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Preface

This master thesis is, technically, the fruit of my labor over the past nine months, but I would say it
is more the result of all the efforts during these two years here at Utrecht University. When I first
started, “scientific computing” was still a somewhat cloudy concept and when I discovered the field
of combinatorial optimization, a new world opened before my eyes: finally my mathematical thinking
could be used to solve a number of problems which lie at the very base of computer science, my other
great passion. To me, the most amazing aspect of this field is how the basic principles and concepts are
surprisingly easy to understand, and yet finding the best solutions is all but trivial.

I think the simplicity of the problems is well reflected also in my thesis: the goal is efficient sparse matrix
partitioning, in order to have a low communication volume during sparse matrix-vector multiplications.
Although it might sound complicated, the concept is extremely easy to grasp, even without any familiarity
with mathematics: given a very large grid of numbers (matrix), which is mostly empty (sparse), you
want to color the nonempty cells either red or blue, such that, at the end, there is roughly the same
number of red cells than blue cells; now, the goal is to find a way of doing so such that, in our matrix,
rows and columns have, as much as possible, only one color. The simplicity of the subject is also well
reflected, in my opinion, by the large amount of pictures in this thesis: whenever possible, I tried to
come up with simple visualizations that ease the understanding of the discussed concepts.
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Chapter 1

Introduction

1.1 Parallel sparse matrix-vector multiplication

Matrices are one of the most important mathematical objects, as they can be used to represent a wide
variety of data in many scientific disciplines: they can encode the structure of a graph, define Markov
chains with finitely many states, or possibly represent linear combinations of quantum states or also the
behavior of electronic components.

In most real-world computations, the systems considered are usually of large size and involve sparse
matrices, because the variables at hand are usually connected to a limited number of others (for example,
a large graph in which each node has just a handful of incident edges); therefore, the matrices involved
have the vast majority of entries equal to 0. More formally, let us consider a matrix of size m× n with
N nonzeros. We say that the matrix is sparse if N � mn. Without loss of generality, we assume that
each row and column has at least one nonzero (otherwise those rows and columns can easily be removed
from the problem).

One of the most fundamental operations performed in these real-world computations is the sparse matrix-
vector multiplication, in which we compute

u := Av, (1.1)

where A denotes our m × n sparse matrix, v denotes a dense vector of length n, and u the resulting
vector of length m.

The computation of this quantity following the definition of matrix-vector multiplication, i.e. with the
sum

ui =

n−1∑
j=0

aijvj , for 0 ≤ i < m,

requires O(mn) operations; this is not efficient with a sparse matrix: if we perform the multiplications
only on the nonzero elements, we obtain an algorithm with running time O(N), and by definition of
sparsity, N � mn.

As mentioned, the systems considered are large, with sparse matrices with thousands (even millions) of
rows and columns and millions of nonzeros; for such big instances, even a running time of O(N) might
be non-negligible, especially since sparse matrix-vector multiplications are usually just a part of a bigger
iterative algorithm, and need to be performed several times.

It is an important goal then to be able to perform such computations in the least amount of time possible:
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however, as there is a natural tradeoff between power consumption and the speed of the processing units
[1], it is not feasible to rely only on fast CPUs, but rather focus on parallelism and employ a large number
of them with lower processing speed (and, as a result, with fairly low energy requirements).

To describe an efficient way of performing parallel sparse matrix-vector multiplications, we follow the
approach described in [2]: before the actual computation takes place, the sparse matrix is distributed
among the p processors, creating a partitioning of the set of the nonzeros: A is split into disjoint subsets
A0, . . . , Ap−1. Moreover, also the input vector v and the output vector u are distributed among the p
processors (note that their distribution might not necessarily be the same, and often it is not).

Figure 1.1 shows a possible partitioning of a 9 × 9 matrix with 18 nonzeros. As the actual values of
the nonzeros are not important, we only show the sparsity pattern (a colored cell means that there is a
nonzero in that position). The two colors denote, respectively, the two resulting subsets of nonzeros.

Figure 1.1: Example of a distribution among two processors of a 9× 9 matrix with 18 nonzeros. Only
the sparsity pattern is shown.

After this distribution, every processor has to compute its local contribution toward the matrix-vector
multiplication: to do so, it requires the appropriate vector components which might have been assigned
to another processor during the data distribution; if this is the case, communication is required. Once all
the required vector components are obtained, the processor starts computing all its local contributions,
which are afterwards sent to their appropriate owner, according to the distribution of u. The three
phases that describe this process for processor s = 0, . . . , p− 1, are summarized in Algorithm 1.1, from
[2, 3].

In reality there is also a fourth phase, in which each processor sums up all the contributions received in
phase (2) for all of its owned components of u; this is a small phase with negligible computational cost
compared to phase (2) and for this reason it has been omitted from the algorithm.

Note that we assume that all of the nonzero values are represented with the same amount of bits. Doing
so, we can focus exclusively on the coordinates of the nonzeros, omitting completely their values, as it
does not influence the cost of a parallel sparse matrix-vector multiplication.

Figure 1.2 shows an example of the communication involved in phases, or supersteps (0) and (2), for the
example partitioning shown in Figure 1.1: the vertical arrows represent the fan-out, while the horizontal
arrows represent the fan-in; the color of an arrow indicates which processor is sending data.

As our main interest is to minimize the time spent by the parallel machine computing this sparse matrix-
vector multiplication, we need to compute explicitly the cost of Algorithm 1.1: we can immediately
note that such an algorithm, which follows the Bulk Synchronous Parallel model [4], consists of two
communication supersteps separated by a computation superstep.

The time spent (in the sense of number of operations performed) by a parallel machine in a computation
superstep is exactly the time taken by the processor that finishes last: more formally, the time cost of
step (1):
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Input: As, the local part of the vector v
Output: The local part of the vector u

Is := {i|∃j : aij ∈ As}
Js := {j|∃i : aij ∈ As}

(0) . Fan-out

for all j ∈ Js do
Get vj from the processor that owns it.

end for

(1) . Local sparse matrix-vector multiplication

for all i ∈ Is do
uis := 0.
for all j such that aij ∈ As do

uis = uis + aijvj .
end for

end for

(2) . Fan-in

for all i ∈ Is do
Send uis to the owner of ui.

end for

Algorithm 1.1: Parallel sparse matrix-vector multiplication.

T(1) = max
0≤s<p

|As|. (1.2)

where |As| denotes the size of As, the part of A assigned to processor s.

It is easy to understand that, in order to have efficient parallelization, the computation load has to be
distributed evenly. Usually, however, it is not possible to achieve a perfect load balance (e.g. when
dividing an odd number of computations among an even number of processors) and we have to reason
in terms of an allowed imbalance ε. Consequently, we impose the following hard constraint about the
maximum size of the subsets of nonzeros assigned to each processor, according to [2, eq. 4.27]:

max
0≤s<p

|As| ≤ (1 + ε)
N

p
. (1.3)

Typical values for the allowed ε in this constraint are 0.03, i.e. a 3% imbalance.

It is reasonable, after all, that the problem of finding an efficient way of performing this computation step
boils simply down to a hard constraint for the data distribution. This is because we still have to perform
all the multiplications of the form aijvj , no matter our choice. The communication costs, represented by
the first and last supersteps in Algorithm 1.1, are instead the most interesting aspect about maximizing
the efficiency of a parallel sparse matrix-vector multiplication algorithm, as there is extreme variability.
As a simple example, suppose p = 2 and consider the matrix represented in Figure 1.3.

Two possible partitionings of this matrix into two sets are given in Figure 1.4. In Figure 1.4(a) no com-
munication is necessary, whereas in Figure 1.4(b), all of the rows and columns are split, and therefore the
maximum possible communication is required during the sparse matrix-vector multiplication algorithm.
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u

v

A

Figure 1.2: Communication for the parallel sparse matrix-vector multiplication with a matrix parti-
tioned as in Figure 1.1. Vertical arrows represent step (0) while horizontal ones represent
step (2). The color of an arrow denotes which processor is sending their data for that
row/column.

Figure 1.3: Example matrix with checkered sparsity pattern. Black boxes represent the nonzeros.

Previously, we claimed that the matrix and both the vectors have to be partitioned: in reality it is
sufficient to consider only the problem of distributing the nonzeros, and the partitioning of the vector
can be executed according to this: because of the structure of the communication supersteps in Algorithm
1.1, communication is required if and only if the rows/columns of the matrices are cut, i.e. assigned to
more than one processor.

If a full column of our matrix A is assigned to the same processor, we can freely assign the corresponding
component of v to the same processor, eliminating completely one source of communication (namely, the
fan-out for that column). The same reasoning can be done for the rows. This simplification is possible
because imposing a hard constraint similar to (1.3) also to the vector distribution is not helpful, as it
only affects the time of linear vector operations outside the matrix-vector multiplication, which are in
generally much cheaper [3, Sec. 3].

We can describe more formally the communication costs, following the notation of [3, Def. 2.1]: let
A0, . . . , Ap−1 be a p-way (with p ≥ 1) partitioning of the sparse matrix A of size m × n. Let λi denote
the number of processors which have a nonzero of row i and let µj be the number of processors that
have a nonzero of column j; note that, because we assumed that all the rows and columns are nonempty,
λi, µj ≥ 1. Then the total time costs for the communication steps in our Algorithm 1.1 are:
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(a) Rows and columns are not
split, therefore there is no need for
communication.

(b) Every row and column is split
and causes communication during
fan-in and fan-out.

Figure 1.4: Different partitionings of the matrix from Figure 1.3. Red and blue squares represent
nonzeros assigned to the two different processors.

T(0) =

n−1∑
j=0

(µj − 1),

T(2) =

m−1∑
i=0

(λi − 1).

(1.4)

These costs are quite straightforward: it is reasonable to assume that the owner of the appropriate vector
component is one of the processors that have a nonzero in that row/column, and therefore communication
is not necessary for that processor. Adding these costs together, we define the communication volume
V of the considered partitioning as

V := V (A0, . . . , Ap−1) = T(0) + T(2) =

m−1∑
i=0

(λi − 1) +

n−1∑
j=0

(µj − 1). (1.5)

As we can see, the communication volume V depends entirely on the matrix A and the considered
partitioning. Therefore, the problem of minimizing the cost of a matrix-vector multiplication is shifted
toward finding an efficient way of distributing the sparse matrix among the available processors, such
that our balance constraint (1.3) is satisfied. The following sections and chapters and, ultimately, this
whole Master Thesis, are therefore dedicated to it.

1.2 Hypergraph model

The problem of distributing the nonzeros of a matrix in order to minimize the communication volume,
or, in short, the matrix partitioning problem, can also be viewed from the graph theory point of view.
We recall that a (unweighted, undirected) graph G = (V,E) is a set of vertices (or nodes) V and edges
E which connect them.

The graph partitioning problem has been used in the past to model the load balancing in parallel
computing: data are represented as vertices, while their connections (the dependencies) are represented
with edges. For a more rigorous definition of the graph partitioning problem, we follow the notation
given in [5], performing the simplification in which all the edges have unitary weight. Given the graph
G = (V,E) we say that (V0, . . . , Vp−1) is a p-way partition of G if all these subsets are nonempty, mutually
disjoint and their union is the whole set of nodes V .
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Moreover, we can consider a balance criterion similar to (1.3):

max
0≤s<p

|Vs| ≤ (1 + ε)
|V |
p
, (1.6)

where ε, similarly as before, represents the allowed imbalance.

Now, given a partition (V0, . . . , Vp−1) of the graph G, we say that the edge e = (i, j) is cut if i ∈ Vk, j ∈ Vl,
with k 6= l; otherwise, it is said to be uncut. Previously, we claimed that communication during the
parallel matrix-vector multiplication can be avoided if a row/column is uncut, and here the goal is the
same: we want to minimize the cut size, i.e. the number of edges cut.

However, despite all the similarities between the matrix partitioning problem and the graph partitioning
one, it has been shown [5] that this cut-edge metric is not an accurate representation of the communication
volume. Additional criticism [6] comes from the fact that the graph partitioning approach can only handle
square symmetric matrices, even though it has been shown to be a good enough approximation in that
case [7]. Moreover, it was also shown [8] that these disadvantages hold for all application of graph
partitioning in parallel computing, and not only our problem of matrix partitioning for sparse matrix-
vector multiplication. An exact way of modeling the matrix partitioning problem is through the concept
of hypergraph partitioning [5].

A hypergraph is simply a generalization of a graph: we do not consider edges that connect two nodes,
but rather hyperedges (or nets), which are subsets of nodes. Apart from considering only non-empty
hyperedges, note that there is no other restriction on their cardinality.

Hypergraphs, and in particular the hypergraph partitioning problem are already well known in literature:
they have a natural application in the design of integrated circuits (VLSI), in finding efficient storage
of large databases on disks, and data mining [9], as well as urban transportation design and study of
propositional logic [10].

Because of this extensive application basis, translating our matrix partitioning problem to a hypergraph
partitioning problem seems quite convenient, as all the methods already developed can be analyzed and
employed also in our case.

Figure 1.5 shows an example of a hypergraph. Each colored set represents a different hyperedge; we can
see that we can have hyperedges which contain only one node.

v1 v2

v4 v5v3

v7v6

e1 = {v1, v3, v4}

e2 = {v4, v7}

e3 = {v5, v7}

e4 = {v2}

Figure 1.5: Example of a hypergraph with 7 nodes and 4 hyperedges.

