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Abstract

Viscosity of a fluid is one of its defining parameters, measuring it has industrial, medical
and pharmaceutical applications. It is possible to estimate fluid’s viscosity from its apparent
motion, yet existing algorithms fail to reliably determine a fluid’s velocity field from video
data because of their inability to incorporate noisy observations into a spatially consistent
global model. In order to robustly evaluate the velocity fields from video data the algorithm
described by Lin et al. is implemented and its performance is evaluated. The algorithm is
improved by removing its main limitation - the memory consumption, and by incorporating
the SIFT distance measure and Gaussian smoothing. The resulting algorithm is able to
robustly estimate persistent velocity fields from noisy, sparse and heterogeneous observations,
yet it has to be improved in order to be able to estimate the change of the velocity field with
time in order to measure the fluids viscosity.
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Chapter 1

Introduction

This project started with the goal of estimating fluid viscosity from videos portraying the
motion of the fluids. The notion of viscosity formally corresponds to the resistance of the
fluid to gradual deformation by stress, or informally to the notion of its thickness. Viscosity
is defined as the internal friction of a fluid, caused by molecular attraction, which makes it
resist the tendency to flow.

The ability to measure viscosity is valuable for industry, specifically for predicting the
fluids characteristics such as its pumpability and pourability, as well as the fluids performance
in dipping or coating operations. Flow viscosity can also serve as an indirect measure of the
product’s consistency and quality in areas like quality control, where the materials must be
consistent from batch to batch. Also a change of viscosity can indicate a fundamental change
in the fluid or one of its properties such as solids content or crystal concentration [11].

Measuring viscosity also has medical applications [30] and pharmaceutical applications
[21]. Being able to measure viscosity from video data would provide a non-invasive way to
monitor the state of a patient.

Viscosity can also serve as a feature for fluid classification. A lot of fluids encountered in
everyday life have different viscosity, for example it is possible to distinguish between water,
oil and honey on the basis of their viscosity. The viscosity measurement can be used for fluid
recognition that can be further used for making sense of the scene or action depicted in the
video.

Humans can judge viscosity using only visual information, in particular Kawabe et al.
[12] have observed that the spatial pattern of motion signals is critical for estimation of liquid
viscosity, therefore the apparent motion of a liquid can be used to measure its viscosity.

The relation between the fluids viscosity and its motion is described by the Navie-Stocks
equations [1], in particular they relate the fluids viscosity to the divergence of its velocity
field. Therefore in order to use the physical model described by the Navie-Stocks equations
to estimate the fluids viscosity, it is necessary to be able to reconstruct its velocity field from
the video data.

The goal of this work is to robustly measure the velocity fields of fluids from video data
with enough fidelity to be used for the estimation of its viscosity.

There are several available approaches which can be used to reconstruct the velocity fields
from the video data, they are described in more details in the chapter Related Works 2.
However the reconstructed velocity fields exhibit a high amount of noise and often are not
meaningful, therefore they cannot be used for the evaluation of viscosity.
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If the velocity fields could be robustly measured from video data it would be possible to
use them for the estimation of fluid’s viscosity, which is valuable for industrial applications
such quality control, medical applications, or for fluid recognition.

In order to produce better estimates of the velocity fields, an algorithm that could in-
corporate noisy and sparse observations into a global coherent model described by Lin et al.
[15] was chosen for evaluation because they concluded that the algorithm is able to produce
reliable motion estimates for a wide range of videos and with different conditions.

The algorithm described in [15] models persistent flows using Lie Algebras. The as-
sumption that the flows are persistent was identified as a potential limitation before the
implementation. However, after implementing this approach it was found that the memory
consumption is a more limiting factor, therefore, it was more important to focus on it because
the algorithm as described in [15] is only able to process short videos before running out of
memory on contemporary workstations as described in section Performance 4.7.

For short videos the persistent assumption is not a limitation - most flows are persistent
over the intervals of a few seconds. In order to be able to conduct experiments with longer
video, the sequential processing approach described in section Processing using a time window
3.11 was developed and evaluated. The ways to adapt the algorithm to work with flows which
are not persistent are described in section 5.4. The algorithm, as described in 3.10, shows
good performance at reconstructing the velocity fields from videos with persistent flows.

This work fits in the general context of Artificial Intelligence in several ways. The mod-
elling and the analysis of motion patterns in video is an important topic in computer vision.
The algorithm is especially useful when the collective and persistent motion patterns are of
interest, such as in scene understanding and crowd surveillance.

The estimation of velocity fields from video data is important for much more than viscosity
estimation, this process can be seen as one of the low-level stages of visual processing, in
particular motion perception. Motion perception is one of the key stages of visual processing,
for a example motion fields play a role in perceiving of the moving objects, collision prediction
[23], scene segmentation [29], perception of surface material [5] and many other aspects of
perception. It has received great attention within the greater scope of visual processing, for an
elaborate introduction and the role of motion in vision see [27], however current computational
approaches fail to produce reliable motion estimates. The algorithm described in this work is
able to robustly estimate the persistent velocity fields and therefore can contribute to general
motion perception.

The persistent velocity fields computed by the algorithm described in this work can also
serve as a basis for producing higher-fidelity estimates of the velocity fields by incorporating
its estimates into other techniques. For example the output of the algorithm can be used as a
prior for the flows computed using the Farneback algorithm [6] described in chapter Related
Work 2.

Finally this algorithm can be viewed in the more general context as an example of a
generative probabilistic model for noisy, sparse and inconsistent observations, which is then
estimated from the observed data. The formulation of the algorithm is very generic and is
based on a combination of independent gaussian distributions, that means that it can be
adapted for a different problem. The probabilistic nature of the model also makes it possible
to incorporate it into a larger framework.
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Chapter 2

Related work

Motion analysis in videos is based on two key approaches: tracking of individual objects and
analysis of dense velocity fields of optical flow.

Tracking of individual objects is based on recognising the objects in consecutive frames and
tracking their trajectories. The resulting trajectories are then used to construct a statistical
model enabling further motion analysis. Such approaches are often based on tracking feature
points as described in section SIFT 2.1. However most of tee approaches lack a way to
incorporate the sparse observations into a global model.

Optical flow algorithms as described section Optical Flow 2.2, produce dense velocity maps
that model the transformation of all points in the video frame. In contrast to the tracking
feature points, such approaches describe the motion of all points over a spatial region, but
only over a short time window.

The closest method to the one assessed in this work is Learning Visual Flows: A Lie
Algebraic Approach [16] by the same authors as [15]. The differences between the method
described in this work and [16] is described in section Learning Visual Flows: A Lie Algebraic
Approach 2.3.

2.1 SIFT

Figure 2.1: All matched SIFT points
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Figure 2.2: 25 matched SIFT points with the lowest description disctance

SIFT [17] is one of the widely used techniques in object tracking, it was developed by
David Lowe in 1999. The algorithm detects and describes local features in an image and
then matches them against features found in an other image. A feature is a point of an image
that is invariant to image translation, scaling, and rotation, partially invariant to illumination
changes and robust to local geometric distortion. A feature point is represented by a vector
and the invariance means that the vector description of the feature point will not change much
if the image is scaled, rotated, the illumination is changed and local geometric distortion such
as noise is added.

An example of the output of the SIFT algorithm for two consecutive frames from a real
world video is shown in figures 2.2 and 2.1. The figure 2.2 displays all the matches between
feature points of the two frames. The first frame is shown on the left and the second frame
is shown on the right. The colored circles are the feature point that the algorithm has
extracted. The lines connecting circles are the associations between points that the algorithm
has discovered. A line connecting two circles means that the algorithm considered the points
to have corespondency between each other, meaning that the point in the first frame has
moved and ended up a potentially different location in the second frame.

This algorithm makes the association by comparing the descriptors of the points. If the
distance between the two points is lower than a preset threshold then the two points are
considered to have corespondency between each other. The distance value is not the same for
all matched point pairs - in some cases the distance between SIFT feature descriptors is just
below the threshold and in some cases it is very low. The figure 2.2 shows 25 matched point
pairs with the lowest distance between them. The algorithm has identified them correctly.
Also it is noted that most of these points are situated on high contrast stationary regions
of the scene. There is no illumination change between these two frames and little noise,
therefore the matching of these points is reliable and easy. The diagonal lines in the figure
2.1 are mistakes made by the algorithm - there is no such motions between the two frames
and these points are mismatches. Mismatches occur because there are points in frames whose
SIFT descriptors are similar, although they do not not correspond to the same object.

The features are extracted from the image in the following steps. The first step of the
algorithm is scale-space extrema detection. Scale space is a continuous function of scale
that is used to identify potential interest points in the image that are invariant to scale and
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orientation. The algorithm searches for these key points using a cascade filtering approach,
that allows it to efficiently identify candidate locations for the resulting SIFT features. It is
accomplished by using a difference-of-Gaussian function across different scales. Maxima and
minima of the difference-of-Gaussian images are detected by comparing each pixel to its 26
neighbours in 3x3 regions at the current and adjacent scales. The difference-of-Gaussian key
points are selected if their value is less or more than the values of all points in their respective
neighbourhood.

The next step is key point localisation. A model is fit to each of the key points collected
in the previous step in order to determine their location and scale. The stability is measured
for each key point and part of them is filtered out, such those along edges or in low contrast
regions.

In the next step, the orientations are assigned to the remaining key points. In this way
the scale, location and orientation is known for the key points providing the invariance to
these transforms that modify them. The last step is the formulation of the descriptors for
all the key points. The descriptor for each key point is a 128 element feature vector that
is computed from the gradients in the neighbourhood of the key point. This representation
is invariant under scaling, translation and rotation. That means that the same description
vector for the key point will be computed even if the image if scaled, rotated or the location
of the key point changes.

Each of the circles in the figures 2.1 and 2.2 are assigned such a 128 dimensional vector
description. A typical image of 500*500 pixels will yield on the scale of 2000 SIFT features
depending on the image and the algorithm settings. The vector descriptions of the key points
in the first frame (left) are compared to the vector descriptions of the key point from the
second frame (right). Because the descriptions lay in vector space it is easy to compare them
using Euclidian distance. For a pair of frames the number of matched point pairs will be
lower than the number of discovered features in both frames and is affected by the acceptance
threshold and the difference between two frames. For a video like shown in 2.1 and 2.2 there
are almost as many point-pairs as extracted key points.

The SIFT point-pairs are not dense - several steps in the algorithm filter out most of the
pixel locations because they result in unreliable descriptors. Therefore SIFT by itself doesn’t
provide a global flow model. Lowe has proposed an algorithm to use SIFT for object recog-
nition, which works by accumulating a subset of SIFT matches belonging to a single object,
and finally performing verification through least-squares solution for consistent pose param-
eters. This is one of the many different approaches that are often used for object tracking
in videos. However, these approaches often face difficulties with multi-object tracking, also
SIFT algorithm does not perform well with deformable flow like water currents. There are no
features that are present throughout multiple frames because the shape of the water is not at
all constant.

The algorithm presented by Lin et al. [15] is able to incorporate spatially and temporally
sparse SIFT observations in a coherent global model. A global generative model of the flow
is formulated and a probabilistic framework is developed into which SIFT point-pairs can be
incorporated.

5



2.2 Optical Flow

Optical Flow [19] is the pattern of apparent motion of objects, surfaces, and edges in a
visual scene. The Optical Flow approaches aim to estimate the local velocities at every pixel
location for an ordered pair of frames, while SIFT features are sparse, most Optical Flow
approaches will result in dense velocity fields. For each pair of frames each voxel (pixel +
time) represented by its x, y and t coordinates and with intensity value I(x, y, t) is considered
to move by ∆x, ∆y and ∆t.

With the assumption that the brightness of the voxel doesn’t change it is possible to state

I(x, y, t) = I(x+∆x, y +∆y, t+∆t). (2.1)

Because the difference between the time frames is small it is possible to use Taylor series to
convert the brightness consistency constraint into:

I(x+∆x, y +∆y, t+∆t) = I(x, y, t) +
δI

δx
∆x+

δI

δy
∆y +

δI

δt
∆t+H.O.T. (2.2)

H.O.T. refers to higher order terms that are not included in the model. From this equation it
is possible to formulate the dependency between the velocity - V whose components are ∆x

∆t

and ∆y
∆t , the image gradient ∇I whose components are δI

δx and δI
δy and the observed difference

between frames It.

∇IT ∗ V = −It (2.3)

Intuitively, this equation is based on the observation that if there is a gradient in a region and
this gradient is moving, it is possible to predict how the values of the pixels in the region will
change if the values of the velocity and the gradient are given. For example consider a region
with value of the gradient in the x direction equal to 1 and gradient in the y direction equal
to zero. Now imagine the gradient is moving in the right direction with Vx = 1. For a fixed
pixel locations the values of the intensity will therefore decrease. The magnitude with which
they decrease is proportional to the gradient value in the x direction δI

δx and the velocity value
in the x direction Vx.

It is important to mention that the velocity V and gradient ∇I are both two dimensional
and the observed difference It is one dimensional.

The goal of the Optical Flow is to find the velocity V. Equation 2.3 has infinitely many
solutions, because velocity has two components Vx and Vy for the x and y directions respec-
tively which are unknown. This problem is referred to as the aperture problem. In order to
overcome this issue additional constraints have to be incorporated.

Two classical approaches are Lucas-Kanade [19],[18] method and the Horn-Schunck [9]
method.

Lucas-Kanade [19],[18] method assumes that the flow for each pixel location x is essen-
tially the same for all pixel locations within a local neighbourhood of x. The assumption is
incorporated through formulating a system of equations for all pixels in the neighbourhood
and solving it through least squares criteria. The system of equations is formed by adding
equation 2.3 for each of the pixels in the neighbourhood; the velocity variable V is the same in
all the added equations. It is enough to add just one additional linearly independent equation
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to the equation 2.3 to make it fully specified. Because the system of equations for neighbour-
hood of pixels is usually over specified it is solved through the least squares criterion. The
resulting velocity values are assigned to the pixel around which the neighbourhood is centred.
The algorithm iterates through all pixel positions, formulates the system of equations for each
pixel position and computes the velocity for it. Thus Lucas-Kanade method overcomes the
aperture problem through combining the information from neighbouring pixels, it is also less
sensitive to image noise than point-wise methods. However the method is purely local, if
there is a region of the image without a gradient in one of the directions the algorithm will
fail to make a meaningful estimation of the motion there.

Horn-Schunck [9] method is another method to estimate optical flow. While Lucas-Kanade
method is purely local, Horn-Schunck method is global, and incorporates a global constraint
of smoothness in order to solve the aperture problem. This approach starts with formation
of an energy function E:

E =

∫ ∫ ((
∇IT ∗ V +

δI

δt
∆t

)2

+ α2
(
‖∇Vx‖2 + ‖∇Vy‖2

))
dxdy, (2.4)

where α is the parameter that controls the smoothness of the flow. Larger α values lead
to smoother flows. It is a term that represents the motion-independent change of pixel
intensity such as change in illimination. ∇Vx and ∇Vy are the divergences of the flow velocity
components Vx and Vy. This energy can be minimized by solving the associated Euler-
Lagrange equations in an iterative fashion yielding an estimation of V for every pixel position.

