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Abstract

In 2011 Chien et al. introduced a method to calculate the cusp anomalous dimension for eikonal
Wilson Lines at one- and two-loop order by viewing the Wilson lines as static charges in AdS
space [1]. In this masterthesis this method is reviewed and a step by step guide is given. Moreover,
an attempt is made to apply this method to next to eikonal Wilson lines. Even though this
appeared to be only partly possible, some calculations could be done in position space, confirming
other findings in momentum space. Besides this a start is made with the application of this method
to three loop calculations. This looks promising, but poses significant challenges.
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Chapter 1

Introduction

Our best understanding of the interactions between the fundamental particles is combined into the
Standard Model. This model describes the weak and strong interactions between particles, as well as
the electromagnetic interactions. The Higgs mechanism gives mass to the particles. The only force
that is not incorporated yet is gravitation. To test the standard model, the Large Hadron Collider
(LHC) was build. In 2009 the first proton-proton collisions took place in this particle accelerator.
Because the energy of the collisions at the LHC is higher than anywhere before, physicists are
able to study the standard model with even higher precision. The high statistics already enabled
physicists to find a ‘Higgs-like’ boson. Attemps are made to find particles from theories beyond
the standard model as well, but so far none have been seen.
To be able to fully appreciate high precision measurements, high precision predictions are needed as
well. This is the task of the theorists. Predictions are made by calculating cross sections for different
interactions, thus predicting the statistical importance of such a specific interaction. Unfortunately
it is not possible to do this in an exact way. Therefore perturbation theory is used. To obtain
higher precision, higher orders in the perturbed parameter have to be included. These typically
involve more complicated calculations.
When looking at a typical interaction at the LHC, there are outgoing quarks with high energy,
called hard quarks. These emit low energy radiation in the form of gluons. Since the coupling
constant for Quantum Chromo Dynamics, the theory describing interactions between quarks and
gluons, blows up for low energies, these soft interactions will disturb the pertubation series. To
avoid this problem, the Wilson line is introduced. Using a Wilson line the perturbation series can
be re-exponentiated, so that a large coupling constant does not invaluate the perturbation series
anymore. This will be explained in greater detail below. Wilson lines are an important tool when
calculating the contribution of the outgoing quarks to the cross section. To relate the exponent of
the Wilson lines at different energy scales, an object called the cusp anomalous dimension is used.
The paper by Chien et al. [1] provides a new method to calculate this cusp anomalous dimension,
making use of the conformal symmetry of the theory.
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CHAPTER 1. INTRODUCTION

In the next chapter I will introduce concepts such as Wilson lines, the cusp anomalous dimension
and the renormalization group equations, that are needed for the rest of this thesis. From there
on I will carry out some calculations and introduce the method from [1]. Besides explaining this
method step by step, I will apply it to some higher order calculations, namely at next to eikonal
and three-loop level.
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Chapter 2

Introduction to QCD and Wilson
Lines

2.1 QCD and Asymptotic Freedom

Quantum Chromo Dynamics (QCD) is the theory describing the strong interactions between quarks
and gluons. Quarks and gluons are the constituents of hadrons and mesons. QCD describes their
dynamics by the following Lagrangian:

LQCD = ψ̄i(i(γµDµ)ij −mδij)ψj − 1
4
GaµνG

µν
a (2.1)

where Dµ is the covariant derivative (Dµ = ∂µ − igGaµ), ψ is the quark field and Gaµν the gluon
stress-energy tensor or gluon field strength tensor Gaµν = ∂µG

a
ν − ∂νGaµ + fabcG

b
µG

c
ν .

