
Improving Performance of Simulation Software
Using Haskell’s Concurrency & Parallelism

By
Nikolaos Bezirgiannis

Supervisor
dr. Wishnu Prasetya

Supervisor
dr. Ilias Sakellariou

Supervisor
prof. dr. Johan Jeuring

MSc Thesis

Dept. of Information and Computing Sciences,
Utrecht University

September 5, 2013



Abstract

Computer simulation has been widely applied in many areas, ranging from
physics to biology and from economics to transportation. This tremendous appli-
cability has the effect that, in most of the cases, simulations are constructed by
scientists with non-computer expertise. These scientists are striving for ease of
development and fast execution speed. We construct two frameworks, an agent-
modelling framework and a pure parallel discrete-event simulation framework,
both written in the Haskell programming language. Haskell language offers fast
and expressive parallel and concurrency mechanisms, that we take advantage of.
We benchmark our implementations against well-established competing frame-
works and present the output results. The end-goal of this project is to satisfy
the simulation user’s criteria of usability and speed.
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Chapter 1

Introduction

Our world is surrounded by complex systems which are most of the times hard to
comprehend and reason for. Yet we somehow find a way to deal with how they
actually work and operate them in a satisfactory manner. Examples of such
systems can be found everywhere; in human society (markets, organizations,
language, internet), in biology (cells, organ – e.g. brain, immune system, or-
ganisms, populations, ecosystem), in physics (turbulence, weather, percolation,
sandpile) and many other areas.
What makes a system complex? Burian (2013) defines a system to be an entity
with smaller parts and relations between these parts. Following this, a complex
system is a system composed from relatively many mutually related parts. Yet
we find this definition not complete enough; according to the Merriam-Webster
dictionary, under the entry for complex we discover the synonymous phrase “a
group of things that are connected in complicated ways”. So what makes a
complex system to be regarded as complicated?
As Greek philosopher Aristotle famously said, “The whole is more than the sum
of its parts”. That means that there are emergent behaviours of a system that
cannot be observed when examining its pieces individually. So there must be
something complicated going on with the relations of a system.
It appears that, most of the times, the large number of relations of the parts of a
system create a kind of “network” of serious complications. For that sole reason,
complex systems are intrinsically hard to describe or understand. If we prefer a
proper formal definition, we could say that a complex system is too complicated
to have an analytical (exact, precise) representation, given the mathematical
tools we have at hand (algebra, calculus).
And even if we had a representation for such a system, there are certain cir-
cumstances where it can become impractical to measure the performance of an
actual system; reasons can be the costs for building such a system (moon land-
ing) or the time required to execute it (meteorology). Still though, we can aim
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for an approximate estimation of such a concrete system, that can arguably be
adequate enough. That’s exactly where simulation comes to play.

The term simulation refers to the imitation of the processes of a concrete sys-
tem. Such a system can live in the real-world or, on an opposite direction, be
completely fictional. In simulation, we try to estimate numerically the real per-
formance of a system, which unfortunately, as said before, is too complicated
to have an analytical solution. In that context, simulation is applied to give
answers to specific questions, i.e. decision support (examples of such questions
are: how fast is the system? , where is its bottleneck?, how can we maximize
its throughput?)

Simulation is often confused with the term Modelling. A model according to
Law (2007) is a set of assumptions about how the system works. From a com-
puter science perspective, we could say that a model is the algorithms and/or
equations that best describe the behaviour of the system. Modelling is the pro-
cess/methodology of finding the most suitable such algorithms that describe the
system, whereas Simulation refers to the correct execution of these algorithms
and collecting the model’s performance results, so we can later make decisions
upon them.

It is not strange why the simulation technology started to blossom around the
time the first computers came to existence. Apparently, it is extremely hard
to execute these equations/algorithms simply on pen and paper; an automated
infrastructure and a fast math solver that computer systems provide can aid
in this. It all began half a century ago, with the notorious Manhattan project,
during World War II. The goal was to model the process of a nuclear detonation
and the result of it can still be witnessed today in the popular, from the other
end, Monte Carlo method. For the rest of the thesis we are only considering
computer simulation and we inadvertently use the simple term simulation to
refer specifically to computer simulation.

1.1 Applications of Simulation

Transportation

Consider an unexpected hurricane affecting air traffic of a country. How the
decision making of this problem is influenced? Should airplanes be allowed to
depart, only to circle on the destination? Should airplanes be remain grounded?
Should there be some kind of rerouting to alternative destinations? How much
will be the frustration of the passengers (average waiting time)?
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Economics and Social Sciences

Examples of these include, the effects of a surprising announcement on the stock
market, how a declaration of war will affect the economy, what is the better
suited economic model for the eurozone. A famous example of application in
the Social Sciences, is how the ghetto communities are formed even with high
tolerance between the factions.

Biology

A possible spread of a virus is very catastrophic. Simulations can investigate
cases of virus contamination in the population, how the spreading works, what
are the best quarantine systems.

Computer Systems

An example could be the designing of a next-generation internet protocol. How
many web surfers are expected? How much will be the tolerance of delay? What
will happen in unexpected failures of the network?

Weather Forecast

Simulation models with a huge size are created and executed, to make future
predictions about the weather in a country or even the change in the world
climate.

Military

In wargaming, different military tactics and strategies are evaluated, so as to
determine the gear that is required. Simulation can be also used as a training
facility for the military personnel.

Simulation can be categorized to two distinct types, based on how the time
evolves; continuously (System Dynamics) or in discrete steps (Discrete Event
Simulation).
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1.2 System Dynamics

The model in System Dynamics (also known as Continuous Simulation) is rep-
resented as a set of differential equations. The rate of change of the time of the
model is on a continuous scale. Let’s consider for example the famous Lotka -
Volterra equations that appeared in 1925 to describe originally the population
of foxes and rabbits:

dx

dt
= Ax − Bxy

dy

dt
= −Cy + Dxy

where
x prey population
y predator population
A the growth rate of prey
B the rate at which predators eat their prey
C the death rate of predators
D the growth of predators by consuming prey

A rather controversial application of System Dynamics was the large scale com-
puter simulation of the so-called Limits to Growth Meadows (1972), that tried
to estimate the future economic and population growth of our planet.

On a computer, a system dynamics simulation is implemented using a specific
(small) interval for the dt increments, so in practice it is demoted to a time-
stepped simulation. A time-stepped simulation, contrary to the Discrete Event
Simulation described below, advances time in equal intervals. On each interval,
the simulation updates the state of the model and estimates its behaviour.

1.3 Discrete Event Simulation (DES)

The state of a simulated model is comprised of one or more distinct state vari-
ables. The type of each state variable can be arbitrary and is defined by the
user. For example, if we were modelling a queuing service facility of a bank, we
would have as state variables:

status of the counter (idle or busy, so of type Boolean)
number of customers waiting (type Int)
arrival time for each customer (type list of Double)
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In Discrete Event Simulation, the state variables, in contrast with Continuous
Simulation (System Dynamics), change instantaneously in discrete points in
time. These time points are signaled by an event. A firing of an event (event
handling) may change some or all the state variables of the model. Consider
the bank example, and the events happening at each time point:

Event Time Point (s)

CustomerArrival 10.5

CustomerService 11.5

CustomerDepart 15

SimulationStop 22

The event CustomerArrival increments the number of customers waiting by
1. The event CustomerService makes the status of the counter busy, and
decrements the number of customers waiting by 1. The event CustomerDepart
computes the time of service of the customer. The event SimulationStop does
not change any state variables, but simply terminates the simulation.

The logic of what gets changed upon event firing is solely determined by the
event handler, that has to be provided by the simulation user.

On every model, there is an extra state variable, the simulation clock, that holds
the current time point of the simulation. During initialization, the simulation
clock usually (but not necessarily) takes the value 0, although this restricts the
type of the simulation clock to be a number instance (int, double …). We later
depart from this restriction to allow arbitrary types that can be ordered, like
for example a Date type.

The simulation must always advance forward in time up until the stop of sim-
ulation, and the simulation engine will assure us that there is no violation by
“time travelling” to the past.

But when does the execution of a simulation stop? The stopping condition can
be anything of:

• a maximum simulation time. When the simulation clock reaches this time,
the simulation halts.

• when there are no more future events to be scheduled.
• an arbitrary stopping condition. For example when a state variable be-

comes 0.

An example of the execution can be better visualized with Figure 1.1, a diagram
of time where event jumps happen:
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Time

CustArrival CustService CustDepart SimulationStop

0 10.5 11.5 15 22

S0:
CounterStatus=0
CustWaiting=0
ArrTime=10.5

S1:
CounterStatus=0
CustWaiting=1
ArrTime=0

S2:
CounterStatus=1
CustWaiting=1
ArrTime=0

S3:
CounterStatus=0
CustWaiting=0
ArrTime=0

S4:
CounterStatus=0
CustWaiting=0
ArrTime=0

Figure 1.1: Illustration of advancing the state of the simulation by event han-
dling

Internally, the simulation engine manages an event queue, that holds any future
events of the simulation. At every loop, the engine picks the next earliest event
and pass is it to the user-supplied event handler. After the event handler is
finished, the engine updates the state variables and progresses to the next event
in the queue.

1.4 Research Question

The current software for Discrete Event Simulation has certain limitations:

1) The simulation user often has to specify her model in an obscure and
uneasy programming environment.

2) There is not enough exploit of parallelism as there should be based on the
recent “booming” of multicore.

The research question that we investigate is whether an embedded implementa-
tion in a lazy functional language would improve that.

1.5 Contribution

We provide a better environment for the user to write Discrete Event Simulations
in. The extra benefit is that the user can get speedup in execution, if her model
adheres to the design of our parallel engine, which employs the ubiquitous, by
our times, Symmetric Multiprocessing technology (SMP).

The result of our work is realized through two distinct (but related) programs.
The first is HLogo, a clone of the NetLogo agent-modelling framework, that of-
fers certain language advantages compared to NetLogo, and execution speedup
in common model cases. The other program is named HDES, a Parallel Discrete
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Event Simulation (PDES) framework, that strives to be both simple in its in-
terface and also fast enough to compete with other PDES software. Both are
written in Haskell and try to exploit the language’s parallel and concurrency
capabilities.

1.6 Outline

The rest of this thesis is organised as follows. The next chapter will lay down a
short introduction to the Haskell programming language and deal with the par-
allel and concurrency technologies behind it. In chapter 3, we will discuss what
agent-based modelling (ABM) is, introduce the reader to the NetLogo platform,
and describe an initial naive clone of NetLogo in the Erlang programming lan-
guage. Chapter 4 introduces the HLogo language and framework, which is our
proposed clone of NetLogo that enables parallel execution. The chapter includes
details to the altered execution model and the results after benchmarking the
framework against NetLogo. Chapter 5 talks about Parallel and Distributed
Discrete-Event Simulation (PDES) and the various synchronization algorithms.
We also provide an trivial synchronization algorithm implemented in Erlang.
People familiar with PDES may as well skip this chapter. The next chapter 6,
proposes yet another PDES framework, called HDES, which has lazy evalua-
tion and is implemented solely ontop of the Haskell Programming language. We
provide documentation for the HDES language and discuss its implementation.
We later try to test the lazy features of the HDES framework and benchmark
it against a competing state-of-the-art PDES framework. The benchmarking
results are provided. Chapter 7 concludes this thesis.

If you are eager to work with the implementation code, you can get git reposi-
tories of HLogo, HDES and the sources of the thesis at:

• HLogo repository: git clone git@repo.bezirg.net:/hlogo.git
• HDES repository: git clone git@repo.bezirg.net:/hdes.git
• Thesis repository: git clone git@repo.bezirg.net:/msc_thesis.git

10

mailto:git@repo.bezirg.net:/hlogo.git
mailto:git@repo.bezirg.net:/hdes.git
mailto:git@repo.bezirg.net:/msc_thesis.git


Chapter 2

Introduction to Haskell
Technologies

2.1 What is Haskell

Haskell1 is a programming language first standardized by a comittee back in the
year 1987. The programming paradigm that Haskell follows is called functional
and that is for a reason; functions are the main programming concept used.
Functions are treated as first-class citizens inside the language.

Compared to other common functional languages, like Scheme and OCaml, we
could say that Haskell is a pure functional language. That means that the user
cannot in any way intermix code with side-effects inside pure mathematical
expressions. This restriction comes with the benefit of referential transparency:
the user can replace an expression with its value without changing the behaviour
of the program. Mathematical methods such as equational reasoning can then
be safely applied to Haskell code.

Haskell is one of the few programming languages that offers non-strict (lazy) se-
mantics. Its evaluation strategy departs from the usual call-by-value of the strict
languages. Haskell’s call-by-need evaluation order dictates that the arguments
to a function need not be evaluated before the function is called; instead they are
substituted in the function body and only evaluated if their result is needed by
the expression. This evaluation strategy also employs memoization; the values
of the function arguments are “cached” for any subsequent calls. Memoization
can potentially lead to execution speedup.

The type system of Haskell is characterized by strong static-typing. The lan-
guage uses the Hindley-Milner method to automatically infer the most general

1The Haskell Programming Language homepage http://haskell.org.
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(principal) types for expressions. The parametric polymorphism of the language
allows for writing functions generically; functions that can handle any argu-
ments without depending on their specific types. Haskell also offers support
for the so-called typeclasses. These are not the usual classes found in Object-
Oriented programming languages. Typeclasses are instead used by the language
for enabling ad-hoc polymorphism, that is found in other general-programming
languages, such as C++ and Java.

2.2 Green Threads

Lightweight threads (also known as green threads) are virtual threads man-
aged by a virtual machine (or by a language’s advanced runtime-system), in-
stead of the Operating System. We could say, in terms of OS concepts, that
green threads exist solely in user space than the kernel space. For this reason,
they have a smaller memory footprint than normal native threads and faster
thread activation and synchronization. This allows us to spawn millions of
green threads in a single system without running out of memory. However, this
does not come without a price; green threads usually tend to be slower in terms
of IO and context switching compared to native threads.
In reality, the virtual machine (or runtime system) initially spawns as many
native threads as the processor capability of the CPU (being a dual core or quad-
core etc.) and keeps them activated. Then on, it picks some (of the possible
many) green threads and schedules them for execution by assigning them each
to an active native thread. If the system is unicore (processor capability equals
one) then as you can guess there is effectfully concurrency going on with however
no parallelism gain, since there is only one native thread scheduled at a time.
There exist implementations of green threads in different programming lan-
guages, such as CPython, Go, Occam and Haskell. Haskell lacks a Virtual
Machine and the threading is rather handled by the Runtime System and its
process scheduler. Haskell’s green threads coupled with Symmetric Multi Pro-
cessing (multicore) may allow a faster program execution if carefully designed.
The SMP capabilities of Haskell have greatly benefited from a recent change
to the Glasgow Haskell Compiler (GHC). GHC is the default Haskell compiler
and tries to stay in the forefront of Haskell’s evolution. The change affects the
generational-copying garbage collector (GC). The GC can now act in parallel
and make use of any extra cores of the system to speed up its process of Garbage
Collecting.