The advantage of the Horn-Schunck method is that it is able to fill in the velocity values
for the regions of image where they cannot be estimated reliably, such as regions of image
without any change of intensity. It is worth mentioning that this approach is more sensitive
to noise than local methods.

Farneback [6] method is another approach to estimate the dense velocity field from a pair
of images. It is also able to use a flow estimation as its prior, allowing to some degree incor-
porate information from multiple frames. The algorithm approximates the neighbourhood of
each pixel of two frames with a quadratic polynomial function by estimating its coefficients
by least squares method. Then the relation between the local velocity and the polynomial
coefficients in the first and second frames is formulated. Using this formulation it is possible
to solve directly for velocity directly, but to induce more smoothing, the information from
the neighbouring pixel is integrated.

There are many other approaches to solve the aperture problem, however most of the
methods are aiming to estimate the motion between two consecutive frames. These methods
also suffer due to the sensitivity of optical flow estimation to occlusions, noise, and varying
illumination.

The closest approach to the one described by Lin et al. in [15] Learning Visual Flows: A Lie
Algebraic Approach [16] by the same authors. The main differences between the approaches
in these two papers is the way the spatial domains of the flows are modelled. In the [16] the
flow domains are modelled as Gaussian Distributions, while in [15] they are modelled using
Markov Random Fields implemented using Graph Cuts [3]. The methods described in both
papers model the motions using the Lie Algebraic representations of affine transforms, they
are described in section Lie Algebraic Representation Of AffineTransforms 3.3.
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2.3 Learning Visual Flows: A Lie Algebraic Approach

The approach described in Learning Visual Flows: A Lie Algebraic Approach [16] is limited
to the six-dimensional affine flows, while the approach in [15] is able to model more complex
flows by dividing the scene into a triangular grid and incorporates the consistency constraints
as described in section Geometric characterisation And constraints 3.4 and a Gaussian prior
as described in section Gaussian Prior 3.8. Learning Visual Flows: A Lie Algebraic Approach
is an earlier paper and it is much more verbose in the descriptions of the mathematical
apparatus. It is much easier to understand the approach described in the latter work by
Lin et al. after reading it. The assumptions in both approaches are comparable. They
both assume time invariant velocity fields and constant flow domains. The approach in
[16] is executes faster because the matrices it manipulates are of much lower dimensionality.
However the spatial domains of the flows in the real world videos are usually not well modelled
by a two-dimensional gaussian distribution. [16] also relies on a particular form of matrix
decomposition making it only applicable for affine fields.

For a review of other Lie algebraic approaches to computer vision consult [20].
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Chapter 3

Theory

3.1 Geometric flow

The model described in this work is based on the concept of geometric flow [15], that unifies
two primary motion representations: motion trajectories and geometric transforms. Trajec-
tory based approaches track the positions of individual objects over time without necessarily
considering the states of other objects. Such algorithms are often used in person or vehicle
tracking.

Geometric transforms represent the motion over an entire region of space but over a short
period of time. While useful for image alignment and registration, such approaches do not
have an explicit way to incorporate together information collected over an extended period
of time.

Geometric flows overcomes these limitations by being able to incorporate observations col-
lected over the entire region of space and span of time into a coherent model. Mathematically
a geometric flow is a function F that governs the motion of each point of space over time.
The function takes as input a position x and time duration t and outputs the new position
of the point at time t. The geometric flow function has to satisfy to conditions: for time
duration equal to zero the function has to output the position it got as input

F (x, t0) = x. (3.1)

Besides the function has to be associative, meaning that a point moving through space for
time t1 and then continuing to move for time t2 is equivalent to a point moving for time

F (F (x, t1), t2) = F (x, t1 + t2). (3.2)

The function is also required to be able to work with positive and negative time periods.

3.2 Flow and Velocity field

The flow is assumed to be persistent, meaning that it doesn’t change with time, and the
velocity of the motion of each point only depends on its location. The spatial domain of the
flow is also assumed to be constant. No matter their starting position all the points that
pass through a certain position of space, pass it with the same velocity. In this way, each
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geometric flow induces a unique time invariant velocity field. The latter can be obtained by
taking the derivative of the of the function F with respect to time.

δF (x, t)

δt
= VF (F (x, t)) (3.3)

Conversely each velocity field induces a unique geometric flow under mild conditions as stated
by the fundamental Theorem of Flows [14]. The process by which the velocity field induces
a flow is equivalent to process of trajectory generation.

Geometric flows can be naturally represented using Lie algebras. For an introduction to
Lie Algebras and Representation Theory see [10]. Consider a point moving along a flow at
each position the flow induces a motion along the velocity field V . Consider a transform F∆t

derived from F ,

F∆t(x) % TV,∆t := x+ V (x)∆t (3.4)

for sufficiently small intervals ∆t. Because F is associative, each derived transform F∆t can
be expressed as a composition of many shorter time transforms as F (t) = F∆t ◦ ... ◦ F∆t.
The limit form of the equation can be expressed as

Ft = lim
N→∞

(TVF , t
N
)N (3.5)

This way the geometric transforms and their driving velocity fields are unified. Each trans-
form can be constructed by accumulating the small changes due to the underlying velocity
field. The velocity field is thus called the infinitesimal generator. For a transformation group
G, the set of all the infinitesimal generators of the transforms in G is a vector space, called
the Lie algebra associated with G. Each element of the Lie Algebra of G Lie(G) induces
a unique geometric flow, all flows which are possible to represent in Lie(G) as well as their
linear combinations are in G.

Lie(G) is a vector space, suppose it has L dimensions, then each of its elements can be
represented a a linear combination of some basis (E1...EL), and uniquely characterised by a
coefficient vector (α1...αL) as

VF =
L∑

l=1

αlEl. (3.6)

The coefficient vector α is the Lie algebraic representation of the geometric flow F with respect
to a chosen L dimensional basis and describes F as a combination of basic motion patterns.

Representing geometric transforms as Lie algebras has two main advantages. The space
of geometric flows is not a vector space and their functional form is in general nonlinear.
Many statistical approaches assume an underlying vector space and therefore their deriva-
tions depend on such its properties as closure under scalar multiplication and vector addition,
neither of which hold for geometric flows. Deriving statistical models is therefore more com-
plicated. The Lie algebraic representation can be directly used without modifications and
thus largely overcomes the modelling problems. The introduction of constraints is also much
more straightforward for the Lie algebraic approach. The subgroups of geometric flows, that
are introduced by constraints, are generally non-linear in their functional form, but become
linear in the Lie algebraic representation.
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3.3 Lie algebraic representation of Affine transforms

Affine transforms [2] have been chosen in this work as well as in [15] and [16], as they are are
rich enough to represent different motions patterns, but in general other transform families
including non-linear transforms can be used (give examples). Affine transforms parametrized
by A and b have the following form:

x′ = Ax+ b (3.7)

where A is a 2 by 2 matrix and b is a 2 by 1 matrix or equivalently in homogeneous coordinates
as

x′ =

[
x′

1

]
=

[
A b
0 1

]
x = T x̄. (3.8)

All invertible matrices

[
A b
0 1

]
are a Lie Group called the Affine Group. For an detailed

introduction see [8] and [14]. It is evident that it is not a vector space, as it is not closed
under addition. It is not closed under addition because a sum of two such matrices produces
a matrix with a 2 in the lower right position and therefore is not an affine transform any
more. Neither is it not closed under scalar multiplication, because multiplying such matrix
by anything rather than 1 escapes the space of affine transforms.

The structure of the group of Affine transforms is multiplicative: a product of any two
Affine transforms T1 and T2 is an Affine transform that is equivalent to first applying the
transform T2 followed by transform T2.

It is more troublesome to work with groups that have a multiplicative structure, thus it is
desirable to transform the representation into an equivalent vector space representation with
additive group structure. For every Lie group there is a locally equivalent Lie algebra. Lie
algebras are related to Lie groups through matrix exponentiation and matrix logarithm. Let
X denote the Lie algebraic representation of T then:

T = expX = I +
∞∑

k=1

1

k!
Xk, (3.9)

and

X = log T =
∞∑

k=1

−1k+1

k
(T − I)k. (3.10)

The exponential map transforms the multiplicative structure into an additive one, much like
it does when acting on natural numbers.

Affine transforms of two-dimensional points are all matrices of the form

[
A b
0 1

]
and the

space of their Lie algebraic representation is all matrices of the form

[
A b
0 0

]
. The zero in the

lower right corner of the Lie Algebraic representation comes after solving equaltion 3.10. The
Affine transforms of two-dimensional points are six-dimensional, and so are their Lie Algebraic
representations [14]. As mentioned above the Lie algebraic representation is a vector space,
so each of its elements can be represented as a linear combination of some basis (B1...BL),
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and uniquely characterised by a coefficient vector (α1...αL) as VF =
∑L

l=1 α
lBl. The most

natural choice for the basis that spans the whole space is




1 0 0
0 0 0
0 0 0



 ,




0 1 0
0 0 0
0 0 0



 ,




0 0 1
0 0 0
0 0 0



 ,




0 0 0
1 0 0
0 0 0



 ,




0 0 0
0 1 0
0 0 0



 ,




0 0 0
0 0 1
0 0 0



 . (3.11)

Using this basis any Lie algebraic representation of Affine flow can be written down as a
six-dimensional vector. To calculate the velocity induced by the flow given its six-dimensional
representation α at point x, first it is necessary to calculate the weighted sum of the basis:

VF =
L∑

l=1

αlBl, (3.12)

which is a matrix of the form

[
A b
0 0

]
. The ness spey is place the two-dimensional point x into

augmented notation

[
x′

1

]
, and to multiply by matrix VF with

[
x′

1

]
to get a two dimensional

velocity vector augmented with a zero.

3.4 Geometric Characterisation and Constraints

Lie algebraic representation maps the subgroups of the geometric transforms into linear sub-
spaces. In the two dimensional Affine group there are many families of transformation that
are subgroups of the Affine group such as scaling, shearing, and translation, all of which map
to linear subspaces of the Lie Algebra. For example rotations by the angle alpha around the
origin are represented by matrix TR(θ)

TR(θ) =




cosθ −sinθ 0
sinθ cosθ 0
0 0 1



 (3.13)

and XR(θ)

XR(θ) =




0 −θ 0
θ 0 0
0 0 0



 (3.14)

is a corresponding Lie algebraic representation. It is evident that the Lie Algebraic represen-
tation is a one vector dimensional space. Because of this property one can easily impose a
variety of geometric constraints. For example, the subgroup of the volume preserving trans-
forms in their conventional form are all affine transform matrices with determinant equal to
one. This constraint is non-linear.

When transformed to the Lie algebraic representation the constraint det(TR(θ)) = 1 be-
comes constraint on the trace tr(XR(θ)) = 0 (see Jacobi’s formula det(exp (A)) = exp (trace(A)).
The trace constraint is linear and is easy to enforce:

tr(X) = 0 ⇔ X11 +X22 = 0. (3.15)
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(a) Grid with uniform parti-
tioning

(b) Grid with alternating par-
titioning

Figure 3.1: Two of the many possible ways to partition a square grid into triangles.
In this work the grid on the left was used in the experiments.

3.5 Flow Stitching and Consistent subspace

In order to model complex flows present in natural scenes, the scene is partitioned using a
triangle mesh with m cells and n vertices. Figure 3.1 shows two of many possible ways to
partition a plane using triangles. The grid on the left was used in the implementation. Each
triangular cell is associated with a six-dimensional affine flow, which describes the motion
within its cell. The resulting global flow is described by the combination of the local flows.
It is possible to describe any diffeomorphic flow if the size of the cell goes to zero.

In general for a K-dimensional Lie algebraic representation of a basic flow with a basis
(B1...BK), the local flow within i’th cell is represented asK-dimensional coefficient vector βi =
[β1

i ...β
K
i ], and the velocity field induces by it can be calculated as VFi(x) =

∑K
k=1 β

k
i Bk(x).

Each cell shares its vertices with neighbouring cells, and flows within each cell can induce
different velocities at shared vertices. However it is desirable that the local flows agree on the
velocities that they generate at such points. It can be achieved by imposing an additional
constraint. Consider a vertex x shared by the i’th and the j’th cells. In the figure 3.1a, x is
shared by cells 2, 3 and 4. Without any additional constraints the flows i and j may generate
different velocities at the point x, which leads to discontinuities at the cells boundaries. In
order to avoid such discontinuities, we introduce a constraint VFi(x) = VFj (x), resulting in a
consistency constraint

k∑

k=1

(βk
i − βk

j )BK(x) = 0. (3.16)

Note that because the velocity V is two dimensional, the consistency constraint in equation
3.16 results in a constraint on the x and y components of the velocity Vx and Vy as described
further.

In figure 3.1a it is possible to write down 4 constraints equations of the type 3.16 for point
x, for example two equations that say that the x and y components of the velocities induced
by the cells 2 and 3 are equal and two equations that say that the x and y components of the
velocities induced by the cells 2 and 4 are equal. Other equations, such as equations for cells
3 and 4, are redundant as described further in this section.
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The consistency constraints are linear, therefore they result in a linear subspace of the
joint Lie algebra, called consistent subspace. In general the dimension of the consistent space
representation depends on the choice of the basic flow family and the mesh topology.

Figure 3.1 illustrates two possible topologies of triangular grids. It is evident that there
are many more possible ones. Each rectangular cell can be divided in to triangles in two
ways, so the number of possible grids grows exponentially with the number of rectangular
cells. The grid topology illustrated in 3.1a was used in this work.

