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Chapter 1

Introduction

The probabilistic network framework is an approach to apply probability theory
to reasoning with uncertainty in knowledge-based systems. It is characterized
by a powerful formalism for representing a joint probability distribution on a set
of statistical variables. Such a network consists of a qualitative part, a directed
acyclic graph, and a quantitative part, conditional probability distributions for
every node given its parents’. The conditional probabilities are also called pa-
rameters.

After the construction of a Bayesian network, several analysis techniques can be
used to measure the robustness and the reliability of the network. A probabilistic
network is constructed to solve problems of reasoning under uncertainty, and we
would like the network to represent the domain as precise as possible, and that
it behaves the way we think it should. It is therefore important to gain insight
in how a certain probability of interest is affected by changes in, for example,
certain parameter values or in the observations. The analysis that can be done
to this end, is called sensitivity analysis. In a mathematical model, this basically
means that one or more parameters are being varied stepwise in order to study
the influence on the output of the model in each step. In probabilistic networks,
we can distinguish between different types of sensitivity analysis.

The parameters associated with the nodes in the probabilistic network can be
inaccurate, which may influence the reliability of the probability of interest.
By applying parameter sensitivity analysis to the network, this reliability can
be investigated. As mentioned in [4], the straightforward way of parameter
sensitivity analysis, where every parameter is varied to study its influence on
the output, is highly time-consuming. Namely, the number of different param-
eters is exponential in the number of variables in the network. Luckily, not
every parameter has to be varied. By only taking graphical properties of the
probabilistic network into account, the qualitative part, enough information is
available to determine the (parameter) sensitivity set. This set of nodes consists
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CHAPTER 1. INTRODUCTION 3

of all nodes whose parameters upon variation may influence the probability of
interest. For a certain probability of interest, the (parameter) sensitivity func-
tion can be studied, for example in a one-way (see for example [4]) or two-way
(see [2]) analysis. One way to compute the parameter sensitivity function can
be found in [4].

Besides performing parameter sensitivity analysis, it can also be useful to per-
form evidence sensitivity analysis. Evidence sensitivity analysis (or SE Analy-
sis) is the analysis of how sensitive the probability of interest is to variations
in the set of evidence [6]. There exist some measures and ways to describe
the sensitivity to evidence in a probabilistic network. An introduction in this
field is given in [5] and [6]. Applications of evidence sensitivity analysis can
be found in, for example, [14], where the sensitivity of human fatigue in the
marine industry to observations, such as the weather conditions, hours awake
and alcohol consumption, is analyzed, and in [3], where the sensitivity of a fruit
fly outbreak to different observations, such as amount of trapped fruit flies and
location properties, is analyzed.

Whereas researchers have studied the properties of parameter sensitivity analy-
sis for probabilistic networks to quite some extent 1, evidence sensitivity analysis
has received far less attention. The aim of this thesis is to present new, fun-
damental insights on sensitivity to evidence in probabilistic networks. We will
not only identify which nodes may influence the probability of interest upon a
change in the observation, by defining the evidence sensitivity set, but also how,
by defining the evidence sensitivity function.

The thesis is organized as follows. In Chapter 2, we will formally define a prob-
abilistic network, and introduce the notations and terminology needed in the
remainder of this thesis. In Chapter 3, we will discuss the parameter sensitiv-
ity set, and we will introduce the evidence sensitivity set, which consists of all
nodes for which a change in observed value, or a change in status of being ob-
served or not, may influence the probability of interest. We will also propose
an algorithm to identify the sensitivity sets. In Chapter 4, we use results from
previous studies of probabilistic network pruning to look for simplifications in
the probability calculation. In Chapter 5, we combine the results of Chapter 4
in order to extend our results of Chapter 3 by the definition and computation of
the evidence sensitivity function, which describes how a single observation upon
variation influences the probability of interest. Finally, in Chapter 6, we outline
our results and conclusions as well as options for further research.

1An overview of research results of parameter sensitivity analysis can be found in [10].



Chapter 2

Preliminaries

We will present in this chapter the notations and terminology which we will use
in the remainder of this thesis.

2.1 Probabilistic network definition

A probabilistic network consists of a qualitative part, which is a directed acyclic
graph G, and a quantitative part, which is a set of conditional probability
distributions Γ associated with G.

The set of nodes in the graph G is denoted V (G), and its set of arcs A(G). In
view of probabilistic networks, we use the terms “variable” and “node” inter-
changeably. Every node X ∈ V (G) stands for a discrete random variable. The
set of possible values for X, its domain, will also be denoted X. An instantiation
of X will be denoted by a small letter, x. A set of nodes will be denoted by a
bold capital, for example X ⊆ V (G). X and x are the domain and a joint value
assignment, or instantiation, to all variables in X, respectively.

By ρ(X) we will mean the set of direct ancestors (or parents) of the set of nodes
X ⊆ V (G), i.e.

ρ(X) = {Y | ∃X ∈ X : (Y → X) ∈ A(G)}.

The set of direct ancestors of a single node X, ρ({X}), will be denoted ρ(X) for
short. Furthermore, the set of all ancestors of X will be denoted ρ∗(X).

By δ(X) we will mean the set of direct descendants (or children) of the set of
nodes X ⊆ V (G), i.e.

δ(X) = {Y | ∃X ∈ X : (X → Y ) ∈ A(G)}.
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2.1. PROBABILISTIC NETWORK DEFINITION 5

The set of direct descendants of a single node X, δ({X}), will be denoted
δ(X) for short. Furthermore, the set of all descendants of X will be denoted
δ∗(X).

We define a set of nodes X ⊆ V (G) together with their children δ(X), as

D(X) = X ∪ δ(X),

the ‘donna con bambini’ of X. The donna con bambini of a single node X,
D({X}), will be denoted D(X) for short. We define a set of nodes X ⊆ V (G)
together with their children δ(X) and all their parents ρ(X ∪ δ(X)) as

MB(X) = D(X) ∪ ρ(D(X)),

the well-known Markov blanket of X. The Markov blanket of a single node X,
MB({X}), will be denoted MB(X) for short.

We now define a probabilistic (or Bayesian) network as follows.

Definition 2.1.1 (Probabilistic network). A probabilistic (or Bayesian) net-
work consists of a tuple B = (G,Γ), where

• G = (V (G), A(G)) is a directed acyclic graph which consists of nodes V (G)
and arcs A(G), and

• Γ = {Pr(X | ρ(X)) | X ∈ V (G)} is a set of conditional probability distri-
butions associated with each node X ∈ V (G).

The graph G of a probabilistic network represents the independences in the
joint probability distribution on a set of random variables. The conditional
probabilities associated with each node are also called its parameters. These
parameters describe the strength of the probabilistic relationship of X with all
its parents in the directed acyclic graph.

The probabilistic network framework was first introduced in 1988 by Pearl [11],
as an approach to apply probability theory for reasoning with uncertainty in
knowledge-based systems. Different inference algorithms can be used to make
probabilistic statements concerning the variables that are represented in the
network: any prior or posterior probability of interest over these variables can
essentially be computed. In its most general form, with no further restrictions
on the probabilistic network, probabilistic inference costs exponential time. This
thesis will not go into the details of available inference algorithms, such as Pearl’s
algorithm [11] and the algorithm by Lauritzen and Spiegelhalter [8].

The prior joint probability of a probabilistic network B = (G,Γ) is defined
by

Pr(V (G)) =
∏

X∈V (G)

Pr(X | ρ(X)). (2.1)

For any subset Y ⊆ V (G), the marginal probability Pr(Y) is defined by

Pr(Y) =
∑

V (G)\Y

Pr(V (G)). (2.2)
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In this thesis, we will be interested in computing from a probabilistic network
a probability distribution Pr(T | E) of interest, for the target node set T and
the evidence node set E. We will assume no overlap between the node sets,
i.e. T ∩ E = ∅. For calculating a probability of interest of the form Pr(t | e),
the values t of the target node set T and, in case of a posterior probability of
interest, the values e of nodes in the evidence node set E are given. The values e
of the evidence nodes are also called “observations”. In this thesis T stands for
the most general case, where it is a set of nodes instead of a single node.

Probabilistic independence can be read from the probabilistic network’s digraph,
by means of the d-separation criterion. This criterion distinguishes two special
node sequences; the following definitions are taken from [15].

Definition 2.1.2 (chain). Let G = (V (G), A(G)) be a directed acyclic di-
graph. A chain from node X0 ∈ V (G) to Xk ∈ V (G) is a sequence of nodes
X0, ..., Xk, k ≥ 0, with distinct arcs (Xi−1 → Xi) or (Xi−1 ← Xi) ∈ A(G),
i = 1, ..., k, between them.

Definition 2.1.3 (active chain). Let G = (V (G), A(G)) be an acyclic digraph.
Let s be a chain between X ∈ V (G) and Y ∈ V (G). The chain s is active given
Z ⊆ V (G), if

• every node with two incoming arcs on s is or has a descendant in Z, and

• all other nodes on the chain are not in Z.

If a chain is not active, it is said to be blocked. In a probabilistic network,
we have that if there exists an active chain given Z ⊆ V (G) between nodes
X ∈ V (G) and Y ∈ V (G), they may be dependent given Z. On the other hand,
if there does not exist such a chain, X and Y are conditionally independent
given Z. In this case, the two nodes are said to be d-separated. The following
definition formalizes this notion in general, for sets of nodes, using the notation
introduced by Pearl [11].

Definition 2.1.4 (d-separation). Let G = (V (G), A(G)) be a directed acyclic
graph. Let X,Y,Z ⊆ V (G) be mutually disjoint sets of nodes in G. The set
of nodes Z is said to d-separate the sets of nodes X and Y in G, denoted as
〈X |Z |Y〉dG, if for each node X ∈ X and each node Y ∈ Y there exists no active
chain from X to Y in G given Z.

If the set of nodes Z d-separates the sets of nodes X and Y, then X and Y are
conditionally independent given Z, i.e.

Pr(X ∧Y | Z) = Pr(X | Z) · Pr(Y | Z).

Or, equivalently,
Pr(X | Y ∧ Z) = Pr(X | Z).

If two sets of nodes are not d-separated, they are said to be d-connected. We
want to emphasize that Pearl only defined d-separation for mutually disjoint
sets of nodes. Therefore, we will use the definition only in mutually disjoint
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cases. Figure 2.1 illustrates our visual representation of a graph, observations
and d-separation.

X X

An unobserved node
X ∈ V (G)\E

An observed node
X ∈ V (G) ∩E

X X Y

A non-original node X /∈ V (G),
X ∈ V (G∗)

Node X as parent of node Y

X Y X Y

There exists an active chain
between X ∈ V (G)\E and
Y ∈ V (G)\E, that is,

¬ 〈{X} |E | {Y }〉dG

All chains between X ∈ V (G)\E
and Y ∈ V (G)\E are blocked,

that is, 〈{X} |E | {Y }〉dG

X Y X Y

There exists an active chain
between X ∈ E and

Y ∈ V (G)\E when excluding X
from E, that is,

¬ 〈{X} |E\{X} | {Y }〉dG

All chains between X ∈ E and
Y ∈ V (G)\E are blocked when
excluding X from E, that is,
〈{X} |E\{X} | {Y }〉dG

Figure 2.1: Explanation of the depiction of nodes and arcs of G = (V (G), A(G)).



Chapter 3

Sensitivity Sets

As mentioned in Chapter 1, upon performing a parameter sensitivity analysis,
it is not necessary to subject the whole probabilistic network to a numerical
analysis. By investigating just the qualitative part of the network, it is possible
to determine the sets of nodes to which the probability of interest may be
sensitive and to which it is not.

In the first section a recap of the parameter sensitivity set will be given. The
parameter sensitivity set contains all variables whose parameters may, upon vari-
ation, affect the posterior probability distribution of interest for target variable
set T given evidence for the nodes E.

The second section will introduce the evidence sensitivity set. This set contains
all nodes for which a change in observed value, or a change in status of being
observed or not, may influence the probability of interest. These two sets are
closely related, as will become clear at the end of the second section.

The third section presents an algorithm to identify efficiently the two types of
sensitivity set in the network.

3.1 The parameter sensitivity set

The parameter sensitivity set contains all variables whose parameters may upon
variation affect the posterior probability distribution of interest for target vari-
able set T given evidence node set E. To formalize this concept, we will use
an extended version of the original graph G, namely the graph with an extra
parent node added to every node in G, as in [4].

Definition 3.1.1 (Parented graph). Let G = (V (G), A(G)), T and E be as
defined before. Let G∗ = (V (G∗), A(G∗)) be the digraph that is constructed by
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adding a parent node PX to every node X ∈ V (G), such that

V (G∗) = V (G) ∪ {PX | X ∈ V (G)},
A(G∗) = A(G) ∪ {(PX → X) | X ∈ V (G)}.

G∗ is called the parented graph of G.

Here follows the definition of the parameter sensitivity set.

Definition 3.1.2 (Parameter sensitivity set). Let G = (V (G), A(G)), T and E
be as defined before. Let G∗ be the parented graph of G. The parameter sensitivity
set ParSensE(T) for T given E contains all variables X ∈ V (G) for which we
have that

¬ 〈{PX} |E |T〉dG∗

To show that the parameters of the nodes contained in the parameter sensitivity
set may indeed influence the probability of interest upon variation, we state the
following proposition, from [4].

Proposition 3.1.1. Let G = (V (G), A(G)), T and E be as defined before.
Let ParSensE(T) be the parameter sensitivity set for T given E as defined in
Definition 3.1.2. Then, for every node X /∈ ParSensE(T), we have that Pr(T |
E) is insensitive to changes in the parameter values Pr(X | ρ(X)).

A proof of Proposition 3.1.1 can be found in [4]. Intuitively, the stated property
can be understood as follows. An added parent node PX can be seen as a repre-
sentation of the possible inaccuracy in the conditional probability distributions
associated with node X. If this inaccuracy is not d-separated from the target
variable set, then varying the parameter values of these node may influence the
probabilities of interest Pr(T | E).

The following lemma now states that the property ¬ 〈{PT } |E |T〉dG∗ always
holds for all T ∈ T. In other words, variations in the parameter values of nodes
in T may influence the probabilities of interest Pr(T | E).