2.1.1 Nonabelian Gauge Theories

QCD is an example of a nonabelian gauge theory. This a gauge theory whose symmetry group
(SU(3) in the case of QCD) is nonabelian. In other words, the gauge fields of the theory do not
commute:

[Gbµ, G
c
ν ] 6= 0 (2.2)

This commutator also appears in the definition of the stress-energy tensor of the gauge fields
(gluons) stated above. The fact that it does not vanish accounts for a G3 and a G4 interaction
term, so that the gluons interact with eachother. This fact is key for the difference between QED
and QCD. When a charge is put into a QED vacuum, it will polarise the medium. In this way it
will be screened by the medium, thus becoming weaker on bigger distances. When putting a colour
charge in a QCD vacuum, qq̄ pairs will screen it, but now there are also virtual gluon pairs. These
gluon pairs will overrule the screening by the qq̄ pairs and reinforce the charge. Now the charge
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CHAPTER 2. INTRODUCTION TO QCD AND WILSON LINES

electron

proton

quark

Figure 2.1: Deep Inelastic Scattering

becomes stronger on bigger distances. On the other hand, it stays weak at small distances. This
feature is called asymptotic freedom and will be elaborated on more below.
The increasing size of the strong force at long distances is a problem for our ability to make
predictions because it invalidates the perturbation series of Feynman diagrams, rendering every
next order term larger than the previous one. Only for short distances (high momenta) can the
theory be treated perturbatively. Another feature of the theory is confinement: inside a hadron the
quarks are moving freely, but they can not be extracted from the hadron: the amount of energy
needed to overcome the strong coupling (at distance larger than the size of the hadron) is higher
than the energy needed to create a quark-antiquark pair. The result of this is that until now we
have not been able to observe free quarks.
Nevertheless the inside of the hadron can be studied experimentally by scattering: firing a beam
of, for example, electrons and measuring the final state particles. By scattering a 20 GeV electron
beam from a hydrogen target, in the SLAC-MIT experiment it was found that the largest part of
the reaction rate came from deep inelastic scattering of the electrons on pointlike constituents [2].

2.2 Deep Inelastic Scattering and Factorization

The process of deep inelastic scattering (DIS) occurs when an electron scatters from a quark inside
a hadron, for example a proton (see figure 2.1). When the struck quark acquires a large momentum,
it will be ejected from the hadron. Soft processes will create gluons and quark-antiquark pairs to
neutralize the color. The quark will end up as a jet of hadrons. In order to compute cross sections
for electron-hadron scattering, the parton model is used. In this model the hadron is assumed to

4



2.2. DEEP INELASTIC SCATTERING AND FACTORIZATION

consist of pointlike particles, the partons (quarks, antiquarks and gluons). This is allowed because
of the asymptotic freedom of QCD. In the short time (high energy) scale of the electron-quark
scattering the QCD-coupling will be very small. Using this view, we can calculate the cross section
for electron-hadron scattering as a sum over electron-quark cross sections. This splitting of the
total cross section in two energy-regions, the hard electron-quark scattering and the soft QCD
processes inside the hadron, is called factorization. In order to calculate the total cross section,
we need to know the probability that a quark with a specific flavor and momentum will occur in
the specific hadron. This probability is given by the so called parton distribution functions. The
calculation of these functions is problematic, since they depends on soft QCD processes that cannot
be computed with QCD perturbation theory. Luckily these functions are universal. So once the
parton distribution functions of a specific hadron are found experimentally, they can be used for
predictions in other experiments.
To higher order these functions are modified and will also depend on the momentum transferQ2, due
to the exchange or emission of high-momentum gluons. The dependence on Q2 is called evolution
and leads to a differential equation for the parton distribution functions. This equation is obtained
as follows. When computing corrections of first order in αs, the QCD coupling constant, we obtain
divergences from collinear configurations. These can be combined with the parton distribution
functions, viewing them as constituents of the parton. The higher the momentum transfer Q,
the more the hadron is probed, revealing its structure as a constituent parton (quark) with smaller
momentum plus a number of gluons and quark-antiquark pairs. In this way, the parton distribution
functions become dependent on Q.
When zooming in on the quark (by increasing Q), at lowest order there are no corrections. The first
correction will be the collinear emission of a gluon that will carry part of the momentum. Zooming
in further, the gluon can split into a quark-antiquark or gluon pair, and the quark can emit another
gluon. To calculate the parton distribution function, we compute the splitting functions that give
the probability that a splitting occurs. The difference between the parton distribution function of
say parton A at energy Q and Q+ ∆Q is given by the integral over the probability that a parton
of another type B will split into our parton A. The differential equations for the gluon, quark
and antiquark distribution functions are known as the Altarelli-Parisi equations and can be found
below in equation (2.3). The functions Pa←b are called splitting functions. To calculate the parton
distribution functions we need an initial value of the distribution as a function of Q, which can be
determined experimentally. In this way predictive power for other experiments is obtained. [2]

d

d logQ
fg(x,Q) =

αs(Q2)
π2

∫ 1

x

dz

z
{Pg←q(z)