The dimensionality of the representation can be calculated in the following inductive
way: start with a grid with one rectangular cell, it contains two triangles and each con-
tains a six-dimensional flow each. Without the consistency constraints twelve dimensions
would be required to represent this system. The consistency constraints allows to write down
four equations: two for the x-component of the velocity VF0x

((0, 1)) − VF1x
((0, 1)) = 0 and

VF0x
((1, 0)) − VF1x

((1, 0)) = 0 and two for the y component VF0y
((0, 1)) − VF1y

((0, 1)) = 0
and VF0y

((1, 0)) − VF1y
((1, 0)) = 0. Each of the linear equations reduces the dimensionality

of the consistent subspace by one. The dimensionality of a rectangular cell divided into two
rectangles is 2 ∗ 6 − 4 = 8. When another rectangular cell is added below the first one, it
is possible to write four equations for the constraints within each rectangle plus four more
for the two points where the rectangles touch. Thus for a column of n rectangles n ∗ (6 ∗ 2)
dimensions are required without the consistency constraints and it is possible to write down
4 ∗ n equations for the within rectangle constraints and 4 ∗ (n− 1) equations for constraints
between touching rectangles. Adding it up n ∗ (6 ∗ 2)− 4 ∗n− 4 ∗ (n− 1) = 4n+4 dimensions
are required to represent a n-tall constrained column containing 2 ∗ n triangles containing a
six dimensional flow each. Adding another n-tall column to the left or to the right of the
original one allows to right down 2 ∗ (n + 1) consistency constraint equations because there
are n+ 1 points where the columns touch. This way the dimensionality of a grid with n ∗m
cells is

m ∗ (4n+ 4)− 2(m− 1)(n+ 1) = 2m ∗ n+ 2m+ 2n+ 2, (3.17)

and the number of consistency constraint equations is

6 ∗m ∗ n− (2 + 2m+ 2n+ 2mn) = 4m ∗ n− 2m− 2n− 2. (3.18)

The consistency equations for an n ∗m grid can be formulated by iterating through the
(n + 1) ∗ (m + 1) grid interception points. Each grid interception point can belong to up
to six triangles, the interceptions at the edges of the grid belong to less triangles. For each
interception the list of triangles the point belongs contains the bottom right triangle of the
top left square if it exists, both triangles of the top right square if they exist, followed by both
triangles of the bottom left square if they exist and the top right triangle of the bottom left
square if it exists.

For a vertex belonging to n triangles it is possible to write down (n−1)∗2 equations. It can
be shown inductively by starting a point belonging to one triangle, which is the degenerative
case - it is not possible to write down any equations. The trivial case is a point belonging
to two triangles A and B, in this case it is possible to write two equations VFAx

= VFBx

and VFAy
= VFBy

. Note that the equations VFAx
= VFBx

and VFBx
= VFAx

imply each other
because of the symmetric property of equality. Adding another triangle C always allows to
write down two additional equations VFAx

= VFCx
and VFAy

= VFCy
, no matter how many

triangles are already given - their equality to the newly added one follows from the transitive

14



property of equality. Thus having accumulated a list of triangles it is possible to formulate all
equations by iterating through the list and writing the two equations (for x and y components
of the velocity) for every pair of consecutive triangles, or by equating all triangles except the
first one to the first one. For every such pair of triangles it is possible to write two consistency
equations. The total number of consistency equations for 5*6 grid with 60 triangular cells
and the chosen topology depicted in 3.1a is 276.

The representation of the unconstrained complex flow induced by the primitive flows in
each cell can be constructed in the following way - each cell is assigned an index and a k-
dimensional vector representation. For the affine flow family the representation is k = 6
dimensional and there are n = 60 cells in the grid, a natural way to represent the whole
system is to concatenate all the n dimensional vectors into one k ∗ n = 360 dimensional
vector α360. The first six coefficients encode the affine flow in the first cell, and the n ∗ 6 to
n ∗ 6 + 6 coefficients encode the state of the n-th cell. So, therefore to calculate the velocity
induced by such representation at a given position, the index icell of the triangular cell the
position belongs to is calculated. Then, the six-dimensional affine flow representation vector
β is calculated by taking six consecutive coefficients from α360 starting with index icell ∗ 6.
The β vector and the position are finally used to calculate the velocity using equation: 3.12.

The space of all flows satisfying the constraints equations is a linear subspace of the space
of all unconstrained flows. Finding the basis which spans this subspace is possible through
writing down all the constraint equations in the matrix form and then finding its null space.
There are 276 equations and 360 variables, all the equations can be written down in the form
VFA − VFB = 0, or expanding the V terms

k∑

k=1

βk
i BK(x)−

k∑

k=1

βk
jBK(x) = 0. (3.19)

Each equation has the form

a1x1 + a2x2 + ...+ anxn = 0, (3.20)

so writing down each equation amounts to writing down the right a coefficients for it, which
represent the x or y velocity components induced by the corresponding basis element at the
point location. Each equation constrains the values of the x or y components of the velocities
induced by two primitive flows at a point where they touch, and other flows do not play a role
so the a coefficients for all flows except the two in question are zeroes. The a1...a6 coefficients
for the first flow in the equation are the x or y components of the velocities induced at the
point by each of the six basis elements B, and for the second flow they are the same but with
the opposite sign. The resulting system of equations is a 276 ∗ 360 matrix.

It is then possible to find the null space of the mxn (in our case 276x360) matrix A

by row augmenting it with an nxn identity matrix I resulting in

[
A
I

]
, and then computing

the column echelon form using Gaussian elimination or any other available method, getting

matrix

[
B
C

]
[22]. The basis of the null space of A consists in the non-zero columns of C such

that the corresponding column of B is a zero column. The result is a 360x84 matrix Cons
whose columns are the basis of the consistent subspace. Any of their linear combinations
yield a 360 dimensional vector that induces a consistent flow, and any consistent flow can be
expressed as their linear combination.
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The parameterisation of the consistent flows is an 84 dimensional coefficient vector αC .
The velocities induced by such representation can be computed by multiplying the consistent
subspace basis matrix Cons with the vector αC , the result is a 360 dimensional vector α that
can be used to compute the velocities like in the unconstrained case. Each of the coefficients
of the vector αC as well as the columns of the consistent subspace basis matrix Cons induce
flows in one or more cells of the grid, opposite to the constrained case where each coefficient
of the representation vector α affects the flow only within one cell. Figure 3.2 illustrates the
flows induced by three consistent basis subspace elements. As you can note each of the flows
is self-consistent and influences motions within several cells. A linear combination of flows as
depicted in 3.2 is also consistent.

Each of the columns of the matrix Cons induce a flow at each point. The flow induced by
a column of Cons at point x can be computed by treating it as a 360-dimensional coefficient
vector α and computing the velocity it induces at point x as described before in this section.
The 2 ∗ 84 matrix whose i’th column is the velocity induced by the i’th column of matrix
Cons will be referred to as E(x) and El(x) is its l’th column.

(a) (b) (c)

Figure 3.2: Flows induced by 3 of 84 consistent subspace basis elements

3.6 Stochastic Model Estimation

The Lie algebraic representation of a geometric flow F with respect to a chosen basis (E1, ...EL)
is an L-dimensional vector of coefficients of its infinitesimal generator VF . In the case of affine
flows on a triangular mesh with consistency constraint described above, the basis is 84 dimen-
sional and therefore the representation is an 84 dimensional coefficient vector. The problem
of estimation a flow thus naturally reduces to estimation of this coefficient vector. In order
to do this a generative model of the flows is established as following. The position of a point
X at time t is modelled as a random variable Xt together with Brownian motion Bt to model
the noise present in real data. This leads to the stochastic flow

FG : dXt = VF (Xt)dt+GdBt. (3.21)

G is a 2x2 coefficient matrix; values in G control the amount of Brownian motion. The values
of G are a parameter of the algorithm that has to be specified. Setting G to identity matrix
produces the results described in the chapter 4 For a point xt, whose position is know at time
t and ∆t is sufficiently small is

p(xt+∆t |x) ∼ N (xt + VF (xt)∆t,ΣG |∆t|) (3.22)
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Where N denotes the Gaussian distribution and ΣG = GGT . While the geometric flow model
is global it can be efficiently estimated from local observations. Two types of observations
are utilised in the approach.

3.6.1 Point pairs

SIFT features points are extracted for each frame of the video and then the correspondence
of feature points in consecutive frames is established by comparing their descriptors. The
positions of the matched points is a point pair. The likelihood of a point pair can be formulated
as

p((x, x′) |FG ) = N (x′ − x
∣∣

L∑

l=1

αlEl(x),ΣG∆t+ ΣS) (3.23)

because x′−x is essentially VF (x)∆t when ∆t is equal to the time difference between frames.
Note that x′ − x is two dimensional. In order ΣS is the covariance matrix of measurement
noise, it is a free parameter equal to identity matrix in the implementation.

3.6.2 Image sequences

The sequence of frames of the video can be seen a stochastic Markov process where each frame
depends on the previous one and the velocity field that drives the changes in the frame.

p(IS |FG ) =
J∏

j=1

p(Itj
∣∣Itj−1 ;FG ), (3.24)

where IS = (It0 ...Itj ) are the frames of the video captured at times 0 to J . Assuming that all
the pixels of the frame are independent of one another given the previous frame and the flow
we get

p(Itj
∣∣Itj−1 ;FG ) =

∏

x∈DI

p(Itj (x)
∣∣Itj−1 ;FG ). (3.25)

Itj (x) is the intensity value of pixel x of frame Itj and DI is the set of all observed pixel
locations in a frame. Through back tracing:

p(Itj (x)
∣∣Itj−1 ;FG ) = N (Itj−1(x)− µx,σ

2
x), (3.26)

where

µx = ∇Itj−1(x)
TVF (x)∆t, (3.27)

σ2
x = ∇Itj−1(x)

TΣG∇Itj−1(x)∆t+ σ2
p. (3.28)

The equations are derived based on the observation that given a location and gradient at
the location it is possible to predict the change of intensity if it is known how the gradient
has moved. In the simplest case consider a gradient and a point 3.3a, now imagine that
the gradient has shifted to the right 3.3b, it is evident that the change of the intensity
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(a) Frame 1 (b) Frame 2

Figure 3.3: The moving gradient induces a change of intensity at point x. The
values of the gradient at location x in frame one and the difference of intensities
between the frames is used to estimate motion

can be computed using equation 3.26. The equation 3.28 suppresses the influences of the
high contrast neighbourhoods. It is important to suppress them as only small amplitude
flows would produce intensity differences that remain within the measurable range of pixel
intensities (0 to 255 in usual encoding). σp is another free parameter, it is set to one.

This result together with the Lie algebraic representation and expanding the factors
amounts to

p(Itj (x)
∣∣Itj−1 ;FG ) = N

(
Itj (x)− Itj−1(x)

∣∣∣∣∣−
L∑

l=1

αlµ(l)
x ,σ2

x

)
, (3.29)

where

µ(l)
x = ∇Itj−1(x)

TEl(x)∆t. (3.30)

Point pairs and image sequences can be used side by side to estimate the flow coefficients.
They also have different advantages and draw backs - while pixel differences and gradients
capture well the smoothly varying regions, the flow in high contrast ares is better captured
by SIFT point pairs.

3.7 Robust estimation of Flows

The estimation of the geometric flow is performed by estimating the coefficients of its Lie
algebraic representation. The representation of the consistently stitched flow on the trian-
gular grid described in section 3.5 is an 84-dimensional vector space. The flow gives rise to
observations collected through SIFT point pairs and image sequences. The probability of a
SIFT point-pair observation given the flow is equation 3.23, and the probability of the image
sequence observation is equation 3.29. Both functions are gaussian probability distribution
functions. Denoting the observed value of observation i as yi, which is the difference between
point pairs (x′ − x) for SIFT observations and the pixel intensity difference Itj (x)− Itj−1(x)
for Image Sequence observations (note that the former is two dimensional, while the latter is
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one-dimensional), denoting the expected value as Eiα (Ei = µi for Image sequence observa-
tions 3.30) and the covariance as Σi, it is possible to rewrite the equations 3.23 and 3.29 as

p(yi |FG ) = N (yi |Eiα,Σi ) (3.31)

It is assumed that the observations are independent of one another given the flow mode.
Therefore, the probability of the observations given the flow model can be formulated as a
product of the probabilities of each observation given the flow model:

p(Obs |FG ) =
∏

i∈Obs

N (yi |Eiα,Σi ). (3.32)

The product of gaussian probability distribution functions is also a gaussian probability dis-
tribution function. For this and other results used in the derivation consult [26].

Computing the probabilities of observations given the flow model is straightforward. The
flow model is an 84-dimensional coefficient vector α. The term Ex is a 2 ∗ 84 matrix which
contains the x and y components of the velocity induced by each of the basis elements. It
can be computed for a given observation as following. Each observation is associated with a
position: for SIFT observation it is the position of the first point in the pair, and for image
sequences it is the position of the pixel in question. For each column of the constrained
flow matrix Cons, the velocity which it induces at the observation position is commuted and
saved in the corresponding row of the matrix Ex. Multiplying Ex with α produces the velocity
induced by α at x. After plugging α and Ex into the equations 3.23 and 3.29 the probabilities
can be computed directly.

In order to fit the flow model to the collected observations a reverse task has to be
performed. The goal is to find the most likely flow model FG represented by flow coefficient
vector α given the collected observations Obs. It can be formalised as following: the likelihood
of the flow model FG is the function L

L(FG |Obs) =
∏

i∈Obs

N (yi |Eiα,Σi ), (3.33)

because the observations are assumed to be independent and identically distributed gaussian
distributions.

α = argmax
α

∏

i∈Obs

N (yi |Eiα,Σi ) (3.34)

Since L(FG |Obs) is a product of gaussian distribution functions it is also a gaussian distribu-
tion function, and therefore it has one maximum and it is only critical point of the function.
The maximum can be found by taking the derivative of L(FG |Obs) with respect to α. The
value of α for which the derivative is equal to zero is the value for which maximises the
value of L(FG |Obs). It is more mathematically convenient to work with the logarithms of
the likelihood function lnL(FG |Obs). Since it is a monotonically increasing function, the its
maximalization yields the same results.

lnL(FG |Obs) = ln
∏

i∈Obs

N (yi |Eiα,Σi ) =
∑

i∈Obs

lnN (yi |Eiα,Σi ) (3.35)
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Expanding the logarithms we get:

lnL(FG |Obs) =
∑

i∈Obs

−1

2
ln ((2π)2 |Σi|)−

1

2
(yi − Eiα)

TΣ−1
i (yi − Eiα) (3.36)

The derivative of lnL(FG |Obs) with respect to α is

δ lnL(FG |Obs)

δα
=
∑

i∈Obs

−Σ−1
i Eiyi + Σ−1

i (ET
i Ei)α (3.37)

Setting the derivative to zero and solving for alpha we get:

α =

(
∑

i∈Obs

Σ−1
i (ET

i Ei)

)−1 ∑

i∈Obs

Σ−1
i Eix (3.38)

This value of α is the most likely value of the flow model coefficients given the observations.