2.3 Mutable Variables (MVar)

An other concurrency technology of Haskell besides the well-known Software
Transactional Memory (STM), described in 2.4, is the so-called MutableVariable
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(or MVar for short). MVar is the lowest-level communication abstraction there
is in the Haskell ecosystem (Marlow 2013). It can only be used for shared
memory communication; thus by definition cannot be applied in a distributed
setting. The interface when working with MVars is extremely simple:

newMVar :: a -> IO (MVar a)
takeMVar :: MVar a -> IO a
putMVar :: MVar a -> a -> IO ()

An MVar can be thought of as a memory cell that it is either empty or full. The
newMVar operation creates an MVar and stores a value to it that was passed as
the argument. The putMVar operation stores a new value to an already-created
MVar. The MVar memory cell has to be empty before storing the new value. If,
however, the MVar is currently full, the thread that calls putMVar will wait until
it becomes empty. The takeMVar construct takes a value out of the memory cell,
thus dimming the cell empty, and returns it to the caller. During a takeMVar
operation, if the MVar is not full, then the thread that called takeMVar will
have to wait until a value is “put” back, so it can again take it. When multiple
threads are blocked on an MVar, they are woken up in FIFO order. This is
useful for providing fairness properties of abstractions built using MVars (for
more about this see the GHC documentation on MVars). The blocking/waiting
of threads is internally realized with good-old imperative locks on the memory
cells.
Although MVars are now a great part of the GHC compiler, the MVar implemen-
tation first appeared in the no-longer-maintained hbc Chalmers’ Haskell com-
piler, which happens to be the first Haskell compiler ever, written by Lennart
Augustsson.
We could build higher abstractions based on the low-level MVars, such as un-
bounded buffered channels. A producer can store items to the channel with
no particular limit on the number of stored items (except of memory limits of-
course). A consumer (or multiple consumers) can take (read) one item at a time
from that channel. The idea first came up in the Concurrent Haskell framework
(Jones, Gordon, and Finne 1996). We can say that the definition of the Chan
abstraction in Haskell is nearly crude. A Chan is a normal datatype holding two
MutableVariables (MVars). The first MVar points to the read position, so it
used by the consumer; the second MVar is called the write position to be used
by the producer.

data Chan a = Chan
(MVar (Stream a))
(MVar (Stream a))

A Stream is a mutually-recursive datastructure that holds an MVar to an Item
that itself holds another stream, thus forming a kind of chain of items. This
chain can be better illustrated in Figure 2.1.
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type Stream a = MVar (Item a)
data Item a = Item a (Stream a)

Figure 2.1: A channel with unbounded buffering implemented using MVars

MVars and particularly Chans are used extensively in the HDES framework,
discussed in chapter 6, to provide the underlying communication.

2.4 Software Transactional Memory (STM)

Software Transactional Memory (STM) is a technology originating from the field
of Distributed Databases. When it comes to concurrency, STM departs from
the common locking mechanism and offers a concurrency paradigm that avoids
locks altogether. When combined with Symmetric Multi-Processing (SMP) it
can lead to considerable program speedup as reported by Perfumo et al. (2008).

This concurrency mechanism relies on the so-called transactions. A transaction
is a sequence of reads and writes to variables (Transactional Variables, TVars for
short). Transactional variables point to actual places in shared memory. TVars
are CRUD (Create-Read-Update-Delete) mutable variables that can be created,
read and and written only exclusively inside an atomic transaction. TVars
are normally shared between transactions. Transactions are said to be applied
virtually instantaneously, so no intermediate state changes can be witnessed by
other transactions. People that are familiar with SQL databases may better
treat STM transactions as the usual SQL atomic transactions albeit with a
bigger focus on concurrency.

It is the common case that for each transaction a separate thread is
spawned/assigned. Each transaction, thus each thread, keeps a separate log of
reads and writes to TVars. At the end of the transaction, the thread checks
for possible incosistencies in the log. If there was an incosistency during a
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transaction — for example a transaction contains a read of a shared TVar that
was written to in the mean time by another transaction — the transaction
aborts with no effects to the shared memory, and retries later in the future. If
there are no incosistencies, then the transaction is said to be succesful, and the
associated code is actually committed (executed). Internally, the orchestration
of a commit is realized by putting locks automatically in proper places in
shared memory, although this process is absolutely hidden from the user.

Atomic transactions can be created by surrounding blocks of code with the
term atomically. Let’s consider a common example of bank accounts using
the Haskell programming language. We want to make a financial transaction
between two accounts:

send_money x = atomically (do
v1 <- readTVar account1
v2 <- readTVar account2
writeTVar account1 (v1-x)
writeTVar account2 (v2+x)
)

The code of send_money runs on thread-1. The other, thread-2 runs the code:

check = atomically (do
v1 <- readTVar account1
v2 <- readTVar account2
)

Note that the execution of the threads is interleaved. If we didn’t have atomicity,
then it could be the case that thread-2 possibly is in a state that can witness
money leaving from account1 but not reaching account2.

STM, on the other hand, guarantees us that this case cannot happen, because
these two blocks of code (send_money and check) cannot be interleaved when
they have dependencies with each other. In reality, what happens is that the
code inside atomically is optimistically run by each thread. The thread reads the
transactional variables but delays writing to them; it only keeps a log of what
has to be later written. In the end of the block, upon commiting the transaction,
if the thread has found an inconsistency (e.g. a transactional variable has been
changed in the mean time) it rollbacks and retries the whole transaction. In
fact, the user herself can direct the thread to retry, somehow creating a kind of
thread blocking. Consider the slightly altered but better send_money' function:

send_money' x = atomically (do
v1 <- readTVar account1
if (v1 < x)
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then retry
else do

v2 <- readTVar account2
writeTVar account1 (v1-x)
writeTVar account2 (v2+x)

)

The example is self-explanatory. The thread is blocked when the amount to
transfer is less than the from-account. When another thread adds money to the
from-account, the thread will be waken up and retry this transfer-transaction
altogether.

STM is usually implemented as a software library on top of a programming
language that, because a unique thread is usually spawned for each transaction,
has to support lightweight (green) threads. If instead native OS threads are used
by the language, this will limit the number of simultaneously active transactions.

Software Transactional Memory surprisingly was established a long time ago
with Knight (1986). The author proposes a novel extension to Lisp and suit-
able hardware modifications to enable concurrency by avoiding locks. The idea
was later refined by Shavit and Touitou (1995), who also coined the term Soft-
ware Transactional Memory (STM), to allow the technology to operate only
in-software.

In the Haskell programming language it was first implemented in Harris et
al. (2005) and later refined in Harris and Peyton Jones (2006) and Discolo
et al. (2006). STM in Haskell is modelled as a seperate monad, so as to
ensure that transactional code cannot be run outside of transactions. With
this restriction, the user cannot run arbitrary IO effects inside transactions,
since these effects are not safe and cannot be rollbacked. This restriction is
enforced by the Haskell’s strong type system. Haskell’s STM is arguably the
best implementation there is, although it can be in many cases cumbersome to
program in, since it is difficult for the user to combine the separate pure world
of expressions with the STM monadic world. Its excellent implementation and
safety guarantees are why we chose Haskell for our next generation NetLogo-
clone, i.e. HLogo.

In Distributed Databases terms, STM offers reliable transactions for software.
It cannot be regarded however a silver bullet, especially when STM is used
for added parallelism to simulation software. It appears that there is a strong
property in Parallel and Distributed Discrete Event Simulation theory, called
the local causality constraint. STM apparently violates this property, which has
as a result the non-repeatability of simulation experiments. More about local
causality constraint in Section 4.1.

This shortcoming, however, did not restrain us from using Software Transac-
tional Memory to speed up the execution of HLogo programs, discussed in
Chapter 4.
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Chapter 3

Agent-based Simulation
(ABM)

3.1 What is ABM

Agent-based Simulation (ABM for short) departs from the usual Discrete-Event
Simulation on how the particular model of the system is structured and layered.
As you can guess, the basic building block of an ABM are agents.

There exist many different interpretations of what the term agent consists of.
We find the Wooldridge (2009) definition quite satisfactory:

The agents themselves are more or less “intelligent” chunks of com-
puter code that are able to perceive and communicate with each
other and react to stimuli in order to pursue their goals.

When compared to a regular Discrete Event Simulation, their only difference
lies in the way their models are defined and expressed in a simulation. In ABM,
we can say that a bottom-up approach is employed compared to a top-down
approach in Discrete-Event Simulation. What that normally means is that
the simulation user has to define the logic of each agent involved (bottom-up),
instead of a single big monolithic event handler (top-down). From this follows
that the behaviour of the system emerges from the particular communication
and interactions of these sole agents. As ABM is generally implemented on top
of a discrete-event simulation framework, some consider ABM to be a certain
subclass of DES techonology.

ABM is also similar to Multi Agent Systems (a specific branch of AI and dis-
tributed systems), albeit having entirely different goals; the first for simulating
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(imitating) models of systems and the latter for actually constructing such sys-
tems to be put in real practical use.

Continuing with which technologies ABM is linked to, we can claim that ABM
can be also regarded as another kind of Spatial Modeling. Normally, the agents
in ABM are situated in an artificial environment which has spatial characteris-
tics (most of the times, either two- or three- dimensional).

An Agent-Based simulation can be better explained with an example. Consider
an environment of initially 150 people (modelled as agents), of which 10 are
infected (red) and the rest 140 are healthy but prone to infection (green). The
agents move randomly in the 2D environment. At a later stage, we can view
how the virus spreads through the agent population and how a certain part of
it becomes immune to the virus (gray). The Figure 2.1 illustrates how good is
ABM when it comes to visualizing a simulation:

Figure 3.1: An example of Agent-Based Modeling simulating a virus infection
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Αgent Based Modeling (ABM) has gained traction lately, especially with its ease
of use and wide area of applicability. We have witnessed ABM already being
applied to areas mostly related to social sciences Epstein and Axtell (1996) and
to a lesser extent to ecology Grimm et al. (2005), biology Pogson et al. (2006),
physics Wilensky (2003) etc. Agent Based Modeling is a simulation technique
that has as its building block the autonomous intelligent agent. ABM offers the
right kind of high-level abstraction to construct from the ground up large agent
populations that exhibit interesting (from a simulation perspective) emergent
patterns.

When is ABM appropriate against a crude Discrete Event Simulation model?
According to Salamon (2011) an Agent-based modeling is a suitable method for
the study of a problem where we know the characteristics of the atomic parts
and are interested in the behaviour of the entire system.

As ABM stays close to the theory of MultiAgent System (MAS), it is well
established that often ABM code involves serious AI programming. In our
thesis, we are not concerned in program expressivity and any AI techniques,
but only keep focus on the usability of ABM and its implementation details.

3.2 NetLogo

NetLogo1 is arguably the most well-known and appreciated ABM platform. It
provides to the simulation user a simple-to-use programming language and an
intuitive modeling environment that includes an IDE to accommodate the writ-
ing of NetLogo code as well as a GUI to watch the live execution of the compiled
model.

NetLogo sprang off in 1999 by its creator Uri Wilensky as an advanced replace-
ment to a similar framework, named StarLogoT. Since then, it has picked up a
lot in the simulation community, mostly on the fact of its ease of use and rich
built-in models library. Areas of the models include Biology, Computer Science,
Earth Science, Social Science, Chemistry and others. An example of a Cellular
Automaton (Game of Life) live simulation in the NetLogo IDE is shown in figure
3.2.

Besides simple 2D environments as the one in 3.2, NetLogo also supports 3D
lattices with 3D-graphically enhanced views.

NetLogo code was recently open-sourced under the GNU General Public Li-
cence (GPLv2). Internally, NetLogo is implemented in the Scala programming
language. A Scala-written compiler translates NetLogo code to Java bytecode
to be later run in a Java Virtual Machine (JVM). NetLogo can be considered
with this method partially compiled. They are currently working towards a full

1Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Con-
nected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.
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Figure 3.2: NetLogo Integrated Environment and visualization of a Game Of
Life simulation

compiler, as well as a full-blown Javascript (in-browser) implementation (check
Teletortoise). To be absolutely precise, according to their wiki:

NetLogo does include a compiler that generates Java byte code. How-
ever, this compiler does not yet support the entire language, so some
parts of user code are interpreted. We are working on expanding the
compiler to support the entire language. Note that our compiler gen-
erates Java byte code, and Java virtual machines have “just-in-time”
compilers that in turn compile Java byte code all the way to native
code, so much user code is ultimately translated to native code.

3.2.1 The NetLogo language

The NetLogo framework suite defines also its own programming language, de-
rived as a Logo dialect.
Logo is a graphic-oriented educational programming language, where the famous
turtle graphics originate from. It is a simplistic though extremely powerful
language — it even has Lisp macros. That is the reason why Logos’ nickname
is Lisp without the parentheses. It’s first implementation was a Logo interpreter
written in Lisp.
NetLogo’s dialect departs from a standard Logo specification in that it has
lexical scoping instead of the usual dynamic scoping of Lisp-like languages, the
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code gets compiled to bytecode (or native code) instead of being interpreted
and even has support for multiple turtles, instead of just a single one of most
Logo implementations. From the other hand, it lacks any metaprogramming
by not supporting backquotes (atoms) and macros. As far as we are aware of,
NetLogo’s implementation does not offer tail-call optimization (TCO), which is
unfortunate.

The agents in NetLogo are situated in a 2D or a 3D spatial environment. There
are essentially 3 types of agents in NetLogo: turtles, patches and links. Turtles,
as in turtle graphics, move around the environment drawing shapes to the screen.
Turtle agents can be dynamically created and destroyed at run-time of the
simulation execution. A turtle during creation is given a unique Int number for
referencing, called the who value. Patches are stationary agents and draw only
on the tile they occupy. They are only spawned at the start of the simulation
and cannot be later destroyed. A link connects two turtle agents together and
can also visually represent this connection (for example as a directed line). The
links, as it happens with turtles, can also themselves be created and destroyed
at runtime. Every agent can communicate and interact with any other agent of
the environment.

The language comes with a vast standard library for essential math program-
ming, statistics, input/output and plotting to the screen. Three of the many
primitives of the standard library, namely ask, of and with are responsible for
the communication and interaction between the agents of the system. The first
primitive is used by the current executing agent to instruct a set of agents to
do something. The agent can use the of primitive to query for variables and
attributes of other agents. The with primitive is a special case of the of prim-
itive, and returns a subset of a given agentset that satisfy a certain predicate.
The primitives are combined and illustrated in the following example:

ask turtles with [colour = red] [
print [pxcor] of patch-here
]

In the example, every turtle that is colored red is instructed to print the x
coordinate of the patch it sits on.

