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Abstract

Simulations were done to research single photon and π0 separation in the Forward Calorime-
ter, which is proposed as an upgrade for ALICE at CERN. Photons from π0 decay form back-
ground radiation for direct photon detection. In order to reject the background, the particle
reconstruction needs to identify the particles correctly. Research on the cluster sizes is done
to analyze the clusters left behind by single photons and π0 decay photons in the detector. To
do this logarithmic weighting is used. The best value for the logarithmic weighting parameter
w0 was w0 w 5.8.
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2 THEORY

1 Introduction

Subatomic physics deals with entities smaller that the atom. The research done in this branch
of physics involves understanding the basic building blocks of matter and the forces that act
on them. In everyday life the only forces we notice are gravitation and electromagnetism. On
subatomic length scales (order of 10−15 m), however, the strong and the weak are introduced and
the gravitational force is neglected, leaving three forces to be considered. The strong and the weak
force vanish at atomic and larger distances. The strong force holds nuclei together, with a very
short range. The weak force has an even shorter range of interaction.

To describe interactions at subatomic length scales quantum mechanics and quantum field the-
ory have been invented. Part of this is Quantum Electro Dynamics (QED) and Quantum Chromo
Dynamics (QCD). QED is relatively well understood and it explains the electromagnetic interac-
tions between photons and charged particles. QCD describes the interactions between quarks and
gluons that interact via the strong force. QCD as the general theory is considered to be complete,
only it is a much more complicated theory and most of the problems are not yet solved, implying
that some qualitative features (like confinement) can not be directly derived from the theory. The
weak interaction is described together with the electromagnetic interaction in a unified, so-called
electro-weak theory and it allows quarks to change their ‘flavour’.

To study the forces and particles at these small length scales, particle accelerators are con-
structed. The scattering experiments that are done with accelerators allow a glimpse at the struc-
ture of the smallest particles. The Large Hadron Collider (LHC) at CERN is todays largest particle
accelerator, which yields the highest energy collisions. One of the largest experiments at CERN
is ALICE (A large Ion Collider Experiment). As the name suggest, ALICE is optimized to study
heavy ion collisions, such as Pb-Pb.

The Forward Calorimeter (FoCal) is proposed as an upgrade of the ALICE detector. Among
others, it will be used to detect direct photons from the collisions. These photons provide hints
of what happens during the collisions. The collisions also generate a large amount of π0 particles,
which decay into photons. These π0 decay photons are considered to be background radiation that
interferes with the direct photon measurements. In order to know what photons are direct photons
from the collisions, the π0 decay photons need to be filtered out.

The main goal of this research is to be able to differentiate between single photons, and photons
coming from π0 decay, in order to filter π0 decay photons. There are multiple ways to do this:
first, FoCal will use a clustering algorithm that can identify hits of photons in the detector and
is able through the invariant mass, to reconstruct the mother particle, such as the π0. This only
works when two clusters of photons that overlap only slightly or not at all. When two clusters
do overlap a second method might be used: shower shape reconstruction, which uses the widths
of a cluster to determine whether the incoming particle was a single photon or were perhaps two
photons.

In order to understand what happens at π0 decay, a bit of theory is spent on explaining photon
detection and on kinematics. After that FoCal specific information will be given, followed by the
simulations for this research and their results.

2 Theory

If we want to detect direct photons from the collisions we need to remove the background caused
by π0 decay. To do this, it is good to know about how photons are being detected and what the
influence of π0 decay actually is. Also the definitions of radiation length and Molière radius are
useful concepts.

2.1 Photon detection

In order to detect photons, a calorimeter can be used. A calorimeter is a device that stops
incoming particles and it has properties to identify the particle’s energy. There are two types of
calorimeters: electromagnetic and hadronic. Electromagnetic calorimeters are designed mainly to
detect the energy of particles that interact electromagnetically. Hadronic calorimeters are used
when hadronic interactions play a bigger part.
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2.2 π0 decay 2 THEORY

A calorimeter is usually designed to completely stop or absorb the particles. In this way the
particles (are forced to) deposit all of their energy. Calorimeters usually consist of two types of
materials: a high density absorber interleaved with an active material. The absorber converts
the particles into showers of more particles with lower energy. The active material is for example
silicon which acts as an electronic sensor.

2.2 π0 decay

In p + p and p + A collisions lots of π0 are created. The decay of a π0 is as follows: π0 → γγ. If
we want to remove the background formed by these π0 decay photons we need to understand their
kinematics. We are interested in direct photons at forward rapidities, so π0 at forward rapidities
will also be measured. In the following sections π0 kinematics and the reconstruction through their
invariant mass will be explained.

2.2.1 Relativistic kinematics

The mean life time of a π0 in the lab frame is about 10−17 s. The speed is relativistic (near c), so in
the lab frame the distance x they travel before decaying is approximated by x = c ∗ 10−17s w 10−9

m, which is about 1 nanometer.
In its rest frame the decay products of a π0 are always back to back, see Fig. 1a. If we want

to transform this to the lab frame, we need to use a bit of special relativity. Here, natural units
are used, so c = 1.