3.7.1 Examples and Intuition

In order to gain the intuition behind the 3.38 consider a case where there is only one basis
element and one observation. Because there is only one observation there is only one E vector.
Because there is only one basis element the E vector is one dimensional. The value of E is
value of the flow induced at the observation location by the basis element. Let’s say it is equal
to e = 1 for the chosen basis at the chosen observation location. Now assume we observe
a flow of magnitude one, setting the observed value x to 1. It is possible to exclude the Σ
value out of the consideration because it acts like a weighting factor. Substituting the values
in equation 3.38 yields α = 1−1 ∗ 1 = 1. The correctness of the resulting α substituting the
values back into the generative flow model equation 3.12. Indeed V = 1∗1 = 1 is the observed
velocity. Changing the value of x to 2 and plugging in the values into equation 3.38 will yield
α = 2, and x = 1

2 will yield α = 1
2 . These are the expected results. Changing the value of

the flow induced at the observation location by the basis element to e = 2 and keeping x = 1
yields α = 1

2∗2 ∗ (2 ∗ 1) = 1/2 which is the expected result.
Now lets introduce a second basis element, making the E vector and the α vector two

dimensional. Now there are two values e1 and e2 they represent the values of the flows
induced at the observations location by the first and the second basis elements. Consider a
case where e1 and e2 are both equal to one. It is impossible to fit the flow from just one
observation - there are infinitely many solutions. Since the observation is one dimensional,
there is only one known and the two alpha coefficients are the unknowns, therefore there are
infinitely many solutions. This issue can be viewed as in instance of the aperture problem
described in section Optical Flow 2.2. Mathematically this instance of the aperture problem
results in the matrix C being singular and therefore C−1 is a pseudo inverse that is computed
using least squares method [24]. The result obtained in this can be calculated by plugging in

values into equation 3.38, setting observed flow x to 1 yields α =

([
1
1

] [
1 1

])−1

∗
[
1
1

]
∗ 1 =

([
1 1
1 1

])−1 [
1
1

]
= 1

4

[
1 1
1 1

] [
1
1

]
= 1

2

[
1
1

]
. The algorithm will decide that both of the basis

elements will have equal contribution. Note the

[
1
1

] [
1 1

]
is not invertible and 1

4

[
1 1
1 1

]
is
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its pseudo inverse. Plugging the values into the equation 3.12 verifies the correctness of the

results. Setting e2 = −2 will yield α = 1
5

[
1
−2

]
. The results are correct according to the

equation 3.12. The C matrix is equal to

[
1 −2
−2 4

]
. The values of the matrix are e21, e1 ∗ e2,

e2 ∗ e1, e2 ∗ e2 for the given observation. In order to interpret these values, it is important
to note that correlation between vectors can be defined as a normalised inner product or the
covariance of the vectors divided by square root of the product of their variances . Therefore
the values e21, e1 ∗ e2, e2 ∗ e1, e2 ∗ e2 are unnormalised inner products.

In this way, it is clear when the induced velocities are two dimensional. V =

[
Vx

Vy

]
and

the E vectors become matrices:

[
e1x e1y
e2x e2y

]
=

[−→e1−→e2

]
where −→ei =

[
eix eiy

]
. Now matrix C

becomes

[−→e1 ∗ −→e1T −→e1 ∗ −→e2T−→e2 ∗ −→e1T −→e2 ∗ −→e2T
]
where −→ei ∗ −→ej T is the dot product of −→ei and −→ej . Geometrically

a dot product is the magnitudes of the vectors times the cosine of the angle between them.
This illustrated the relation between the elements of the C matrix to the correlations and
covariances. For one observation the elements of the C matrix can be seen as the unweighted
correlations between the flows induced at the observations location by each of the basis
elements. For n observations the C matrix becomes a weighted sum of n Cn matrices weighted
by the observations covariance. Its coefficients can be interpreted as correlations of the basis
flows over all the locations.

3.8 Gaussian Prior

The flows in natural scenes often exhibit complex yet spatially coherent variations. A fine
mesh helps to model the spatial variations in the complex flow while at the same time using
a fine mesh reduces spatial coherence. In order to enforce long-range spatial coherence, while
retaining the modelling flexibility a Gaussian Prior is used.

The Gaussian prior (GP) is easy to formulate for the unconstrained flow. The covariance
function is defined as

cov (βk
i ,β

k
j ) = σ2

β exp

(
−1

2

‖ci − cj‖2

σ2
gp

)
, (3.39)

where ci is the circumcenter of the ith cell and [β1
i ...β

k
i ] is its (six-dimensional) local Lie

algebraic representation. σβ is a free parameter that controls the overall influence of the
GP, and σgp is a free parameter that controls how fast the influence of the GP decays with
distance. In the experiments conducted in this work it was found that a good value for σβ
is 3 and the algorithm is not very sensitive to it. The optimal value of σgp depends on the
video and the setting of other parameters and heavily influences the results. It is evident
from the formula that the covariance will decrease as the distance between cells increases,
meaning that the cells that are close together are more likely to get similar coefficients, the
latter results in a smoother changing flow and more spatial coherence.

The Gaussian prior of the concatenated unconstrained representation can be formulated
as N (0, Gβ). Under consistency constraint it is possible to transform the 84-dimensional
consistent-representation coefficient vector α to the 360-dimensional coefficient vector β by
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multiplying the consistent constraint matrix Cons with α. Hence the GP-prior of the consis-
tently stitched flow can be derived as

p(α) = N
(
0,
(
ConsTG−1

β Cons
)−1

)
, (3.40)

where Gβ is the 360 ∗ 360 covariance matrix computed using the equation 3.39. This prior
enforces spatial coherence in the consistently stitched flow. Lets name the expected value of
α as α0 it is an 84-tall column vector of zeroes, and the covariance as Σα.

The incorporation of the Gaussian prior can be done using the Bayes theorem:

p(FG|Obs) =
p(Obs|FG)p(FG)

p(Obs)
, (3.41)

where p(Obs|FG) can be computed from equation 3.32, p(FG) is the gaussian prior described
in equation 3.40 and p(Obs) is a normalisation term that is not a function of α. Finding
the most likely value of α given the observations and the prior can be done using the same
approach as section 3.7 - formulating the likelihood function L(FG|Obs,GP ) and finding the
value of α that maximises it. The term p(Obs) can be dropped because it is not a function
of α and does not affect the result.

L(FG|Obs,GP ) = p(Obs|FG)p(FG) =
∏

i∈Obs

N (yi |Eiα,Σi ) ∗N (α|α0,Σα). (3.42)

As before it is more convenient to work with the logarithm of the likelihood function:

lnL(FG|Obs,GP ) =

(
∑

i∈Obs

−1

2
ln ((2π)2 |Σi|)−

1

2
(yi − Eiα)

TΣ−1
i (yi − Eiα)

)
+

(
−1

2
ln ((2π)84 |Σα|)−

1

2
(α− α0)

TΣ−1
α (α− α0)

) (3.43)

The derivative of lnL(FG|Obs,GP ) is

δ lnL(FG|Obs,GP )

δα
=

(
∑

i∈Obs

−Σ−1
i Eiyi + Σ−1

i (ET
i Ei)α

)
+
(
−Σ−1

α (α− α0)
)

(3.44)

Setting the derivative to zero and solving for α we get:

α =

((
∑

i∈Obs

Σ−1
i (ET

i Ei)

)
− Σ−1

α

)−1((∑

i∈Obs

Σ−1
i Eix

)
− Σ−1

α α0

)
(3.45)

This value of α are the most likely coefficients of the flow model FG given the observations
and the gaussian prior.

3.9 Robust Estimation of Concurrent Flows

It is common for natural scene to have coexisting independent flows. The model is extended
to accommodate multiple flows with the following assumptions: the number of the flows
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M is fixed and known, the spatial domains of the flows do not intercept and are constant
throughout the video. A background flow, whose Lie algebraic representation is fixed to zero
is added to model the static regions of the scene; it will be further called the zero flow. Now
besides estimating the flow coefficients αm it is also required to estimate the spatial domains
of each flow including the zero flow. The assignment of observations to flows is done through
a hidden variable zi which takes values from 1 to M + 1, whose value indicates the index of
the flow the observation belongs to, value M + 1 corresponds to the zero flow. It is assumed
that all observations which have the same location belong to the same flow.

It is desirable that observations that are spatially close to each other are assigned to the
same flow. This goal is achieved by incorporating a Markov Random Field among zi’s.

Consider a scene with M flows, initially the seeding areas of each flow is set manually:
that is selecting a region of the scene and assigning all of the observations collected in selected
area to the flow. Then after collecting the observations from the video, each flow is assigned
its own collection of observations.

The flow models coefficients αm are updated using equation 3.45 for the all flows, except
the zero flow. After estimating the flow models coefficients αm the observations are then
relabelled using MRF, this requires two functions to be defined the cost of assigning an
observation position x, represented by its pixel coordinates, to a flow and the cost of assigning
neighbouring positions to different flows.

The cost of assigning an observation position x to flowm can be computed as following: out
of all collected observations Obs consider Obsx which were collected at position x. For each
observation obsx in Obsx compute the probability p(obsx|FG) = (N)(yobsx , Eobsxαm,Σobsx)
by plugging αm computed in the previous step, and define cost to be 1 − p(obsx|FG). The
assignment that minimises the cost is found via Graph Cuts [3].

Although mathematically correct, this approach produces poor results because the com-
puted probability values are often too small to be reliably represented with double precision
float values and even more so is the difference between the probability values for two flows.
The logarithms of the probability values are negative floats of great magnitude, in conse-
quence which often results in overflows when summing. There are many potential ways to
overcome these problems: scaling, normalising, using higher precision representation or using
an alternative cost function. The latter was chosen.

The cost of assigning an Image Sequence observation to a flow is the difference between
the predicted pixel difference yobsx and the predicted pixel difference computed using equation
3.27. The cost of assigning a SIFT observation to a flow is the euclidian distance between the
observed point difference yobsx and the predicted velocity computed as VF =

∑L
l=1 α

lEl(x).
The cost of assigning the observations Obsx to flow m can be computed by averaging over

the costs of assigning each of the observations obsx ∈ Obsx to flow m:

Cost(Obsx,m) =

∑
obsx∈Obsx 1− p(obsx|FG)

‖Obsx‖
. (3.46)

In order to magnify the difference between the cost values for different flows, a soft max
function is used. For M cost values cm and a temperature parameter τ the cost the cost
values are updated as using equation:

c′m =
exp cm

τ∑M
i=1 exp

ci
τ

(3.47)
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The temperature parameter affects how much the differences are magnified by the algo-
rithm. Infinite temperature values produce a uniform distribution for the cost values, therefore
all cost values will be approximately equal to 1

M . Temperature values close to zero will make
one cost value go to one while other will go to zero. The value 0.01 produced enough difference
between the costs of assigning observations to flows for the MRF to function properly.

The costs are then normalised to fall in the range of 1 to 100. The particular range is not
important; it is the relative magnitudes of the costs of assigning observations to a flow and the
penalty for assigning neighbouring observations to different flows that make the difference.

It is possible to preserve the flexibility of the MRF while fixing one range of values and
manipulating the other, therefore the range of costs of assigning observations to flows is a
fixed constant in the implementation, while the cost of assigning neighbouring observations
to different flows is variable.

The cost of assigning neighbouring locations to different flows is a variable that controls
the amount of smoothing. When it is zero all the pixels locations are assigned to the flows
with the lowest cost, when it is infinite all locations will be assigned to the same flow. After
the two cost functions are defined the MRF relabels the pixel locations, Graph Cuts [3] are
used to find an optimal assignment.

3.9.1 Outlier detection

Observations collected from real word data often have noise. As introduced in 2.1 SIFT
can produce mismatch errors. The gradients computed across sharp borders are unreliable
because their spatial extent is often smaller than the magnitude of the flow. These can severely
bias estimation results. In order to filter such undesirable observations a binary variable gi
is assigned to each observation entry. After having made the initial estimate of αm using
equation 3.45 and relabelled the observations using the MRF, outliers can be detected. One
of the ways to do it is: for each flow m, consider the set of observations ObsFm that belong to
the flow Fm. For each of the observations in in ObsFM compute the probability p(obsx|Fm).
Then sort the observations ObsFm based on the probabilities p(obsx|Fm), and mark the lower
n-percentile as outliers. In = 15% was used for the experiments.)

After the observations are relabelled and the outliers were marked, the algorithm returns
to the first step and re-estimates the αm coefficients using equation 3.45. The observations
are then again relabelled and the process of outlier detection is repeated as described above.
The algorithm iterates between the two steps until convergence. The algorithm is considered
to have converged once the difference between the αm vectors estimated during the current
step and the previous step is lower than a preset threshold.

This algorithm can be seen as an EM algorithm based on a mean-field approximation of
the posteriori [15], [4]. The E-step is the relabelling and outlier detection, and the M-step
is the estimation of the αm coefficients. The result of the algorithm is the coefficients αm

estimated using equation 3.45 and the spatial domains of the flows estimated using MRF.

3.10 Algorithm

The implementation of the algorithm used in this work precedes as following: at the first step
the parameters of the algorithm are initialised, then the consistent subspace basis is computed
for the given frame size. The coordinates of the intersection points of the grid are different
for different image sizes, which results in a different system of linear equations, and therefore
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a different basis. The basis is computed as described in 3.5. The result is the matrix Cons
with 360 rows and 84 columns. The 84 columns are the basis elements.

The next task is to initiate the flow partitioning, the initial domains of each flow except
for the zero flow are set by hand or loaded from a file. The domain of the zero flow are the
remaining pixel positions. The partitioning is a matrix with the same dimension as the video
frames, whose entries are the indexes of the flow to which the pixel position belongs to.

In order to speed up the execution of the algorithm, the expectation matrices Ex are
precalculated for each pixel position. (the expectation matrices are discussed in greater detail
in 3.7).

It is possible to precompute them for the SIFT observations: for each position x in the
pixel domain compute the 2*84 matrix Ex. The n’th column of it is the velocity induced by
the n’th basis element at location x. The velocity induced by the n’th basis element αbasisn

is computed by taking the n’th column of the Cons matrix, computing the index icell of the
cell to which the position belongs. The vector β is calculated by by taking 6 elements from
αbasisn starting at icell and then computing the induced velocity as described in 3.12. The
composition the Ex matrix is performed by placing the x values of the velocity in the first
row and y components of the velocity in the second row, as a result there is an Ex matrix for
each pixel location.

It is not possible to directly precompute the Ex matrixes for image sequence observations
because they depend on the gradient of the pixel which is not known ahead of time. However
the Ex matrices computed for the SIFT observations can be used to compute the Ex for the
Image Sequence observations by multiplying Ex by gradient ∇I(x) for each observation.

Then the SIFT observations are collected from the video, arch SIFT observation consists
of the observed two dimensional velocity Vobs, the two dimensional location from which the
observation was collected xobs, the one dimensional covariance measure σobs, the index of the
flow to which the observation belongs, and a boolean indicating whether the observation is
an outlier.

The algorithm processes each consecutive frame pair using the OpenCV SIFT feature
detector and extractor to detect and extract arrays of SIFT features. For each consecutive
frame pair the arrays of features are then matched resulting in an array of point-pairs. The
array of SIFT observations is then formed by accumulating these point pairs. Each observation
is formed by the velocity computed as the difference between the points in the pair, the
position of the first point of the pair, the σobs value which is the distance value between the
SIFT feature descriptors of the points in the pair, the flow index which is equal to the value
of the partition matrix at the position of the observation.

All observations are initially assumed to be inliers. The result is an array of SIFT obser-
vations. Note that the observations do not have a time value - this is unnecessary because all
flows are assumed to be time invariant.