The definition of hypergraph partitioning problems is identical to the case of a graph, with the difference
that now we do not have cut edges, but cut hyperedges: given the hyperedge e = {v1, . . . , vk}, we say
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that e is cut if there are i, j such that vi ∈ Vr, vj ∈ Vs, with r 6= s, i.e. at least two nodes belong to
different sets of the partition. As usually, we want to minimize the cut hyperedges.

If, similarly to (1.2), we define λe as the number of different sets the vertices in the hyperedge e are
assigned to, the total cost of the partition (V0, . . . , Vp) is:

C = C(V0, . . . , Vp−1) =
∑
e∈E

(λe − 1). (1.7)

We can see how closely these equations resemble the ones given in the previous section: it is clear that
the hypergraph partitioning problem closely resembles our original matrix partitioning problem.

Note that the hypergraph partitioning problem, along with the graph partitioning problem, are known
to be NP-hard [11, Ch. 6].

Now, we will describe three possible models for the decomposition of a sparse matrix into a hypergraph,
and discuss their advantages and disadvantages.

In the column-net model, our matrix A is represented as a hypergraph for a row-wise decomposition:
rows of the matrix are nodes (V = {v1, . . . , vm}, while columns are hyperedges (E = {e1, . . . , en}). We
have that the node vi belongs to the hyperedge ej (in short vi ∈ ej) if and only if aij 6= 0. With this
model, the size of the hyperedge ej is exactly the number of nonzeros in column j, whereas the node vi
belongs exactly to as many hyperedges as there are nonzeros in row i.

As already said, performing a partitioning on the hypergraph consists of assigning each vertex to one of
the sets V0, . . . , Vp−1. In this model, this corresponds to assigning a row completely to a processor.

However, as vertices are not exactly nonzeros of our matrix, (1.3) and (1.6) are not exactly equivalent;
we need to adjust our balance constraint by introducing a weight for each vertex, as in [2, Def. 4.34].
For vi ∈ V , we define its weight ci as

ci := |{ j : aij 6= 0}|,

which simply is the number of nonzeros in row i of the matrix A. Note that, following the same notation
as in the previous section, we can see the total number of nonzeros N as N =

∑
vi∈V ci.

Our modified balance constraint is as follows:

max
0≤s<p

W (Vs) := max
0≤s<p

∑
vi∈Vs

ci ≤ (1 + ε)
N

p
. (1.8)

The row-net model is similar to the one just described (as can be guessed from the name): it is exactly
the transposed of the column-net model, in the sense that now rows are hyperedges and columns are
vertices of the hypergraph. The reasoning just described applies also to this model, with the little
modification that now the weight of a vertex is the number of nonzeros in that column.

We see how the column-net model and row-net model have the advantage of fully assigning a row (or a
column) to a processor; this has the advantage of eliminating completely one source of communication in
our parallel sparse matrix-vector multiplication algorithm (respectively, the fan-in and fan-out). However,
this advantage can easily become a weakness, because now the partitioning is forcedly 1-dimensional,
and this is usually too strong of a restriction.

Now, as a last example of possible decomposition of a matrix into a hypergraph, and as a partial address
to the drawbacks of the previous two models, we will describe a 2-dimensional approach, the so-called
fine-grain model [12]. In this model, the N nonzeros are the vertices (V = {v1, . . . , vN}) and the m rows
and n columns are hyperedges (E = Er ∪ Ec = {e1, . . . , em} ∪ {em+1, . . . , em+n}). With this notation,
Er represents the row hyperedges and Ec represents the column hyperedges. The relationship between
the vertices and the hyperedges is fairly obvious: vk = aij is in both ei and em+j .
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Now, as the vertices correspond exactly to nonzeros of our matrix, we can use the original equation (1.6)
as balance constraint; if we combine this with (1.7), which describes the cost of a hypergraph partition,
we can clearly see how this is identical to our original matrix partitioning problem, described by (1.3)
and (1.5).

On a higher level, one of the benefits of this decomposition model is easy to understand: we have a lot of
freedom and we can assign individually each nonzero to a different partition. Similarly as before, however,
this advantage can easily become a drawback because now the size of the hypergraph is consistently
larger, with N vertices compared to m and n of the previous two models. Thus, computations on the
fine-grain model take substantially more time than row-net or column-net models and therefore there is
a restriction on the size of the problem that can be efficiently solved.

1.3 Earlier work

Among the models used to translate matrix partitioning into hypergraph partitioning, we already men-
tioned row-net and column-net [5], proposed in 1999, and a more recent fine-grained approach [12],
proposed in 2001.

In addition to these models, there has been some research effort towards the creation of more sophisticated
methods, which often comprise several stages and combine different models. Recently Pelt and Bisseling
proposed the medium-grain method [13]. As this method is at the base of our work, a more detailed
explanation will be given in Section 1.4.

For example, Uçar and Aykanat [14] first employ an elementary 1-dimensional hypergraph model, and
then they transform it in several ways to different hypergraph models suitable for both symmetric and
unsymmetric matrix partitionings; it is important to note that these models also include the input and
output vectors, and therefore a few extra vertices are added to the hypergraph.

A different 2-dimensional approach is given by the coarse-grain method [15]: first the column-net hy-
pergraph model is used, obtaining a row partitioning of the matrix in p parts, then a multi-constraint
column partitioning in q parts is performed, yielding a final 2-D cartesian partitioning in p× q parts.

Moreover, Vastenhouw and Bisseling proposed a 2-dimensional recursive method for data distribution
[3]; this greedy method splits recursively a rectangular matrix into 2 parts. At each step of the recursion,
there is the choice on the direction to be taken in the next step: two different strategies are proposed,
alternating splitting directions or simply trying to split both vertically and horizontally and taking
greedily the best of the two.

Besides these general purpose models and methods, it is also possible to take into account the structure
of the matrix to be partitioned: Hu, Maguire, and Blake present in [16] an algorithm for nonsymmetric
matrices that performs row and column permutations, obtaining a bordered block diagonal form and
then trying to assign matrix rows such that the number of cut columns is minimized.

In general, as there is such a wide variety of different methods and models, it might be difficult to choose
the best one, given a matrix to partition. Çatalyürek, Aykanat, and Uçar propose a partitioning recipe
[17] that chooses a partitioning method according to some matrix characteristics.

Regarding the actual implementations of the just discussed models, methods and algorithms, there are
a few existing software partitioners available. Among the sequential ones we have PaToH (a multilevel
Partitioning Tool for Hypergraphs) [18], hMetis [19] (specifically targeted at partitioning hypergraphs for
VLSI design), Mondriaan [3] (among the ones here described, this is the one more specifically designed
to solve the matrix partitioning problem), MONET (Matrix Ordering for minimal NET-cut)[16]. Zoltan-
PHG (Parallel Hypergraph Partitioner) [20] performs instead matrix partitioning in parallel; the relative
scarcity of parallel software partitioners is to be explained by the fact that this field is relatively new,
and therefore most of the research efforts have been directed toward a sequential approach.

The partitioners just mentioned produce close but slightly different results, with respect to both solution
quality and execution time, having at the core the same method for finding good initial solutions. The
initial partitioning method employed for small subproblems is the well-known Kernighan-Lin [21] method,
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with the optimizations of Fiduccia-Mattheyses [22]. This local search heuristic was originally designed
for bipartitioning graphs and, given a partitioning that obeys the balance constraint (1.3), it applies a
series of small changes to improve the quality of the solution.

To solve large instances, all these partitioners use a multi-level method: the large problem is progressively
coarsened until a smaller instance is obtained, then the problem is solved on this small instance and the
solution is gradually uncoarsened, with a refinement at each step to improve the solution quality.

Finally, these existing software partitioners are all based on recursive bisection: instead of partitioning
the hypergraph directly into the desired number of parts, they execute a sequence of bisections of the
partitions. This is a good simplification in the sense that it just suffices to find good algorithms for
bipartitioning, and also because splitting a hypergraph in just two parts is much easier; there is however
one major flaw with this approach: using this recursive bisection we might not be able to reach the same
quality of a solution as with direct splitting into the desired number of parts. This flaw is, however,
often ignored and direct splitters into more than two parts are rare.

1.4 Medium-grain method

All of the possible ways of translating the matrix partitioning problem into a hypergraph partitioning
problem have different advantages and drawbacks: the 1-dimensional ones, row-net and column-net,
eliminate completely one source of communication but are somewhat too restrictive; fine-grain, on the
contrary, does not provide any kind of limitation on the choices for the partitioning, but the resulting
hypergraph is often too big to manage.

A new method has recently been proposed by Pelt and Bisseling [13], which can be described as a sort
of middle ground between the 1-dimensional models and fine-grain model. The resulting partitioning is
2-dimensional by design (thus avoiding the limitations of the row-net and column-net models), but it still
imposes that clusters of nonzeros from the same rows and columns are assigned to the same processor,
thus reducing the size of the final hypergraph, avoiding the main disadvantage of the fine-grain model.

The key of the medium-grain method lies into the splitting of our original matrix A in two parts, Ar

and Ac, such that Ar + Ac = A. Then, we proceed to construct the auxiliary block-matrix B, of size
(m+ n)× (m+ n), defined as

B :=

[
In AT

r

Ac Im

]
, (1.9)

where In and Im denote, respectively, the identity matrices of size n and m. The final hypergraph is
finally obtained by applying the row-net model to this matrix B.

Figure 1.6 illustrates this process for a 3× 6 rectangular matrix A.

After we apply the row-net model and obtain a partitioning of the hypergraph, it is immediate to retrieve
a partitioning of our matrix A, as depicted in Figure 1.7.

The usefulness of Ac and Ar is clear if we consider that we use the row-net model. The first is left as-is,
while the second is transposed; then, when partitioning 1-dimensionally such that the columns are kept
together, we see that we are effectively keeping together elements within the same columns of Ac and
AT

r . The resulting partitioning is fully 2-dimensional, because there are clusters of nonzeros: rows for
Ar and columns for Ac (hence the subscripts).

The diagonal elements of B are used only to compute the communication volume. Let us consider the
kth column of A; the corresponding nonzeros can be found in the kth column of Ac and in the kth row
of AT

r . If both these parts are nonempty, i.e. the kth column of A was not fully assigned to either Ar or
Ac, we need to be careful when we compute the communication volume of a given partitioning: if these
parts are to different processors, communication is needed in Algorithm 1.1.

Therefore the diagonal nonzero Bk,k, assigned by the row-net model to the same processor as the kth

9
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Ac

Ar

B

row-net
model

Figure 1.6: Example of the construction of the matrix B from a 6 × 12 matrix A, for which the sets
Ar and Ac were previously established and colored differently. In the resulting matrix,
the added diagonal nonzeros are depicted in black. Not all diagonal elements are needed,
because of empty rows and columns in Ar and Ac.

A

Ac

Ar

B

row-net
model

Figure 1.7: Process of obtaining a matrix partitioning starting from a partitioning of the hypergraph
following the medium-grain model. In this case p = 2.

column of Ac, that belongs to the same row of B as the kth row of Ar, has the purpose of ensuring a
correct computation of the communication volume [13, Th. 3.1]. Note that, implementation-wise, there
is no need to have the complete diagonal of B: we put a nonzero if and only if the corresponding row of
AT

r and column of Ac are both nonempty.

Experimental results, performed with both the Mondriaan and PaToH packages seem to confirm that this
medium-grain method has indeed some advantages compared to the column-net, row-net and fine-grain
models, both regarding partitioning time and solution quality. Because of these good results, it is our
goal to investigate further the properties of this method, following two possible directions.

First of all, as the outcome of the medium-grain method depends remarkably on the initial split of
A into Ar and Ac, it is interesting to investigate the quality of the algorithm originally proposed in
[3] to achieve this initial partitioning; secondly, we will try to develop a fully iterative method that
employs the medium-grain method, where a full multi-level partitioning is performed at each iteration
and computation time is traded for solution quality.

Both these research directions share an important part: we just need to develop efficient methods to
compute from the given matrix A the matrices Ar or Ac required for the medium grain model, either
from scratch or starting from an already existing partitioning (later in the work we will talk, respectively,
about partition-oblivious and partition-aware algorithms).

To this extent, Chapters 2 and 3 describe several of these different methods, whereas in Chapter 4 we
discuss their implementation and the experimental results for the two mentioned research directions.
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Chapter 2

Strategies for splitting a matrix A
into Ar and Ac

The main goal of this thesis is to find efficient ways of splitting our original matrix A into Ar and Ac, in
order to use the medium-grain method.

We are interested in both improving the initial partitioning of A, and a fully iterative method; therefore,
we will make the distinction between methods that do not need an initial partitioning (partition-oblivious
methods), and are therefore suitable for the first case, and methods that do require an initial partitioning
(partition-aware methods), to be used in a fully iterative scheme. Most of the time the same algorithm
can be used for both purposes, albeit with slight modifications. Before we proceed and analyze the
details of the examined heuristics, we can make a few observations, to better understand the general
principles behind these algorithms.

If we are interested in an initial partitioning into Ar and Ac that will yield a good communication volume,
we already have some information about their quality before the actual partitioning is performed. We
can indeed compute an upper bound on the communication cost: if a complete row of A is assigned to
Ar (or a full column is assigned to Ac), we are sure that those nonzeros will be assigned to the same
processor, and we already discussed in Section 1.1 how this results in no communication for that row
(or column). This can give us the idea of trying to keep, as much as possible, full rows and columns
together, although it is impossible to do it all the time (because a given nonzero cannot be assigned to
both Ar and Ac).