This is the most essential kind of interaction, that instructs other agents to
perform an action.

On example 2, turtle 4 “asks” turtle 5 of its colour and prints it to the command
line.

ask turtle 4 [print [color] of turtle 5]

The of primitive simply acquires information from another agent:
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if [xcor] of turtle 3 < 0 [print "x coordinate of turtle 3 smaller than 0"]

The with construct takes a predicate and returns the set of agents that satisfy
the predicate:

print count turtles with [color = red]

It comes that the with construct can be defined in terms of of. We spare you
from its implementation.

Interaction happens through global or per agent variables. NetLogo also sup-
ports local variables, which as we said before, are lexically scoped.

globals [var1 var2 var3] ;; list of global variables
turtles-own [tvar1 tvar2 tvar3] ;; list of per-turtle variables
patches-own [pvar1 pvar2 pvar3] ;; list of per-patch variables

ask turtle 4 [set var1 3]

ask turtle 5 [set var1 var1 + 1]

NetLogo’s breeds are a way to categorize turtles. Each breed can have its own
set of attributes, forming some kind of primitive Object Oriented Programming
(OOP).

breed [cats cat]
breed [mice mouse]
cats-own [energy] ;; per cat variable
mice-own [speed] ;; per mouse variable

Links is a unique feature to associate two agents together. A link can itself be
regarded as an agent, and as like a turtle, be dynamically created and destroyed
on run-time.

NetLogo offers a kind of structured programming, by allowing the users to define
their own procedures (functions) with the form:

to proc_name arg1 arg2 arg3 rest
...
return 3

end

NetLogo allows variable arguments in procedures (polyvariadic functions) , sim-
ilar to what the Common Lisp does with its &rest keyword.
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Besides procedures, NetLogo has the usual control flow structures of other im-
perative languages: ifelse , foreach, while, loop.

Suprisingly, NetLogo lacks a module system. This becomes a burden during
large deployments, but it is justified in the sense that inexperienced users are
often put off by modular programming.

3.2.2 Execution of NetLogo code

NetLogo’s execution order is the usual call-by-value. Its execution model is
completely sequential; there is no concurrency or parallelism involved. That
means that when an “ask” primitive is called, it simply jumps from an agent
context (most of the times that is the top-level/observer context) to another
agent context, creating a kind of chain of dependencies (values) between agents.
This model is hard to parallelize, because these dependencies will create a lot
of race conditions if they happen to be overlooked by the different computing
processors.

If we would try to visualize the execution sequence of the example give before,
we could come up graphically with the Figure 3.1.

    print                         

red_turtle_i

pxcor

patch_i

    print                         

red_turtle_n

pxcor

patch_n

...    print                         

red_turtle_k

pxcor

patch_k

Figure 3.3: The execution context-passing for the red-turtle example

As you can witness yourself, there is room for improvement in this kind of
NetLogo programs. For our case example, instead of waiting on each agent
to finish executing and then pass execution to the next agent, thus creating a
sequence of executions, we could execute each agent’s associate code in parallel
and collect their results. This is the main idea behind HLogo with considerations
of course on certain topics of atomicity and replication, discussed later on, in
the next section.

On the other hand this execution model is completely deterministic; consequent
simulation runs of the same model will yield exactly the same results. This
comes as a strong advantage if the simulation user is looking for repeatability
of simulations. This is often the case when simulation users have to distribute
their work and reproduce their model results at the other end to prove their
correctness.
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3.3 Failed attempt in Erlang

Our first attempt in this thesis was to clone NetLogo to a complete Erlang-
written implementation. Erlang is an impure functional dynamically-typed lan-
guage with a strong incline towards concurrency. The Erlang programming
language has something that comes to close to green threads, called green pro-
cesses. Despite having also a small memory footprint, green processes differ
from the usual green threads in that the memory is not shared between any
processes; communication is achieved strictly by message-passing.
When trying to implement this clone, we decided to model each agent (being a
turtle, patch, or a link) as an Erlang process. This creates a nice and simple one-
to-one mapping between agents and processes for the execution model. However,
as discovered later, it happens to be inherently wrong. We include this failed
attempt into our thesis only for stating the simple fact that the one-to-one
mapping, which is the first thing that usually comes to mind (and the most
natural intuition afterall), does not work in practice.
We could say that the implementation was easy and straightforward, firstly
because of the built-in process mechanism that Erlang provides and secondly
for reasons that Erlang matches the characteristics of the NetLogo language.
Erlang, albeit functional, is an impure strict dynamically-typed language, so
the user can easily mix side-effects with pure expressions. Since NetLogo also
happens to be impure, strict, and dynamically-typed, programming in both
those languages can be done semantically in the same exact way, minor some
differences in the syntax. We only note this now, because this, unfortunately,
isn’t the case for our next-generation Haskell-based clone of NetLogo, called
HLogo, that is discussed later on.
In this way, we’ve managed to port almost 100% of the NetLogo’s API and
standard library to the Erlang clone. Only later, when we moved forward to
writing regression and unit testing against our API, we discovered that there is
an intrinsic error in our execution model. This can again be better illustrated
with an example. Take a look at this absurd however absolutely valid NetLogo
code:

ask turtle 0
[ask turtle 1

[ask turtle 0 [show color]]]

What is going on, is that turtle 0 asks turtle 1 that asks back turtle 0 to print
turtle 0’s color. This, when executed in NetLogo, will actually print a color
number.
When we express this in our Erlang clone, we have:

p:ask(p:turtle(0), fun () ->
p:ask(p:turtle(1), fun () ->
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p:ask(p:turtle(0), fun () -> p:show(p:color()) end)
end)

end)

If we actually ran this in our implementation, we get a deadlock upon execution.
Why is this? Consider, mentally, what are the processes which are going to
be spawned here. With the outer call to ask the main process (shell process
here) asks the process turtle0 to execute the code of the outer lambda fun.
The process turtle0 picks up the fun and executes it, blocking on it, so it can
return the result of the fun back to the main process. Upon execution of the
outer fun, turtle0 process asks turtle1 process to execute the middle lambda
fun. The turtle1 process picks up the code and asks back turtle0 process to
execute some code (in this case, show its color) and blocks for turtle0’s reply.
However, the process turtle0 cannot execute what the turtle1 wants to, because
it has already blocked waiting for an answer from turtle1! So, both processes
are blocked waiting on each other’s results, leading on a deadlock. This cannot
be easily alleviated, because of the inherent fault in the execution model of the
Erlang clone.

Because of this, the general idea was scrapped, but still you can look at it as a
working but limited NetLogo clone at these repositories:

• The ported NetLogo API to Erlang:
git clone git@repo.bezirg.net:/erlogolang.git

We also built around it a fully functional GUI, that stays as close as possible
to NetLogo’s GUI. Our intention, as future work, is to port this GUI also to
HLogo. For now, you can get it from:

• The GUI of the NetLogo:
git clone git@repo.bezirg.net:/erlogogui.git

Our next clone was written in Haskell and by having a totally different model
of execution, does not suffer from these kinds of deadlock.
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Chapter 4

HLogo: A parallel clone of
NetLogo

Abstract
Agent Based Modeling has become quite popular to the simulation
community for its usability and wide area of applicability. However,
speed is not usually a trait that Agent Based Modeling is character-
ized of attaining. We propose yet another Agent Based Modeling
framework, called HLogo, that by being a direct clone of the NetL-
ogo platform, strives to actually be as easy to use as NetLogo, with-
out any compromise to execution speed. The case is that HLogo,
by exploiting parallel multicore execution through the technology of
Software Transactional Memory, can be in certain cases faster than
its NetLogo counterpart.

Keywords: Agent simulation platforms, Agent programming lan-
guages, Parallel Simulation, Software Transactional Memory

4.1 Introduction

The aforementioned success of ABM sprang off numerous ABM implementa-
tions of computer frameworks that alleviate the development of these Agent
based models (for a comparison of frameworks see Tobias and Hofmann 2004;
or Railsback, Lytinen, and Jackson 2006; also Castle and Crooks 2006). While
ABM research has prior been focused on the methodology by Salamon (2011),
ease of use by Wilkerson-Jerde and Wilensky (2010), portability by Grimm et
al. (2006) and expressivity by Sakellariou, Kefalas, and Stamatopoulou (2008)
of Agent Based Models, little has been done in the actual performance of the
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available ABM platforms and frameworks. The problem has been stated before
in P. F. Riley and Riley (2003), and although some solutions since then have
been offered, there has been no wide consensus yet established.

With our work we strive to speed up the Agent Based Modeling and Simula-
tion execution by using yet again another concurrent method called Software
Transactional Memory, discussed earlier in Section 2.4. We apply our ideas to
the NetLogo suite. We have to note, however, that our ideas are in no sense
restricted to NetLogo; our intuition is framework-agnostic and thus could be
easily applied to other ABM frameworks too.

We contribute a parallel clone of NetLogo, the HLogo language and framework
that

• utilizes many processor cores to speedup the execution of Agent Based
Models.

• has non-deterministic execution, in case the user demands it.
• stays as close as possible to the NetLogo philosophy.
• tries to be faster in most circumstances than NetLogo.
• offers a domain specific language embedded in the Haskell programming

language which lifts certain restrictions of the original NetLogo implemen-
tation.

4.2 The HLogo language

The HLogo framework defines a simulation language to interface with the core
of the altered execution model, which is described later on. This domain specific
language (DSL) is also embedded in Haskell; that means that certain charac-
teristics of the HLogo language are borrowed/inferred from the host language,
i.e. Haskell. Embedded DSLs come with certain advantages and shortcomings,
although however the Hlogo language tries to stay as close as possible syntacti-
cally and semantically with the original NetLogo language.

In terms of syntax, the HLogo and NetLogo are quite similar, because of the sim-
ple juxtaposition of function application in both languages. The only difference
lies in precedence of binary operators: in NetLogo binary operators behave as
normal functions consuming input as it comes, where in HLogo binary operators
have lower precedence than normal prefix function notation. This shortcoming
can be alleviated by using Haskell’s application operator ($). For example in
NetLogo we write print 1 + 3, whereas in HLogo we have to write print $ 1
+ 3.

In Haskell, functions are first-class citizens. For this reason, procedures (func-
tions) in HLogo are introduced as local (or top-level) variables; there is no extra
special syntax for the introduction of procedures. For example, in NetLogo we
have to write:
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to-report inc x
report x + 1

end

to main
print inc 3

end

whereas in HLogo we write:

inc x = x + 1
main = print (inc 3)

Semantically the languages are quite different. NetLogo has a traditional strict
evaluation with call-by-value evaluation order. HLogo borrows the lazy evalua-
tion (call-by-need evaluation order) from Haskell. Call-by-need evaluation order
can optimize away repetitive calls to the same expression, called sharing opti-
mization. Also a lazy evaluation scheme allows a more expressive and powerful
language, since constructs such as infinite lists can be expressed: print $ take
10 $ [1..]. The main advantage of lazy evaluation, however, is that expres-
sions that are not needed will not be evaluated, leading to speed up. Consider
in NetLogo:

to slow_computation
...

end

to main
slow_computation
report 3

based on strict evaluation the slow_computation has to be evaluated, whereas
that is not the case in HLogo:

slow_computation = ...
main = do

slow_computation
report 3

According to Lennart Augustsson, a pionneer and advocate of DSLs, it is critical
for embedded DSLs to be hosted in a lazy language. Lazy host languages allow
us to express primitives of the DSL, that could not be expressed otherwise in
a strict language without using any kind of meta-programming (macros). For
example, it is straightforward to define the ubiquitous ifthenelse construct in
HLogo (Haskell), than writing it in a C host. In HLogo, ifthenelse is defined
simply as:
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ifthenelse p t f = case p of
True -> t
False -> f

When it comes to typing, NetLogo is a strong dynamically typed language;
HLogo is instead statically typed by default with optional dynamic typing (with
the use of Haskell’s Data.Dynamic module). Type checking mostly comes down
to personal taste and preference, but we could say that in certain cases HLogo
is safer than NetLogo:

to-report test_typechecking
let non_number "3"
report 1 + non_number

end

This will throw a type error only at runtime, whereas in HLogo:

test_typechecking = do
let non_number = "3"
report (1 + non_number)

the example will not typecheck and so no executable will be produced from the
HLogo’s compile phase.

We have managed to port almost 100% of the API of the NetLogo standard
library. What remains for HLogo is to provide statistics plotting. The definition
of globals, breeds and links, etc is realized with Template Haskell macro code:

globals ["global1", "global2"]
turtles_own ["t1", "t2"]
patches_own ["p1", "p2"]
links_own ["l1", "l2"]
breed ["mice", "mouse"]
breeds_own "mice" ["m1", "m2"]

NetLogo supports variable number of arguments to be passed to certain builtin
primitives, much like what the &rest keyword does in Common Lisp. Currently,
HLogo does not support such polyvariadic functions, but there are solutions to
emulate these in Haskell with Oleg Kiselyov’s polyvariadic functions or Liquid
Haskell or the way it is done with Haskell’s built-in printf procedure.

HLogo has rudimentary support for visualizing the simulation environment with
the help of the powerful diagrams package. The simulation user in HLogo has
to call the procedure snapshot in any places in her code. During execution of
the simulation program, files will be created under the current directory with
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names snapshot_tick_number.eps. By default, the output of visualizations is
Encapsulated Postscript, but diagrams support other outputting, such as png,
svg, GTK. We are working on extending HLogo with a live visualization using
the GTK toolkit.

What HLogo offers that NetLogo currently lacks of, is the atomic primitive
(the center theme of HLogo and this chapter). The simulation user wraps the
code as in atomic ( code ) that she considers should be run safely during
parallel execution of STM (see Section 2.4). STM in Haskell is modelled as a
seperate monad, so as to ensure that transactional code cannot be run outside
of transactions. With this restriction, the user cannot run arbitrary IO effects
inside transactions, since these effects are not safe and cannot be rollbacked.
This restriction is enforced by the Haskell’s strong type system. Haskell’s STM
is arguably the best implementation there is, although it can be in many cases
cumbersome to program in, since it is difficult for the user to combine the
separate pure world of expressions with the STM monadic world. Its excellent
implementation and safety guarantees are why we chose Haskell for the HLogo
framework.

4.3 The HLogo Execution Model

Although the API calls of NetLogo and the standard library that comes bundled
with the platform have remained intact during porting to the HLogo implemen-
tation, the execution model has been severely modified. It is the case that the
typical sequential execution model which comes with NetLogo has been altered
to accomodate parallel execution.