After generating the SIFT observations the Image Sequence observations are generated.
In order to generate Image Sequence observations for each consecutive frame pair the fol-
lowing steps are performed. The gradient of the first image is computed by using the Sobel
operator with gaussian smoothing, then the difference between two frames is calculated. The
observations are accumulated into an array by iterating over pixel positions and creating an
observation for each. Each of the observations consists of the observed pixel difference, the
two dimensional gradient values, the covariance computed using equation 3.28, the flow in-
dex gathered from the partition matrix. The observations are collected from all consecutive
frames pairs into a single array.
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Then the covariance matrix for the GP-prior is computed. First a 360*360 unconstrained
GP covariance matrix is generated using the equation 3.39 and then it is transformed into a
84*84 constrained covariance matrix using equation 3.40.

After all these steps the algorithm is ready to iterate through the E and M steps. It
starts with the M step - estimating the α coefficients given the rest of the flow model. The
estimation of the α coefficients is by far the most time consuming part of the algorithm
- the algorithm’s run time is dominated by the evaluation of the equation 3.45. The most
expensive parts are the formation of the Ex and their multiplications. The performance issues
are described in more detail in 4.7. In order to achieve better performance, the evaluation of
the equation 3.45 is done in a multithreaded fashion. The equation 3.45 consists of a matrix
inverse and a vector, lets denote them as A and b, α = A−1b, both of which are a result of
summation. Because summation of matrices follows the associative and commutative laws
it doesn’t matter in which order we sum the elements. Therefore the process is paralleled
by launching n = 15 threads each of which is assigned a subset of observations. For these
observations each thread computes a matrix An and vector bn which are then combined into
the full matrix A and vector b. The matrix A is then inverted and multiplied with vector b.
It is important not to make the mistake of including the term Σ−1

α multiple times. The SIFT
and Image Sequence observations are integrated together at the level of equation 3.45. The
equation 3.45 has to be evaluated separately for each of the M flows. The result of the M
step is M 84-dimensional αm coefficient vectors.

Combining SIFT and Image Sequence observations can be done in two ways: combining
them by summing them together in equation 3.45 or estimating the α coefficients for them
separately using the equation 3.45 and then taking their wighted average. The latter was
chosen because there are often some cells in the grid that are poorly covered by SIFT ob-
servations and some high contrast cells for which Image Sequence approach is not reliable.
However both approaches are able to some extent overcome these difficulties by using the
consistency constraints and GP-priors to estimate the flows in those cells, those estimates are
though not as reliable as the once made in good conditions. When combining the estimated
α coefficients the once estimated in good conditions are weighted as important as the once
made in bad conditions. This is not the case however when combining the SIFT and Image
Sequence observations through equation 3.45 - SIFT approach doesn’t affect the estimation
of flows in the cells where it didn’t gather observations and Image Sequence observations
are weighted using their gradient-dependent variance. This way the estimates of the flow
models are complimentary and the GP-priors have strong effect where there are less reliable
observations from both models.

The algorithm is now ready for the E-step - relabelling observations and marking outliers.
Relabelling of observations is done using the graph cuts which require the costs of assigning
each pixel position to each flow and the cost of assigning neighbouring pixel positions to dif-
ferent flows. The cost of assigning each pixel position to each flow is calculated by calculating
the costs of assigning each observation to each flow and taking the average as described in
3.9. This is also a very time consuming task, so it is also performed using multiple treads.
The domain of pixel positions is divided between equally thread and the costs are calculated
in parallel. Then a new partition matrix is computed by the MRF graph cut algorithm. The
observations are then assigned the new flow indexes from the new partition matrix.

Once the α vectors have been estimated and the observations relabelled it is possible to
find the outliers. The outlier detection is performed as described in 3.9.1. This is a relatively
fast part of the algorithm, so it was not parallelised.
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After executing the E-step for the first time the algorithm proceeds directly back to the
M-step. In all other iterations, the current estimates of the α vectors are compared with
the previous ones. If the distance between at least one pair of coefficients is larger then a
predefined threshold the algorithm iterates again, else it reports the results and halts. It is also
possible to incorporate the comparison of the flow domains into the convergence condition.

3.11 Processing using a time window

The algorithm requires accumulating the observations followed by the calculation of the α
coefficients using equation 3.45 in the M step and then relabelling the observation in the E
step. In order for the algorithm to function as described in 3.10 it is necessary to hold all of
the observations in memory. The memory usage scales linearly in the number of frames, and
sooner or later the algorithm runs out of memory. For more detailed description of this issue
view 4.7. It is possible to process short videos using the algorithm described in 3.10, however
in most real-life applications it is required to be able to process videos of arbitrary length.

The algorithm is able to estimate flows given relatively low amount of frames, 20 frames
are enough to produce the most of the results discussed in 4, also within 20 frames, at 25
frames per second, most flows can be assumed to be persistent, therefore a natural way to
process long videos is by using a time window. The video can be segmented into intervals,
then for each interval the flow model can be estimated. The task is then to combine the
flow models into a single flow model. The easiest way to combine them is averaging, which
is possible because the representation lies in a linear space. Many more models are possible,
however the easiest one was chosen for exploration. The number of frames in the time window
will be referred as nwindow.

The algorithm starts by initialising its parameters and processing first nwindow frames
as described in 3.10. The result is the αt0

m coefficients and the flow partition matrix M t0
part.

Next, the algorithm processes the next nwindow frames resulting in αt1
m coefficients and the

flow partition matrix M t1
part.

It is possible to accumulate the flow model estimates for all time windows in the video
and then process them, but it is undesirable because the result can only be obtained after
processing the whole video. It is desirable to be able to maintain an estimate of the flow
model given the frames processed so far. There are many ways to achieve this.

Assuming markovian property it is possible to use the probability distribution of previous
estimates as a prior for next estimates, these however requires to formulate a probability
distribution function for the flow model - currently it is just an single estimate. It is also
possible to use an approach similar to the one used in reinforcement Q-learning for Markov
Decision Processes [31]. The flow model is updated by taking the weighted average between
the current and previous model estimates. The weight parameter γ is called the learning rate.

αt+1
m = (1− γ) ∗ αt

m + γα
′
m : (3.48)

where α
′
m is the estimate of the αm coefficients obtained from processing the last time window.

There are rich results on convergence of Q-learning for slowly decreasing values of γ in a
stationary environment and intuitively the αm coefficients should converge in a stationary
environment. A stationary environment in the context of the task is a video with a time and
space persistent flow with gaussian i.i.d. noise. The convergence is difficult to guarantee when
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the relabelling process is used, because graph cuts alway find a local minimum and together
with the re-estimation of αm oscillatory behaviours have been observed in rare cases, where
oscillations were small but present.

It is possible to combine the αm coefficients directly because they are vectors - regular
affine matrices are not closed under addition or multiplication by a scalar. It is also possible
to combine the data gathered from observations through the equation 3.45 . The algorithm
accumulates the matrix E =

∑
i∈ObsΣ

−1
i (ET

i Ei) and vector e =
∑

i∈ObsΣ
−1
i Eix by making

the initial estimate from the first time window and then updates using the equation 3.48:
Et+1 = (1− γ)Et + γE

′
and et+1 = (1− γ)et + γe

′
.

The second approach produces marginally better results. The first approach doesn’t take
into account why each individual element of the α vectors got its value and how much support
there is for it, while the second approach makes use of all the information included to estimate
the α coefficients. Using GP-priors however makes the distinction much less pronounced. Both
ways produces results of almost indistinguishable quality.

The flow partition model has to be treated separately. Two ways to update the flow
partition model were compared: taking the weighted average between two partitions and
updating the matrix containing the costs of assigning each pixel position to each flow using
equation 3.49. The first approach was realised by creating a new partition matrix and filling
each of its values from the previous flow partition matrix with probability (1−γ) and from the
flow partition matrix estimated from the last time window with probability γ. This approach
was discarded because it produced results that did not have the smoothness of the results
obtained from the MRF.

In order to produce smooth flow partitioning instead of combing the flow partitionings
directly their costs matrices Mpart are updated using equation:

M t
part = (1− γ)M t−1

part +M
′
part, (3.49)

followed by the graph cuts algorithm to produce the new flow partitioning.
The value of the update rate γ and the size of the time window nwindow affect the perfor-

mance of the algorithm. The estimates of the αm coefficients are usually poor for a window
frame nwindow less than 15. The learning rate γ affects how soon the results will reflect the
changes in the flow and will affect the convergence of the model. Setting γ to one will effec-
tively result in only the last nwindow frames being used to evaluate the results. Setting γ to
a low value will produce slowly converging results.

At the end of each time window, two results are therefore obtained: the flow model
estimated from the last time window and the flow model estimated from the last time window
and the last model estimation accumulated throughout the whole video. The algorithm can
process infinitely long videos in linear time and constant memory. The main limitation - the
memory limitation - is therefore removed. The described approach can serve as a foundation
for modelling non persistent flows by developing a flow change model.
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Chapter 4

Experimentation

Experiments were performed to asses the correctness and performance of the algorithm. In
order to asses the correctness of the equation 3.45, synthetic observations were generated and
then the α estimated using equation 3.45 were compared against ground truth. In order to
asses the performance of the algorithm experiments were conduceted with videos from the
Dyntex database [25]. Two types of videos weer used for the experiments: videos where
it is possible to track individual points such as car videos and videos without structured
information such as videos with defaming flows such as water videos and the video with
rotating disk. The videos are grouped into these two categories because different quantitative
evaluation methods are used for them. For the first type of videos trajectories are compared,
while for the second frame differences are used.

4.1 Synthetic Observations

(a) The random flow used to
generate observations

(b) The flow estimated by the
model

Figure 4.1: 84-dimensional ground truth flow and the 84-dimensional consistent
flow estimated from five observations.

In order to asses the correctness of equation 3.45 and the general characteristics of the flow
model estimation experiments were performed with synthetic data for which the ground truth
is known. The algorithm was stripped of the E-step: the relabelling and outlier detection
was not performed in order to asses the performance of the flow fitting model 3.45 alone.
Therefore it was assumed that all observations belong to the same flow and there are no
outliers. A random 84-dimensional coefficient flow vector β was generated by individually
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(a) The effect of increasing the
number of observation on the
mean deviation of the velocity
field

(b) The effect of increasing
the amount of noise on the
mean deviation of the velocity
field, number of observations is
equal to 100

Figure 4.2: The effects of number of observations and the amount of noise on the
performance of the algorithm with synthetic data.

(a) The random 360 dimen-
sional unconstrained flow used
to generate observations

(b) The flow estimated by the
model

Figure 4.3: 360-dimensional ground truth flow and the 84-dimension consistent
flow estimated from ten thousand observations.

drawing its elements from a gaussian distribution with mean equal to zero and standard
deviation 0.1. This value of standard deviation vas chosen because larger values produce
flows with unrealistically large velocities (velocities with magnitude larger than the frame
dimensions). An example of a flow induced by such random vector is shown in figure 4.1a. Two
types of synthetic observations were generated: the SIFT observations and Image Sequence
observations. The synthetic observations were generated by randomly drawing a position
from the domain of possible pixel positions and then calculating the velocity induced at
this position by the flow model β. For the Image Sequence observations a random gradient
was also generated by randomly drawing its x and y components uniformly from a range
[-255,255]. This range was chosen because it is the range of gradients in 8-bit grayscale
images. The expected pixel difference was then calculated using the equation 3.27. These
observations were then used as input to the equation 3.45. The estimated model is shown in
figure 4.1b. It closely matches the ground truth, although small deviations are present. Only
five observations of either type are required to fit the model.

The comparison of the estimated α coefficients to the ground truth β coefficients was
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performed by comparing the velocity fields induced by the two flows. The comparison of the
two coefficient vectors using Euclidian distance is not informative - the extent to which the
individual elements of the coefficient vectors affect the final result is not the same.

Each coefficient is associated to a basis element, and the some basis elements induce flows
of different magnitude. Also no significant difference was observed between the distances
of well and poorly fitted models to the ground truth. Euclidian distance doesn’t correlate
with the apparent fitness of flow, judged by visually comparing induced flow fields. In order
to perform a reliable and meaningful comparison, the velocity fields induced by the α and
the β coefficients were compared; 5000 positions were drawn uniformly from the possible
pixel positions and then their average Euclidian distance between velocities induced by the
α and the β was calculated. The average Euclidian distance positively correlated with the
subjective judgement of the fit of the model and therefore was chosen as comparison measure.
This measure can be seen as an approximation of the fitting error and will be referred to as
Err.

Three experiments with synthetic data were performed. In each of the experiments the
algorithm was executed 10 times for each value of the independent variable and then the
mean value of Err and its standard error of the mean were computed.

The goal of the first experiment was to estimate the amount of observations required to
fit the model. The estimation of the α coefficients was performed from different numbers of
observations. It was found that as little as five observations are enough to fit the model -
the Err value doesn’t decrease much as the number of observations is increased, furthermore
the velocity field induced by α is visually the same as the ground truth one. Figure 4.2a
displays the effect of increasing the number of observations on the fitting error. T-test revealed
significant difference between each consecutive pair of data points. It means that although
the apparent quality of the model doesn’t increase much, the quality of the fit does increase
with more observations even in absence of noise. The performance of the algorithm is the
same for synthetic SIFT observations, Image Sequence observations or a combination of both.

The goal of the second experiment was to asses the sensitivity of the algorithm to noise.
The number of synthetic observations was fixed at 1000 and during the synthesis process
a gaussian noise was added to the velocities induced by β. The algorithm was tested with
different values of the standard deviation of the noise - larger values produce more noise.
The performance of the algorithm indicates that it is quite insensitive to noise: with a thou-
sand observations the algorithm was able to produce meaningful results with the noise with
standard deviation up to 100. With the increase of the number of observations the amount
of noise the algorithm can withstand is increased. Again same results were achieved with
synthetic SIFT observations, Image Sequence observations and a combination of both.

The goal of the third experiment was to asses the performance of the algorithm when the
observations are generated from a flow that the model cannot reproduce. A 360-dimension β
vector without the consistency constraint was used to generate velocities. The velocity fields
induced by such vectors are apparently different than the ones generated from constrained
84-dimensional ones. Figure 4.3a shows an example of such flow. As you can see the flow
looks very different - the flow in each cell is completely independent from flows in other cells.
The results indicate that the 84-dimensional α’s are not rich enough to represent the flows
generated by the 360-dimension β’s no matter how much observations are given. Figure 4.3b
shows the fitted 84-dimensional model. Visual comparison of the results also indicate that
the ground-truth and the fitted flows are completely different.
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4.2 Determinism and numerical stability

The algorithm is deterministic and therefore the results it produces are expected to be the
same for the same input. The algorithm is complex and involves manipulations of large quan-
tities of floating-point numbers and matrices which can lead to numerical instabilities and
non-deterministic output and unexpected results. The algorithm was executed 10 times with
the same video as input and the results of the algorithm were compared to each other: the α
coefficients were always the same for the same input and so were the spatial domains of the
estimated flows. The algorithm is therefore indeed deterministic and the fact that the results
are always the same add confidence in the numerical stability and the correctness of imple-
mentation. The convergence of the algorithm has been assessed experimentally. Oscillatory
behaviours were observed in some cases when the algorithm executed with a pair of frames
as input. It is not clear whether it would converge eventually, but it did not for more than
a hundred iterations. For input size of 15 frames or more such behaviours were not observed
and rarely more than 2 iterations are performed.

