net B, Query Set Q, Evidence x ):  

MAP m, prob_m 

 

m := true         // MAP assignment 

prob_m := 1.0       // contains the probability of the MAP assignment 

 

While Q ≠ ∅ do 

Compute P(Qi | x) from B, for each Qi ∊ Q            //  Perform inference on network 

 Compute Q⏉ = arg maxi | P(qi0 | x) – P(qi1 | x) |   //  find the variable Q⏉ which has 

                                                                          // the maximum absolute difference between its  

                                                                          // most likely value and least likely value 

 

 m := m ∧ q⏉  where q⏉ is most likely value of Q⏉ //  add q⏉ to MAP 

 prob_m := prob_m * P(q⏉ | x)      

 

 Q := Q \ Q⏉ 

x :=  x ∧ q⏉   
End 

Figure 7.1.1: Pseudo code for Heuristic I 
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We find the variable Q⏉ ∊ Q, which has the maximum absolute difference between its 

most likely value and least likely value (given the current evidence set x). We make a 

guess that q⏉ which is most likely value of Q⏉ will be part of the MAP assignment. Since 

we have made an estimated guess for the variable Q⏉, we remove it from the query set 

and add its most likely value q⏉ to the evidence. We continue doing this till the query 

set is empty. Therefore at each step we are removing one variable from the query set 

a   a       t’s m st   k  y va u  t  th  MA  a    v    c    

For each iteration of the while loop, we need to perform inference on the Bayesian 

network only once to compute P(Qi | x)  ∀ Qi ∊ Q. Therefore since the while loop will run 

n-times for n query variables, we would need to perform inference only n-times. 

In our heuristic if the maximum absolute difference between its most likely value and 

least likely value of two variables is the same, then we choose the most likely value as a 

MAP assignment for any one of the variables. 

Our heuristic is designed for only binary query variables. For non-binary query 

variables, just finding the variable Q⏉ which has the maximum difference between its 

most likely value and least likely value may not be of much use. Since these variables 

have more values and hence we would need to devise a different strategy to decide 

which variable and its corresponding value to choose. This does not seem to be trivial 

and hence is left for future research. 
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7. 2. Intuition behind the heuristic 

Given the evidence (X = x), we evaluate the posterior probability of each query variable 

Qi independently i.e. P(Qi | x)  where Qi ∊ Q. Ignoring the interaction between the query 

variables (Qi and Qj where i ≠ j), we find out which value of the query variable has the 

maximum posterior probability or in other words, the maximum confidence in its 

assignment.  For example, if P(Qi = qi0 | x) = 0.5 and P(Qi = qi1 | x) = 0.5, we have the least 

possible confidence in the assignment for Qi, whereas when P(Qi = qi0 | x) = 0.1 and P(Qi 

= qi1 | x) = 0.9, we have comparatively more confidence in the posterior probability 

distribution of Qi. Therefore of all the query variables we choose the one that has 

maximum confidence in its assignment, with a belief that this will be the correct MAP 

assignment for that variable. 

We will now mathematically demonstrate why at each step we choose q⏉ (which is the 

most likely value of Q⏉) as a MAP assignment for the variable Q⏉. Let us consider two 

query variables A (whose values are denoted by a⏉ and a⏊) and B (whose values are 

denoted by b⏉ and b⏊), and evidence X = x such that  

P( a⏉ | x ) > P( a⏊ | x ) 

P( b⏉ | x ) > P( b⏊ | x ) 

In other words, we assume a⏉ and b⏉ are the most likely values and  a⏊ and b⏊ are the 

least likely values of A and B respectively given the evidence X = x.  

From the definition of probability distribution, we know  

P( a⏉ | x ) + P( a⏊ | x ) = 1, 

P( b⏉ | x ) + P( b⏊ | x ) = 1. 

If we assume that, P( a⏉ | x ) - P( a⏊ | x) > P( b⏉ | x ) - P( b⏊ | x ) then 

 ⇔ 1 - P( a⏊ | x) - P( a⏊ | x) > 1 - P( b⏊ | x ) - P( b⏊ | x )   

   [Substituting P( a⏉ | x ) by P( a⏊ | x ) and P( b⏉ | x ) by P( b⏊ | x )] 

 ⇔ P( a⏊ | x) < P( b⏊ | x )   … (ii) 

In a similar way using the other substitution we can arrive at 

 ⇔ P( a⏉ | x ) > P( b⏉ | x )   … (iii) 

… (i) 
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Therefore combining (i), (ii) and (iii), we get 

P( a⏉ | x ) > P( b⏉ | x ) > P( b⏊ | x ) >  P( a⏊ | x ).  

This shows that A = a⏉ has the maximum (and A = a⏊ has the minimum) posterior 

probability, and hence it is possibly the best MAP assignment for query variable A 

(given our assumptions). In a similar way, this technique can be applied to more than 2 

binary variables to get a descending order of all the posterior probabilities given the 

current evidence. In other words using standard Bayesian inference technique, we 

estimate the posterior probability of the query variables in Q. In QT , we store the query 

variable that has maximum posterior probability. The most likely assignment q⏉ for this 

variable is our best guess for the MAP assignment.  

7. 3. Complexity 

The heuristic, assigns a value to the MAP assignment at each step of the algorithm. 

Hence if there are n query variables, then the algorithm will run n-times. And at each 

step we update the evidence set and therefore need to perform inference n-times. 
Therefore the complexity of Heuristic-I is:  

O (n *  P_Query) 

where P_Query is the cost of inference i.e. computing the posterior marginals for all the 

query variables. This shows that our Heuristic-I is linear in the cost of probabilistic 

query inference and therefore it becomes tractable if the cost of probabilistic query 

inference is tractable. 
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7. 4. Formal proof of correctness for two 

variables 

In this section, we present a formal proof to show that for two binary MAP variables this 

heuristic guarantees to give a correct MAP assignment.  

Proposition: For two binary query variables the Heuristic I is guaranteed to  return the 

correct MAP assignment. 

 

Lemma 08: In case of MAP of two binary variables, the combination of the most likely 

values  is always greater than the combination of the least likely values. 

Proof:  

Let a⏉, a⏊, b⏉, b⏊ be such that P( a⏉ | x ) > P( a⏊ | x) and P( b⏉ | x ) > P( b⏊ | x ) 

    [ a⏉ and b⏉ being the most likely value of A and B resp.] 