Lemma 3.1.1. Let G = (V (G), A(G)), T and E be as defined before. Let
ParSensE(T) be the parameter sensitivity set for T given E. Then, we have
that

T ⊆ ParSensE(T).

Proof. Adding a parent to a target node implies directly a d-connection, there-
fore it holds that T ⊆ ParSensE(T).

3.2 The evidence sensitivity set

We will now define the evidence sensitivity set, the set that contains all variables
for which a change in observed value, or a change in status of being observed



3.2. THE EVIDENCE SENSITIVITY SET 10

or not, may affect the probability of interest. Our concept is inspired by the
parameter sensitivity set and its role in parameter sensitivity analysis. Identifying
all evidence nodes that upon change in observation may influence the posterior
probability of interest is a fist step towards studying how certain observations
influence the posterior probability of interest.

We begin by distinguishing between two types of evidence sensitivity set. The
given evidence sensitivity set consists of all nodes X ∈ E for which a change
in the observed value, or removal of this value, may influence the probability
distribution of interest.

Definition 3.2.1 (Given evidence sensitivity set). Let G = (V (G), A(G)), T and
E be as defined before. The given evidence sensitivity set GivEvSensE(T) for T
given E contains all variables X ∈ E for which we have that

¬ 〈{X} |E\{X} |T〉dG

To show that changing the observed value or removing this value for a variable
from the set GivEvSensE(T) may indeed influence the probability of interest,
we state the following proposition.

Proposition 3.2.1. Let G = (V (G), A(G)), T and E be as defined before. Let
GivEvSensE(T) be the given evidence sensitivity set for T given E as defined in
Definition 3.2.1. Then,

1. for every node X /∈ GivEvSensE(T), we have that Pr(T | E) is insensitive
to changes in or removal of the observation of node X.

2. for every node X ∈ GivEvSensE(T), we have that Pr(T | E) may be
sensitive to changes in or removal of the observation of node X.

Proof. Given is X ∈ E.

(1) Suppose that X /∈ GivEvSensE(T). Then, by definition we have that

〈{X} |E\{X} |T〉dG

i.e. X and T are d-separated given E\{X}. This means that there does not exist
an active chain between X and any node in T given E\{X}, or equivalently, X
and T are independent given E\{X}. Then,

Pr(T | E\{X}) = Pr(T | E).

Because of this equality, for every x1, x2 ∈ X it holds that Pr(T | E\{X}, x1) =
Pr(T | E\{X}, x2), which proves the insensitivity of Pr(T | E) to changes in
the observed value of a node X /∈ GivEvSensE(T).

(2) Now, suppose that X ∈ GivEvSensE(T), that is, by definition we have that

¬ 〈{X} |E\{X} |T〉dG
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i.e. X and T are d-connected given E\{X}. This means that there exists an
active chain between X and a node in T given E\{X}, or equivalently, X and
T may be dependent given E\{X}. It may then hold that

Pr(T | E\{X}) 6= Pr(T | E)

from which we have that x1, x2 ∈ X could exist, such that Pr(T | E\{X}) 6=
Pr(T | E\{X}, x1) 6= Pr(T | E\{X}, x2), which proves the possible sensitivity
of Pr(T | E) to changes in, or removal of the observed value of a node X ∈
GivEvSensE(T).

Note that the given evidence sensitivity set contains only nodes from E. Now, we
will introduce the potential evidence sensitivity set. This set consists of all nodes
X ∈ V (G), X /∈ E, for which adding an observation may influence the posterior
probability of interest.

Definition 3.2.2 (Potential evidence sensitivity set). Let G = (V (G), A(G)), T
and E be as defined before. The potential evidence sensitivity set PotEvSensE(T)
for T given E contains T and all variables X /∈ E for which we have that

¬ 〈{X} |E |T〉dG .

To show that observing the value of a specific variable X from the potential
evidence sensitivity set may indeed influence the probability of interest, we state
the following proposition.

Proposition 3.2.2. Let G = (V (G), A(G)), T and E be as defined before. Let
PotEvSensE(T) be the potential evidence sensitivity set for T given E as defined
in Definition 3.2.2. Then,

1. for every node X /∈ PotEvSensE(T), we have that Pr(T | E) is insensitive
to observing the value of node X.

2. for every node X ∈ PotEvSensE(T), we have that Pr(T | E) may be
sensitive to observing the value of node X.

Proof. Given is X /∈ E.

(1) Suppose that X /∈ PotEvSensE(T). Then, by definition we have that

〈{X} |E |T〉dG
i.e. X and T are d-separated given E. This means that there does not exist an
active chain between X and any node in T given E, or equivalently, X and T
are independent given E. Then,

Pr(T | E) = Pr(T | E ∪ {X}).

Because of this equality, for every x ∈ X it holds that Pr(T | E) = Pr(T | E, x),
which proves the insensitivity of Pr(T | E) to observing the value of a node
X /∈ PotEvSensE(T).
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(2) First, suppose that X ∈ PotEvSensE(T) and X /∈ T, that is, by definition
we have that

¬ 〈{X} |E |T〉dG
i.e. X and T are d-connected given E. This means that there exists an active
chain between X and a node in T given E, or equivalently, X and T may be
dependent given E. It may then hold that

Pr(T | E) 6= Pr(T | E ∪ {X})

from which we have that a value x ∈ X could exist, such that Pr(T | E) 6=
Pr(T | E, x).

Second, suppose that X ∈ T. Then, since it always holds that T ∩ E = ∅, X
has to be removed from T after observing. It may then hold that

Pr(T | E) 6= Pr(T\{X} | E ∪ {X})

from which we have that a value x ∈ X could exist, such that Pr(T | E) 6=
Pr(T\{X} | E, x). Both cases together prove the possible sensitivity of Pr(T |
E) to observing the value of a node X ∈ PotEvSensE(T).

The two previously defined sets together can be seen as containing all variables
for which any kind of change in the observation could influence the posterior
probability distribution Pr(T | E) of interest. The network may thus be sensitive
to changes in the observations of these nodes. We will define the union of the
two previously defined sets as follows.

Definition 3.2.3 (Evidence sensitivity set). Let G = (V (G), A(G)), T and E be
as defined before. The set

EvSensE(T) = GivEvSensE(T) ∪ PotEvSensE(T)

is called the evidence sensitivity set for T given E.

Note that the given evidence sensitivity set and the potential evidence sensitivity
set are disjoint, and that the evidence sensitivity set is just the union of those
two sets. This way of defining the sensitivity sets relates them to each other,
as demonstrated in the following proposition. For a schematic summary of all
statements of the proposition by means of an Euler diagram, see Figure 3.1.
The evidence sensitivity set consists of a given (dark grey) and a potential (light
grey) part, as defined before.

Proposition 3.2.3. Let G = (V (G), A(G)), T and E be as defined before.
Then,

1. ParSensE(T)\E ⊆ PotEvSensE(T)

2. ParSensE(T) ∩E ⊆ GivEvSensE(T)
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E T

EvSensE(T)

ParSensE(T)

V (G)

Figure 3.1: All statements of Proposition 3.2.3 summarized in an Euler diagram.

Proof. We recall that T∩E = ∅ and that we always have that T ⊆ ParSensE(T)
and, by definition, T ⊆ PotEvSensE(T).

Suppose that X ∈ ParSensE(T), that is, by definition we have that

¬ 〈{PX} |E |T〉dG∗

i.e. PX and T are d-connected in the parented graph G∗. We want to prove
that X is an element of the evidence sensitivity set. We will distinguish between
two cases, where X is or is not in E. Recall that the given evidence sensitivity set
and the potential evidence sensitivity set together define the evidence sensitivity
set, and that they are disjoint because of the way they are defined.

(1) For the first case, we assume that X /∈ E. We want to show that X is in the

potential evidence sensitivity set. That is, we need to prove that ¬ 〈{X} |E |T〉dG
holds:

¬ 〈{PX} |E |T〉dG∗ =⇒ ¬〈{X} |E |T〉dG∗ =⇒ ¬〈{X} |E |T〉dG

Because PX has no other arcs than the one to X, the d-connection between PX
and T has to be a chain including X, which implies that ¬ 〈{X} |E |T〉dG∗ , and

therefore also ¬ 〈{X} |E |T〉dG, holds. We conclude that X ∈ PotEvSensE(T).

(2) Now we assume that X ∈ E. We want to show that X is in the given

evidence sensitivity set, i.e. ¬ 〈{X} |E\{X} |T〉dG holds. Because PX has no
other arcs than the one to X, and X is in the evidence set, PX and T can only
be d-connected if X has a head-to-head connection on an active chain with some
T ∈ T as an endpoint. This situation is illustrated in the following graph:

PX X Y T
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On this chain, parent Y has to be d-connected to T . By excluding X from the
evidence set E, X and T are d-connected, and therefore ¬ 〈{X} |E\{X} |T〉dG
holds.

The above proposition gives us insights about nodes whose parameter values
may influence the posterior probability of interest. If such a node is in E,
its observed value may always influence the posterior probability of interest,
because ParSensE(T) ∩ E ⊆ GivEvSensE(T). In the case that the node
is not in E, it will always in the potential evidence sensitivity set, because
ParSensE(T )\E ⊆ PotEvSensE(T).

Note that deleting an observation of a node from the given evidence sensitivity set
or adding an observation for a node from the potential evidence sensitivity set may
change the dependences and therefore the sensitivity sets of the network.

3.3 Identifying the sensitivity sets

One of the benefits of probabilistic networks, is that much knowledge is captured
in the graphical structure. Many properties can be recognized just by looking at
the topology of the underlying graph. Statements of conditional independence
for example, can be verified in time linear to the size of the graph. An algorithm
to this end is the Bayes-Ball Algorithm [13], which determines irrelevant sets of
nodes and requisite information in time linear to the size of the graph. Bayes-
Ball determines all d-connected nodes, all nodes with relevant parameters and
all relevant observations.

Some of the sensitivity sets as defined in the previous section, are easily rec-
ognizable in the definitions of Shachter in [13]. In fact, all sensitivity sets can
be easily determined using a simplified version of the Bayes-Ball Algorithm,
given by Algorithm 1. The algorithm is simplified in the way that the original
algorithm contains also a distinction for deterministic nodes, something that is
unnecessary to include for our purpose.

Informally, the algorithm sends balls from all target nodes on chains through
the network. The way a ball behaves corresponds to the different situations on
a chain, as illustrated in Table 3.1. Each situation results in certain marks on
the node, which can be translated to sensitivity sets in the end. The algorithm
works as follows.

• Initially, all nodes are unvisited and unmarked, and all target nodes are
scheduled to be visited from a child (line 1-5).

• While there is still a node in the schedule, this node will be removed and
actually becomes visited by a bouncing ball (line 6-8).
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Algorithm 1 Simplified Bayes-Ball Algorithm

Input: Graph G = (V (G), A(G)), evidence nodes E and target nodes T.
Output: The sets V isited, Top,Bottom ⊆ V (G).
1: for each node X ∈ V (G) do
2: visited(X) = false
3: top(X) = unmarked
4: bottom(X) = unmarked
5: S = {(N,child) | N ∈ T}
6: while there exists an (X, from) ∈ S do
7: S = S\{(X, from)}
8: visited(X) = true
9: if X /∈ E and from == child then

10: if top(X) == unmarked then
11: top(X) = marked
12: S = S ∪ {(N,child) | N ∈ ρ(X)}
13: if bottom(X) == unmarked then
14: bottom(X) = marked
15: S = S ∪ {(N,parent) | N ∈ δ(X)}
16: if from == parent then
17: if X ∈ E and top(X) == unmarked then
18: top(X) = marked
19: S = S ∪ {(N,child) | N ∈ ρ(X)}
20: if X /∈ E and bottom(X) == unmarked then
21: bottom(X) = marked
22: S = S ∪ {(N,parent) | N ∈ δ(X)}
23: V isited = {X ∈ V (G) | visited(X) == True}
24: Top = {X ∈ V (G) | top(X) == marked}
25: Bottom = {X ∈ V (G) | bottom(X) == marked}
26: return V isited, Top,Bottom
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X∗ X X∗
∗
X

Unobserved node X gets a ball
from a parent and bounces balls

to all children.

Unobserved node X gets a ball
from a child and bounces balls

to all parents and children.

X
∗
X XX

Observed node X gets a ball
from a parent and bounces balls

to all parents.

Observed node X gets a ball
from a child and blocks

bouncing.

Table 3.1: Behavior of the balls in the Bayes-Ball Algorithm. The mark ∗ at
node X stands marked on top and/or on bottom by the algorithm, respectively,
for X bouncing balls to its parents and/or children. The mark X at node X
stands for visited by the algorithm.

• The if-statements in the algorithm handle the different cases of how the
balls will bounce through the network, with respect to the d-separation
criterion. (line 9-22).

– If a node bounces balls to its children, its bottom will become marked
(line 14,21).

– If a node bounces balls to its parents, its top will become marked
(line 11,18).

• The algorithm terminates when the schedule is empty.

Note that a node becomes visited if there is at least one incoming ball. After
running Algorithm 1, the sensitivity sets are easily recognizable by looking at the
marked and visited nodes. This is summarized in the following theorem:

Theorem 3.3.1. Let G = (V (G), A(G)), T and E be as defined before. Run
the Bayes-Ball Algorithm on G, T and E. Let V isited, Top,Bottom ⊆ V (G)
be as determined by the Bayes-Ball Algorithm. Then,

1. PotEvSensE(T) = Bottom.

2. GivEvSensE(T) = V isited ∩E.

3. ParSensE(T) = Top.

To prove Theorem 3.3.1, we prove the following lemma first, to make the connec-
tion between the bouncing of the balls and the d-separation criterion. 1

1In [13], Shachter mentions in his complexity proof that the statement in Lemma 3.3.1 is
true, but the proof is absent.
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Lemma 3.3.1. Let G = (V (G), A(G)), T and E be as defined before. Then,
for every X ∈ V (G),

¬ 〈{X} |E\{X} |T〉dG ⇐⇒ X ∈ V isited.

Proof of Lemma 3.3.1. We will prove the lemma in two steps:

1. ¬ 〈{X} |E\{X} |T〉dG =⇒ X ∈ V isited.