The momentum for a particle is given as a four-vector:

p =


E
px
py
pz

 ,

with px, py and pz the momenta in the x-, y- and z-directions and E the energy of the particle.
For special relativity the Minkowski metric is used. With this metric an inner product of two
four-vectors p1 and p2 is done as follows:

p1.p2 = (E1, px,1, py,1, pz,1)


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




E2

px,2
py,2
pz,2

 (1)

= E1E2 − (px,1px,2 + py,1py,2 + pz,1pz,2) .

Now we want to do a Lorentz transformation from S to S
′
, with S

′
moving at constant velocity

v in the x-direction with respect to S.

p′ =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 p (2)

This is true for any four-vector. p is the four-vector in S, p′ is the four-vector in S′, β is the
velocity v in units of c and γ is defined as:

γ =
1√

1− β2
. (3)

Such an inner product in the Minkowski metric is called Lorent invariant, because it does not
change under a Lorentz transformation. This means that p1.p2 = p′1.p

′
2.

To illustrate we now want to do a Lorentz transformation on the rest frame in Fig. 1a. This
results in Fig. 1b, where θb1 is the angle of photon 1 with the horizontal axis before the Lorentz
transformation and θa1 is the angle of photon 1 after the Lorentz transformation. The same goes
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for photon 2. In the figures it is visible that the photons are boosted in the z-direction in the lab
frame. This is also refered to as a Lorentz boost.

(a) π0 in its rest frame. (b) π0 in lab frame traveling in
ẑ-direction.

Figure 1: Photon momentum before and after Lorentz boosting. In this example photons decay
perpendicular to the π0 momentum and are then Lorentz boosted. θb1 = −θb2 and θa1 = −θa2.

Fig. 2a is a different case, where photon 1 decays at an angle θb1 < 90◦ with the z-axis. This
has the results that photon 1 gets a higher momentum in the z-direction than photon 2, because
photon 1 already has a larger momentum in the positive z-direction than photon 2, before the
Lorentz transformation.

(a) π0 in its rest frame. (b) π0 in lab frame traveling in
ẑ direction.

Figure 2: Photon momentum before and after Lorentz boosting. Photon 1 decays at an angle
θ < 90

o

and photon 2 decays at an angle 180
o

+ θ to the π0 momentum and they are then Lorentz
boosted.
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2.2.2 Invariant mass

For the invariant mass calculation, natural units are also used. First we have the relativistic energy:

E2 = m2 + p2 , (4)

with m the rest mass and p the momentum.
The rest mass of photons is zero, therefore photon momentum and energy are the same in

natural units,

E2
γ = p2γ . (5)

The invariant mass m12 is given by:

m12 =

√
(E1 + E2)

2 −
(
⇀
p1 +

⇀
p2

)2
(6)

m12 =

√
E2

1 + E2
2 + 2E1E2 − p21 − p22 − 2

⇀
p1.

⇀
p2 . (7)

Filling in p2i = E2
i yields:

m12 =

√
2E1E2 − 2

⇀
p1.

⇀
p2 . (8)

Working out the inner product:

⇀
p1.

⇀
p2 =

∣∣∣⇀p1∣∣∣ ∣∣∣⇀p2∣∣∣ cos (θ12) = E1E2 cos (θ12) (9)

m12 =
√

2E1E2 − 2E1E2 cos (θ12) =
√

2E1E2 (1− cos (θ12)), (10)

with θ12 the angle between the two photons, θ12 = |θa1| + |θa2| in Fig. 1 and Fig. 2. Please
note that the above expression is only valid for photons, since their rest mass is zero.

In the experiment E1, E2 and the photon positions and angles are measured. One can now
easily obtain the invariant mass of the mother particle. The determination of the energy of the
clusters will require some work as will be discussed later on.

From Eq. (10) we know the invariant mass m12 as a function of θ. Rewriting this equation to
have θ as a function of m12 yields the following:

θ = arccos

(
2E1E2 −m12

2E1E2

)
. (11)

There are three limit cases:

2E1E2 � m12 ⇒ θ → 0

2E1E2 = m12 ⇒ θ =
π

2
2E1E2 � m12 ⇒ θ → π,

with m12 of course the π0 rest mass and E1 and E2 the energy of the first and second decay
photon. Thus when the photons have high energy compared to the rest energy of the π0, the angle
will be very small. This is the case when the decaying π0 had a high momentum. The goal of this
research is to optimize parameters to find a difference between single photon clusters and clusters
of two photons coming from π0. The clusters of the π0 decay photons are very close together if
the opening angle is very small.
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2.3 Radiation length 2 THEORY

2.3 Radiation length

When a high-energy photon hits a dense absorber (like tungsten or lead) it generates an electromag-
netic cascade or shower. The photon generates electrons and positrons through pair production,
which in turn generate photons of lower energy due to bremsstrahlung. This process continues un-
til the electrons reach a certain critical energy and then dissipate their energy through ionization
and excitation of the absorber instead of the generation of new shower particles. The longitudinal
development of the shower is caused by the high-energy part of the shower.