    [ a⏊ and b⏊ being the least likely value of A and B resp.] 

P( a⏉ | x ) > P( a⏊ | x )  [assumption] 

⇔  P( a⏉, b⏉ | x ) + P( a⏉, b⏊ | x ) > P( a⏊, b⏉ | x ) + P( a⏊, b⏊ | x ) [Marginalising] 

⇔  P( a⏉, b⏉ | x ) - P( a⏊, b⏊ | x ) > P( a⏊, b⏉ | x ) - P( a⏉, b⏊ | x )     (i) 

P( b⏉ | x ) > P( b⏊ | x )  [assumption] 

⇔ P( a⏉, b⏉ | x ) + P( a⏊, b⏉ | x ) > P( a⏉, b⏊ | x ) + P( a⏊, b⏊ | x ) [Marginalising] 

⇔  P( a⏉, b⏉ | x ) - P( a⏊, b⏊ | x ) > P( a⏉, b⏊ | x ) - P( a⏊, b⏉ | x )    (ii) 

(i) + (ii) 

⇔  2 ⋅ [ P( a⏉, b⏉ | x ) - P( a⏊, b⏊ | x ) ] >  

  P( a⏊, b⏉ | x ) - P( a⏉, b⏊ | x ) +  P( a⏉, b⏊ | x ) - P( a⏊, b⏉ | x ) 

⇔  P( a⏉, b⏉| x ) - P( a⏊, b⏊| x ) > 0 

⇔  P( a⏉, b⏉| x ) > P( a⏊, b⏊| x )  

 

                                                 
8 We start with lemma number 0, since this lemma  is true in general (MAP of 2 variables), whereas the 

lemmas after this make some assumptions.  
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Result: P( a⏉, b⏉ | x ) > P( a⏊, b⏊ | x )   

 

We introduce the following lemma to know if the combination of most likely value of A 

and least likely value of B is greater or lesser than the least likely value of A and the 

most likely value of B. 

Lemma 0.1: P( b⏉ | x ) - P( b⏊ | x ) > P( a⏉ | x ) - P( a⏊ | x)    
   ⇔ P( a⏊, b⏉ | x ) > P( a⏉, b⏊ | x ) 
Proof:  
P( b⏉ | x ) - P( b⏊ | x ) > P( a⏉ | x ) - P( a⏊ | x)      

⇔  P( a⏉, b⏉ | x ) + P( a⏊, b⏉ | x ) - P( a⏉, b⏊ | x ) - P( a⏊, b⏊ | x ) >  

 P( a⏉, b⏉ | x ) + P( a⏉, b⏊ | x ) - P( a⏊, b⏉ | x ) - P( a⏊, b⏊ | x )  [Marginalising] 

⇔  2 ⋅ P( a⏊, b⏉ | x ) > 2 ⋅ P( a⏉, b⏊ | x ) 

⇔  P( a⏊, b⏉ | x ) > P( a⏉, b⏊ | x ) 

 

Result: P( a⏊, b⏉ | x ) > P( a⏉, b⏊` | x )   

 

 Since b⏉ is the most likely value of B, and the difference between the most likely 

 value and least likely value of B is greater than that of A- as per our heuristic, we  

 enter the evidence of  b⏉. Subsequently in the following two lemma we find out 

 which value of A becomes more likely (with additional evidence of b⏉). And we 

 see that value of most likely of A (with additional evidence of b⏉) and b⏉ is  the 

 correct MAP assignment.  

 Lemma 0.1.1: P( a⏉ | b⏉, x ) > P( a⏊ | b⏉, x ) ⇒ P( a⏉, b⏉ | x ) > P( a⏊, b⏉ | x )  

Proof: 

P( a⏉ | b⏉, x ) > P( a⏊ | b⏉, x ) 

⇒ P( a⏉ | b⏉, x ) ⋅ P( b⏉ | x ) > P( a⏊ | b⏉, x ) ⋅ P( b⏉ | x )  

      [Multiplying both sides by P( b⏉ | x )] 

⇔ P( a⏉, b⏉ | x ) > P( a⏊, b⏉ | x )   [By definition of cond. prob] 

Result: P( a⏉, b⏉ | x ) > P( a⏊, b⏉ | x ) 
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MAP Result: 

P( a⏉, b⏉ | x ) > P( a⏊, b⏊ | x )  [Lemma 0] 

P( a⏊, b⏉ | x ) > P( a⏉, b⏊ | x )  [Lemma 0.1] 

P( a⏉, b⏉ | x ) > P( a⏊, b⏉ | x )  [Lemma 0.1.1] 

MAP Assignment ⇒ a⏉, b⏉  

 

Lemma 0.1.2: P( a⏉ | b⏉, x ) < P( a⏊ | b⏉, x ) 

   ⇒ P( a⏉, b⏉ | x ) < P( a⏊, b⏉ | x ) and P( a⏊, b⏊ | x ) < P( a⏉, b⏊ | x ) 

Proof:  

P( a⏉ | b⏉, x ) < P( a⏊ | b⏉, x )   

⇒  P( a⏉, b⏉ | x ) < P( a⏊, b⏉ | x )  

    [see proof of previous lemma with > replaced by <] 

⇔ P( b⏉ | a⏉, x) ⋅ P( a⏉ | x ) < P( b⏉ | a⏊, x) ⋅ P( a⏊ | x )     [By def. of cond. prob] 

⇔ [ P( a⏉ | x ) / P( a⏊ | x ) ] < [ P( b⏉ | a⏊, x ) / P( b⏉ | a⏉, x ) ] 

               [Assuming P( a⏊ | x ) > 0 and P( b⏉ | a⏉, x ) > 0 ] 

Now recall that P( a⏉ | x ) > P( a⏊ | x ) i.e. 