2. 〈{X} |E\{X} |T〉dG =⇒ X /∈ V isited.

(1) Suppose that ¬ 〈{X} |E\{X} |T〉dG, that is, by the definition we have that

there exists a T ∈ T such that ¬ 〈{X} |E\{X} | {T}〉dG. In other words, there
exists an active chain s between X and T given E\{X}. This means, by the
definition of an active chain, that

• any node N on s with two incoming arcs is in or has a descendant in
E\{X}, and

• any node N on s not having two incoming arcs is not in E\{X}.

Now, we will show that in both situations it holds that if a ball visits node N ,
then a ball will passed further along the chain:

• If a node N with two incoming arcs on s is or has a descendant in E,
and N receives a ball from a parent, it will always bounce the ball along
the chain to the other parent. That is because the ball will “bump” on
the evidence node, which either is a descendant of N or is N itself. This
makes the ball bounce back to all its parents, and the ball will continue
on s. This corresponds with lines 17-19 of Algorithm 1.

• If a node on s without being in E receives a ball, it will pass the ball along
s, if N has no two incoming arcs. This corresponds with lines 9-15 (the
“from a child”-case) and lines 20-22 (the “from a parent”-case without an
evidence node) of Algorithm 1.

Therefore, ¬ 〈{X} |E\{X} |T〉dG =⇒ X ∈ V isited.

(2) Now, suppose that 〈{X} |E\{X} |T〉dG, that is, by the definition we have

that for all T ∈ T it holds that 〈{X} |E\{X} | {T}〉dG. In other words, any chain
s between X and T given E\{X} is blocked. This means, by the definition of a
blocked chain, that

• there exists a node N on s with two incoming arcs which is not in and
does not have a descendant in E\{X}, or

• there exists a node N on s not having two incoming arcs which is in
E\{X}.

Now, we will show that in both situations it holds that if a ball visits node N ,
then no ball will passed further along the chain:
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• If a node N with two incoming arcs on s is or has not a descendant in E,
and N receives a ball from a parent, it will never bounce a ball along the
chain to the other parent. That is because the ball will only be passed to
the children of N . This corresponds with a block on this chain.

• A node not having two incoming arcs which is in E, corresponds too with
a block on the chain.

Therefore, 〈{X} |E\{X} |T〉dG =⇒ X /∈ V isited, and together with the result
from (1), it proves the lemma.

By using the previous lemma, it is quite straightforward to prove the earlier
stated theorem:

Proof of Theorem 3.3.1. We will distinguish between the three cases stated in
the theorem:

(1) We want to prove that X ∈ Bottom if and only if X ∈ PotEvSensE(T), or
equivalently,

¬ 〈{X} |E |T〉dG .

Note that X /∈ E. Then, by applying Lemma 3.3.1,

¬ 〈{X} |E |T〉dG ⇐⇒ X ∈ V isited.

By the algorithm, X /∈ E will become marked on bottom if and only if X will
be visited, if and only if X ∈ PotEvSensE(T).

(2) Now, we want to prove thatX ∈ E∩V isited if and only ifX ∈ GivEvSensE(T),
or equivalently,

¬ 〈{X} |E\{X} |T〉dG .

Then, by applying Lemma 3.3.1,

¬ 〈{X} |E\{X} |T〉dG ⇐⇒ X ∈ V isited.

By the algorithm, X ∈ E will be visited if and only if X ∈ GivEvSensE(T).

(3) Now, we want to prove that X ∈ Top if and only if X ∈ ParSensE(T), or
equivalently,

¬ 〈{PX} |E |T〉dG∗ .

Note that always holds that PX /∈ E. Suppose we run the algorithm on the
parented graph G∗. Then, by Lemma 3.3.1,

¬ 〈{PX} |E |T〉dG ⇐⇒ PX ∈ V isited.

Thus, during the algorithm, X ∈ ParSensE(T) if and only if PX will be visited,
if and only if X sends the ball to its auxiliary parent PX , if and only if the top
of node X will become marked.
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This gives us an algorithm to identify exactly the sensitivity sets of a network
in an efficient way. Shachter used the terms relevant and requisite sets of nodes,
but (as far as we know), the direct link to the parameter sensitivity set was not
made before. Moreover, the evidence sensitivity set introduced in this thesis can
also be identified by the Bayes-Ball algorithm.

3.4 Example

We will end this chapter with an example that demonstrates all concepts from
this chapter. The graph of the probabilistic network that we consider is depicted
in Figure 3.2. Here, T = {T1, T2} and E = {E1, E2, E3}. We will determine
all sensitivity sets for the probabilistic network by the Bayes-Ball Algorithm,
Algorithm 1, and we will explain the implications for a sensitivity analysis being
performed.

T1 E1 A E2

B T2 C E3

Figure 3.2: Graph of the example probabilistic network.

After the termination of Algorithm 1 on the example graph of Figure 3.2, the
nodes are marked as in Figure 3.3, that is,

V isited = {A,C,E1, E2, T1, T2},
T op = {A,E1, T1, T2},

Bottom = {A,C, T1, T2}.

T1∗
∗
X E1

∗
X A∗

∗
X E2X

B T2∗
∗
X C∗ X

E3

Figure 3.3: The example graph with all marks at the top and bottom and visited
(X) nodes, after running the Bayes-Ball Algorithm.
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Now, we will use Theorem 3.3.1 to determine the sensitivity sets, which results
in:

PotEvSensE(T) = Bottom = {A,C, T1, T2},
GivEvSensE(T) = V isited ∩E = {E1, E2},
ParSensE(T) = Top = {A,E1, T1, T2}.

In Figure 3.4, the sensitivity sets are depicted in the style of Figure 3.1, where all
implications by Proposition 3.2.3 are summarized in an Euler diagram.

E3 E2 E1 T1, T2

C

A

B

Figure 3.4: Euler diagram corresponding to the example graph of Figure 3.2.

The parameter sensitivity set can be used as a basis for doing a full parameter
sensitivity analysis. For the example probabilistic network, the following can be
concluded. The nodes A, E1, T1 and T2 are contained in the parameter sensitivity
set for T given E. Therefore, changing the parameter values of these nodes may
influence the outcome of the probability of interest Pr(t | e). On the other
hand, nodes B, C, E2 and E3 are not contained in the parameter sensitivity set
for T given E. These four nodes can therefore be excluded from a parameter
sensitivity analysis, since by Proposition 3.1.1 we have that the probability of
interest is insensitive to changes in the parameter values of these nodes.

Note that by Proposition 3.2.3, we know that at least all nodes in the parameter
sensitivity set for T given E have to be included in an evidence sensitivity analy-
sis. But by looking at the given evidence sensitivity set and the potential evidence
sensitivity set, we can determine all nodes that have to be included.

First, evidence nodes E1 and E2 are contained in the given evidence sensitivity
set for T given E. Therefore, changing or removing the observations of these
nodes may influence the outcome of the probability of interest Pr(t | e). On the
other hand, evidence node E3 is not contained in the given evidence sensitivity
set for T given E. The nodes for which their observations have to be varied in
order to investigate their influence on the probability of interest are therefore
E1 and E2.
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Second, nodes A, C, T1 and T2 are contained in the potential evidence sensitiv-
ity set for T given E. Therefore, adding observations for these variables may
influence the outcome of the probability of interest Pr(t | e). On the other
hand, Nodes B and E3 are not in the potential evidence sensitivity set for T
given E. The nodes for which observations can be added and varied in order
to investigate their influence on the probability of interest are therefore A, C,
T1 and T2. However, it is possible that nodes are not observable at all. Note
that the sensitivity sets may change after adding an observation for nodes in
the potential evidence sensitivity set for T given E.

3.5 Summary

In this chapter, we introduced the evidence sensitivity set for T given E. This set
captures all nodes for which a change in observed value, or change in status of
being observed or not, affects the probability of interest. We proved that a node
is in the evidence sensitivity set if and only if it might affect the probability of
interest upon undergoing abovementioned changes. Subsequently, we formalized
the relation between the parameter sensitivity set for T given E and the evidence
sensitivity set for T given E. We proved that the parameter sensitivity set is
always a subset of the evidence sensitivity set.

Finally, we reintroduced the already existing Bayes-Ball Algorithm [13] in order
to identify all sensitivity sets of a probabilistic network. We analyzed how to
interpret the output of the algorithm in order to identify the sensitivity sets,
and we proved the correctness of this interpretation.

The evidence sensitivity set can be used as a basis for doing a full evidence sen-
sitivity analysis. The evidence nodes contained in the given evidence sensitivity
set for T given E have to be varied in their observations in order to investigate
their influence on the probability of interest.

In addition, the nodes contained in the potential evidence sensitivity set for T
given E can be added to E and varied in their observations in order to investigate
their influence on the probability of interest. Note that the sensitivity sets may
change after adding an observation for nodes in the potential evidence sensitivity
set for T given E.



Chapter 4

The effects of pruning on
the probability
calculation

In this chapter, we will show how probabilistic network pruning can be translated
to simplifications in the calculation of the probability of interest. The most naive
approach to computing Pr(T | E) = Pr(T ∧ E)/Pr(E) is by summing over
all variables V (G)\(T ∪ E) and V (G)\E in the numerator and denominator,
respectively:

Pr(T ∧E) =
∑

V (G)\(T∪E)

∏
X∈V (G)

Pr(X | ρ(X)) (4.1)

Pr(E) =
∑

V (G)\E

∏
X∈V (G)

Pr(X | ρ(X)) (4.2)

However, not all variables are relevant for the calculation of the probability of
interest at hand. These variables can be pruned from the network, as demon-
strated in, for example, [1] and [9]. In this chapter we will show why certain
nodes can be pruned, from the perspective of the probability calculation. Our
approach differs from [1], where Pearl’s equations regarding message-passing
[11] are used in explaining why certain nodes can be pruned safely from the
network.

Our approach will provide us with new insights in the structure of the probability
calculation. In addition, an additional subset of nodes will be identified, that
can safely be pruned from the network. We will apply these insights in the next
chapter to evidence sensitivity analysis.

22
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4.1 Probability calculation simplifications

Nodes can be pruned from the network if their parameters as well as their
children’s parameters are not needed in the calculation for a probability of
interest. To demonstrate that these parameters are not needed, we will present
a basic toolkit of rewriting rules given by Lemmas 4.1.1- 4.1.3.

In calculating a specific marginal probability in a given probabilistic network, it
is often possible to simplify this calculation by looking closely at the dependences
in the network, and at specific properties of probabilities. Recall from Equation
2.2, that for any subset Y ⊆ V (G), the marginal probability Pr(Y) is defined
by

Pr(Y) =
∑

V (G)\Y

∏
X∈V (G)

Pr(X | ρ(X)) (4.3)

The following lemma shows that summing over all variables contained in the
conditional probability distributions for a certain subset X ⊆ V (G), results in
a probability of 1.

Lemma 4.1.1. Let G = (V (G), A(G)) and Γ = {Pr(X | ρ(X)) | X ∈ V (G)} be
as defined before. Let X ⊆ V (G). Then,∑

X

∏
X∈X

Pr(X | ρ(X)) = 1.

Proof. It always holds that
∏
X∈X Pr(X | ρ(X)) = Pr(X | ρ(X)\X), since G is

a probabilistic network, where the chain rule can be applied. Then,∑
X

∏
X∈X

Pr(X | ρ(X)) =
∑
X

Pr(X | ρ(X)\X) = 1

always holds.

A probability calculation computationally can often be made more efficient, by
rearranging terms. Consider the following expression,∑

Q∪R

∏
X∈X∪Y

Pr(X | ρ(X))

where Q,R,X,Y ⊆ V (G), such that Q∩R = ∅ and X∩Y = ∅. This expression
can be rephrased as∑

Q

∑
R

∏
X∈X

Pr(X | ρ(X)) ·
∏
Y ∈Y

Pr(Y | ρ(Y )).

Now, if subset R meets the conditions stated in the following lemma, then the
product over X is constant with respect to all variables in R. The above expres-
sion can then be rewritten in a way that is computationally more efficient.
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Lemma 4.1.2. Let G = (V (G), A(G)) and Γ = {Pr(X | ρ(X)) | X ∈ V (G)}
be as defined before. Let Q,R,X,Y ⊆ V (G). If Q ∩R = ∅, X ∩Y = ∅ and
(X ∪ ρ(X)) ∩R = ∅, then

∑
Q∪R

∏
X∈X∪Y

Pr(X | ρ(X)) =

∑
Q

∏
X∈X

Pr(X | ρ(X)) ·

[∑
R

∏
Y ∈Y

Pr(Y | ρ(Y ))

]
Proof. If X and all parents of the nodes in X do not overlap with R, then the
product over the parameters of X is constant with respect to all variables in R.
The distributive law now tells us that the product over the parameters of X can
be taken out of the summation over R.

In other words, the summation over all variables in R can be pulled in by the use
of the distributive law, which is used by most of the inference algorithms. An
even stronger form of this proposition can be formalized, where the distributive
law is applied twice, if subsets Q and R meet the conditions as are stated in
the following lemma.

Lemma 4.1.3. Let G = (V (G), A(G)) and Γ = {Pr(X | ρ(X)) | X ∈ V (G)}
be as defined before. Let Q,R,X,Y ⊆ V (G). If Q ∩ R = ∅, X ∩ Y = ∅,
(X ∪ ρ(X)) ∩R = ∅ and (Y ∪ ρ(Y)) ∩Q = ∅, then

∑
Q∪R

∏
X∈X∪Y

Pr(X | ρ(X)) =

∑
Q

∏
X∈X

Pr(X | ρ(X))

·
∑

R

∏
Y ∈Y

Pr(Y | ρ(Y ))


Proof. Following the proof of Lemma 4.1.2, we have that from the distributive
law that both the product over the parameters of X can be taken out of the
summation over R and the parameters of Y can be taken out of the summation
over Q.

In other words, under the constraints of Lemma 4.1.3 the summations over the
variables in Q and R can be completely separated. We will now use the tools
provided by Lemmas 4.1.1-4.1.3 to explain network pruning by means of the
probability calculation.