Let’s take a look how HLogo exploits STM and green threads to speed up
the NetLogo simulation code. Consider the 3 communication & interaction
primitives of NetLogo, discussed earlier. Their general form is:

ask agents code
code of agents
agents with code

We observe a pattern of code segments that have to be run by multiple agents.
In the case of the ask primitive, an agent instructs (asks) a set of agents to
perform some actions (defined in the code segment). We could utilize STM for
the ask primitive by wrapping each code segment in a transaction. Thereby, we
can safely infer that there will be no inconsistencies created between the agents.
For each agent in the instructed agentset we create a transaction containing
the wrapped code. We, then, appoint to each created transaction a separate
green thread, so as to benefit from concurrent execution. We could visualize the
altered execution of ask with Figure 4.1.
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Figure 4.1: Visualized execution of the ask primitive in HLogo. Each circle
depicts a separate transaction/thread
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We have to note that after spawning a transaction/thread for each agent, the
calling agent resorts back to continue executing on its own thread. In other
words, the calling agents do not have to wait for the spawned agents to finish
execution.

Somewhat different to the ask semantics is the execution of the of primitive.
Here, also the calling agent spawns a transaction wrapped in a unique thread
for every agent from the agentset. The added difference is that the calling agent
has to wait for the results of the spawned threads; After collecting them, it
returns a list of the accumulated results. The execution can be better depicted
in Figure 4.2.

agent_i
runs code

calling agent
agent_k

runs code

agent_n
runs code

.

.

.

calling agent
returns

list of results

Figure 4.2: Visualized execution of the ”of” primitive in HLogo

As we said in Chapter 2 when we introduced NetLogo, the with primitive is
a special case of the of primitive and thus its implementation follows that of
the of implementation (we spare you from the depiction of the with execution).
The collected results are filtered by the calling agent and the filtered list is
returned to the caller.

Compared to the clone written in Erlang, the agent is not modeled as a separate
thread, but simply as a set of Transactional Variables. We use the algebraic data
type (ADT) syntax of Haskell to define 3 different records for the 3 different
types of agents: turtle, patches and links. A sample of the patch datatype
defined in Haskell follows:

data Patch a = MkPatch {
pxcor_ :: Int, -- on creation
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pycor_ :: Int, -- on creation
pcolor_ :: TVar Double,
plabel_ :: TVar String,
plabel_color_ :: TVar Double,
pvars_ :: Array Int (TVar a),
pgen :: TVar StdGen
}

deriving (Eq)

It follow similar for the definition of the Turtle and Link datatypes.

Each attribute of the agent is a specific record. Attributes that do not change
over time, in this case pxcor and pycor, do not have to be wrapped inside
a Transactional Variable, since they are defined on creation time and are not
mutated.

Each agent has also an extra attribute (tvars for turtle , pvars for patch and
lvars for link) that is an immutable array holding transactional variables that
point to the agent-specific attributes declared with turtles_own, patches_own
and links_own respectively. For now, we are constrained by the implementation
only to allow homogenous arrays, i.e. arrays with each element having the same
type. This can be later alleviated in future work with the Haskell’s support for
heterogenous collections.

The agents have been augmented with a gen field, which is a Transactional
Variable holding a random generator feed. This enables us to overcome the
limitations of the default Random implementation that comes with the Haskell
language specification. Specifically, by using a distinct field per agent to hold a
generator, we are made sure that there are not going to be race conditions during
random generation computations; a statement that cannot be guaranteed with
the standard System.RandomIO module.

The engine of HLogo creates during initialization three dictionaries holding the
agents data structures and manipulates them during execution. The types of
the dictionaries are given below:

type Patches = Map (Int, Int) Patch

type Turtles = IntMap Turtle

type Links = Map (Int, Int) Link

The Patches dictionary is a single mapping from (xcor,ycor) keys to Patch
records. This dictionary as well as the Patch records that it holds are created
during initialization time and no patches can be destroyed or added during exe-
cution, following accordingly the NetLogo specification. The Turtles dictionary
is a mapping from Int keys (which are essentially the who values) to the Turtle
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records. The Links datastructure maps from (end1, end2) which are the ends
of the link (essentially who values of two patches) to the Link records. Links
can as well be destroyed and created during execution time.

4.3.1 Issues

There are certain issues that come with the aforementioned execution model.
It appears that the HLogo execution model does not satisfy repeatability of
simulation runs. The issue conversely boils down to this; consider the simple
case in an STM setting, where two threads simultaneously are competing for
acquiring one shared resource (reading or writing to it). The example is depicted
in Figure 4.3.

transaction/thread 1

transaction/thread 2

shared TVar

Figure 4.3: A possible occurence in an STM setting. Each circle is a differ-
ent transaction/thread. The square is the shared transactional variable (TVar)
resource.

STM guarantees that the threads will acquire the resource in sequence, though
not dictating which exact order of sequence, being it first the thread 1 then
the thread 2 or the other way around. In that sense the order of acquiring the
resource is non-deterministic; consecutive runs might yield a different order and
thus a totally different result. The repeatability of the simulation cannot be, in
any sense, guaranteed.

This issue of non-repeatability is related to the fundamental property of Parallel
and Distributed Discrete Event Simulation theory (more about this in chapters
5 and 6. This problem is not a fault of the implementation but it is inher-
ent in STM and distributed databases in general; STM violates by definition
the local causality constraint. For this sole reason, this Haskell clone may be
better regarded appropriately as a multi-agent system (MAS) than a standard
simulation framework.
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4.3.2 Runtime implementation

The implementation of the described execution was done in the Haskell pro-
gramming language and ended up to be completely straightforward. Haskell is
one of the few, pure functional programming languages out there. The reason
behind choosing Haskell was not ofcourse its “unpopularity”, rather the strong
and quality-standard STM library provided by the language. Another reason is
the excellent green threads implementation in the Glasgow Haskell Compiler’s
(GHC) runtime system.

4.4 Benchmark Results

We ran two simple benchmarks to compare the execution speed of NetLogo to
that of our own framework, HLogo. In every case, we are varying the number
of agents (population) and number of processor cores utilized. The benchmarks
were run on a quad-core Intel processor in Windows 7 64bit.

The first benchmark is the “sheep” benchmark. N sheep turtles move around
a 100x100 torus eating grass (turning patches from green to brown). Grass
regrows at a certain level (from brown to green). The benchmarking stops after
1000 ticks. The results:

Population netlogo-parsing netlogo hlogo1core hlogo2core hlogo4core

100 sheeps 17.1 12.4 14.9 9.5 7.2

250 sheeps 18.0 13.4 19.6 12.3 8.6

500 sheeps 19.4 14.7 26.9 15.8 10.7

1000 sheeps 21.6 17 40.3 23.2 14.7

2000 sheeps 24.5 19.9 64.5 35.6 21.7

3000 sheeps 26.3 21.7 87.8 47.9 27.7

Note: the netlogo-parsing section shows the whole time of parsing the Net-
Logo language, compiling it down to JVM bytecode and then executing it,
whereas netlogo refers only to the execution time (so as to be fair with respect
to hlogo execution). For HLogo, On 4 cores, we also enable hyperthreading,
essentially having 8 threads. You can visualize the results with Figure 4.4.

The second benchmark we evaluated is called “redblue” benchmark. N turtles
are moving forward 1 step on every tick. If they are on a red patch, they also
turn left by 30 degrees. If they are on a blue patch, they turn right by 30 degrees.
The benchmarking stops after 1000 ticks. The results are:
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Figure 4.4: Sheep benchmark results

Population netlogo-parsing netlogo hlogo1core hlogo2core hlogo4core

1000 turtles 5.3 1.4 2.8 1.8 1.2

2500 turtles 6.8 2.9 9 3.5 2.3

5000 turtles 9.7 5.8 15.9 7.2 4.2

10000 turtles 15.4 11.5 29.1 14.2 7.5

20000 turtles 28.8 24.9 55.2 28 14.5

30000 turtles 43.8 39.9 72.5 42 21.2

Again the results are illustrated in Figure 4.5.
We can clearly witness a speed gain in HLogo when we switch from a single core
to more and more cores. This gives us the impression that Software Transac-
tional Memory works and thus will give us performance benefits. But is this
enough to “beat” NetLogo code? When the number of agents/turtles remain
low, HLogo wins in every case against NetLogo. This is this case for both for
the sheep and redblue benchmark. However, in the sheep benchmark, when
the population of sheep increases, the performace of HLogo execution degrades
dramatically and ends up being slowest even compared to the sequential version
of NetLogo.
The explanation for this observation can be easily derived when we take into
account how STM works. If there are threads using (competing for) the same
resource, then there are going to be eventual incosistencies. These incosistencies
lead to retries of the STM transactions until the conflicting agents (threads)
are resolved. And that is what happens apparently in the case of the sheep
benchmark. When there are agents (sheep in our case) in a spatial environment
(2D in our case) and compete for the same resources (grass), there are going
to be some conflicts. These conflicts lead to transaction retries. In a densely
populated environment the transaction retries are going to be high enough to
affect the performance of execution.
You can resort to the Appendix to analyze the benchmarking code of NetLogo
and HLogo and check the visualization results.

4.5 Related Work

As far as we know, our work is the first to apply Software Transactional Memory
to ABM frameworks. Other scientists in the field, however, have tried before
to speed up the Agent based Modeling execution using different techniques.
Logan and Theodoropoulos (2001) proposes to execute Agent-based systems
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Figure 4.5: Redblue benchmark results

through Distributed Discret-Event Simulation. The key problem as they state
is the decomposition of the environment which leads to the problem of fair load
balancing of the distributed machines. P. F. Riley and Riley (2003) propose
another Distributed Agent Simulation Environment called SPADES. SPADES
tries to address the concerns of Artificial Intelligence when desinging agent sys-
tems, while having distributed execution and repeatability of results. Massaioli,
Castiglione, and Bernaschi (2005) use another parallelization technology, called
OpenMP, to speed up the execution of Agent Based Models. However, these
technique restricts the implementation of ABM frameworks to be only that
which provide an OpenMP implementation, i.e. C, C++, Fortran. Also, it adds
the requirement to the simulation user to annotate her simulation code with
extra OpenMP pragmas, which is kind of off-putting to say at least. SASSY
by M. Hybinette et al. (2006) is a scalable agent based simulation system that
sits as a middleware between an agent-based API and a Paralel Discrete Event
simulation (PDES) kernel. The difference in SASSY compared to Logan and
Theodoropoulos (2001) and P. F. Riley and Riley (2003) is that the ABM frame-
work can be built up from existing standard PDES kernels. D’Souza, Lysenko,
and Rahmani (2007) propose an innovative method of executing mega-scale
Agent-Based Models in the massively parallel Graphics Processing Unit (GPU).
Although, it is well established that this method can lead up to considerable
speed gains, we feel that the type of Agent based models that can be run on this
platform is restricted. Another similar framework is Flame GPU, built on-top
the FLAME ABM framework, and has succesfully been applied on the famous
EURACE project to simulate the european economy described in Deissenberg,
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van der Hoog, and Dawid (2008).

A totally different approach, but one that we can say “works” every time, is
called parameter sweeping. It is often the case that the exact same agent based
model has to be executed multiple times, with only certain differences to input
parameters or random seeds. This execution can be done automatically and
in parallel as has been shown by Koehler, Tivnan, and Upton (2005), who
implements parameter sweeping for the NetLogo platform.

Concerning ABM and Haskell, we could clearly say that our framework is the
first Agent Based Modeling framework being defined in the Haskell programming
language. There have been, however, other Haskell simulation packages on
Hackage: Aivika is a Haskell library that provides extensive system dynamics
and discrete event simulation. Event-monad, as the name suggests, provides an
event monad and monad transformer. It can be used as a low-level helper library
to build a simulation framework. Users can create an event-graph simulation
system and schedule events to it. It is not actively developed. Per se, it does
not employ any parallelism, but it could theoretically be used together with
a parallel strategy to exploit parallelism. Hasim is a library for process-based
Discrete Event Simulation in Haskell. It does not employ any kind of parallelism.

4.6 Appendix

NetLogo code for the sheep benchmark
breed [sheep a-sheep]
turtles-own [energy]
patches-own [countdown]

to setup
reset-timer
clear-all
ask patches [ set pcolor green ]
;; check GRASS? switch.
;; if it is true, then grass grows and the sheep eat it
;; if it false, then the sheep don't need to eat
if grass? [

ask patches [
set countdown random grass-regrowth-time
set pcolor one-of [green brown]

]
]
create-sheep initial-number-sheep
[

set color white
set size 1.5 ;; easier to see
set label-color blue - 2
set energy random (2 * sheep-gain-from-food)
setxy random-xcor random-ycor

]
reset-ticks

end

to go
if ticks > 1000 [print count sheep print timer stop]
if not any? turtles [ stop ]
ask sheep [

move
if grass? [
set energy energy - 1
eat-grass

]
]
if grass? [ ask patches [ grow-grass ] ]
;set grass count patches with [pcolor = green]
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tick
end

to move ;; turtle procedure
rt random 50
lt random 50
fd 1

end

to eat-grass ;; sheep procedure
;; sheep eat grass, turn the patch brown
if pcolor = green [

set pcolor brown
set energy energy + sheep-gain-from-food ;; sheep gain energy by eating

]
end

to grow-grass ;; patch procedure
;; countdown on brown patches: if reach 0, grow some grass
if pcolor = brown [

ifelse countdown <= 0
[ set pcolor green
set countdown grass-regrowth-time ]

[ set countdown countdown - 1 ]
]

end

Figure 4.6: Sample NetLogo visualization output for the sheep benchmark

HLogo code for the sheep benchmark
import Framework.Logo

globals []
patches_own ["countdown"]
breeds ["sheep", "a_sheep"]
breeds_own "sheep" ["senergy"]

-- Model Parameters
grassp = True
grass_regrowth_time = 30
initial_number_sheep = 100
initial_number_wolves = 0
sheep_gain_from_food = 4
wolf_gain_from_food = 20
sheep_reproduce = 4
wolf_reproduce = 5

setup = do
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ask (atomic $ set_pcolor green) =<< patches
when grassp $ ask (atomic $ do

r <- random grass_regrowth_time
c <- liftM head (one_of [green, brown])
set_countdown r
set_pcolor c

) =<< patches

s <- atomic $ create_sheep initial_number_sheep
ask (atomic $ do

s <- random (2 * sheep_gain_from_food)
x <- random_xcor
y <- random_ycor
set_color white
set_size 1.5
set_label_color (blue -2)
set_senergy s
setxy x y