⇔ 1 < [ P( a⏉ | x ) / P( a⏊ | x ) ] < [ P(b⏉ | a⏊, x ) / P( b⏉ | a⏉, x ) ] 

⇒ P( b⏉ | a⏉, x ) < P( b⏉ | a⏊, x ) 

⇔ 1 - P( b⏊ | a⏉, x ) < 1 - P( b⏊ | a⏊, x )  [Taking the complement of b⏉] 

⇔ P(b⏊ | a⏉, x ) > P( b⏊ | a⏊, x ) 

⇒P( b⏊ | a⏉, x ) ⋅ P( a⏉ | x )  > P( b⏊ | a⏊, x ) ⋅ P( a⏊ | x ) 

        [Since P( a⏉ | x ) > P( a⏊ | x )] 

⇔ P( a⏉, b⏊ | x ) > P( a⏊, b⏊ | x ) 

Result: P( a⏉, b⏉ | x ) < P( a⏊, b⏉ | x ) and P( a⏊, b⏊ | x ) < P( a⏉, b⏊ | x )  

MAP Result: 

P( a⏉, b⏉ | x ) > P( a⏊, b⏊ | x )  [Lemma 0] 

P( a⏊, b⏉ | x ) > P( a⏉, b⏊ | x )  [Lemma 0.1] 

P( a⏉, b⏉ | x ) < P( a⏊, b⏉ | x )  [Lemma 0.1.2] 

P( a⏊, b⏊ | x ) < P( a⏉, b⏊ | x )  [Lemma 0.1.2] 

MAP Assignment ⇒ a⏊, b⏉   
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7. 4. 1. Discussion 

In Figure 7.4.1, we use the orange boxes to depict the intermediary steps taken 

according to our heuristic. For each of those intermediary steps we verify the action of 

our heuristic using all the Lemmas presented in the previous sections and is depicted as 

blue boxes in Figure 7.4.1. In this figure we see that for each of the four possible 

combinations, the Lemma agrees with the action of our heuristic. Therefore we 

conclude that this heuristic guarantees a correct MAP assignment for a MAP problem 

involving two binary variables. 

It should be noted that the proof does not take into consideration any equality. It can be 

easily seen that if equality exists at any stage then the MAP will contain both the 

assignments of its subtrees. Furthermore, in the previous section, we do not introduce 

the lemmas 0.2, 0.2.1 and 0.2.2 because the query variables A and B are arbitrary. These 

Lemmas can be easily proven by interchanging A and B and vice-versa (i.e. a⏉ ⟷ b⏉, a⏊ 

⟷ b⏊) in the Lemmas presented in the previous section.  

Based on the formal analysis in the previous section, we also can present the following 

two corollaries.  

Corollary 1: In case of MAP of 2 binary variables, the combination of the most likely 

 values  is always greater than the combination of the least likely values. 

Proof: As proved in lemma 0 in Section 7.4. 

Corollary 2: In case of MAP of 2 binary variables, the combination of the least likely 

 values  can never be the MAP assignment (or in other words the MAP 

 assignment always consists of at least one of the most likely values). 

Proof: Following from Lemma 0, since the probability of the combination of most likely 

values is always greater than the probability of the combination of least likely values, 

the least likely combination can never be the MAP assignment. 
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In the next sections we analyse the behaviour of this heuristic and investigate if these 

two corollaries hold for 3 or more variables. These two corollaries will help us in 

analysing the properties of such networks. Moreover in the next sections we will be able 

to see how these properties change when we increase the number of query variables.  

 

 

Figure 7.4.1: Pictorial representation of the proposition (for two binary variables the algorithm is 

guaranteed to return the correct MAP assignment). The lemmas are in orange, the results in blue and  

the MAP assignment in red. 
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7. 5. Analysis for 3 or more variables 
Instead of a formal proof (as done in Section 7.4) we show a counter example where this 

heuristic fails. This example is the evidence that our heuristic does not always 

guarantee to give the correct MAP assignment for a MAP problem involving 3 or more 

variables. 

Let us consider a Bayesian Network 

with the graph structure as shown in 

Figure 7.5.1 and the conditional 

probability tables as shown in Table 

7.5.1. In this network A, B and C are 

the query variables and X is the 

evidence variable, all of which are 

binary. In this case, a MAP 

assignment problem would seek the 

most likely assignment to the query 

variables given the evidence. This example can be also considered as an MPE problem 

because we do not have any non-query and non-evidence variables. 

 

Figure 7.5.1: An example Bayesian network where the 
heuristic identifies an incorrect MAP assignment. 

P( A ) 

a0 0.6 

a1 0.4 

P( C | A, B ) 

 
a0 a1 

 
b0 b1 b0 b1 

c0 0.5 0.31 0.06 0.92 

c1 0.5 0.69 0.94 0.08 

     
 

P( B | A ) 

 
a0 a1 

b0 0.63 0.24 

b1 0.37 0.76 

 
 
 
 
 
 

 
 

P( X | A, B, C ) 

 
a0 a1 

 
b0 b1 b0 b1 

 
c0 c1 c0 c1 c0 c1 c0 c1 

x0 0.53 0.1 0.88 0.47 0.06 0.13 0.21 0.25 

x1 0.47 0.9 0.12 0.53 0.94 0.87 0.79 0.75 

 

Table 7.5.1: Conditional probability tables for the example Bayesian network from Figure 7.5.1. 
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Given the evidence X = x1, the posterior probabilities of A, B and C is shown in Figure 

7.5.2. In Table 7.5.2 we show the joint probability distribution conditioned on the 

evidence i.e. P(A, B, C | X = x1). From Table 7.5.2, we see the most likely assignment of 

the query variables (i.e. MAP assignment) is (a1, b1, c0) with a probability of 0.329.  

However, our heuristic (as illustrated in Figure 7.5.3) identifies an incorrect MAP 

assignment of (a0, b0, c1), which has a probability of 0.253 only.  

 

 

 

 

 

 

P(A, B, C | X = x1) 

P( a0, b0, c0 | x1 ) 0.132 

P( a0, b0, c1 | x1 ) 0.253 

P( a0, b1, c0 | x1 ) 0.012 

P( a0, b1, c1 | x1 ) 0.121 

P( a1, b0, c0 | x1 ) 0.008 

P( a1, b0, c1 | x1 ) 0.117 

P( a1, b1, c0 | x1 ) 0.329 

P( a1, b1, c1 | x1 ) 0.027 

Table 7.5.2: Joint probability 
distribution of A, B, C given X = x1 

 
Figure 7.5.2: Posterior probabilities of A, B and C given 
evidence X = x1. 
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Step 1: Given the evidence X = x1, we 
see that the P(a0|x1) has the 
maximum posterior probability and 
P(a1|x1) has the minimum posterior 
probability. Therefore according to 
the heuristic, a0 is considered a part 
of the MAP assignment and hence 
additional evidence of a0 is 
introduced. 