∑
f

[ff (
x

z
,Q) + ff (

x

z
,Q)] (2.3)

+Pg←g(z)fg(
x

z
,Q)}

d

d logQ
ff (x,Q) =

αs(Q2)
π2

∫ 1

x

dz

z
{Pq←q(z)ff (

x

z
,Q) + Pq←g(z)fg(

x

z
,Q)}
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d

d logQ
ff (x,Q) =

αs(Q2)
π2

∫ 1

x

dz

z
{Pq←q(z)ff (

x

z
,Q) + Pq←g(z)fg(

x

z
,Q)}

2.3 Evolution

The concept of the Altarelli-Parisi equations for gluon and quark distributions can also be applied
to Greens functions. It works as follows: one defines a theory at some energy scale M , and imposes
renormalization conditions at spacelike momentum p2 = −M2, instead of the usual p2 = m2. In
this way we avoid singularities from the m2 → 0 limit. Now instead of this arbitrary M , we could
also have chosen M ′ = M + δM . When we have a shift in M , we will have a corresponding shift in
the coupling constant λ→ λ+ δλ, and in the field strength φ→ (1 + δη)φ. The shift in the Greens
functions G(n) will be induced by the shift in the field strength: G(n) → (1 + nδη)G(n). The next
step is to think of G(n) as a function of M and λ, and write:

dG(n) =
∂G(n)

∂M
δM +

∂G(n)

∂λ
δλ = nδηG(n) (2.4)

We define

β ≡ M

δM
δλ, γ ≡ − M

δM
δη (2.5)

so that (2.4) can be written:

[M
∂

∂M
+ β

∂

∂λ
+ nγ]G(n)(x1, · · · , xn;M,λ) = 0. (2.6)

This equation is called the Callan-Szymanzik equation. The two functions β and γ are universal
and relate the shift in respectively the coupling constant λ and the field strength φ to the change
in momentum scale M . The functions β and γ can be calculated using Greens functions, which
makes it possible to related them to counterterms. To solve equation (2.6), one can write for λ̄,
the running coupling constant:

d

d log(p/M)
λ̄(p;λ) = β(λ̄) (2.7)

which is called the renormalization group equation, relating the coupling constant λ to the renor-
malization scale. Using this equation, we can have field theories showing three kinds of behavior:

1. β(λ) > 0

2. β(λ) = 0

3. β(λ) < 0

6



2.3. EVOLUTION

In the first case, λ → 0 for low momenta. Perturbation theory can be used for low momenta,
i.e. large distance calculations. An example of such a theory is QED. Theories of the second type
are called finite quantum field theories. The running coupling is independent of the momentum
scale, and hence equal to the bare coupling. This implies that the coupling does not blow up for
large or small momenta. The only possible (ultraviolet) divergences come from the field rescaling,
but these cancel in the computation of the S-matrix elements. The third case applies to QCD:
β(λ) < 0. Now λ → 0 for high momenta, so that perturbation theory can be used for high
momenta (short distances). These theories are called asymptotically free and correspond to the
behavior described above in 2.1.1. For these theories the short distance behavior can be computed.
There will be ultraviolet divergences from the fields, but since the coupling constant tends to zero
for high momenta they are harmless.
The Callan-Szymanzik equation in momentum space (writing p instead of M) for the two-point
function G(2) becomes:

[p
∂

∂p
− β(λ)

∂

∂λ
+ 2− 2γ(λ)]G(2) = 0, (2.8)

which has general solution

G(2)(p, λ) = G(λ̄(p;λ)) · exp

(
−
∫ p′=p

p′=M
d log(p′/M) · 2[1− γ(λ̄(p′;λ))]

)
. (2.9)

To gain some more insight this equation can be written in a different way:

G(2)(p, λ) =
i

p2
G(λ̄(p;λ)) · exp[2

∫ p′=p

p′=M
d log(p′/M) · 2γ(λ̄(p′;λ))]. (2.10)

A fixed point of the renormalization group flow is a point λ∗ where β(λ∗) = 0. Take for example
the case where β(λ) > 0 for λ < λ∗. Then around the fixed point we can write β ≈ −B(λ − λ∗),
with B a positive constant. For λ̄ near λ∗ we thus have d

d log p λ̄ ≈ −B(λ̄ − λ∗), which solution is

given by λ̄(p) = λ∗ + C
(
M
p

)B
. So we see we that in this case we have a fixed point for p→∞ as

λ → λ∗ At this fixed point the integral in (2.10) will be dominated by high values of p, so it can
be approximated:

G(p) ≈ i

p2
G(λ̄(p;λ)) · exp(2 log(p′/M) · 2γλ∗) (2.11)

≈ C ·
(

1
p2

)1−γ(λ∗)

(2.12)

At this fixed point the theory is scale-invariant (because β equals zero, λ doesn’t change with an
infinitesimal scale change). For obvious reasons, γ is called the anomalous dimension. It is the
correction to the dimension caused by the (quantum) interactions of the theory. Note that even
when there’s no fixed point in the theory, γ is still called the anomalous dimension [2].

7
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a, µ

↓ q

k + q k→→

Figure 2.2: Gluon Emission Vertex

a, µ

↓ q1

k + q1 + q2 k + q2→→

b, ν

↓ q2

k→

Figure 2.3: Emission of two Gluons

2.4 Wilson Lines

When a quark or electron is emitted with high energy, as in figure 2.1, it will radiate soft (low
energy) gluons or photons. When the momentum carried by a gluon is very small relative to
the momentum of the quark this will lead to infrared divergences in our calculation. These will
contribute a large logarithm to the expansion, thus disabling perturbation theory. Moreover, there
can be an infinite number of gluons. This problem can be overcome using the method of Wilson
lines. With this method we can treat the diagram perturbatively and then re-exponentiate it to an
exact expression. A Wilson line along a path C is given by:

W(C) = P exp(ig
∫
C
Aµdx

µ). (2.13)

Looking at a quark emerging from a reaction (the grey blob in figure 2.2), the expansion over
number of gluons that are emitted can be calculated as follows. The first order diagram (2.2) is
given by:

M1 gluon = ū(k)(−ig/ε(q)T a)i (/k + /q)
(k + q)2

M, (2.14)

where M refers to the blob on the left side. Since we’re looking at massless particles, k2 = q2 = 0,
the denominator of the quark propagator can be written as 2q · k. Besides, we use the eikonal

8



2.4. WILSON LINES

approximation and approximate /k + /q ≈ /k to write (2.14) as:

gT aū(k)/ε(q)
/k

2q · kM. (2.15)

Now we use the fact that ū(k)/k = 0 for massless fermions to write {/ε(q), /k} for /ε(q)/k:

gT aū(k)
{/ε(q), /k}

2q · k M (2.16)

= gT aū(k)
ε(q)µkν2ηµν

2q · k M (2.17)

= gT aū(k)
ε(q) · k
q · k M, (2.18)

where I used {γµ, γν} = 2ηµν in the second line. Similarly for a diagram with an extra soft gluon:

M2 gluons = ū(k)(−ig/ε(q2))T bi
/k + /q2

(k + q2)2
(−ig/ε(q1)T a)

/k + /q1 + /q2

(k + q1 + q2)2
M (2.19)

= g2T bT aū(k)/ε(q2))
/k

2q2 · k/ε(q1)
/k

(q1 + q2) · kM (2.20)

= g2T bT aū(k)
ε(q2) · k
q2 · k /ε(q1)

/k

(2q1 + q2) · kM (2.21)

= g2T bT aū(k)
ε(q2) · k
q2 · k

ε(q1) · k
(q1 + q2) · kM, (2.22)

where I first used the soft gluon approximation, and then applied the Dirac equation for massless
fermions twice. Equation (2.22) almost looks like the square of (2.18), the only difference being
the (q1 + q2) · k in the second denominator. So we actually obtain the power series of a path
ordered exponential, as promised in (2.13). This path ordering reflects the fact that T b and T a

do not commute and so can not be interchanged without consequences. To show that we have
indeed found the first two terms of the power series of (2.13) let us expand it. I will do this for a
Wilson line in the direction nµ, starting at the origin and travelling to infinity, so C = [0,∞] and
Aµ(x) = Aµ(nλ).