If our purpose is to compute Ar and Ac to improve an existing partitioning, we can follow a few principles
to guide us in the choice of what information we should keep, and what we should discard for the next
iteration. First of all, it makes sense to have confidence in the existing partitioning: if some nonzeros
(for example, a full row or column) are assigned to the same processor, it means that at some point in
the previous iteration it was decided that it was convenient to put those nonzeros together, and therefore
we should have a preference for them to be together also in the new partitioning. However, this must
only serve as an indication and not as a rigid rule, leaving some space for new choices to be made, in
order to effectively improve the existing partitioning. Furthermore, we should try to keep, as much as
possible, rows and columns together, as noted in the previous paragraph.

2.1 Individual assignment of nonzeros

A simple heuristic that can be used to produce Ar and Ac is a simplification of the algorithm proposed
by Pelt and Bisseling along with the medium-grain model [13, Alg. 1], taking as a score function the
length (i.e. the number of nonzeros) of the given row or column.

The main idea is to assign each nonzero aij to Ar if row i is shorter than column j (so it has a higher
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probability of being uncut in a good partitioning), and to Ac otherwise. Ties are broken, similarly as the
original algorithm, in a consistent manner: if the matrix is rectangular we give preference to the shorter
dimension, otherwise we perform a random choice.

The partition-oblivious version of this heuristic is given in Algorithm 2.1, and it is exactly the same as
Algorithm 1 originally proposed. With nzr(i) we denote the number of nonzeros in row i and with nzc(j)
the number of nonzeros in column j.

Input: sparse matrix A
Output: Ar,Ac

if m < n then
w ← r

else if n < m then
w ← c

else
w ← random value c or r

end if
Ar := Ac := ∅
for all aij ∈ A do

if nzr(i) < nzc(j) then
assign aij to Ar

else if nzc(j) < nzr(i) then
assign aij to Ac

else
assign aij to Aw

end if
end for

Algorithm 2.1: Partition-oblivious individual assignment of the nonzeros, based on row/column length.

This algorithm can be easily adapted to compute Ar and Ac from a given partitioning of A. Previously
we claimed that it is convenient that uncut rows and columns have precedence over cut rows and columns:
now, whenever we analyze a nonzero aij we first look at whether i and j are cut or uncut. If only one
of them is cut, we assign the nonzero to the uncut one, otherwise (i.e. both are cut, or both are uncut)
we do similarly as before and assign it to the shorter one.

The partition aware variant of this heuristic is given explicitly in Algorithm 2.2.

In Chapter 4, when we are going to perform numerical experiments, we will denote with po_localview

and pa_localview, respectively, the partition-oblivious and the partition-aware variant of this heuristic.

2.2 Assignment of blocks of nonzeros

Instead of assigning nonzeros individually as in Section 2.1, we can take a more coarse-grained approach
and try to assign at the same time a block of nonzeros to either Ar or Ac. In particular, we will discuss
how to exploit the Separated Block Diagonal (SBD) form of the partitioned matrix A and introduce a
further iteration of this concept, discussing the Separated Block Diagonal of order 2 (SBD2) form of the
matrix. Moreover, the heuristics described in this section are all partition-aware, and take as input a
partitioned matrix.

As throughout this section the permutations of matrices will be fundamental, we adopt a simplified
notation: given a vector I with row indices and a vector J with column indices, we denote as A(I, J)
the submatrix of A with only the rows in I and only the columns in J (following the order in which they
appear in the vectors). With this notation, for example, A([1, . . . ,m], [1 . . . n]) = A. Furthermore, if I1
and I2 are both vectors of indices, with (I1, I2) we denote the simple concatenation of these vectors.
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Input: partitioned sparse matrix A
Output: Ar,Ac

if m < n then
w ← r

else if n < m then
w ← c

else
w ← random value c or r

end if
Ar := Ac := ∅
for all aij ∈ A do

if row i is uncut and column j is cut then
assign aij to Ar

else if row i is cut and column j is uncut then
assign aij to Ac

else
if nzr(i) < nzc(j) then

assign aij to Ar

else if nzc(j) < nzr(i) then
assign aij to Ac

else
assign aij to Aw

end if
end if

end for

Algorithm 2.2: Partition-aware individual assignment of the nonzeros, based on row/column length.

2.2.1 Using the Separated Block Diagonal form of A

The SBD form of a bipartitioned matrix [23] is defined as follows: given a matrix A whose nonzeros
are either assigned to processor 0 or 1, we compute the vectors R0 and R2 of the indices of the rows
fully assigned, respectively, to processor 0 and processor 1, and the vector R1 of the indices of the rows
partially assigned to both of the processors; similarly, we compute C0, C2 and C1 for the columns. Note
that, when creating these vectors, their inner ordering is not important; usually, the ascending order is
kept.

Then, we obtain the final index vector for the rows as I = (R0, R1, R2) and for the columns as J =
(C0, C1, C2). With these quantities, we can finally compute the SBD form of the matrix A as A(I, J).

An example of the procedure for obtaining this form is shown in Figure 2.1.

More explicitly, if we denote as mi := |Ri|, ni := |Ci|, with i = 0, 1, 2, the SBD form is the resulting
block matrix:

Ȧ := A(I, J) =

Ȧ00 Ȧ01

Ȧ10 Ȧ11 Ȧ12

Ȧ21 Ȧ22

 , (2.1)

where

• Ȧ00 of size m0 × n0, has nonzeros with uncut rows and uncut columns for processor 0;

• Ȧ22 of size m2 × n2, has nonzeros with uncut rows and uncut columns for processor 1;

• Ȧ01 of size m0 × n1, has nonzeros with uncut rows for processor 0 and cut columns;
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Figure 2.1: Example process to obtain the SBD form of a partitioned matrix. On the left the original
matrix is shown, whereas on the right the permuted SBD form. On the top/left sides of the
matrices the color of the circle denotes whether that row/column is completely red or blue
or it is mixed (purple), whereas on the bottom/right sides the indices of the columns/rows
are explicitly given.

• Ȧ21 of size m2 × n1, has nonzeros with uncut rows for processor 1 and cut columns;

• Ȧ10 of size m1 × n0, has nonzeros with cut rows and uncut columns for processor 0;

• Ȧ12 of size m1 × n2, has nonzeros with cut rows and uncut columns for processor 1;

• Ȧ11 of size m1 × n1, has nonzeros with cut rows and columns.

Note that the size of each part along with the number of contained nonzeros can greatly vary, also from
matrix to matrix: for example, if the sparsity pattern of the matrix allows a “perfect” partitioning such
that there is no communication, all blocks are empty except Ȧ00 and Ȧ22; conversely, if the matrix has a
dense (or complicated) pattern and/or the partitioning is far from optimal, such blocks might be almost
empty and Ȧ11 will have the majority of nonzeros. An example of the difference of the block sizes of Ȧ
is shown in Figure 2.2.

By computing the Separated Block Diagonal form of a matrix, we are able to explicitly see the underlying
structure of the partitioning of a matrix, and the properties of each block can be used to adapt the
assignment of its nonzeros. More specifically, the blocks Ȧ00 and Ȧ22 have nonzeros with uncut rows and
columns and therefore are more suited to be assigned together; of course, we still have to decide between
Ar and Ac and, as mentioned earlier, it is impossible to do both: it is convenient to base our choice on
the sizes of such blocks. For example, if m0 < n0, in the block Ȧ00 the columns are (on average) sparser
than the rows: if we assign the nonzeros of this block to Ac we are, in principle, making sure that more
rows/columns will stay uncut.

For the blocks with uncut rows and cut columns (namely, Ȧ01 and Ȧ21), the choice is easy: we assign
them to Ar and keep their rows uncut. Similarly, we assign the nonzeros of Ȧ10 and Ȧ12 to Ac, keeping
their columns uncut.

For the middle block Ȧ11, whose nonzeros have cut rows and cut columns, we cannot exploit any un-
derlying structure: a possible way is to employ one of the other heuristics described in this chapter only
considering this submatrix. Our choice is to go with Algorithm 2.1 presented in Section 2.1 (note that
we cannot exploit the partition-aware variant of it, because all of the nonzeros in the block considered
have cut rows and columns).

The heuristic that employs the SBD structure of a matrix can be explicitly visualized in (2.2).
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Figure 2.2: Example of SBD forms of partitioning of the matrices impcol b and cage6 [24]. Each part
of Ȧ has been colored differently. In the first matrix there are no cut rows, which means
that Ȧ10 = Ȧ11 = Ȧ12 = ∅.

Assignment of Ȧ :

R/C R
C M C

R R/C

 (2.2)

In this matrix, whose structure is the same of (2.1), the letter R in a block denotes that we assign that
block to Ar, and similarly for C and Ac. Moreover, R/C stands that the choice between Ar and Ac

depends on the block size, whereas M indicates that the block is assigned in a mixed manner, according
to Algorithm 2.1.

Note that, as mentioned in Chapter 1, the matrix is usually split by means of recursive bipartitionings:
it is then sufficient to keep track of the order of these recursions to have an implicit ordering which can
be easily used to compute the SBD form of a matrix [23], instead of computing this form from scratch
using the algorithm described in [25, Appendix A].

In Chapter 4, we will refer to the algorithm described in this section as pa_sbdview.

2.2.2 Using the Separated Block Diagonal form of order 2 of A

The proposed SBD2 form of a partitioned matrix A is an extension of the SBD form: given a partitioned
matrix A, we compute the Separate Block Diagonal form of A of order 2 by separating, in Ȧ10 and Ȧ12

the empty and non-empty columns, and in Ȧ01 and Ȧ21 the empty and non-empty rows. Then all the
other blocks, except the central one, are permuted and split up accordingly. This procedure is shown in
Algorithm 2.3.

The resulting final matrix is a block tridiagonal matrix Ä:
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Input: partitioned matrix A
Output: Ä

compute Ȧ as the SBD form of A and obtain also R0, R1, R2, C0, C1, C2;
split R0 in R00 and R01, such that A(R00, C1) = ∅;
split R2 in R20 and R21, such that A(R21, C1) = ∅;
split C0 in C00 and C01, such that A(R1, C00) = ∅;
split C2 in C20 and C21, such that A(R1, C21) = ∅;
I := (R00, R01, R1, R20, R21);
J := (C00, C01, C1, C20, C21);
Ä := A(I, J).

Algorithm 2.3: Algorithm to obtain SBD2 form of a matrix A.

Ä :=


Ä00 Ä01

Ä10 Ä11 Ä12

Ä21 Ä22 Ä23

Ä32 Ä33 Ä34

Ä43 Ä44

 , (2.3)

where each submatrix Äpq is of size mp × nq.

Figure 2.3 shows the process of obtaining this matrix Ä starting from the SBD matrix Ȧ obtained in
Figure 2.1.
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Figure 2.3: SBD2 form obtained starting from the SBD form of Figure 2.1.

To better understand the interesting properties of the newly created parts of the matrix, let us introduce
the concept of neighbor : given the nonzero aij we say that akl is a neighbor if k = i ∨ l = j; in other
words, neighbors of a given nonzero are the ones that lie in the same row or in the same column.

Now, let us consider, for the sake of brevity, just the top-left corner of Ä: nonzeros in Ä00 are uncut in
the rows and columns and whose neighbors are uncut also in the other, non-shared, dimension. Similarly,
nonzeros in Ä01 do not have any neighbor (w.r.t. their row) with cut columns but have neighbors (w.r.t
their column) with cut rows. And similarly, with the roles of rows and columns reversed, for Ä10. This
exact same reasoning applies also for the bottom-right corner, with the appropriate adaptation of indices.

The size of these parts, and more generally of all of the blocks of Ä, is again highly dependent on the
structure of the matrix, as shown in Figure 2.4.
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Figure 2.4: Example of SBD2 forms of three different matrices. Similarly as in Figure 2.2, each part of
Ä has been given a color (note that since there are more parts than colors used, some colors
are repeated even though the parts are not related in any way). We can see in 2.4(a) that
the second and fourth columns are empty, and therefore not shown in the image. We can
also see the difference in structure between 2.4(b) and 2.4(c): the former one comes from a
DNA electrophoresis problem [24], while the latter is an oil reservoir simulation challenge
matrix [26]. We can see that with the sherman1 matrix, the corner parts are predominant
because it is a finite element matrix, with a strongly diagonal pattern: it makes sense that
most of these nonzeros are “independent” from each other.

Other than the corner blocks, for which we already argued that the matrix partitioning problem is easy,
this structure enables us to assign more specifically nonzeros to either Ar or Ac: it is convenient to assign
Ä01 and Ä43 to Ar, as these nonzeros can be fully assigned to one processor without having the columns
cut, and similarly we can assign Ä10 and Ä34 to Ac; for the other blocks, we can repeat the reasoning of
the last section.

This heuristic that exploits the SBD2 form of the matrix A is given explicitly as follows:
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Assignment of Ä :


R R
C R/C R

C M C
R R/C C

R C

 (2.4)

R denotes, as previously, that the block as been assigned to Ar and similarly for C and Ac. R/C
denotes that the assignment depends on the block size and M that a mixed assignment is performed
with Algorithm 2.1.

Note that, in this case, the SBD2 form has to be computed from scratch from the SBD form, because it
uses further information that is not employed during the normal partitioning.

In Chapter 4, we will refer to the algorithm described in this section as pa_sbd2view.