  
Step 2: Given the current evidence, 
we see that P(b0|a0,x1) has the 
maximum posterior probability. 
Therefore according to the 
heuristic, b0 is also considered to 
part of the MAP assignment and 
hence additional evidence of b0 is 
introduced.  

  

 

Step 3: Finally given the current 
evidence, we see that P(c1|a0,b0,x1) 
has the maximum posterior 
probability. Therefore we consider 
c1 to be part of the MAP assignment.  
 
As a result the MAP assignment 
according to the heuristic is (a0, b0, 
c1) 

Figure 7.5.3: Step by step working of heuristic for the example Bayesian network discussed in section 7.5.  
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7. 5. 1. Discussion 

For 3 variables we have shown that there is at least one case where our heuristic fails to 

arrive at the correct MAP assignment. Hence the heuristic approximates MAP for more 

than 2 query variables. 

The two corollaries discussed in Section 7.4.1 are no longer valid for 3 or more 

variables. For example, if we consider the example Bayesian network (illustrated in 

Figure 7.5.1), we can see that given the evidence X = x1, the most likely value 

assignments are a0, b0 and c1; therefore the least likely values are a1, b1 and c0. As shown 

in Table 7.3.2.2, P(a1, b1, c0 | x1) = 0.329 > P(a0, b0, c1 | x1) = 0.253. Which shows that the 

combination of the most likely values is not always greater that the combination of the 

least likely values. Therefore Corollary 1 can not be generalised to more than 2 

variables.  Furthermore, in the same example, we also see that the combination of the 

least likely values assignment is the correct MAP assignment. This contradicts Corollary 

2 which states that, in case of MAP of 2 binary variables, the combination of the least 

likely values can never be the MAP assignment. 

Next, we show that our heuristic is never worse than the combination of most likely 

values heuristic (discussed in Section 6.3.2.1). 

Corollary 3: In case of MAP of 3 binary variables, whenever the combination of the most 

 likely values heuristic gives a correct MAP assignment, then our heuristic will 

 also give a correct MAP assignment. 

Proof: Hypothetically, let’s assume that the combination of most likely values heuristic 

will give a correct MAP assignment. Then this heuristic, in the first step chooses a most 

likely value which will be part of the correct MAP assignment. After which we are left 

with 2 query variables, and we have seen in the previous section ‘for two binary 

variables the heuristic is guaranteed to return the correct MAP  assignment’. Hence the 

heuristic will always give a correct MAP assignment, if the combination of most likely 

values heuristic is able to do so. 
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7. 6. Experiments 

In this section, we perform experiments to compare the performance of our heuristic 

and the commonly used combination of most likely values heuristic (discussed in 

Section 6.3.2.1). For this study, we consider two, three and four binary query variables. 

For simplicity we also assume a single binary evidence variable X ∈ {x0, x1}. As we have 

a single binary evidence variable, we perform two MAP queries on each network i.e.  

P(Q | X = x0 ) and P(Q | X = x1 ). We compute accuracy by counting the number of correct 

MAP assignments. Furthermore, we only consider an MPE problem (special case of 

MAP), where we do not have any non-query and non-evidence variables. 
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100% 

7. 6. 1. MAP of 2 variables 

In this section we discuss the two experiments we performed, on networks containing 2 

query variables. In these experiments, we modified the parameters of the network for a 

densely and sparsely connected network. 

Experiment 1: MAP of 2 binary variables in a densely connected network 

In this experiment we use a fully-connected Bayesian 

network structure as illustrated in Figure 7.6.1.1. In 

this network there are two binary query variables: A 

and B and one evidence binary variable X.  

The set of parameter probabilities for this graph are 

P(a0); P(b0 | A) – i.e. P(b0 | a0), P(b0 | a1); P(x0 | A, B) – 

i.e. P(x0 | a0, b0), P(x0 | a0, b1), P(x0 | a1, b0), P(x0 | a1, b1). We iteratively change these 7 

parameters in steps of 0.1 from probability value of zero to probability value of one. We 

avoid any parameter assignments of zero (or one) to the network parameters. Since 

zero (or one) probability is a very special value in probability theory, as it denotes an 

impossible event. For simplicity of our experiments, we avoid such cases by changing 

parameter assignment of 0 to 0.00001 or parameter assignment of 1 to 0.99999. In 

other words, each parameter probability takes a value from the following 11 numbers: 

{0.00001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99999}. 

In this network there are 7 parameters, and each 

parameter can take any of the 11 probability values. 

Therefore in this experiment we generate 117= 

19,487,171 networks with different set of parameter 

probabilities.  As mentioned before, since we have a 

single binary evidence variable X, we can perform 

two MAP queries on each network i.e. MAP( A, B | x0) 

and MAP(A, B | x1).  Therefore with 117 networks, we 

can perform 117 x 2 = 38,974,342 MAP queries. 

 
Figure 7.6.1.1: Bayesian network 
graph for experiment 1 

 
Figure 7.6.1.2: Accuracy 

         Our Heuristic I- 100% 

         Combination of most likely values   
aaaaHeuristic- 91.2% 

91.2% 
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100% 

 

 

93.5% 

To calculate the accuracy we use the number of correct MAP assignments. We have seen 

in Section 7.3.1 that our heuristic always gives a correct assignment for 2 binary 

variables. However the combination of most likely values heuristic gave a correct MAP 

assignment around 91.2% times (35,527,609 out of 38,974,342 queries) as shown in 

Figure 7.6.1.2. 

Experiment 2: MAP of 2 binary variables in a sparsely connected network 

In this experiment we use a sparsely-connected 

Bayesian network structure as illustrated in Figure 

7.6.1.3. In this network there are two binary query 

variables: A and B and one binary evidence variable X. 

The query variables are marginally independent. 

The set of parameter probabilities for this graph are 

P(a0); P(b0); P(x0 | A, B) – i.e. P(x0 | a0, b0), P(x0 | a0, b1), P(x0 | a1, b0), P(x0 | a1, b1). 

Similar to experiment 1, these 6 parameters probabilities can take a value from the 

following 11 numbers: {0.00001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99999}. Similar 

to experiment 1 we also avoid any parameter assignments of zero or one to the network 

parameters.  