4.2 Probabilistic network pruning

For each probabilistic network, a minimal computationally equivalent subgraph
can be constructed by pruning computationally irrelevant nodes, as described
in [1]. The goal is to find the smallest possible subgraph of the original graph
of the probabilistic network, such that the probability of interest can still be
calculated in the right way. This means that each node is pruned for which
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its own parameters as well as its children’s parameters are not needed in the
calculation.

The subgraph resulting after pruning two sets of nodes as described in [1] is
called the minimal computationally equivalent subgraph. The following theorem
is from [1] and is proven by using Pearl’s equations.

Theorem 4.2.1 (Minimal computationally equivalent subgraph). Let G =
(V (G), A(G)), T and E be as defined before. A subgraph GM is minimal com-
putationally equivalent to G with respect to T and E, if it is constructed by

• removing all nodes d-separated from T by E, and

• removing all barren nodes with respect to T and E.

Of course, all arcs that are not incident on two nodes in V (GM ) will be removed.

Minimal in this case means, that there are no nodes in V (GM )\(T ∪ E) for
which we need neither its own parameters, nor its children’s parameters in the
calculation. Note that this is by taking only the graphical structure of the
probabilistic network into consideration.

In the next subsections, we will explain why all nodes d-separated from T given
E and all barren nodes with respect to T and E can be pruned safely, by means
of the probability calculation. In addition, we present another set of nodes
which can be pruned.

4.2.1 Pruning d-separated nodes

The first set of nodes which can be pruned in order to make the graph smaller,
but computationally equivalent, is the set of d-separated nodes from T given E,
as defined in Definition 2.1.4. Let S ⊆ V (G) be such that S consists of all nodes
d-separated from T given E, that is,

S = {X | X ∈ V (G) : 〈{X} |E |T〉dG}.

Note that S ⊆ V (G)\(T ∪ E), since d-separation is only defined for non-
overlapping sets. We will now prove, by means of probability calculations, that
nodes d-separated from T given E can be safely pruned.

Proposition 4.2.1. Let G = (V (G), A(G)) and Γ = {Pr(X | ρ(X)) | X ∈
V (G)} be as defined before. Let S be as defined above and let D(S) be the
‘donna con bambini’ of S. Then,

Pr(T | E) =

∑
V (G)\

(T∪E∪D(S))

∏
X∈V (G)\D(S)

Pr(X | ρ(X))

∑
V (G)\

(E∪D(S))

∏
X∈V (G)\D(S)

Pr(X | ρ(X))



4.2. PROBABILISTIC NETWORK PRUNING 26

Proof. Since all nodes in S are d-separated from T given E, the following holds:

Pr(T ∧ S | E) = Pr(T | E) · Pr(S | E)

or, equivalently,

Pr(T | E) =
Pr(T ∧ S | E)

Pr(S | E)
=

Pr(T ∧ S ∧E)

Pr(S ∧E)
(4.4)

=

∑
V (G)\(T∪E∪S)

∏
X∈V (G)

Pr(X | ρ(X))

∑
V (G)\(E∪S)

∏
X∈V (G)

Pr(X | ρ(X))
. (4.5)

Now, we will prove for the numerator, Pr(T∧S∧E), that the parameters of all
nodes in D(S) are not needed in the calculation. Since

• (V (G)\S) ∪ S = V (G), and

• (V (G)\S) ∩ S = ∅

hold, we can rephrase Pr(T ∧ S ∧E) as:

Pr(T ∧ S ∧E) =
∑
V (G)\

(T∪E∪S)

∏
X∈V (G)\S

Pr(X | ρ(X)) ·
∏
Y ∈S

Pr(Y | ρ(Y )).

We want to take the product over the parameters of the nodes in S out of
the summation over V (G)\(T ∪ E ∪ S). In order to apply Lemma 4.1.2 to the
calculation, we have to show that (X ∪ ρ(X)) ∩R = (S ∪ ρ(S)) ∩ (V (G)\(T ∪
E ∪ S)) = ∅, i.e.

1. S ∩ (V (G)\(T ∪E ∪ S)) = ∅, and

2. for all Y ∈ S, it holds that ρ(Y ) ∩ (V (G)\(T ∪E ∪ S)) = ∅.

Property 1 holds trivially.

Proof of property 2.
We assume that Y ∈ S. We will now show by contradiction that ρ(Y ) ⊆ S ∪E
always holds in order to prove the property. Suppose on the contrary, that
ρ(Y ) 6⊆ S ∪E, in other words, there exists a PY ∈ ρ(Y ), such that PY /∈ S and
PY /∈ E. This situation is illustrated in the following graph:

PY Y T

Then, since Y ∈ S, PY /∈ T always holds. Since PY /∈ S, PY /∈ T and PY /∈ E,
¬ 〈{PY } |E |T〉dG always holds. Then, also ¬ 〈{Y } |E |T〉dG always holds, which
contradicts the supposition that Y ∈ S. Hence, ρ(Y ) ⊆ S ∪E always holds.
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Now, we can apply Lemma 4.1.2 to the calculation of Pr(T ∧ S ∧E):

Pr(T ∧ S ∧E) =

 ∑
V (G)\

(T∪E∪S)

∏
X∈V (G)\S

Pr(X | ρ(X))

 · ∏
Y ∈S

Pr(Y | ρ(Y )).

Since

• (V (G)\(T ∪E ∪ D(S))) ∪ (δ(S)\(E ∪ S)) = V (G)\(T ∪E ∪ S), and

• (V (G)\(T ∪E ∪ D(S))) ∩ (δ(S)\(E ∪ S)) = ∅, and

• (V (G)\D(S)) ∪ (δ(S)\S) = V (G)\S, and

• (V (G)\D(S)) ∩ (δ(S)\S) = ∅

hold, we can subsequently rephrase Pr(T ∧ S ∧E) as:

Pr(T ∧ S ∧E)

=

 ∑
V (G)\

(T∪E∪D(S))

∑
δ(S)\
(E∪S)

∏
X∈V (G)\D(S)

Pr(X | ρ(X)) ·
∏

Y ∈δ(S)\S

Pr(Y | ρ(Y ))


·
∏
Z∈S

Pr(Z | ρ(Z)).

Note that we now rephrased the product in such a way, that for all X ∈
V (G)\D(S) we have that ρ(X)∩S = ∅. Our next step is to take the product over
the parameters of nodes in V (G)\D(S) out of the summation over δ(S)\(E∪S).
In order to apply Lemma 4.1.2 to the calculation of Pr(T ∧ S ∧E), we have to
show that (X∪ρ(X))∩R = ((V (G)\D(S))∪ρ(V (G)\D(S)))∩(δ(S)\(E∪S)) = ∅,
i.e.

3. (V (G)\D(S)) ∩ (δ(S)\(E ∪ S)) = ∅, and

4. for all X ∈ V (G)\D(S), it holds that ρ(X) ∩ (δ(S)\(E ∪ S)) = ∅.

Property 3 holds trivially.

Proof of property 4.
We assume that X ∈ V (G)\D(S), in other words, X /∈ S and X /∈ δ(S). We
will now show by contradiction that ρ(X) ∩ (δ(S)\(E ∪ S)) = ∅. Suppose on
the contrary, that ρ(X) ∩ (δ(S)\(E ∪ S)) 6= ∅, in other words, there exists a
PX ∈ ρ(X), such that PX ∈ δ(S), PX /∈ S and PX /∈ E. This situation is
illustrated in the following graph:
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S PX X T

where T ∈ T and S ∈ S, i.e. 〈{S} |E |T〉dG by definition. Now, either PX ∈ T or

¬ 〈{PX} |E |T〉dG must hold. If PX ∈ T, then ¬ 〈{S} |E |T〉dG, which contradicts

that S ∈ S. If ¬ 〈{PX} |E |T〉dG, then ¬ 〈{S} |E |T〉dG, which contradicts that
S ∈ S. This contradicts the supposition that ρ(X)∩ (δ(S)\(E∪S)) 6= ∅. Hence,
ρ(X) ∩ (δ(S)\(E ∪ S)) = ∅ always holds.

Now, we can apply Lemma 4.1.2 to the calculation of Pr(T ∧ S ∧E):

Pr(T ∧ S ∧E)

=

 ∑
V (G)\

(T∪E∪D(S))

∏
X∈V (G)\D(S)

Pr(X | ρ(X)) ·

 ∑
δ(S)\
(E∪S)

∏
Y ∈δ(S)\S

Pr(Y | ρ(Y ))




·
∏
Z∈S

Pr(Z | ρ(Z)).

Now, we will look closer at the innermost factor, where we want to split out the
parameters of nodes in E. Since it holds that

• (δ(S)\(S ∪E)) ∪ (δ(S) ∩E) = δ(S)\S, and

• (δ(S)\(S ∪E)) ∩ (δ(S) ∩E) = ∅,

we can rephrase the innermost factor as:∑
δ(S)\
(E∪S)

∏
Y ∈δ(S)\S

Pr(Y | ρ(Y ))

=
∑
δ(S)\
(E∪S)

∏
X∈δ(S)∩E

Pr(X | ρ(X)) ·
∏

Y ∈δ(S)\(S∪E)

Pr(Y | ρ(Y ))

We want to apply Lemma 4.1.2, to take the product over the parameters of
the nodes in δ(S) ∩E out of both of the summations, i.e. the summations over
(V (G)\(T∪E∪D(S)))∪(δ(S)\(E∪S)) = V (G)\(T∪E∪S). Therefore, we have
to show that (X∪ρ(X)))∩R = ((δ(S)∩E)∪ρ(δ(S)∩E))∩(V (G)\(T∪E∪S)) = ∅,
i.e.

5. (δ(S) ∩E) ∩ (V (G)\(T ∪E ∪ S)) = ∅, and

6. for all X ∈ (δ(S) ∩E), it holds that ρ(X) ∩ (V (G)\(T ∪E ∪ S)) = ∅.
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Property 5 holds trivially.

Proof of property 6.
We assume that X ∈ δ(S)∩E. We will now show by contradiction that ρ(X)∩
(V (G)\(T∪E∪S)) = ∅. Suppose on the contrary, that ρ(X)∩ (V (G)\(T∪E∪
S)) 6= ∅, in other words, there exists a PX ∈ ρ(X), such that PX /∈ T, PX /∈ E
and PX /∈ S. This situation is illustrated in the following graph:

S

PX X T

where T ∈ T and S ∈ S, i.e. 〈{S} |E |T〉dG by definition. Then, since X ∈ E

and PX /∈ E, we have that 〈{PX} |E |T〉dG, i.e. PX ∈ S. This contradicts the
supposition that ρ(X) ∩ (V (G)\(T ∪ E ∪ S)) 6= ∅. Hence, ρ(X) ∩ (V (G)\(T ∪
E ∪ S)) = ∅ always holds.

Now, we can apply Lemma 4.1.2 to take the product over the parameters of the
nodes in δ(S) ∩E out of the summations over V (G)\(T ∪E ∪ S):

Pr(T ∧ S ∧E)

=

 ∑
V (G)\

(T∪E∪D(S))

∏
X∈V (G)\D(S)

Pr(X | ρ(X)) ·

 ∑
δ(S)\
(E∪S)

∏
Y ∈δ(S)\(E∪S)

Pr(Y | ρ(Y ))




·
∏

W∈δ(S)∩E

Pr(W | ρ(W )) ·
∏
Z∈S

Pr(Z | ρ(Z)).

By applying Lemma 4.1.1, the term over δ(S)\(E∪S) sums to 1. This gives us

Pr(T ∧ S ∧E)

=

 ∑
V (G)\

(T∪E∪D(S))

∏
X∈V (G)\D(S)

Pr(X | ρ(X))

 · ∏
Y ∈S∪(δ(S)∩E)

Pr(Y | ρ(Y ))
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And analogous to Pr(T ∧ S ∧E), Pr(S ∧E) is:

Pr(S ∧E)

=

 ∑
V (G)\

(E∪D(S))

∏
X∈V (G)\D(S)

Pr(X | ρ(X))

 · ∏
Y ∈S∪(δ(S)∩E)

Pr(Y | ρ(Y ))

This results in

Pr(T | E) =
Pr(T ∧ S ∧E)

Pr(S ∧E)

=

∑
V (G)\

(T∪E∪D(S))

∏
X∈V (G)\D(S)

Pr(X | ρ(X))

∑
V (G)\

(E∪D(S))

∏
X∈V (G)\D(S)

Pr(X | ρ(X))

From the above proposition, we have that for all nodes in S it holds that neither
its own parameters nor its children’s parameters are needed in the calculation,
which allows us to prune all nodes in S. Note that the Bayes-Ball Algorithm,
Algorithm 1, can be used to identify all nodes d-separated from T given E,
since S = V (G)\(PotEvSensE(T) ∪ E) by the definitions of EvSensE(T) and
S. After pruning this first set of nodes, a subgraph G′ of G results where

• V (G′) = {X ∈ V (G) | X /∈ S}

• A(G′) = {(X → Y ) ∈ A(G) | X ∈ V (G′) ∧ Y ∈ V (G′)}

For a schematic summary of pruning all nodes d-separated from T given E,
see Figure 4.1. It is clear that S ∩ E = ∅, EvSensE(T) ∩ S = ∅ and S ∪
EvSensE(T) ∪E = V (G) by the definitions of EvSensE(T) and S.

4.2.2 Pruning barren nodes

Another set of nodes which can be pruned in order to make the graph smaller,
but computationally equivalent, is the set of barren nodes with respect to T and
E. A barren node is computationally irrelevant to the probability of interest,
because no other non-barren nodes are conditioned on a barren node. Barren
nodes were first introduced in [12]; the definition used here is from [6].

Definition 4.2.1 (Barren node). Let G = (V (G), A(G)), T and E be as defined
before. A node X ∈ V (G) is called barren if X /∈ T, X /∈ E, and all its
descendants δ∗(X) are barren.
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E T

EvSensE(T)

ParSensE(T)

Figure 4.1: An Euler diagram representing all nodes in V (G′) ⊆ V (G), after
pruning all nodes d-separated from T given E; the hatched area represents the
set of pruned nodes.

According to the definition of barren nodes, it is not necessary to make the
distinction between nodes in T and E. In other words, if a node of interest later
becomes observed, this does not change the set of barren nodes. This gives us
the possibility to define a barren set in the following way:

Definition 4.2.2 (Barren set). Let G = (V (G), A(G)), T and E be as defined
before. BarrenSet(X) contains all nodes X ∈ V (G), such that X /∈ X and all
its descendants δ∗(X) are also in BarrenSet(X).