The radiation length X0 (usually in g/cm2) is a quantity that describes the longitudinal profile
of an electromagnetic cascade; it is a characteristic length of the amount of matter traversed
in which pair production or bremsstrahlung occurs, for photons and electrons respectively. For
photons, this X0 is 7

9 of the mean free path for pair production. For electrons it is the mean distance
for which the fraction of the energy that is left is 1

e , while the rest of the energy is dissipated by
bremsstrahlung.

2.4 Molière radius

The Molière radius RM of a shower is defined as the radius of the cilinder around photon direction
which contains 90% of the deposited energy of a shower. Usually about 99% of this deposited
energy lies within 3.5 RM [3]. Beyond this radius the scaling with RM fails. The showers begin
with a narrow core and as it develops the core broadens.
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3 FOCAL

3 FoCal

The Forward Calorimeter (FoCal) is proposed as an upgrade of the ALICE detector. ALICE was
designed to study the properties of hot and dense partonic matter and FoCal will extend these
capabilities to study cold dense partonic matter. FoCal will be able to provide high precision
measurements of direct photons in p+ p and p+A collisions. [2]

3.1 Technical details

Figure 3: Proposed FoCal location in the ALICE detector

The currently proposed location of FoCal will be at 7 or 8 meters from the collision point as seen
in Fig. 3. FoCal will be a disk with a thickness of 15 cm and a diameter of about 60 cm. The
calorimeter will consist out of layers of tungsten interleaved with silicon layers. There will be six
segments: the 1st and 3rd are the same and consist out of four layers of tungsten interleaved with
low granularity (1 cm x 1 cm) silicon pads. The 5th and the 6th segment are also the same and
consist out of five layers of tungsten interleaved with low granularity silicon pads. The 2nd and 4th
segments consist of one layer of tungsten with a layer of high granularity (1 mm x 1 mm) silicon
pixels behind it, as can be seen in Fig. 4. The difference between pads and pixels is the way they
are read out by the electronics. The combination of tungsten, silicon, electronics and glue creates
an effective Molière radius of about 1 cm.

In order to detect direct photons from the collisions, decay photons need to be rejected. These
decay photons are mainly caused by π0 decay. The typical opening angles of π0 decays at forward
rapidity are very small, due to the longitudinal Lorentz boost. This means that the photons coming
from π0 decay are very close together (in the order of milimeters) upon entering FoCal. Thus FoCal
needs to have a high resolving power in order to separate the decay photons of π0. To obtain this
two particle separation, FoCal uses the high granularity layers in Fig. 4, which have a cell size of
1 mm x 1 mm. The segments with the coarse layers are mostly used for determining the particle
energy.
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3.2 Clustering algorithm 3 FOCAL

Figure 4: Schematic illustration of an ALICE FoCal module. The proposed design (LOI in 2013)
has interleaved Si + W layers, with different granularity in the Si pad/pixel layers. The original
image is taken from Ref. [1], but edited to resemble the detector in the LOI of 2013.

3.2 Clustering algorithm

Before building the detector, a lot of simulations have to be run to analyse how the proposed
detector will respond. These simulations involve for instance direct photon and π0 detection.

When a photon hits the detector it generates a shower. Each layer in the detector has a certain
number of pixels/pads being hit. The clustering algorithm does not look at each layer, but at each
segment, because the read out of the pads is also done that way. The hits in each pad per layer are
summed up per segment to obtain a signal per equivalent detector cell (which is called a tower).

Per segment, the algorithm analyses the energy. It loops over all the cells (pixels or towers),
beginning with the highest energy. The first energy found this way will be the highest and will
be set as a possible seed for a cluster. Then all the cells within a certain radius will be set so
that they cannot be assigned as a seed anymore (the algorithm will not be able to loop over those
cells). If a significant amount of energy is found with that radius, the cell with that energy will
get a certain flag, which ensures that the algorithm can loop over it. This way it can be still set as
a seed. After this is done, the algorithm will check the cell with the second highest energy etc. In
the end all the seeds will be checked: if a seed is found with too few cells within the cluster search
radius or if a seed is found with too little energy, it will be rejected as a seed.