In this network there are 6 parameters, and each parameter can take any of the 11 

probability values. Therefore in this experiment we generate 116= 1,771,561 networks 

with different set of parameter probabilities.  As 

mentioned before, since we have a single binary 

evidence variable X, we can perform two MAP 

queries on each network i.e. MAP(A, B | x0) and 

MAP(A, B | x1).  Therefore with 116 networks, we can 

perform 116 x 2 = 3,543,122 MAP queries. 

Similar to experiment 1 we use the number of 

correct MAP assignments to compute the accuracy. 

We have seen in Section 7.3.1 that our heuristic 

 
Figure 7.6.1.3: Bayesian network  
graph for experiment 2 

 
Figure 7.6.1.4: Accuracy 

         Our Heuristic I- 100% 

         Combination of most likely values   
aaaaHeuristic- 93.5% 
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98.8%  

always gives a correct assignment for 2 binary variables. However the combination of 

most likely values heuristic gave a correct MAP assignment around 93.5% times 

(3,310,947 out of 3,543,122 queries) as shown in Figure 7.6.1.4. 

7. 6. 2. MAP of 3 variables 

In this section we discuss the two experiments we performed on networks containing 3 

query variables. In these experiments, we modified the parameters of the network for a 

densely and sparsely connected network. 

Experiment 3: MAP of 3 binary variables in a densely connected network 

In this experiment we use a fully-connected 

Bayesian network structure as illustrated in Figure 

7.6.2.1. In this network there are three binary query 

variables: A, B and C and one evidence variable X.  

The set of parameter probabilities for this graph are 

one parameter for P(a0); two parameters for P(b0 | A); four parameters for P(c0 | A, B) 

and finally eight parameters for P(x0 | A, B, C).  

We generate 1,000,000 networks by assign pseudo-

random9 numbers to these 15 parameters. Similar to 

the previous experiments we avoid any assignments 

of zero or one to the network parameters. As 

mentioned before, since we have a single binary 

evidence variable X, we can perform two MAP 

queries on each network i.e. MAP( A, B, C | x0) and 

MAP(A, B, C | x1).  Therefore with 106 networks, we 

can perform 2 x 106 = 2,000,000 MAP queries. 

                                                 
9 To generate random numbers a pseudorandom number generator (PRNG) of C++ is used. PRNG uses 

an algorithm for generating a sequence of numbers that approximates the properties of random numbers. 

The sequence is not truly random in the sense that it is completely determined by a seed state- which is 

used by the algorithm to generate the random series. The same seed state will always produce the same 

sequence of random numbers. 

 

 
Figure 7.6.2.1: Bayesian network 
graph  for experiment 3 

 
Figure 7.6.2.2: Accuracy 

         Our Heuristic I- 98.8% 

         Combination of most likely values   
aaaaHeuristic- 78.0% 

78.0% 
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99.7%  

We use the number of correct MAP assignments to compute the accuracy. Our heuristic 

gave a correct MAP assignment around 98.8% times (1,976,921 out of 2 x 106) 

compared to the combination of most likely values heuristic which gave a correct MAP 

assignment around 78.0% times (1,560,478 out of 2 x 106 queries) as depicted in Figure 

7.6.2.2. 

Experiment 4: MAP of 3 binary variables in a sparsely connected network 

In this experiment we use a sparsely-connected 

Bayesian network structure as illustrated in Figure 

7.6.2.3. In this network there are three binary query 

variables: A, B and C and one evidence variable X. 

The query variables are marginally independent. 

The set of parameter probabilities for this graph are 

one parameter for P(a0); one parameter for P(b0); one parameter for P(c0) and finally 

eight parameters for P(x0 | A, B, C).  

Similar to experiment 3, we generate 1,000,000 networks by assign pseudo-random 

numbers to these 11 parameters. We also avoid any assignments of zero or one to the 

network parameters. As mentioned before, since we have a single binary evidence 

variable X, we can perform two MAP queries on each network i.e. MAP( A, B, C | x0) and 

MAP(A, B, C | x1).  Therefore with 106 networks, we 

can perform 2 x 106 = 2,000,000 MAP queries. 

We use the number of correct MAP assignments to 

compute the accuracy. Our heuristic gave a correct 

MAP assignment around 99.7% times (1,994,357 our 

of 2 x 106) compared to the combination of most 

likely values heuristic which gave a correct MAP 

assignment around 85.4% times (1,701,090 out of 2 

x 106 queries) as depicted in Figure 7.6.2.4. 

  

 
Figure 7.6.2.3: Bayesian network 
graph  for experiment 4 
 

 
Figure 7.6.2.4: Accuracy 

         Our Heuristic I- 99.7% 

         Combination of most likely values   
aaaaHeuristic- 85.4% 

85.4% 
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96.8%  

7. 6. 3. MAP of 4 variables 

Similar to the previous sections, in this section we discuss the two experiments we 

performed on networks containing 4 query variables. In these experiments, we 

modified the parameters of the network for a densely and sparsely connected network. 

Experiment 5: MAP of 4 binary variables in a densely connected network 

In this experiment we use a fully-connected 

Bayesian network structure as illustrated in 

Figure 7.6.3.1. In this network there are four 

binary query variables: A, B, C and D and one 

evidence variable X.  

The set of parameter probabilities for this graph 

are one parameter for P(a0); two parameters for 

P(b0 | A); four parameters for P(c0 | A, B); eight parameters for P(d0 | A, B, C) and finally 

sixteen parameters for P(x0 | A, B, C, D).  

We generate 1,000,000 networks by assign pseudo-random numbers to these 31 

parameters. Similar to the previous experiments we avoid any assignments of zero or 

one to the network parameters. As mentioned before, since we have a single binary 

evidence variable X, we can perform two MAP queries on each network i.e. MAP( A, B, C, 

D | x0) and MAP(A, B, C, D | x1).  Therefore with 106 

networks, we can perform 2 x 106 = 2,000,000 MAP 

queries. 

We use the number of correct MAP assignments to 

compute the accuracy. Our heuristic gave a correct 

MAP assignment around 96.8% times (1,935,285 out 

of 2 x 106) compared to the combination of most 

likely values heuristic which gave a correct MAP 

assignment around 65.9% times (1,318,570 out of 2 

x 106 queries) as shown in Figure 7.6.3.2.  