2.3 Maximizing empty rows of B

In this section, instead of describing a generating scheme that takes as input the matrix A and produces
as output Ar and Ac, we will introduce an improvement scheme, which operates on already existing Ar

and Ac and tries to refine them such that the upper bound on the communication volume is lowered.

At the beginning of this chapter, we mentioned how it is convenient to have complete rows assigned to
Ar and complete columns assigned to Ac, in order to avoid communication; a good strategy to produce
good Ar and Ac, could then be to maximize such complete assignments. The proposed heuristic does
essentially this, by trying to swap the assignment of nonzeros from Ar to Ac and vice versa, trying to
obtain that complete rows are assigned to Ar and complete columns are assigned to Ac. In order to
achieve both of these goals with a unique algorithm, it is convenient to reason in terms of the matrix
B as in (1.9). If we maximize the number of empty rows of B, we are effectively emptying rows of AT

r

(i.e. emptying columns of Ar, therefore completely assigning nonzeros in them to Ac) and of Ac, thus
complete rows to Ar.

This improvement heuristic falls into the category of local search algorithms: we start from a configuration
(an assignment of nonzeros to Ar and Ac) and perform a search on the neighborhood, defined as the
set of configurations which differ only by the assignment of a single nonzero. By performing this small
swap, we can easily fall in a local optimum situation: a few nonzeros (depending on the structure of the
matrix) are continuously swapped between Ar and Ac.

We can add a little hill-climbing capability to our heuristic by adding a small buffer: we pre-determine
lmax, the maximum amount of worsening allowed, and, after this threshold is reached, we start considering
only strictly improving solutions. In order to have a meaningful threshold, it might be convenient to
have it relative to the number of rows/columns of B, or to its nonzeros. The higher this threshold is,
the more capability we have of escaping local optima, but at the cost of slowing down considerably the
improvement (even potentially arresting it) of our solution.

For the choice of the neighbor configuration to consider, it is convenient to consider the row of B with a
diagonal element (which corresponds to a split row/column of A) with the minimum number of nonzeros:
our immediate goal, which in reality spans over a few moves of our local search, is to completely assign
the nonzeros of this row of B; we consider the minimum because each time we swap we might slightly
worsen the solution.

A more explicit overview on this local search improvement scheme is described in Algorithm 2.4:

As this is a scheme that relies on existing Ar and Ac and aims at improving them, we still need to
choose how to generate these parts in the first place. If we can rely on an existing partitioning, a simple
choice could be to take as Ar and Ac the subsets of nonzeros assigned, respectively, to processor 0 and
1; otherwise, if our goal is to produce Ar and Ac for the initial partitioning, the simplest choice is to
randomly assign each nonzero to either Ar or Ac. These initial solutions, however, are fast to generate
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Input: Ar, Ac, lmax, itermax

Output: A′r, A′c
l := 0
Compute initial B following the medium-grain method
for it = 1, . . . , itermax do

i := argmin
k∈{0,...,m+n−1} s.t. B(k,k)6=0

nzr(k)

for all j 6= i such that B(i, j) 6= 0 do
if B(j, j) 6= 0 then

B(i, j) = 0
B(j, i) = 1

else
if l < lmax then

B(i, j) = 0
B(j, i) = 1
l = l + 1

end if
end if

end for
if nz(B(i)) = 1 then

B(i, i) = 0
l = l − 1

end if
end for
A′r := B([0, . . . , n− 1], [n, . . . ,m+ n− 1])T

A′c := B([n, . . . ,m+ n− 1], [0, . . . , n− 1])

Algorithm 2.4: Local search refinement of Ar and Ac

but not particularly efficient, and are therefore meaningful only if our improvement scheme is fast enough;
otherwise, we can always rely on one of the other heuristics described in this chapter.

2.4 Partial assignment of rows and columns

In Section 2.1 we discussed how to assign each nonzero independently, whereas in Section 2.2 we examined
the possibility of exploiting a little the structure of the matrix, in order to assign more nonzeros at once.
Keeping this direction, there is some other structure of A that can lead to a better assignment: partial
assignment of rows and columns.

The main idea behind this heuristic is that, every time we assign a nonzero to Ar, we know that it is
convenient that also all the other nonzeros in the same row are assigned to it; conversely, if a nonzero is
assigned to Ac, all the nonzeros in its column should stick with it. Therefore, we ideally want to keep
together rows and columns as much as possible; but, as already discussed, there is always the problem
that a nonzero cannot be assigned to both Ar and Ac, so that we can only reason in term of partial
assignment of the row/column.

Throughout this section we will stop distinguishing between rows and columns of a matrix and reason
in term of indices in the set {0, . . . ,m+n− 1}: following the natural ordering, the m rows are mapped
to 0, . . . ,m− 1 and the n columns to m, . . . ,m+ n− 1.

This simplification of terms is due to the fact that the core of this heuristic lies in the computation of a
priority vector v, which is none other than a permutation of the indices 0, . . . ,m+ n− 1, where they
appear in order of decreasing priority: in this sense, the priority is to be intended as the probability of
the nonzeros of that index to be together in a good partitioning.

The assignment of nonzeros is done by “painting” them with an imaginary color, which corresponds
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either to Ar or Ac: we iterate through our priority vector backwards (i.e. starting from the index with
the lowest priority) and assign all of its nonzeros to go together: if the index corresponds to a row, then
we assign all of its nonzeros to Ar, otherwise we assign them to Ac. Because each nonzero has both a
row and a column, it is represented twice in our priority vector; the second time it is considered, we
re-assign it by “painting it over” (hence the name of the algorithm).

A more explicit formulation of this procedure is given in Algorithm 2.5.

Input: Priority vector v, matrix A
Output: Ar, Ac

Ar := Ac := ∅
for i = m+ n− 1, . . . , 0 do

if vi < m then
Add the nonzeros of row i to Ar

else
Add the nonzeros of column i−m to Ac

end if
end for

Algorithm 2.5: Overpainting algorithm

It is possible also to give an alternative formulation for this algorithm in which we iterate forward through
v, as described in Algorithm 2.6.

Input: Priority vector v, matrix A
Output: Ar, Ac

Ar := Ac := ∅
for i = 0, . . . ,m+ n− 1 do

if vi < m then
Add the unmarked nonzeros of row i of A to Ar

else
Add the unmarked nonzeros of column i−m of A to Ac

end if
Mark nonzeros of index i as “evaluated”

end for

Algorithm 2.6: Alternative formulation of Algorithm 2.5.

In this formulation, every assignment to Ar and Ac is final, but with the added complexity of checking
which nonzeros of the considered index are still to be assigned, and only working with them.

Lastly, another different formulation is possible: we consider individually each nonzero aij and see
whether in v i < j (where the < symbol is to be intended as “i precedes j” and not as the comparison
of the values) or the other way around; in the first case, the row has more priority and we assign aij to
Ar, otherwise we assign it to Ac. Note that, since we have to perform N lookups on the vector v, this is
a more expensive formulation of the same algorithm.

An important point to observe is that this overpainting algorithm is completely deterministic: Ar and
Ac are uniquely determined by the ordering of the indices in v. Therefore, the heuristic part of this
algorithm lies entirely in the choice of this priority vector, and, for this reason, we will focus on it in the
next subsection.

2.4.1 Computation of the priority vector v

Because, with the overpainting algorithm, the quality of Ar and Ac depends entirely on the choice of v,
it is important to take a structured approach and explore a wide variety of possibilities for this priority
vector.
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In this section, we proceed and define several generating schemes, and their input determines whether
the overpainting algorithm is used to obtain a better initial partitioning or a fully iterative scheme. In
general, we try to come up with schemes that can be used for either purpose, with slight modifications.

Each one of the generating schemes can be summarized in three main steps:

1. usage of previous partitioning;

2. sorting;

3. internal ordering of indices.

Now, we give a more detailed explanation of each of those steps.

• usage of previous partitioning: if we are considering partition-aware generating schemes, we
separate the set of uncut indices (i.e. indices which correspond to uncut rows or columns) from
the cut indices. We consider the simple concatenation of uncut indices and cut indices, in this
order, and the next steps are performed on each of these parts. If, instead, we are considering a
partition-oblivious scheme, the subsequent operations are performed on the set {0, . . . ,m+n− 1}.

• sorting: we can either keep the set from the previous step untouched (therefore preserving the
natural order of indices) or perform a sorting with respect to the number of nonzeros. The sorting is
done in ascending order, as a short row/column is more likely to fit completely in a good partitioning
because it does not yield many cut columns/rows.

In addition, we can refine a bit our sorting: we could move the indices which have only one nonzero
to the back, because no matter our assignment of such a nonzero, that index will not be cut and
it is best to try to keep also the other dimension uncut.

• internal ordering: as the last step, we want to finalize our vector v by deciding more precisely the
position of each index. The strategies considered, which often depend internally on an additional
parameter, are the following:

– concatenation: we put either all the rows before all the columns, or all the columns before
all the rows;

– mixing: we can mix rows and columns in two main ways: alternation and spread. Suppose
there are twice as many columns as rows: in the first case we get

(c, r, c, r, c, r, . . . , c, r, c, c, c, . . . , c, c, c),

whereas with the second one we get

(c, c, r, c, c, r, . . . , c, c, r),

where with c we denote a generic column and with r a generic row. To obtain a more even
distribution, we always start with the greater dimension.

– random (only in case of no sorting): we randomize the ordering of the indices;

– simple (only in case of sorting): we let the sorting decide completely the ordering, and the
vector is left as-is.

As the complete description of a generating scheme is somewhat lengthy, we use a simplified notation
and adopt the following abbreviations:

• PO: partition-oblivious

• PA: partition-aware

21



• sorted and unsorted: sorting w.r.t. the number of nonzeros is performed or not

• w and nw: all the indices with only 1 nonzero are moved to the back or not

• simple: the sorted vector is left as-is

• concat: rows and columns are concatenated

• row: the concatenation is done rows-columns

• col: the concatenation is done columns-rows

• mix: mixing of the rows and columns is enforced

• alt: rows and columns are alternated

• spr: rows and columns are spread

• random: the order of the indices is randomized

With this notation, the name po_sorted_nw_mix_spr stands for “partition-oblivious generating scheme,
with indices sorted by number of nonzeros, without moving the indices with 1 nonzero to the back, with
forced mixing of rows and columns, in a spread fashion”. This is just one of the many possibilities, which
are convenient to visualize using a directed graph, as shown in Figure 2.5; a generating scheme is simply
a path from START to END.

Other than this family of heuristics, we can also formulate the problem of partial assignment of rows/columns,
always following this framework, in another more mathematical way, to which we dedicate Chapter 3.
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concat mix randomsimple
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usage of previous
partitioning

sorting

internal ordering

Figure 2.5: Directed graph that represents the family of heuristics used (any path from START to
END). Dummy nodes (the ones without any label) were added in order to reduce the
number of edges and ease legibility.
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Chapter 3

Maximum independent set
formulation of the partial
row/column assignment problem

With the framework introduced in Section 2.4, we basically translated the problem of the assignment of
nonzeros to Ar and Ac (which is already another formulation of the matrix partitioning problem with
the medium grain model) to the problem of an efficient computation of a permutation of the indices
{0, . . . ,m+n−1}. In this chapter, we will propose a method for this vector computation problem which
relies on concepts of the field of graph theory.

The main idea is somewhat similar to the principle that led us to the development of the Separated Block
Diagonal form of order 2 in Section 2.2.2. In that particular form of a partitioned matrix, the blocks
Ä00 and Ä44 are interesting, as they contain “independent” nonzeros. More specifically, those rows and
columns are fully assigned to a processor, and whose nonzeros do not have any neighbor (a nonzero in
the same row or column) which has a cut column/row. The analogue of this concept of independence,
is now to be defined carefully: we want to find a subset of the indices {0, . . . ,m + n − 1} which does
not cause any communication, whenever we fully assign its rows to Ar and its columns to Ac. With this
definition, our goal is clear: we want to assign as many nonzeros as possible in this way, obtaining a low
upper bound on the communication volume, which can be computed during the creation of Ar and Ac.

To do so, we can employ a well studied object in graph theory: the maximum independent set.
However, this requires a correct translation of our sparse matrix into a graph, described in Section 3.1.
In Section 3.2, we delve a little more into the graph theory required and describe the actual algorithm used
to compute a maximum independent set in such a graph. In Section 3.3, finally, we give a few different
possibilities for computing the priority vector v using the concepts and algorithms just introduced.

3.1 Graph construction

We need to construct the graph correctly from our sparse matrix, in order to retrieve the desired infor-
mation. In our case, we can simply consider the graph whose adjacency matrix is none other than the
sparsity pattern of our matrix A. This exact same formulation has already been studied, for example,
by Hendrickson and Kolda [27], who used their bipartite graph model to discuss different algorithms for
bipartite graph partitioning.

More explicitly, in this graph formulation, rows and columns are vertices, and we have the edge (i, j) if
aij 6= 0. It is fairly clear that the resulting graph is bipartite, because an edge connects only a row with
a column.

An example of such translation from matrix to graph is shown in Figure 3.1, where we start from the
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matrix given in Figure 1.1.
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Figure 3.1: Graph constructed using the sparsity pattern of the matrix of Figure 1.1 as adjacency
matrix (rows and columns are vertices, nonzeros are edges). The edge color has been kept
the same as the corresponding nonzero, but only to facilitate the understanding. The fact
that the matrix is partitioned does not play any role in the resulting graph. In the bipartite
graph, with ri we denote row i, whereas with cj we denote column j.