After all the segments have been analyzed as described above, the shower reconstruction begins.
First of all, the clusters from the coarse segments will be combined. Second, the clusters from the
fine segments will be combined. Now there are two lists with cluster information (one for the
coarse segment clusters and one for all the fine segment clusters). Next, the algorithm analyses the
clusters from the fine sections and tries to match them with the clusters from the coarse segments.
When they are matched, the position information is taken from the fine segments and the energy
is taken from the coarse segments. For a more elaborate explanation see Ref. [2].
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4 SIMULATION OF DETECTOR PERFORMANCE

4 Simulation of detector performance

When a photon hits the detector it showers and leaves energy behind. Per segment of the detector,
the photon shows cluster profiles similar to Fig. 5a. The profile shown in the figure resembles a
cluster in the second coarse segment of the FoCal where the width of the shower is at its maximum.
Because the width of the shower at the second coarse segment is at its maximum, the cluster sizes
in that segment will be the largest. The sizes of the clusters generated for this research are
comparable to the sizes of the clusters in the second coarse segment in the FoCal, bacause this
yields the highest discriminating power when clusters start to overlap.
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(a) Example of a profile of a simulated photon cluster.
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(b) Example of a profile of simulated merged π0 pho-
ton clusters.

Figure 5: Examples of cluster profiles of a simulated photon (a) and simulated π0 photons (b).
The pads or pixels are 1 cm x 1 cm. The colours indicate the number of hits per pad. The single
photon cluster is more circular than the π0 photon cluster.

If two photons get too close, the identification of the two clusters will become problematic,
since the clusters are merged into one (bigger) cluster. An example of such a merged cluster
is shown in Fig. 5b. At low π0 energy (up to 100 GeV) the profile of the decay photons per
segment in the detector will form two non-overlapping circles and the FoCal clustering algorithm
can easily identify both clusters (the clustering algorithm can identify both photons very well until
the distance between the photons is about 1 cm). At high π0 energy (> 100 GeV), the two decay
photons will hit the detector close to each other, so that the two clusters will be merged into a
bigger cluster. In this case one can imagine that the merged cluster will start to look more like an
elliptoid. To further clarify this, Fig. 6 is shown.

The σ1 and σ2 in Fig. 6 are the semi-major and the semi-minor widths respectively. In Fig.
6a the widths are the same, because a circle has only one radius. In Fig. 6b the two overlapping
circles start to look like an ellipse with σ1 > σ2. On top of that the semi-minor axis σ2 of single
photon clusters should be equal or larger than the semi-minor axis of merged π0 photon clusters.

As explained in Sec. 3.2, pixels will be rejected as a seed if they are within a certain area of a
maximum in the energy. In order to discriminate between two photons that are close together and
single photons, we can use the cluster shape method. This consists of comparing the semi-major
σ1 and the semi-minor σ2 widths of the cluster. For a circle (single photon), σ1 should equal σ2,
but for an ellipse (π0 decay photons that are close together) σ1 > σ2.

The idea of the following simulations is to reproduce realistic clusters and analyze them to
understand what the effect of different weights is on the cluster reconstruction. Also, the cluster
shape method disciminating power varies accordingly with the function used to reproduce the
cluster shape. The function that is used to reproduce the cluster shapes will be described in Sec.
4.1.
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4.1 Double exponential 4 SIMULATION OF DETECTOR PERFORMANCE

(a) Single photon cluster. (b) Merged π0 photon clusters.

Figure 6: Single photon and π0 photon clusters. The red and blue colours are the clusters of single
photons. The purple colour shows the part of two clusters that overlaps, which can happen for
high energy π0 decay.

4.1 Double exponential

To create a cluster, that follows the profile of a cluster generated in a calorimeter, a double expo-
nential distribution is used, which is suggested in [5]:

1

r

dE

dr
=
(
αe−

r
c0 + βe−

r
c1

)
, (12)

with α and β free parameters. The double exponential gives the energy deposition at a radius r
from the cluster center. Eq. (13) is the distribution used in the photon simulations in this research
and is similar to the one proposed in the article.

1

r

dE

dr
= A

(
e−

r
c0 +Be−

r
c1

)
, (13)

with r is the radial distance, A and B free parameters, c0 the Molière radius and c1 the range
of low energetic photons. The effective Molière radius of the FoCal is around 1 cm, therefore the
parameter c0 is set to 1 cm. From a fit of the data from the second coarse segment of the FoCal, the
initial values in Table 1 were obtained. When generating clusters by using these parameters, only
about 80% of the deposited energy (hits) is within 1 cm from the center of the cluster. This conflicts
with the idea that 90% of the deposited energy should be within the Molière radius (which was set
to 1 cm). Therefore a change was made to the fitted parameters. By using the initial conditions
in Table 1 and an iterative process, the values in the last column of the table were obtained. With
this iterative process, c0 and A were taken constant (because c0 is the Molière radius and A is just
a scaling factor) and c1 and B were changed, until the deposited energy within 1 cm of the center
reached 90%. The distribution resulting from the obtained values is shown in Fig. 7. Note that
the adjusted parameters have some degree of arbitrariness, since the same deposited energy might
be achieved using a different set of parameters.

parameters initial adjusted
c0 1.00 1.00
c1 0.31 0.20
A 0.01 0.01
B 103.00 280.00

Table 1: Parameters used for the double exponential. The first column shows the parameter
names. The second column shows the initial values for the parameters and the last column shows
the parameter values obtained with the iterative process.