 
Figure 6.6.3.1: Bayesian network graph for 
experiment 5 

 
Figure 7.6.3.2: Accuracy 

         Our Heuristic I- 96.8% 

         Combination of most likely values   
aaaaHeuristic- 65.9% 

65.9% 
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98.7%  

Contrary to Corollary 3, in our experiment we found in 0.06% (1207) of the MAP 

queries, that the combination of most likely values heuristic gave correct MAP 

assignments whereas our heuristic failed to do so. Hence for more than 3 binary query 

variables the combination of most likely values heuristic ⊈ our heuristic. 

Experiment 6: MAP of 4 binary variables in a sparsely connected network 

In this experiment we use a sparsely-

connected Bayesian network structure as 

illustrated in Figure 7.6.3.3. In this network 

there are four binary query variables: A, B, C, 

D and one evidence variable X. The query 

variables A and B are marginally 

independent. Whereas A, C and D are 

conditionally independent given evidence of B. 

The set of parameter probabilities for this graph are one parameter for P(a0); two 

parameters for P(b0 | C); one parameter for P(c0); two parameters for P(d0 | B) and 

finally four parameters for P(x0 | A, B).  

Similar to the previous experiments, we generate 1,000,000 networks by assign pseudo-

random numbers to these 10 parameters. We also avoid any assignments of zero or one 

to the network parameters. As mentioned before, 

since we have a single binary evidence variable X, 

therefore with 106 networks, we can perform 2 x 106 

= 2,000,000 MAP queries. 

We use the number of correct MAP assignments to 

compute the accuracy. Our heuristic gave a correct 

MAP assignment around 98.7% times (1,973,935 our 

of 2 x 106) compared to the combination of most 

likely values heuristic which gave a correct MAP 

assignment around 75.4% times (1,507,789 out of 2 x 106 queries) as shown in Figure 

7.6.3.4. 

 
Figure 7.6.3.3: Bayesian network graph for 
experiment 6 

 
Figure 7.6.3.4: Accuracy 

         Our Heuristic I- 98.7% 

         Combination of most likely values   
aaaaHeuristic- 75.4% 

75.4% 
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Similar observations as in experiment 5 were found which proved that for more than 3 

binary query variables the combination of most likely values heuristic ⊈ our heuristic. 

In 0.03% (658) of the MAP queries, the combination of most likely values heuristic gave 

correct MAP assignments whereas our heuristic failed to do so. 

7. 6. 4. Discussion 

From the experimental results in the previous sections, we conclude that our heuristic 

performs better than the combination of most likely values heuristic (discussed in 

6.3.2.1). However the applicability of this claim is constrained by the assumptions of our 

experimental methodology (for example, fixed graph structure, the size of the query set 

is less than 5, MPE assumption, etc). 

Both heuristics (our heuristic and combination of most likely values heuristic) seem to 

perform better on sparse graphs than on dense graphs. However we could not find any 

reason for it. 
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Chapter 8:  

Heuristic II for  

approximating MAP 
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In this chapter we discuss a different variation of the Heuristic I we proposed in the 

previous chapter. Though this heuristic is computationally more complex, it gives 100% 

accurate MAP assignment predictions in our simple experiments. Though we need to 

perform more extensive experiments to say something concrete. 

8. 1. Algorithm  

In Heuristic-I we are using a greedy approach to get the MAP assignment i.e. at each 

stage we are making a guess based on the posterior marginals. However, if we start with 

a wrong guess then we will never get the correct MAP assignment. Our belief is that if 

we start with a correct MAP assignment to one of the query variables, then the greedy 

approach of Heuristic-I may lead to a correct MAP assignment to the complete query 

set. Hence for example, if we choose the query variable Qi having two values (qi0, qi1), 

then  

1. We assume qi0 is part of the correct MAP assignment. Therefore we add qi0 to MAP 

assignment denoted by m_qi0, remove Qi from query set Q and add qi0 to the 

evidence x. Subsequently we call Heuristic-I on the current query set (Q - Qi) and 

evidence (x ∧ qij) to get the most likely assignments for these query variables.  

2. We then assume that the other value of Qi - qi1 is part of the correct MAP assignment 

and proceed in a similar way to get the MAP assignment m_qi1 . 

Moreover instead of just performing this for one query variable, we do this for all the 

query variables so that our chance for finding a MAP increases. In the heuristic 

described in Figure 8.1.1, m_qij denotes the MAP assignment, where we assume the 

value qij of variable Qi is part of the MAP assignment, and the rest of the most likely 

assignments (i.e. for Q - Qi)  are found by applying Heuristic-I. We store the probability 

of m_qij in the variable prob_ m_qij. 

With n binary query variables, we get 2 * n MAP assignments to choose from. Since we 

have stored the probability of the 2 * n possible MAP assignments, we assume that the 

correct MAP assignment would be the one which has the maximum probability.  
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Heuristic_Algorithm Greedy_MAP_II ( Bayesian Net B, Query Set Q, Evidence x ):  

MAP m, prob_m 

 

For all Qi in query set Q                   //  i ∈ {1, … , n} 

 For all qij := { qi0, qi1 } do     //  j ∈ {0, 1} 

  x’ := x ; Q’ := Q        // Make a copy of the query set and evidence 

m_qij := true               

//  m_qij contains the MAP assignment when we assume that value qij of  

// variable Qi is part of the MAP assignment 

 

  m_qij := m_qij ∧ qij 

  prob_ m_qij := P(qij | x) 

x := x ∧ qij 

  Q := Q \ Qi 

 

  (m_qij, prob_ m_qij)  ∧  := Heuristic_Algorithm Greedy_MAP_I (B, Q, x ) 

                           //  m_qij contains the approximate MAP assignment, where we guess that 

                           //  value qij of Qi is part of it.  