Now, let B ⊆ V (G) consist of all barren nodes with respect to T and E, that
is,

B = BarrenSet(T ∪E).

and let B∆ ⊆ V (G) consist of all barren nodes with respect to E only, that
is,

B∆ = BarrenSet(E).

We will call these nodes semi-barren with respect to T and E. Note that
B ∩ (T ∪ E) = ∅, B∆ ∩ E = ∅, B ⊆ B∆, δ(B) ⊆ B and δ(B∆) ⊆ B∆ hold by
definition.

We will now prove, by means of probability calculations, that barren nodes with
respect to T and E can safely be pruned. Moreover, we will show that the semi-
barren nodes with respect to T and E can be disregarded in the calculation of
the denominator as well.

Proposition 4.2.2. Let G = (V (G), A(G)) and Γ = {Pr(X | ρ(X)) | X ∈
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V (G)} be as defined before. Let B and B∆ be as defined above. Then,

Pr(T | E) =

∑
V (G)\

(T∪E∪B)

∏
X∈V (G)\B

Pr(X | ρ(X))

∑
V (G)\

(E∪B∆)

∏
X∈V (G)\B∆

Pr(X | ρ(X))
.

Proof. We recall, that

Pr(T | E) =
Pr(T ∧E)

Pr(E)

=

∑
V (G)\(T∪E)

∏
X∈V (G)

Pr(X | ρ(X))

∑
V (G)\E

∏
X∈V (G)

Pr(X | ρ(X))
.

First, we will prove for the numerator, Pr(T ∧ E), that the parameters of all
nodes in B are not needed in the calculation. Since

• (V (G)\(T ∪E ∪B)) ∪B = V (G)\(T ∪E), and

• (V (G)\(T ∪E ∪B)) ∩B = ∅, and

• (V (G)\B) ∪B = V (G), and

• (V (G)\B) ∩B = ∅

hold, we can rephrase Pr(T ∧E) as:

Pr(T ∧E) =
∑
V (G)\

(T∪E∪B)

∑
B

∏
X∈V (G)\B

Pr(X | ρ(X)) ·
∏
Y ∈B

Pr(Y | ρ(Y )).

We want to take the product over the parameters of nodes in V (G)\B out of
the summation over B. Note that since δ(B) ⊆ B by definition, D(B) = B. In
order to apply Lemma 4.1.2 to the calculation, we have to show that

1. (V (G)\B) ∩B = ∅, and

2. for all X ∈ V (G)\B, it holds that ρ(X) ∩B = ∅.

Property 1 holds trivially.

Proof of property 2. We assume that X ∈ V (G)\B. Then, since δ(B) ⊆ B by
definition, X /∈ δ(B) and therefore ρ(X) ∩B = ∅.
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Now, we can apply Lemma 4.1.2 to the calculation of Pr(T ∧ E), and Lemma
4.1.1 to sum the inner term to 1:

Pr(T ∧E) =

 ∑
V (G)\

(T∪E∪B)

∏
X∈V (G)\B

Pr(X | ρ(X)) ·

[∑
B

∏
Y ∈B

Pr(Y | ρ(Y ))

]
=

∑
V (G)\

(T∪E∪B)

∏
X∈V (G)\B

Pr(X | ρ(X)) · 1.

Analogous to Pr(T ∧E), where B is replaced by B∆, it follows that

Pr(E) =
∑
V (G)\

(T∪E∪B∆)

∏
X∈V (G)\B∆

Pr(X | ρ(X)) · 1.

From the above proposition, we have that it holds for all nodes in B that its
own parameters are not needed in the calculation. Since, by the definition of a
barren set B, δ(B) ⊆ B, we have that the parameters of all children of nodes
in B are not needed in the calculation either. This allows us to prune all nodes
in B.

Note that the parameters of nodes in B∆\B are needed in the calculation of
the numerator, but they are not needed in the calculation of the denominator.
Therefore, pruning all nodes in B∆ is not allowed, but it gives more information
about the structure of the calculation, which we will use in Chapter 5.

A very nice corollary, implied by the definitions of barren set in this chapter
and the sensitivity sets in the previous chapter, is the following. After pruning
all d-separated nodes of T given E, the barren set with respect to T and E
contains all nodes in the potential evidence sensitivity set not contained in the
parameter sensitivity set for T given E, more formally,

Corollary 4.2.1. Let G = (V (G), A(G)), T and E be as defined before. Let S
denote all nodes d-separated from T given E. Then,

BarrenSet(T ∪E)\S = PotEvSensE(T)\ParSensE(T)

Proof. We will prove subsequently,

1. BarrenSet(T ∪E)\S ⊆ PotEvSensE(T)\ParSensE(T),

2. BarrenSet(T ∪E)\S ⊇ PotEvSensE(T)\ParSensE(T).

Proof of property 1.
Assume that X ∈ BarrenSet(T ∪ E)\S, i.e. X /∈ T, X /∈ E, X /∈ S, and
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δ∗(X) ∩ (T ∪ E) = ∅. It then holds trivially that ¬ 〈{X} |E |T〉dG. Therefore,
X ∈ PotEvSensE(T), by definition.

Now, we want to show that X /∈ ParSensE(T), that is, 〈{PX} |E |T〉dG∗ holds
in the parented graph G∗ of G. This situation is illustrated in the following
graph:

PX X Y T

where PX is the parent added to X in G∗. Since X is d-connected to a T ∈ T
given E, and δ∗(X) ∩ (T ∪ E) = ∅, we know that X has a parent Y ∈ V (G)
d-connected to T . Therefore, G∗ includes a chain between PX and T in which
X is a head-to-head node. Since δ∗(X) ∩E = ∅, we have that 〈{PX} |E |T〉G∗
holds and therefore X /∈ ParSensE(T).

Proof of property 2.
Assume thatX ∈ PotEvSensE(T), i.e. ¬ 〈{X} |E |T〉dG, and thatX /∈ ParSensE(T),

i.e. 〈{PX} |E |T〉dG∗ holds. Now, we want to show that X ∈ BarrenSet(T ∪
E)\S.

Since X is d-connected to a T ∈ T given E, we have that X /∈ S. Since the
added PX in the parented graph is d-separated from T given E, we know that
node X has to be a head-to-head node on a blocked chain. In other words,
δ∗(X) ∩ (E ∪T) = ∅. Therefore, X ∈ BarrenSet(T ∪E)\S.

Note that by Corollary 4.2.1 the Bayes-Ball Algorithm, Algorithm 1, can be
used to identify all d-connected barren nodes with respect to T and E. After
pruning all nodes d-separated from T given E and all barren nodes with respect
to T and E, the subgraph GM of G results where

• V (GM ) = {X ∈ V (G) | X /∈ B ∧X /∈ S}

• A(GM ) = {(X → Y ) ∈ A(G) | X ∈ V (GM ) ∧ Y ∈ V (GM )}

From Theorem 4.2.1 we have thatGM is the minimal computationally equivalent
subgraph of our original graph G.

For a schematic summary of pruning all nodes d-separated from T given E and
all barren nodes with respect to T and E, see Figure 4.2. Note that B∆\B ⊆
ParSensE(T), since these nodes are needed in the calculation of the numerator
of the probability of interest.
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E T

ParSensE(T)

B∆\B

Figure 4.2: An Euler diagram representing all nodes in V (GM ) ⊆ V (G), after
pruning all nodes d-separated from T given E and all barren nodes with respect
to T and E.

4.3 Investigating evidence nodes

By Theorem 4.2.1, the minimal computationally equivalent subgraph GM con-
tains no more nodes X /∈ T ∪ E that can be pruned [1]. By taking a close
look at the probability calculation, however, we can identify two subsets of E
that capture information not required for the probability calculation. These
subsets consist of nodes with, respectively, irrelevant parameters and irrelevant
observations.

4.3.1 Evidence nodes with irrelevant parameters

An evidence node with irrelevant parameters is a node E ∈ E for which its own
parameters are not needed in the probability calculation. In other words, the
parameters of this set of nodes are irrelevant, but their observations may be
relevant.

Definition 4.3.1 (Evidence nodes with irrelevant parameters). Let G = (V (G), A(G)),
T and E be as defined before. Let G∗ be the parented graph of G. The set of ev-
idence nodes with irrelevant parameters E¬γ ⊆ E contains all E ∈ E for which
it holds that

〈{PE} |E |T〉dG∗

Note that E¬γ contains all E ∈ E which are not contained in the parameter
sensitivity set for T given E. By Proposition 3.1.1, we know that Pr(T | E) is
insensitive to changes in the parameter values of a node E ∈ E¬γ . We will define
the set of evidence nodes with relevant parameters as E¬γ = E\E¬γ . Although
the nodes in E¬γ cannot be pruned because of their possible relevancy for the
parameters of their children, that is, there may exist X ∈ V (G) such that
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ρ(X) ∩ E¬γ 6= ∅, identifying these nodes will give us more information about
the structure of the calculation, which we will exploit in Chapter 5.

Proposition 4.3.1. Let G = (V (G), A(G)) and Γ = {Pr(X | ρ(X)) | X ∈
V (G)} be as defined before. Then,

Pr(T | E) =

∑
V (G)\

(T∪S∪E)

∏
X∈V (G)\E¬γ

Pr(X | ρ(X))

∑
V (G)\
(S∪E)

∏
X∈V (G)\E¬γ

Pr(X | ρ(X))
.

Proof. We recall from Equation 4.4, that

Pr(T | E) =
Pr(T ∧ S ∧E)

Pr(S ∧E)

=

∑
V (G)\

(T∪S∪E)

∏
X∈V (G)

Pr(X | ρ(X))

∑
V (G)\
(S∪E)

∏
X∈V (G)

Pr(X | ρ(X))
.

First, we will prove for the numerator, Pr(T ∧ S ∧ E), that the parameters of
all nodes in E¬γ are not needed in the calculation. Since

• (V (G)\E¬γ) ∪E¬γ = V (G), and

• (V (G)\E¬γ) ∩E¬γ = ∅

hold, we can rephrase Pr(T ∧ S ∧E) as:

Pr(T ∧ S ∧E) =
∑
V (G)\

(T∪S∪E)

∏
X∈V (G)\E¬γ

Pr(X | ρ(X)) ·
∏

Y ∈E¬γ
Pr(Y | ρ(Y )).

We want to take the product over the parameters of nodes in E¬γ out of the
summation over V (G)\(T ∪ S ∪ E). In order to apply Lemma 4.1.2 to the
calculation, we have to show that (X∪ρ(X))∩R = (E¬γ∪ρ(E¬γ))∩(V (G)\(T∪
S ∪E)) = ∅, i.e.

1. E¬γ ∩ (V (G)\(T ∪ S ∪E)) = ∅, and

2. for all Y ∈ E¬γ , it holds that ρ(Y ) ∩ (V (G)\(T ∪ S ∪E)) = ∅.

Property 1 holds trivially.

Proof of property 2.
We assume that Y ∈ E¬γ , that is, 〈{PY } |E |T〉dG∗ in the parented graph G∗ of
G. We will now show by contradiction that ρ(Y ) ⊆ S∪E in order to prove the
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property. Suppose on the contrary, that ρ(Y ) 6⊆ S ∪ E, in other words, there
exists a P ′Y ∈ ρ(Y ), such that P ′Y /∈ S and P ′Y /∈ E. This situation is illustrated
in the following graph:

PY Y

P ′Y

T

Then, given Y ∈ E¬γ , and the head-to-head connection between PY and P ′Y ,
we must have that P ′Y /∈ T holds. Since P ′Y /∈ S, P ′Y /∈ E and P ′Y /∈ T,

¬ 〈{P ′Y } |E |T〉
d
G. But, then, ¬ 〈{Y } |E |T〉dG always holds, which contradicts

the supposition that Y ∈ E¬γ . Hence, ρ(Y ) ⊆ S ∪E always holds.

Now, we can apply Lemma 4.1.2 to the calculations of Pr(T ∧ S ∧E),

Pr(T ∧ S ∧E) =

 ∑
V (G)\

(T∪S∪E)

∏
X∈V (G)\E¬γ

Pr(X | ρ(X))

 · ∏
Y ∈E¬γ

Pr(Y | ρ(Y )).

And analogous to Pr(T ∧ S ∧E), Pr(S ∧E) is:

Pr(S ∧E) =

 ∑
V (G)\
(S∪E)

∏
X∈V (G)\E¬γ

Pr(X | ρ(X))

 · ∏
Y ∈E¬γ

Pr(Y | ρ(Y )).

This results in

Pr(T | E) =

∑
V (G)\

(T∪S∪E)

∏
X∈V (G)\E¬γ

Pr(X | ρ(X))

∑
V (G)\
(S∪E)

∏
X∈V (G)\E¬γ

Pr(X | ρ(X))

From the above proposition, we have that for all nodes in E¬γ it holds that its
own parameters are not needed in the calculation. Because the parameters of its
children may be needed, we are not allowed to prune the nodes in E¬γ .

Note that the Bayes-Ball Algorithm, Algorithm 1, can be used to identify all evi-
dence nodes with irrelevant parameters, since E¬γ = E\ParEvSensE(T).
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4.3.2 Irrelevant evidence nodes

An irrelevant evidence node is a node E ∈ E for which neither its own pa-
rameters nor its children’s parameters are needed in the probability calcula-
tion. In other words, besides the parameters of E, its observation is also irrele-
vant.

Definition 4.3.2 (Irrelevant evidence nodes). Let G = (V (G), A(G)), T and
E be as defined before. The set of irrelevant evidence nodes Eσ ⊆ E contains
all E ∈ E for which we have that

〈{E} |E\{E} |T〉dG

Note that Eσ contains all E ∈ E which are not contained in the given evidence
sensitivity set for T given E, as defined in Definition 3.2.1. By Proposition 3.2.1,
we know that Pr(T | E) is insensitive to changes in the observation of a node
E ∈ Eσ. We will define the set of relevant evidence nodes as the set of evidence
nodes which are not irrelevant, that is, Eσ = E\Eσ.

Note that Eσ ⊆ E¬γ , as stated in the following corollary.