W(C) = P exp(ig
∫
C
Aµdx

µ)

= P exp(ig
∫ ∞

0
dλ n ·A(nλ)

≈ igT a
∫ ∞

0
dλ n ·A(nλ)

9
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+ −g2T bT a
∫ ∞

0
dλ1

∫ ∞
λ1

dλ2 n ·A(nλ1) n ·A(nλ2).

Because I computed the first two diagrams in momentum space, I insert the Fourier transform for
A(x):

igT a
∫ ∞

0
dλ nµ

∫
d4qAµ(q)e−i(q·n+iε)λ

− g2T bT a
∫ ∞

0
dλ1

∫ ∞
λ1

dλ2 n
µnν

∫
d4q1

∫
d4q2Aµ(q1)Aµ(q2)ei(q1·nλ1ei(q2·n+iε)λ2 (2.23)

Now I first evaluate the integrals over the λ:

igT anµ
∫
d4qAµ(q)

−i
q · n+ iε

−g2T bT a
∫ ∞

0
dλ1n

µnν
∫
d4q1

∫
d4q2Aµ(q1)Aµ(q2)ei(q1·nλ1) −i

q2 · n+ iε
e−i(q2·n+iε)λ1

= igT anµ
∫
d4qAµ(q)

−i
q · n+ iε

−g2T bT a
∫ ∞

0
dλ1n

µnν
∫
d4q1

∫
d4q2Aµ(q1)Aµ(q2)ei(q1·n+q2·n+iε)λ1

−i
q2 · n+ iε

= igT anµ
∫
d4qAµ(q)

−i
q · n+ iε

−g2T bT anµnν
∫
d4q1

∫
d4q2Aµ(q1)Aµ(q2)

−i
q1 · n+ q2 · n+ iε

−i
q2 · n+ iε

= gT a
∫
d4q

A(q) · n
q · n

+g2T bT an

∫
d4q1

∫
d4q2

A(q1) · n
(q1 + q2) · n

A(q2) · n
q2 · n

Now recognizing that the Fourier transform of Aµ is given by its polarization vector εµ, we obtain
the factors between ū(k) and M from (2.18) and (2.22), integrated over the external gluon momenta.

2.5 Renormalization Group Equation for Wilson Lines

To find the behaviour of the exponential of the Wilson line at different scales, we can use the
concept of the Altarelli-Parisi equations explained above in paragraph 2.3. To do so, we require
the Wilson line to be independent of the renormalization scale µ (denoted M in paragraph 2.3):

µ
d

dµ
W (C) =

d

d logµ
W (C) = 0 (2.24)
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2.6. OUTLINE OF THIS THESIS

In the case of a Wilson line, renormalization is used to remove cusp singularities caused by a cusp
in the line. These singularities can be renormalized multiplicatively [3]. We thus write

Wren(C, gR, µ) =
W (C, gR, µ)
Zcusp(ω, gR, µ)

(2.25)

. Note that W (C, gR, µ) also depends on gR and µ and that gR again depends on µ, so that
d
dµW (C, gR, µ) = ( ∂

∂µ + β(g) ∂∂g )W (C, gR, µ), where β(g) = ∂g
∂µ . To obtain the renormalization

group equation, we apply (2.24) to W (C).

µ
d

dµ
W (C, gR, µ) = 0 (2.26)

µ
d

dµ

(
Wren(C, gR, µ)
Zcusp(ω, gR, µ)

)
= 0 (2.27)

µ

Zcusp

d

dµ
Wren(C, gR, µ)− Wren(C, gR, µ)µ

Z2
cusp

d

dµ
Zcusp(ω, gR, µ) = 0 (2.28)

µ

Wren(C, gR, µ)
d

dµ
Wren(C, gR, µ) =

µ

Zcusp

d

dµ
Zcusp(ω, gR, µ) (2.29)

µ
d

dµ
logWren(C, gR, µ) = µ

d

dµ
logZcusp(ω, gR, µ) ≡ Γcusp(ω, gR) (2.30)(

µ
∂

∂µ
+ β(g)

∂

∂g

)
logWren(C, gR, µ) = Γcusp(ω, gR) (2.31)

where we define Γcusp = µ d
dµ logZcusp.

