
PRICING PATTERNS FOR BUSINESS

SAAS APPLICATIONS

Master thesis

Dennis Adriaansen

Utrecht University

Faculty of Science

Department of Information and Computing Sciences

8 August 2012

Supervisors

A. Mars, CFO, AFAS Software BV

Dr. S. Jansen, Utrecht University

J. Kabbedijk, Msc, Utrecht University

Pricing patterns for business SaaS applications

2

ABSTRACT
Software vendors face problems with pricing their business SaaS applications. A typical

characteristic of a business SaaS application is that it should be available to different kinds of

customers that have their specific wishes. Therefore, business SaaS applications should support

configurability and therefore a multi-tenancy architecture is the best solution. Other

consequences of provisioning business SaaS applications are that the cost structure depends on

the chosen deployment method and that metrics are needed for measuring usage. Pricing

problems are identified at the case study company (a large business software vendor in the

Netherlands), solutions are developed and experts evaluated the solutions. This resulted in an

overview of appropriate pricing patterns for business SaaS applications, describing the

problems, solutions, examples and consequences found in this study.

Pricing patterns for business SaaS applications

3

CONTENTS
Abstract ... 2

Contents... 3

1 Introduction ... 5

1.1 Problem statement ... 5

1.2 Research questions .. 6

1.3 Research relevance .. 7

1.4 Outline of the research .. 8

2 Research approach... 9

2.1 Research methods .. 9

2.2 Validity .. 13

2.3 Activities ... 14

3 Business SaaS applications ... 17

3.1 The need for tailoring business software ... 17

3.2 Software characteristics ... 18

3.3 Software as a Service .. 19

3.4 Realizing configurability ... 20

3.5 Chapter overview .. 21

4 Implications of provisioning a business SaaS application .. 22

4.1 Architecture ... 22

4.2 Costs .. 25

4.3 Measuring usage .. 28

4.4 Chapter overview .. 28

5 Pricing patterns .. 29

5.1 Patterns .. 30

5.2 Usage-dependent pricing ... 32

5.3 Situation-based pricing .. 34

5.4 Cost-based pricing ... 35

5.5 Flat fee pricing .. 37

5.6 Two-part tariff pricing ... 38

5.7 Peak load pricing ... 39

5.8 Bundle pricing ... 41

5.9 Dual pricing ... 42

5.10 Chapter overview .. 44

6 Evaluation ... 45

Pricing patterns for business SaaS applications

4

6.1 Usage of the pricing patterns ... 45

6.2 Pattern evaluation .. 48

6.3 Consequences .. 54

6.4 Appropriate pricing patterns .. 57

6.5 Chapter overview .. 59

7 Discussion ... 60

8 Conclusion ... 62

10 References ... 64

11 Appendix ... 68

11.1 Metrics ... 68

11.2 Mail for criteria request ... 71

11.3 Answers from criteria request ... 72

11.4 Screenshots evaluation tool: characteristics .. 73

11.5 E-mail template for first evaluation... 74

11.6 E-mail template for the second evaluation .. 74

11.7 Results pair wise comparison characteristics .. 75

11.8 Results assessment .. 76

11.9 Points awarded to pricing patterns .. 78

Pricing patterns for business SaaS applications

5

1 INTRODUCTION
An important change to the software industry in the recent years is the emergence of software

delivered as a service, this is named Software as a Service (SaaS). SaaS is a deployment method

where the software system and the users’ data are stored off-site in a central location run by the

software vendor. The vendor delivers the bundle of IT infrastructure, software applications and

services to users through a network (Ma & Seidmann, 2008).

Many software vendors develop software to support organizations by executing their business

processes; this type of software is known as business software. Business software, such as

Enterprise Resource Planning (ERP) software, is a configurable information system that

integrates information and information-based processes within and across functional areas in an

organization (Ward & Peppard, 2002). Accompanied by the SaaS movement, many business

software vendors currently offer their software as a SaaS application or they are planning to

launch such in the near future.

New possibilities of pricing the software arise when an application is offered as a SaaS

application. Since the software runs on servers managed by the vendor, the vendor can precisely

track the user’s actions and track the usage of the software.

Nagle & Hogan, known for their work on pricing strategies and The Strategic Pricing Pyramid,

address the importance of pricing by stating that: “companies operating with a narrow view of

what constitutes a pricing strategy miss the crucial point leading to incomplete solutions and

lower profits” (Hogan, 2005).

Existing work on pricing software addresses different strategies (Lehmann & Buxmann, 2009),

but currently it is unknown what problems business software vendors face and how pricing

patterns can solve those problems. The goal of this research is to identify pricing patterns for

business SaaS applications.

1.1 PROBLEM STATEMENT
Because of the differences with on-premises installed software, software vendors face new

problems because their application is provisioned as SaaS. Established ways of pricing software

might not be suitable for business SaaS applications. In addition, differences with consumer

SaaS exist because business SaaS applications require configurability to serve different kinds of

organizations.

Software vendors face problems with pricing their business SaaS applications. The pricing

problems might arise because of the configurability of the software, the need for serving many

different customers, difference in usage or another problem caused by provisioning a business

SaaS application.

Therefore, software vendors of business SaaS applications should be provided with solutions for

pricing their application. Based on these problems, the problem statement is formulated as

follows:

Software vendors face problems with pricing their business SaaS applications,

 and do not know how to solve these pricing problems.

Pricing patterns for business SaaS applications

6

The purpose of this study is to:

1. Identify pricing problems at a software vendor.

2. Develop solutions for these problems.

3. Evaluate the developed solutions.

Solutions for pricing business SaaS applications are developed, because it is unknown how the

pricing problems they face can be solved, so those vendors can be advised which price pattern

they should use for their business SaaS application to maximize profit.

1.2 RESEARCH QUESTIONS
The objective of this research is to identify and develop pricing patterns for business software

vendors that offer their software as a SaaS application. Therefore, the main research question is

formulated as follows:

What are appropriate pricing patterns for business SaaS applications,

from the point of view of a software vendor?

The answer of this main research question is addressed in the evaluation section. To answer the

main research question, a number of sub questions are formulated, which are stated below.

Sub question 1 What is a business SaaS application?

Characteristics of software and Software as a Service are discussed before a definition of a

business SaaS application can be given. These characteristics are found by performing a

literature study.

A business SaaS application is different from consumer SaaS applications because there is a

strong need for configurability. Configurability in the software is needed in order to serve many

different customers and to meet their unique business requirements. When tailoring a software

application to fit the customers’ needs, the application should be customized or configured.

Characteristics of business SaaS applications and how configurability can be realized in a

business SaaS application is addressed in chapter 3.

Sub question 2 What are the implications of offering business SaaS applications?

There are several implications when a software vendor offers a business SaaS application. For

provisioning a business SaaS application, three elements are assumed to be important: costs,

metrics and architecture. The implications of these elements are addressed in Chapter 4 as result

of a literature study and interviews with experts from the case study company.

The costs of maintaining a business SaaS application (from the point of the software vendor) are

investigated. A document study at the case study company is performed to find out what the

costs for software vendors are for provisioning a business SaaS application.

Business SaaS applications are configurable. Consequently, there are many differences between

the customers on usage and functionality level. Since a business SaaS applications are

configurable solutions for both small and large consumers, it is important to measure usage to

differentiate customers based on usage. Therefore, metrics for SaaS applications are gathered by

performing a literature study on pricing metrics.

Pricing patterns for business SaaS applications

7

Furthermore, different SaaS architectures are discussed. The possibilities and limitations of

these architectures are examined because this is taken into account when developing the pricing

patterns. The architecture that is the most suitable for a business SaaS application is extensively

discussed by providing a theoretical background on this architecture.

Sub question 3 How can business SaaS applications be priced?

Design research is the main research method used for answering this sub question. Design

research involves the analysis of the use and performance of designed artefacts to improve on

the behaviour of aspects of Information Systems (Vaishnavi & Kuechler, 2007).

First, problems related to pricing SaaS are identified at the case study company by performing

interviews, a document study and direct observations. Next, solutions are found by performing a

literature study on pricing software and microeconomics. To present the solutions for dividing

the costs in a unified way, it is chosen to describe them as patterns.

The pricing patterns are discussed in Chapter 5, followed by an evaluation of the patterns in

Chapter 6. Surveys and interviews with experts from the case study company are held to

evaluate the pricing patterns, followed by statistical analysis on these results.

1.3 RESEARCH RELEVANCE

Scientific relevance

Literature on the topic of software pricing, such as the book ‘Software Product Management and

Pricing’ by (Kittlaus & Clough, 2009) and the ‘Pricing Strategy Guideline Framework for

Vendors’ by Abdat (2009) is about pricing SaaS. In general, work on SaaS pricing and in

particular, pricing patterns for business SaaS applications is sparse.

None of the current literature includes specific, extensive research on identifying pricing

problems and different ways of pricing business SaaS applications. Because of the differences

compared to on-premises installed software and consumer SaaS applications, it is not possible to

apply those pricing methods to business SaaS applications.

Business relevance

Because of the benefits of Software as a Service, it is expected that the number of business SaaS

applications will increase in the upcoming years. Offering business software as a SaaS

application is a relatively new. Therefore, software companies currently do not know how to

price their business SaaS applications. A solid pricing method is important because it ensures

revenue and profit for the software vendor. Also, the availability and integration of a good

pricing strategy as part of the overall corporate strategy for SaaS vendors is essential (Spruit &

Abdat, 2012). Pricing takes a central role in the strategy of most companies because it directly

determines the turnover level and consequently in the long term also the achieved returns

(Lehmann & Buxmann, 2009).

This study is especially interesting for software vendors who plan to release a business SaaS

application in the near future. Based on the results, those companies can choose one of the

proposed pricing patterns, which is the most suitable for their company. This research can also

be relevant for companies that already have released a business SaaS application. They can use

the findings from this study to examine their current pricing patterns and improve them.

Pricing patterns for business SaaS applications

8

The benefits in general are that companies do not have to investigate and develop a pricing

pattern for their business SaaS application from scratch but base them on the pricing patterns

proposed in this study. Because multiple pricing patterns are developed, the results are also

usable for different types of companies, which face similar problems with pricing their SaaS

applications as identified at the case study company.

1.4 OUTLINE OF THE RESEARCH
In this chapter the problem statement and the purpose of this study is explained and the research

questions are addressed. The next chapter discusses the research approach by addressing the

different research methods that are used, the validity and the activities that are performed during

the research.

Chapter 3 elaborates on business SaaS applications by describing its specific characteristics and

the need for configurability in this type of SaaS applications. The next chapter is about the

implications of provisioning a business SaaS application, such as the required architecture, the

cost elements and measuring usage.

In chapter 5 the pricing problems that are identified at the case study company, are addressed,

solutions are provided and examples of the solutions are given.

Chapter 6 describes a study on whether those pricing patterns are applied at the case study

company. In addition, the patterns are evaluated and an overview of the consequences is given.

This study ends with a discussion and a conclusion of the findings.

Pricing patterns for business SaaS applications

9

2 RESEARCH APPROACH
This chapter describes the research approach. The first section describes the research methods

that are used, followed by a description of the case study company. The next section elaborates

on the validity of this study. The remainder of this chapter is a section that describes the

performed activities, explained with diagrams and gives an overview of the deliverables.

2.1 RESEARCH METHODS
Several research methods are used in this study. This section gives a description of all research

methods that are used and how they are applied in this study. A literature study is used to find

relevant background information on business SaaS applications and pricing. Design research is

chosen as one of the research methods because solutions for pricing problems need to be

developed. Furthermore, case study research is used as research method to ensure a high degree

of realism for identifying pricing problems.

Literature study

For the literature study, two scholarly search engines were used to search in leading journals:

Google Scholar (scholar.google.com) and IEEE Computer Society (computer.org). Pricing

models currently described in literature are observed. To accomplish this, a comprehensive

literature study had been performed whereby keywords related to pricing software and SaaS

were used as search query in the search engines.

Design research

Design research consists of design cycles that follow a five steps pattern (Takeda & Veerkamp,

1990). The steps are as follows:

1. “Problem awareness – what the problem is and why a solution is needed.

2. Suggestion – in this step, based on desktop or empirical research, a suggestion is made

what the solution should be.

3. Development –the artefact proposed as a solution is developed.

4. Evaluation – the process of evaluating how suitable for the problem at hand the

solution developed at the previous step is. After the evaluation, the need might arise

to return to the suggestion and development steps in order to improve the solution

according to the results of the evaluation.

5. Conclusion – the achieved results are summarized and the design research

project/cycle is brought to a closure.” (Takeda & Veerkamp, 1990).

The following paragraphs describe how the design cycles from Takeda & Veerkamp (1990) are

applied in this research.

Pricing patterns for business SaaS applications

10

Figure 1 Reasoning on Design Cycle, adapted from Takeda & Veerkamp (1990)

The general problem (1) is that it is unknown how pricing problems can be solved for business

SaaS applications. To identify sub problems for pricing business SaaS, interviews are held with

different stakeholders at the case study company. This results in an overview of problems

related to pricing a business SaaS application.

Since there are several problems identified it is suggested (2) that for every indicated problem a

concrete solution is developed to solve this problem or at least lower the negative impacts.

These solutions are based on scientific research and practical usage.

Because there are several problems indicated, multiple solutions for these pricing problems

should be developed (3). To develop the solutions a literature study on microeconomics and

software pricing is performed. Findings from this literature study and interviews at the case

study company are used to develop the solutions for the problems that are identified. These

solutions are described as part of a pattern, resulting a structured overview of the problems, the

solutions and examples of implementation and usage.

When all patterns are developed, experts of the case study company evaluate these patterns.

These experts evaluate the developed solutions on usefulness and applicability. This evaluation

results in an overview of the consequences of applying the solutions.

The conclusion (5) includes the final, evaluated pricing patterns. These are depicted in a table

with a short description of the problem, the solution, an explaining diagram, an example and an

overview of the consequences for using that solution.

Case study research

Case study research is one of the main research methods in this study. Using case study research

as research method results in a high degree of realism because it is conducted in a real word

setting (Runeson & Höst, 2008). In this section, the case study company is described followed

by a description of the research methods that are used within the case study.

Awareness of the problem

Suggestion

Development

Evaluation

Conclusion

O
p

era
tio

n
 o

f kn
o

w
led

g
e &

 g
o

a
l

C
ir

cu
m

sc
ri

p
ti

o
n

Deduction

Abduction

Pricing patterns for business SaaS applications

11

Case company description

The case study company is AFAS Software BV. AFAS is an ERP software developer, aimed at

the Dutch, Belgian and Caribbean market, located in Leusden, the Netherlands. Currently they

have over 10.000 customers, spread over many different market sectors.

AFAS develops software for both business and consumer markets in a socially responsible

manner whereby customers, employees and the environment are central. Their product for the

consumer market is AFAS Personal, free online house bookkeeping software, recently acquired

by buying start-up company Yunoo. AFAS Personal targets the consumer market and therefore

it is ignored in this study. Their other software product is AFAS Profit, focusing on the business

market. The vision behind the ERP software is that all administrative processes are fully

automated in a single software package.

In 2011 they had a turnover of 56 million euro’s and a profit of 14.5 million euro’s, an increase

of over 25% compared with 2010. Their customers can choose between installing the software

on premises or access it online.

In 2008 AFAS decided implement their own online solution. Before, they cooperated with other

parties to serve customers with online availability of their software, but there were problems

with the cooperation. In addition, the customers expected that all responsibility of provisioning

software online was taken by AFAS. This resulted in the implementation of AFAS Online

whereby AFAS provisioned a complete solution for using the software online, including

application management and remote deployment of the software.

From now on ‘ERPComp’ is used to refer to the case study company AFAS Software BV, and

‘ERPOnline’ is used to refer to the ERP software delivered as SaaS (AFAS Online).

ERPComp is suitable for this study because it is a large software vendor that offers a business

SaaS application to 10.000 customers. They are also a typical business software vendor because

they develop Enterprise Resource Planning software and they offer it as SaaS.

Interviews

In this study, interviews with experts from ERPComp are conducted to gather information and

knowledge for different sections of this study. All interviews are semi-structured so it is

possible to anticipate on the answers of the respondents, because it allows to ask new questions

resulting from answers from the interviewee.

In the beginning of the research, interviews with product managers are conducted about

configuration in SaaS in general and how it is implemented in their own SaaS application. These

sessions were merely to gather knowledge from these experts as a starting point for the literature

study on tailoring business SaaS applications.

The former manager of ERPOnline is interviewed to explore which costs are charged to

ERPComp for hosting their SaaS application, to get an idea of the typical costs of provisioning

a business SaaS application.

Stakeholders from ERPComp are interviewed to identify problems they currently face or expect

to face regarding to pricing their SaaS product. Therefore, exploratory one-hour interviews are

conducted to gain knowledge from stakeholders with expertise from different domains as

Pricing patterns for business SaaS applications

12

finance, architecture and product management. The interviewees are asked about the current

situation, the problems in the current situation. They were also asked to predict the future in

terms of the products that will be launched in the (near) future and what problems then might

arise in relation to pricing their software products.

Some follow-up interviews are conducted to verify findings and ask new questions that came up

during the research. Especially multiple interviews with the CFO were used as follow-up

interviews to elaborate on details. In case of specific questions he could not answer himself, he

referred to the responsible expert at ERPComp.

Interviews are also held during the evaluation phase while identifying the usage of pricing

patterns at ERPComp. Furthermore a sales manager was interviewed to get a better

understanding of the price list and price guidelines. Interviews with the CFO and sales managers

are held to identify and verify the appliance of pricing patterns at ERPComp.

Survey

For the evaluation of the pricing patterns, two surveys were made in order to match the

requirements for a pricing model to the identified pricing pattern. Because no suitable tool was

found for building a sophisticated survey, an online evaluation tool was built including

functionality to analyse the results.

The surveys are sent to a selection of employees at ERPComp. The results are statistically

analysed to prioritize the requirements and to discover the strength of agreement between the

answers from the respondents.

Document study

The document study consists of a selection of documents provided by ERPComp after they were

requested. Among these documents were price lists of the products offered by. The price lists

gave an overview of all products from ERPComp and the prices for these products.

Additionally, they also contained guidelines for sales managers about discount that may be

given to customers. These documents were studied to get insight into their current pricing

strategies.