Corollary 4.3.1. Let G = (V (G), A(G)), T and E be as defined before. Then,
Eσ ⊆ E¬γ ⊆ E.

Proof. By Proposition 3.2.3 and Definitions 3.2.1, 4.3.1 and 4.3.2:

ParSensE(T) ∩E ⊆ GivEvSensE(T) ⊆ E

⇐⇒ E\GivEvSensE(T) ⊆ E\ParSensE(T) ⊆ E

⇐⇒ Eσ ⊆ E¬γ ⊆ E.

We will now prove, by means of probability calculations, that all irrelevant
evidence nodes can be safely pruned.

Proposition 4.3.2. Let G = (V (G), A(G)) and Γ = {Pr(X | ρ(X)) | X ∈
V (G)} be as defined before. Then,

Pr(T | E) =

∑
V (G)\

(T∪S∪E∪δ(Eσ))

∏
X∈V (G)\D(Eσ)

Pr(X | ρ(X))

∑
V (G)\

(S∪E∪δ(Eσ))

∏
X∈V (G)\D(Eσ)

Pr(X | ρ(X))
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Proof. We recall from Equation 4.4, that

Pr(T | E) =
Pr(T ∧ S ∧E)

Pr(S ∧E)

=

∑
V (G)\

(T∪S∪E)

∏
X∈V (G)

Pr(X | ρ(X))

∑
V (G)\
(S∪E)

∏
X∈V (G)

Pr(X | ρ(X))
.

First, we will prove for the numerator, Pr(T ∧ S ∧ E), that the parameters of
all nodes in D(Eσ) are not needed in the calculation.

Since Eσ ⊆ E¬γ by Corollary 4.3.1, we can apply Lemma 4.1.2 to Eσ in the
calculation of Pr(T ∧ S ∧ E). The proof is analogous to the proof of applying
Lemma 4.1.2 to E¬γ . The resulting equation equals:

Pr(T ∧ S ∧E) =

 ∑
V (G)\

(T∪S∪E)

∏
X∈V (G)\Eσ

Pr(X | ρ(X))

 · ∏
Y ∈Eσ

Pr(Y | ρ(Y )).

Since

• (V (G)\(T∪S∪E∪ δ(Eσ)))∪ (δ(Eσ)\(E∪S)) = V (G)\(T∪S∪E) since
δ(Eσ) ∩T = ∅, and

• (V (G)\(T ∪ S ∪E ∪ δ(Eσ))) ∩ (δ(Eσ)\(E ∪ S)) = ∅, and

• (V (G)\D(Eσ)) ∪ (δ(Eσ)\Eσ) = V (G)\Eσ, and

• (V (G)\D(Eσ)) ∩ (δ(Eσ)\Eσ) = ∅

hold, we can subsequently rephrase Pr(T ∧ S ∧E) as:

Pr(T ∧ S ∧E)

=

 ∑
V (G)\

(T∪S∪E∪δ(Eσ))

∑
δ(Eσ)\
(E∪S)

∏
X∈V (G)\D(Eσ)

Pr(X | ρ(X)) ·
∏

Y ∈δ(Eσ)\Eσ
Pr(Y | ρ(Y ))


·
∏
Z∈Eσ

Pr(Z | ρ(Z)).

Note that we now separate the product in such a way, that for allX ∈ V (G)\D(Eσ)
we have that ρ(X) ∩Eσ = ∅. Our next step is to take the product over the pa-
rameters of nodes in V (G)\D(Eσ) out of the summation over δ(Eσ)\(E∪S). In
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order to apply Lemma 4.1.2 to the calculation of Pr(T∧S∧E), we have to show
that (X∪ρ(X))∩R = ((V (G)\D(Eσ))∪ρ(V (G)\D(Eσ)))∩(δ(Eσ)\(E∪S)) = ∅,
i.e.

1. (V (G)\D(Eσ)) ∩ (δ(Eσ)\(E ∪ S)) = ∅, and

2. for all X ∈ V (G)\D(Eσ), it holds that ρ(X) ∩ (δ(Eσ)\(E ∪ S)) = ∅.

Property 1 holds trivially.

Proof of property 2.
We assume that X ∈ V (G)\D(Eσ), in other words, X /∈ Eσ and X /∈ δ(Eσ).
We will now show by contradiction that ρ(X) ∩ (δ(Eσ)\(E ∪ S)) = ∅. Suppose
on the contrary, that ρ(X) ∩ (δ(Eσ)\(E ∪ S)) 6= ∅, in other words, there exists
a PX ∈ ρ(X), such that PX ∈ δ(Eσ), PX /∈ E and PX /∈ S. This situation is
illustrated in the following graph:

E PX X T

where T ∈ T and E ∈ Eσ, i.e. 〈{E} |E\{E} |T〉dG by definition. Now, either

PX ∈ T or ¬ 〈{PX} |E |T〉dG must hold. If PX ∈ T, then ¬ 〈{E} |E\{E} |T〉dG,

which contradicts that E ∈ Eσ. If ¬ 〈{PX} |E |T〉dG, then ¬ 〈{E} |E\{E} |T〉dG,
which contradicts that E ∈ Eσ. This contradicts the supposition that ρ(X) ∩
(δ(Eσ)\(E ∪ S)) 6= ∅. Hence, ρ(X) ∩ (δ(Eσ)\(E ∪ S)) = ∅ always holds.

Now, we can apply Lemma 4.1.2 to the calculation of Pr(T ∧ S ∧E):

Pr(T ∧ S ∧E)

=

 ∑
V (G)\

(T∪S∪E∪δ(Eσ))

∏
X∈V (G)\D(Eσ)

Pr(X | ρ(X)) ·

 ∑
δ(Eσ)\
(E∪S)

∏
Y ∈δ(Eσ)\Eσ

Pr(Y | ρ(Y ))




·
∏
Z∈Eσ

Pr(Z | ρ(Z)).

Now, we will look closer at the innermost factor, where we want to split out the
parameters of nodes in (S ∪Eσ). Since it holds that

• (δ(Eσ) ∩ (S ∪Eσ)) ∪ (δ(Eσ)\(E ∪ S)) = δ(Eσ)\Eσ, and

• (δ(Eσ) ∩ (S ∪Eσ)) ∩ (δ(Eσ)\(E ∪ S)) = ∅,
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we can rephrase the innermost factor as:∑
δ(Eσ)\
(E∪S)

∏
Y ∈δ(Eσ)\Eσ

Pr(Y | ρ(Y ))

=
∑
δ(Eσ)\
(E∪S)

∏
X∈δ(Eσ)∩(S∪Eσ)

Pr(X | ρ(X)) ·
∏

Y ∈δ(Eσ)\(S∪E)

Pr(Y | ρ(Y ))

We want to apply Lemma 4.1.2, to take the product over the parameters of the
nodes in δ(Eσ)∩(S∪Eσ) out of both of the summations, i.e. the summations over
(V (G)\(T∪S∪E∪ δ(Eσ)))∪ (δ(Eσ)\(E∪S)) = V (G)\(T∪E∪S). Therefore,
we have to show that (X ∪ ρ(X))) ∩R = ((δ(Eσ) ∩ (S ∪Eσ)) ∪ ρ(δ(Eσ) ∩ (S ∪
Eσ)) ∩ (V (G)\(T ∪E ∪ S)) = ∅, i.e.

3. (δ(Eσ) ∩ (S ∪Eσ)) ∩ (V (G)\(T ∪E ∪ S)) = ∅, and

4. for all X ∈ δ(Eσ)∩ (S∪Eσ), it holds that ρ(X)∩ (V (G)\(T∪E∪S)) = ∅.

Property 3 holds trivially.

Proof of property 4.
We assume that X ∈ δ(Eσ) ∩ (S ∪Eσ), then either X ∈ S or X ∈ Eσ. We will
now show by contradiction that ρ(X) ∩ (V (G)\(T ∪ E ∪ S)) = ∅. Suppose on
the contrary, that ρ(X) ∩ (V (G)\(T ∪E ∪ S)) 6= ∅, in other words, there exists
a PX ∈ ρ(X), such that PX /∈ T, PX /∈ E and PX /∈ S. First, consider the case
where X ∈ δ(Eσ) ∩Eσ. This situation is illustrated in the following graph:

E

PX X T

where T ∈ T and E ∈ Eσ, i.e. 〈{E} |E\{E} |T〉dG by definition. Then, since

X ∈ Eσ, i.e. ¬ 〈{X} |E\{X} |T〉dG, and 〈{E} |E\{E} |T〉dG, we have that there
cannot exist an active chain from PX to T through a parent of X. Since PX /∈ E,
we then have that 〈{PX} |E |T〉dG holds, i.e. PX ∈ S. This contradicts the
supposition that ρ(X) ∩ (V (G)\(T ∪E ∪ S)) 6= ∅.

Second, we consider the case where X ∈ δ(Eσ) ∩ S, illustrated in the following
graph:
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E

PX X T

where again T ∈ T and E ∈ Eσ. Then, since X ∈ S and PX /∈ E, we have
that 〈{PX} |E |T〉dG, i.e. PX ∈ S. This contradicts the supposition that ρ(X)∩
(V (G)\(T ∪E ∪ S)) 6= ∅. Hence, ρ(X) ∩ (V (G)\(T ∪E ∪ S)) = ∅ always holds.

Now, we can apply Lemma 4.1.2 to take the product over the parameters of the
nodes in δ(Eσ) ∩ (S ∪Eσ) out of the summations over V (G)\(T ∪E ∪ S):

Pr(T ∧ S ∧E)

=

 ∑
V (G)\

(T∪S∪E∪δ(Eσ))

∏
X∈V (G)\D(Eσ)

Pr(X | ρ(X)) ·

 ∑
δ(Eσ)\
(E∪S)

∏
Y ∈δ(Eσ)\(E∪S)

Pr(Y | ρ(Y ))




·
∏

W∈δ(Eσ)∩(S∪Eσ)

Pr(W | ρ(W )) ·
∏
Z∈Eσ

Pr(Z | ρ(Z)).

By applying Lemma 4.1.1, the term over δ(Eσ)\(E ∪ S) sums to 1. This gives
us

Pr(T ∧ S ∧E)

=

 ∑
V (G)\

(T∪S∪E∪δ(Eσ))

∏
X∈V (G)\D(Eσ)

Pr(X | ρ(X))

 · ∏
Y ∈D(Eσ)∩(S∪E)

Pr(Y | ρ(Y ))

And analogous to Pr(T ∧ S ∧E), Pr(S ∧E) is:

Pr(S ∧E)

=

 ∑
V (G)\

(S∪E∪δ(Eσ))

∏
X∈V (G)\D(Eσ)

Pr(X | ρ(X))

 · ∏
Y ∈D(Eσ)∩(S∪E)

Pr(Y | ρ(Y ))



4.3. INVESTIGATING EVIDENCE NODES 43

This results in

Pr(T | E) =
Pr(T ∧ S ∧E)

Pr(S ∧E)

=

∑
V (G)\

(T∪S∪E∪δ(Eσ))

∏
X∈V (G)\D(Eσ)

Pr(X | ρ(X))

∑
V (G)\

(S∪E∪δ(Eσ))

∏
X∈V (G)\D(Eσ)

Pr(X | ρ(X))

From the above proposition, we have that for all nodes in Eσ it holds that neither
its own parameters nor its children’s parameters are needed in the calculation,
which allows us to prune all nodes in Eσ. Note that by Corollary 4.3.1 the Bayes-
Ball Algorithm, Algorithm 1, can be used to identify all irrelevant evidence
nodes, since Eσ = E\GivEvSensE(T).

After pruning all nodes d-separated from T given E, all barren nodes with
respect to T and E and all irrelevant evidence nodes, the subgraph G′M of G
results where

• V (G′M ) = {X ∈ V (G) | X /∈ S ∧X /∈ B ∧X /∈ Eσ}

• A(G′M ) = {(X → Y ) ∈ A(G) | X ∈ V (G′M ) ∧ Y ∈ V (G′M )}

For a schematic summary of pruning all nodes d-separated from T given E, all
barren nodes with respect to T and E and all irrelevant evidence nodes, see
Figure 4.3.

Eσ\E¬γ E¬γ TB∆\B

ParSensE(T)

Figure 4.3: An Euler diagram representing all nodes in V (G′M ) ⊆ V (G), after
pruning all nodes d-separated from T given E, all barren nodes with respect to
T and E and all irrelevant evidence nodes.
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4.4 Combining the results

After pruning all nodes as described in this chapter, and identifying other node
sets with parameters (partly) irrelevant to the calculation of the probability of
interest, we can conclude with the following theorem.

Theorem 4.4.1. Let G = (V (G), A(G)) and Γ = {Pr(X | ρ(X)) | X ∈ V (G)}
be as defined before. Then,

Pr(T | E) =
Pr(T ∧E)

Pr(E)

=

∑
ParSensE(T)\(T∪E)

∏
X∈ParSensE(T)

Pr(X | ρ(X))

∑
ParSensE(T)\(E∪B∆)

∏
X∈ParSensE(T)\B∆

Pr(X | ρ(X))
. (4.6)

Proof. Proposition 4.2.1 implies that the parameters of all nodes in D(S) can
be excluded in the probability of interest calculation. Furthermore, Proposition
4.2.2 implies that the parameters of all nodes in B and B∆ can be excluded
in the numerator and denominator of the probability of interest calculation,
respectively. Finally, Proposition 4.3.1 implies that the parameters of all nodes
in E¬γ can be excluded in the probability of interest calculation.

Now, we have to show that

1. V (G)\(D(S) ∪B ∪E¬γ) = ParSensE(T)

2. V (G)\(D(S) ∪B∆ ∪E¬γ) = ParSensE(T)\B∆

Note that property 2 always holds when property 1 holds, since B ⊆ B∆.

Proof of property 1.
We know by Corollary 4.2.1, and by Definitions 2.1.4, 3.1.2, 3.2.2 and 4.3.1,
that:

S = V (G)\(PotEvSensE(T) ∪E),

B\S = PotEvSensE(T)\ParSensE(T),

E¬γ = E\ParSensE(T).