11



4.2 Data generation 4 SIMULATION OF DETECTOR PERFORMANCE

r (cm)
0 0.5 1 1.5 2 2.5 3

drdE

0

0.5

1

1.5

2

2.5

3

c1
r- 

+Bec0
r- 

eA

adjusted parameters

initial parameters

Figure 7: Double exponential function plotted for initial and adjusted parameter values.

4.2 Data generation

For this research clusters are generated and analysed. A cluster is made up of pads and each pad
is hit a certain number of times. This amount corresponds to the amount of energy deposited
in the pad. In this research the generated clusters are composed of 5000 hits. Because the total
energy of a cluster is directly related to the number of hits, we can define the total energy of each
cluster at the dimensionless value of 5000. This value corresponds to a deposited energy of a 500
GeV photon in the second coarse layer in the FoCal simulations. The clusters of the π0 photons
will overlap to create a combined cluster. The clusters are simulated in a way that the combined
clusters also have an energy of 5000.

In the following sections, first the generation of single photon clusters will be explained, then
the generation of the π0 photon clusters. For each single photon cluster a center will be generated
and then the cluster will be filled with hits or points. For π0 photon clusters, two clusters that
overlap have to be made in order to form a combined cluster. To do so, two centers, which are close
together, need to be generated. Then the energy per cluster is generated and both clusters are
filled with points around their center according to their energy. The clusters used for this research
were filled with random points weighed with the distribution in Eq. (13). This cluster data is then
projected onto a square grid, of -10 cm to 10 cm with pads of 1 cm x 1 cm. These pads only count
the amount of hits and have no way of recording the exact position of a particular hit. This way
position is only recorded in the position of the pad, which is a rough estimate of the position.

4.2.1 Single photon clusters

For single photon clusters, a random coordinate (xmean, ymean) for the center of the cluster is
generated, with xmean and ymean both uniform between -1 cm and 1 cm. The cluster is then
filled with points as follows: 5000 radii were drawn from the double exponential distribution and
matched with 5000 random angles uniform in ϕ, with ϕ ∈ [0, 2π]. Now there are 5000 (r, ϕ) pairs,
which are then transformed to 5000 (x, y) pairs. The coordinates of the center are added to these
pairs. So in the end we have 5000 (x+ xmean, y + ymean) pairs. Fig. 5 shows an example of data
obtained in the way described above.

4.2.2 π0 photon clusters

For π0 creation, two clusters of photons have to be made. The first photon cluster is created in
almost the same way as described above: first the center coordinate (xmean,1, ymean,1) is randomly
generated, with xmean,1 and ymean,1 both uniform between -1 cm and 1 cm. As explained above
the total energy of the combined cluster is 5000. Since there are two clusters, the total energy has
to be devided amongst them. The energy E1 for the first photon cluster is randomly generated,
uniform between 2500 and 5000. The second cluster will have an energy E2 = 5000 − E1. This
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4.3 Clustering 4 SIMULATION OF DETECTOR PERFORMANCE

way, the first cluster always has the highest energy of the two clusters. The energy asymmetry α
is then defined as:

α =
E1 − E2

E1 + E2
. (14)

Now the distance between the two clusters has to be determined, which is done using the following
equation:

d =
c

E
√

1− α2
, (15)

with E the total energy of the combined cluster (set to 5000 in this research) and c a constant
dependant on the total cluster energy and the minimum distance between the two clusters; if α is
minimal, the distance is also minimal, therefore dmin = c

E , so c = E dmin. In this research dmin is
set to 0.5 cm and this will be the minimal distance between the centers of the generated π0 photon
clusters. Therefore c = 5000∗0.5 cm = 2500 cm. Now we only need an angle to obtain the location
of the second cluster. The angle is again a random number uniform in ϕ, with ϕ ∈ [0, 2π]. Then
the location of the second cluster is calculated by adding the (d, ϕ) pair to the (xmean,1, ymean,1)
pair, which yields an (xmean,2, ymean,2) pair.

The number of hits per cluster and the locations have been set, so now the clusters need to be
filled with random points. This is done the same way as with single photon clusters: using the
double exponential function. The only difference is that there are now two clusters to be filled,
with a different amount of hits around two different centers.

4.3 Clustering

In this section the equations for the analysis of the simulations for this research will be given.