Furthermore, ERPComp provided agreements and invoices from several suppliers related to

their ERPOnline product, originating from their hosting provider and software supplier. Hereby

it was possible to get insight for what kind of things ERPComp is charged and to identify what

kind of costs they are.

In addition, access to the intranet and the ERP system of ERPComp was given which was a

viable source to gather information by studying documents published on the website and data

that was found in the ERP system, such as customer information. An overview of the used

documents in this study is given below.

Pricing patterns for business SaaS applications

13

Description Usage Source

Price lists/guidelines Analyse current pricing strategy, identify

problems

Provided by CFO

E-mail discussion with

customer

Identify pricing problem by analysing a

customer’s complaint about the price

Provided by CFO

Database size overview

per customer

Analyse relationship between number of

users and data usage

Provided by manager

Customer Service,

former manager of

ERPOnline

Detailed overview of

customers

Analyse relationship between number of

users and data usage

Intranet, extended with

additional information

by financial manager

Contracts & Invoices Analyse payment agreements etc. Provided by CFO
Table 1 Overview of documents used for the document study

Direct observations

Observations were made during the attendance at the case study company. A meeting of the

board of directors regarding to pricing a new software product was attended. This was a

decision making session and both an evaluation of the current pricing strategy. Also, short

discussions between employees from the Finance & Controlling department regarding problems

with the current pricing strategy were reason to identify problems with the current pricing

solutions and used for some example for the pricing patterns.

2.2 VALIDITY
It is important to make sure that reliable and valid measures are used in this study. Therefore the

following four tests are suggested by Yin (2008).

Construct validity: “establishing correct operational measures for the concepts being studied”

(Yin, 2008).

During the data collection, multiple sources of evidence are used. Interviews are conducted and

documents are studied for data collection. Every time when some findings are found at the case

study company these were reviewed by a key informant. Usually, this was the CFO, when he

was not sure about it he referred to another expert within the case study company. In addition,

draft versions of this study were discussed with the CFO.

Internal validity: “establishing a causal relationship, whereby certain conditions are shown to

lead to other conditions, as distinguished from spurious relationships” (Yin, 2008).

Characteristics for pricing models were identified with a group of experts within the case study

company. Different experts from the same case study company matched these characteristics to

the pricing solutions. For the pricing patterns, the consequences of the patterns (resulted from

the evaluation) are matched on the problems that were identified earlier to ensure internal

validity.

External validity: “establishing the domain to which a study’s findings can be generalized”

(Yin, 2008).

Pricing patterns for business SaaS applications

14

The case study company develops ERP-software, which is a common used type of business

software within organizations. It would have weakened the external validity if the case study

company developed a specific kind of business software.

Since the case study company has the same kind of customers as their competitors have, it is

assumed that the findings can be generalized to other business software vendors that develop

ERP software.

Reliability: “demonstrating that the operations of the study can be repeated, with the same

results” (Yin, 2008).

In order to demonstrate that this study can be repeated, short transcripts of interviews are

included. Also, collected data from the survey and the complete results of the statistical analysis

are included in the appendix.

When interviews are performed, a second person with a similar role within the company is

asked to verify the results from the first interview. Statistical analysis are performed to assess

the reliability of the results from the survey. Also, the strength of agreement between the

respondents is assessed using a statistical method.

A process delivery diagram (PDD) is created, in which the research activities are depicted. This

gives a clear overview of all steps and activities that are performed during this study and how

they lead to the results.

2.3 ACTIVITIES
In this section, all activities are described that are required to carry out the research. These

activities are modelled in a process delivery diagram (PDD). This diagram consists an activity

diagram and a class diagram which are integrated, resulting in a process delivery diagram (Van

De Weerd & Brinkkemper, 2008).

Process Delivery Diagram

Below the process delivery diagram (PDD) is depicted so it reveals the relations between

activities (the process of the method) and concepts which are the deliverables produced in the

process.

Pricing patterns for business SaaS applications

15

Evaluate pricing

patterns

Study literature on

business SaaS

SOFTWARE DISTRIBUTION

METHODS

CONFIGURABILITY IN

SAAS

Study configurability

in SaaS

Find software

distribution methods

DESCRIPTION OF SAASDescribe SaaS
THEORETICAL BACKGROUND

ON BUSINESS SAAS

Finalize study

Write conclusion

Write discussion DISCUSSION

CONCLUSION THESIS

Develop pricing

patterns

PRICING PATTERNS

REQUIREMENTS

OVERVIEW OF

PATTERNS

ORDERED LIST OF

REQUIREMENTS

Prioritize

requirements

Match requirements

on patterns

Gather

requirements

Find solutions

Identify problems PRICING PROBLEMS

EXAMPLE

CONSEQUENCES

SOLUTIONS

Find

consequences

Find examples

Study on implications

of business SaaS

IMPLICATIONS FOR

ARCHITECTURE

IMPLICATIONS ON

COSTS

IMPLICATIONS FOR

MEASURING USAGE

IMPLICATIONS OF

BUSINESS SAAS

Literature study on

SaaS architectures

Study on costs of

SaaS

Literature study on

measuring usage

Evaluate pricing

pattern usage

Study documents

Conduct interviews

OVERVIEW PRICING

PATTERN USAGE

ERPCOMP

Figure 2 Process Delivery Diagram

Pricing patterns for business SaaS applications

16

Activity table

In the table below the activity table is depicted, this table describes all activities mentioned in

the PDD (see Figure 2).

Activity description

Study literature on business SaaS

Find software distribution methods Software can be distributed through several

channels to the customers.

Describe SaaS A general description of SaaS is described.

Study configurability in SaaS Literature study of configurability in SaaS.

Study on implications of business SaaS

Literature study on SaaS architectures A literature study is conducted to find different

SaaS architectures and to find out which one is

the most appropriate for business SaaS.

Studying the costs of SaaS Interviews and document study at ERPComp

are used to find out what the costs or

provisioning a business SaaS solution are.

Literature study on measuring usage A literature study is conducted to find out

which metrics can be used of measuring usage.

Develop pricing patterns

Identify problems Interviews are held and a document study are

conducted to find problems related to pricing

the SaaS application of ERPComp.

Find solutions A literature study on software pricing and

microeconomics is conducted to find solutions

for each of the identified problems.

Find consequences Analyse the solution and find consequences

using literature.

Find examples Document study and interviews at ERPComp

are conducted to find examples.

Evaluate pricing pattern usage

Study documents Documents from ERPComp are studied to find

usage of the pricing patterns.

Conduct interviews Interviews with experts from ERPComp are

conducted to verify the findings from the

document study and to find other appliance of

the pricing patterns.

Evaluate pricing patterns

Gather requirements Requirements for a good pricing models are

gathered by asking experts from ERPComp by

e-mail or by conducting interviews.

Prioritize requirements The gathered requirements are prioritized by

experts from ERPComp with an online

evaluation tool.

Match requirements on patterns Experts from ERPComp match the

requirements on the pricing patterns by using

an online evaluation tool.

Finalize study

Write discussion Describe what the results mean.

Write conclusion Major findings, outlook of the usage,

limitations and further research are described.
Table 2 Overview of the activities

Pricing patterns for business SaaS applications

17

3 BUSINESS SAAS APPLICATIONS
This chapter is about tailoring business SaaS applications. The first section elaborates on the

need for tailoring, followed by sections about software and Software as a Service. The

remainder of this chapter is about realizing configurability in SaaS and discusses terms related

to configurability in SaaS.

When tailoring a software application to fit the customers’ needs, the application should be

customized or configured. In this chapter, the differences between configurability and

customizability in SaaS applications are investigated. It is important to get a clear definition of

configurability in SaaS because configurability is one of the main aspects in the research. In

addition, related terms as customizability and variability are discussed.

In software development there are differences of the term ‘tailoring software’. Using the

definition above, one would say that if this is applied to standard software it would mean that

standard software is configured in such a way that it is right for the particular needs of a

customer. It is important to make a clear distinction between these terms, as these definitions are

used throughout this research.

In this research the term ‘custom-made software’ is used to refer to made-to-order system that is

specifically made for one customer whereby only one copy is available (Sawyer, 2000) and (Xu

& Brinkkemper, 2007). On the other hand, the term ‘product software’ is used to refer to

standard software that is available to many different buyers, following the principle of ‘make

one, sell many’ (Xu & Brinkkemper, 2007). This type of software might be configured to fit to

the specific needs of the customer, resulting in ‘tailored software’.

A major difference between business-to-business and business-to-consumer software is that the

implementation is critical for the customer’s business in case of business-to-business software

(Xu & Brinkkemper, 2007).

3.1 THE NEED FOR TAILORING BUSINESS SOFTWARE
Business software, such as Enterprise Resource Planning (ERP) software, is a configurable

information system that integrates information and information-based processes within and

across functional areas in an organization (Ward & Peppard, 2002).

One of the most important requirements is that it should be configurable to adapt to the different

needs of their users across different industries (Klaus, Rosemann, & Gable, 2000). Because

customization is an important factor in the adoption of business SaaS (Xin & Levina, 2008), it is

important for a software vendor to offer a configurable SaaS application.

This is especially relevant for business software vendors, since variability and extensibility is

essential for business applications like CRM and ERP (Aulbach, Grust, Jacobs, Kemper, &

Rittinger, 2008).

In a study of configuration and customization perspectives, the following six fundamental

causes of needs for tailoring are given (Sun, Zhang, Guo, Sun, & Su, 2008).

- Industry focus differences

- Customer behaviour differences

Pricing patterns for business SaaS applications

18

- Product offering differences

- Regulation differences

- Culture differences

- Operation strategy offering differences

Because every customer is different, each of them has different requirements to the software.

Therefore, most business software applications need to be tailored to effectively serve a specific

client (Sun et al., 2008). Consequently, in order to serve many different customers and to meet

their unique requirements, tailoring of the software is required. A general definition found in a

dictionary of the verb to tailor is “to make something so that it is exactly right for your

particular needs” (Summers, 2001). Consequently, in relation to software tailoring is making

standard software so that it is exactly right for the customer-specific needs.

Although many organizations are using standard software for their customer relationship

management and enterprise resource planning, they still have specific wishes concerning the

user interface, data, business processes and rules (Nitu, 2009). Accordingly business software

vendors should take into account that the same kind of workflow may have different behaviours

for different organizations (Nitu, 2009). Also, many customers still ask for variation in

functionality according to their specific business requirements (Sun et al., 2008). Therefore

tailoring is needed to comply for those customer needs.

3.2 SOFTWARE CHARACTERISTICS
From a software development perspective, software is classified in tailor-made software and

product software. Product software is defined as a packaged configuration of software

components or a software-based service, with auxiliary materials, which is released for and

traded in a specific market (Xu & Brinkkemper, 2007). The differences between product

software and tailor-made software are summarized in Table 3.

Software Typical characteristics

Tailor-made software

Contractual tailor-made

software

Software made for one particular buyer

 Budget and schedule fixed

 Penalties for late delivery

In-house tailor-made software Used to improve efficiency/effectiveness of internal

organization

 Limited number of end-users

 Possible conflicting interests between IT-department/end-

user

Product software

Business-to-business Software sold to other business

 Many different buyers

 Critical to the buyer’s business

Business-to-consumer Software sold to individual buyers

 High volume buyers

 Market windows and buying seasons

 Failures can have fatal consequences
Table 3 Characteristics of tailor-made and product software (Xu & Brinkkemper, 2007)

Pricing patterns for business SaaS applications

19

From the table above it can be derived that business SaaS applications have many different

buyers and is critical to the buyer’s business.

Within product software, a distinction can be made between software sold to other business and

software to individual buyers (Xu & Brinkkemper, 2007). The focus in this research is on

business-to-business software, more specifically on Enterprise Resource Planning (ERP)

software.

The traditional approach of distributing software to the user is the “on-premises” model, where

the software is installed on the computers on the premises. A company buys applications and

deploys them in a data centre that it owns and operates (Aulbach et al., 2008). An organization

usually buys a perpetual-use license, without an end date for the use of the bought software

product, this is also known as “outright purchase”. New product features are released as part of

a new version of the software which is usually released once in a few years (Choudhary, 2007),

which a customer can acquire by buying a new version of the software.

Within the on-premises model, a distinction can be made between product software and tailor-

made software. Product software is available for a wide audience whereas tailor-made software

is developed for a specific customer. Product software is sold, leased, or licensed to the general

public; offered by a vendor trying to profit from it, available in multiple, identical copies and

used without source code modification (Brownsword & Oberndorf, 2000). The implementation

of product software involves mainly the adaption of the system to the business needs of the

enterprise through system parameterization and the re-engineering of business processes to

match system specifications (Stamelos & Angelis, 2003).

3.3 SOFTWARE AS A SERVICE
Due to the opportunities offered by the Internet and consequently the rise of the Software as a

Service (SaaS) business model, there is another way to deliver software to the user. SaaS is a

deployment technology where the software system and users’ data are stored off-site in a central

location run by the vendor. The vendor delivers the bundle of IT infrastructure, software

applications and services to users through a network (Ma & Seidmann, 2008). Because of the

subscription-based model, it is unnecessary to upgrade or make purchases to make use of new

features of the software.

Software as a Service (SaaS) is a deployment technology where the software system and users’

data are stored off-site in a central location run by the vendor. The vendor delivers the bundle of

IT infrastructure, software applications and services to users through a network (Ma &

Seidmann, 2008).

In a study on defining Software as a Service the following characteristics of SaaS are identified:

- “Product is used through a web browser.

- Product is not tailor made for each customer.

- The product does not include software that needs to be installed at the customer’s

location.

- The product does not require special integration and installation work.

- The pricing of the product is based on actual usage of the software.”

(Mäkilä, Järvi, Rönkkö, & Nissilä, 2010)

Pricing patterns for business SaaS applications

20

3.4 REALIZING CONFIGURABILITY
There are several terms used in the literature related to adapting software to the user’s need, this

section defines and describes these terms used for tailoring SaaS.

The relation between variability, configurability and tailored software is explained by the figure

below. Variability in software leads to configurability, which results in tailored software. To

create configurability the software needs variability. When you want tailored software you have

to configure it to your specific needs.

Figure 3 Realizing tailored SaaS

To make a standardized SaaS application suitable to serve specific clients, it should be tailored

in to a tenanized SaaS application to meet the customer’s unique requirements (Sun et al.,

2008).

Variability

Tailoring software is needed to serve different customers and to meet their business

requirements. “In order to serve a lot of different customers in a SaaS environment, software

vendors have to comply to a range of different varying requirements in their software product”

(Kabbedijk & Jansen, 2011).

Variability is the ability to change or customize a system to use in a particular context

(Svahnberg, van Gurp, & Bosch, 2005). Before variability can be built in the software, a

variation point should be defined. A variation point represents a point in the software where the

variation will arise. Hereby the existence of alternatives is indicated, and each of the chosen

alternatives results in a different behaviour of the software (Ghaddar & Tamzalit, 2012).

Configurability

Configurability allows a unique user experience to each customer of the SaaS application even

though the code base is same (Nitu, 2009). Configurability in SaaS aims to provide customers

with a many configurable options using a single code base. Hereby it is possible for each

customer to have a unique software configuration and experience if it was custom-made (Arya,

Venkatesakumar & Palaniswami, 2010).

Tailoring SaaS can be done by configuration, which aims to provide tenants with a multitude of

options and variations using a single code base, so each tenant has a unique software

configuration (Nitu, 2009). Configuration can support tailoring requirements with a predefined

configurable limit (Sun et al., 2008).

Configuration does not involve source code changes of the SaaS application, but it supports

variance through setting pre-defined parameters. According to Arja et al. (2010) configurability

is the foundation of any SaaS application because without it is a limited ASP.

variability configurability tailored SaaS

Pricing patterns for business SaaS applications

21

Customizability

In addition to configuration, there is another way to create a SaaS application to make them

suitable for the specific requirements of a customer, which is known as customization. A

customized feature is a feature that is tailored to fit the specific needs of a customer (Jansen,

Houben, & Brinkkemper, 2010). Different from configurability, customization involves changes

to the source code in order to generate functionality that is beyond the options that the

configurability offers (Sun et al., 2008).

SaaS providers usually do not offer customizations to their SaaS product. However,

organizations require specific functionality to support their business rules and workflow. In

other words: they need a highly configurable SaaS application, otherwise standardized software

it is not suitable for customer-specific functionality.

3.5 CHAPTER OVERVIEW
By performing a literature study, the need for configurability is addressed. Configurability is

needed in order to serve different kind of customers which specific wishes that could be caused

by industrial focus differences, customer behaviour differences or culture differences.

Next, software characteristics and SaaS are discussed. From those sections it can be concluded

that a business SaaS application is: administrative software for organizations to support their

processes and workflows, with configurability options to adapt the software to the customer’s

specific needs, provisioned as Software as a Service.

In order to realize configurability variability in the software is needed which variation points

can enable. Furthermore, it was found that customizability involves changes to the source code

in order to adapt to the customer’s needs and therefore it cannot be used for business SaaS

applications.

Pricing patterns for business SaaS applications

22

4 IMPLICATIONS OF PROVISIONING A BUSINESS SAAS

APPLICATION
In the previous chapter, the characteristics of a business SaaS application are described. This

chapter discusses the implications of business SaaS applications.

The following sections discuss the implications of offering a business SaaS application in terms

of costs, architectures and usage. Different SaaS architectures are addressed in this chapter. The

possibilities and limitations of this architecture are examined because this taken into account

when developing the pricing patterns.

4.1 ARCHITECTURE
This section describes the different SaaS architectures, as found during the literature study. The

relationships between the software architectures are described and the benefits and the risks for

both the software vendor and the customers are analysed. This section discusses the several

SaaS architectures and it characteristics, which is used to define the pricing patterns for business

SaaS applications.

To identify the architecture(s) that are feasible for configurability in SaaS, first different SaaS

architectures are discussed. Bezemer & Zaidman (2010) distinguish three software architecture

principles for the SaaS business model:

- multi-user: all users are using the same application with limited configuration options

- multi-instance: each tenant gets his own instance of application (virtualization, the

easier way of creating multi-tenant like applications)

- multi-tenant: each tenant has the possibility to heavily configure the application

Evaluation of SaaS architectures on configurability

This research focuses on business SaaS applications, therefore the multi-tenant architecture is

the most interesting architecture because it supports the possibility to heavily configure the SaaS

application (Bezemer & Zaidman, 2010). Multi-tenancy is consequently usually applied to

enterprise software such as ERP and CRM (Tsai et al., 2007). Because of the large number of

customers, a multi-tenant solution is needed to implement the varying customer’s requirements

(Kabbedijk & Jansen, 2011).