Therefore, we can verify that V (G)\(S ∪B ∪E¬γ) = ParSensE(T), since

S ∪B ∪E¬γ = S ∪B\S ∪E¬γ

= (V (G)\(PotEvSensE(T) ∪E))

∪ (PotEvSensE(T)\ParSensE(T)) ∪ (E\ParSensE(T))

= (V (G)\(E ∪ ParSensE(T))) ∪ (E\ParSensE(T))

= V (G)\ParSensE(T).
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Now, we have to prove that δ(S) ⊆ S∪B∪E¬γ in order to proof the proposition.
We assume that X ∈ δ(S). This situation is illustrated in the following graph:

S X T

where S ∈ S and T ∈ T. Note that X /∈ T holds trivially. Then, there are
three possible explanations for the d-separation of node S. First, if X ∈ S,
then S is d-separated. Second, if X /∈ S but X ∈ E, then X /∈ E¬γ , since then
〈{PX} |E |T〉dG∗ must hold. This implies that it may hold that ¬ 〈{S} |E |T〉dG,
which contradicts the supposition that S ∈ S, and therefore X ∈ E¬γ must
hold. Finally, if X /∈ S, X /∈ E and X /∈ T, then ¬ 〈{X} |E |T〉dG must hold.
Then, S can only be d-separated from T if X ∈ B.

4.5 Example

We will end this chapter with an example that demonstrates all concepts in-
troduced in this chapter. We will revisit the graph in Figure 3.2, which is
depicted once again in Figure 4.4. We will determine which nodes can be safely
pruned. After pruning these nodes, we will give the implications of the pruning
steps, and identify the other node sets with (partly) irrelevant parameters to
the calculation of the probability of interest.

T1 E1 A E2

B T2 C E3

Figure 4.4: Graph of the example probabilistic network.

T1 E1 A E2

T2

Figure 4.5: Graph of the example probabilistic network after pruning all nodes
in S ∪B ∪Eσ = {B,C,E3}.
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E2 E1 T1T2

A

Figure 4.6: An Euler diagram representing the nodes of the example probabilis-
tic network after pruning all nodes in S ∪B ∪Eσ.

First, we will determine all sets of nodes which can be safely pruned from the
network, that is, by Figure 4.3 we know that all nodes not in ParSensE(T)∪Eσ

can be safely pruned. Recall that, by the Bayes-Ball Algorithm, Algorithm 1,
we know that

PotEvSensE(T) = {A,C, T1, T2},
GivEvSensE(T) = {E1, E2},
ParSensE(T) = {A,E1, T1, T2}.

We can use these sensitivity sets in order to determine all nodes which can
be pruned, since we know from Definition 4.3.2 that Eσ = GivEvSensE(T).
Then,

ParSensE(T) ∪Eσ = ParSensE(T) ∪GivEvSensE(T)

= {A,E1, T1, T2} ∪ {E1, E2}
= {A,E1, T1, T2, E1, E2},

V (G)\(ParSensE(T) ∪Eσ) = {B,C,E3}.

That is, nodes B, C and E3 can be safely pruned from the network. Further-
more, by Definition 4.3.1 and the definition of B∆, we have that

E¬γ = E\ParSensE(T)

= {E2, E3},
E¬γ\Eσ = {E2},

B∆ = {B,C, T2},
B∆\B = {T2}.

That is, besides the parameters of node E3, the parameters of node E2 are
also irrelevant in the probability of interest calculation. In addition, besides the
parameters of nodes B and C, also the parameters of node T2 are not needed
in the denominator of the probability of interest calculation. In Figure 4.6, the
remaining nodes after pruning are depicted in the style of Figure 3.1, where all
implications of Theorem 4.4.1 are summarized in an Euler diagram.
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Now, we will apply our findings to the probability calculation of Pr(t | e), that
is,

Pr(t | e) =
Pr(t ∧ e)

Pr(e)

=

∑
ParSensE(T)\(T∪E)

∏
X∈ParSensE(T)

Pr(X | ρ(X))

∑
ParSensE(T)\(E∪B∆)

∏
X∈ParSensE(T)\B∆

Pr(X | ρ(X))
.

In the numerator we have to take the product over all nodes in

ParSensE(T) = {A,E1, T1, T2},

and we have to sum over all possible value combinations of the nodes in

ParSensE(T)\(T ∪E) = {A,E1, T1, T2}\{E1, E2, E3, T1, T2}
= {A}.

In the denominator we have to take the product over all nodes in

ParSensE(T)\B∆ = {A,E1, T1, T2}\{B,C, T2}
= {A,E1, T1},

and we have to sum over all possible value combinations of the nodes in

ParSensE(T)\(E ∪B∆) = {A,E1, T1, T2}\{E1, E2, E3, B,C, T2}
= {A, T1}.

That is,

Pr(t | e) =

∑
A

∏
X∈{A,E1,T1,T2}

Pr(X | ρ(X))

∑
A×T1

∏
X∈{A,E1,T1}

Pr(X | ρ(X))

=

∑
A

Pr(A | e2) Pr(e1 | t1 ∧A) Pr(t1) Pr(t2 | A)∑
A×T1

Pr(A | e2) Pr(e1 | T1 ∧A) Pr(T1)
. (4.7)

Now, only parameters of nodes in the parameter sensitivity set of T given E are
used in the probability calculation, and in the denominator even less.
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4.6 Summary

In this chapter, we explained by means of the probability calculation why the
parameters of certain nodes in a probabilistic network are not required when
interested in computing a specific probability of interest, and when nodes can
even be pruned entirely from the network. This resulted in a simplified equation
to calculate a probability of interest, where only parameters of of nodes in the
parameter sensitivity set for T given E are needed for the numerator, and even
less parameters are required in the denominator.



Chapter 5

Evidence sensitivity
analysis

In Chapter 3, we used the graphical representation of a probabilistic network to
determine which nodes may influence the probability of interest upon variation
in their observations.

In this chapter, we will use the results of Chapter 4 to locate all terms in the
probability of interest calculation that are related to a single evidence node
under investigation, in order to define how the nodes upon variation in the
observations influence the probability of interest. To this end, we will define
an evidence sensitivity function, which expresses the probability of interest in
terms of the parameters of nodes related to the evidence node under investiga-
tion.

5.1 Defining the evidence sensitivity function

In this section we assume that there is a single evidence node Ei ∈ E which
we would like to investigate. The currently observed value for Ei is present in
the probability of interest calculation in all conditional probability distributions
Pr(X | ρ(X)) ∈ Γ for which either X = Ei or Ei ∈ ρ(X). Upon changing the
observed value for Ei, therefore, different parameters from the distributions for
nodes in D(Ei) will be selected. These distributions involve not only nodes in
D(Ei), but their parents ρ(D(Ei)) also. For changing the observed value for Ei,
therefore, we need to consider the entire Markov blanketMB(Ei) of Ei.

The following lemma shows how to isolateMB(Ei) in a probability calculation.
More specifically, it shows that we can pull in the summation over all variables
Q\MB(Ei) for any Q ⊆ V (G), in the probability calculation, which captures

49
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the fact that the product over the parameters of all X ∈ D(Ei)∩X is constant
with respect to all variables in Q\MB(Ei).

Lemma 5.1.1. Let G = (V (G), A(G)) and Γ = {Pr(X | ρ(X)) | X ∈ V (G)} be
as defined before. Let Q,X ⊆ V (G) and Ei ∈ V (G). Then,∑
Q

∏
X∈X

Pr(X | ρ(X))

=

 ∑
MB(Ei)∩Q

∏
X∈D(Ei)∩X

Pr(X | ρ(X)) ·

 ∑
Q\MB(Ei)

∏
Y ∈X\D(Ei)

Pr(Y | ρ(Y ))


Proof. In order to pull in the summation over all variables Q\MB(Ei), we want
to apply Lemma 4.1.2 to the equation. In order to do that, we have to show
that

1. (MB(Ei) ∩Q) ∩ (Q\MB(Ei)) = ∅,

2. (D(Ei) ∩X) ∩ (X\D(Ei)) = ∅,

3. ((D(Ei) ∩X) ∪ ρ(D(Ei) ∩X)) ∩ (Q\MB(Ei)) = ∅.

Property 1 and 2 hold trivially.

Proof of property 3.

Suppose X ∈ D(Ei) ∩X. Then, by definition,

X ∈ D(Ei) =⇒ X ∈MB(Ei) =⇒ X /∈ Q\MB(Ei) for any Q ⊆ V (G).

Now, suppose X ∈ ρ(D(Ei) ∩X). Then, by definition,

X ∈ ρ(D(Ei)) =⇒ X ∈MB(Ei) =⇒ X /∈ Q\MB(Ei) for any Q ⊆ V (G).

Therefore, property 3 holds.

We will apply Lemma 5.1.1 to Equation 4.6 to pull in all terms which are
constant with respect to the so-called evidence sensitivity function parameters.
Recall Equation 4.6, the result of the previous chapter, where only parameters
of the parameter sensitivity set of T given E are used in the probability of interest
calculation:

Pr(T | E) =

∑
ParSensE(T)\(T∪E)

∏
X∈ParSensE(T)

Pr(X | ρ(X))

∑
ParSensE(T)\(E∪B∆)

∏
X∈ParSensE(T)\B∆

Pr(X | ρ(X))

We will locate all terms in the probability calculation, which contain parame-
ters related to Ei, the node under investigation. Then, all other terms in the
probability calculation can be considered as constants.
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In order to apply Lemma 5.1.1 to the above equation , we will define the evidence
sensitivity function parameters in the following way. First, we define the set V of
all possible value combinations, the Cartesian product, of the nodes associated
with the parameters in D(Ei) in the numerator:

V =×MB(Ei) ∩ ParSensE(T)\(T ∪E).

Using V, we can now define the evidence sensitivity function parameters in the
numerator as follows.

Definition 5.1.1 (evidence sensitivity function parameters in the numerator).
Let G = (V (G), A(G)), T and E be as defined before. Let ParSensE(T) be
the parameter sensitivity set for T given E, let Ei be the evidence node under

investigation, and let V be defined as before. Then, x
(t,e\{ei})
v (ei) is a parameter

in the evidence sensitivity function’s numerator, defined as

x(t,e\{ei})
v (ei) =

∏
X∈D(Ei)∩ParSensE(T)

Pr(X | ρ(X))

for any v ∈ V.

Note that x
(t,e\{ei})
v (ei) depends on the specific value combination t and e under

consideration for T and E, respectively. We will, however, write xv(ei) for short,
if it will not cause confusion.

Second, we define the set W of all possible value combinations, the Cartesian
product, of the nodes relevant for the parameters in D(Ei) in the denomina-
tor:

W =×MB(Ei) ∩ ParSensE(T)\(E ∪B∆).

Using W, we can now define the evidence sensitivity function parameters in the
denominator as follows.

Definition 5.1.2 (evidence sensitivity function parameters in the denominator).
Let G = (V (G), A(G)), T and E be as defined before. Let ParSensE(T) be the
parameter sensitivity set for T given E, let B∆ be the barren nodes with respect
to E, let Ei be the evidence node under investigation, and let W defined as

before. Then, y
(e\{ei})
w (ei) is a parameter in the evidence sensitivity function’s

denominator, defined as

y(e\{ei})
w (ei) =

∏
X∈D(Ei)∩ParSensE(T)\B∆

Pr(X | ρ(X))

for any w ∈W.

Note that y
(e\{ei})
w (ei) depends on the specific value combination e under con-

sideration for E. We will, however, write yw(ei) for short, if it will not cause
confusion.
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Note, that the set of evidence sensitivity function parameters corresponds to a
certain value for node Ei. By changing the observation for Ei from, for example,
ei to ei, the parameters change from xv(ei) and yw(ei) to xv(ei) and yw(ei),
for all v ∈ V, w ∈W.

Now, we can define the evidence sensitivity function.

Theorem 5.1.1 (The evidence sensitivity function). Let G = (V (G), A(G)), T
and E be as defined before. Let Ei be the evidence node under investigation.
Then,

Pr(t | e)(ei) =

∑
v∈V

xv(ei) · cv∑
w∈W

yw(ei) · c′w

where cv, c
′
w are constants with respect to Ei, and xv(ei), yw(ei) are the evidence

sensitivity function parameters for all v ∈ V, w ∈W.

Proof. Using Equation 4.6, we can compute a certain probability of interest
Pr(t | e) as follows:

Pr(t | e) =

∑
ParSensE(T)\(T∪E)

∏
X∈ParSensE(T)

Pr(X | ρ(X))

∑
ParSensE(T)\(E∪B∆)

∏
X∈ParSensE(T)\B∆

Pr(X | ρ(X))

By applying Lemma 5.1.1 to this equation, and replacing the products represent-
ing the evidence sensitivity function parameters by xv(ei) and yw(ei) as defined
in Definitions 5.1.1 and 5.1.2, the resulting equation is:

Pr(t | e)(ei)

=

∑
V

xv(ei)·

 ∑
ParSensE(T)\

(T∪E∪MB(Ei))

∏
X∈ParSensE(T)\

D(Ei)

Pr(X | ρ(X))




∑
W

yw(ei)·

 ∑
ParSensE(T)\

(E∪B∆∪MB(Ei))

∏
X∈ParSensE(T)\

(B∆∪D(Ei))

Pr(X | ρ(X))




=

∑
v∈V

xv(ei) · cv∑
w∈W

yw(ei) · c′w
.
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Since the inner summations in the numerator and denominator are not related
to node Ei, due to using Lemma 5.1.1, we can consider these factors as constants
with respect to Ei, for all v ∈ V, w ∈W.

Therefore, an evidence sensitivity function is always a fraction of two linear func-
tions with multiple variables.

5.2 Computing the evidence sensitivity function

To compute the constants of an evidence sensitivity function, previous research
results for the parameter sensitivity function can be used. For example, you
can compute from the network the probability of interest for as many differ-
ent observations for node Ei as there are evidence sensitivity function constants
minus 1, and subsequently solve the resulting system of multilinear equations
to determine the constants. This method is used for computing the parameter
sensitivity function in [4]. However, this method is often not applicable to evi-
dence, since it requires a node to have at least as many possible observations as
there are evidence sensitivity function constants, that is, the size of the relevant
part for calculating the numerator and the denominator of the Markov blanket
MB(Ei), respectively. Note that in most practical applications of probabilis-
tic networks, the Markov blanket of an evidence node is relatively small, since
evidence nodes are often root nodes or leaf nodes.