3.2 The maximum independent set and its computation

In this section, we will give an overview of the maximum independent set problem, discuss its complexity
and the relation with other famous problems in graph theory, and, lastly, give an efficient algorithm that
can be used with a bipartite graph.

3.2.1 Maximum independent set

The concepts of independent set and vertex cover are closely related [28]: let G = (V,E) be an undirected
graph.

Definition 3.1 (Independent set). An independent set is a subset V ′ ⊆ V such that ∀u, v ∈ V ′,
(u, v) /∈ E. A maximum independent set is an independent set of G with maximum cardinality.

Definition 3.2 (Vertex cover). A vertex cover is a subset V ′ ⊆ V such that ∀(u, v) ∈ E we have
u ∈ V ′ ∨ v ∈ V ′, i.e. at least one of the endpoints of any edge is in the cover. A minimum vertex cover
is a vertex cover of G with minimum cardinality.

A graphical depiction of two independent sets for an example graph is shown in Figure 3.2.

The following lemma explicitly gives us the relation between a vertex cover and an independent set.

Lemma 3.1. Given a graph G, V ′ is a vertex cover set if and only if V \ V ′ is an independent set.

Proof. Let V ′ be a vertex cover, i.e. ∀(u, v) ∈ E, u ∈ V ′ or v ∈ V ′. This is equivalent to say that
∀u, v ∈ V \ V ′, (u, v) /∈ E, which is the definition of independent set. ♦
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Figure 3.2: Two different independent sets (red vertices) on an example graph. The two independent
sets have different cardinality, and the one on the right is a maximum independent set.

As the decision variant of the problem of finding a minimum vertex cover is NP-complete [28, Theorem
3.3], it follows from this lemma that also finding a maximum independent set in a graph is NP-complete;
the main consequence of this result is that we cannot solve this problem directly for a generic graph, as
it would be as hard as our original matrix partitioning problem. Luckily, we are dealing with a particular
kind of graph, a bipartite graph, which simplifies greatly the computations of a maximum independent
set.

Before exploiting the bipartiteness of our graph, we need to make an additional observation: Lemma 3.1
states that, in a generic graph, the vertex cover problem and independent set cover are complementary.
Therefore, computing a maximum independent set is equivalent to computing a minimum vertex cover.
This equivalence is particularly useful in our case, because another mathematical object can be related
to the minimum vertex cover as well: the maximum matching.

Definition 3.3 (Matching). Let G = (V,E) be a graph. A matching M ⊆ E is a set of edges such that
at most one edge from M is incident to each vertex v ∈ V . We say that a vertex v ∈ V is matched by
M if an edge in M is incident to v. A maximum matching is a matching of maximum cardinality.

In particular, because we are in a bipartite graph, we can employ Kőnig’s Theorem [29]:

Theorem 3.1 (Kőnig). In a bipartite graph, the size of a maximum matching is equal to the size of a
minimum vertex cover.

We will algorithmically prove the theorem, showing that from a maximum matching we can obtain a
minimum vertex cover and their size is equal. First, however, we need two more definitions that are
useful when dealing with (maximum) matchings.

Definition 3.4 (Simple path). Let G = (V,E) be a graph. A path P = (v1, . . . , vk) is said to be simple
if vi 6= vj, ∀i 6= j, i.e. all the vertices are distinct and there are no self-edges or sub-cycles.

Definition 3.5 (Augmenting path). Let M be a matching on the graph G = (V,E). The simple path P
is said to be augmenting if it starts and ends on unmatched (or exposed) vertices, and its edges alternate
between E \M and M , in this order.

It is easy to see that, if we have a matching M and an augmenting path P , if P contains k edges in
M , then it has exactly k + 1 edges in E \M , and, if the graph is bipartite, the two endpoints of P
belong to the two different sets of vertices. Moreover, M ⊕ P is a matching of size |M | + 1, where
M ⊕ P := (M \ P ) ∪ (P \M) denotes the symmetric difference between M and P .
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Now, in Algorithm 3.1, we give a scheme that constructs a bipartite directed graph, starting from a
bipartite undirected graph G = (L ∪R,E) and a matching M .

Input: Bipartite undirected graph G = (L ∪R,E), matching M .
Output: Bipartite directed graph G′ = (L ∪R,D).
D ← ∅
for (i, j) ∈ E such that i ∈ L and j ∈ R do

if (i, j) ∈M then
D ← D ∪ (j, i)

else
D ← D ∪ (i, j)

end if
end for

Algorithm 3.1: Construction of a bipartite directed graph starting from an undirected bipartite graph
and a matching.

In other words, the edges in E are given a direction: the ones in the matching go from R to L, and the
others from L to R.

In Algorithm 3.2, we give an explicit scheme to compute a minimum vertex cover starting from a
maximum matching.

Input: Bipartite graph G = (L ∪R,E), maximum matching M .
Output: Minimum vertex cover C.

Construct the modified graph G′ = (L ∪R,D) as in Algorithm 3.1
T ← ∅
for all v ∈ L such that v is not matched do

Add v to T
for all u ∈ L ∪R reachable from v using the directed edges in D do

Add u to T
end for

end for
C ← (L \ T ) ∪ (R ∩ T )

Algorithm 3.2: Construction of the minimum vertex cover in a bipartite graph, starting from the
maximum matching.

In Figure 3.3, we can visualize an example of Algorithm 3.2, starting from the graph of Figure 3.1, with a
maximum matching. In the final image, the relationships between maximum independent set, minimum
vertex cover and maximum matching can be easily recognized.

With the following lemma, we will prove the correctness of Algorithm 3.2 and Kőnig’s Theorem.

Lemma 3.2. Let G = (L ∪ R,E) be a bipartite graph and let M be a maximum matching. The subset
of vertices C obtained following Algorithm 3.2 is the minimum vertex cover. In addition, we have that
|C| = |M |.

Proof. First of all, we will prove that C is a vertex cover: assume it is not, which means that there is an
edge e = (i, j) ∈ E with i, j /∈ C (i ∈ L, j ∈ R), which implies that i ∈ L∩ T and j ∈ R \ T , because the
graph is bipartite.

We now have two possibilities: either e /∈ M or e ∈ M . In the first case, because i ∈ T and e can be
traversed (it goes from L to R in the directed graph), j can be reached and thus j ∈ T , a contradiction.
In the second case, we have that i is matched and belongs to T : this means that it was reached by
traversing the matched edge, which implies that j ∈ T , again a contradiction. Since in both cases we get
to a contradiction, C is indeed a vertex cover of G.

Now, we will prove that |C| ≤ |M |, by showing that every vertex in C is matched. It is clear that every
vertex in L \ T is matched, by definition of T . Suppose there is a unmatched vertex v ∈ R ∩ T : since
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v ∈ T , it means that it was reached from an unmatched vertex u in L, thus the path from u to v is
augmenting, which would imply that the matching M is not of maximum cardinality, a contradiction.
Moreover, note that there are no edges in the matching between L \ T and R ∩ T (otherwise, as shown
previously, the endpoint in L would also be in T ).

Therefore we have that all the vertices in C are matched and the edges of the matching are distinct,
which implies that |C| ≤ |M |. Furthermore, for any matching M ′ and vertex cover C ′ it is true that
|M ′| ≤ |C ′| as there is at least one endpoint in C ′ for every edge in M ′. So we have that |C| = |M |,
proving Kőnig’s Theorem, along the way.

Lastly, these inequality also imply that C is the vertex cover of minimum cardinality: assume it is not,
i.e. we have that C ′ is a vertex cover with |C ′| < |C|. Now, if we consider the maximum matching M ,
the inequalities give us that |M | ≤ |C ′| < |C| ≤ |M |, a contradiction. C is then the minimum vertex
cover.

♦

We have shown that there are close relationships between the maximum matching, minimum vertex cover
and maximum independent set. Now, the problem is shifted toward finding an efficient way of computing
the maximum matching. In the next section we will describe the Hopcroft-Karp algorithm, which is a
simple extension of Algorithm 3.2.

3.2.2 The Hopcroft-Karp algorithm for bipartite matching

The Hopcroft-Karp algorithm [30], devised in 1973, is an efficient scheme for finding a maximum indepen-

dent set on bipartite graphs, with a running time of O
(
|E|
√
|V |
)

. This is a considerable improvement

over the famous Ford-Fulkerson algorithm of 1956, which, for bipartite graphs, has a running time of
O (|V ||E|). We can compare these two algorithms, even though the latter is technically meant for max-
imum flow problems, because a bipartite graph can be modified in such a way that a maximum flow
corresponds to a maximum matching in the original graph.

Both algorithms rely on the concept of augmenting paths, introduced in the previous section in Definition
3.5.

The main idea of the Hopcroft-Karp algorithm is to find these augmenting paths to progressively increase
the size of the matching, as outlined in Algorithm 3.3. The fact that in the main loop we augment the
matching over several augmenting paths simultaneously gives us the

√
|V | factor in the running time,

instead of a simple |V |.

Input: Bipartite graph G = (L ∪R,E)
Output: Maximum matching M
M ← ∅
repeat

lM ← length of the shortest augmenting path, using the matching M
P ← {P1, . . . , Pk}, a maximal set of vertex-disjoint shortest augmenting paths of length lM
M ←M ⊕ (P1 ∪ · · · ∪ Pk)

until P = ∅
Algorithm 3.3: Basic outline of the Hopcroft-Karp algorithm

The core of this algorithm is substantially Algorithm 3.2: instead of starting from a maximum matching
M to compute the set T (from which follows immediately a minimum vertex cover C), we construct the
matching and the set T progressively, as follows:

1. we construct the directed graph as in Algorithm 3.1;

2. we perform a breadth-first search (following the directed edges) starting from the unmatched ver-
tices in L, which terminates when unmatched vertices in R are reached. lM is the length of these
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shortest augmenting paths;

3. the maximal set of vertex-disjoint shortest augmenting paths is computed: we start from an un-
matched vertex in R reached in the previous step and perform a depth-first search. Whenever we
reach an unmatched vertex in L it means that we found an augmenting path P , because we were
following the directed edges constructed in the first step. We then add this path to P and resume
with the next depth-first search.

If we use the Hopcroft-Karp algorithm in our sparse graph constructed as in Section 3.1, the running
time can be even considerably better than the theoretical one: if there are no particularly dense rows and
columns, the graph is far from being strongly connected, as each vertex in the graph has just a handful
of edges, resulting in fast search phases.

3.3 Computation of the priority vector v with the maximum
independent set

After having translated our matrix into a graph as in Section 3.1 and having computed the maximum
independent set as described in Section 3.2, we still have to compute our priority vector v, to be used
in the same framework of Section 2.4. Similarly as done for all the methods described in Chapter 2, we
will distinguish between partition-oblivious heuristics and partition-aware ones.

Let I ⊆ {0, . . . ,m + n − 1} be a set of indices. Instead of computing the graph starting from the full
matrix A, we do it from the submatrix A(I) (i.e. only taking rows and columns in I); next, we compute
the maximum independent set on the resulting graph using the Hopcroft-Karp algorithm: if we denote
by SI the indices that correspond to this maximum independent set, we always give to this set a high
priority, putting it before the remaining indices of I \ SI .

With this in mind, the partition-oblivious version is quite straightforward: we take as I = {0, . . . ,m +
n− 1}, and simply compute

v := (SI , I \ SI).

Now, for a partitioned matrix, let U denote the set of uncut indices, and C the set of cut indices. For
the partition-aware version of this heuristic we have the following possibilities:

1. we compute SU and have
v := (SU , U \ SU , C);

2. we compute SU , SC and have

v := (SU , U \ SU , SC , C \ SC);

3. we compute SU , then we define U ′ := U \ SU and compute SC∪U ′ , having

v := (SU , SC∪U ′ , (C ∪ U ′) \ SC∪U ′).

Note that, by construction, we do not expect these three strategies to be radically different in practice: if
at the previous iteration the partitioning was done well, U will be quite big, resulting in similar priority
vectors.

In Chapter 4 we will refer to these three different heuristic, respectively, as po_is_1, po_is_2 and
po_is_3.
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(a) Graph at the beginning of the algorithm. The
edges in blue belong to the maximum matching M .
T = ∅.
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(b) We start with the unmatched vertex in r8;
we traverse the unmatched edge (r8, c0) and the
matched edge (c0, r4). T = {r8, c0, r4}.
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(c) We traverse the unmatched edge (r8, c1), then
the matched edge (c1, r1), then the unmatched
(r1, c2) and lastly the matched (c2, r0). T =
{r8, c0, r4, c1, r1, c2, r0}.
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(d) We take as C = (L \ T ) ∪ (R ∩ T ) (depicted in
orange). We can see from the final graph that it is
indeed a minimum vertex cover.

Figure 3.3: Example of the actions performed in Algorithm 3.2 for the graph of Figure 3.1. The red
vertices are in the set T . In the last image the orange vertices belong to a minimum vertex
cover. Lemma 3.1 can quickly be checked, as the black vertices are indeed a maximum
independent set.
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Chapter 4

Implementation and experimental
results

In Chapter 2 and 3 we discussed different heuristics aimed at solving the matrix partitioning problem;
whether we try to improve the initial partitioning or perform a fully iterative procedure, we need to
translate those ideas into practice, devising an efficient implementation.

In Section 1.3, we mentioned existing software partitioners: Mondriaan [3] is the package of our choice
and we defer to it the actual computations of the partitionings, limiting ourselves to create the matrix
B of the medium-grain model as in (1.9). The actual algorithm used to construct this matrix is given
explicitly in Algorithm 4.1. Note how we consider only the sparsity patterns of A, neglecting completely
the values of the nonzeros.