To offer configurability to a high number of users, multi-tenancy is the most appropriate

architecture. A multi-tenant application is an application that enables different customers to use

the same instance of a system, without necessarily sharing data or functionality with other

tenants. These tenants have one or more users who use the web application to further the

tenant’s goals (Jansen et al., 2010). It is particularly interesting for business software vendors to

offer their application within a multi-tenant environment, because business software should be

configurable to accommodate the diverse needs of users across most sectors of the economy

(Klaus et al., 2000).

Pricing patterns for business SaaS applications

23

Types of multi-tenancy

Because the multi-tenant architecture is assumed being the most appropriate solution for

business SaaS applications, different types of multi-tenancy are described in this paragraph. Guo

et al. (2007) indicate that there are two kinds of multi-tenancy patterns:

- Multiple instances: supports each tenant with its dedicated application instance over

resources.

- Native multi-tenancy: supports all tenants by a single shared application instance of

various hosting resources.

It is important to note that the first pattern (multiple instances) by Guo et al. (2007) is not a real

multi-tenant pattern according to the definition by Bezemer & Zaidman (2010). There are three

approaches to implement multi-tenant databases according to (Jacobs & Aulbach, 2007), these

are similar to the multi-tenancy variants as described by (Bezemer & Zaidman, 2010):

1. Shared machine: each customer gets their own database process and multiple

customers share the same machine.

2. Shared process: each customer gets their own tables and multiple customers share the

same database process.

3. Shared table: data from many customers is stored in the same tables.

The ‘shared table’ approach can be seen as the highest level of multi-tenancy database

implementation approaches. Please note that the shared table approach is similar to both the

native multi-tenancy pattern described by (Guo, Sun, Huang, Wang, & Gao, 2007) and the ‘pure

multi-tenancy’ variant by (Bezemer & Zaidman, 2010). Therefore, it can be concluded that there

is an agreement on the highest level of multi-tenancy, since they are all similar. Microsoft

(Chong et al., 2006) makes the distinction between:

- Separated database: different database for each tenant.

- Separate schema: multiple tenants are hosted in the same database, with each tenant

having its own set of tables that are grouped into a schema created specifically for the

tenant.

- Shared schema: the same database and the same set of tables to host multiple tenants’

data.

Database Database Database

Shared machine

Database

Shared process Shared table

Table Table Table

Database

TableTable Table Table

Shared schema

Database

Table

Figure 4 Multi-tenant implementation approaches

Pricing patterns for business SaaS applications

24

The figure above is the result of the combined views of Chong (2006), Jacobs & Aulbach

(2007) and Bezemer & Zaidman (2010).

Benefits and liabilities

By performing a literature study, the benefits and liabilities of provisioning a multi-tenant SaaS

application are discovered. These are categorized in the following four categories: costs,

hardware & performance, development & maintenance and security. The next paragraphs

discuss the benefits and liabilities for each of these categories.

Costs

By provisioning a SaaS application in a multi-tenant architecture, a software vendor can reduce

costs. Since multi-tenancy requires a small infrastructure, compared with a multi-user

architecture, it reduces costs on hardware and infrastructure (Tsai et al., 2007). Similarly,

because of the large-scale capabilities of this architecture and the higher utilization of the

hardware it results in lower costs for hardware (Hamilton, 2007; Motahari-nezhad, Stephenson,

& Singhal, 2009) and hosting (Kwok, Nguyen, & Lam, 2008) .

As the number of instances is much lower in a multi-tenant architecture, the deployment of

applications, updates and new versions is much easier and therefore cheaper (Bezemer &

Zaidman, 2010). Furthermore, multi-tenancy significantly reduces delivery cost for a large

number of customers (Gao et al., 2011), resulting in an increased profit margin for the software

vendor (Guo et al., 2007).

A disadvantage of (moving to) a multi-tenant architecture might be the initial and start-up costs

for development or reengineering an existing single-tenant SaaS application into multi-tenant

application (Bezemer & Zaidman, 2010). The software possibly should be reconstructed

because it was actually built for a different architecture. However, since the reduced cost on

infrastructure and hardware resources, in the long term it is profitable as illustrated in Figure 5.

Figure 5 Cost over time for a hypothetical pair of SaaS applications; one uses a more isolated approach, while

the other uses a more shared approach (Chong et al., 2006)

Maintenance & Development

A multi-tenant SaaS application is considered to be more affordable for customers because of

the capabilities for customization and scaling (Kwok & Mohindra, 2008).

Improvements on management efficiency may also be accomplished because of a uniform

method for administering the software (Jacobs & Aulbach, 2007). A multi-tenant application

may also benefit the customers by saving money and time while having immediate access to the

latest software functionality (Kwok et al., 2008). Furthermore, by leveraging a multi-tenant

SaaS application, software vendors can significantly ease maintenance operations (Gao et al.,

2011).

Pricing patterns for business SaaS applications

25

On the other hand, software vendors are worried that multi-tenancy might introduce additional

maintenance problems because these new SaaS applications should be highly configurable and

therefore add complexity, which is expected to affect the maintenance process (Bezemer &

Zaidman, 2010). Similarly, extensibility support for the SaaS application is, since shared

structures are harder to change individually (Aulbach et al., 2008).

Other disadvantages of adopting multi-tenancy as a software architecture might be that the

source code should be rewritten (Tsai et al., 2007) and the increased complexity in deployment

and management (Guo et al., 2007).

Hardware & performance

Considering the hardware and performance, multi-tenancy improves the utilization rate of the

hardware by placing multiple customers on the same server (Bezemer & Zaidman, 2010) and

multi-tenancy allows pooling of resources (Jacobs & Aulbach, 2007).

Since multi-tenancy supports many customers on the same hardware resources, the software

vendor should be aware that intensive use from one customer does not affect the performance of

another customer (Guo et al., 2007)

Security

A multi-tenant architecture can weaken security, because instead of access control on

infrastructure level it should be performed at the application level (Aulbach et al., 2008). This is

important issue because a security breach may result in the exposure of data from one customer

to the other which might be a competitor (Bezemer & Zaidman, 2010). Therefore multi-tenant

SaaS applications require “adequate, auditable, protection against the risk of data leakage

between customers” (Tsai et al., 2007).

4.2 COSTS
The cost elements of maintaining business SaaS applications, from the point of the software

vendor, are investigated. A document study is performed to find what the costs are for software

vendors. Interviews with both financial managers and software architects are held to verify the

completeness of the costs. At the case study company the costs of deploying their software as a

service are investigated.

The research of the costs is done by a document study: invoices and license contracts found in

the bookkeeping software or provided by the CFO or financial manager of the case study

company are the main source for this study. To ensure the completeness of the document study

on the costs, the results are discussed with the CFO and the Director Architecture & Innovation

to verify the results and adjusted if necessary.

During one of the interviews with the Chief Architecture & Innovation mentioned that the costs

of running the ERP Online product exist of:

- hardware costs

- energy costs

- software licenses

The costs of hardware are relatively low compared to the energy and licensing costs. The latter

two have a high impact on the total costs of running ‘ERP Online’. The Chief A&I specially

Pricing patterns for business SaaS applications

26

mentioned that the license costs for their database software are high and the supplier

significantly increased the prices recently.

Interviews with the Chief Financial Officer, the Director Architecture & Innovation and the

former manager of ERPOnline are conducted to identify the different actors for provisioning a

software product as Software as a Service. This resulted that in general there are the following

actors when offering SaaS: an infrastructure provider, a platform provider, a software provider

and the end-customer.

SaaS cost structure

This section describes the cost for the software vendor when they provide Software as a Service.

The costs might differ depending on the chosen deployment model for delivering SaaS. A

distinction is made between software, platform (operating system) and infrastructure (hardware

and hosting). These different combinations result in seven different combinations of deployment

possibilities as depicted in the table below.

 On premises Service / XaaS

A B C D E F G

Software User Vendor User User Vendor Vendor Vendor

Platform User User User Provider Vendor Vendor Provider

Infrastructure User User Provider Provider Vendor Provider Provider

Table 4 Different combinations of deployment possibilities

The following responsible organizations can be distinguished:

 User: an organization or person who uses the software.

 Vendor: a software vendor that develops the software and offers it to the customer.

 Provider: a service provider facilitate a certain service such as the platform or the

infrastructure, but not the software itself

Note that the table describes the responsible organizations, so in case of option E, it could be the

case that the vendor hires the platform and the infrastructure from an external party, but offers

the whole package (software, platform and infrastructure) to the user of the software. Each of

those possible combinations is discussed in the table below.

Option Description

A The user develops software in-house and is responsible for both the infrastructure and

platform.

B Software from a software vendor is installed on the platform running on the

infrastructure owned by the user on the premises.

C The software developed by the user, runs on their own maintained platform, but the

infrastructure is provided as a service by a provider.

D The software developed by the user is provided as a software a as service because it

runs on an external platform and infrastructure, maintained by a provider.

E The software vendor developed the software and offers the software on their platform

and infrastructure maintained by the vendor.

F The software and the platform are both maintained by the vendor, but the

infrastructure is served by a provider.

G The software, developed by a software vendor, runs on a platform and infrastructure

maintained by an external provider.
Table 5 Description of possible deployment models

Pricing patterns for business SaaS applications

27

Software ecosystem

A software ecosystem is a set of businesses functioning as a unit and interacting with a shared

market for software and services, together with the relationships (Jansen, Finkelstein, &

Brinkkemper, 2009).

The cash flow in a SaaS ecosystem is typically as follows: The cloud provider charges the SaaS

provider for the usage of the cloud. The SaaS provider charges the SaaS user for the application,

but since the SaaS provider is also charged for the cloud usage they will charge the end user for

the costs of the cloud usage.

To identify the costs involved in providing a business SaaS application a software supply

network (SSN) is modelled, as part of the software ecosystem of the case study company. A

SSN is a series of linked software, hardware, and service organizations cooperating to satisfy

market demands (Jansen, Brinkkemper, & Finkelstein, 2007). A SSN specifies the suppliers,

customers, intermediaries and trade relationships from the perspective of the company of

interest. The trade relationships are divided in products, services, finance and content. By

modelling a SSN, the costs between the suppliers and the company of interest are clarified,

which is part of the research of identifying the costs of providing a business SaaS solution.

Figure 6 depicts the ERPComp software supply network for ERPOnline. ERPComp is at the

centre of the diagram. ERPComp directly supplies its customers with the ERPOnline product

(S.2) and the customer pays a fee for it. This fee is usually charged on monthly basis and is

based on the number of named users.

ERPCompEvoSwitch LeaseWeb Customer
S.1

Services
S.1: High-Speed Internet
S.2: Access to ERPComp Online service
S.3: Hosting

Products
P.1: VMware software for virtualization
P.2: Microsoft SQL Server
P.3: Microsoft Windows OS
P.4: Microsoft Virtual Desktop Access

S.2

€.6

Microsoft

€.2

VMware

P
.1

P.2

P.3

P.4

S.3

€.7

€.1

€.5

€.3

€.4

Fees
€.1: Fee for VMWare software (P.1)
€.2: Fee for Microsoft SQL Server (P.2)
€.3: Fee for Microsoft Windows OS (P.3)
€.4: Fee for Microsoft Virtual Desktop Access (P.4)
€.5: Fee for High-Speed Internet (S.1)
€.6: Fee for ERP Online service (S.2)
€.7: Fee for Hosting (S.3)

Figure 6 Software Supply Network for ERPOnline

Pricing patterns for business SaaS applications

28

4.3 MEASURING USAGE
Business SaaS applications are highly configurable solutions for both small and large

consumers, therefore it is important to measure usage. Metrics for business SaaS applications

are gathered by performing a literature study on pricing metrics.

According to Kittlaus & Clough (2009), metrics can be many things as long as it tracks to

increased customer value: quantity, usage, number of transaction, etcetera. Since there are many

different ways of perceiving value to a business SaaS application there are also many different

metrics. The metrics that are found during the literature study are included in the appendix.

A distinction can be made between usage-dependent metrics and usage-independent metrics

(Lehmann & Buxmann, 2009). Typical usage-dependent metrics are number of transactions,

memory requirements and time. For usage-independent metrics named user, concurrent user and

number of servers are common used metrics.

Lehmann & Buxmann (2009) mention that it is important that the chosen metric should be

strongly linked to what the customer considers to be fair.

Kittlaus & Clough also suggest that the metric that a software vendor chooses, leads to

predictable costs for the customer but also for predictable revenues for the software vendor.

Only implementing measurements into the source code it not enough for using metrics in

software. Also the back office systems should be support the tracking of the software for

invoicing (Kittlaus & Clough, 2009), but also monitoring usage can lead to administrative costs

(Lehmann & Buxmann, 2009).

4.4 CHAPTER OVERVIEW
This chapter describes the implications of provisioning business SaaS applications. First

different SaaS architectures are identified and evaluated. The multi-tenant architecture is the

most appropriate architecture for business SaaS applications since it supports configurability at

the highest level.

When studying the costs it turned out that a software vendor will mainly face costs for the

hosting and software licenses. For measuring usage of a business SaaS applications metrics are

needed in order to price the software accordingly. The main differences between metrics is

whether they are usage dependent or not.

Pricing patterns for business SaaS applications

29

5 PRICING PATTERNS
This chapter describes the identified problems with pricing SaaS and how these problems are

identified. To identify problems with pricing business SaaS applications, a document study, a

literature study and multiple interviews are conducted.

Pricing problems are identified during interviews with multiple stakeholders at ERPComp

(including the CFO, Director Architecture & Innovation, product managers and financial

managers). Since it might be possible that the experts at ERPComp could not think of all

possible problems with pricing their SaaS application, a document study at ERPComp is

performed. The following definition is used to indicate a pricing problem.

Pricing problem: a problem regarding pricing that software vendors face because they offer a

business SaaS application to their customers.

The price list is studied to identify potential pricing problems. These potential problems were

verified with sales managers during an interview. Additionally, a short literature study is

conducted to identify additional problems related to pricing business SaaS applications.

A literature study on several topics is conducted to find decent solutions for those pricing

problems, such as software pricing. Principles from microeconomics are also adopted in the

pricing patterns. A solution is presented for each of the pricing problems, based on the literature

study.

Pricing solution: a comprehensive solution for an identified pricing problem a software

vendor.

As there are multiple solutions and therefore there is the need to describe the problems and

solutions uniformly. This is done by describing them as patterns. Each solution is described in a

structured way starting by addressing the problem, next the solution is explained with a

supporting diagram, followed by a real example.

The table below gives an overview of the activities performed to develop the pricing patterns.

Activity Method Description

Identifying problems Document study Documents including invoices, price lists and

price guidelines are studied.

 Interviews Interviews with experts from ERPComp are

conducted to verify findings from document study

and to find other problems.

 Direct observations The study is conducted at ERPComp and direct

observations were often used as starting point to

identify pricing problems.

Find solutions Literature study Literature on microeconomics is studied to find

solutions for the pricing problems.

Evaluate solutions Survey With two surveys, sent to experts within in

ERPComp, the pricing solutions are evaluated.
Table 6 Used methods for developing pricing patterns

Pricing patterns for business SaaS applications

30

5.1 PATTERNS
A pattern is “a description of a solution to a problem found to occur in a specific context”

(Meszaros & Doble, 1997). By describing the solutions as patterns results in all solutions are

presented in a uniform manner. To compare and evaluate the found solutions, there is a need for

presenting the problems, solutions and consequences in a structured way. Therefore, it is chosen

to describe them as patterns.

The identified pricing patterns are discussed following a specific template. According to

(Wellhausen, 2011), a pattern contains at least five sections, described in Figure 7.

Figure 7 Essential pattern sections and their writing order, adapted from Wellhausen (2011)

For this research, the ‘context’ is considered the same for all pricing patterns, there for the

context is not mentioned by each pattern. The context for all pricing patterns is: A business

software vendor that offers a configurable SaaS application, hosted in a private cloud by an

external hosting partner.

First, the problem section describes the problems and how they are identified at ERPComp. The

need for a solution is explained as well as a description of what the problem makes a problem.

This is followed by a paragraph about the solution. The solution is described, next a diagram is

depicted that illustrates the problem and the solution, followed by a supporting text that explains

the diagram.

Every pricing pattern ends with an example, whereby real examples and real data from

ERPComp are used as much as possible to explain the possible appliance of the solution in a

real life setting.

Consequences are also part of a pattern, but these are elaborated in the next chapter where

experts from ERPComp evaluate the solutions. Consequently, the different elements of the

pricing pattern are discussed separately, but a coherent overview is given at the end of the next

chapter. When the consequences are added to the pattern, the pricing pattern is seen as complete

and defined as follows.

 Solution

Conse-
quences

Forces

Problem

 The Context section sets the stage

where the pattern takes place.

 The Problem section explains what

the actual problem is.

 The Forces section describes why the

problem is difficult to solve.

 The Solution section explains the

solution in detail.

 The Consequences section

demonstrates what happens when you

apply the solution.

Problem Domain

?

Solution Domain

!

Pricing patterns for business SaaS applications

31

Pricing pattern: a structured description of a pricing problem, the provided pricing solution, a

detailed example and an overview of evaluated consequences.

This research focuses on pricing business SaaS applications, therefore the patterns (problems,

solutions and consequences) are written from a software vendor’s perspective. While

developing the solutions for the identified problems, the specific characteristics of business

SaaS applications are taken into account, based on the findings in the previous chapters.

The following sections of this chapter describe the pricing patterns for business SaaS

applications. For the examples, a description of a known use is given or the example is

constructed using data from the case company.

Icons and symbols are used in diagrams to explain the solution for the pricing problem. The

table below is a legend for the used symbols.

Symbol Explanation

fixed price

variable price

influences price

different prices occur within one pattern,

indicated by the number

customer of the SaaS application

usage indicator

time indicator

Table 7 Legend for used icons and symbols

Pricing patterns for business SaaS applications

32

5.2 USAGE-DEPENDENT PRICING

Problem

Different users of a SaaS application have different usage levels and therefore the costs per

customer differ for the software vendor. This is a risk for the software vendor since it might be

possible that the intensive use of the SaaS application by some customers, the costs will exceed

the (fixed) price. A customer who heavily uses the software pays the same price as a customer

that use the software only once in a month.