4.3 Quantitative evaluation of the results

Evaluating the quality of the flow models estimated by the algorithm for real worlds videos is
a challenging task. The ground truth is not available and it is not feasible to construct a flow
model by hand to be compared against, neither is the provision with a ground truth velocity
field for a given video.

The same approaches were taken to evaluate the results of the algorithm as in [15]: tra-
jectory comparison and frame comparison.

4.3.1 Trajectory Comparison

Trajectory comparison is possible for videos where a human operator can track an object in the
video. Such videos include videos of motion of rigid objects such cars and pedestrians. A set of
20 trajectories were recorded by a human operator by tracking points that can be recognised
across the time domain. In order to simplify the comparison all the trajectories have the
length of 76 frames. Trajectories are captured at regular intervals and then interpolated and
then compared to the once induced by the flow model estimated from the video.

In order to compute trajectories induced by the flow model represented by the flow coef-
ficients αm and scene partition model, for each of the ground truth trajectories, an induced
trajectory was generated by starting with the same starting location. There trajectory is
traced by integrating over the velocities induced by the flow model:

xt+1 = xt + VF (x)∆t, (4.1)

where xt is the current location, xt+1 is the next location and∆t is the time difference between
frames that acts like a scaling factor, which is necessary because without it the estimated flows
are almost always slower. This is due to the noise present in the observations and because the
flows are not really persistent. For example when no cars pass on the parts of the road, the
observations collected from the gap indicate that there is no flow. These affects the magnitude
of the flow. A scaling factor of 5 produces a flow of visually similar to the ones in many videos,
it is also the scaling factor used to draw the arrows on the figures dealing with real videos.
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The optimal scaling factor in not the same for all videos, it depends on the amount of noise
and impersistencies in the video.

However more often than not other optical flow algorithms also incorporate a scaling
factor. For example the arrows on the figures dealing with optical flow are also scaled by the
same factor.

The optimal scaling factor is not the same for all regions of the video. Scaling factor is set
to one for trajectory comparison in order to make the comparison less biased - hand tuning
it for each video will heavily influence the apparent quality of the results.

In order to reduce the influence of the magnitudes of the flows and the choice of the scaling
factor, the trajectories are compared as arrays of two dimensional positions instead of three
dimensional time-position tuples. The result of comparison of two trajectories is an array of
distances between the two trajectories starting at time zero and continuing until the end of
one of the trajectories. The better the flow, the slower will the trajectories it induces diverge
from the ground truth ones.

In order to evaluate the fitness of the model for each of the ground truth trajectories, a
trajectory was generated from the flow model and then compared to the ground truth one.
The resulting divergence arrays are then averaged. It is possible to compare two models
by comparing the averaged divergence vector - a better model will have smaller divergence.
This comparison however will not distinguish between flows that differ only by magnitude.
The comparison distinguishes between the paths traveled by the points and not the way
they travelled them. This comparison is completely insensitive to the estimated flow getting
”stuck”, as it very often happens because of error in relabelling.

An alternative way to compare trajectories was also used. Trajectories are treated as
three-dimensional time-space tuples. It is trivial to compare them - there is a one-to-one
correspondence between points that match on time. The euclidian distances are averaged like
in the previous case. This way of comparison is much more sensitive and shows much faster
divergence. Also the magnitude of the flow has a direct effect.

The choice of quantitative measure depends on the usage of the algorithm. If the errors
due to divergence of the trajectories in the beginning are important - it is better to compare
trajectories. If the magnitude is important, then the comparison of them should be time
sensitive.

4.3.2 Predicted frame comparison

The assessment of the performance of the algorithm for videos where humans cannot trace
trajectories reliably - such as water streams and other continuous motion patterns - was
performed using frame prediction as a measure as described in [15]. The graphs in figure 6 of
[15] display the average pixel-wise frame prediction error on the order of magnitude of 0.1. It
is hard to interpret the values presented in the graph, it compares the performance of Optical
Flow to the performance of the algorithm introduced by the authors. From the illustration
above the graph it is clear that Optical Flow has produced unreliable results, while the graph
indicates that the average pixel-wise frame prediction error was less that 0.2 for all scenarios.
It is unclear how the comparison was performed in [15].

Given the estimated flow model and a video frame the next frame is then predicted
and compared with the actual next frame from the video in terms of the average pixel-wise
prediction error. In order to generate the predicted frame from a frame and the flow model the
algorithm iterates through the pixel locations of the frame and calculates the expected pixel
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difference using equation 3.27. The expected pixel difference is then added to the current
pixel value and the resulting value is placed in the valid pixel value range. The resulting
image is then compared to the actual next frame from the video. The comparison of frames
is done by calculating the absolute value of intensity values for each pixel and then taking its
average value. The comparison is done separately for the frames used to fit the model - the
training frames and for the equal number of frames which the algorithm has not seen - the
test frames. The test frames are the frames that immediately follow the training frames in
the video.

4.4 Parameters of the algorithm

The algorithm has a several parameters that have to be set before execution. The effects of
some of them were discussed in the article [15]: using SIFT or Image Sequence observations
or both, GP-priors, number of training frames.

The algorithm is able to work with two types of observations: SIFT and Image Sequence
observations. Both have different strengths: SIFT shows best performance in scenes with
structured appearance where points can be accurately matched; while Image Sequence obser-
vations are most reliable for the scenes with smooth textures.

SIFT alone shows good performance at scene partition, even though the observations
are sparse and the MRF is able partition the scene meaningfully. The results derived from
SIFT alone are very sensitive to the MRF settings, varying the cost of assigning neighbouring
positions to different flows drastically changes the resulting flow partitioning.

Image Sequence observations outnumber the SIFT observations by orders of magnitude.
While for each two consecutive frames SIFT is able to match some points, Image Sequence
produces an observation for every pixel of the video. It is often the case that there are three
orders of magnitude more Image Sequence observations than SIFT observations. Therefore if
SIFT and Image Sequence observations are given the same weight then the SIFT observations
will contribute substantially less to the final result than the Image Sequence observations. The
weighting of these two different observations can either be done explicitly or through assigning
larger Σ values to one observation type.

It was observed that the SIFT matching produces mismatches even in good conditions.
[15] ignores that the SIFT matcher also assigns a distance value to each such point pair.

The distance shows how similar the points are, observations with lower distance values
are more reliable.

There are at least to ways to incorporate this information. It can be used to calculate the
Σ value in equation 3.23 with larger distance values producing larger Σ values. In equation
3.45 observations with larger Σ values have effect on the estimated α coefficients. It has been
noticed that the SIFT observations with distance values which lie in the top-percentile are
almost always mismatches. Therefore the second way to incorporate the distance information
is to rank all SIFT point-pairs collected from a pair of consecutive frames based on their
distance value and disregard the bottom n’th percentile. It was found that disregarding worst
15% of SIFT observation doesn’t affect the results significantly. Because the performance is
a concern throwing away some observations will lead to faster processing.

Estimation of the flow model using Image Sequence observations is unreliable for high
contrast regions. The algorithm is not able to produce meaningful results if the spatial
extents of the gradients are less than the magnitude of the flow, or if the ∇I(x)Vf (x)∆t falls
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(a) No smoothing. (b) Smoothing with gaussian
kernel with size of 5 pixels.

(c) Smoothing with gaussian
kernel with size of 33 pixels.

Figure 4.4: The results of running the algorithm with various amounts of gaussian
smoothing. Only image sequence observations are used, video: 64bad10.

outside of the allowed pixel range. Also the gradient estimation is sensitive to noise. In
order to overcome this issues the frames of the video are smoothed using a gaussian kernel
before the gradient is calculated. Using the Sobel operator two operations can be combined
in one. The amount of smoothing influence the magnitude of the estimated flow. Values of
the gaussian kernel size between 5-13 produce improve the results for several videos. Figure
4.4 illustrates the effects of changing the amount of smoothing from: no smoothing 4.4a to
a lot of smoothing 4.4c. However too much smoothing can make certain motions disappear.
For example setting the gradient size to higher then 15 makes the motion in the back of the
video 647c610 4.14.

4.5 Multiple flows

(a) Estimated flow model (b) Trajectory comparison

Figure 4.5: The results of running the algorithm without specifying the flow spatial
domain manually.

The algorithm is able to function without manual seeding. A good performance is achieved
by setting the number of flows equal to two - an estimated flow and a fixed zero flow and
initially assigning all observations to the first flow and then proceeding with the algorithm
in the usual fashion. The main advantage of these method is the ability to function without
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(a) Trajectory divergence (b) Trajectory divergence

Figure 4.6: The results of running the algorithm without specifying the flow spatial
domain manually.

Figure 4.7: The results of running the algorithm without specifying the flow spatial
domain manually
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human preprocessing. The estimated flows are limited by the GP-priors and the consistency
constraints - therefore the flow field at the borders of the flows is not likely to be estimated
correctly. If the GP-priors are high then the algorithm will not be able to model a scene
containing motions with opposing directions like the 4.14. Setting the σgp to low values like
1 or 2 produces results like figure 4.7. For videos with 1 actual flow GP values can be within
their normal range. 4.5 also shows the results obtained without manual seeding.

The manual partitioning of the scene into flows makes the MRF unnecessary - repar-
titioning only degrades the performance because the scene is already partitioned correctly.
Minor human errors in setting the flow regions do not have a strong effect on the estimated α
coefficient because they are likely to be detected as outliers. Setting the flow regions by hand
and not doing any relabelling reliably produces better results than setting the flow regions
by hand and then relabelling them. There is no mechanism in the described algorithm to
estimate the spatial extents of multiple flows without human input.

4.6 Gaussian Priors

The Gaussian process priors have a profound effect on the estimated α coefficients. In the
absence of observations in a cell, the flow in the cell is effectively determined by the flows
in the neighbouring cells. This way the algorithm is able to fill in the flows in cells without
observations in them.

The effect is clearly visible in the cars image where although there was no motion on the
bottom right part of the picture the algorithm indicates motion 4.8b. The effect is much
more pronounced for SIFT - the observations are sparse and there are potentially many
cells without observations in them. This effect can be seen as both desirable or undesirable,
however incorporating Image Sequence observations guarantees a more complete coverage of
the scene 4.8c.

The value of σgp from equation 3.39 has a significant influence on the estimated α coeffi-
cients. The results described in the section 5.4 of the paper [15] regarding the GP-priors were
also observed. The optimal value of σgp is different for each video and setting. For example
when modelling the scene with cars going in opposite directions with number of flows M = 1
a low value of σgp allows the algorithm to model the opposing flows, while when the number
of flows M = 2 a higher value of σgp produces better spatial consistency. In none of the
figures of the paper by Lin et al. [15] the effects of the MRF are evident, the results look like
only manual partitioning was performed.

4.7 Performance

The algorithms usefulness is severely limited by two factors: its speed and memory consump-
tion. Timing of the algorithm was performed on a 2012 Macbook Pro laptop with a 2.3 GHz
Intel Core i7 with 8 GB of 1600 MHz DDR3 with OS X 10.8.4, OpenCV 2.4.6 and Eigen
3.2.0 compiled with LLVM GCC 4.2. In oder to figure out how much time particular steps
of the algorithm take, the algorithms implementation was profiled using the Time Profiler of
Instruments shipped with Xcode.

The algorithm spends time collecting the observations, then performing the following
steps until convergence: integrating the observation data through equation 3.45, relabelling
the observations and relabelling the outliers. The algorithm speed is far from real time, it
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takes 10 to 20 seconds to process a 20 frames long video using the multithreaded algorithm.
The most time consuming part is calculating the Ei(x) matrix for each observation and then
computing E(x)TE(x). The dimensionality of E(x) is 2*84 for SIFT observations and 1*84
for Image Sequence observations. The Eim(x) vectors for the Image Sequence observations
are computed by taking the 2*84 Esift(x) matrix and multiplying it with the gradient value
∇I(x). It is not possible to precompute and cache Eim(x) vectors for the Image Sequence
observations because they depend on the gradient values. Caching is trivial for Esift(x)
matrices - only 136.2 MB are required to cache these matrices for all 352 ∗ 288 possible
pixel positions. These matrices are then used to calculate the Eim(x) vectors resulting in a
significant speed up. It is not practical to store the E(x)TE(x) matrices because 5.722 GB
would be required to store these 84*84 matrices for all pixel locations, plus they would be only
useful for SIFT observations - the gradient value can not be integrated into the precomputed
E(x)TE(x) matrix.

The number of Image Sequence observations for a 352 by 288 pixels video with 1000 frames
is 101, 376, 000 which is a immense number. Each Image Sequence observation is represented
by the following values: the observed pixel difference, the covariance computed from equation
3.28, gradient values for the x and y directions, the index of the flow the observation belongs to
and whether the observation is an outlier. Because the covariance can be computed from the
gradient values it can be computed on the fly. The memory required for the Image Sequence
observations collected from one 352 ∗ 288 frame is around 2 MB depending on the choice of
representation of the variables. With this calculation a 5 minute video with 25 frames per
second would require around 15 GB of memory. This requirements make the algorithm not
practical for long videos. Processing more than 1500 frames on the setup described above
already posses same problems.

It is not a problem with truly persistent flows - given that not too much noise is present
the estimates from the first few (20-100) frames already produce good results. However in
real world applications where processing longer videos is necessary. The amount of memory
taken up by the SIFT observations is on several orders of magnitude less because there is
a lot less of SIFT observations. The collection of observation takes significantly less time
than iterating through the E and M steps of the algorithm - this process is only done once.
Although it doesn’t take much time relatively to other steps of the algorithm it alone is too
slow to run in real time on the CPU. Of-the-shelf GPU based Optical flow algorithms are
able to run in real time suggesting that the collection of the observations could be performed
in real time if implemented on the GPU or in other multithreaded fashion.

4.8 Quality of results

The quality of the estimated α coefficients and their estimated spatial domains vary widely
from video to video. Videos from the Dyntex video dataset were used as inputs to the
algorithm and in few of them it produced meaningful results. Most of the videos do not
conform to the assumptions of the model. The most limiting assumption is the persistency
assumption - both in the time and space domains. Impersistencies in the time domain lead to
wrong estimates of α. For example if there are two flows at the same location that change each
other as the time goes - the resulting α coefficient will represent the average of these two flows.
Impersistencies in the spatial domain are similar except they are categorical - all observations
will be assigned to the flow that is considered more likely by the MRF. In real world videos,
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(a) Manual labelling (b) Relabelling using SIFT
only

(c) Relabelling using both
types of observations

Figure 4.8: Flow estimation using different types of relabelling.