4.3.1 Clustering equations

To find a measure for the widths of a cluster, the equations below are used. To begin with, it
is necessary to find the shower center, which is an average in x and in y weighted with wi. The
weights wi are based on the amount of energy deposited per cell in a cluster. There are multiple
ways to calculate these weigths, which will be explained in the sections below. The cluster center
positions are calculated:

〈x〉 =

∑
wixi∑
wi

〈
x2
〉

=

∑
wix

2
i∑

wi

〈y〉 =

∑
wixi∑
wi

〈
y2
〉

=

∑
wix

2
i∑

wi
(16)

〈xy〉 =

∑
wixiyi∑
wi

Then the variances and covariances need to be calculated:

σx2 =
〈
x2
〉
− 〈x〉2

σy2 =
〈
y2
〉
− 〈y〉2 (17)

σxy = 〈xy〉 − 〈x〉 〈y〉 .

Now the equations for finding the widths [4]:

dσxσy
= σy2 − σx2 σ1 =

√
σx2 + σy2 + s

2

s =
√
d2σxσy

+ 4(σxy)2 σ2 =

√
σx2 + σy2 − s

2
.
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The reconstructed cluster will have σ1 and σ2 as a measure of the widths of the cluster. σ1 is
the semi-major axis and σ2 is the semi-minor axis as can be seen in Fig. 8. The following equation
is used to obtain the orientation of the reconstructed cluster.

ϕ = arctan

(
(dσxσy + s) 〈y〉+ 2σxy 〈x〉
2σxy 〈y〉 − (dσxσy

− s) 〈x〉

)
, with ϕ ∈

[
−π

2
,
π

2

]

Figure 8: Ellipse, with σ1 and σ2 the semi-major and semi-minor axes respectively and ϕ the angle
with the horizontal axis.

4.3.2 Linear weighting

To reconstruct the cluster widths in the previous section, we need to take the deposited energy per
cell into account. The normal way to do this, is by using linear weights:

wi =
Ei
ET

, (18)

with wi the weight in the ith cell, Ei the deposited energy in the ith cell and ET the total
deposited energy in all the cells of the cluster.

4.3.3 Logarithmic weighting

Instead of using linear weighting for electromagnetic showers, it is suggested to use logarithmic
weighting [6]:

wi = max

{
0,

[
w0 + ln

(
Ei
ET

)]}
, (19)

with w0 a free parameter. This logarithmic weighting is introduced to enhance the influence of
the tail of a cluster, which is useful to reconstruct the found clusters better. The free parameter
w0 is needed to compensate for the effect that the logarithm is always smaller than 0, because the
argument of the logarithm ( Ei

ET
) is always smaller than 1. It is nescesary to optimize w0; if w0 is

too low, a big part of the tail is cut off, and if w0 is too high, the tail contributes to much, which

makes statistical fluctuations to have a larger effect. Fig. 9 shows Ei

ET
and w0 + ln

(
Ei

ET

)
plotted

for different values of w0; as can be seen, wi rises more rapidly at small Ei

ET
< 0.1 for larger w0.
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Figure 9: Linear and logarithmic weighting with different w0.

4.4 Method of data analysis

Each set of data contains 10000 clusters and each cluster spans a certain amount of pads and these
pads contain a number of hits. The number of hits per pad needs to be interpreted in a way that
the clusters properties, such as location and widths, are reconstructed the best. There are different
ways to analyze the data obtained as described in Sec. 4.2. For each set of data, different weights
are used. The different weights influence the way the properties of the clusters are reconstructed.
First, linear weighting was used and then logarithmic weighting, for 27 different w0, which resulted
in a total of 28 different weights and thus 28 different sets of data. Now, the first thing we want
to know is how the hit locations of the clusters are reconstructed. The hit location of a cluster
is defined as the center of the cluster. When the best weighting is used, the reconstructed hit
location will be closest to the original constructed center (xmean, ymean) of the cluster. After the
reconstruction of the hit locations, the widths of the clusters will be calculated. In the end we want
to obtain an optimized weight wi (linear or logarithmic, with the best w0) in order to discriminate
between single photon clusters and π0 photon clusters.

4.4.1 Method of hit location reconstruction

As explained in Sec. 4.2.1 the cluster centers are generated uniformly between -1 cm and 1 cm in
x and y. Thus, the surface where the centers are generated spans 2x2 pads. As the generated hit
locations are uniformly distributed, ideally the reconstructed hit locations must also be uniform.
To evaluate the uniformity of the reconstructed hit locations, two steps must be undertaken: first,
the integer part is subtracted from the coordinates, so we only have the fractional parts {x} and
{y} left. This step ensures that all the reconstructed hit locations are within 0 and 1 cm in x and
y, so effectively they are all placed on a single 1 cm x 1 cm pad. Second, all the 10000 fractional
reconstructed hit locations are plotted on top of each other on a 1 cm x 1 cm pad, creating a two
dimensional histogram.

This hit location reconstruction will only be done for single photon clusters and not for π0

photon clusters. It is not useful to look at reconstructed hit locations for π0 photons, since the
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hit location of such a cluster does not resemble anything. The cluster finding algorithm would in
this case not be able to identify the two photons, therefore the widths should say something about
those clusters.