For example, once a word-processing software program is installed, it does not matter whether a

customer processes one or one hundred documents a day, since the onetime fee is already paid.

If a company intensively uses the software, the software might be worth more than the price

asked by the software vendor. For an occasional user on the other hand, the software is worth

less and the (fixed) price is too high.

The willingness to pay a certain price differs among the customers, they have different

reservation prices. The reservation price is the highest price a buyer is willing to pay for goods

or a service (Mankiw & Taylor, 2006). With a fixed price, there is no relation between the

reservation price and the price of the SaaS application.

Since the vendor might have higher costs when usage is higher the software vendor’s profit

might decrease.

Solution

Usage-dependent pricing is the solution for the problem of different costs per customer for the

software vendor, caused by differences in usage.

Since SaaS provides new possibilities to charge customers, it is possible to charge to subsequent

use because the software vendor can monitor the usage of the application by the customer.

Normally, with on-premises installed software the customer is allowed to use it indefinitely.

This is also caused by the fact that the software vendor has little to no possibilities to monitor

the usage of the software when it is installed on premises.

The assumption for usage-dependent pricing is that if a customer uses the software more

intense, the reservation price will be higher because it has more value to the customer. This type

of pricing is illustrated depicted by Figure 8. With usage based pricing a specific price is

assigned to each level of usage, whereby the firm does not distinguish between customer types

(Sundararajan, 2004).

Pricing patterns for business SaaS applications

33

Figure 8 Illustration of usage-dependent pricing

On the left side of the figure above, three customers are illustrated. Each of them have a

different usage of the software as illustrated by the coloured bars. Since all customers use the

same SaaS application, the sum of all customers results in the total usage. The software vendor

might be faced with costs from the hosting provider that depend on total usage of the servers.

Since the customers have a different usage level of the SaaS application they are charged

according their usage as indicated by the grey bar and the dollar sign at the right end of the

illustration. Hereby the customers are charged based on their usage (Miranda, Baida, & Gordijn,

2006).

The price of the product should be higher if the customer is willing to pay more for the product.

This willingness might be influenced by the expected usage of the software. This is possible

because one customer will use the software more often than another customer. The costs of

provisioning SaaS are partly of a variable nature (Lehmann & Buxmann, 2009). Therefore it is

reasonable to charge these costs also on a variable basis to the customer.

Example

Windows Azure is a cloud hosting platform by Microsoft that is fully usage-dependent. Using a

calculator online
1
 a customer can indicate the required size of the database, the required

bandwith, the number of instances, etc. There are thirteen of these metrics in total. The customer

only has to pay for what is used without any upfront costs. In the table below some examples of

variables are given.

Variable Amount Price

Storage 1000 GB $93.00

Storage transactions 100 million $10.00

SQL Database size 100 MB $ 5.00
Table 8 Usage-dependent pricing from Windows Azure

1
 http://www.windowsazure.com/en-us/pricing/calculator/

Pricing patterns for business SaaS applications

34

5.3 SITUATION-BASED PRICING

Problem

With usage-dependent pricing, it is hard to calculate the costs in advance. They are usually less

technical and do not how much disk space they are going to use for example.

Because it is hard to calculate usage in advance, the costs are unknown and therefore result in

unpredictable expenses for the customer. The usage of a SaaS application can be estimated

beforehand but the precise usage is only known after it is actually used.

Solution

Situation-based pricing solves this problem by using metrics that are not related to usage, to

define the price. Therefore, metrics that define the situation for situation-based pricing are

needed. Those metrics do not measure the actual usage of the software but they give an

indication in what kind of situation the software is used. Examples of metrics for situation-based

pricing are given by Lehmann & Buxmann (2009) and are listed in the table below. An

extended list of variables that can be used for situation-based pricing found during the literature

study is included in the appendix.

Situation-based metrics

Named user

Concurrent user

CPU

Key performance indicators

Machine, server
Table 9 Situation-based (usage-independent) variables according to Lehmann & Buxmann (2009)

Non-technical metrics, related to the customer’s specific situation are used for situation-based

pricing. For situation-based pricing, metrics are used that are not related to the actual use of the

software (Lehmann & Buxmann, 2009). Note that Lehmann & Buxmann (2009) used the term

‘usage-independent pricing’ to indicate situation-based pricing. In this study it is chosen to use

situation-based pricing because usage-independent pricing would implicate all pricing patterns

except usage-dependent pricing.

Figure 9 Illustration of situation-based pricing

Pricing patterns for business SaaS applications

35

The illustration above depicts three different customers. Each of these customers have a

different ‘situation’, illustrated by the icons on the right side of the user. These customers make

use of the SaaS application, illustrated by the blue arrows. The price is defined based on the

situation, illustrated by the corresponding icons.

A metric related to the situation of the customer should be chosen. The number of occurrences

of that metric times the defined price per metric, result in the total price. Usually the calculation

is: ‘situation-based variable’ times ‘number of occurrences’.

Example

A metric like number of named users can be used for situation-based pricing. Hereby the

number of users is leading for defining the price of using the software. The software vendor

defines a price per user that the customer has to pay, for example €5,- per month. If the

customer’s company has 20 employees, the total price per month is €100,-.

At the moment the number of employees at the customer changes, also the monthly price

changes according to the new number of users.

5.4 COST-BASED PRICING

Problem

The costs of developing and maintaining a SaaS application are not equally divided among the

customers, when every customer pays the same price.

When the software vendor develops a new feature that requires a lot of development time and

therefore money, this functionality becomes available for everyone who uses the software. In

that case every customer pays for the development costs, even those customers who do not

require and use the new (expensive) functionality.

Solution

With cost-based pricing the customers are charged based on the costs for the functionality that is

needed.

Cost based pricing is different from usage-dependent pricing and situation-based pricing since

those prices are based on (perceived) value for the customer. Also, the actual cost of producing

the software are taken in to account.

Figure 10 Illustration of cost-based pricing

Pricing patterns for business SaaS applications

36

The diagram above explains cost based pricing. On the left side three different modules are

depicted with their corresponding (development) costs. The SaaS application consists out of

these three modules. When a customer uses functionality from one of the modules he is charged

accordingly.

Example

The number of development hours can be used to calculate the costs of the development for a

specific function. First, make a table with the functions and the required development hours.

Second, define the following parameters: margin, break-even time and costs per development

hour. To calculate the total development costs, the costs per development hour should be

multiplied with the total development hours. When users are charged per month the total costs

are divided by the number of break-even months. The values depicted in the table below.

Hence, a customer uses the application according to the data in the table below. Usage can be

measured in several ways, i.e. hours or number of transactions. Next, the needed development

hours for a function should be multiplied with the usage. For each function the relative usage is

used to calculate the costs per month. This is increased with the defined margin resulting in the

costs per month.

Function Description Dev.

hours

a Declaration F-biljet 2012 378

b ASite: Document management 892

c Wages and Retirements

Declarations

134

d Warehouse stock movement 232

Total 1636

Financial

Margin 30%

Costs per development hour 100

Break-even months 36

Total development costs €

163.600,00

Costs per month € 4.544,44

Revenue per month € 2.238,89

Customer Function Usage Costs per month Price

1 a 5 35 € 194,44 € 252,78

1 c 10 200 € 1.111,11 € 1.444,44

Subtotal € 1.305,56 € 1.697,22

2 d 3 75 € 416,67 € 541,67

Subtotal € 416,67 € 541,67

End total € 1.722,22 € 2.238,89

Pricing patterns for business SaaS applications

37

5.5 FLAT FEE PRICING

Problem

Calculating and measuring the usage of the SaaS application might be difficult, resulting in

unpredictable costs for the customer and unpredictable income for the software vendor.

A problem with a usage dependent pricing pattern is that tracking the usage of the software by the

customer might be complicated. In addition, the costs for the customer are unknown in advance and

hence the revenue for the provider. Furthermore, the phenomenon ´too cheap to meter´ might be a

problem to charge accordingly usage. This occurs when the implementation of measurements and

metrics is not in line with the costs of using the SaaS application.

Solution

To avoid difficulties with measuring usage a software vendor could opt for flat free pricing. Hereby

the software vendor specifies a price to be paid by the customer in exchange of unlimited usage of the

SaaS application (Sundararajan, 2004). This solution is illustrated below.

Figure 11 Illustration of flat fee pricing

On the left side there is a customer making use of a SaaS application, the usage is irrelevant. Although

the software vendor might be faced with additional costs if the customer intensively uses the software,

the customer only has to pay a fixed price, there are no transaction costs associated, the customer

simply has to pay the pre-specified price (Sundararajan, 2004). A customer has to pay a single, fixed

price regardless of usage or any other metric (Kittlaus & Clough, 2009).

A flat fee pricing pattern is available in two flavours: a onetime fee or recurring costs. In both cases,

the price is fixed, but customers might have to pay it only once or have recurring payments, for

example once a month or once a year. In either case, unlimited use of the service is included.

Example

The usage of two different customers is depicted in the table below. Customer A has used the SaaS

application for 2 hours in the last month, while customer B has used the same application for 25 hours.

Although there is a significant difference between the usages of these two customers, they have to pay

the same price for the SaaS application.

Pricing patterns for business SaaS applications

38

Customer Hours of usage Costs Price

A 2 €2 €20

B 25 €25 €20
Table 10 Example of flat fee pricing

Note that the profit for the software vendor for customer A is €18, while there is a loss for customer B

of €5. However, the overall profit is €13.

5.6 TWO-PART TARIFF PRICING

Problem

When applying a pure usage based model the problem arises that the revenues for the vendor are

uncertain. Also, in many cases the (potential) customers do not know in advance what their usage of

the software will be.

In case of a pure usage-based pricing pattern, it might be that the customer will not promote the use of

the software, because the costs are lower as the customer does not use the software.

Solution

Applying a two-part tariff whereby the customer pays a variable price based on usage upon a fixed

price results in less uncertainty about the income/costs.

The customer pays a fixed amount plus an additional usage based charge (Miranda et al., 2006). The

illustration below explains this solution. On the left side, there are there customers using the SaaS

application on a different usage level.

The price that the customer has to pay is divided in two parts. There is a fixed fee that the customer

has to pay on a monthly or a yearly basis. On top of that, there is a fee which is defined by the level of

usage from the customer. The fixed fee can be used to recover the costs on the development. Similarly,

the usage-dependent fee can be used to charge for the transaction costs and marginal costs, which are

caused by usage of the software.

At this moment the most favourable pricing pattern for this type of software is the subscription

combined with the usage-based model (Abdat, 2009).

Figure 12 Illustration of two-part tariff pricing

Pricing patterns for business SaaS applications

39

Example

The software vendor can choose to charge customers a monthly fee of €20 and a usage-dependent fee

based on the number of logins. ERPComp itself is charged for using software that facilitates remote

access. These charges are based on the number of remote logins on the webserver by the customers

from ERPComp. These costs are about €0.20 per login.

In the table below two different customers are depicted. Customer A, has 30 logins because he uses

the software every day. Customer B also uses the software on a daily basis, but has five employees

resulting in 150 logins.

Customer Number of logins Login costs Fixed price Total price

A 30 €6 €20 €26

B 150 €30 €20 €50
Table 11 Example of two-part tariff pricing

In this example, the two parts are the login costs and the fixed price whereby the login costs are usage-

dependent. Based on the costs of €0.20 per login, customer A is charged €6 and customer B €30 for

their logins to the SaaS application. The total costs are mentioned in the table.

5.7 PEAK LOAD PRICING

Problem

A software vendor might face the problem of peak hour usage: a high load on the servers at certain

times. Although the high load is only at some specific times, the software vendor should account for

this by having enough server capacity. This results that this capacity is only used during peak hours

but not during off-peak hours.

During the interviews, both the CFO and the Director Innovation and Architecture mentioned this

problem. At some specific points in time there is a high load on the servers because customers use a

certain function of the software that has a high impact on the resources. A common example at

ERPComp is pay rolling, since a lot of customers do pay rolling for their employees at the end of the

month.

In the section about SaaS architectures it was founded that since multi-tenancy supports many

customers on the same hardware resources, the software vendor should be aware that intensive use

from one customer does not affect the performance of another customer (Guo et al., 2007).

Also Armbrust et al. (2009) explain this problem: “provisioning a data centre for the peak load it must

sustain a few days per month leads to underutilization at other times” (Armbrust et al., 2009). From an

economic perspective one could say that the customers have different utility functions during peak

hours. Since the SaaS provider has to account for the peak hours they should have the capacity always

available and running in their ‘private cloud’, they have continuous costs of maintaining these servers,

which are also running during non-peak hours.

Solution

To charge the customers for their peak-hours, it is suggested that the SaaS provider charges different

prices for different time segments when using usage-based pricing (Wu, 2010), as illustrated below.

On the left side three customers are illustrated, each of them using the SaaS application at specific

Pricing patterns for business SaaS applications

40

times during the day. Since at specific times the SaaS application faces a high load on the hardware,

the customers are charged according to the moment they have used the software.

Figure 13 Illustration of peak load pricing

Example

To apply the peak load charging pattern, a software vendor might want to analyze the usage statistics

of the SaaS application. The charts below depicts the number of logins per hour on the ERPOnline

application.

Figure 14 Graph of number of logins per hour, the left graph is during the day, the right graph during a whole month

When analyzing the left chart it can be seen that the usage is the highest between 12h and 15h. From

19h till 8h the usage is significantly lower compared to usage during working hours. From the right

chart, that depicts usage during a whole month we see that usage is the highest at working days

(Monday till Friday) and extensively lower during the week-ends. When analyzing the usage during

working days a small drop can be noticed at Wednesdays and Fridays. The problem is that the needed

capacity is equal to the required capacity during peak hours, while the servers are not (fully) utilized

during non-peak hours.

Peak load charging provides a solution in here. When the usage of the SaaS application is more

expensive during peak hours, the required capacity will be moved to another time of the day, because

not all customers are willing to pay more for the usage at specific times.

1 3 5 7 9 11 13 15 17 19 21 23

Pricing patterns for business SaaS applications

41

The peaks in usage are expected to flatten, because it is expensive during peak hours the usage will

increase during the non-peak hours. Hereby the available capacity is optimized, since the constant use

of the SaaS application. In case peak load pricing does not lead to a decrease in usage, the extra

income from higher pricing during peak hours can be used to invest in extra server capacity that is

needed to provision the customers.

5.8 BUNDLE PRICING

Problem

When a customer buys standard software the problem is that this software usually contains parts of

functionality that a customer does not require, but the customers are forced to also buy these not

required parts (Katzmarzik, 2011).

However, when it is offered as a whole package the customers does not have the choice to buy only

the required parts, therefore the available budget should be spent on both the required and not required

functionality (Katzmarzik, 2011).

A software product usually is built upon different modules, which all provide certain functionality.

When the software vendor offers the software as a whole package at a single price, all customers have

to pay the full price for using the software. It might be that a customer only requires the functionality

from specific modules that are available in the whole package. Software companies that develop/offer

a large software product usually split it up into several modules.

The problem might also be the other way around when the software vendor sells every module

separately and therefore resulting in a lot of fragmentation. The problem is that is difficult for the

administration when there are a lot of separately sold modules.

Solution

With bundle pricing it is possible to split up the main software package into separate combinations of

modules (bundles) and price them separately. The bundles are made for specific types of customers

which are in need of certain combined functionality but do not need all functionality which is available

in the main software package.

Figure 15 Illustration of bundle pricing

In the figure above, a standard software package is illustrated in blue. This standard software is

consists of six modules, named from A to F. Assuming that these modules also function as standalone

Pricing patterns for business SaaS applications

42

modules; they can be bundled in separate packages. Since these separate packages contain less

functionality then the whole package they are cheaper. Because functionality differs between the

bundles, also the price between the bundles can differ, as depicted by the dollar sign.

Example

Bundling several modules should be done carefully to prevent a gap between the bundles. This

problem is illustrated by the following example.

“The small company bundle has a lot of functionality but is relatively cheap. For associations it would

be nice to have a membership record functionality. This functionality not available in the ‘small

company bundle’ but it only available in the much more expensive ‘big company bundle’. Another

disadvantage is that the ‘big company bundle’ contains a lot of functionality that is not needed by the

societies. To serve society customers it would be better to include the membership functionality in the

‘small company bundle’.”

The fragment above is based on a discussion by employees of the finance and controlling department,

indicating that bundling software should be done carefully.

5.9 DUAL PRICING

Problem

A software vendor might have different types of customers that have a different valuation of the

software. In other words, the reservation prices among the customers differ.

When a software vendor offers a SaaS application which is suitable for many different markets, it

might be that the organizations from one market segment have different reservation price, compared to

organizations from another market segment. When the price of the software is lowered for all

customers this would mean a decrease in revenue.

At ERPComp this situation occurred in the healthcare market where a competitor offers a similar

product at a lower price than ERPComp.

Solution

Applying different prices for different types of customers can be used to solve this problem. These

different types of customers be bundled in groups of customers who are all operating in the same

market. However, also other characteristics of a customer can be used for categorization in customer

groups that have different prices for using the same software compared to other customer groups.

Pricing patterns for business SaaS applications

43

Figure 16 Illustration of dual pricing

This solution is depicted in the diagram above, two different customer types; making use of the same

Software as a Service, pay a different price for using that same service.

The different types of customers are illustrated as two users coloured in blue and green. The difference

between these customers is also illustrated by the dotted line, which is not depicted in the illustration

of the SaaS application (‘computer-cloud’). Although they make use of the same SaaS application,

they are charged differently, illustrated by $
1
 and $

2
.

Example

An example of a customer complaint found in an e-mail discussion between the CFO and a customer

is depicted below.

“We want a web portal for our customers, therefore we can choose between your software:

Esite or another software package. The problem is that your price (€2.50 per contact) is too

high, while we have about 15.000 customers. Many of those customers are once-only

customers. We want to service these customers; this price of this product is too high since it

won’t lead to direct sales or more profit.

At this moment, the pricing is such that I won’t buy the software, it is a missed opportunity if

we have to develop a custom-made web portal which is cheaper, while your software is meant

to be a web portal.”

Esite is a new software product from ERPComp whereby it is possible as a customer to login and for

example make a reservation for a car at car rental service. This request is automatically linked to the

ERP software from ERPComp. Currently, ERPComp customers have to pay €2,50 per contact they

have. The problem is that a business-to-consumer company usually has a lot one-time customers, who

will occasionally use Esite. Therefore they don’t want to pay as much as a business-to-business

company that usually has a fixed amount of customers that will often use the software.