                           //  prob_ m_qij is the probability of the MAP assignment m_qij 

 

  x := x’; Q := Q’  // Restore the query and evidence set to original set of 

                                                        //  observations 

 End 

End 

 

m := arg maxi,j P( m_qij | x ) // We don’t need to perform inference again for this since  

                                                   //   we have calculated it before- P( m_qij | x ) = prob_ m_qij 

prob_m := maxi,j  prob_ m_qij 

Figure 8.1.1: Pseudo code for Heuristic II 
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8. 1. 1. Complexity 

When we are inside the two for-loops, we initially perform probability query inference 

to obtain P(qij | x). And we remove the variable Qi from the query set. Hence we are left 

with n-1 query variables. We call Heuristic-I on these n-1 query variables. Recall that 

P_Query is the cost of inference i.e. computing the posterior marginals for all the query 

variables. Therefore complexity of these statements is: 

O( P_Query + Complexity_of_Heuristic_I_for_n-1_queryvariables ) 

⇒ O( P_Query + {[n-1] * P_Query} ) 

⇒ O( {1 + [n-1]} * P_Query ) 

⇒ O( n * P_Query ) 

Since we have n query variables, each having only two values, we perform this 2 * n 

times. Therefore the complexity of Heuristic-II is:  

⇒ O( 2 * n * {n * P_Query} ) 

⇒ O( 2 * n2 * P_Query ) 

This means that our Heuristic-II is polynomial in the complexity of probabilistic query 

inference. And still remains tractable if probabilistic query inference is tractable. 
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8. 1. 2.  Theoretical analysis of Heuristic II 

In this section we theoretically analyse the heuristic for two and three binary MAP 

variables. We have seen in the previous chapter that the Heuristic-I is guaranteed to 

give a correct MAP assignment for 2 query variables. Therefore it is trivial to see that 

this heuristic will also give a correct MAP assignment for 2 query variables. 

For 3 query variables, this heuristic will always give a correct MAP assignment. Initially 

this heuristic iteratively considers both the possible values for a query variable to be 

part of the MAP assignment- therefore we are bound to start with a correct MAP 

assignment to that query variable. After which we call Heuristic-I to find the most likely 

assignments to the other two query variables. We know from the previous chapter that 

for two query variables, Heuristic-I is guaranteed to return a correct MAP assignment. 

Therefore this heuristic will always find a correct MAP assignment for three query 

variables.  
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96.8%  

100%  

96.8%  

8. 2.  Experiments 

In the previous section we saw that the Heuristic II is guaranteed to give a correct MAP 

assignment for 2 and 3 query variables. Therefore we only repeat experiment 5 and 6 

(in chapter 7) with the new heuristic. 

8. 2. 1. MAP of 4 variables 

Experiment 7: MAP of 4 binary variables in a densely connected network 

Similar to experiment 5, in this experiment we 

use a fully-connected Bayesian network 

structure as illustrated in Figure 8.2.1.1. In this 

network there are four binary query variables: 

A, B, C and D and one evidence variable X.  

The set of parameter probabilities for this graph 

are one parameter for P(a0); two parameters for 

P(b0 | A); four parameters for P(c0 | A, B); eight parameters for P(d0 | A, B, C) and finally 

sixteen parameters for P(x0 | A, B, C, D).  

We can generate the same series of pseudo random 

numbers by using the same seed value. Hence we 

generate 1,000,000 networks by assigning the same 

pseudo-random numbers (as in experiment 5) by 

setting the same seed value. Similar to the previous 

experiments we avoid any assignments of zero or 

one to the network parameters. As mentioned 

before, since we have a single binary evidence 

variable X, we can perform two MAP queries on each 

network i.e. MAP( A, B, C, D | x0) and MAP(A, B, C, D | 

x1).  Therefore with 106 networks, we can perform 2 x 106 = 2,000,000 MAP queries. 

 
Figure 8.2.1.1: Bayesian network graph for 
experiment 7 

 
Figure 8.2.1.2: Accuracy 

         Our Heuristic II– 100% 

         Our Heuristic I- 96.8% 

         Combination of most likely values   
aaaaHeuristic- 65.9% 

65.9% 
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98.7%  

100%  

98.7%  

We use the number of correct MAP assignments to compute the accuracy. In this 

experiment our new heuristic always gave a correct MAP assignment compared to the 

combination of most likely values heuristic which gave a correct MAP assignment 

around 65.9% times (1,318,570 out of 2,000,000 inferences) as shown in figure 8.2.1.2.  

 

Experiment 8: MAP of 4 binary variables in a sparsely connected network 

Similar to experiment 6, in this experiment 

we use a sparsely-connected Bayesian 

network structure as illustrated in Figure 

8.2.1.3. In this network there are four binary 

query variables: A, B, C and D and one 

evidence variable X. The query variables A 

and B are marginally independent. Whereas 

A, C and D are conditionally independent given evidence of B. 

The set of parameter probabilities for this graph are 

one parameter for P(a0); two parameters for P(b0 | 

C); one parameter for P(c0); two parameters for P(d0 

| B) and finally four parameters for P(x0 | A, B).  

Similarly we generate the same pseudo random 

numbers as in experiment 6 using a common seed 

value. These pseudo random numbers are used to 

generate 1,000,000 networks. We also avoid any 

assignments of zero or one to the network 

parameters. As mentioned before, since we have a 

single binary evidence variable X, therefore with 106 

networks, we can perform 2 x 106 = 2,000,000 MAP queries. 

We use the number of correct MAP assignments to compute the accuracy. In this 

experiment our new heuristic always gave a correct MAP assignment compared to the 

combination of most likely values heuristic which gave a correct MAP assignment 

around 75.4% times (1,507,789 out of 2,000,000 inferences) as shown in figure 8.2.1.4.  

 
Figure 8.2.1.3: Bayesian network graph for 
experiment 8 

 
Figure 8.2.1.4: Accuracy 

         Our Heuristic II– 100% 

         Our Heuristic I– 98.7% 

         Combination of most likely values   
aaaaHeuristic- 75.4% 

 

75.4% 
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8. 2. 2. Discussion 

In our experiments we saw that for four query variables our Heuristic-II always gave a 

correct assignment. Though theoretically we are not able to find any reasons for this 

behaviour. We need to also see if the heuristic continues to always give an accurate 

prediction if we increase the number of query variables. 
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Chapter 9: 

Concluding remarks 
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9. 1. Conclusion 

In our experiments we tried to understand the difference between our heuristics and 

the combination of most likely values heuristic. A MAP query finds the most likely joint 

assignment to Q, whereas a probability query finds the posterior marginals for a single 

query variable Qi i.e. computes P( Qi | X = x ). And we saw that the assignment where 

each variable picks its most likely value (combination of most likely values heuristic) 

can be quite difference from the most likely joint assignment to all variables 

simultaneously. 

In the Figure 9.1.1 we have depicted 

the complexity of the heuristics. 