Input: Ar, Ac

Output: B
B ← ∅
for all aij ∈ Ac do . The part relative to Ac

bi+n,j = 1
end for
for all aij ∈ Ar do . The part relative to Ar

bj,i+n = 1
end for
for j = 1, . . . , n do . Dummy nonzeros for cut columns

if ∃ i s.t. aij ∈ Ar and ∃ i′ s.t. ai′j ∈ Ac then
bj,j = 1

end if
end for
for i = 1, . . . ,m do . Dummy nonzeros for cut rows

if ∃ j s.t. aij ∈ Ar and ∃ j′ s.t. aij′ ∈ Ac then
bn+i,n+i = 1

end if
end for

Algorithm 4.1: Construction of B following the medium-grain model.

Now, having discussed the means of obtaining Ar and Ac and the matrix B, we can outline the general
framework used to test the effectiveness of the proposed heuristics. The framework is given explicitly in
Algorithm 4.2, and it takes as a parameter the maximum number of iterations allowed, itermax.

In Chapter 2 and 3, we distinguished between partition-oblivious and partition-aware methods, and
Algorithm 4.2 is suitable for both types of heuristics: even though the framework is naturally suited
for developing a fully iterative scheme, if we desire a better initial partitioning for the medium-grain
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Input: Sparse matrix A
Output: Partitioning for the matrix A

Partition A with Mondriaan using the default options and the medium-grain method
for i = 1, . . . , itermax do

Use any of the heuristics described previously to compute Ar and Ac

construct B, using Algorithm 4.1, from Ar and Ac

Partition B with Mondriaan using the default options and the row-net model
Re-construct A with the new partitioning

end for

Algorithm 4.2: General framework for the testing of our heuristics

method, we can simply neglect the partitioning done in the first step. This is precisely the scope of a
partition-oblivious heuristic.

Regarding the actual implementation, we can see from Algorithm 4.2 that Mondriaan is used to perform
the actual partitioning and this is the ideal case for its use as a software library. As a consequence, we
used C as the main implementation language, even though MATLAB was used for faster prototyping:
the flexibility added by managing objects at runtime is ideal when designing algorithms. In order to
have C code and MATLAB code interact in the correct way, we took advantage of MEX files [31]. In
general, unless preliminary tests showed that the considered heuristic had a remarkably bad quality, we
translated back most of the programs to the C language, in order to remove the MEX layer of complexity
and get a more efficient implementation. For the Hopcroft-Karp algorithm described in Chapter 3, we
used an implementation [32] written in the Python programming language, which computes directly the
matching on a bipartite graph and the maximum independent set.

In the following tests, the parameter itermax has been set to 1, which means that we are only performing
one iteration of our heuristic. The reason for this choice will become clear in Section 4.3; for now, we will
just take advantage of the fact that performing only one iteration is relatively fast and we can quickly
get an idea about the behavior of the heuristics.

In order to perform effective numerical experiments, we need to have a consistent way of testing. First
of all, since we seek heuristics suitable for many matrices, it makes sense to have several matrices to test
for, as described in Section 4.1.

Secondly, since randomness is involved in the partitioner itself and, to a different extent, in some of the
heuristics, we need to take several measurements and compute an average. We generate 20 independent
initial partitionings and, for each of them, 5 independent iterations of the heuristic are performed and
averaged. The values used for our measurements and considerations are the average of the 20 initial
partitionings and the average of the 20 averages of final partitionings.

Lastly, in order to have a meaningful result that can help us understand whether the given heuristic is
globally effective, we will compute the geometric mean of all the initial partitioning and the geometric
mean of all the final results. Then, we will normalize w.r.t the first value. Doing so, we can understand
whether the considered heuristic performs better or worse in a consistent way. This normalized geometric
mean is denoted, in the following tables, with the symbol ρ.

4.1 Test matrices

In order to have insightful results, we mentioned that the matrices used in the numerical experiments
should have different features: in particular we distinguish between rectangular matrices and square
matrices, and try to have a wide selection w.r.t. the number of nonzeros.

These matrices are mainly from the University of Florida Sparse Matrix Collection [24], and some can
additionally be found on the Matrix Market collection [26]. The matrices tbdmatlab and tbdlinux are
from [3]. Table 4.1 provides a more thorough description of the matrices used, along with an outline
of their basic properties (number of rows m, number of columns n, number of nonzeros N) and their
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original purpose. Some of these matrices (namely the ones with the † symbol in the table) belong
to the 10th Dimacs Implementation Challenge [33], which addressed the graph partitioning and graph
clustering problem, and are therefore naturally suited for testing the quality of the solutions produced by
our algorithms. The three symmetric matrices which represent street networks, are the undirected and
unweighted version of the largest strongly connected component of the corresponding OpenStreetMap
road network of that country.

Name m n N Source problem
lpi_ceria3d 3576 4400 21178 Netlib Linear Programming
dfl001 12230 6071 35632 Netlib Linear Programming
delaunay_n15 † 32768 32768 196548 Delaunay triangulations of random points in

plane
deltaX 68600 21961 247424 High fill-in with exact partial pivoting
cre_b 9648 77137 260785 Netlib Linear Programming
tbdmatlab 19859 5979 430171 Term-by-document matrix
nug30 52260 379350 1567800 Netlib Linear Programming
coAuthorsCiteseer † 227320 227320 1628268 Citation and coauthor network
bcsstk32 † 44609 44609 2014701 Stiffness matrix for automobile chassis
bcsstk30 † 28924 28924 2043492 Stiffness matrix for off-shore generator plat-

form
wave † 156317 156317 2118662 3D finite elements
tbdlinux 112757 20167 2157675 Term-by-document matrix
rgg_n_2_18_s0 † 262144 262144 3094566 Random graph
belgium_osm † 1441295 1441295 3099940 Street network of Belgium
polyDFT 46176 46176 3690048 Polymer self-assembly
netherlands_osm † 2216688 2216688 4882476 Street network of The Netherlands
cage13 445315 445315 7479343 DNA Electrophoresis
italy_osm † 6686493 6686493 14027956 Street network of Italy

Table 4.1: Matrices used in our experiments, sorted by number of nonzeros.

In Figure 4.1 we show the sparsity patterns of the test matrices. The images were obtained using the
spy function of MATLAB.
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Figure 4.1: Sparsity patterns of the test matrices.

4.2 Preliminary selection of the best heuristics

In Chapter 2 and 3 we discussed many heuristics, which in turn depend on different parameters. It is
best to perform a preliminary analysis to quickly figure out which heuristics produce the best solutions
and should therefore be tested extensively, and the ones that should not be further considered.

For this reason, a small number of different matrices (with a relatively small number of nonzeros) has
been selected from our choice of Table 4.1: in particular the considered matrices, which have a different
structure, are dfl001, tbdlinux, nug30, rgg_n_2_18_s0, bcsstk30.

The local search heuristic given in Section 2.3, quickly turned out to be far from effective, and therefore
we decided to discard it altogether in the numerical experiments.

4.2.1 Partition-oblivious heuristics

Table 4.2 summarizes the results of this preliminary analysis of the partition-oblivious heuristics for the
5 chosen matrices. In the first line, the results of the medium-grain method with the algorithm proposed
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in [13] are given. The value ρ represents the geometric mean of the results for a given heuristic, averaged
over all matrices and normalized w.r.t. the default medium-grain method.

Heuristic
Matrix

ρ
dfl001 nug30 bcsstk30 tbdlinux rgg n 2 18 s0

medium-grain 590 36262 552 8135 910 1.0

po_localview 571 36665 598 8327 1160 1.07

po_unsorted_concat_row 1492 189689 653 15081 1098 2.04

po_unsorted_concat_col 589 38491 600 24024 1066 1.32

po_unsorted_random 1314 113070 1127 20154 1093 2.11

po_unsorted_mix_alt 1461 181216 715 27942 1104 2.32

po_unsorted_mix_spr 1322 81915 759 18584 1122 1.81

po_sorted_w_simple 597 38383 785 8307 1093 1.13

po_sorted_nw_simple 606 38674 789 8301 1096 1.14

po_sorted_w_concat_row 1486 189681 642 15082 1078 2.01

po_sorted_w_concat_col 597 38655 621 24045 1068 1.33

po_sorted_nw_concat_row 1496 189683 614 15086 1090 2.01

po_sorted_nw_concat_col 593 38513 621 24005 1076 1.33

po_sorted_w_mix_alt 1317 162549 790 23683 1091 2.19

po_sorted_w_mix_spr 641 163013 782 23441 1093 1.88

po_sorted_nw_mix_alt 1457 62273 797 15015 1096 1.69

po_sorted_nw_mix_spr 719 62402 793 15072 1106 1.47

po_is 594 30655 615 13286 - 1.12

Table 4.2: Results of the devised partition-oblivious heuristics for the five chosen matrices. In each col-
umn, we use boldface to highlight the best found partitioning (not considering the medium-
grain value).

In the table there is no result for the heuristic po_is and the matrix rgg_n_2_18_s0, because of memory
limits.

The first method shown in the table, po_localview, discussed in Section 2.1, shows the best results
among these partition-oblivious heuristics. This is not surprising, as such algorithm is quite similar
to the one originally proposed in [13]; po_localview performs slightly worse (7%, on average) than
medium-grain because the latter also includes an iterative refinement procedure [13, Section 3.3], which
we will discus in Section 4.5.

From the table, it appears that the framework discussed in Section 2.4 is not particularly effective in this
case: some methods result even in twice the communication volume, on average; the po_sorted_w_simple
and po_sorted_nw_simple heuristics produce the best results with a communication volume, respec-
tively, 13% and 14% worse than the reference value. Moreover, it appears that mixing rows and columns
in the priority vector is not advisable: for the matrices dfl001 and nug30, for example, we obtain a
communication volume 3-5 times higher than medium-grain.

Computing the maximum independent set on the full matrix seems to be an interesting approach, espe-
cially with nug30: the communication volume is, on average, 16% lower than the one obtained with the
medium-grain method; with the other matrices (in particular tbdlinux), however, the results are not as
good.

Because of these preliminary results, it appears that it is interesting to test more thoroughly the heuristics
po_localview and po_is, in Section 4.4.
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4.2.2 Partition-aware heuristics

In Table 4.3, we summarize the results for the partition-aware heuristics. As now we are considering a
fully iterative framework, it is best to explicitly give the average of the 20 initial partitionings (iteration
0) alongside the average of the 20 final results (iteration 1). The value ρ represents, similarly as before,
the geometric mean of the final results, normalized w.r.t. the average of the initial partitionings.

The computation of the independent set was, once again, not possible with rgg_n_2_18_s0, because of
memory limits.

From the table, it appears that the approaches discussed in Section 2.2 are not effective: in both cases
(using the SBD and SBD2 forms of the partitioned matrix) the communication volume is, on average,
more than twice the one obtained with the medium-grain method.

Regarding the framework discussed in Section 2.4, differently from the partition-oblivious case, it seems
that mixing rows and columns does not produce a sharp decrease in the quality of the solutions, albeit
far from being a good result: if no sorting is performed, the communication volume is on average 18%
and 13% higher (depending on the mixing strategy), whereas with sorting we have a 16% and 10% worse
solution.

Moreover, it appears that moving the indices with one nonzero to the back of our priority vector (denoted
by w in the heuristics) or not (denoted by nw) does not yield a substantial difference; in addition, there is
no clear advantage of one strategy over the other. Therefore, should we decide to consider these methods
for further testing, only one of the two strategies should be picked.

The good results produced by the heuristics pa_unsorted_concat_row and pa_unsorted_concat_col

(and their sorted counterparts, which are not significantly different) are a bit surprising: we expected
that a more elaborate strategy (for example, sorting and mixing of rows and columns) would yield a
lower communication volume than a simple concatenation. These two methods, especially for strongly
rectangular matrices, produce fairly low communication volumes, if we start the concatenation with the
longer dimension. If there are more rows than columns, for example, it means that the rows are in
general shorter, and therefore, by giving them high priority, we have a higher chance that keeping all of
their nonzeros together will not cause communication also for the columns. From another point of view,
we could interpret this heuristic in the light of Chapter 3: the set of indices of the rows (or the columns)
is in fact an independent set, as it is obvious that two rows (or columns) do not share any nonzero;
this means that, in these two heuristics, we are roughly doing the same as in Section 3.3, albeit not as
targeted to cut and uncut indices.

The behavior of these two heuristics is also consistent with the size of the matrix: if one produces good
results, the other performs much worse. This suggest us that these two schemes could be merged in a
single method, pa_localbest, which tries both and picks the best. This approach is very similar to the
localbest method (hence the name) already employed by Mondriaan, in which the next split direction
is decided in this fashion.

The computation of the maximum independent set on the uncut indices, seems to be an effective strategy
for a fully iterative partitioning scheme. The average of the partitionings is indeed very close to the one
obtained with the medium-grain model (rounded up, only 1% higher) and we have a definite improvement
for the matrix tbdlinux, where the communication volume is 8% lower.