This example illustrates that the current pricing pattern that ERPComp has applied for this software

package does not fit for all customer types. In the example above, the complaining customer is a

business-to-consumer company, often dealing with one-time customers who will eventually make use

of the software only once and for this type of companies the software is too expensive at this moment.

Pricing patterns for business SaaS applications

44

5.10 CHAPTER OVERVIEW
The previous paragraphs gave an indication of the problems that a software vendor for business SaaS

applications might face. For each of the problem a solution is presented based on a literature study. In

the table below an overview is given of the solutions and the problem that the solution solves.

Solution Problem

Usage-dependent pricing Intensive customers are charged the same as less intensive customers

Situation-based pricing Usage-dependent metrics are hard to calculate in advance

Cost-based pricing Unequal division of costs

Flat fee pricing Measuring usage is difficult

Two-part tariff pricing Revenues are uncertain when usage based pricing is applied

Peak load pricing Extra capacity is needed for peak hour usage

Bundle pricing The main software package contains modules that are unneeded by

some customers

Dual pricing Different types of customers have different valuations for the same

software
Table 12 Overview of the identified problems and the corresponding solutions

The next chapter evaluates the solutions as proposed in the previous sections.

Pricing patterns for business SaaS applications

45

6 EVALUATION
This chapter describes the evaluation of the pricing patterns. The goal of the evaluation is to find

consequences of the pricing patterns described in the previous chapter.

The first part describes the application and usage of the pricing patterns within the case study company

to find practical usage of the pricing patterns. The second part is the evaluation of the pricing patterns.

This begins with gathering requirements for pricing patterns, followed by prioritizing these

requirements. Next, the requirements are matched to the pricing patterns as identified in the previous

chapter. The chapter concludes with an overview of all pricing patterns (pattern thumbnails), shortly

describing the problem, solution and consequences.

6.1 USAGE OF THE PRICING PATTERNS
The usage of the pricing patterns at ERPComp is identified to find out how the suggested pricing

patterns are used in a ´real world´ situation.

Sales managers and financial managers are interviewed to find usages of the pricing patterns. Also, a

document study of the price lists and price guidelines is conducted to gather information about the

pricing patterns that are currently used for ERPOnline. With the gathered information, the pricing

patterns from the previous chapters are evaluated.

The following paragraphs describe the usage of each pattern at ERPComp in detail as the result of the

interviews and document study.

Usage-dependent pricing

Usage-dependent pricing is not a common used pricing pattern within ERPComp. It is used as a

secondary pattern in addition to pricing based on named users.

For the customers of ERPOnline, 1Gbyte of data storage is included in the price. If a customer exceeds

this limit, an additional fee has to be paid for the extra storage. This extra storage is available in blocks

of 2Gbyte. Currently, about 700 of the 13.000 environments (including test environments) are

currently using more than 1Gbyte of data storage.

Situation-based pricing

Situation-based pricing is one of the main pricing pattern at ERPComp. As described in the previous

chapter there are several metrics available for situation-based pricing. The metric used for this pricing

pattern at ERPComp is ‘named user’. The number of named users registered at ERPOnline multiplied

with the monthly fee per user define the total monthly fee that has to be paid by the customer.

Also at a lower level situation-based pricing is somewhat applied. In the internal pricing guideline for

sales managers, the following remark was found at the bottom of the pricelist: “In case of a

considerable difference between office employees and other employees, different discount of an offer

may be applied, in consultation with a sales manager.” This remark was the reason for further

investigation, resulting in an interview with the responsible sales manager.

When asking the sales manager it turned out that discount is given to certain types of companies.

These are companies with a relatively small amount of office workers. This is usually the case for

companies with more than 25 employees or employment agencies. Accordingly, ERPComp offers

Pricing patterns for business SaaS applications

46

discount to companies that have a lot of ‘other employees’ besides office employees. Office

employees include sales, management, human resource management, etcetera. The ‘other employees’

do not need all the functionality offered within the main product. Therefore, certain functionality is

blocked and a discount is offered to those customers.

This happens in at least 50% of the implementations, according to the sales manager. In fact this is

usage dependent pricing because a customer has to pay less for employees that do not often make use

of the software. A weakness of this way of pricing is that the percentage of discount that is given to

the customer is the decision of the sales manager, there are no guidelines.

Cost-based pricing

Cost-based pricing is not one of the mainly used pricing patterns. ERPComp does not make

comprehensive calculations for defining the price for the software, because the margins are currently

high enough to cover the costs. The major impact on the costs are the development costs, but they are

seen as sunk costs by ERPComp.

Instead of looking at the real costs, ERPComp mainly focusses on the following aspects when defining

the price:

- Price of competing products

- Customer value

- Development costs

ERPComp focusses on a companywide profit, instead of calculating prices based on costs, according

to the CFO. Therefore, it is possible that they make losses on some customers.

Flat fee pricing

Flat fee pricing is not applied at ERPComp. The price of ERPOnline is based on the number of users

and the needed storage. Customers have to pay extra if they are in need of more data storage.

On the other hand, customers have unlimited access to the functionality of the SaaS application (when

it is part of their chosen bundle). Since access is given per named user, it is merely a situation based

pricing that is applied than a flat fee pricing pattern. Consequently, flat fee pricing is applied in terms

of unlimited use of functionality but not for the used data storage.

Two-part tariff pricing

It depends on the type of customer whether two-part tariff pricing is applied. Customers that are

satisfied with the included 1Gbyte data storage have no additional costs besides the monthly fixed

price. For those customers the situation based pricing pattern is applied.

On the other hand, there are also customers that are in need of extra data storage on top of the standard

provisioned 1Gbyte. Those customers are additionally charged by ERPComp for using the amount of

data storage that exceeds the 1 Gbyte. For this type of customer the two-part tariff pricing pattern is

applied.

Because it depends on the type of customer (in need of extra data storage or not), whether two-part

tariff pricing is applied, this pattern is not assumed as one of the main pricing patterns at ERPComp,

because it does not apply for all customers. Therefore two-part tariff pricing is assessed as secondary

pricing pattern at ERPComp.

Pricing patterns for business SaaS applications

47

Peak load pricing

Peak load pricing is not applied at ERPComp. They do face the problem of peak load usage, especially

during the end of the month when pay rolling occurs since it is usual for companies to pay their

employees at the end of month. To solve the problem of peak load usage at certain time in a month,

they make use of a batch server. Tasks that result in a high server load are postponed to be executed

during the night by the batch server.

Currently all customers accept this solutions since no complaints are known from customers that do

not agree with this solution. However, this might change in the future and therefore ERPComp has to

consider alternative solutions for the peak load problem, whereby peak load pricing might be the right

solution.

Instead of solving the problem of peak hour usage with a pricing pattern, ERPComp changed

functionality by using a batch server to avoid peak loads.

Bundle pricing

Bundling modules of the whole software package is one of the main pricing patterns used by

ERPComp. The main product from ERPComp consists of several modules such as ‘human resource

management’, ‘payrolling’, ‘workflow management’ and ‘customer relationship management’.

Since not all customers need all modules for their business, ERPComp made a pre-selection of several

related modules that are presented as a bundle. Each of these bundles has a focus on a specific market.

Consequently, there are bundles for education, health care and accountancy.

Dual pricing

There is no official form of dual pricing at ERPComp, there are different customer types but they have

chosen to differentiate them by mean of a different package as described in the bundling paragraph.

ERPComp indicates that there are different customer types, but instead of offering them different

prices for the same product, they pre-configured the standard product to serve specific customer and

consequently have different prices for each of the (pre-configured) packages.

In the price list, there are two similar bundles: ‘HRM/Payroll’ and ‘HRM/Payroll for healthcare and

education’. There is not a significant difference in price between these two bundles. Nevertheless, for

the latter bundle there are more software extensions available in the bundle. Therefore, the bundle for

healthcare and education does not differ in functionality except for the extensions that are included in

the package.

During an interview with the Chief Financial Officer, he mentioned that ERPComp chose to offer a

bundle with more functionality at a lower price to the health healthcare and education markets to

compete and gain market share. But also to keep up with the price of the competitors which are also

operating in those markets.

Overview

Based on the findings as described in the previous paragraphs, a table is made to give an overview of

the usage of the pricing patterns at ERPComp. For each pricing pattern, there are three options to

indicate the degree of application of the pricing patterns. The following definitions of the degrees are

used:

Pricing patterns for business SaaS applications

48

Primary: The evaluated pricing pattern is (one of) the mainly used pricing patterns.

Secondary: A used pricing pattern but not one of the main patterns, it is used as an addition to the

primary pricing pattern.

Not applied: The pricing pattern is not applied.

The results of the evaluation regarding the usage of the pricing patterns at ERPComp are summarized

in Table 13.

Primary Secondary

Not

applied

Usage-dependent pricing x
Situation-based pricing x
Cost-based pricing x
Flat fee pricing x
Two-part tariff pricing x
Peak load pricing x
Bundle pricing x
Dual pricing x
Table 13 Application matrix of the pricing patterns at ERPComp

From the table it can be derived that ‘situation-based pricing’ and ‘bundle pricing’ are the two primary

pricing patterns. Five of the remaining pricing patterns are used as secondary pricing pattern at

ERPComp, only ‘peak load pricing’ is not applied.

The evaluation of the pricing patterns showed that at ERPComp there are multiple pricing patterns are

used on top of each other for pricing ERPOnline. For example it is possible that customer choses for a

specific bundle with certain modules in it (bundle pricing), for every named user a monthly fee has to

be paid (context pricing), if this customer is in the education sector, he receives a discount that is not

available for other customers (dual pricing). If this customer needs more data storage than the standard

included 1 Gbyte they have to pay an additional fee per extra Gbyte (usage-dependent pricing).

Because the fee that a customer has to pay consists out of two parts: the monthly fee and (eventually)

for the data storage if it exceeds 1 Gbyte, also two-part tariff pricing is applied at ERPComp for the

same product. ERPComp applies five different pricing patterns for one product.

6.2 PATTERN EVALUATION
This section of the evaluation of the pricing patterns begins with gathering requirements for pricing

patterns, followed by prioritizing these requirements. Next, the requirements are matched to the

pricing patterns which are identified in the previous chapter. This chapter concludes with an overview

of all pricing patterns (pattern thumbnails), shortly describing the problem, solution and consequences.

Gathering requirements

In order to validate the pricing patterns on goodness and correctness, an expert validation with

multiple employees of the case study company is carried out.

Pricing patterns for business SaaS applications

49

Approach

For this expert evaluation the following approach is used:

1. The requirements of a good pricing model are gathered.

2. The requirements are prioritized.

3. The requirements are matched to the pricing patterns.

For gathering the requirements, the following question is asked in an e-mail to the sales managers:

“What are important criteria for a pricing model for SaaS?”. Note that the term ‘pricing model’ is

used instead of ‘pricing pattern’ since this is much more common and this term is used within the case

study company. A template of the e-mail sent to the financial and sales managers is included in the

appendix. One of the approached sales managers preferred a face to face conversation about the

criteria for a good pricing model, instead of answering by e-mail.

Results

Five financial and sales managers from the case study company are e-mailed, four of them responded.

The results are summarized in the table below. Since the respondents used different terms for the same

definition, similar requirements are merged. The characteristics are listed below, in the columns on the

right it is depicted which expert mentioned which characteristic as important.

E
x
p

er
t

1

E
x
p

er
t

2

E
x
p

er
t

3

E
x
p

er
t

4

transparent x x
relation between usage and price x
easy for administration x
predictable x
recurring costs x
easy to calculate x
usable to serve multiple markets x
clear insight for the customer x x x
Table 14 Overview of requirements mentioned by the respondents

Problems

Two of the answers are omitted because they are not useful for pricing models: ‘no space for discount’

and ‘consistent with market demand’, because these are not requirements for a pricing model as used

in this research. This results that eight characteristics are used for the prioritizing evaluation.

Pricing patterns for business SaaS applications

50

Prioritizing the requirements

It is excepted that not all requirements are of equal importance, therefore the requirements should be

prioritized. This is done by using the pair wise comparison method, which already has proved to be a

useful in an evaluation of methods for prioritizing software requirements (Karlsson, 1998).

Approach

No suitable free software was found to carry out a pair wise comparison with multiple stakeholders.

Therefore an online tool is developed with the use of PHP and MySQL. PHP is the programming

language and MySQL is database software used to retrieve the requirements and store the results.

One database table contains all identified characteristics. When a respondent started with the survey,

all possible combinations are calculated based on this table. These combinations are saved in a

separate table. The application randomly selects one of these combinations and shows it to the

respondent, accompanied with the question ‘which characteristic is more important for a SaaS pricing

model?’ followed by two characteristics where the respondents should choose the most important one

as can be seen in Figure 17.

Figure 17 Screenshot of the evaluation tool for prioritizing the characteristics (in Dutch)

The statements are presented till the respondent answered all combinations. A progress bar gives an

indication of the progress to the respondent. Clicking one of the characteristics saves the answer in the

results table and a new pair wise comparison is randomly selected and presented to the respondent.

Once the respondent answered all questions, a ‘thank you’ page is showed with the possibility to leave

an e-mail address to receive the results of this research. This survey is sent to eight people within

ERPComp, including the CEO, CFO, sales managers and account managers, seven of them completed

the survey.

Results

To analyse the results of the pair wise comparisons the analytical hierarchical priority (AHP) method

is used. The AHP-method allows to prioritize pair wise comparisons. Usually, the AHP-method

requires that the respondent give a weight to each answer. Since this weight was not asked in the

survey, all weights are given 5 points on a scale of 1 to 9, to equally asses the pair wise comparisons.

The results of the prioritization using the AHP-method are depicted in the table below. The normalized

principal Eigenvector is a percentage indicating the priority of the corresponding characteristic. The

higher the percentage, the more important it is.

Pricing patterns for business SaaS applications

51

Matrix

T
ra

n
s
p
a
re

n
t

R
e
la

ti
o

n
 b

e
tw

e
e
n

u
s
a
g
e
 a

n
d
 p

ri
c
e

E
a
s
y
 f
o
r

a
d
m

in
is

tr
a
ti
o

n

P
re

d
ic

ta
b
le

R
e
p
e
a
ti
n

g
 c

o
s
ts

E
a
s
y
 t
o
 c

a
lc

u
la

te

U
s
a
b
le

 f
o
r

d
if
fe

re
n
t

m
a

rk
e
ts

C
le

a
r

in
s
ig

h
t
fo

r

c
u
s
to

m
e

r

normalized principal
Eigenvector

Transparent

1 2 5 5 5 3 1/6 2 4/5

24,0%

 Relation between
usage and price

 1/2 1 2 2 3 1/6 3 1/6 2 4/5

16,2%

 Easy for
administration

 1/5 1/2 1 1 1/4 1 1/4 4/5 1/3 1/3

5,9%

Predictable

 1/5 1/2 4/5 1 1 1/4 1/5 4/5 1/3

6,1%

Repeating costs

 1/5 1/3 4/5 4/5 1 1/3 1/2 1/3

5,1%

Easy to calculate

 1/3 1/3 1 1/4 5 3 1/6 1 4/5 1/3

8,7%

 Usable for
different markets

 1/2 1/2 3 1/6 1 1/4 2 1 1/4 1 4/5

12,1%

 Clear insight for
customer

1 1/4 1 1/4 3 1/6 3 1/6 3 1/6 3 1/6 1 1/4 1

21,9%

Table 15 Matrix with the normalized principal Eigenvector as part of the AHP-method

When ordering the normalized principal Eigenvector percentages, the top 8 of most important

characteristics is as follows:

Position Characteristic

1. Transparent

2. Clear insight for the customer

3. Relation between usage and price

4. Usable for different markets

5. Easy to calculate

6. Predictable

7. Easy for administration

8. Repeating costs
Table 16 Overview top 8 characteristics

The characteristics ‘transparent’ and ‘clear insight for the customer’ are significantly more important

because of their high Eigenvector percentages (24.0% and 21.9%).

Problems

A problem occurred when one of the respondents could not retrieve the webpage. This was possibly

due some downtime of the web server, or a lacking internet connection of the respondent. However, he

tried again the next day, which worked fine. The respondents mentioned no other problems.

Pricing patterns for business SaaS applications

52

Matching the requirements to the pricing patterns

Since the pricing patterns and pricing characteristics are developed and identified independently, they

are not yet related to each other. Therefore, the requirements should be matched to the identified

pricing patterns.

Approach

A similar tool as used for prioritizing the requirements is used to for matching the requirements to the

pricing patterns. The pricing patterns, including a short description are stored in a table.

There are eight characteristics identified from gathering the requirements and there are eight pricing

patterns. Since each of the characteristics should be matched with each pricing pattern, it results that

there are 64 statements that should be assessed by the respondents. A five point Likert scale is used to

assess statements, with the following format:

1. Strongly disagree

2. Disagree

3. Neither agree nor disagree

4. Agree

5. Strongly agree

For matching the requirements to the pricing patterns, 12 account managers and 2 sales managers were

asked to participate in this research by sending them an e-mail. The e-mail template is included in the

appendix. For each possible match between a pricing pattern and a requirement a question is asked to

the participant using the format: name of pricing pattern is name of characteristic. An example is

given in Figure 18.

Figure 18 Screenshot of the evaluation tool used to match the requirements to the pricing patterns

Results

In total, 8 respondents from ERPComp assessed the statements. Not all respondents made it through

all 64 statements, therefore some statements are answered by a lower number of respondents than

other statements. Since the questions are randomly presented to each respondent it differs which

statements are assessed less often.

One respondent answered all statements but afterwards he mailed that he speedily answered all

questions and in fact needed more time to accurately assess each statement, resulting in unreliable

answers. To omit that this affects the reliability of the results, his answers are deleted and not part of

the analysis.

Pricing patterns for business SaaS applications

53

As multiple respondents assessed the statements there was a difference in the number of points given

to a statement. The Fleiss’ kappa is used as a statistical measurement to assess the reliability of the

agreement between the respondents. With the Fleiss’ kappa it is possible to measure the scale

agreement among multiple raters (Fleiss, 1971).

The table below depicts the top 10 statements with the highest strength of agreement. The full results

of the assessment are included in the Appendix.