) s
atomic $ reset_ticks

go = forever $ do
t <- ticks
when (t > 1000) (unsafe_sheep >>= count >>= unsafe_print_ >> stop)
ask (do

move
e <- senergy
when grassp $ do

atomic $ set_senergy (e -1)
eat_grass

) =<< unsafe_sheep
when grassp (ask grow_grass =<< patches)
atomic $ tick

move = atomic $ do
r <- random 50
l <- random 50
rt r
lt l
fd 1

eat_grass = do
c <- pcolor
when (c == green) $ do

atomic $ set_pcolor brown
atomic $ with_senergy (+ sheep_gain_from_food)

grow_grass = do
c <- pcolor
when (c == brown) $ do

d <- countdown
atomic $ if (d <= 0)

then set_pcolor green >>
set_countdown grass_regrowth_time

else set_countdown $ d -1
run ['setup, 'go]

Figure 4.7: Sample HLogo visualization output for the sheep benchmark
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NetLogo code for the redblue benchmark
to setup
clear-all
reset-timer

ask patches [set pcolor one-of [black black black black
black black black black
red blue]]

create-turtles 1000
ask turtles [setxy random-xcor random-ycor]
reset-ticks

end

to go
if (ticks = 1000) [print timer stop]
ask turtles [behave]
tick

end

to behave
let p pcolor
fd 1
ifelse (p = red)

[lt 30]
[if (p = blue) [rt 30]]

end

Figure 4.8: Sample NetLogo visualization output for the redblue benchmark

HLogo code for the redblue benchmark
import Framework.Logo

globals []
patches_own []
turtles_own []

setup = do
ask (do

[c] <- unsafe_one_of [black, black, black, black,
black, black, black, black,
red, blue]

atomic $ set_pcolor c) =<< patches
atomic $ create_turtles 1000
atomic $ reset_ticks

go = forever $ do
t <- ticks
when (t==1000) $ stop
ask (behave) =<< turtles
atomic $ tick

behave = do
c <- pcolor
atomic $ fd 1 >> if c == red
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then lt 30
else when (c == blue) (rt 30)

run ['setup, 'go]

Figure 4.9: Sample HLogo visualization output for the redblue benchmark
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Chapter 5

Parallel and Distributed
Discrete-Event Simulation
(PDES)

5.1 What is PDES

Up until now, when describing Discrete Event Simulation, we tried to avoid
mentioning how the simulation software is mapped down to actual execution
hardware. Discrete Event Simulation is normally executed on single-processor
hardware systems. Since DES models are usually laid down in a completely
sequential style; there is no point of employing any parallelism on sequential
software. From the other hand, Parallel and Distributed Discrete Event Simu-
lation (PDES for short), as the name suggests, is concerned with how to specify
the simulation models in a concurrent fashion so as to exploit parallelism and
how to properly execute them on parallel hardware.

To be more precice, Parallel and Distributed Simulation (PDES) refers to the
execution of a simulation on a computer system comprised of multiple machines,
interconnected through a network. There are certain reasons in that PDES is
used:

Faster execution It is the common case that users consider PDES when there
are computational limitation on executing the simulation on a single ma-
chine.

Distributed memory It may as well be the case that the model which is
simulated is so large, it cannot fit in a single memory system. For that
reason the model is decomposed into parts and distributed in multiple
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machines, each with a single memory module, forming a kind of distributed
memory setting.

Geographical distribution Users at different geographical places can partic-
ipate on a simulation run, and interact with other participants (called
human-in-the-loop). An example of this can be military training (war-
gaming).

Heterogenous simulators are simulation systems that have been built in-
private and later connected to communicate and interact with each other,
hence creating a larger simulation environment. PDES can alleviate the
connection of these disparate simulation systems.

Fault tolerance If a particular processor fails, another processor of the simu-
lation system can pick up its work, thus offering resistance to failure.

Applications of PDES technology can be divided into two distinct categories:
those that are concerned with analytic simulations and those dealing with the
so-called virtual environments. In an analytic simulation the user is interested in
measuring the performance of the modelled system by capturing certain statis-
tics about its behaviour. Note that the simulation user in analytic simulations
is simply an observer to the model and does not interact at all with it. Applica-
tions of an analytic simulation can be the modelling of the aiport traffic while
collecting statistics about the airplane delays, a transportation system with mea-
sures of its traffic congestion, or a telecommunication network and its percentage
of packet loss. Virtual environments are a more recent development of PDES
technology and mainly departs from analytic simulation in that the simulation
user plays an active role during the simulation execution, often in terms called
human-in-the-loop. Examples of virtual environments are an airplane simulator
for training pilots, or military exercises of a simulated battlefield with many
participating human-in-the-loop soldiers. Virtual environments are frequently
compared to video games; the differencen lies in that whereas video games main
goal is to provide entertainment, virtual environments simulations strive to cer-
tainly be pedagocical. For our HDES framework we solely focus on analytic
parallel simulations. The reason is that virtual environments, being real-time
simulations, are difficult indeed to parallelize/speed up their execution.
PDES is designed to run in many different types of hardware, ranging from
shared-memory multiprocessors (under the technology of Symmetric Multi Pro-
cessing (SMP)) to distributed clusters and grid systems, as well as SIMD ma-
chines (Single Instruction - Multiple Data), which modern Graphical Processing
Units (GPUs) are designed for. For our own HDES framework, we focus only on
shared-memory execution on the common nowadays SMP technology and leave
the distributed execution of HDES for future work.
Before we can execute a simulation to parallel-enabled hardware, we first have
to transform the model so as to be able to run in this kind of hardware. This is
usually achieved by decomposing the simulated model into several submodels,
called logical processes (LPs). Each group of LPs is assigned to different pro-
cessors and the communication between logical processes is realized with simple
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message passing. A message is a time-stamped remote (non-local to the LP)
event that has a sender LP and a destination LP.

The decomposition procedure can be clarified with an appropriate example.
Imagine that we are currently modelling the airport system of Europe. Air-
planes can arrive to an airport, land to the runway and later depart for a
different destination airport. The model is composed of multiple airports in
many different countries. We could assign to each airport a Logical Process
(a submodel) and treat the Landed and Departure events as local to each LP,
whereas the Arrival event will be a message (remote event) passed from the
source airport/LP to the destination airport/LP.

Each Logical Process has a set of state variables associated with it. We should
make sure that state variables of any LP are not being shared with any other
logical processes. For the airport example, an LP could possibly have 3 state
variables, namely, the number of airplanes on the air (of type Int), the number
of airplanes on the ground (of type also Int) and a Boolean variable to indicate
if the runway is currently free.

A fundamental property in PDES theory, that should hold in every PDES im-
plementation, is the so-called local causality constraint. According to R. M.
Fujimoto (2001):

A discrete-event simulation, consisting of logical processes (LPs)
that interact exclusively by exchanging time stamped messages
obeys the local causality constraint if and only if each LP processes
events in a global timestamp order.

Local causality constraint has the effect of:

• Parallel/distributed execution yields the same results as sequential execu-
tion

• The results of the simulation are reproducible

A single instance of a violation of the property is called a causality error. As a
result of violating the local causality constraint property, the PDES implemen-
tations have to often face the so-called synchronization problem. The synchro-
nization problem has an even greater effect on heterogeneous hardware. For
example, consider a simulated model comprised of two LPs, each mapped to a
distinct processor. If processor-1 is much faster than processor-2, then the LP1
will advance forward in a faster pace than LP2. This situation will lead into
many more violations of the local causality constraint, compared to an identical
processor setup.

There have been developed two distinct categories of distributed algorithms to
tackle the synchronization problem. The conservative category of algorithms
is the topic of the next section. With the conservative approach the causality
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errors caused by out-of-ordered processed events are avoided at all costs. In
optimistic algorithms however, described later in Section 5.4, causality errors
are allowed to happen but later the simulation engine has to go back and correct
them.

5.2 Conservative approach

The conservative algorithms historically predate those of the optimistic ap-
proach. Also, the conservative aproach is generally regarded as slower compared
to its optimistic rival. Still, though from a theoretical perspective it can be of
great benefit to discuss how the conservative algorithms try to solve the synchro-
nization problem. Here we are going to describe the first conservative algorithm
proposed, appeared in Misra (1986).

We first have to make some assumptions for the execution of the simulation
engine. According to R. M. Fujimoto (2001) the simulation engine should satisfy
the following three constraints:

1) an LP will not send remote messages in decreasing timestamp order
2) the network infrastructure guarantees that the messages are delivered in

the order they were sent
3) the communications are reliable; i.e. the remote messages will eventually

be delivered

Each Logical Process holds a FIFO queue for every link to other Logical Pro-
cesses. There, the incoming messages are dispatched and stored to the correct
FIFO queue. Ofcourse, the LP has to define also a single FIFO queue to store
any locally produced events.

The naive central approach for running the simulation engine is written below
in pseudocode:

while (simulation is not over) {
wait for each FIFO to contain at least one message
remove message M with the smallest timestamp
clock := time of M
handle M

}

However, this approach will certainly lead to deadlocks where the Logical Pro-
cesses will mutually wait for incoming messages, while forbidding them to send
any outgoing messages. There is a way to avoid this deadlocks at all by devising
a different algorithm, called the Chandy/Misra/Bryant Null-Message protocol
algorithm described in Misra (1986).
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On every loop of the simulation engine, the Logical Process sends “fake” mes-
sages, called null messages that are used only for synchronization purposes and
not take part in simulation; hence the name “null”. A null message acts as a
guarantee from the sender LP to the receiver LP; the sender LP promises to the
receiver LP that it will not send any new messages to the receiver for a certain
amount of time in the future. This amount of time is called for obvious reasons
the lookahead value. The lookahead value is usually static and is pre-declared
by the user for each LP link/connection. In the airport example the user may
have a certain setup between 3 LP-airports as:

Figure 5.1: Example with 3 airports and their lookahead values

The nodes of the graph are the LP-airports and the contain the lookahead values.
For this particular airport example it may be better to consider the lookahead
value as the distance between two airports.

What is left is to modify the main loop of the simulation engine, so as in the end
of the loop to send a null message to each neighbouring LP with a timestamp
(now + lookahead_ij), where i is the current sender LP and j is the remote
receiver LP):

while (simulation is not over) {
wait for each FIFO to contain at least one message
remove message M with the smallest timestamp
clock := time of M
handle M
send to each neighbour j:

null message with timestamp (now+lookahead_ij)
}
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5.2.1 Example in Erlang

Each logical process will itself be an instance of a simulation engine. The simula-
tion engine’s role is to receive events in discrete time, process them in timestamp
order, and schedule new events in the future to itself or other logical processes
(for example by sending an event message to a remote simulation engine). The
simulation engine stops when there are no more events to process, or a certain
condition is met.

Why did we choose Erlang to implement such a simulation? The difficult part
of implementing a simulation engine is not how to process the incoming events
(they are just linked to arbitrary code which gets executed by the engine), but
more how to easily communicate between logical processes (sending and receiv-
ing events). This can be easily done in Erlang, since message-passing is a first-
class citizen of the language. Events are simply modelled as Erlang messages,
and logical processes, likewise, are implemented as Erlang processes. Another
reason is that, in Erlang, running on many processors (SMP) or on multiple
distributed machines is transparent, that is we do not have to write extra code
to handle these distinct cases.

In our implementation, we will use a conservative non-zero-lookahead mecha-
nism, influenced by the Chandy/Misra/Bryant null message protocol algorithm
described by Misra (1986).

Conservative mechanisms are easier to implement by the simulation developer,
but require extra (lookahead) information from the end-user; optimistic mech-
anisms on the other hand don’t require such information by the end-user, but
are much more difficult to implement. We can say that, in most cases, an opti-
mistic approach is faster in execution time than a conservative simulation. In
this section, however, we only demonstrate a conservative mechanism written
in Erlang.

In action, the simulation program will be comprised of two entities: the simu-
lation application and the simulation engine. The simulation application has
the model specification in it, not mathematically defined, but rather through
a computer language. The simulation engine is also written in a programming
language (since it has to be executed); it takes the the simulation application
as input and runs it accordingly. The two entities can, but don’t have to, be
hosted on the same programming language. In this case, we are choosing Erlang
for both the simulation application and the simulation engine.

The definition of the simulation application is writeen in an Erlang module, that
must follow the OTP principles, thus defined as a sim_proc behaviour. What
the application is responsible for is the definition of state (the state record), sim-
ulation initialization (the init function), a series of callbacks (handle_event
function) and simulation termination cleanup (the terminate function). The
event callbacks are simply associating a possible incoming event to specific code
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that should be executed. In this example, the simulation application is mod-
elling an airport, which schedules arrival, landed and departure events.

Here, we are going to show you how a simulation application (aka simulation
model) is written and structured using this proposed experimental Erlang frame-
work. Worth noting is the difference between the simulation application and
the rest part of the framework, the simulation engine. We could say that the
simulation engine is the heart of the simulation, where events are scheduled and
executed in order. The simulation application is merely user code, linked to
events, which is passed to the simulation engine for execution. This code, as
you can guess, must be specified in the Erlang language.

The model is comprised of multiple Erlang modules, one for each Logical Process
definition. This is in contrast to what is the common case in a sequential
simulation, where the code of the model is accumulated in a single file location.
The reason for choosing a multi-module approach is that the application stays
as close as possible to the Erlang style guideline. In our framework, each Erlang
application module corresponds to an individual Logical Process (LP). When
each LP is instantiated (spawned in Erlang terms), it will be assigned its own
simulation engine and event code to be executed. That means that every LP
will have a distinct time clock and event queue.

5.2.2 An example of a simulation application module

For our example, we our modelling a network of airports, following the same
example as in the book of R. M. Fujimoto (2001). Each LP will be an individual
airport, each with a single runway, where aircraft land to and depart from.

We first start the module file as usual, by defining the following directives:

-module(abd).
-behaviour(sim_proc).
-compile(export_all).

The above mean that we specify a Logical Process (that is, airport in our case),
named abd, and we want its whole API to be exported (-compile(export_all)
directive).

Next, we declare our constants for our program simulation. We have R, which
determines the time the runway is in use for an airplane to land. The constant
G specifies the time the aircraft after landing, stays in the ground and travels
to the gate for its next departure.

%% constants
-define(R, 10). % time runway in use to land aircraft
-define(G, 5). % time required at gate
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After that, we define a record that holds the state of the LP. The LP state is
also influenced by the performance measures we set up in our simulation study.
In this case, we have to declare 3 distinct state variables, the 1st to count the
planes that are in the air, the 2nd for the number of planes that have landed
and finally a boolean value to state if the runway is currently free:

%% state variables
-record(state, {in_the_air,

on_the_ground,
runway_free}).