In general, we can see how with these partition-aware heuristics the results are better than with the
partition-oblivious ones as the value of ρ is closer to 1. Therefore, to perform an effective selection, we
need to be stricter: pa_unsorted_concat_row and pa_unsorted_concat_col (for which we will drop
the label unsorted_concat, as row or col is sufficient to distinguish from the others), the pa_localbest
scheme defined as above, pa_sorted_w_simple (which we will denote simply by pa_simple), pa_is_1
and pa_is_3 are selected for further testing in Section 4.4.
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Heuristic i
Matrix

ρ
dfl001 nug30 bcsstk30 tbdlinux rgg n 2 18 s0

pa_localview 0 582 36224 537 8051 914

1 575 36896 577 9934 2189 1.26

pa_sbdview 0 590 36057 546 8112 899

1 1493 187241 699 19852 1074 2.17

pa_sbd2view 0 583 36123 542 8018 906

1 1276 125009 1150 20757 1055 2.17

pa_unsorted_concat_row 0 584 36512 597 7934 929

1 628 42581 641 7337 1088 1.07

pa_unsorted_concat_col 0 589 35945 574 7999 898

1 589 38862 602 10087 1069 1.11

pa_unsorted_random 0 591 36390 550 8044 909

1 622 36952 589 8383 1094 1.08

pa_unsorted_mix_alt 0 592 36097 536 8019 896

1 633 40286 684 9683 1108 1.18

pa_unsorted_mix_spr 0 589 36137 542 8024 905

1 642 39703 645 8361 1094 1.13

pa_sorted_w_simple 0 587 36498 566 8018 903

1 586 38730 577 7992 1102 1.06

pa_sorted_nw_simple 0 596 35837 568 8014 882

1 594 38683 578 8004 1100 1.06

pa_sorted_w_concat_row 0 585 36158 556 8019 880

1 621 44930 617 7349 1071 1.10

pa_sorted_w_concat_col 0 595 36157 545 7995 908

1 596 38823 633 10108 1075 1.13

pa_sorted_nw_concat_row 0 598 36661 548 8025 889

1 638 42580 601 7359 1066 1.08

pa_sorted_nw_concat_col 0 580 36421 561 8035 916

1 595 38614 617 10084 1077 1.12

pa_sorted_w_mix_alt 0 586 36566 549 8006 912

1 692 41963 593 9476 1105 1.16

pa_sorted_w_mix_spr 0 593 36085 537 8010 924

1 619 39697 571 9060 1078 1.10

pa_sorted_nw_mix_alt 0 588 36509 546 8020 891

1 687 42542 566 9486 1085 1.15

pa_sorted_nw_mix_spr 0 589 36197 553 8006 886

1 655 39201 602 9076 1094 1.13

pa_is_1 0 592 36716 534 7997

1 588 36118 614 7323 - 1.01

pa_is_2 0 596 35972 539 8011

1 592 36375 631 8681 - 1.06

pa_is_3 0 590 36432 540 7997

1 589 36324 635 7410 - 1.02

Table 4.3: Results for partition-oblivious heuristics. Boldface is used to highlight the best found par-
titioning for each matrix. Iteration 0 corresponds to the average of the initial partitionings,
whereas iteration 1 is the average of the final partitionings. In the last column, for each
method, the geometric mean of iteration 1 is normalized w.r.t. the geometric mean of
iteration 0 for the same method.
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4.3 Number of iterations

The parameter itermax of Algorithm 4.2 is of vital importance for the running time of our iterative
method: our research motivation, for the partition-aware heuristics, is to trade computation time for
solution quality, but efficiency is also a fundamental goal. An iterative scheme in which each iteration is
only a slight improvement on the previous one (which means a higher value of itermax is needed to attain
a low communication value), is less desirable than a scheme that requires just one or two iterations. Note
that this reasoning only applies to partition-aware heuristics, as the partition-oblivious ones are not fully
iterative: itermax, in this case, means that a number of independent iterations is performed.

Luckily enough, the heuristics introduced in Chapters 2 and 3 are quite fast at showing their potential:
whenever an improvement over the initial partitioning can be achieved, it usually happens in the first
iteration; the solution quality, over the next few ones, either remains more or less constant, or gets worse.
This is the main reason why in Section 4.2, for the partition-aware heuristics, we set the parameter itermax

to 1, other than conveniently saving computation time.

In Table 4.4, we show the results of multiple iterations for some of the selected heuristics of Section 4.2.2.
We replaced the matrix rgg_n_2_18_s0 with the matrix delaunay_n15 because, as seen previously, the
heuristics which computed the maximum independent set failed to return a solution. In Figure 4.2
these results are depicted graphically; moreover, to better convey the significance of the data, each
communication volume has been normalized w.r.t. iteration 0.

As already argued in Section 4.2.2, we simplify the notation for the considered heuristics: pa_row and
pa_col instead, respectively, of pa_unsorted_concat_row and pa_unsorted_concat_col, and likewise
we use pa_simple, instead of pa_sorted_w_simple.
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Figure 4.2: Graphical visualization of Table 4.4. Each value has been normalized w.r.t. the first
iteration.

It seems there is no clear advantage in performing 10 iterations over just one, except for the combina-
tion pa_unsorted_concat_col and nug30: even in this case, after an improvement over the first two
iterations, the communication value stagnates around 30500-31000.

In most of the other cases, it appears that there is no advantage in performing 10 consecutive iterations
over just one: improvements are found immediately, or not at all.
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4.4 Analysis of the performance of the best heuristics

In Section 4.2 we selected the most interesting heuristics for the final round of tests. In this section, we
will check the quality of these methods for all of the matrices in our test bed. Our testing methodology
is the same as before: 20 initial partitionings and, for each, 5 runs of a single iteration of the considered
heuristic. The means are computed as in Section 4.2.

4.4.1 Partition-oblivious heuristics

The results for the partition-oblivious heuristics can be found in Table 4.5.

Matrix
Heuristic

medium-grain po localview po is

lpi_ceria3d 220 239 1030

dfl001 590 571 594

delaunay_n15 310 338 367

deltaX 236 222 586

cre_b 580 630 632

tbdmatlab 3951 4276 4711

nug30 36262 36665 30655

coAuthorsCiteseer 9583 10459 16217

bcsstk30 552 598 615

bcsstk32 818 993 1082

wave 4624 5660 5100

tbdlinux 8135 8327 13286

rgg_n_2_18_s0 910 1160 -

belgium_osm 248 264 263

polyDFT 3633 3701 3456∗

netherlands_osm 194 204 215

cage13 45233 52109 57556

italy_osm 262 280 284

ρ 1.0 1.07 1.22

Table 4.5: Results of the selected partition-oblivious heuristics with the test matrices. For each matrix,
the best found average partitioning is highlighted.

First of all, we can see that the value of ρ attained by the heuristic po_localview is indeed very similar
to the one obtained in Section 4.2, which suggests us that the preliminary matrices were indeed a good
sample of the whole test set (at least for this heuristic). Regarding po_is, instead, we can see that now
the final value of ρ is much higher: this is to be explained from the fact that in the preliminary tests one
of the matrices did not yield any result, and therefore the average was computed only on four matrices,
and among those there was nug30, and the exceptionally good result obtained with it had a lot of weight
in the average. Now that there is a wide variety of matrices, such an especially good result has much less
influence, and the performance of this method with the other matrices is not particularly satisfactory.

It is interesting to note that this heuristic that employs the computation of the independent set has
somewhat of an erratic behavior: in a few matrices (nug30, polyDFT) the communication value is the
lowest among the three methods considered (respectively 16% and 5% lower than the second best method,
medium-grain), whereas on other matrices (lpi_ceria3d, tbdlinux, coAuthorsCiteseer) the final
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solution is much worse.

It it interesting to highlight a particular result of the table: we marked with the symbol ∗ the solution
attained by po_is for the matrix polyDFT because, for every initial partitioning with medium-grain,
each independent iteration with the heuristic produced the same communication value of 3456, the
lowest recorded in general. This suggest that either this value is a local optimum hard to escape from,
or either the optimal value.

4.4.2 Partition-aware heuristics

Table 4.6 shows the final results for the partition-aware heuristics, with all the matrices from Section 4.1.
Also in this case we use simplified labels for the considered heuristics, as there is no possible confusion:
pa_row and pa_col represent, respectively, pa_unsorted_concat_row and pa_unsorted_concat_col,
whereas pa_simple represents pa_sorted_w_simple.

From the table, it appears that the properties of the matrices used for our tests were well balanced, as
the final value of ρ for the heuristics pa_row and pa_col is the same (we already observed how these two
heuristics show opposite behavior). Moreover, as they are, on average, only 8% worse than medium-grain,
we confirmed our expectations: simple concatenation of rows and columns is an interesting choice. This
is even more evident with pa_localbest: as predicted, its average communication volume is lower than
the one of its parts, being only 4% worse than medium-grain. A similarly good result was attained also
by the other method of the same family, pa_simple.

The main consequence of this series of experiments is that none of the examined heuristics was found
to be generally better than medium-grain: even the heuristics that employed the computation of the
maximum independent set resulted in, respectively, a 5% and 8% higher communication volume.

However, the algorithms pa_localbest, pa_is_1 and pa_is_3 produced very interesting results with
(strongly) rectangular matrices. In particular, if we were to consider only such matrices (i.e. lpi_ceria3d,
dfl001, deltaX, cre_b, tbdmatlab, nug30 and tbdlinux) we would obtain much better results: the value
of ρ for these heuristics would respectively be of 0.99, 0.99 and 0.98, showing that indeed these schemes
perform better (albeit slightly) than medium-grain. This other alternative finding shows that the inde-
pendent set approach devised in Chapter 3 is indeed worthy of deeper investigation, as we will discuss
in more detail in Chapter 5.

4.5 Results with iterative refinement of the final partitionings

In Section 4.2.1 we argued that the results of the medium-grain method were better than the one we
achieved with po_localview because, among other things, the former employed an iterative refinement
procedure [13], outlined as follows.

After partitioning the matrix A into two sets, A0 and A1, we can use these sets to create the matrix B
of the medium-grain method: for example, Ar := A0 and Ac := A1. Now, we do not use this matrix
B as in the medium-grain method to obtain a new partitioning, but instead we aim at improving the
current one. To encode the current partitioning in this matrix B (thus retaining the same communication
volume and load balance), we assign its first n columns (thus, the columns of Ac) to a single processor
and likewise for the other m columns (i.e. the ones of AT

r ).

Then, the hypergraph is created from this matrix B and a single run of the Kernighan-Lin method (with
the improvements of Fiduccia and Mattheyses) is performed. After a step of such refinement is performed,
we can repeat the whole procedure and use the obtained partitioning to compute a new matrix B. Once
the communication volume does not improve anymore, we create the matrix B by swapping the roles
of A0 and A1 and restart the whole process. This is repeated several times (continuously swapping the
roles of A0 and A1) until no further improvement is obtained.

Note that, as the Kernighan-Lin method is monotonically non-increasing, during this whole procedure
the communication volume is either lowered or remains at the same value. These few steps are therefore
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an effective way of refining the current partitioning.

It is interesting then to investigate the impact of this iterative refinement procedure not only on the
medium-grain method (which we use to compute the initial partitionings), but also with our algorithms.

In this perspective, Table 4.7 and 4.8 correspond to Table 4.5 and 4.6.

Matrix
Heuristic

medium-grain po localview po is

lpi_ceria3d 222 243 136

dfl001 594 577 586

delaunay_n15 310 327 318

deltaX 236 220 216

cre_b 556 589 597

tbdmatlab 3903 4199 4718

nug30 36215 37738 29110

coAuthorsCiteseer 9501 10210 10484

bcsstk30 541 755 613

bcsstk32 864 940 1039

wave 4712 5311 4727

tbdlinux 8047 8278 13253

rgg_n_2_18_s0 902 1003 -

belgium_osm 233 249 258

polyDFT 3701 3701 3456

netherlands_osm 193 196 200

cage13 45177 51753 50831

italy_osm 279 300 283

ρ 1.0 1.07 1.06

Table 4.7: Results of the partition-oblivious heuristics with iterative refinement. For each matrix, the
best found average partitioning is highlighted.

We can see that with the heuristic po_is, the iterative refinement procedure considerably improves the
final result, as the average communication volume is only 6% higher than medium-grain (down from
22%).

With the other partition-oblivious heuristic, however, the results hardly improved, even if theoretically
the average communication volume should have been closer to the one of medium-grain. This discrepancy
might be explained in the fact that, in reality, in the default algorithm for the medium-grain method,
the assignment of nonzero to Ar or Ac works in a slightly different way: as outlined in Algorithm 2.1, in
our heuristic po_localview, we assign such nonzero to the shorter dimension (and break ties uniformly),
whereas on medium-grain the assignment of the nonzeros that are alone in a row or a column, and only
with those, is reversed. This is the same reasoning for the parameters w and nw in Section 2.4. In our
experiments, we concluded that this operation was not particularly effective, whereas in the case of this
partition-oblivious heuristics it has a great beneficial effect.