 1 2 3 4 5 Pi

Id Statement Fleiss

kappa

24 cost based pricing results in clear insight for the customer 1 5 1 0 0 0,476

32 flat fee pricing results in clear insight for the customer 0 0 1 1 5 0,476

48 peak load pricing results in clear insight for the customer 5 1 1 0 0 0,476

18 cost based pricing has a relation between usage and price 4 0 3 0 0 0,429

63 dual pricing is usable to serve multiple markets 0 0 0 3 4 0,429

17 cost based pricing is transparent 3 0 3 0 0 0,4

27 flat fee pricing is easy for administration 0 0 1 1 4 0,4

28 flat fee pricing is predictable 0 0 1 1 4 0,4

43 peak load pricing is easy for administration 4 1 1 0 0 0,4

25 flat fee pricing is transparent 0 0 2 1 4 0,333

Table 17 Top 10 results

For the interpretation of the Fleiss’ kappa results the interpretation table by Landis and Koch (1977) is

used which is depicted below. Although these divisions are subjective, they do provide valuable

benchmarks (Landis & Koch, 1977).

Kappa Statistic Strength of agreement

< 0.00 Poor

0.00-0.20 Slight

0.21-0.40 Fair

0.41-0.60 Moderate

0.61-0.80 Substantial

0.81-1.00 Almost perfect
Table 18 Interpretation of the Kappa statistic for the strength of agreement (Landis & Koch, 1977)

In this research, a Kappa statistic of minimal 0.21, corresponding with at least a fair agreement, is

considered as enough agreement between the respondents. Because all statements are formulated

‘positive’, also statements with a low average score are useful because when they are formulated

‘negative’ they do apply to the pricing pattern in the statement.

Hence the statement ‘peak load pricing is clear for the customer’ has an average score of 1.4 on the

five point scale, with a moderate strength of agreement (Ҡ = 0.48). This implies that the respondents

would have agreed with the statement ‘peak load pricing is not clear for the customer’. Therefore, in

case of a low average score, the statements are rephrased to a negative statement so they can be

matched to the pricing pattern.

When all statements with a low strength of agreement are ignored, the characteristics can be matched

to the pricing patterns as depicted in the table below. Following the criteria of at least 0.21 for the

Pricing patterns for business SaaS applications

54

Kappa statistic and rephrase statements with a low score, it results that the statements depicted in the

table below can be matched to the pricing patterns.

usage dependent pricing:

- is not transparent

- is usable to serve multiple markets

situation-based pricing:

- has recurring costs

- is usable to serve multiple markets

cost based pricing:

- is not transparent

- has no relation between usage and price

- is not easy for administration

- is not usable to serve multiple markets

- has no clear insight for the customer

flat fee pricing:

- is transparent

- has no a relation between usage and price

- is easy for administration

- is predictable

- is easy to calculate

- is usable to serve multiple markets

- has clear insight for the customer

two part tariff pricing:

- is not transparent

- is not easy for administration

- is usable to serve multiple markets

peak load pricing:

- is not transparent

- is not easy for administration

- is not predictable

- is not easy to calculate

- has no clear insight for the customer

bundle pricing:

- is easy for administration

dual pricing:

- is not predictable

- has recurring costs

- is usable to serve multiple markets

Table 19 Overview of requirements that are matched to the pricing patterns

Problems

During the evaluation one of the respondents mentioned that the matching of the characteristics

sometimes resulted in a statement that was not right. The respondent had a problem with the statement

“situation-based pricing has repeating costs”. He commented that “the phrasing of the question is not

right or at least it is unclear for me” and therefore stopped with evaluation after two questions because

he wanted to keep the results of the evaluation accurate.

This could have been solved by reviewing all statements at first; however this might have resulted in

subjective deletion or acceptance of statements by the researcher. A better solution might have been to

give the respondents the option ‘not applicable’ next to the choices 1 to 5.

Some of the respondents seem to have stopped with the evaluation half way. Since they did not

mention why they stopped (and the respondent could not be retrieved because it was anonymous) and

the statements were presented random for all users, the results of the unfinished are included in the

results.

6.3 CONSEQUENCES
In this section the consequences of using the pricing patterns is elaborated. This includes results from

the literature study on the consequences as well as the results from matching the requirements to the

pricing patterns.

Pricing patterns for business SaaS applications

55

Usage-dependent pricing

This pricing pattern allows the software vendor to set the prices in a way that always cover the costs of

ownership. The software product becomes also accessible for customers that will use the software less

often and therefore might not want to pay the initial market price. There will be a decrease of the

consumer surplus.

Another benefit of a usage-dependent pricing pattern is that the company can serve customers that are

operating in different markets (result from evaluation with experts). The price of the software becomes

variable and is more dedicated to the customer’s usage. The strength of agreement among the

respondents about this statement was not high enough to accept that statement, but it was not rejected

either.

Usage-dependent pricing can be applied to decrease the consumer surplus by pricing the product

related to the usage by the buyer. It is expected that the consumer surplus will decrease in favour to the

software vendor. By applying a usage-dependent pricing pattern, the software vendor will gather a

larger part of the consumer surplus, resulting in extra turnover and eventually in increasing profit.

(Mankiw & Taylor, 2006).

A liability of this pricing pattern is that the risk shifts to the software vendor, since it is unknown in

advance what the exact usage of the software will be. Consequently, this implies uncertainty about the

earnings and the vendor is faced with unpredictable costs. Since usage can vary by time, the costs will

also vary. It is also unknown to the customer what the costs are in advance, resulting in a non-

transparent pattern according to the respondents.

Furthermore, the metrics of measuring the usage can be tricky to build. This depends on the chosen

metric, some as used bandwidth can be easily calculated while measuring usage on a functionality

level might more complicated. The level of usage of the software will be by the customers is unknown

in advance.

Situation-based pricing

Since the price is based on the customer’s situation, this pricing pattern is able to serve multiple

markets (according to the respondents). With this pattern is possible to charge recurring costs.

The customers also have to pay for their users/employees that do not often use the SaaS application

because the same price should be paid per user, regardless usage. Since the price is determined

beforehand and the customer’s situation will not change often, both the software vendor and the

customer now in advance what the expenses or income will be.

Cost-based pricing

The costs are fairly distributed among the customers with cost-based pricing. If there is a complex

function built (a lot of development hours results in higher costs) than these costs are not distributed

among all customers, but only among the customers who actually use that software.

A disadvantage is that if nobody uses the software, the cost per month will be very high for those who

have used the software. Other notable liabilities are that is not easy for administration and by the

lacking transparency it is no clear insight for the customers. It also expected that it is hard to include

all costs, because it is hard to identify hidden costs.

Pricing patterns for business SaaS applications

56

Flat fee pricing

When flat fee pricing is applied, the customer knows the costs in advance. Consequently, the income

for the vendor are predictable in case of flat fee pricing. Other advantages of flat fee pricing are the

transparency and the relatively easy implementation (“Internet Economics,” 1998). Because a fixed

fee has to be paid, no extensive calculations are needed to define the price and therefore the costs are

also predictable for both the software vendor as the customer.

Customers are usually willing to pay more for the option of unlimited usage of a SaaS application

(Sundararajan, 2004).

A difficulty with flat fee pricing is the missing relation between usage and price. Another liability is

that the fixed price regardless usage might be too high to some customers resulting in less customers

for the SaaS application (Kittlaus & Clough, 2009).

It might be that the software vendor makes losses on certain customers, while making high profits on

other customers. Therefore, overall profit is important with flat fee pricing.

Two-part tariff pricing

An advantage compared to a usage dependent model is that in case of two part tariff pricing, the

software vendor is guaranteed a minimum income because of the recurring subscription fee. But the

software vendor is also faced with a higher income if the usage is higher. The risks for the software

vendor are covered.

Two-part tariff pricing cannot be seen as transparent based on the evaluation results. Consequently, it

might also have difficulties for the administration. Since the final price is based on two separate prices

the pricing might become more difficult to understand by the customer and more complex for

administration by the software vendor. In a research to which pricing schemes is the best for a

monopolist providing information services, it resulted that either flat fee pricing or the two-part tariff

is the optimal pricing scheme (Wu, 2010).

Peak load pricing

Customers that do not care when they use the SaaS application benefit from peak load pricing, because

they can use it when the price is the lowest. Other customer will probably want to know the costs in

advance, while the time of peak usage is not always predictable and at the same time.

Many liabilities of peak load pricing are identified during the evaluation: it is hard to calculate and has

no clear insight for the customer. Furthermore it lacks transparency and predictability.

Bundle pricing

From the evaluation with experts no explicit statement, apart from ‘easy for administration’, are

accepted because of low strengths of agreement and the average scores that are assessed by the

respondents.

In the case that first the software consisted of separate modules which are now bundled, than it won’t

be possible anymore to see the usage of those separate modules based on the sent invoices. Therefore

if the vendor wants to measure usage, metrics should be built into the software. This problem occurred

at ERPComp when someone from the product development department wanted to know how many

Pricing patterns for business SaaS applications

57

customers a certain module from a bundle are using. Because that module is part of bundle and is not

sold separately it is difficult to see how often that is used.

By splitting up the large software package into separate modules with specific functionality the

required effort might lead to increasing costs and therefore also results in higher prices per piece of

functionality (Katzmarzik, 2011).

An advantage is that by offering separate bundles, the customizability and flexibility increase.

Therefore also the sales volume will increase because it becomes interesting for new customers that

otherwise would never have bought the complete software package (Katzmarzik, 2011). By offering

more variations of a product (for example by configuration), the product becomes more attractive to

more customers because since the variations it is more likely it will suit their needs.

Compared to a situation where the customer can create his own bundles by choosing from all available

modules, the administration is easier with bundle pricing.

Dual pricing

With dual pricing the distinction between different customer types might not be exclusive. This is

similar to bundle pricing, where the software vendor should be aware that all different types of

customers can be served.

When this is done carefully dual pricing is especially usable to serve multiple markets, according to

the evaluation results. The predictability is less according to the evaluation results.

6.4 APPROPRIATE PRICING PATTERNS
Now all that all consequences of the pricing patterns are gathered, it is possible to select the most

appropriate pricing patterns.

Points are awarded to assess whether a pricing pattern is appropriate. The number of points awarded is

the normalized principal Eigenvector percentage resulted from analysing the pair wise comparisons

results. By using the percentages as points to award the pricing patterns, also the weight of the

characteristics is taken into account.

Position Characteristic Points

1. Transparent 24,0

2. Clear insight for the customer 21,9

3. Relation between usage and price 16,2

4. Usable for different markets 12,1

5. Easy to calculate 8,7

6. Predictable 6,1

7. Easy for administration 5,9

8. Repeating costs 5,1
Table 20 Number of points to award

When a pricing pattern is assessed to be transparent, 24 points are awarded, if the pricing pattern has

repeating costs, 1 point is awarded. When the negative statement is accepted the points are subtracted.

Every pricing pattern begins with zero points. The results of awarding the points is summarized in

Table 21, a complete overview is included in the appendix.

Pricing patterns for business SaaS applications

58

Position Pricing pattern Points

1. flat fee pricing 62,5

2. situation based pricing 17,2

3. dual pricing 11,1

4. bundle pricing -5,9

5. usage dependent pricing -11,9

6. two part tariff pricing -17,8

7. peak load pricing -66,6

8. cost based pricing -80,1
Table 21 Points awarded to pricing patterns

In the table above the pricing patterns are prioritized based on the awarded points. According to this

study flat fee pricing is by far the most appropriate pricing pattern for business SaaS applications. At

some distance, situation based pricing and the dual pricing pattern complete the three most appropriate

pricing patterns for business SaaS applications. Cost based pricing and peak load pricing are the

pricing patterns with the least awarded points.

Pricing patterns for business SaaS applications

59

6.5 CHAPTER OVERVIEW
This table gives an overview of all identified pricing patterns, shortly describing the problem, solutions and consequences. The number left to the name of

each pricing pattern is the result of awarding points to assess what the most appropriate pricing pattern is for business SaaS applications.

 Usage-dependent pricing

 Situation-based pricing

 Cost-based pricing

 Flat fee pricing

P: intensive customers are charged

same as less intensive customers

S: the more a user uses, the more he

pays.

C: not transparent

P: usage metrics are difficult, hard

to calculate in advance

S: use metrics not related to usage,

but to the situation

C: serve multiple markets

P: unequal division of costs

S: pricing based on the costs

C: not transparent, no price-usage

relation, no clear insight for

customer

P: difficult to measure usage, need

for simplicity

S: fixed price regardless usage

C:transparent, predictable, easy for

administration

 Two-part tariff pricing

 Peak load pricing

 Bundle pricing

 Dual pricing

P: revenues uncertain when usage

based charging is applied

S: fixed fee plus additional usage

based fee

C: not transparent, not easy for

administration

P: extra capacity needed only for

peak hour usage

S: charge different prices for

different times

C: not transparent, unpredictable for

customers

P: software contains modules not

needed by customer

S: split up in bundles: combinations

of modules

C: easy for administration

P: customers have different

valuations for same software

S: apply different prices for

different kind of customers

C: usable to serve multiple markets

Table 22 Overview of all patterns, P: Problem, S: description of the solution, C: consequences, position in ranking of appropriate patterns

Pricing patterns for business SaaS applications

60

7 DISCUSSION
The research into the costs of provisioning SaaS shows that there are recurring costs for the software

vendor. Every month or every year the software vendor should pay the infrastructure provider.

Assuming that a software vendor wants to make profit by developing and selling software, a single

purchase of the software by the vendor’s customers is not suitable for SaaS.

Single purchase is often used for on-premises installed software usually including unlimited usage for

unlimited time. This has the consequence that only bug fixes and small updates are for free, but an

additional payment has to be paid for large updates or new versions of the software product. Because a

software vendor that develops software that should be installed on-premises does not have recurring

costs, the pricing is less complex because only the initial development costs should be covered.

Making the choice between charging users based on their usage or a flat fee model is in fact making a

choice about risk spreading. If a company chooses to charge the customers based on the number of

users, the risk of heavy use of the software, and the corresponding higher costs, if for the SaaS vendor.

With a fixed contract for several years, it can cause financial problems for the vendor, because the

price cannot be changed if it does not appear to be cost-effective.

On the other hand, if the user is charged based on the usage of the software, then the financial risk of

high usage of the software is on the customer’s side, because the customer must pay more because of

the high usage level. In case of a usage-dependent price model the vendor can always be cost effective

by pricing the product at a higher price than the costs.

Instead of solving a problem with applying a certain pricing pattern, this study showed that it is also

possible to solve a problem technically. This was found with peak load pricing where ERPComp has

chosen to solve the peak load usage problem by moving intensive tasks to a batch server that executes

those tasks at night.

At ERPComp the SaaS application is priced according to named user (situation-based pricing) but

when the included 1Gbyte storage is exceeded, the customers have to pay according used data storage

(usage-dependent pricing). This shows that it is possible to combine or stack different pricing patterns,

but that there are only one or two primary patterns.

After prioritizing the requirements and matching them on the pricing patterns the main findings of the

study were found. The most appropriate pricing patterns for business SaaS applications are flat fee

pricing, situation based pricing and dual pricing.

Limitations

In this study the customers are not asked but since the sales managers and account managers have

close contact with customers it is expected that they have accounted good enough for the customer´s

wishes when evaluating the pricing patterns.

Another limitation is that this study is carried out at one case study company. Therefore only problems

that the case study company faced are identified, while other companies might face different or

additional problems. Therefore the identified pricing patterns might not be complete.

Pricing patterns for business SaaS applications

61

A limitation of this research is that it is validated at only one company. Although it weakens the

external validity, this method was chosen because it was possible to perform a deep insight into

important documents such as agreements between ERPComp and suppliers and other internal

documents. This won’t have been possible if the study was conducted at multiple companies, because

it is expected that if the results are shared among the competitors the companies’ willingness to

participate in this research would have been very low. Therefore, it is chosen to perform the research

at one company where it was possible to extensively interview experts and gain insight by document

studies.

Further research

This study might not provide solutions for specific problems that other software face. Therefore

similar research might be performed at other software vendors to identify possible other problems that

those companies face with pricing SaaS. This research could by extended by interviewing people from

other software vendors to identify their SaaS pricing problems. Next, it should be researched whether

one of the pricing patterns as proposed in this research can solve those problems or additional pricing

patterns are needed.

Further research could be studying software vendors that offer a SaaS application and to verify how

they have priced their software. This information can be used how often certain pricing patterns are

used in the field and possibly to identify whether pricing patterns for SaaS are used that are not

identified in this research.

Also, research could be done by studying other types of (SaaS) software. This research focuses on

business SaaS applications, which has the typical characteristic that it must be very configurable to

meet the needs of the customers. For consumer software, it is expected that it should be less

configurable, but still some configuration is needed. Therefore further research could focus on other

types than business SaaS applications whether the pricing patterns developed in this study are also

applicable or those types have different problems and need other pricing patterns.

Outlook of the usage

Currently the price list and price strategy is under revision. Based on the results from this research

some changes are made. One of the changes is that the separate ‘HRM/Payroll’ bundles for education

and healthcare institutions are going to be merged in one bundle that has exactly the same

functionality for every customer. But since competitors in the healthcare and education markets offer

their product at a lower price, ERPComp is planning to apply dual pricing for this bundle. These types

of customers have to pay a lower price for the same bundle.

For pricing the products in the upcoming years and the composition of the pricing list for the next

year, the CFO will make use of the findings in this research. At the evaluation section there are some

suggestions made for ERPComp that they can adopt. The CFO acknowledged that there are some

limitations and weaknesses in the current price list and will consider the proposed solutions in

composing new pricing lists and guidelines.

Similarly, other companies that currently offer a business SaaS application can benefit from the results

of this study by evaluating their current pricing pattern(s). Also companies that will launch a business

SaaS application in the near future can anticipate on the problems as identified in this study by

choosing a pricing pattern that is suitable for them.

Pricing patterns for business SaaS applications

62

8 CONCLUSION
The main purpose of this study was to find appropriate pricing patterns for business SaaS applications,

from the point of view of a software vendor. In order to find those pricing patterns the following

research questions were formulated:

What are appropriate pricing patterns for business SaaS applications, from the point of view of a

software vendor?