4.4.2 Method of widths reconstruction

So after the hit location reconstruction we have a certain optimized weight parameter for single
photon clusters. Now we want to to distinguish between single photon clusters and π0 photons
clusters. The single photon clusters are generated in a way that the outline should form a circle.
Therefore σ1 should equal σ2, however due to statistical fluctuations this will never really be the
case. The π0 photon clusters are generated with a small distance between them. As explained
above, these clusters in general should have larger σ1 than single photon clusters and the σ2 should
be more or less equal to the σ2 of single photon clusters. To see the difference, the widths of the
single photon clusters and of the π0 photon clusters will be plotted in a single figure. This will
again be done for multiple weights, to check what weight yields the best discriminating power.
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5 Results

The results of the simulations will be presented in the following sections.

5.1 Hit location reconstruction

One of the goals of this research was to find out how the hit locations were reconstructed for different
weights. This has been done only for single photon clusters as explained in Sec. 4.4.1. Fig. 10 gives
a visualization of the hit location reconstruction. It shows the distribution of the reconstructed hit
locations for four different weights: linear and logarithmic, with w0 ∈ [4.5, 5.3, 5.8]. The colours
represent the number of hits per bin and on the x- and y-axes, {x} and {y} are plotted, which
are the fractional parts of x and y respectively. The figure shows some noticable features: the first
two distributions have a dense center and dense corners respectively, while the last two are much
more uniform. Appearantly the linear weighting does not reconstruct the hit locations uniformly
across the pad and neither does the logarithmic weighting with w0 = 4.5. By using higher w0’s
of 5.3 and 5.8 the hit locations are reconstructed better in the sense that they at least return the
uniformity of the original distributions.

In order to have the real hit locations reconstructed the best, the distance between the real hit
locations and the reconstructed hit locations should be small. To get a feeling of how good the
algorithm reconstructs the hit location as a function of w0, the difference between the reconstructed
hit locations and the generated hit locations is shown in Fig. 11. The figure has the following
main features: the first two distributions are more or less peaked to the right and the bins go up to
about 0.14 cm. The last two distributions are peaked to the left and the bins hardly cross the 0.1
cm. This means that the logarithmic weighting with higher w0’s, the reconstructed hit locations
are closest to the generated hit locations.

To further check at what value of w0 the positions are reconstructed the best, Fig 12 is given.
It shows the difference between the reconstructed x-position and the real x-position in red and the
reconstructed y-position and the real y-position in blue of the reconstructed hit locations. This
way of plotting the difference gives a root mean square (RMS) for the width of the distribution.
Again, the lower this value of the RMS, the better the positions have been reconstructed. The
distributions for x and y are almost identical and the RMS in the x-direction is the same as for
the y-direction. To show how the RMS in the x-direction depends on the used weighting, Fig. 14
is given. The error bars are multiplied with a factor of 10 to make them visible.

Finally, the reconstructed x-position minus real x-position has been plotted against the real
{x}-position in Fig. 13. The y-positions are not shown, since the profile would be the same as
for the x-positions, which is made clear in Fig. 12. With linear weighting, the best reconstructed
hit locations are at the center or the edge of a pad. The same goes for w0 = 4.5, although across
the pad in the x-direction there are some cases of good reconstructed positions. If w0 = 5.3 or
w0 = 5.8 the profile is much smoother, but it is still visible that clusters created in the center of a
pad are reconstructed the best.
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Figure 10: Reconstructed hit locations.
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Figure 11: Distance between reconstructed and real position. The first two figures are relatively flat and peaked to the right, while the last two figures are
peaked to the left.
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Figure 12: Reconstructed x-position - real x-position (blue) and reconstructed y-position - real y-position (red).
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Figure 13: (Reconstructed x-position - real x-position) vs real fractional x.
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Figure 14: RMS X plotted vs w0. The error bars are the errors on the RMS and they are multiplied
by 10 to make them visible. The lowest RMS value is at about w0 = 5.3.

5.2 Widths reconstruction

It is clear that in the single photon simulations, for most cases, logarithmic weighting performs
better at reconstructing cluster positions than linear weighting. When combining the results from
the four figures described above, the best value for the parameter w0 = 5.3. The most interesting
part is, however, to differentiate between single photons clusters and two photons clusters that are
very close together.

Let us first take a look at the shape of single photon clusters for some different weights wi in
Fig. 15. With linear weighting there is a relatively large spread in σ1 and σ2. Also σ2 is often a
lot (0.1 to 0.2 cm) smaller than σ1. When looking at the other three, there is a general rise in σ1
and σ2. This is due to the fact that as w0 increases, the edge of a cluster has more effect on the
cluster reconstruction. The distribution with w0 = 5.8 seems to have the smallest spread in σ1.
The clusters reconstructed with w0 = 5.8 have the most circular reconstructed shape, compared
to the other values of w0.