(a) Manual labelling (b) Relabelling using SIFT
only

(c) Relabelling using both
types of observations

Figure 4.9: Trajectory comparison between the ground truth trajectories (white)
and trajectories induced by the estimated flow model using different types of rela-
belling (blue).

(a) Manual labelling (b) Relabelling using SIFT
only

(c) Relabelling using both
types of observations

Figure 4.10: The mean divergence between the ground truth trajectories and tra-
jectories induced by the estimated flow model using different types of relabelling
without taking into account time.

the situation occurs very often. For example, the situation is inevitable in the highway videos
- the flow of the cars is never perfectly dense and there always regions of the road that have
no flow on them. Using only SIFT observations for MRF relabelling largely overcomes this
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(a) Manual labelling (b) Relabelling using SIFT
only

(c) Relabelling using both
types of observations

Figure 4.11: The mean divergence between the ground truth trajectories and tra-
jectories induced by the estimated flow model using different types of relabelling
taking into account time.

(a) Estimated flow model (b) Trajectory comparison

Figure 4.12: The results of processing the video using of-the-shelf OpenCV
Farneback optical flow.

issue for the highway video, but only because no observations are collected from the empty
road. The quality of the results also depends largely on the parameter setting. The large
number of parameters and their interactions make it possible to produce very different results
for the same input. The setting of some parameters depend not only on the video but also
on the settings of other parameters.

The quality of the spatial domain estimation depends on the initial estimation of the α
parameters and the re-estimation of the α parameters depends on the quality on the estimated
spatial domains. The initial estimation of α is done before outlier detection and therefore
can be biased and can lead to the low-quality flow partition. If some of the regions were
wrongly assigned to the zero flow then the observations from this regions will not participate
in re-estimation of the α coefficients and therefore they are likely to stay assigned to the
zero flow. The misalignment of regions to the zero flow has a degrading effect on trajectory
tracing - the points get stuck. Adding a small punishment term to the cost of assigning the
observations to the zero flow - multiplying its cost by factor equal between 1.1 and 1.3 often
produces better results. Inclusion of static points to one of the flows does not degrade the
results much - the magnitude of the flow becomes less and the flow in static points is filled in
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(a) Mean divergence without taking into
account time

(b) Mean divergence taking into account
time

Figure 4.13: The analysis of the results of processing the video using of-the-shelf
OpenCV Farneback optical flow.

using GP-priors.
Erroneous assignment of points with motion to the zero flow degrades the results more

because it appears that the algorithm was unable to detect flow. Because there is no apparatus
to automatically learn the amount of flows and their initial spatial domains - these have to be
set by a human operator, there is no reason to do relabelling because it doesn’t improve the
quality of results. In neither of the examples shown by the authors [15] the spatial domains
of the flows differ from the ones set by the human operator - the MRF didn’t do anything at
all. If the best settings of the MRF are these that do not change the flow domains then it is
arguable that it is better not to use it from the beginning.

The MRF is however useful and functioning in the situation with single estimated flow
and a background flow. If initially all the observations are assigned to the first flow then the
algorithm is able to discover the flow extent of the static flow through observation relabelling.
Good results can be produced in settings when the flow in the scene can be represented using
a single flow. In scenes like the highway video with cars going in opposite directions, the
flow two flows are difficult to represent because of the GP-priors that enforce that cells have
similar flows. With low GP-priors it is possible to capture such motion patterns at the cost
of spatial consistency. With most setting combinations which were tried the algorithm can
reliably capture the more pronounced flow on the left while assigning all the left part of the
scene to the zero flow.

The relabelling behaviour is also different for SIFT and Image Sequence observations
because the former are sparse while the latter are dense. In many cases the static background
does not produce many SIFT features - like the road in the highway video. This results in
displaying the flow where there is no flow - like the car example from the authors paper.
The algorithm displays flow in the bottom right part of the scene as described in 4.6 because
there are no SIFT observation from there, MRF assigns the region to the non-zero flow.
This behaviour is not reliable because is there would be distinguishable features on the static
road then this region would be assigned to the zero flow. Incorporating the Image Sequence
observations into the relabelling process produces very different results - the motion is detected
only where it has actually occurred because the Image Sequence observations can be reliably
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captured from the low-contrast static road. Although the results achieved by relabelling with
SIFT only are more visually appealing they are less accurate: the algorithm displays flow
in static areas (in the 20 frames processed by the algorithm no motion has occurred in the
bottom right corner) because of the properties of the road texture. Incorporating the Image
Sequence observation results in a more truthful and reliable model of the flow. It is possible
to view the affects of α without taking into account its spatial domain - it often is the case
that even though the spatial domains were poorly estimated the resulting α vectors are well
estimated.

4.9 Video Analysis

(a) Manual labelling (b) Relabelling using SIFT
only

(c) Relabelling using both
kinds of observations

Figure 4.14: Flow estimation using different types of relabelling.

(a) Manual labelling (b) Relabelling using SIFT
only

(c) Relabelling using both
kinds of observations

Figure 4.15: Trajectory comparison between the ground truth trajectories (white)
and trajectories induced by the estimated flow model using different types of rela-
belling (blue).

The performance of the algorithm was compared with the of-the-shelf OpenCV Farneback
Optical Flow. Four videos were used for experiments presented in this chapter. These are
the same videos used by the authors of the paper. The performance of the algorithm is also
compared to processing the video using a time window as described in 3.11.
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(a) Manual labelling (b) Relabelling using SIFT
only

(c) Relabelling using both
kinds of observations

Figure 4.16: The mean divergence between the ground truth trajectories and tra-
jectories induced by the estimated flow model using different types of relabelling
without taking int account time.

(a) Manual labelling (b) Relabelling using SIFT
only

(c) Relabelling using both
kinds of observations

Figure 4.17: The mean divergence between the ground truth trajectories and tra-
jectories induced by the estimated flow model using different types of relabelling
taking into account time.

(a) Estimated flow model (b) Trajectory comparison

Figure 4.18: The results of processing the video using of-the-shelf OpenCV
Farneback optical flow.
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(a) Mean divergence without taking into
account time

(b) Mean divergence taking into account
time

Figure 4.19: The analysis of the results of processing the video using of-the-shelf
OpenCV Farneback optical flow.

4.9.1 Car Videos

Two car videos were chosen because SIFT shows good performance when extracting features
from such videos. The first video is named 645c620 in Dyntex. The results of processing the
first 20 frames of the video are shown in figure 4.8. The zero flow is shown in green shade
and the only estimated flow is shown in beige shade. The arrows show the direction and
magnitude of the flow. The arrows are scaled by a factor of five to be easier to read. The
algorithm shows very good performance for this video. The trajectory comparison is shown
in the figure 4.9. The ground truth trajectories are shown in The trajectories do not diverge
much is the time is not taken into account as shown in white, and the induced ones in blue.
It is apparent that the algorithm is able to trace the trajectories well, but the flow it induces
is slower that in the video. The graphs shown on the figure 4.10 are the time-indifferent
comparison of the trajectories and 4.11 display the time sensitive comparison. It is apparent
that the time-sensitive comparison shows much faster divergence. The break in the graphs
which display the time-sensitive trajectory comparison is most likely due to the fact that the
traced trajectories are shorter than the ground truth ones. It is present on all time-sensitive
trajectory comparison graphs. The graphs indicate that all types of relabelling display similar
behaviour. The comparisons of the graphs and the flow fields visualisation suggest that the
quantitative analysis alone is not enough to judge the performance of the algorithm.

The performance of optical flow is shown in the figure 4.12. The flow field is well re-
constructed, the traced trajectories are quite chaotic. The optical flow produces comparable
performance according to the chosen comparison measures as shown in 4.13. This shows that
the optical flow produces good performance, and that the quantitative analysis is not very
sensitive to the trajectory divergencies as demonstrated in figure 4.12.

The algorithm’s performance is very robust in this video and similar results can be ob-
tained by different parameter settings. The flow in this video is well pronounced, persistent,
there regions rich in SIFT features and at the same time there are enough locations with
smooth gradients to use IMage Sequence observations.

The second video with cars is 647c610 from the Dyntex database. The results produced
by the algorithm are shown in figure 4.14 and 4.7. The former shows the performance with
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manual seeding of two flows. shown in beige and green shades. The domain of the zero flow
is shown in red shade. The algorithm has a lot more difficulty processing this video. Only
few parameter settings produce meaningful results if the relabelling via MRF is activated.
The most difficulty the algorithm has with the far back part. Two opposite flows of very
small magnitude meet their. Also the resolution of the image is not very high there leading
to noise and poor SIFT performance. However in the front right part of the video the flow
is captured very reliably and robustly. The traced trajectories are shown in figure 4.15. As
you can see some of them fail to develop due to mislabelling and all of them are shorter than
the ground truth ones. The graphs showing the mean deviation are in figure 4.16 for time
insensitive comparison and figure 4.17 for time sensitive comparison. Relabelling using SIFT
observations alone produces better results because the flow is not very dense and the Image
Sequence observations collected from the empty road often lead to having too much of the
road belonging to the zero flow.

Optical Flow has quite poor spatial generalisation performance for this video as displayed
by figures 4.18 and the graphs 4.19. Most of the trajectories fail to develop. Note how the
time-insensitive measure fails to reflect it.

4.9.2 Videos without SIFT features

(a) Manual labelling, no rela-
beling

(b) Relabelling using MRF (c) Results from Optical Flow

Figure 4.20: Flow estimation using different types of relabelling and from Optical
Flow.

Same two videos were chosen from the Dyntex database which are not possible to process
using SIFT features, as in the paper [15]. They do not contain structured information that is
preserved throughout frame and therefore are difficult to process for many algorithms, such
as those that rely on SIFT.

The results for the first video 6481n10 are shown in the figure 4.20. 4.20a display the
results for manual seeding and then no further relabelling. It has the best performance.
4.20b is seeded manually, but then relabelling is performed. There are three estimated flows
shown in green, red and beige and a blue zero flow. 4.20c displays the results for OpenCV
Farneback Optical Flow. As you can see the algorithm can only reliably estimate the flow in
the bottom half of the image. The flow in the top is very slow in the video and the algorithm
has troubles picking it up. Moreover the Image Sequence observations perform the best after
the frames of the video have been smoothed. Gaussian smoothing of any significant value
makes the flow on top virtually invisible. Optical Flow shows very poor performance for this
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(a) Video 6481n10 (b) Video 64bad10

Figure 4.21: Comparison of average pixel wise frame prediction errors between es-
timations computed using the algorithm with: manual labelling without relabelling
and manual labelling with relabelling by the MRF, and the estimations computed
with the Optical Flow algorithm. The graph on the left shows the comparison for
video 6481n10 and the one on the right for video 64bad10.

video. The results are only robust for the algorithm without relabelling, the relabelling is
very sensitive to the parameter settings and produces poor results in most cases.

The graph in figure 4.21a illustrate the results of the quantitative analysis. For each set
of two columns, the column on the left the fitting error, the average pixel wise prediction
error computed for the same set of frames, which were used to estimate the model; the
column on the right is the generalised error - the prediction error for the next 20 consecutive
frames from the video. The generalised error is less, potentially as a result of over fitting,
however, it is not very clear. The qualitative measure does not reliably show the difference
in performance between the tested conditions. The same issues with flow magnitude scaling,
that were described for trajectory analysis, equally apply to the predicted frame comparison.
Since the order of magnitude of the flow affects the outcome of comparison, and it is not
accurately evaluated by either of the algorithms, the quantitative comparison alone is not
reliable.

(a) Manual labelling, no rela-
beling

(b) Relabelling using MRF (c) Results from Optical Flow

Figure 4.22: Flow estimation using different types of relabelling and from Optical
Flow.

The results for the second video are shown in the figure 4.22.The algorithm has excellent
performance both for the manual seeding only 4.22a and the seeding with relabelling 4.22b.
Optical flow has poor performance with this video as illustrated in 4.22c.
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The algorithm has best performance with videos where the motion can be represented by
one flow and when the flows are well pronounced.

4.10 Processing using a time window

(a) Manual labelling, no rela-
beling

(b) Relabelling using SIFT
only

(c) Relabelling using both
types of observations

Figure 4.23: Flow estimation from 100 frames using different types of relabelling
and using time window processing.

(a) Manual labelling, no rela-
beling

(b) Relabelling using SIFT
only

(c) Relabelling using both
types of observations

Figure 4.24: Trajectory comparison between the ground truth trajectories (white)
and trajectories induced by the estimated flow model estimated from 100 frames
using time window processing using different types of relabelling (blue).

The main limitation of the algorithm described in [15] is that it is not able to process
videos of arbitrary length. The reasons for this are discussed in 4.7. In order to overcome
this limitation processing using a time window is described in 3.11.

The performance of the algorithm was assessed using two videos: 647c610 and 6481n10
because the algorithm has more difficulties with them.

The performance of the time window processing with video 647c610 is illustrated in figure
4.23 and the trajectory comparison in 4.24. As you can see the trajectories are traced much
closer, but the magnitude of the flow is a bit smaller than in the case illustrated in 4.15.
As a result the two comparison measures display different results. The graphs in figure
4.25 suggest that the performance has increased by processing more frames, while the time-
sensitive measure illustrated in figure 4.32 suggests the opposite. No relabelling produces the
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(a) Manual labelling, no rela-
beling

(b) Relabelling using SIFT
only

(c) Relabelling using both
types of observations

Figure 4.25: The mean divergence between the ground truth trajectories and tra-
jectories induced by the estimated flow model estimated from 100 frames using time
window processing using different types of relabelling without taking into account
time.

(a) Manual labelling, no rela-
beling

(b) Relabelling using SIFT
only

(c) Relabelling using both
types of observations

Figure 4.26: The mean divergence between the ground truth trajectories and tra-
jectories induced by the estimated flow model estimated from 100 frames using time
window processing using different types of relabelling taking into account time.

(a) Manual labelling, no relabeling (b) Relabelling using MRF

Figure 4.27: Flow estimation using different types of relabelling from 100 frames
using time window.
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Figure 4.28: Comparison of average pixel wise frame prediction errors between es-
timations computed using the algorithm with: manual labelling without relabelling
and manual labelling with relabelling by the MRF for video 6481n10 using time
window processing

best and most robust results.
Figures 4.29c and 4.30c show the results of the algorithm for the same 100 frames, but all

processed at once as described in section Algorithm 3.10. Figures 4.31c and 4.32c show the
graphs for the comparisons of the trajectories to the ground truth ones. The results obtained
by processing all frames at once and results obtained by processing with a time window are
similar as judged by the visual comparison of the velocity fields and the induced trajectories.
There is no difference in the quality of the results, but processing using a time window does
not pose memory constraints.