1. What is a business SaaS application?

2. What are the implications of offering business SaaS applications?

3. How can business SaaS applications be priced?

Based on the results from the literature on business software and SaaS it can be concluded that a

business SaaS applications is administrative software for organizations to support their processes and

workflows, with configurability options to adapt the software to the customer’s specific needs,

provisioned as Software as a Service.

When offering a business SaaS application, the software vendor requires a multi-tenant architecture in

order to support configurability in the SaaS application. Furthermore, the costs elements differ from

on-premises installed software by consisting out of software licences and hosting costs. Furthermore,

metrics are required in case a software vendor want to price the application according the customer’s

situation or usage.

Business SaaS applications can be priced using one of the following pricing patterns: usage-

dependent, situation based, cost-based, flat fee, two-part tariff, peak load, bundling or dual pricing.

This study shows that there are many different ways of pricing a business SaaS application. Problems

regarding pricing were identified at the case study company and solutions were found for these

problems. An evaluation with experts from the case study company resulted in an overview of

requirements for pricing models, which were matched to the pricing patterns using a survey and

statistical analysis.

Based on the results of the prioritization and matching the requirements to the pricing patterns, the

most appropriate pricing patterns for business SaaS applications could be selected. The three most

appropriate pricing patterns are:

- flat fee pricing

- situation based pricing

- dual pricing

This resulted in the main deliverable of this study: an overview of all pricing patterns, shortly

describing the problem, the solution, an illustration of the solution, the consequences and the result

from assessing the appropriateness of the pricing pattern.

Pricing patterns for business SaaS applications

63

9 ACKNOWLEDGEMENTS
I would to thank my supervisors Jaap Kabbedijk and Slinger Jansen. Jaap provided me detailed

feedback while being constructive and realistic, but also coming up with new ideas during valuable

meetings. Also special thanks to Slinger for providing me extensive feedback and introducing me at

people at AFAS, the company where I spent most of my time working on my thesis.

Furthermore, I would to thank the AFAS employees who participated somehow in my research,

whether as a survey respondent or as an interviewee for being open and transparent. I want to thank

especially, the ‘colleagues’ from Controlling for having a good time at AFAS and CFO Arnold Mars

for introducing me to people at AFAS to conduct interviews and for providing me valuable data.

Special thanks for my girlfriend Queeny for supporting me during the whole project and saving me

time by cooking nice meals after a long day working at my thesis. But also for keeping me motivated

and for reviewing the thesis.

Last but not least, I would to think my friends and family for their support and patience, because I

could not spent a lot of time with them in the last months.

Pricing patterns for business SaaS applications

64

10 REFERENCES
Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., et al. (2009).

Above the Clouds : A Berkeley View of Cloud Computing Cloud Computing : An Old Idea

Whose Time Has (Finally) Come. Computing, 7-13.

Arya, P. K., Venkatesakumar, V., & Palaniswami, S. (2010). Configurability in SaaS for an electronic

contract management application. Proceedings of the 12th international conference on

Networking VLSI and signal processing (2010), 210-216. Retrieved from

http://dl.acm.org/citation.cfm?id=1820538.1820574

Aulbach, S., Grust, T., Jacobs, D., Kemper, A., & Rittinger, J. (2008). Multi-tenant databases for

software as a service: schema-mapping techniques. Proceedings of the 2008 ACM SIGMOD

international conference on Management of data - SIGMOD ’08 (p. 1195). New York, New

York, USA: ACM Press. doi:10.1145/1376616.1376736

Bezemer, C. P., & Zaidman, A. (2010). Multi-tenant saas applications: Maintenance dream or

nightmare? Proceedings of the Joint ERCIM Workshop on Software Evolution (EVOL) and

International Workshop on Principles of Software Evolution (IWPSE) (pp. 88–92). ACM.

Retrieved from http://dl.acm.org/citation.cfm?id=1862393

Brownsword, L., & Oberndorf, T. (2000). Developing new processes for COTS-based systems.

Software, IEEE, (August). Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=854068

Chong, F., Carraro, G., Wolter, R., Corporation, M., Architecture, A., & Architecture, R. M.-tenant D.

(2006). Multi-Tenant Data Architecture Three Approaches to Managing Multi-Tenant Data.

Retrieved from http://msdn.microsoft.com/en-us/library/aa479086.aspx

Choudhary, V. (2007). Software as a Service : Implications for Investment in Software Development

The Paul Merage School of Business. Sciences-New York, 1-10.

Gao, B., An, W. H., Sun, X., Wang, Z. H., Fan, L., Guo, C. J., & Sun, W. (2011). A Non-intrusive

Multi-tenant Database Software for Large Scale SaaS Application. 2011 IEEE 8th International

Conference on e-Business Engineering, (1), 324-328. Ieee. doi:10.1109/ICEBE.2011.23

Ghaddar, A., & Tamzalit, D. (2012). Variability as a Service: Outsourcing Variability Management in

Multi-tenant SaaS Applications. Advanced Information Systems …, 1-15. Retrieved from

http://subversion.assembla.com/svn/simon_papers_repo/trunk/Ali/CAISE-2012-Accepted

Paper/CAISE-PAPER.pdf

Guo, C. J., Sun, W., Huang, Y., Wang, Z. H., & Gao, B. (2007). A Framework for Native Multi-

Tenancy Application Development and Management A Native Multi-tenancy Enablement

Framework Challenges of the Native Multi-tenancy Pattern.

Hamilton, J. (2007). On designing and deploying internet-scale services. LISA07 Proceedings of the

21st conference on Large Installation System Administration Conference, 1-12. USENIX

Association. Retrieved from http://portal.acm.org/citation.cfm?id=1349444

Hogan, J. (2005). What is Strategic Pricing? Strategic Pricing Group Insight.

Pricing patterns for business SaaS applications

65

Internet Economics. (1998).MIT Press Books. Retrieved from

http://econpapers.repec.org/RePEc:mtp:titles:0262631911

Jacobs, D., & Aulbach, S. (2007). Ruminations on Multi-Tenant Databases. (A. Kemper, H. Sch Ning,

T. Rose, M. Jarke, T. Seidl, C. Quix, & C. Brochhaus, Eds.)BTW Proceedings, 103(Btw), 514-

521. GI. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.6429&rep=rep1&type=

pdf

Jansen, S., Brinkkemper, S., & Finkelstein, A. (2007). Providing Transparency In The Business Of

Software: A Modeling Technique For Software Supply Networks. IFIP Advances in Information

and Communication Technology, 243, 677-686. doi:10.1007/978-0-387-73798-0_73

Jansen, S., Finkelstein, A., & Brinkkemper, S. (2009). A sense of community: A research agenda for

software ecosystems. 2009 31st International Conference on Software Engineering - Companion

Volume (pp. 187-190). IEEE. doi:10.1109/ICSE-COMPANION.2009.5070978

Jansen, S., Houben, G.-J., & Brinkkemper, S. (2010). Customization Realization in Multi-tenant Web

Applications: Case Studies from the Library Sector. In B. Benatallah, F. Casati, G. Kappel, & G.

Rossi (Eds.), (Vol. 6189, pp. 445-459). Berlin, Heidelberg: Springer Berlin Heidelberg.

doi:10.1007/978-3-642-13911-6

Kabbedijk, J., & Jansen, S. (2011). Variability in Multi-tenant Environments: Architectural Design

Patterns from Industry. Advances in Conceptual Modeling. Recent, 151-160. doi:10.1007/978-3-

642-24574-9_20

Karlsson, J. (1998). An evaluation of methods for prioritizing software requirements. Information and

Software Technology. Retrieved from

http://www.sciencedirect.com.proxy.library.uu.nl/science/article/pii/S0950584997000530

Katzmarzik, A. (2011). Product Differentiation for Software-as-a-Service Providers. Business &

Information Systems Engineering, 3(1), 19-31. doi:10.1007/s12599-010-0142-4

Kittlaus, H.-B., & Clough, P. N. (2009). Software Product Management and Pricing. Berlin,

Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-540-76987-3

Klaus, H., Rosemann, M., & Gable, G. G. (2000). What is ERP? Information Systems Frontiers, 2(2),

141-162. Springer. doi:10.1023/A:1026543906354

Kwok, T., & Mohindra, A. (2008). Resource calculations with constraints, and placement of tenants

and instances for multi-tenant SaaS applications. Service-Oriented Computing–ICSOC 2008,

633–648. Springer. doi:10.1007/978-3-540-89652-4_57

Kwok, T., Nguyen, T., & Lam, L. (2008). A Software as a Service with Multi-tenancy Support for an

Electronic Contract Management Application. 2008 IEEE International Conference on Services

Computing, 179-186. Ieee. doi:10.1109/SCC.2008.138

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data.

Biometrics, 33(1), 159-174. International Biometric Society. doi:10.2307/2529310

Pricing patterns for business SaaS applications

66

Lehmann, S., & Buxmann, P. (2009). Pricing Strategies of Software Vendors. Business & Information

Systems Engineering, 1(6), 452-462. Gabler Verlag. doi:10.1007/s12599-009-0075-y

Ma, D., & Seidmann, A. (2008). The Pricing Strategy Analysis for the “ Software-as-a-Service ”

Business Model. (J. Altmann, D. Neumann, & T. Fahringer, Eds.)Grid Economics and Business

Models, 5206, 103-112. Springer Berlin Heidelberg. doi:10.1007/978-3-540-85485-2

Mankiw, N. G., & Taylor, M. P. (2006). Microeconomics (p. 474). Cengage Learning EMEA.

Meszaros, G., & Doble, J. (1997). A pattern language for pattern writing, 529-574. Retrieved from

http://dl.acm.org/citation.cfm?id=273448.273487

Miranda, B. D., Baida, Z., & Gordijn, J. (2006). Modelling Pricing for Configuring e-Service Bundles,

(Grönroos 2000), 1-13.

Motahari-nezhad, H. R., Stephenson, B., & Singhal, S. (2009). Outsourcing Business to Cloud

Computing Services : Opportunities and Challenges Outsourcing Business to Cloud Computing

Services : Opportunities and Challenges. Development, 10(4), 1-17. Retrieved from

http://www.hpl.hp.com/techreports/2009/HPL-2009-23.pdf

Mäkilä, T., Järvi, A., Rönkkö, M., & Nissilä, J. (2010). How to Define Software-as-a-Service – An

Empirical Study of Finnish SaaS Providers. Lecture Notes in Business Information Processing

(pp. 115-124). doi:10.1007/978-3-642-13633-7_10

Nitu. (2009). Configurability in SaaS (software as a service) applications. Proceeding of the 2nd

annual conference on India software engineering conference - ISEC ’09 (p. 19). New York, New

York, USA: ACM Press. doi:10.1145/1506216.1506221

Runeson, P., & Höst, M. (2008). Guidelines for conducting and reporting case study research in

software engineering. Empirical Software Engineering, 14(2), 131-164. doi:10.1007/s10664-008-

9102-8

Sawyer, S. (2000). Packaged software: implications of the differences from custom approaches to

software development. European Journal of Information Systems, 9(1), 47-58.

doi:10.1057/palgrave.ejis.3000345

Spruit, M., & Abdat, N. (2012). The Pricing Strategy Guideline Framework for SaaS Vendors.

International Journal of Strategic Information Technology and Applications (IJSITA), 3(1), 38-

53. doi:10.4018/jsita.2012010103

Stamelos, I., & Angelis, L. (2003). Estimating the development cost of custom software. Information

& …. Retrieved from

http://www.winfobase.de/lehre%5Clv_materialien.nsf/intern01/C760C9B911EAEAD5C1256E6

D004B9D41/$FILE/estimating the development cost of custom software.pdf

Summers, D. (2001). Longman Dictionary of Contemporary English: Plus New Words (LDOC) (p.

166901). Longman. Retrieved from http://www.amazon.com/Longman-Dictionary-

Contemporary-English-Words/dp/0582456398

Pricing patterns for business SaaS applications

67

Sun, W., Zhang, X., Guo, C. J., Sun, P., & Su, H. (2008). Software as a Service: Configuration and

Customization Perspectives. 2008 IEEE Congress on Services Part II (services-2 2008), 18-25.

Ieee. doi:10.1109/SERVICES-2.2008.29

Sundararajan, A. (2004). Nonlinear Pricing of Information Goods. Management Science, 50(12),

1660-1673. JSTOR. doi:10.1287/mnsc.1040.0291

Svahnberg, M., van Gurp, J., & Bosch, J. (2005). A taxonomy of variability realization techniques.

Software: Practice and Experience, 35(8), 705-754. doi:10.1002/spe.652

Takeda, H., & Veerkamp, P. (1990). Modeling Design Processes. AI Magazine, 11(4), 37-48.

Tsai, C.-H., Ruan, Y., Sahu, S., Shaikh, A., Shin, K., Clemm, A., Granville, L., et al. (2007).

Virtualization-Based Techniques for Enabling Multi-tenant Management Tools. In A. Clemm, L.

Z. Granville, & R. Stadler (Eds.), Managing Virtualization of Networks and Services (Vol. 4785,

pp. 171-182). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-540-75694-1

Vaishnavi, V., & Kuechler, W. (2007). Design Research in Information Systems. Order A Journal On

The Theory Of Ordered Sets And Its Applications, 48(2), 133-140. Auerbach. Retrieved from

http://desrist.org/design-research-in-information-systems

Van De Weerd, I., & Brinkkemper, S. (2008). Handbook of Research on Modern Systems Analysis

and Design Technologies and Applications. (M. R. Syed & S. N. Syed, Eds.)Handbook of

Research on Modern Systems Analysis and Design Technologies and Applications (p. 35). IGI

Global. doi:10.4018/978-1-59904-887-1

Ward, J., & Peppard, J. (2002). Strategic planning for information systems (3rd ed., p. 624). John

Wiley & Sons, Ltd. Retrieved from http://books.google.com/books?hl=en&lr=&id=Y-

djKt6DaV8C&oi=fnd&pg=PR5&dq=strategic+planning+for+information+system

s&ots=oFriK9D7Ht&sig=sJv4RXsSwUF_zxZ_22x2f7XUc-Y

Wellhausen, T. (2011). How to write a pattern ? Retrieved from http://www.tim-

wellhausen.de/papers/HowToWriteAPattern.pdf

Wu, S.-yi. (2010). Best Pricing Strategy for Information Services. Journal of the Association for

Information Systems, 11(6), 339-366. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.168.2501&rep=rep1&type=

pdf

Xin, M., & Levina, N. (2008). Software-as-a-Service Model: Elaborating Client-Side Adoption

Factors. SSRN Electronic Journal. SSRN. doi:10.2139/ssrn.1319488

Xu, L., & Brinkkemper, S. (2007). Concepts of product software. European Journal of Information

…. Retrieved from

http://www.ingentaconnect.com/content/pal/0960085x/2007/00000016/00000005/art00003

Yin, R. K. (2008). Case Study Research: Design and Methods. (L. Bickman & D. J. Rog,

Eds.)Essential guide to qualitative methods in organizational research (Vol. 5, p. 219). Sage

Publications. doi:10.1097/FCH.0b013e31822dda9e

Pricing patterns for business SaaS applications

68

11 APPENDIX

11.1 METRICS
Metric Description source

transaction The price depends on the number of transactions

executed by the software. This can be a technical

assessment base (e. g. Web Service invocation) or an

assessment base with regard to contents (e. g. number

of crawled delivery items)

Lehmann & Buxmann,

2009

memory requirements The price is ascertained by units of memory

requirements (e. g. per GB).

Lehmann & Buxmann,

2009

time The amount of the price is determined by the actual

duration of software usage (e.g. price per minute)

Lehmann & Buxmann,

2009

named user The right to use the software is bounded to a specific

person and therefore the price refers to a defined user.

Lehmann & Buxmann,

2009

concurrent user This pricing unit allows the simultaneous use of the

software with a pre-defined number of users.

Lehmann & Buxmann,

2009

server/machine Customers will be charged for each server or

machine. The rights of use are bounded to this server

or machine.

Lehmann & Buxmann,

2009

CPU The price of the software refers to the amount of

CPUs in use.

Lehmann & Buxmann,

2009

master data The price of the software refers to the number of

entered master data (e. g. customers, suppliers,

employees, inventory, rental units, land parcels,

managed assets).

Lehmann & Buxmann,

2009

locations The price applies per location. This includes special

forms of locations (e. g. mines).

Lehmann & Buxmann,

2009

produced amount The software is priced according to the production of

the customer (e. g. produced barrels oil per day).

Lehmann & Buxmann,

2009

key performance

indicators

The price refers to Key Performance Indicators (e. g.

revenue, expenses, budget)

Lehmann & Buxmann,

2009

Committed Monthly

Recurring

Revenue (CMRR)

Also referred to as the Monthly Committed Recurring

Revenue (MCRR). The total of committed

subscriptions for the period.

Dunham, 2009

Retention Rate (RR) Also known as Churn. The percent of customers that

renew their subscription at the end of the term. This

includes “automatic” renewals, even though they may

be a separate class in some implementations because

they can always “opt-out” – although the tendency is

less than in manual renewal systems.

Dunham, 2009

In Trial The number of prospects (not users in a company or

organization subscription model) subscribed in a trial

period. SaaS ISVs offering trial subscriptions should

also track Average Users per Customer during trial (to

answer: how large are the trial prospects? Do they

cover a full Line of Business? Might they need

a Sales Engineer to help them evaluate?).

The Average Trial Period is also of interest and

depending on the sales model can be different

from Time to Close.

Dunham, 2009

Pricing patterns for business SaaS applications

69

Average Deal

Size (ADS) or

the Average Revenue

Per Client (ARPC)

the average Committed Monthly Recurring

Revenue (CMRR) from a customer.

Dunham, 2009

Average Revenue Per

User (ARPU)

Like the ARPC but broken down per user instead of

per client. When the size of client implementations

vary broadly across your customer base, this helps to

establish your average user load and revenue. The

impact of this metric depends on the subscription or

revenue model of the application.

Dunham, 2009

Time to Close The time it takes for an identified prospect to become

a subscribing customer. This can be easily monitored

for trial customers but requires CRM to monitor for a

sales team.

Dunham, 2009

Close Rate The percentage of In Trial customers that convert to

subscribers. This can be aggregated with sales team

prospects from CRM but it wise to also follow it

separately to gauge pure web-based marketing and

sales.

Dunham, 2009

Cost to Maintain (CtM) The cost of services required to maintain customer

instances. This should include hosting charges,

hardware and software renewal, support, staff

operations and outside services required to maintain

customer instances outside of sales, marketing, R&D,

and product development. This is an important metric

because it also provides a window into Contingency

Costs.