47



M
a
tr

ix
H

e
u

ri
st

ic
p
a
r
o
w

p
a
c
o
l

p
a
l
o
c
a
l
b
e
s
t

p
a
s
i
m
p
l
e

p
a
i
s
1

p
a
i
s
3

in
it

ia
l

fi
n

al
in

it
ia

l
fi

n
a
l

in
it

ia
l

fi
n

a
l

in
it

ia
l

fi
n

a
l

in
it

ia
l

fi
n

a
l

in
it

ia
l

fi
n

a
l

l
p
i
_
c
e
r
i
a
3
d

21
4

21
5

2
2
0

2
4
1

2
1
4

2
1
5

2
1
5

2
2
8

2
2
3

2
2
5

2
2
9

2
2
2

d
f
l
0
0
1

5
8
0

60
8

5
9
0

5
8
7

5
9
0

5
8
7

5
8
5

5
8
5

5
9
7

5
8
5

5
9
4

5
8
5

d
e
l
a
u
n
a
y
_
n
1
5

30
6

30
6

3
1
4

3
0
6

3
0
6

3
0
6

3
0
6

3
2
6

3
1
0

3
1
8

3
0
5

3
1
9

d
e
l
t
a
X

23
5

21
7

2
3
3

2
1
5

2
3
3

2
1
5

2
3
6

2
1
9

2
3
8

2
2
0

2
3
9

2
2
0

c
r
e
_
b

60
6

67
1

6
6
6

5
9
5

6
0
6

5
9
5

5
8
6

6
1
9

6
0
2

5
9
0

5
8
6

6
0
6

t
b
d
m
a
t
l
a
b

39
30

37
17

3
9
1
0

3
9
6
5

3
9
3
0

3
7
1
7

3
8
5
3

3
8
6
0

3
9
1
4

3
6
9
5

3
9
5
4

3
6
4
0

n
u
g
3
0

3
5
8
2
4

40
30

3
3
6
4
7
4

3
6
6
9
5

3
6
4
7
4

3
6
6
9
5

3
6
0
1
6

3
9
0
6
2

3
6
1
4
6

3
6
0
7
7

3
6
4
1
3

3
6
2
2
2

c
o
A
u
t
h
o
r
s
C
i
t
e
s
e
e
r

96
20

87
16

9
5
8
7

8
6
8
5

9
5
8
7

8
6
8
5

9
4
8
6

9
8
0
2

9
4
2
1

8
8
7
3

9
4
9
9

1
0
8
2
9

b
c
s
s
t
k
3
0

56
6

59
1

5
5
6

5
7
7

5
5
6

5
7
7

5
4
3

5
5
3

5
4
5

6
1
1

5
5
7

6
2
3

b
c
s
s
t
k
3
2

82
7

99
3

8
9
7

9
7
8

8
9
7

9
7
8

8
5
0

9
3
3

7
8
3

1
0
4
4

8
1
5

1
0
1
1

w
a
v
e

47
47

46
71

4
6
6
9

4
7
3
2

4
7
4
7

4
6
7
1

4
6
9
3

5
1
6
4

4
6
9
0

4
7
6
6

4
7
3
2

4
7
5
6

t
b
d
l
i
n
u
x

79
98

73
03

7
9
9
7

9
6
9
8

7
9
9
8

7
3
0
3

7
9
7
9

7
9
7
0

8
0
2
5

7
3
2
1

8
0
4
4

7
3
8
6

r
g
g
_
n
_
2
_
1
8
_
s
0

91
4

89
7

8
9
7

8
9
3

8
9
7

8
9
3

8
8
9

9
0
6

-
-

-
-

b
e
l
g
i
u
m
_
o
s
m

2
3
8

26
5

2
9
4

2
5
7

2
9
4

2
5
7

2
7
8

2
6
3

2
4
5

2
5
8

2
6
1

2
6
2

p
o
l
y
D
F
T

36
19

36
19

3
6
3
7

3
5
6
7

3
6
3
7

3
5
6
7

3
6
4
2

3
6
7
0

3
6
3
9

3
4
8
8

3
7
3
3

3
5
3
0

n
e
t
h
e
r
l
a
n
d
s
_
o
s
m

19
3

19
2

1
9
6

1
8
7

1
9
6

1
8
7

2
0
6

1
9
4

2
3
7

2
0
4

2
1
2

1
9
4

c
a
g
e
1
3

45
27

5
49

03
9

4
5
5
8
1

4
9
2
7
4

4
5
2
7
5

4
9
0
3
9

4
5
4
1
9

4
9
1
9
6

4
5
3
8
9

5
0
1
4
7

4
5
3
0
4

5
0
3
6
1

i
t
a
l
y
_
o
s
m

26
9

28
0

2
2
8

2
6
5

2
2
8

2
6
5

2
9
5

2
8
4

2
7
2

2
7
8

2
7
8

2
7
8

ρ
1.

00
1.

02
1
.0

0
1
.0

1
1
.0

0
0
.9

9
1
.0

0
1
.0

2
1
.0

0
1
.0

1
1
.0

0
1
.0

1

T
a
b

le
4
.8

:
R

es
u

lt
s

of
th

e
se

le
ct

ed
p

ar
ti

ti
on

-a
w

ar
e

h
eu

ri
st

ic
s

w
it

h
it

er
a
ti

ve
re

fi
n

em
en

t.
T

h
e

b
es

t
fo

u
n

d
p

a
rt

it
io

n
in

g
fo

r
ea

ch
m

a
tr

ix
is

h
ig

h
li

g
h
te

d
.

S
im

il
a
rl

y
as

b
ef

or
e,

th
e

co
lu

m
n

“i
n

it
ia

l”
re

p
re

se
n
ts

th
e

av
er

a
g
e

o
f

th
e

in
it

ia
l

p
a
rt

it
io

n
in

g
s

co
m

p
u

te
d

w
it

h
m
e
d
i
u
m
-
g
r
a
i
n
,

w
h

er
ea

s
“
fi

n
a
l”

re
p

re
se

n
ts

th
e

av
er

ag
e

of
th

e
fi

n
al

p
ar

ti
ti

on
in

gs
fo

r
th

a
t

h
eu

ri
st

ic
.

48



The results shown in Table 4.8 are indeed very interesting, as it seems that the iterative refinement
procedure improves considerably our final results. For almost every algorithm, the average of the final
partitionings was very close to the one obtained with the medium-grain method. Furthermore, we can
see that pa_localbest has a communication volume, on average, 1% lower than medium-grain.

Interestingly, comparing Table 4.8 and Table 4.6, it seems that using iterative refinement has a bigger
impact in the matrices for which we had previously a less than satisfactory results. As an example,
consider the heuristic pa_localbest and the matrices nug30 and tbdlinux: without iterative refinement,
the communication values were, respectively, 8% worse and 8% better than medium-grain; with iterative
refinement, instead, the communication values are respectively 1% worse and 8% better than the medium-
grain method. We can clearly see that the results which were already very good, did not improve
considerably, but the overall performance of the heuristic improved greatly because we mitigated the
impact of the bad results.

The same observation can be made by considering only the results for rectangular matrices: the value of
ρ for pa_localview, pa_is_1 and pa_is_3 is now, respectively, of 0.98, 0.96 and 0.96. It is clear that
for these matrices iterative refinement produces an improvement, although not as noticeable as with all
the matrices.

Now, we can look at the results from the point of view of the proposed heuristics, rather than the matrices
involved in the testing. For example, we can consider the geometric mean of the communication volume
obtained for each algorithm with iterative refinement, and normalize it w.r.t. the same value obtained
without iterative refinement, obtaining a value ρ′. The results of this comparison are outlined in Table
4.9.

Heuristic ρ′

po_localview 0.99
po_is 0.79
pa_row 0.94
pa_col 0.94
pa_localbest 0.95
pa_simple 0.98
pa_is_1 0.97
pa_is_3 0.95

Table 4.9: Comparison of the geometric means of the communication volume for each heuristic, with
and without iterative refinement. The values are normalized w.r.t. the first column. In the
Table we distinguished between partition-oblivious and partition-aware heuristics.

Also from this table, the effectiveness of the iterative refinement procedure is clear, as all the results are
lower than 1. Moreover, it is interesting to observe how the various heuristics benefit differently from such
iterative refinement. To this extent, the partition-oblivious heuristics are the ones that exhibits the most
variability in the improvement: po_localview is only marginally improved (1% better), whereas po_is

has a communication volume 21% lower than without iterative refinement of the final partitionings.
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Chapter 5

Conclusions and further
developments

The goal of this thesis was firstly to investigate the opportunity of performing sparse matrix partitioning
in an iterative fashion, devising a systematic approach for the selection of the information on the previous
partitioning to be kept for an improvement on the quality of the solution. Secondly, our intent was also
to explore the margins of improvement of the initial solution for the medium-grain model.

We were able to deal with these two research directions at the same time, applying basic principles to
come up with simple schemes that could serve either purpose (with minor modifications). In the following
sections, we summarize our findings and try to envision additional developments in these directions.

5.1 Improvement of the initial solution

As already outlined in Section 1.4, for the medium-grain model the initial split of the matrix A into
Ar and Ac is of vital importance: our goal was to investigate whether the algorithm proposed by the
authors in [13] was indeed a good choice and, if so, to what extent. To this purpose, we devised a number
of different algorithms in Section 2.1, 2.4 and 3.3, which exploited different features of the underlying
matrix.

Among these proposed partition-oblivious heuristics, po_localview (outlined in Section 2.1) and po_is

(described in Section 3.3) showed the best results during the preliminary testing. In the final tests, the
behavior of these heuristics was slightly different: without the employment of the iterative refinement
procedure, briefly described in Section 4.5, po_localview produced the best results (7% worse than
medium-grain), whereas with iterative refinement, po_is is the heuristic that performs best (6% higher
communication volume than medium-grain).

The behavior of po_localview was not surprising, as we already argued how it is a less refined version
of the default algorithm for the medium-grain method, whereas the good result of po_is confirm our
expectations that the independent set formulation of Chapter 3 is indeed worthwhile. Furthermore, it is
interesting to observe that medium-grain was the best algorithm, outperforming the partition-oblivious
schemes devised in this thesis; this suggest us that it is indeed a valid algorithm to produce the initial
Ar and Ac for the medium-grain method.

5.2 Iterative partitioning

It is reasonable to assume that the initial split of the matrix A into Ar and Ac can be performed more
efficiently with additional information, especially if the matrix A has already been (bi)partitioned. The
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main feature of a partitioning we decided to preserve was the fact that a row/column was uncut: this
means that the partitioner decided, at some point in the previous iteration, that it was convenient for
the nonzeros of such row/column to be assigned to the same processor. It is then reasonable to devise
heuristics which tend to give a preference for these uncut rows/columns, trying to keep them uncut also
in the next iteration. Naturally, as it is not always possible to do (for example because we are not directly
assigning to processors, but rather to Ar and Ac), a more sophisticated approach is usually needed.

To this extent, a wide variety of heuristics has been devised: the partition-aware extension of the original
algorithm, along with the heuristics that employ the Separated Block Diagonal structure of order 1 and 2
of the partitioned matrix A, quickly turned out to be far from effective. The other considered algorithms,
instead, yielded more interesting results, especially with rectangular matrices.

Chapter 3 was focused on the concept of independent set, and the experimental results suggest that this
is indeed an interesting approach: our best heuristics (pa_localbest, pa_is_1, pa_is_3) rely indeed on
this concept, implicitly or explicitly. Even the simple concatenation of rows and columns in the priority
vector v can be intended as a special case of the ideas of Section 3.3: the set of rows (or columns) is as
a matter of fact an independent set, although probably not of maximum cardinality. The improvement
of the results of this algorithm with increasing rectangularity of the matrices is also to be seen in this
perspective: the more one dimension is dominant, the more that set of indices has a cardinality closer
to the maximum independent set, when computed on the graph constructed according to Section 3.1.

Without iterative refinement, described in Section 4.5, none of the proposed scheme outperforms medium-grain
for all test matrices: pa_localbest and pa_simple have a communication volume, on average, 4% higher
than medium-grain. Considering only the rectangular matrices in our test bed, instead, the results of
these heuristics were better (albeit marginally) than medium-grain: pa_is_3 had an average communi-
cation volume 2% better than the default algorithm of the medium-grain method.

With the iterative refinement procedure, instead, the results are more encouraging, as the heuristic
pa_localbest was able to outperform medium-grain even if slightly: the communication volume was,
on average, 1% lower than the reference value. Also the other heuristics benefited greatly from this proce-
dure, and the quality of the final partitionings is indeed very close to the one achieved by medium-grain.
Also in the case of rectangular matrices the results are slightly better: pa_is_1 and pa_is_3 have a
communication volume on average 4% better than the reference value.

In general, the experimental results confirmed our theoretical expectation that the independent set
approach (either implicit or explicit) is indeed worthwhile.

5.3 Further research

Even though in Section 5.1 we noted how the algorithm proposed in [13] is still the most efficient for the
initial split into Ar and Ac, it might still be convenient to investigate additional strategies and compare
their efficiency, in order to find a better method or gain additional confidence on this algorithm.

The partition-aware heuristics proposed in this thesis, while marginally effective, are meant as a first
attempt at a fully iterative approach at sparse matrix partitioning, and further research can easily be
performed. It might be worthwhile, for example, to investigate more thoroughly the properties of the
maximum independent set, in order to fully exploit the bidimensionality of the medium-grain model.

Even though the implementation of the Hopcroft-Karp algorithm described in Section 3.2.2 was successful
in most cases (and the computation time required was, in general, reasonable), it might be interesting
to produce a C implementation, to allow an eventual integration with the Mondriaan software package.

In addition, if further research on our findings with respect to rectangular matrices is successful (i.e. our
results are consistently reproducible), we could add our strategy as an optional feature to the partitioner:
the program, before applying any other technique, might ask the user whether he/she intends to sacrifice
computation time for a better partitioning. If so, the software would try to recognize whether the
considered matrix is strongly rectangular and eventually execute our approach.
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[14] Bora Uçar and Cevdet Aykanat. “Revisiting hypergraph models for sparse matrix partitioning”.
In: SIAM review 49.4 (2007), pp. 595–603 (cited on page 8).
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