In the next section, we give an example where this approach does work. For
the general case, alternative algorithms have to be designed which integrate the
computation of constants with standard inference. Such algorithms already exist
for computing the parameter sensitivity function in an efficient way [7].

5.3 Example

We will end this chapter with an example that demonstrates all concepts intro-
duced in this chapter. We will revisit the graph in Figure 3.2, which is depicted
once again in Figure 5.1. We will investigate the sensitivity of the probability of
interest to changes in the observation of nodes E1, E2 and E3, respectively. For
each evidence node, we will define the evidence sensitivity function. For evidence
node E2, we will also compute the evidence sensitivity function.

5.3.1 Defining the evidence sensitivity function

We will define the evidence sensitivity function for each evidence node. Recall
from Equation 4.7, that
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T1 E1 A E2

B T2 C E3

Figure 5.1: Graph of the example probabilistic network.

Pr(t | e) =
Pr(t ∧ e)

Pr(e)

=

∑
ParSensE(T)\(T∪E)

∏
X∈ParSensE(T)

Pr(X | ρ(X))

∑
ParSensE(T)\(E∪B∆)

∏
X∈ParSensE(T)\B∆

Pr(X | ρ(X))

=

∑
A

Pr(A | e2) Pr(e1 | t1 ∧A) Pr(t1) Pr(t2 | A)∑
A×T1

Pr(A | e2) Pr(e1 | T1 ∧A) Pr(T1)
.

We will apply Lemma 5.1.1 to the above equation to pull in all terms which are
constant with respect to the evidence sensitivity function parameters for a single
evidence node under investigation, and we will use Theorem 5.1.1 to determine
their evidence sensitivity function.

First, we will determine the evidence sensitivity function for node E1 under in-
vestigation. Note that

D(E1) = {B,E1},
MB(E1) = {A,B,E1, T1}.

Then, the set V of all possible value combinations of the nodes associated with
the parameters in D(E1) in the numerator is:

V =×MB(E1) ∩ (ParSensE(T)\(T ∪E))

=×{A,B,E1, T1} ∩ ({A,E1, T1, T2}\{E1, E2, E3, T1, T2})

=×{A,B,E1, T1} ∩ {A}

=×{A}
= A.
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The set W of all possible value combinations of the nodes relevant for the
parameters in D(E1) in the denominator is:

W =×MB(E1) ∩ (ParSensE(T)\(E ∪B∆))

=×{A,B,E1, T1} ∩ ({A,E1, T1, T2}\{E1, E2, E3, B, C, T2}

=×{A,B,E1, T1} ∩ {A, T1}

=×{A, T1}
= A× T1.

Then, the evidence sensitivity function for node E1 under investigation equals for
E1 = e1,

Pr(t | e)(e1) =

∑
v∈V

xv(e1) · cv∑
w∈W

yw(e1) · c′w

=

∑
A

xv(e1) · cv∑
A×T1

yw(e1) · c′w

where cv, c
′
w are constants with respect to E1, and

xv(e1) =
∏

X∈D(E1)∩ParSensE(T)

Pr(X | ρ(X)) = Pr(e1 | t1 ∧A)

yw(e1) =
∏

X∈D(E1)∩ParSensE(T)\B∆

Pr(X | ρ(X)) = Pr(e1 | T1 ∧A)

are the evidence sensitivity function parameters for all v ∈ A, w ∈ A×T1. We al-
ready knew that, by the Bayes-Ball Algorithm, Algorithm 1, E1 ∈ GivEvSensE(T),
and therefore we knew that by changing the observation for E1, the probability
of interest may change too. We now know how the evidence sensitivity func-
tion parameters change, and therefore we know how the probability of interest
changes.

Second, we will determine the evidence sensitivity function for node E2 under
investigation. Note that

D(E2) = {A,E2},
MB(E2) = {A,E2}.
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Then, the set V of all possible value combinations of the nodes associated with
the parameters in D(E2) in the numerator is:

V =×MB(E2) ∩ (ParSensE(T)\(T ∪E))

=×{A,E2} ∩ ({A,E1, T1, T2}\{E1, E2, E3, T1, T2})

=×{A}
= A.

The set W of all possible value combinations of the nodes relevant for the
parameters in D(E2) in the denominator is:

W =×MB(E2) ∩ (ParSensE(T)\(E ∪B∆))

=×{A,E2} ∩ ({A,E1, T1, T2}\{E1, E2, E3, B,C, T2}

=×{A}
= A.

Then, the evidence sensitivity function for node E2 under investigation equals for
E2 = e2,

Pr(t | e)(e2) =

∑
A

xv(e2) · cv∑
A

yw(e2) · c′w
(5.1)

where cv, c
′
w are constants with respect to E2, and

xv(e2) =
∏

X∈D(E2)∩ParSensE(T)

Pr(X | ρ(X)) = Pr(A | e2)

yw(e2) =
∏

X∈D(E2)∩ParSensE(T)\B∆

Pr(X | ρ(X)) = Pr(A | e2) (5.2)

are the evidence sensitivity function parameters for all v ∈ A, w ∈ A. We knew
already that, by the BayesBall Algorithm, Algorithm 1, E2 ∈ GivEvSensE(T),
and therefore we knew that by changing the observation for E2, the probabil-
ity of interest may change too. We now know the evidence sensitivity function
parameters that change, and therefore we know how the probability of interest
changes.

Finally, we will determine the evidence sensitivity function for node E3 under
investigation. Note that

D(E3) = {C,E3},
MB(E3) = {A,C,E3}.
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Then, the set V of all possible value combinations of the nodes associated with
the parameters in D(E3) in the numerator is:

V =×MB(E3) ∩ (ParSensE(T)\(T ∪E))

=×{A,C,E3} ∩ ({A,E1, T1, T2}\{E1, E2, E3, T1, T2})

=×{A,C,E3} ∩ {A}

=×{A}
= A.

The set W of all possible value combinations of the nodes relevant for the
parameters in D(E3) in the denominator is:

W =×MB(E3) ∩ (ParSensE(T)\(E ∪B∆))

=×{A,C,E3} ∩ ({A,E1, T1, T2}\{E1, E2, E3, B, C, T2}

=×{A,C,E3} ∩ {A, T1}

=×{A}
= A.

Then, the evidence sensitivity function for node E3 under investigation is

Pr(t | e)(e3) =

∑
A

cv∑
A

c′w

where cv, c
′
w are constants with respect to E3, and all evidence sensitivity func-

tion parameters are equal to 1, since D(E3) ∩ ParSensE(T) = ∅ and D(E3) ∩
ParSensE(T)\B∆ = ∅. By changing the observation for E3, there are no evi-
dence sensitivity function parameters changing, and therefore also the probability
of interest stays the same. We actually knew this already, since we knew that,
by the BayesBall Algorithm, Algorithm 1, that E3 /∈ GivEvSensE(T).

5.3.2 Computing the evidence sensitivity function

This subsection will demonstrate how we can compute the evidence sensitivity
function for evidence node E2. The conditional probability distributions which
will be used for this example, can be found in Table 5.1. Recall from Equations
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Pr(A | E2) E2 e0
2 e1

2 e2
2 e3

2 e4
2 e5

2 e6
2

A a 1 0.95 0.75 0.55 0.25 0.15 0.05
a 0 0.05 0.25 0.45 0.75 0.85 0.95

Pr(E1 | T1 ∧A) T1 t1 t1 t1 t1
A a a a a

E1 e1 0.2 0.1 0.3 0.4
e1 0.8 0.9 0.7 0.6

Pr(T1)

T1 t1 0.75
t1 0.25

Pr(T2 | A) A a a

T2 t2 0.99 0.8
t2 0.01 0.2

Table 5.1: The conditional probability distributions of all nodes in the parameter
sensitivity set for T given E of the example probabilistic network.

5.1 and 5.2, that the evidence sensitivity function for node E2 under investigation
is

Pr(t | e)(e2) =

∑
A

xv(e2) · cv∑
A

yw(e2) · c′w

where cv, c
′
w are constants with respect to E2, and

xv(e2) = Pr(A | e2)

yw(e2) = Pr(A | e2)

are the evidence sensitivity function parameters for all v ∈ A, w ∈ A.

More specifically, in our example probabilistic network, we have that

Pr({t1, t2} | {e1, e2, e3})(e2) =
Pr(a | e2) · c1 + Pr(a | e2) · c2
Pr(a | e2) · c3 + Pr(a | e2) · c4

for any value e2 of E2.

Since Pr(a | e2) = 1− Pr(a | e2), we can rewrite the function as

Pr({t1, t2} | {e1, e2, e3})(e2) =
Pr(a | e2) · (c1 − c2) + c2
Pr(a | e2) · (c3 − c4) + c4

=
Pr(a | e2) · c′1 + c2
Pr(a | e2) · c′3 + c4
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Moreover, we can reduce the number of required constants to three:

Pr({t1, t2} | {e1, e2, e3})(e2) =
Pr(a | e2) · c

′
1

c′1
+ c2

c′1

Pr(a | e2) · c
′
3

c′1
+ c4

c′1

=
Pr(a | e2) + c2

Pr(a | e2) · c3 + c4

for new constants c2, c3 and c4.

To compute these constants we use any standard inference algorithm on our
example network to find three posteriors for three different values of e2:

Pr(t | e1, e
0
2, e3) = 0.81

Pr(t | e1, e
2
2, e3) = 0.78978261

Pr(t | e1, e
4
2, e3) = 0.7542

where t = {t1, t2}. This gives us a system of linear equations:

Pr(a | e0
2) + c2 = 0.81 · (Pr(a | e0

2) · c3 + c4)

⇐⇒ 1 + c2 = 0.81 · (c3 + c4)

and similar equations for e2
2 and e4

2.

Solving this system gives us c2 = −13.913, c3 = 2.899 and c4 = −18.841. Now,
we can calculate easily all other probabilities of interest by changing the obser-
vation for node E2 to, for example, e6

2. Then, with Pr(a | e6
2) = 0.05:

Pr(t | e)(e6
2) =

Pr(a | e6
2)− 13.913

2.899 · Pr(a | e6
2)− 18.841

=
0.05− 13.913

2.899 · 0.05− 18.841

= 0.7415.

Note that in this specific example, where we can write the evidence sensitivity
function as a function with only one evidence sensitivity function parameter. Due
to the binary variable A and the small Markov blanket of node E2, the evidence
sensitivity function has the same form as a parameter sensitivity function. This
evidence sensitivity function can be analyzed in the same way as a parameter
sensitivity function, and previous results as in [10] can be used as an inspiration
to analyze the effects of changing the observation for node E2.

5.4 Summary

In this chapter, we introduced the evidence sensitivity function for a single ev-
idence node under investigation, Ei. This function captures how a change in
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observation will influence the probability of interest. We showed how to isolate
MB(Ei) in a probability calculation, and we applied this to the probability
calculation where only parameters of the nodes in the parameter sensitivity set
for T given E are used. We defined the evidence sensitivity function parameters
in such a way, that they capture all nodes for which different parameters of
the conditional probability distributions have to be selected, upon changing an
observation.

The evidence sensitivity function can be described as a fraction of two linear
functions with multiple variables. The form of this function depends only on
the properties of all nodes in the Markov blanket MB(Ei) of Ei. The evidence
sensitivity function can be used to perform an evidence sensitivity analysis, by
investigating the function’s properties.



Chapter 6

Conclusion and further
research

In this thesis, we studied the sensitivity of a probability of interest to changes
in the evidence in a probabilistic network. We defined the evidence sensitivity
set for T given E, which consists of all nodes for which a change in the ob-
served value, or a change in status of being observed or not, may influence the
probability of interest. We proved that a node is in the evidence sensitivity set
if and only if it might affect the probability of interest upon undergoing above-
mentioned changes, based on the graphical properties of a probabilistic network
alone. The evidence sensitivity set, as well as the parameter sensitivity set. for
T given E can be efficiently identified by the Bayes-Ball Algorithm. Although
the algorithm was already available, its ability to identify the parameter sensi-
tivity set was, as far as we know, not mentioned before. We proved in addition
that it also correctly identifies the by us introduced given evidence sensitivity set
and potential evidence sensitivity set. In addition, we proved that the parameter
sensitivity set is always a subset of the evidence sensitivity set, which gives us a
good understanding of the relations between the sensitivity sets in the proba-
bilistic network. The results can be applied directly in experimental research
where probabilistic networks are used, to narrow down the amount of evidence
nodes that have to be analyzed in order to perform a full evidence sensitivity
analysis.

Furthermore, we explained by means of the probability calculation why the pa-
rameters of certain nodes in a probabilistic network are not needed, and when
nodes can even be pruned entirely from the network. This resulted in a simple
equation to calculate a probability of interest, where only parameters of nodes in
the parameter sensitivity set for T given E are needed. In the denominator, prob-
ably even less parameters are needed, since the by us defined semi-barren nodes
can be excluded here. Finally, we introduced the evidence sensitivity function

61
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for a single evidence node under investigation. The evidence sensitivity function
parameters depend only on parameters of nodes in the ‘donna con bambini’ of
this evidence node, which are also in the parameter sensitivity set for T given
E.

More research can be done on pruning in specific situations, for example when
the probabilistic network contains deterministic nodes. Moreover, for the evi-
dence sensitivity function, we limited ourselves to investigating how the change
of a single observation influences the probability of interest. It would be inter-
esting to investigate how the change of more than one observation influences
the probability of interest. Moreover, we presented one way of computing the
evidence sensitivity function constants by solving a system of linear equations.
However, a more sophisticated and practical way may be to compute the con-
stants directly during propagation in an inference algorithm using a junction
tree, which already exists for computing the parameter sensitivity function [7].
Furthermore, more research on how we have to interpret the evidence sensitivity
function to measure the robustness and reliability of the probabilistic network is
necessary. We expect that the existing methods from the parameter sensitivity
analysis as in [10] are a good inspiration. Finally, since we limited ourselves
to investigating hard evidence nodes only, it can be even more interesting to
investigate the evidence sensitivity function of an evidence node in a probabilistic
network where soft evidence is allowed.
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