Dunham, 2009

Cost to Acquire (CtA) The average of the cost of sales and marketing

activities in a period divided by the number of

customers acquired in the following period. The

period is usually adapted from the Time to Close so

that costs and the customer acquisition relationships

are realistic.

Dunham, 2009

Customer Acquisition

Cost Ratio (CAC)

Customer Acquisition Cost Ratio (CAC) – A key

indicator of how long it will take a customer to

“payback” their Cost to Acquire. The ratio is

developed by dividing theAnnualized Net Gross

Margin added during a quarter by sales and marketing

costs of the previous quarter. Example: CAC Ratio

(Q408) = [GM(Q408)-GM(Q308)]*4 Sales &

Marketing Costs (Q308).

Dunham, 2009

Customer Lifetime

Value Ratio (CLV)

Customer Lifetime Value Ratio (CLV) – The net

present value of Annual Recurring Revenue from a

customer less the Cost to Maintain and Cost to

Acquire. A lifetime “horizon” needs to be assumed –

usually a 3-5 year window is used unless the company

has been in business long enough to make

assumptions based on Churn.

Dunham, 2009

Software to Services

Ratio

In a subscription only model, professional services

may supplement income. In a mixed model,

subscriptions can be supplemented with “value-add”

services that can be transaction or on-demand based

and professional services. In either case, this is a ratio

of subscription revenue to services and is important

when there is a low margin remaining after Cost to

Maintain and Cost to Acquire are taken out. A high

services ratio can compensate for the low margin if

the services are considered to be high value by your

Dunham, 2009

Pricing patterns for business SaaS applications

70

customers and in high demand.

Largest Customer % Knowing the percentage of gross income your largest

customer provides helps to assess risk. In a new

company or a vertically-based SaaS, it might be also

wise to assess the percentage of gross income

provided by your top ten (largest) customers. The

point is to assess your risk if they drop their

subscription and leave you in a position of supporting

sales, marketing and operations with too low a

margin.

Dunham, 2009

Packaged Perpetual

Trial

Single license purchased for a single user or machine.

Traditionally sold as out-of-the-box software.

Permanent licenses purchased upfront. Examples

include node-locked, user-locked, or unlocked. Users

able to try software before purchasing

Ferrante, 2006

Server (per CPU) Number of processors running determines number of

licenses purchased.

Ferrante, 2006

Network-based Uses a centralized system to distribute licenses to

network users.

Ferrante, 2006

Subscription-based License purchased for some time period. Ferrante, 2006

Utility-based Customer charged according to time product is used

(pay per use).

Ferrante, 2006

Access A company pays for access to the application and

data, regardless of how many users there are or how

much usage is made. This metric makes sense for

applications with a large differentiated value that have

relatively few users or intermittent use, and whose

value generation depends on relatively unfettered

access. A refinement of this is to breakdown pricing

by function.

Forth, 2010

Users The number of users that can access the application is

a common metric, this can be the absolute number of

users or the number of named users (when people

need to personalize their data). Per user metrics make

sense when the value created by the application is

primarily at the individual level or there are operating

costs that scale with the number of users. This is the

most common pricing metric for SaaS vendors and is

used for many services by industry leaders

Forth, 2010

Usage In some cases it is how often the software is used, or

how many resources that are consumed, that maps

best to value or cost. This approach is especially

relevant to commoditized services such as cloud

computing.

Forth, 2010

Performance The ultimate pricing metric is to link price to

outcomes. Typical examples are a percentage of

savings, or a percentage of new sales, or a percentage

of margin improvement. These pricing metrics are

rare because outcomes usually depend on multiple

inputs and it can be very difficult to untangle these.

Forth, 2010

Pricing patterns for business SaaS applications

71

Table 23 Overview of metrics

11.2 MAIL FOR CRITERIA REQUEST

Dutch:

Beste [voornaam],

Mijn naam is Dennis Adriaansen en ik doe momenteel onderzoek bij AFAS naar prijsmodellen voor

SaaS als onderdeel van mijn afstuderen aan de Universiteit Utrecht voor de studie Business

Informatics.

Als onderdeel van de evaluatie van mijn onderzoek wil ik in kaart brengen welke criteria van belang

zijn voor een goed prijsmodel. Vandaar mijn vraag aan jou als [functie binnen ERPComp]:

Wat zijn volgens jou de eigenschappen/criteria van een goed prijsmodel?

Hierbij kun je zowel rekeninghouden met je functie als [functie binnen ERPComp], als het algemene

AFAS ‘belang’.

Een korte opsomming is voldoende, maar een korte motivatie mag er natuurlijk bij.

Alvast bedankt voor de medewerking.

Groeten,

Dennis Adriaansen

English:

Dear [first name],

My name is Dennis Adriaansen and I am currently performing research on the topic of pricing models

at AFAS as part of my graduation at the Utrecht University for the master of Business Informatics.

As part of the evaluation of my research I want to gather criteria that are important for a solid pricing

model. Therefore I have the following question for you as [..].

What are de characteristics of a good pricing model according to you?

Hereby you can take into account both your responsibilities as a [function] as the general ERPComp

interests.

Thanks in advance for your cooperation.

Best regards,

Dennis Adriaansen

Pricing patterns for business SaaS applications

72

11.3 ANSWERS FROM CRITERIA REQUEST
Chief Financial Officer (Expert 1) during an interview.

“A good pricing model is:

1. competitive

2. easy for administration

3. allowing clear insight for customer”

In Dutch:

“Een goed prijsmodel is:

1. concurrerend

2. eenvoudig om te verwerken

3. inzichtelijk voor de klant”

Sales Manager (Expert 2) during interview

This person preferred a face to face meeting instead of answering the criteria by e-mail.

“A good pricing model takes into account that it should serve for multiple, different markets. It should

also serve for different types of customers.

Cheap/competitive.

Prefers recurring costs instead of one time investment costs.”

Sales manager (Expert 3) by e-mail

“A good pricing model:

1. Consistent with the market demand

2. Is flexible enough in terms of the balance between use vs. price to pay

3. Is transparent and without hidden costs

4. Gives little to no space for discounts

5. Is simple enough to communicate to prospects without complex calculations.”

In Dutch:

“Een goed prijsmodel:

1. Sluit aan bij de vraag uit de markt;

2. Is voldoende flexibel als het gaat om de balans tussen gebruik vs. te betalen prijs (klanten

kopen immers ‘gebruiksrecht’

3. Is transparant en zonder verborgen kosten (kosten die in de toekomst waarschijnlijk gemaakt

moeten worden maar voor de klant bij aanschaf niet te overzien zijn)

4. Geeft weinig tot geen ruimte voor kortingen / stunts

5. Is simpel en zonder al teveel voorkennis te communiceren met prospects zonder hier al teveel

‘berekeningen’ op los te hoeven laten”

Response Sales Manager (Expert 4)

“A good pricing model is simple, predictable and prevents misuse.”

Pricing patterns for business SaaS applications

73

11.4 SCREENSHOTS EVALUATION TOOL: CHARACTERISTICS

Figure 19 Screenshot of start screen

Pricing patterns for business SaaS applications

74

11.5 E-MAIL TEMPLATE FOR FIRST EVALUATION
Beste [first name],

Mijn naam is Dennis Adriaansen en ik doe momenteel onderzoek bij AFAS naar prijsmodellen voor

SaaS als onderdeel van mijn afstuderen aan de Universiteit Utrecht voor de studie Business

Informatics.

Als onderdeel van mijn evaluatie wil ik graag de acht eigenschappen van een goed prijsmodellen

prioriteren. Hiervoor heb ik een website gemaakt waarin telkens twee van de genoemde eigenschappen

naast elkaar worden gezet waarbij de keuze moet worden gemaakt welke van de twee het belangrijkst

is.

De website is: http://evaluatie.dennisadriaansen.nl/eigenschappen.php

Het betreft een relatief korte evaluatie die binnen vijf minuten uit te voeren is, waarbij 28 keer wordt

gevraagd welke eigenschap belangrijker is. Zou je deze evaluatie willen invullen?

Alvast bedankt!

Groeten,

Dennis Adriaansen

11.6 E-MAIL TEMPLATE FOR THE SECOND EVALUATION

Beste [first name],

Mijn naam is Dennis Adriaansen en ik doe momenteel onderzoek bij AFAS naar prijsmodellen voor

SaaS als onderdeel van mijn afstuderen aan de Universiteit Utrecht voor de studie Business

Informatics.

Tijdens mijn onderzoek zijn er meerdere manieren om SaaS te prijzen naar voren gekomen. Het doel

van deze evaluatie is om na te gaan in hoeverre bepaalde eigenschappen van toepassing zijn op deze

prijsmodellen. Hierbij kan ik de ervaring van een accountmanager natuurlijk goed gebruiken.

De evaluatie is uit te voeren op de volgende webpagina:

http://evaluatie.dennisadriaansen.nl/prijsmodellen.php

Er worden 64 stellingen voorgelegd waarbij op een schaal van 1 tot 5 beoordeeld moet worden of je

het eens bent met de stelling of niet. Deze evaluatie zal zo'n 5 tot 8 minuten in beslag nemen.

Ik hoop dat je de evaluatie wil invullen, zodat ik binnenkort mijn resultaten aan Arnold kan

presenteren.

Alvast bedankt voor de medewerking!

Groeten,

Dennis Adriaansen

Pricing patterns for business SaaS applications

75

11.7 RESULTS PAIR WISE COMPARISON CHARACTERISTICS

characteristic A characteristic B Preference per respondent

 4 5 6 21 22 24 27

transparant (zonder verborgen kosten) een relatie tussen gebruik en prijs A A B A A B A

transparant (zonder verborgen kosten) eenvoudig voor de administratie A A A A A A A

transparant (zonder verborgen kosten) voorspelbaar A A A A A A A

transparant (zonder verborgen kosten) repeterende kosten A A A A A A A

transparant (zonder verborgen kosten) eenvoudig te berekenen B A A A A A A

transparant (zonder verborgen kosten) geschikt om verschillende markten te

bedienen
A A B B A A A

transparant (zonder verborgen kosten) duidelijk voor de klant B B A A A B B

een relatie tussen gebruik en prijs eenvoudig voor de administratie B A A B A A A

een relatie tussen gebruik en prijs voorspelbaar A B A A A A B

een relatie tussen gebruik en prijs repeterende kosten A A A B A A A

een relatie tussen gebruik en prijs eenvoudig te berekenen A A A A A A B

een relatie tussen gebruik en prijs geschikt om verschillende markten te

bedienen
B A A B A A A

een relatie tussen gebruik en prijs duidelijk voor de klant B A A A B B B

eenvoudig voor de administratie voorspelbaar A B B A A A B

eenvoudig voor de administratie repeterende kosten A B B A A B A

eenvoudig voor de administratie eenvoudig te berekenen A B B A A B B

eenvoudig voor de administratie geschikt om verschillende markten te

bedienen
B B B A B B B

eenvoudig voor de administratie duidelijk voor de klant B B B A B B B

voorspelbaar repeterende kosten B A A B B A A

voorspelbaar eenvoudig te berekenen B B B B B B B

voorspelbaar geschikt om verschillende markten te

bedienen
B A B B B A A

voorspelbaar duidelijk voor de klant B A B B B B B

repeterende kosten eenvoudig te berekenen B B B A B B B

repeterende kosten geschikt om verschillende markten te

bedienen
B B B A B A B

repeterende kosten duidelijk voor de klant B B B A B B B

eenvoudig te berekenen geschikt om verschillende markten te

bedienen
B A B B B A A

eenvoudig te berekenen duidelijk voor de klant B B A B B B B

geschikt om verschillende markten te

bedienen

duidelijk voor de klant B B A A A B B

Table 24 Results of the pair wise comparisons

Pricing patterns for business SaaS applications

76

11.8 RESULTS ASSESSMENT
 1 2 3 4 5 Pi

Statement id nr of assessments

1 usage dependent pricing is transparent 2 2 3 0 0 0,238

2 usage dependent pricing has a relation between usage

and price

0 1 3 1 2 0,190

3 usage dependent pricing is easy for administration 2 3 1 1 0 0,190

4 usage dependent pricing is predictable 2 2 2 0 0 0,200

5 usage dependent pricing has recurring costs 2 2 3 0 1 0,179

6 usage dependent pricing is easy to calculate 2 1 2 0 1 0,133

7 usage dependent pricing is usable to serve multiple

markets

1 1 1 1 4 0,214

8 usage dependent pricing is clear insight for the

customer

1 2 3 2 0 0,179

9 situation-based pricing is transparent 1 0 1 3 1 0,200

10 situation-based pricing has a relation between usage

and price

0 2 1 3 1 0,190

11 situation-based pricing is easy for administration 0 1 2 3 1 0,190

12 situation-based pricing is predictable 1 1 1 2 2 0,095

13 situation-based pricing has recurring costs 0 1 1 4 1 0,286

14 situation-based pricing is easy to calculate 0 1 1 2 2 0,133

15 situation-based pricing is usable to serve multiple

markets

0 2 2 1 4 0,222

16 situation-based pricing is clear insight for the customer 0 1 2 2 1 0,133

17 cost based pricing is transparent 3 0 3 0 0 0,400

18 cost based pricing has a relation between usage and

price

4 0 3 0 0 0,429

19 cost based pricing is easy for administration 2 4 1 1 0 0,250

20 cost based pricing is predictable 2 2 2 0 0 0,200

21 cost based pricing has recurring costs 1 2 3 0 1 0,190

22 cost based pricing is easy to calculate 2 2 2 0 0 0,200

23 cost based pricing is usable to serve multiple markets 1 2 3 0 0 0,267

24 cost based pricing is clear insight for the customer 1 5 1 0 0 0,476

25 flat fee pricing is transparent 0 0 2 1 4 0,333

26 flat fee pricing has a relation between usage and price 3 0 2 2 0 0,238

27 flat fee pricing is easy for administration 0 0 1 1 4 0,400

28 flat fee pricing is predictable 0 0 1 1 4 0,400

29 flat fee pricing has recurring costs 0 0 2 2 2 0,200

30 flat fee pricing is easy to calculate 0 0 2 2 4 0,286

31 flat fee pricing is usable to serve multiple markets 0 0 2 3 3 0,250

32 flat fee pricing is clear insight for the customer 0 0 1 1 5 0,476

33 two part tariff pricing is transparent 3 1 2 0 0 0,267

34 two part tariff pricing has a relation between usage and

price

0 1 3 1 2 0,190

35 two part tariff pricing is easy for administration 2 3 3 0 0 0,250

36 two part tariff pricing is predictable 0 2 2 2 0 0,200

37 two part tariff pricing has recurring costs 0 1 3 2 1 0,190

Pricing patterns for business SaaS applications

77

38 two part tariff pricing is easy to calculate 1 2 1 2 0 0,133

39 two part tariff pricing is usable to serve multiple

markets

0 1 4 0 2 0,333

40 two part tariff pricing is clear insight for the customer 3 1 1 3 0 0,214

41 peak load pricing is transparent 4 2 1 1 0 0,250

42 peak load pricing has a relation between usage and

price

1 1 2 1 1 0,067

43 peak load pricing is easy for administration 4 1 1 0 0 0,400

44 peak load pricing is predictable 4 1 1 0 1 0,286

45 peak load pricing has recurring costs 2 1 2 1 1 0,095

46 peak load pricing is easy to calculate 4 2 0 2 0 0,286

47 peak load pricing is usable to serve multiple markets 2 1 3 1 0 0,190

48 peak load pricing is clear insight for the customer 5 1 1 0 0 0,476

49 bundle pricing is transparent 1 0 1 3 2 0,190

50 bundle pricing has a relation between usage and price 1 2 0 4 0 0,333

51 bundle pricing is easy for administration 0 1 1 3 3 0,214

52 bundle pricing is predictable 1 0 1 2 3 0,190

53 bundle pricing has recurring costs 1 1 1 1 2 0,067

54 bundle pricing is easy to calculate 0 1 1 2 3 0,190

55 bundle pricing is usable to serve multiple markets 2 0 2 3 1 0,179

56 bundle pricing is clear insight for the customer 0 1 2 1 2 0,133

57 dual pricing is transparent 2 1 2 1 0 0,133

58 dual pricing has a relation between usage and price 1 2 1 1 2 0,095

59 dual pricing is easy for administration 1 0 3 2 0 0,267

60 dual pricing is predictable 1 2 3 0 0 0,267

61 dual pricing has recurring costs 0 0 3 2 2 0,238

62 dual pricing is easy to calculate 1 2 3 2 0 0,179

63 dual pricing is usable to serve multiple markets 0 0 0 3 4 0,429

64 dual pricing is clear insight for the customer 2 1 1 3 1 0,143

 Total 82 76 115 88 81

 pj
0,186 0,095 0,155 0,141 0,151

 Ҡ 0,141

Table 25 Results of the assessment

Pricing patterns for business SaaS applications

78

11.9 POINTS AWARDED TO PRICING PATTERNS

Pricing pattern / characteristic Points

usage dependent pricing: -11,9

- is not transparent -24

- is usable to serve multiple markets 12,1

situation-based pricing: 17,2

- has recurring costs 5,1

- is usable to serve multiple markets 12,1

cost based pricing: -80,1

- is not transparent -24

- has no relation between usage and price -16,2

- is not easy for administration -5,9

- is not usable to serve multiple markets -12,1

- has no clear insight for the customer -21,9

flat fee pricing: 62,5

- is transparent 24

- has no a relation between usage and price -16,2

- is easy for administration 5,9

- is predictable 6,1

- is easy to calculate 8,7

- is usable to serve multiple markets 12,1

- has clear insight for the customer 21,9

two part tariff pricing: -17,8

- is not transparent -24

- is not easy for administration -5,9

- is usable to serve multiple markets 12,1

peak load pricing: -66,6

- is not transparent -24

- is not easy for administration -5,9

- is not predictable -6,1

- is not easy to calculate -8,7

- has no clear insight for the customer -21,9

bundle pricing: -5,9

- is easy for administration -5,9

dual pricing: 11,1

- is not predictable -6,1

- has recurring costs 5,1

- is usable to serve multiple markets 12,1

Table 26 Overview of all points awarded to the pricing patterns for selecting the most appropriate pricing patterns for

business SaaS applications