What follows, is the init function that will initialize our LP state, schedule
initial events to the simulation engine and ultimately declare what are the in-
coming and outgoing connections (links) to other airports. Suppose that, for
the outgoing links, we have to provide a non-zero lookahead value.

init(_Args) ->
%% initialize state_variables
State = #state{in_the_air = 0,

on_the_ground = 0,
runway_free = true},

%% schedule initial event
sim_proc:schedule(arrival, 30),
sim_proc:schedule(arrival, 10),

%% incoming links
sim_proc:link_from(ord),

%% outgoing links with lookahead
sim_proc:link_to(lax, 3),

{ok, State, 40}.

The code is self-explanatory. We initially have 0 planes in the air, 0 on the
ground and the runway is not currently in use. Next, we schedule two arrival
events on time 30 and 10 respectively. We have an incoming link with the ord
airport; that means that we are expecting incoming flights that start from ord
and reach our destination. There is also an outgoing link to the lax airport,
with the lookahead value being 3 units of time. This means that departures
scheduled from the abd airport, to arrive to the lax airport will take at least 3
units of time to reach the lax airport. So, in this case, the lookahead can be
determined by the distance between two airports.
The final line in the init function, {ok, State, 40}, simply returns the state
and specifies an endpoint for the simulation of the abd airport; so at time 40 we
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are stopping the simulation of the abd LP and we are not taking into account
any events after the end time.

We continue to define the event handling functions. We make heavy use of
the pattern-matching capabilities of the Erlang language, to pattern-match on
the distinctive events of the LP. First, we handle the arrival events to our abd
airport:

handle_event(arrival, State) ->
sim_proc:println("Arrived"),
In_the_air_ = State#state.in_the_air + 1,

Runway_free_ = case State#state.runway_free of
true -> sim_proc:schedule(landed, ?R),

false;
false -> false

end,
{ok, State#state{in_the_air = In_the_air_,

runway_free = Runway_free_}};

We print to output and increment the In_the_air variable by 1. We then check
if the runway is free. If this is the case, then we schedule a future land event
after R units of time. We then continue, and return the new state.

The code for the landed event is similar:

handle_event(landed, State) ->
sim_proc:println("Landed"),
In_the_air_ = State#state.in_the_air - 1,
On_the_ground_ = State#state.on_the_ground + 1,
sim_proc:schedule(departure, ?G),
Runway_free_ = case In_the_air_ > 0 of

true -> sim_proc:schedule(landed, ?R),
false;

false -> true
end,

{ok, State#state{in_the_air = In_the_air_,
on_the_ground = On_the_ground_,
runway_free = Runway_free_}};

We write to output and change the state variables accordingly. We don’t forget
to schedule a departure events after G units of time. If there are still aircraft
circling over the airport waiting to land, we pick the next in line and schedule
it for landing. We then return the updated state.

Then we handle the departure events:
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handle_event(departure, State) ->
sim_proc:println("Departed"),
On_the_ground_ = State#state.on_the_ground - 1,
sim_proc:schedule(lax, arrival, 5),

{ok, State#state{on_the_ground = On_the_ground_}};

We decrement the state variable On_the_ground by 1 and schedule an arrival
at the remote lax airport in 5 units of time — which is fine, since it is being
larger than the 3 lookahead value specified in init.
We then consider stop events, possibly generated by the local or a remote LP.
We could ignore a stop event, or do what is advisable and stop the simulation
of the LP by returning {stop, State}, instead of an {ok, State}.

handle_event(stop, State) ->
{stop, State}.

When the LP stops, either running out events (normal termination) or running
out out simulation time (timeout termination), the terminate callback function
is called to handle last code before the exit of process (similar to a destructor
in the OO-world). Here we simply announce the termination in the standard
output.

terminate(normal, _State) ->
sim_proc:println("Finished simulation");

terminate(timeout, _State) ->
sim_proc:println("Timeout reached").

Following closely the OTP guidelines, We can still consider messages sent to
the Logical Process that are not events. We can handle these out-of-order
messages with the handle_info callback function, as:

handle_info(_Info, State) ->
{noreply,State}.

In this example, we simply ignore these kind of messages, but in a different
situation we might consider handling them, thus creating a reactive/interactive
Erlang process.
What is left is to show the hot-code loading capabilities of the Erlang VM. In
practice, hot-code loading means that we could change the simulation code
dynamically during the run-time of the simulation framework. In our case, we
simply don’tt react in possible code changes. The benefits of hot-code loading
for simulation purposes are not clear and, so, are left to be explored in the
future.
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code_change(_OldVsn, State, _Extra) ->
{ok, State}.

Ofcourse, we have to write appropriate sim_proc behaviour processes also for
the rest two airports that we model. But we can skip this for now, since it
follows the same principles.

5.3 Optimistic approach

Comparing to the conservative approach that avoids causality errors, the op-
timistic algorithms allow any causality violations but provide a way to later
recover from them. In the end, a correct timestamp order is still imposed. The
theory behind optimistic algorithms originate from distributed database systems
and microprocessor technology. The first to appear and most widely applied op-
timistic algorithm is the so-called Jefferson’s Time Warp mechanism (Jefferson
et al. 1987). In this section we are going into detail of how this algorithm is
defined and executed.

First we have again to establish some assumptions about our simulation execu-
tion environment. As in the conservative approach we have to make sure that no
state variables are shared between the Logical Processes. The communication
infrastructure used is assumed to be reliable; messages will eventually arrive
at their destination. A constraint that optimistic algorithms lift compared to
the conservative approach is that now, the Logical Processes do not require to
send messages in timestamp order and the network medium does not have to
guarantee that the messages arrive in the order they were sent. The LPs can
be dynamically allocated and destroyed and the simulation user does not have
to specify lookahead values for each LP link/connection. This tends to be a
serious burden for the simulation user in the conservative approach.

In the TimeWarp mechanism there are two distinct submechanisms: the local
control and the global control mechanism. As their name suggest the local
control mechanism is executed locally inside each LP, whereas the global control
mechanism require participation of all LPs and an extra processing unit, called
the controller.

Let’s first take a look at the local control mechanism. Instead of using separate
FIFO queues for each connection, in the optimistic approach the engine holds
only a single FIFO queue for incoming as well as local events, called the event
list. The events have to be sorted inside the list; usually according to ascending
timestamp order. A needle is used to point to the index of the last processed
event inside the list. The events are not discarded after being processed; only
the needle moves forward.

A straggler message is a remote message arriving out of order. That means
that the simulation engine has optimistically moved more forward than it
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should have to. The needle points to a later event than the straggle message’s
timestamp. In that case, we say that the LP has to rollback. You can take a
graphical look at a possible event list in the Figure 5.2.

3 5 13 21

9
straggler
message

needle

25

Figure 5.2: An example of the event list in TimeWarp algorithm

In our example the 25 and 21 events have to be rollbacked. During a rollback
operation, the state prior the execution of a rollbacked event is recovered. This
recovery is achieved with intermediate state saving. On each cell that the event
occupies in the event list we store a copy of the state variables prior to executing
the event. In our example, if we consider 3 state variables and a simple copy-
state saving approach the event list could have been represented as in Figure
5.3.

3
x:0
y:0
z:T

5
x:0
y:1
z:T

13
x:0
y:0
z:F

21
x:3
y:5
z:F

9
straggler
message

25
x:4
y:5
z:T

needle

Figure 5.3: An example of intermediate state saving

During rollbacking any remote messages that have been spawned by rollbacked
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events have to be cancelled. This is achieved by sending a so-called anti-message
for each cancelled message. Anti-messages have the same contents as the original
messages with the only difference in an enabled flag. When an LP receives an
anti-message, that means that the original message that the LP received has
to be cancelled. If the LP has already processed that message then it has to
also rollback prior to the received message. To distinguish a rollback caused by
an out-of-order message (primary rollback) we categorize a rollback caused by
an anti-message as secondary rollback. In the case that the message was not
processed by the LP yet, the antimessage will annihilate the original message
and both will be removed from the event list.

In the local control mechanism, which we just described, the event list size
will be ever-increasing. Also, any IO that was fired during event processing
has been delayed and has to be somewhere in the future enforced. The global
control mechanism is introduced to tackle exactly these two cases. A helper
processing unit (usually a distinct process or thread in the system) is spawned
and manages the mechanism. This unit is called the controller. The controller
periodically (the time period is defined by the user) issues a Global Virtual Time
(or GVT) computation. GVT, in simple words, is the globally smallest needle
throught all the LPs of the simulation system. The intuition is that all events
that have a timestamp smaller than the GVT can be safely committed (their
IO can be enforced). After an event is committed, its memory in the event list
can be reclaimed. This process is called fossil collection and is similar in mind
with what the garbage collector achieves in a high-level programming language.

The simple case of the global control mechanism in Time Warp dictates that
each Logical Process in the system stops-the-world and be forced to take part
in the GVT computation. This approach is called synchronous GVT, since the
LPs have to wait for the global control mechanism to finish so they can resume
their own local control mechanism. There have also been proposed asynchronous
algorithms, where the LP that currently participates in the GVT computation
can still process its event list and advance forward in time. Theoretically, the
asynchronous algorithms can achieve faster execution results compared to syn-
chronous algorithms.
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Chapter 6

HDES: A lazy PDES
framework

Abstract
Parallel and Distributed Simulation (PDES) is the focus of the
Discrete-Event Simulation theory on speeding up the performance
of simulations by employing parallelism and/or distributed compu-
tation. We argue that the current PDES technology suffers from
the problem of unnecessary computation; the evaluation is not
driven by the performance measures of the simulation user and
instead are inadvertently strictly evaluated. Instead we propose
yet another PDES framework, called HDES, that harnesses the
lazy evaluation of its host language, i.e. Haskell, to offer an even
greater performance execution of parallel simulations. The HDES
embedded domain specific language (EDSL) has the added benefit
of being more expressive than conventional PDES languages, thanks
to the suggested lazy semantics.

Keywords: Parallel Discrete Event Simulation, PDES, Parallel and
Distributed Simulation, PADS, Time Warp, Haskell

6.1 Introduction

The recent focus of Discrete Event Simulation theory has been the execution
of simulation models in absolute parallel and distributed environment setups.
Models are currently designed to imitate systems even larger and more complex;
this leads to a need for more computational power by the simulation hardware.
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Pallel and Distributed Simulation technology has been laid down to mitigate
this need.

The Moore’s law as we know it has been surprisingly accurate in its predic-
tions during the history of computing. However, there has been a recent doubt
of whether computing performance can keep up with Moore’s transistor count
growth. Contemporary processors are utilizing more and more processing cores
and the network connectivity has become so fast and cheap that it is now rela-
tively easy to interconnect physically distant computer systems. This simulation
hardware have to be accompanied by relevant simulation software. Here is where
Parallel and Distributed Discrete Event Simulation (PDES) comes to play.

Each model that we simulate must have an associated list of performance mea-
sures that the simulation user is particularly interested in. After the user has
constructed the model in some domain-specific programming language or after
some consecutive execution runs of the same constructed model, she realizes that
she is only after a part of the whole list of performance measures. The user has
then to “dig” into the code again, removing any references to the unnecessary
code. Otherwise the user will most likely experience a delay in retrieving the
performance results, due to the needless computations in the simulated model.
Based on the PDES frameworks that are currently on the “market”, even if
we ask for a part of the performance measure list, the simulation frameworks
will still have to compute its entirety. This leads to a performance degradation,
that we in other case would not experience if we have excluded the nonessential
perfomance measures.

Another problematic scenario happens in the case where we try to glue multiple
models together to create a multimodel (or supermodel). This can be better
understood with an example. Consider two already-made distinct models, an
airport and a train station connected together. When the airport model was
created, there was a separate model of buses that was connected to the airport.
Because our current setup does not include a bus terminal connection to the
airport, the unnecessary scheduling of buses in the airport model will not have
to be computed and updated.

There is a way to address the problem without having the simulation user to
resort to any code changes. By using a lazy evaluation strategy, the simulation
program will not compute any values that are not asked for displaying by the
simulation user. Currently, the only industrial-strength programming language
that provides lazy semantics is the Haskell language, which can be categorized
as a purely-functional statically-typed language. We contribute a brand-new
PDES framework, written in Haskell, named HDES that

• has lazy evaluation. Besides the benefit of speeding up the simulation
by not computing unnecessary performance measures, a lazy evaluation
strategy enables the simulation user to express a larger variety of computer
simulation programs
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• employs an optimistic PDES algorithm to speedup the execution of simu-
lations

• utilizes multiple processor cores (Symmetric Multi Processing)
• offers a simple domain specific language embedded in the Haskell program-

ming language with an exremely intuitive interface

6.2 The HDES language

The HDES framework defines a simulation language to interface with the PDES
execution kernel, described later. This domain specific language (DSL) is embed-
ded in Haskell; that means that certain characteristics of the HDES language
are borrowed/inferred from the host language, i.e. Haskell. Embedded DSLs
come with certain advantages and shortcomings. We, the implementors of the
language, don’t have to write new compilers and tools around the language;
instead we use the ones already supplied from the Haskell ecosystem. We also
inherit the good attributes of a functional language such as Haskell, that is, its
great abstraction mechanism and its strong static type system. However, an
embedded DSL is also constrained by the syntax of its host language.

We could lay down our model specification in a modular fashion using multiple
modules, but for sake of clarity in this example we put the whole specification in
one sole module. Let’s open a file with the name Main.hs and start writing our
model specification. We first have to import the framework’s API and kernel:

import Framework.DES

We then have to specify how many Logical Processes (LP) we have in our model
and what are their names. Note that each LP name has to be unique per model
specification. In our specific example, we try to model an airport network, with
3 distinct airports identified by their names ABD, LAX and ORD.

lps ["abd", "lax", "ord"]

The Logical Processes will have to handle local and remote events between each
other. For our case, we specify an Event datatype that holds the possible values
that an event can take, i.e. an Arrival of an airplane, a Landed event and a
Departure event to a remote destination airport.

data Event = Landed | Arrival | Departure
deriving (Eq, Ord)

The datatype is self-explanatory. We used the Algebraic Data Type (ADT)
syntax to provide an enumeration of all possible values. We also derive for our
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Event datatype an Eq instance, so that we can compare for equality and an Ord
so as to give priorities to simultaneous events. Simultaneous events are events
that happen in the exact same time. Here, we give priority to airplanes that
are about to land than those that are just arriving to the airport.

Our framework is polymorphic to the kind of Event datatype. The simulation
user is free to choose any datatype that has an Eq and Ord instance. The
user could as well go with the more common type Event = String, and use
simple strings for event names — that is the approach that most C-based PDES
frameworks take. However, this approach is arguably slower because during
event handling, the pattern-matching on a string datatype will be slower than
a complete enumeration of events, as it is done in our case.

What follows is the Time datatype. For sake of simplicity, we use an integer for
our time.

type Time = Int

We can witness that HDES is also polymorphic and not-restrictive on the Time
datatype, compared to the rest of the HDES frameworks. Indeed, time in HDES
can be any datatype that can be ordered (provided an instance to the Ord
typeclass). We could have as well used DateTime for our datatype.