The shape of π0 photon clusters is shown in Fig. 16. When comparing this figure with Fig. 15,
it is clear that there is a larger spread in the semi-major axis σ1 for π0 photon clusters, while the
spread in the semi-minor axis σ2 remains more or less the same. This is to be expected, because
the two photon clusters are in general more elliptic than the single photon clusters.
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Figure 15: Single photon clusters: σ2 vs σ1 for different weights.
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Figure 16: π0 photon clusters: σ2 vs σ1 for different weights.
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We now want to know how well the semi-major widths are separated and how the semi-minor
widths overlap for different weights. Fig. 17 shows the normalized distributions of σ1 and Fig. 18
shows the normalized distrbutions of σ2 for single photon and π0 photon clusters. The widths for
the single photon clusters are blue and red for the π0 photon clusters.

When one would place cuts on the σ1 distributions to reject the π0 photon clusters, the best
result would be obtained with w0 = 5.8. If for example the cut is placed at the point where the
red and blue distributions intersect, only a minimal amount of π0 photon clusters would be falsely
considered as single photon clusters. On top of that only a small portion of the single photon
clusters would be discarded. For the distributions with w0 = 5.3 one would also obtain a good
result, but for the other two distributions (linear and w0 = 4.5), a lot of π0 photon clusters and a
lot of single photon clusters would be falsely taken and discarded respectively.

Let us now take a close look at Fig. 18. The distributions with w0 = 5.8 overlap almost
completely. Based on Fig. 6b this is what we would expect. Also the distribution with w0 = 4.5
seems to have a good overlap. The distributions with linear weighting and w0 = 5.3 show the
smallest overlap.
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Figure 17: σ1 for single photon clusters (blue) and π0 clusters (red).
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Figure 18: σ2 for single photon clusters (blue) and π0 clusters (red).
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Based on Fig. 17 and 18, the best value for widths reconstruction would be w0 = 5.8. To see
what the widths do for a large w0 region we can look at Fig. 19 and 20. The error bars are the
standard deviations from distributions like the ones in Fig. 17 and 18. When inspecting the w0

region from 5.6 ≤ w0 ≤ 5.8 in Fig. 19, the difference between the single photon clusters and π0

photon clusters is largest and has the smallest error bars. When looking closely to Fig. 20 the σ2
difference is smallest and has the smallest error bars in the region from 5.8 ≤ w0 ≤ 6.0. So both
regimes have only one w0 value that overlaps and that is w0 = 5.8. Based on these two figures,
w0 = 5.8 would also seem the best parameter for widths reconstruction.
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Figure 19: σ1 for single photon clusters (blue) and π0 photon clusters (red). The error bars are
the standard deviations from distributions like in Fig. 17.
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Figure 20: σ2 for single photon clusters (blue) and π0 photon clusters (red). The error bars are
the standard deviations from distributions like in Fig. 18.
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6 Discussion

The results of the simulations will be discussed and further research is presented.

6.1 Simulation results

The clusters that were simulated for this research were generated via a double exponential function,
which was based on a fit of clusters from the second coarse segment in the FoCal. First, the hit lo-
cations for single photon clusters were reconstructed, which yielded the best results for logarithmic
weighting with w0 = 5.3. Then the single photon clusters and π0 photon clusters were compared
to each other by analyzing the widths of the clusters. For single photon clusters, σ1 = σ2 (in the
perfect case) and for π0 photon clusters, σ1 > σ2, which was best reconstructed with w0 = 5.8.
Finally, the width differences were presented, which gave different results: the separation of σ1 was
best for 5.6 ≤ w0 ≤ 5.8, but the overlapping of σ2 was best for 5.8 ≤ w0 ≤ 6.0.

This gives a small range of acceptable w0 values, with the best value for width reconstruction
of around w0 w 5.8. So there are two values of w0 (5.3 and 5.8) that are the best for reconstructing
cluster hit locations and cluster widths respectively. This research only focussed on the coarse
segments of the FoCal, but the FoCal also has fine segments. These fine segments are able to do
better hit location reconstruction, because the pixels are only 1 mm x 1 mm as opposed to 1 cm
x 1 cm pads in the coarse segments. Seemingly the best solution would be to reconstruct the hit
locations using the fine segments and the width reconstruction with the coarse segments. Therefore
the best value of w0 for the simulations in this research would be w0 w 5.8.

6.2 Further reasearch

In this research only clusters of 5000 hits have been considered. To get a better view of the
behaviour of the logarithmic weighting, other energy regimes need to be researched as well. On
top of that, the results from the simulations cannot directly be used to improve the FoCal, but
what it does show is that for some cases logarithmic weighting performs a lot better than linear
weighting. And that there is a certain range of w0 values for which the cluster reconstruction is
done best.

Also, not only direct photons and photons from π0 decay will be measured by FoCal. Therefore
it is useful to know what the effect of logarithmic weighting will be on the reconstruction of the
other particles. There is a whole lot of research to be done before the actual measurements of the
real FoCal can provide data of elementary particles in collisions.
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