The performance of the time window processing with video 6481n10 is illustrated in figure
4.27 and the quantitative comparison in 4.28 . Again the magnitude of the estimated flows
is lower than in the case illustrated by 4.27, but the directions appear more visually correct.
The lower magnitude of the flow can be explained that more noise and impersistencies were
accumulated over time.

(a) Manual labelling, no rela-
beling

(b) Relabelling using SIFT
only

(c) Relabelling using both
types of observations

Figure 4.29: Flow estimation from 100 frames using different types of relabelling
without the time window.
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(a) Manual labelling, no rela-
beling

(b) Relabelling using SIFT
only

(c) Relabelling using both
types of observations

Figure 4.30: Trajectory comparison between the ground truth trajectories (white)
and trajectories induced by the estimated flow model estimated from 100 frames
without the time window using different types of relabelling (blue).

(a) Manual labelling, no rela-
beling

(b) Relabelling using SIFT
only

(c) Relabelling using both
types of observations

Figure 4.31: The mean divergence between the ground truth trajectories and tra-
jectories induced by the estimated flow model estimated from 100 frames without
using time window processing using different types of relabelling without taking
into account time.

(a) Manual labelling, no rela-
beling

(b) Relabelling using SIFT
only

(c) Relabelling using both
types of observations

Figure 4.32: The mean divergence between the ground truth trajectories and tra-
jectories induced by the estimated flow model estimated from 100 frames without
using time window processing using different types of relabelling taking into ac-
count time.
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Chapter 5

Conclusions and future work

The main goal of this work is to robustly and reliably measure the velocity fields from videos
containing fluid motion in order to use the estimated velocity fields to judge the viscosity of
the fluid.

5.1 Contributions

The contributions of this work are the implementation of the algorithm described by Lin et
al. in [15] analysing its performance and identifying its strengths and weaknesses which are
further discussed in the section Strengths and Weaknesses 5.3 and analysing whether it is
applicable for estimation of fluid viscosity in section Fluid Viscosity 5.2.

The algorithm’s performance was analysed with synthetic data as described in section
Synthetic Observations 4.1, it was found that only five observations are required to estimate
the flow model in the absence of noise and the model’s resistance to noise was evaluated, it
was also found that the model is not able to produce meaningful results when the ground
truth flow does not conform to the models assumption of spatial consistency.

The algorithm was improved by removing the memory limitation by processing the videos
using the Time Window as described in 3.11. It was important to remove the memory
limitation before working on the estimation of flows that change with time, because the
original algorithm by Lin et al. is only able to process short videos. The maximal length of
the videos that the algorithm is able to process is around one minute as described in section
Performance 4.7, which is hardly enough to be able to judge viscosity. If the algorithm would
be adapted to process non-persistent flows before the memory limitation would be removed,
it would not be possible to evaluate its results because many flows only change over longer
periods of time.

The algorithm is further improved by incorporating the SIFT distance values into the flow
model estimations, which allows discarding some observations without degrading the quality
of the model estimates, and by smoothing the frames of the video with a Gaussian kernel
before capturing the Image Sequence observations as described in section Parameters of the
Algorithm 4.4.

It is also demonstrated how to process videos without human intervention using a single
flow model with a low weighting of the Gaussian prior as described in section Multiple Flows
4.5. It is important to be able to process the data without human intervention because
otherwise the approach cannot claim to be automated and before estimating the viscosity of
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a fluid in a video, its flow domain has to be manually seeded.
Theoretical contributions of this work include describing the way the algorithm solves

the aperture problem and providing the intuition behind the way the algorithm estimates
the flow coefficients as described in section Examples and Intuition 3.7.1, the equation to
compute the dimensionality of the representation of the flow model depending on the grid
size as described in section Geometric Characterisation And Constraints 3.4 equation 3.17
and describing the way the output of the algorithm can be converted from single estimates
to probability distributions over all possible estimates in section Future Work 5.4.

5.2 Fluid Viscosity

The algorithm as described in this work reconstructs persistent time-invariant velocity fields.
However, in order to estimate viscosity, it is necessary to be able to measure how the velocity
field changes with time with high fidelity. This is required because Navie-Stocks equations
describe the dynamics of the change of the velocity field. Therefore without being able to
measure the changes of velocity field with time it is not possible to estimate the viscosity
using Navie-Stocks equations. The ways to improve this algorithm to make it possible to
measure changing velocity fields are discussed in the section Future Work 5.4.

5.3 Strengths and Weaknesses

Among the strengths of the algorithm are: the ability to incorporate heterogeneous kinds of
observations into coherent global estimation of the flow, the ability to incorporate different
types of observations, its robustness against noise and its extendability. The major weaknesses
of the algorithm are: its strong assumptions, its memory and time consumption, its inability
to fit multiple flows without human intervention, its inability to represent certain flows, the
number of free parameters and the difficulty to evaluate its results.

The global flow model allows the incorporation of different types of sparse or dense obser-
vations into a coherent estimation of motion. The observations can be sparse both in the time
and space domains. The model has a low dimensionality - it is 84 for each flow no matter
the size of the region it models, the resolution of the image or the number of observations. A
dense velocity field of a 7*7 pixel region has the same dimensionality as the global flow model
with one flow described by Lin et al. in [15].

A reduced number of other models provide an explicit closed form way to combine the
spatially and temporally sparse observations together like the equation 3.45 which estimates
the coefficients of the flow model.

The approach provides a way to incorporate SIFT and Image Sequence observations, which
can be seen as a variant of Optical Flow, into the same global model. SIFT and Optical Flow
have different strong and weak sides as described in chapter Related Work 2. By incorporating
both types of observations, the approach is able improve its performance. It is also clear how
to include another type of observations into the model, for example neither the SIFT or the
Image Sequence observations take into account colour information. It would be possible to
formulate a generative model for it and seamlessly incorporate it into the global model.

Several parts of the algorithm can be either replaced or extended. The outlier filtering
was implemented by filtering out the n’th lowest percentile as described in section Outlier
Detection 3.9.1.
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It is also possible to weigh each observation by its probability of being an outlier. Yet
more complex methods can be used to conduct this step.

The Markov Random Field can be replaced by a clustering method to provide scene seg-
mentation. New basis elements can be added to account for the variations in the illumination
or camera movements. A different flow family can be used to account for the temporal vari-
ations of the flows. The mathematical apparatus is highly extendable and modifiable. The
theories of Lie Algebras are well developed and provide a solid foundation to build upon.

The algorithm is able to incorporate immense numbers of observations into a relatively
low-dimensional model that increases its robustness to noise. For a 352*288 video each frame
produces 101.376 Image Sequence observations and around 700 SIFT observations that are
used to estimate an 84-dimensional flow model for one flow, excluding the relabelling stage.
For observations that fully conform to the assumption of the model, only five observations are
required to estimate the model without noise, and the model is robust in presence of noise as
illustrated in 4.1.

The algorithm’s usefulness is heavily limited by its assumptions. The two strongest as-
sumptions of this algorithm are that the flows and their spatial domains are persistent. How-
ever, in most of the real world videos these assumptions do not hold over extended time
spans. In shortest term most of the flows can be assumed to be persistent. The algorithm as
described in [15] deals with the impersistencies by averaging over the observed flow estimates.
An average of a slow flow and a fast flow is a flow with a magnitude somewhere in the middle,
which is a meaningful, but imprecise, result. The average between the values of a flow that
permanently changes directions is around zero, it indicates no flow, which is not acceptable,
because there was indeed an oscillating flow. Many motions in real world also occur within
a changing spatial domain: for example a single car travelling down a road has a persistent
motion over an impersistent spatial domain.

The run-time performance and memory consumption are a major concern for the presented
algorithm. The memory consumption of the original algorithm, described by Lin et al. in [15],
grows linearly with the number of frames in the video, as described in section Performance 4.7.
It makes it impossible to process videos longer than 1500 frames in the setup as described
in section Performance 4.7. A video of 1500 frames only last 1 minute at 25 frames per
second. Most of the real world applications require the ability to process videos larger than
a minute. Therefore the approach described in 3.11 was proposed. It is constant in memory
consumption - it is possible to process videos of any length. However the processing time is
still a major issue. The algorithm is far from being able to process videos in real time - it is
around an order of magnitude slower, even the parallel implementation described in section
Algorithm 3.10.

The algorithm is unable to fit multiple flows without human intervention. It is possible
to fit a single flow model, but multiple flows require manual specification of the initial flow
domains by a human operator. The number of flows also has to be manually specified. In
multi-flow setup the algorithm is more sensitive to the parameter settings. The relabelling
stage of the algorithm doesn’t result in a significant improvement of the estimated flow models
as described in section Multiple Flows 4.5.

The algorithm has a several free parameters. There are interactions between parame-
ters. The optimal values of parameters depend on the characteristic of each video and other
parameter settings. Setting the parameters to optimal values is a challenging task.

The quantitative results evaluations presented in section Quantitative evaluation of the
results 4.3 alone are not reliable enough to judge the performance of the algorithm. Evaluating
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the performance of the algorithm automatically is important because it could help to overcome
some of the weaknesses of the algorithm. For example, it would allow automatically discovery
of the optimal values of the parameters of the algorithm.

5.4 FutureWork

In the current implementation the usefulness of the algorithm is heavily limited by the its
drawbacks described above. These issues are potentially resolvable.

The persistence assumption are very strong for long time periods. However, naturally
occurring flows are often persistent in the short term. Processing the videos using a Time
Window as described in section Time Window 3.11 sets the foundation to overcoming this
issues. For example, assuming that all flows are persistent within the duration of one time
window (15-20 frames) it is possible to estimate the flows within consecutive time windows.
The next task is to combine the flow models estimated at each time step into a coherent
global model. It is possible to treat these estimated models as discrete sequence of noisy
observations, all of which lie in an 84-dimensional vector space. This formulation allows to
use various approaches from the signal processing field.

In the scenario of the algorithm without relabelling, the outcome of each estimated model
is the α vectors. However, the results are never precise and the nature of the model is proba-
bilistic, so it is desirable to transform the output the model from just a value to a probability
density function (PDF). Because the model is a combination of gaussian distributions the
natural choice for the PDF is also a gaussian function. Defining this PDF will make it pos-
sible to easily use a Kalman filter to model the temporal impersistencies of the flow. For a
description of Kalman filter and some similar models consult [28]. Kalman filter requires the
observations to be gaussian PDF’s with known mean and covariance, it also requires a model
of the temporal dynamics of the flow.

The conversion of the α vectors to gaussian functions can be done by using the α estimates
as the mean and assigning some covariance matrix to it. The simplest way would be to use
the same covariance for all α estimates, more elaborate ways include the calculation of the
covariance from the confidence of the estimation as judged by some statistical model.

Another way to compute the covariance matrix for the α vectors would be by incorporating
the information from the matrix

((∑
i∈ObsΣ

−1
i (ET

i Ei)
)
− Σ−1

α

)
from the equation used to

estimate the α coefficients 3.45. Let’s call this matrix C. The coefficients of this matrix cij
can be interpreted in terms of unnormalised correlations between the elements of the α vectors
as described in section Examples and Intuition 3.7.1 and be used to compute the covariance
matrix for α. The additional incorporation of Gaussian Priors in equation 3.45 should not
invalidate the results described in section 3.7.1 although a rigorous mathematical derivations
are necessary to provide a way from the C matrix to the desired covariance matrix.

Other ways to deal with impersitensies include various interpolation methods, or changing
the basic flow family from the two dimensional affine group to a three dimensional one in order
to incorporate time.

Dealing with the changes of the flow domains with time can also be performed in multiple
ways. It is theoretically possible to go from a two dimension Markov Random Field to a three-
dimensional one by stacking the two-dimensional one after another and redefining the pixel
location neighbourhood to include pixel locations from the previous and next frames. It can
also be possible to derive a change of the domain model that would incorporate the estimated
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α coefficients into it. For example a flow can be assumed to propagate in its direction, this
and other assumptions can be used to build a probabilistic model.

The run time performance of the algorithm can be also be improved. It is possible to
further parallelise the execution of the algorithm by moving parts of it to the GPU. The
equation 3.45 satisfies the requirements posed by the GPU calculations: it processes multiple
data using the same algorithm and all the parts are independent of each other. The algo-
rithm can be speeded up by using a more efficient matrix manipulation library, two libraries
were compared in the implementation: Eigen and OpenCV. Eigen was chosen for final imple-
mentation because it demonstrated better performance. However, there are numerous other
libraries available. The algorithm is able to perform with fewer observations than it collects
from the video: intelligent sampling, filtering and weighting will allow to through away a lot of
observations without affecting the results but achieving faster execution. The dimensionality
of the E matrices from equation 3.45 heavily affects the run time of the algorithm because
the asymptotic limit of the complexity of matrix multiplication is Ω(n2). The reducing the
dimensionality of the model is possible to achieve by incorporating additional constraints or
reducing the resolution of the triangular grid. For example, using a 4*4 grid will result in
reducing the dimensionality of the representation from 84 to 50 and a 1*1 grid reduces the
dimensionality to 8 as computed using equation 3.17 from section Geometric Characterisation
and Constraints 3.4.

The fact that human intervention is necessary for scenarios with multiple flows limits
the usefulness of the algorithm. It is theoretically possible to make the algorithm be able
to discover the number and the spatial extents of the flows in several ways. Clustering is a
possible method. The first step would be to estimate velocity field, either using the model
with one flow and a low gaussian prior as described in section Multiple Flows 4.5 or using
a Optical Flow or any other available algorithm. Then next step would be to cluster the
velocities in the velocity field using one of many available clustering techniques. The number
of clusters is the number of flows and their spatial extent is the seeding area for the flow. For
a technique that uses clustering see [7].

The optimal parameters of the algorithm could be efficiently discovered through many
of the available optimisation techniques such Local Search, Iterated Local Search, Genetic
Local Search and other if there was an efficient and robust way to automatically asses the
performance of the algorithm. For a review of such optimisation techniques consult [13].

Maximising parameters by maximising the probability of the observations given the model
as calculated by equation 3.32 is not possible because the probability function depends on
the parameters of the algorithm. An efficient way to automatically evaluate the results of the
algorithm can be based on the methods described in section Quantitative evaluation of the
results 4.3. An optimal scaling factor for the two collections of trajectories can be calculated
by using the least squared errors method, appropriately scaling the trajectories can result in
better robustness of comparison. Allowing the comparison method to compare trajectories
of different length would be a big advantage because for some regions of the video it is not
possible to trace long trajectories.

The mathematical apparatus described in the Theory chapter 3 , the evaluation of the
results in chapter Experimentation 4 , the implementation of the algorithm together with
the suggested future work can serve as a base for further improvements of estimation and
modelling of motion fields.
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