The last datatype we have to define is the State datatype. State is a Haskell
record with each field being a state variable of the Logical Process. Here the
State has the same structure for all 3 airports, but no state variables are shared
between the Logical Processes/airports; this a fundamental property of Parallel
and Distributed Discrete Event Simulation (PDES) theory. In our example we
have 3 state variables: in_the_air holds the number of airplanes that have
arrived and are currently circulating around the airport, on_the_ground holds
the number of airplanes that have already landed and has type integer, and
runway_free indicates if the runway of the airport is currently free for landing.

data State = State
{ _in_the_air :: Double,

_on_the_ground :: Int,
_runway_free :: Bool,

} deriving (Show)

Note that each Logical Process can have a different State structure than other
LPs. We could as well have defined three datatypes State1, State2 and State3
for our airport models.

In HDES, we also make use of the excellent fclabels package which allows us
to define lenses (setters and getters in the OO terminology) for our data types
and overcome the weakness of Haskell’s built-in record support. We just have
to introduce a new macro expression in our code:

59

http://hackage.haskell.org/package/fclabels


mkLabels [''State]

Now there are three extra functions available to manipulate the state:

get :: (state :-> a) -> Sim time event state a
set :: (state :-> a) -> a -> Sim time event state ()
modify :: (state :-> a) -> (a -> a) -> Sim time event state ()

Each function takes as the first argument the lens of the datatype. We use these
3 functions extensively in our code to easily manipulate our state variables.

Any constants of the model can be simply supplied as top-level definitions in
Haskell. In our case r is the time the runway is in use to lande the aircraft and
g is the time taken by the airplane to go to its gate.

r = 10 -- time runway in use to land aircraft
g = 5 -- time required at gate

Then we define the statistics structure that should be collected/computed from
the state variables during the simulation run. These performance measures, for
now, can be summation of state variables (summ) , their accumulation (accu)
or aggregation (aggr). In our case, it is:

stats = (|
summ _in_the_air ,
accu _in_the_air ,
summ _on_the_ground ,
accu _on_the_ground

|)

We continue by defining the model logic for each LP/airport. An LP is defined
as a monadic action in the Sim monad with a type signature def_lp :: Sim
time event state a. A monad is a fundamental composable construct in
Haskell that sequences effects. Our Sim monad is polymorphic, as we said
before, on the time, event and state datatypes, as well as the returning result
a of the monad. In the first part of the definition of the LP, we initialize the
state and create initial events. We then define an inner handle function that
should pattern-match on each event declared in the provided Event datatype.
Last, the def_lp has to return this handle function, so the HDES kernel can
pick it up for dispatching the events.

def_lp = do
-- initialize state
-- spawn initial events
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-- define the handler function with type handler :: Event -> Sim ()
let handle Event1 = do

...
let handle EventN = do

...

return handle -- return the constructed handler

Inside the handle function the user may want to spawn local events using one
of these two functions:

schedule event time
scheduleNow event time

where the Now version treats the time argument as time+Now. To spawn remote
events to other Logical Process the user can use the following similar functions:

scheduleR lp event time
scheduleRNow lp event time

For example, here is the definition of the model logic for the ABD airport:

def_abd = do
-- Initialize state
put (State 0 0 True)

-- Schedule initial events
schedule Arrival 1

-- Create the event handler
let handle Arrival = do

dump "abd: Arrived"
modify in_the_air (1+)
rf <- get runway_free
when rf $ do

scheduleNow Landed r
set runway_free False

handle Landed = do
dump "abd: Landed"
modify in_the_air (subtract 1)
modify on_the_ground (1+)
scheduleNow Departure g
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ita <- get in_the_air
rf <- if ita > 0

then do
scheduleNow Landed r
return False

else return True
set runway_free rf

handle Departure = do
dump "abd: Departed"
modify on_the_ground (subtract 1)
dump "abd: Should schedule arrival at lax on 5"
n <- now
when (n < 1000) $

scheduleRNow lax Arrival 5

return handle

We do similar for the definition of the LAX and ORD airports.

We finish the module by providing a main function, that will start the frame-
work’s core, spawn a green thread for each LP and execute the simulation while
collecting statistics:

main = run [("abd", abd, def_abd `collect` stats)
,("lax", lax, def_lax `collect` stats)
,("ord", ord, def_ord `collect` stats)
] -- Order does not matter

6.3 Implementation

In the heart of the PDES execution engine lies an algorithm with optimistic syn-
chronization. The algorithm is based on the original Time Warp algorithm pro-
posed in (Jefferson and Sowizral 1985), albeit slightly modified to accomodate
our functional programming needs. Specifically, wherever the original algorithm
uses side-effects and mutable arrays, we have to replace them with immutable
data structures, since Haskel is a pure functional language by default. For the
implementation we tried to stay as simple as possible, since it is relatively hard
to provide a bug-free optimistic algorithm; usually such an algorithm requires
extensive testing and debugging. Haskell helped here, because you can better
reason about your algorithm, when your program is referentially transparent,
i.e. side-effect free. On the other hand, however, it generally tends to be hard
to express an imperative algorithm in a pure functional language setting. The
purity that Haskell offers means that the datastructures we can use, have to be
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immutable. For representing the event list datastructure we used the immutable
Data.Sequence. Sequence container types are implemented internally with 2-3
finger trees that enable the addition to both ends of the list in constant time
O(1). If we would have gone another way with Haskell mutable IO arrays, (as
described here), we would certainly gain a lot in speed and memory, however,
we would risk the clarity of our implementation.

The HDES framework can be used only with shared-memory systems. There is
unfortunately no way currently to have a distributed setting, like other PDES
frameworks do by exploiting the MPI architecture. To benefit from parallel ex-
ecution, the simulation user has to run HDES in a Symmetric Multi Processing
(SMP) -enabled machine. There is no restriction on the number of core proces-
sors that can be utilized by HDES; however for the best performance possible,
it is advised to match the number of CPU cores with the number of Logical
Processes of the model.

For each Logical Process (LP) in the simulated model, a distinct lightweight
Haskell thread will be created. The communication of the LP threads is realized
with MutableVariables (MVars). MVars are being used for the communication
betwen LPs and the Global Virtual Time (GVT) controller. MVar channels in
particular are used extensively in the HDES framework to provide the necessary
communication between Logical Processes (LPs), thus forming a kind of low-
level message passing, albeit implemented in shared-memory.

We could use these channels as our Logical Processes mailboxes. For each LP
we create a unique channel where other LPs can produce events (send remote
messages) and the LP itself can consume/process them.

Since we are restricted by the memory of the computer system, we have to
periodically run fossil collection to claim any unnecessary memory. The fossil
collection runs on each LP after every GVT computation completes. The benefit
of using a high-level language as Haskell, is that we don’t have to deal manually
with managing memory; instead we rely on the automatic garbage collector
(GC) of the language to do it for us.

6.4 Benchmarking

6.4.1 Testing Laziness

There are 3 airports, namely ABD, LAX, and ORD. The framework kernel as de-
scribed before, will launch 3 threads in total, one for each airport (Logical
Process). We initially schedule one airplane (job) that starts from ABD and
travels to LAX and then to ORD and then back to ABD, essentially forming a
circle. During the whole simulation execution, there is only 1 job scheduled, so
normally we will not expect to witness any parallel benefits, because one thread
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exclusively is executing at any time; the rest two threads are stalled. Also no
time warp rollback is expected to trigger.
To test if laziness actually works, we introduce a bogus computation on every
iteration of the Logical Process and we store it in a state variabe. The evaluation
of each Logical Process, as discussed before, is driven only from its performance
measures. So we expect the extra bogus state variable will stay unevaluated
and its memory allocation will be discarded on the periodic fossil collection.
The computation that was introduced is evaluating the 32th number for the
fibonacci sequence fib 32. Such a call takes around 0.8s to finish in our test
computer system on compiled code. The fibonacci function is naively defined in
Haskell as:

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

We annotate the previous State datastructure with two fib-related variables, to
update and hold the result of the fib 32 computation.

data State = State
{ ...

_arg_fib :: Int,
_res_fib :: Int

}

The performance measures (statistics) specification remains the same:

stats = (|
summ _in_the_air ,
accu _in_the_air ,
summ _on_the_ground ,
accu _on_the_ground

|)

You can check that the arg_fib and res_fib state variables are excluded from
the statistics gathering. If our hypothesis is correct, then these state variables
will not be computed at all, because of laziness employed, resulting in speedup.
The intuition is that the user is only interested in some state variables at any
time, and he/she declares that in the stats data structure. The state variables
that are not required, will not be computed.
Since Haskell is lazy by default, the comparison must be done against a strict
version of the code. It is the case that the Haskell user can introduce strictness
points to her code, declaring which part of the code must be evaluated eagerly.
In our case, we copy our construct model module file to a different place and
make the following change to the state structure:
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data State = State
{ ...

_arg_fib :: !Int,
_res_fib :: !Int

} deriving (Show)

The fib state variables are annotated with the ! symbol. This means that
the Runtime System will evaluate them to Weak Head Normal Form (WHNF).
Since the fib state variables both point to a primitive type (Integer in this case),
they will be in reality evaluated to Normal Form (NF), because of the usual
compiler optimizations of unboxing primitive types.

For both runs of the lazy and strict programs, we have to pass to them a GVT
interval parameter (in microseconds). Every defined interval, the framework
controller will compute the Global Virtual Time (GVT) of the simulation, and
announce it to the LPs. Then on, each LP will determine, based on GVT, which
processed event is safe, and then commit its associated IO. Usually, it is kind of
hard to determine an appropriate GVT interval, because it is model-dependent.
If the interval is too large, then this may slow down the execution, because of
periodically low commiting IO. On the other hand, if the interval is too smal,
the LPs cannot “peacefully” continue their work without being continuously
“interrupted” by the controller on small periodic times.

In this model, because we have only 1 job executing at any time, it does not
really matter if we go with a small GVT interval, since this will not greatly
affect the LPs; there is not much work to be executed in the first place.

With a GVT interval of 1000 microsecs we have:

Model HDES (secs)

LazyAirport 0.625

StrictAirport 23.07

So it is certainly clear than on a lazy setting, the slow fibonacci computations
are not executed, thus benefitting from Haskell’s lazy evaluation order.

6.4.2 Benchmarking against ARTIS

ARTIS is a recent state-of-the-art Parallel and Distributed Discrete-Event Sim-
ulation framework (PADS) written in C, that offers a time warp (optimistic
parallel simulation) implementation, like HDES. It is closed source and employs
system processes for parallel simulation (SMP on the same physical machine)
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and MPI for distributed simulation. Here we compare our HDES with only the
parallel section of ARTIS, since HDES is only parallel and not distributed (yet).

We ported an example that comes bundled with the ARTIS package. There
are 3 airports (milan, bologna, rome) initially having 2 airplanes each, and
these airplanes fly over on one of the 2 neighbouring airports randomly. Arrival
events schedule Landed events and Landed Events schedule Departure events
on a neighbouring airport. The simulation stops at time 2000. In the end, we
count the total departures for each airport.

To begin with, let’s compare the style of programming in ARTIS to that of our
HDES framework. There are definitely certain limitations when programming
with ARTIS. The event types in ARTIS are simple strings. This tends to be
slower than using an enumeration or an Algebraic Datat Type (ADT). Also
it does not allow any typos to be catched by the compiler at compile-time.
Another limitation is that the ordering of events is achieved with simple string
comparison (since events are strings). The simulation user, compared to HDES,
cannot provide her own ordering of simultaneous events. The simulation user
has the extra burden to explicitly include the clock in each LP’s State structure.
Beside this, the initialization clock is done to 0. This limits the clock to be a Num
instance and only take positive values. In HDES the initialization of the clock
is done to undefined or better thought as −∞. The simulation user can as well
use negative values as the initial clock value. The user is not even restricted
of having Num instances, i.e. Int, Long, Float, Double. In ARTIS each remote
event (message) have to be annotated by the user with the information of the
sender. In HDES this is achieved implicitly. For safety reasons, the ARTIS
framework redefines the printf procedure with some “magic” macros.

The greatest limitation in our opinion is that there are no safety guarantees in
ARTIS when intermixing IO code with Simulation code; the user can include in
her simulation code that is unsafe and can not be rollbacked. In HDES, however,
because of Haskell’s strong type system, the user cannot mix unsafe IO code in
the simulation code and this is enforced by the type system itself. Overall, we
could say the experience in programming with HDES and its high-level domain
specific language is arguably better than using low-level ARTIS C code.

The results were run on a dual core 64-bit linux machine.

Setup Time

ARTIS (3 processes, in reality 2-threaded) 2.123s

HDES (1 thread) 1.493s

HDES (2 threads) 0.612s

Note: The ported code, although the same, does not yield the same results for
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ARTIS as well as HDES. The reason is the peculiarity of ARTIS for ordering
simultaneous events. However, we assume almost the same workload for both
HDES and ARTIS, since they have similar number of departures for each airport,
as show below:

Airport PDES Total Departures

milan ARTIS 553

milan HDES 572

bologna ARTIS 551

bologna HDES 564

rome ARTIS 567

rome HDES 578

When comparing the artisAirport example for the HDES framework, we observer
that the speedup is superlinear (greater than the expected linear):

Setup Time

HDES (1 core) 1.493s

HDES (2 cores) 0.612s

Actual speedup ~= 2.44 > than linear speedup = 2

This looks strange in the beginning, but there is an intuitive reason behind it.
The optimal way to run a parallel simulation is to match the number of processes
(threads) with the number of LPs. In this way, the number of rollbacks would
be minimum. For example, in this case, we have 1 core assigned with 3 threads
(because of 3 LPs). At each time 1 thread is executing for some time, then
another is picked up from the scheduler. It is more likely to rollback because 1
thread advances forward, where the others are stalled.

With the HDES framework we can collect engine statistics about the number of
total rollbacks and the number of gvt rounds of a simulation run.

Setup Time Rollbacks

HDES (1 proc thread, 3 green threads) 1.493s 5230

HDES (2 proc threads, 3 green threads) 0.612s 997

HDES (3 proc threads, 3 green threads) 0.779s 982
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We observe reduction on the rollbacks when we match the number of processor
threads to the number of LPs. But we don’t get any better execution speed
when we have 3 processor threads, because our system is a dual-core. If we had
a 4-core machine, we could possibly observe a reduction on time too.