Though Heuristic I and II are 

computationally more complex, our 

simple experiments gave an indication 

that both our heuristics perform better 

than the combination of the most 

likely values heuristic. However to be 

able to say something stronger, a more 

detailed study needs to be done. We need to analyse the performance by generating 

random network structures and also compare its performance with other approximate 

MAP (abductive) inference algorithms. Also since this problem of abductive inference is 

similar to multi dimensional classification, we need to evaluate the performance of the 

heuristic using performance metrics proposed by [Bielza et al., 2011].  

In our experiments we have considered MPE problem, which is a special case of MAP. 

We need to also evaluate how our heuristic performs when the non-evidence, non-

query variables are non-empty.  

In our heuristics, we have assumed only binary query variables. Future work will 

include generalising the heuristic to non binary query variables. Also for Heuristic II, we 

need to theoretically analyse why the heuristic always gives a correct MAP assignment 

for 4 query variables.  

 

Figure 9.1.1: Complexity comparison for the heuristics 
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Appendix A: Data selection and refinement of Police 

fingerprint dataset 

Few years ago, the dataset at police consisted of around 1,100,000 ten-print cards of 

criminals. The data from 772,577 individuals having a Dutch nationality were handed 

over to the NFI for research purposes. For security reasons the data of international 

criminals were not handed over. This data had been encoded in an internal security 

based format. 

For a previous project, the data of 312,484 individuals from the dataset were manually 

checked by fingerprint examiners at the police [Doekhie, 2012].  

 1,477 entries were duplicates [Ids: 10736929-10738473]  

 For 3,621 individuals all the fingerprint information was missing. Whereas for an 

additional 1,281 individuals part of the fingerprint information was missing. (By 

missing information we mean that there was no corresponding fingerprint image 

present in the dataset or the image was without a fingerprint).  

For the current version of the dataset we remover all duplicate entries and all 

individuals with incomplete information. And hence finally the refined dataset 

contained information from 306,105 individuals.    
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Appendix B: Contingency tables showing the distribution 

of general pattern on males and females per finger 

  General Pattern on Finger 1  

 

 Arch Left_Loop Right_Loop Whorl 

Tented

_Arch 

Un 

classifiable 

Total per 

gender 

G
e

n
d

e
r 

Male 4803 856 104718 107852 2521 432 221182 

Female 3421 326 45475 32301 1238 104 82865 

 
Total 

per GP 8224 1182 150193 140153 3759 536 304047 

 

  General Pattern on Finger 2  

 

 Arch Left_Loop Right_Loop Whorl 

Tented

_Arch 

Un 

classifiable 

Total per 

gender 

G
e

n
d

e
r 

Male 11751 36297 65472 80401 26102 1159 221182 

Female 6464 9978 30301 27336 8537 249 82865 

 
Total 

per GP 18215 46275 95773 107737 34639 1408 304047 

 

  General Pattern on Finger 3  

 

 Arch Left_Loop Right_Loop Whorl 

Tented

_Arch 

Un 

classifiable 

Total per 

gender 

G
e

n
d

e
r 

Male 8172 3072 145214 47701 16166 857 221182 

Female 4170 627 60103 12381 5410 174 82865 

 
Total 

per GP 12342 3699 205317 60082 21576 1031 304047 
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  General Pattern on Finger 4  

 

 Arch Left_Loop Right_Loop Whorl 

Tented

_Arch 

Un 

classifiable 

Total per 

gender 

G
e

n
d

e
r 

Male 2155 2106 97156 112564 6547 654 221182 

Female 1383 712 44013 34059 2529 169 82865 

 
Total 

per GP 3538 2818 141169 146623 9076 823 304047 

 

  General Pattern on Finger 5  

 

 Arch Left_Loop Right_Loop Whorl 

Tented

_Arch 

Un 

classifiable 

Total per 

gender 

G
e

n
d

e
r 

Male 1319 543 171899 39860 6713 848 221182 

Female 1100 169 68902 9485 2935 274 82865 

 
Total 

per GP 2419 712 240801 49345 9648 1122 304047 

 

  General Pattern on Finger 6  

 

 Arch Left_Loop Right_Loop Whorl 

Tented

_Arch 

Un 

classifiable 

Total per 

gender 

G
e

n
d

e
r 

Male 8581 122449 1097 84931 3626 498 221182 

Female 5388 45614 710 29373 1635 145 82865 

 
Total 

per GP 13969 168063 1807 114304 5261 643 304047 

 

  General Pattern on Finger 7  

 

 Arch Left_Loop Right_Loop Whorl 

Tented

_Arch 

Un 

classifiable 

Total per 

gender 

G
e

n
d

e
r 

Male 11609 75522 31667 74811 26500 1073 221182 

Female 6715 27307 13131 25983 9484 245 82865 

 
Total 

per GP 18324 102829 44798 100794 35984 1318 304047 
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  General Pattern on Finger 8  

 

 Arch Left_Loop Right_Loop Whorl 

Tented

_Arch 

Un 

classifiable 

Total per 

gender 

G
e

n
d

e
r 

Male 10151 143399 2386 47455 16970 821 221182 

Female 6131 53260 1232 15196 6859 187 82865 

 
Total 

per GP 16282 196659 3618 62651 23829 1008 304047 

 

  General Pattern on Finger 9  

 

 Arch Left_Loop Right_Loop Whorl 

Tented

_Arch 

Un 

classifiable 

Total per 

gender 

G
e

n
d

e
r 

Male 2955 122223 847 87686 6793 678 221182 

Female 1909 47673 641 29412 3031 199 82865 

 
Total 

per GP 4864 169896 1488 117098 9824 877 304047 

 

  General Pattern on Finger 10  

 

 Arch Left_Loop Right_Loop Whorl 

Tented

_Arch 

Un 

classifiable 

Total per 

gender 

G
e

n
d

e
r 

Male 1727 181461 304 29826 6943 921 221182 

Female 1538 68144 145 9318 3352 368 82865 

 
Total 

per GP 3265 249605 449 39144 10295 1289 304047 
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Appendix C: 10 best equivalent networks 

These following 10 best networks were learnt from the fingerprint dataset using the 

algorithm by [Silander & Myllymaki, 2012] as discussed in Section 5.1. These networks 

are coincidently in the same equivalent class. The variables general pattern on fingerX 

has been denoted by only X in the following graphical structures (for examples general 

pattern on finger1 is denoted by only 1). 
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Structural Learning results: 10 best networks 
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