6.5 Related Work

One of the oldest, but still operating, PDES frameworks is the Georgia Tech’s
Time Warp (GTW) implementation (Das et al. 1994). A contributor to GTW
has been the author of the great book on Parallel and Distributed Systems (R. M.
Fujimoto 2001). GTW, as well our own HDES framework, is limited to shared-
memory multiprocessors and does not offer any kind of distributed execution.
P. F. Riley and Riley (2003) proposes the System for Parallel Agent Discrete
Event Simulator (SPADES), a distributed agent simulation environment with
software-in-the-loop execution. SASSY by M. Hybinette et al. (2006) is another
agent based simulation system that sits as a middleware between an agent-based
API and a Paralel Discrete Event simulation (PDES) kernel. The Parallel Real-
time Immersive network Modeling Environment (PRIME) is a recent project
by the Modeling and Networking Systems Research Group from the Florida
University. PRIME Liu, Li, and He (2009) is an open-source optimistic PDES
framework mainly written in C++ and uses MPI for distributed simulation.
(Perumalla 2005) proposes µsik, a low-level micro-kernel to build expressive
PDES frameworks ontop. The kernel offers conservative, optimistic as well as
mixed (conservative-optimistic) algorithms. What is astonishing is that in µsik
the simulation user can change the deployed PDES algorithm on-the-fly.

The group of Parallel and Distributed Simulation (PADS) at the University of
Bologna has been developing for the past years numerous PDES frameworks
in many different languages. Their results include an industrial-strength Paral-
lel and Distributed Simulation framework written in C, called ARTIS Bononi
et al. (2005). Many high-level platforms, e.g. GAIA and LUNES, have been
designed on top of the lower-level ARTIS framework. Unfortunately the simula-
tion engine of ARTIS is closed-source. There have been two other, open-source
this time, PDES implementations from the group; one implemented in Google’s
language Go (D’Angelo, Ferretti, and Marzolla 2012), and another in the Erics-
son’s programming language Erlang. These two implementations, however, are
no longer developed or maintained. For an older survey of PDES platforms see
(Low et al. 1999).

Imperative style with eager evaluation seems to be the driving force up until now
for implementing PDES technology. Simply put, there was not any work done
based in a lazy functional language setting before. For this reason, we consider
our HDES platform, written in Haskell, as original work. However, there have
been general simulation frameworks in the past implemented in Haskell with,
unfortunately, no parallelism gain. Aivika is a Haskell library that provides
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extensive system dynamics and discrete event simulation. Event-monad, as the
name suggests, provides an event monad and monad transformer. It can be
used as a low-level helper library to build a simulation framework. Users can
create an event-graph simulation system and schedule events to it. It is not
actively developed. Per se, it does not employ any parallelism, but it could
theoretically be used together with a parallel strategy to exploit parallelism.
Hasim is a library for process-based Discrete Event Simulation in Haskell. It
does not employ any kind of parallelism.

Functional Reactive Programming (FRP for short) has been gaining great at-
tention in the Haskell and the functional community in general. FRP can model
systems that change/progress in time. Also FRP can deal with the so-called
signals, i.e. the handling of discrete events. In this sense we could say that FRP
is another sideview of Discrete-Event Simulation. Although it is well established
before that FRP technology can be used for simulation in functional languages
and while many FRP libraries have been proposed for Haskell and other pro-
gramming languages, none of we know of is addressed for the simulation crowd.

6.6 Appendix

6.6.1 ARTIS code taken from their repository airports_tw.c
1 void _printf(const char *fmt, ...)
2 {
3 int size;
4 va_list li;
5 char buf[1024];
6
7
8 va_start(li, fmt);
9 vsprintf(buf, fmt, li);

10 va_end(li);
11
12 size = strlen(buf);
13 fseek(stdout, Pinfo->offset, SEEK_SET);
14
15 fputs(buf, stdout);
16 Pinfo->offset += size;
17 }
18 //
19 #define printf _printf
20
21
22 // Arrival (to the local LP) of an airplane
23 void arrival_event_handler (int src, char *from, char *id)
24 {
25
26 // Check the runway
27 if (Pinfo->runway_isfree){
28 // It is free
29 Pinfo->in_the_air++; // one more airplane is waiting for landing
30 Pinfo->runway_isfree = 0; // lock the runway
31
32 TW_Schedule(Pinfo->clock+LAND_T, (void *)create_submsg ("LAN", from, id),
33 sizeof(SubMsgHeader));
34 printf ("[%s]: %.1f Waiting for landing, flight %s from %s\n", cnames[LP],
35 Pinfo->clock, id, from);
36 fflush(stdout);
37 }
38 else {
39 // If the source of the plane is not the local airport, then
40 // one more airplane is waiting for landing
41 if(src != LP) Pinfo->in_the_air++;
42
43 // Schedule a new arrival event in future
44 TW_Schedule(Pinfo->clock+WAIT_T, (void *)create_submsg ("ARR", from, id),
45 sizeof(SubMsgHeader));
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46 printf ("[%s]: Runway busy, the flight %s from %s is waiting\n", cnames[LP], id, from);
47 fflush(stdout);
48 }
49 }
50
51 // Landing (to the local LP) of an airplane
52 void landed_event_handler (char *da, char *id)
53 {
54 // One less on air, one more on the ground
55 Pinfo->in_the_air--;
56 Pinfo->on_the_ground++;
57
58 // Schedule the next departure (of the plane)
59 TW_Schedule (Pinfo->clock + LOAD_T, (void *)create_submsg ("DEP", "", id),
60 sizeof(SubMsgHeader));
61
62
63 printf ("[%s]: %.1f Landed flight %s from %s\n", cnames[LP],
64 Pinfo->clock, id, da);
65 fflush(stdout);
66
67 // Now the runway is free
68 Pinfo->runway_isfree = 1;
69 }
70
71 // Departure (from the local LP) of an airplane
72 void departure_event_handler (char *id)
73 {
74 int dest; // destination airport (LP)
75 int ret; // return value
76
77 // One less on the ground
78 Pinfo->on_the_ground--;
79
80 // Choose a random destination from the 2 available
81 dest = rnd_bool() == 0 ? NEIGHBOUR1 : NEIGHBOUR2;
82
83 // Send to the destination airport (LP) the arrival event
84 ret = TW_Send(dest, Pinfo->clock + FLIGHT_T, (void *)create_submsg ("ARR", cnames[LP], id),
85 sizeof(SubMsgHeader) );
86
87 // Check the sending operation
88 if(ret >= 0) {
89 // If OK then trace out the departure
90 printf ("[%s]: %.1f Departed flight %s with destination %s\n", cnames[LP],
91 Pinfo->clock, /*clock + FLIGHT_T,*/ id, cnames[dest]);
92 fflush(stdout);
93 }
94 else {
95 // Else print an error message
96 // FIXME
97 }
98 }
99

100 int main(int argc, char* argv[])
101 {
102 SubMsgHeader *submsg; // event message
103
104 char msg[1024]; // message buffer
105 char id[20]; // airplane identification string
106 int from; // source LP (of a message)
107 int i; // temporary variable
108 long ret; // return value
109 double Ts; // time variable
110
111 // Setup the TIME WARP synchronization algorithm
112 LP = TW_Init(cnames[atoi(argv[1])], argv[2], 5000, (void *)Pinfo,
113 sizeof(*Pinfo), end_clock, GVT_THRESHOLD);
114
115 // Initialize the airports identifiers
116 NEIGHBOUR1 = (LP + 1) % 3;
117 NEIGHBOUR2 = (LP + 2) % 3;
118 printf(" %s <- [%s] -> %s\n", cnames[NEIGHBOUR1], cnames[LP], cnames[NEIGHBOUR2] );
119
120 // Initialization of the current LP state
121 Pinfo->offset = 0;
122 Pinfo->SEED = SEEDS[LP]; // random numbers generator, seed initialization
123 Pinfo->clock = 0.0; // simulated time initialization
124
125 // Model variables initialization
126 Pinfo->runway_isfree = 1; // the runway is free
127 Pinfo->on_the_ground = 2; // 2 planes (in each airport) are on the ground
128 Pinfo->in_the_air = 0; // no airplanes are on the air
129 Pinfo->total_flies = 0; // total number of departed flies (from this airport)
130
131 // Boostrapping the simulation model
132 for(i=0; i<PLANES_NUMBER; i++) {
133 // Scheduling the first batch of departures
134 sprintf(id, "%s-%d", cnames[LP], i);
135 // Sending the departure events
136 TW_Schedule(Pinfo->clock+WAIT_T+i,
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137 (void *)create_submsg ("DEP", cnames[LP], id),
138 sizeof(SubMsgHeader) );
139 }
140
141 // Main simulation loop, receives messages and calls the handler associated with them
142 while (!end_reached) {
143
144 // Looking for a new incoming message
145 ret = TW_Receive( (void *)msg, &Ts, &from);
146
147 if(ret != END_SIMULATION) {
148
149 // A message has been received, update the current simulated time
150 // and call the appropriate message handler
151 submsg = (SubMsgHeader *)msg;
152
153 // Updating the simulated time of the current state
154 Pinfo->clock = Ts;
155
156 // Handlers
157 if (strcmp (submsg->event_type, "ARR")==0) // arrival event
158 arrival_event_handler (from, submsg->from, submsg->id);
159
160 if (strcmp (submsg->event_type, "LAN")==0) // landing event
161 landed_event_handler (submsg->from, submsg->id);
162
163 if (strcmp (submsg->event_type, "DEP")==0){ // departure event
164 Pinfo->total_flies++;
165 departure_event_handler (submsg->id);
166 }
167 }
168 else {
169 // No more messages
170 printf ("[%s]: -- ending condition satisfied, clock=%.2f\n", cnames[LP],
171 Pinfo->clock);
172 printf ("Total flights departed from %s: %d\n", cnames[LP],
173 Pinfo->total_flies);
174 ftruncate(1, Pinfo->offset);
175
176 // The simulation if finished
177 end_reached = 1;
178
179 // The simulation is ended, we have to finalize the synchronization mechanism
180 TW_Finalize();
181 }
182 }
183
184 return 0;
185 }
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Chapter 7

Conclusions and Future
Work

We have described and discussed two simulation frameworks, namely HLogo and
HDES, hosted in the same programming language, that is Haskell. HLogo is a
clone of the famous in the simulation community NetLogo platform, that tries to
exploit the Software Transactional Memory implementation of Haskell to speed
up simulated models. And in certain specific cases it manages to succeed in its
goal. HDES is a Parallel and Distributed Simulation (PDES) framework that
employs a Time Warp optimistic algorithm. Its language, embedded in Haskell,
is arguably a good basis for writing simulation software. By utilizing shared-
memory parallelism, HDES manages to compete against a modern framework
written in C and beat it.

7.1 HLogo

We have designed and implemented HLogo, a clone of the NetLogo framework
that utilizes Software Transactional Memory to benefit in parallelism. The
domain specific language of HLogo, although embedded in a totally different
language (Haskell), tries to be as close as that of the original NetLogo. We
have managed to port many NetLogo modules to HLogo and we benchmark
two of those against the frameworks. Execution results show that HLogo is
faster than NetLogo for most cases, particularly where the number of agents
stay low. When the agent population grows as to produce significant number
of STM conflicts, the performance of HLogo considerably drops.

For future work we want to investigate if the atomic construct can be auto-
matically inserted in certain places of NetLogo programs without breaking its
semantics; possible as the result of static program analysis. Another direction is
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to create a source-to-source compiler (from a Logo-variant to Haskell) to make
it easier for the simulation users to specify her models in. In this way, we may
even achieve compatibility with already existing NetLogo-written source code.

Concerning the core of the execution model, we woud like to visit the possible
execution of HLogo and its simulation runs in a distributed setting. Compared
to a single physical multicore system, a distributed setting can enable Agent
Based Models to be run in High-performance Computing (HPC); there is also
the extreme case where the model cannot fit in a single shared memory and
has to be distributed to many memory locations. Haskell technologies, such
as Distributed Software Transactional Memory or Cloud Haskell could help us
achieve this task.

The scheduling of workload to the threads does not involve any intelligence;
it is simply turn-based (the next available thread picks the next agent). This
naive method can lead to unnecessary STM conflicsts. By exploiting the spatial
characteristics of the model we could better (more clever) assign the work to
the threads, so that it minimizes the number of conflicts (retries). This work
clustering could be static (on initialize) or adaptive (during runtime execution).

Our framework HLogo might be better considered as a proof of concept. In
future work we would like to extend the NetLogo compiler by using the same
codebase and adding on top of the execution model one of the many Scala STM
implementations. We argue that the NetLogo language has then again to be
extended with an atomic construct. Thus, we would benefit from staying as
close as possible to the implementation of NetLogo, while still having the exact
same syntax and utilizing the original Graphical User Interface.

7.2 HDES

We successfully designed and implemented an optimistic PDES framework in the
Haskell programming language with the name HDES. The motivation initially
was to exploit the inherit laziness of Haskell. The tests conducted show us that
we have reached this goal. We ended up writing a domain specific language
of HDES embedded in the host language Haskell. We argue that the HDES
language is a better fit for regular simulation development, since its API is
simple and intuitive. We compare and contrasted the HDES framework against
a modern PDES platform, named ARTIS. We discussed the limitations of usual
PDES implentations such as ARTIS and furthermore we benchmarked each
framework for a common sample model (airport network). The results show that
HDES can be upto twofold faster than its competitor ARTIS, while comprising
half its code size.

For future work, we want to run more benchmarks, including in the comparison
also other production-ready PDES frameworks. Concerning the HDES imple-
mentation, we would like in the future to replace our synchronous Time Warp

73

http://hackage.haskell.org/package/DSTM
http://www.haskell.org/haskellwiki/Cloud_Haskell


algorithm, with a more sophisticated and arguably faster algorithm, such as the
asynchronous algorithms proposed by (Samadi, Muntz, and Parker 1987) and
(Mattern 1989). A distributed execution of HDES is also planned, but it is is
marked as considerable work, even with the latest advances of distributed com-
puting in Haskell (Cloud Haskell). The Haskell programming language currently
lacks good bindings to the de-facto MPI protocol.

Embedded domain-specific languages, such as HDES, inherit the semantics and
the type system of the host language. The developer benefits from not having to
implement error reporting for the language by herself. However, one disadvan-
tage with this method is that error reporting, having primarily been designed
specifically for the host language, becomes inadequate and confusing to say at
least, when used for the designed DSL. A possible solution is to adopt the idea
of (Heeren, Hage, and Swierstra 2003), where the developer has to write extra
directives to drive error reporting without modifying the underlying compiler.

Another direction for improvements can be a GUI designed around HDES.
Specifically we are interested to provide a user-friendly interface and appro-
priate dialogs for easily defining the performance measures/statistics.

We believe that the Haskell programming language can be a good host for
simulation languages. It provides the right abstractions and its lazy execution
model can be benefitial on most circumstances. Although there has been a vast
30-year-long research on Simulation theory, we can surprisingly still find room
for improvements, by applying the theory to a high-level modern functional
language.
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