We see from this equation that we need Γcusp to calculate the factor in the exponent of a Wilson
line. It is possible to calculate Γcusp from Zcusp order by order, but the calculations get very
complicated.

2.6 Outline of this Thesis

In my thesis I will calculate several contributions to Γcusp. First I will perform the one-loop order
calculation to show the general procedure. Then I will show a different approach, proposed in
ref. [1]. In this approach the conformal symmetry of the theory is used, which leads to a map
to R × AdS. Working in R × AdS simplifies the one loop calculation a lot. I will also look more
closely at the procedure to see if some of the features can be applied to calculate the next-to-eikonal
contributions to the cusp anomalous dimension, and the actual calculations are done.
Subsequently I wil describe how the two loop contribution to Γcusp can be calculated using again
the conformal symmetry of the theory, this time in the form of the conformal propagator. This
conformal propagator makes use of the gauge freedom by gauging away terms that mix radial and
angular parts. The two loop calculation is simplified a lot by applying this method.

11



CHAPTER 2. INTRODUCTION TO QCD AND WILSON LINES

Finally, the first steps to use the conformal propagator to do a three loop computation are pointed
out.

12



Chapter 3

Anomalous Cusp Dimension at One
Loop Order

In this chapter we will calculate the cusp anomalous dimension at one-loop order. To regulate IR
singularities, we introduce an exponential regulator in the exponent of the Wilson line, that cuts
off long-distance (λ→∞) contributions [4]:

ig

∫ ∞
0

dλ A(λn) · n → ig

∫ ∞
0

dλ e−mλ
√
−n2

A(λn) · n. (3.1)

Expanding two Wilson lines, immediately inserting the IR-regulator we obtain the following:

exp(ig
∫ ∞

0
dλi A(λini) · ni e−mλi

√
−n2

i ) exp(ig
∫ ∞

0
dλj A(λjnj) · nj e−mλj

q
−n2

j )

= 1 + igT i
∫ ∞

0
dλi A(λini) · ni e−mλi

√
−n2

i + igT j
∫ ∞

0
dλj A(λjnj) · nj e−mλj

q
−n2

j

−g2T iT j
∫ ∞

0
dλi

∫ ∞
0

dλj Aµ(λini) e−mλi
√
−n2

i nµi Aν(λjnj)nνj e
−mλj

q
−n2

j

There are two different diagrams to consider, see fig. 3.1 and 3.2. The first one will depend on the
cusp angle, the second one will not.

3.1 One Loop Diagram

Now we concentrate on the case with one emission from both lines, order αs ∼ g2. We Wick contract
the two emitted gluons, so that A(λini)µA(λjnj)ν → Dµν(λini − λjnj), the gluon propagator. In
coordinate space this propagator is given by [4]:

Dµν(x− y) = −Γ(1− ε)
4π2−ε

gµν
(−(x− y)2)1−ε (3.2)

13
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i j

λini λjnj

Figure 3.1: One Loop Diagram in Coordinate Space

Putting this together we obtain:

M = g2T iT j
Γ(1− ε)
4π2−ε

∫ ∞
0

dλi

∫ ∞
0

dλj n
µ
i n

ν
j

gµν e
−m(λi

√
−n2

i+λj
q
−n2

j )

(−(λini − λjnj)2)1−ε (3.3)

= g2T iT j
Γ(1− ε)
4π2−ε ni · nj

∫ ∞
0

dλi

∫ ∞
0

dλj
e
−m(λi

√
−n2

i+λj
q
−n2

j )

(−(λini − λjnj)2)1−ε (3.4)

Now we do a coordinate transformation to get rid of one of the λ integrals:

λi → λx√
−n2

i

; λj → λ(1− x)√
−n2

j

(3.5)

which has Jacobian λq
n2
in

2
j

and where we let x run from 0 to 1 (and λ from 0 tot ∞). This gives us

the following integral:

∫ ∞
0

dλi

∫ ∞
0

dλj
e
−m(λi

√
−n2

i+λj
q
−n2

j )

(−(λini − λjnj)2)1−ε
ni · nj√
n2
in

2
j

(3.6)

=
∫ 1

0
dx

∫ ∞
0

dλ λ
e−mλ(x+(1−x))

(−λ2(x ni√
−n2

i

− (1− x) njq
−n2

j

)2)1−ε
ni · nj√
n2
in

2
j

(3.7)

=
∫ 1

0
dx

∫ ∞
0

dλ
e−mλ

λ1−2ε

ni · nj√
n2
in

2
j (−(x ni√

−n2
i

− (1− x) njq
−n2

j

)2)1−ε
(3.8)

14



3.2. SELF ENERGY

=
∫ 1

0
dx

ni · nj√
n2
in

2
j (−(x ni√

−n2
i

− (1− x) njq
−n2

j

)2)1−ε

∫ ∞
0

dλ
e−mλ

λ1−2ε
(3.9)

Now first integrating over λ, using again a coordinate transformation λ → y = λm we obtain the
Gamma function: ∫ ∞

0
dλ
e−mλ

λ1−2ε
= m−2ε

∫ ∞
0

dy
e−y

y1−2ε
= m−2εΓ(2ε) (3.10)

Puting this back in our equation and writing out the denominator, we find:

M = −g2T iT j
Γ(1− ε)
4π2−ε Γ(2ε)m−2ε

∫ 1

0
dx

cosh γij
(x2 + (1− x)2 + x(1− x)2 cosh γij)1−ε (3.11)

where cosh γij = − ni·njq
n2
in

2
j

. Now taking the limit ε→ 0, only keeping the ε dependence in the Γ(2ε)

term, the remaining integral can be evaluated:∫ 1

0
dx

cosh γij
x2 + (1− x)2 + x(1− x)2 cosh γij

= γij coth γij (3.12)

Putting in this result and using that for small ε, Γ(2ε) = 1
2ε +O(ε0) we obtain:

M = −g2T iT j
1

4π2

1
2ε
γij coth γij (3.13)

Now γij is real when one of the particles is incoming and one is outgoing. We can define an angle
coshβij = ni·njq

n2
in

2
j

= − cosh γij , so that γij = βij − iπ. Plugging this in we finally find:

M = −g2T iT j
1

4π2

1
2ε

(βij − iπ) cothβij (3.14)

3.2 Self Energy

In this diagram we look at the self energy of a Wilson line. We start with the order g2 term of
the Wilson line expansion from (2.23), but for simplicity in the calculation we take 0 < λ2 < λ1

instead of λ1 < λ2 <∞. Also we impose the exponential regulator again:

MB = −g2T iT j
∫ ∞

0
dλi

∫ λi

0
dλjAµ(λin)e−mλi

√
−n2

nµAν(λjn)nνe−mλj
√
−n2

(3.15)

Now again using Wick’s theorem AµAν → Dµν :

MB = −g2T iT j
∫ ∞

0
dλi

∫ λi

0
dλjDµν(λin− λjn)e−m(λi+λj

√
−n2

nµnν (3.16)
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i j

λjnj

λinj

Figure 3.2: Self Energy in Coordinate Space

= g2T iT j
Γ(1− ε)
4π2−ε n · n

∫ ∞
0

dλi

∫ λi

0
dλj

e−m(λi+λj)
√
−n2

(−(λin− λjn)2)1−ε . (3.17)

Taking the n outside the denominator, making a variable substitution λ′j = λj − λi and rescaling
m→ √−n2m:

MB = g2T iT j
Γ(1− ε)
4π2−ε

n2

n2−2ε

∫ ∞
0

dλie
−2mλi

∫ 0

−λi
dλ′j

e−mλ
′
j

(−λ′2j )1−ε . (3.18)

Using another variable substitution λ′j → y = mλ′j we do the first integration:∫ 0

−λi
dλ′j

e−mλ
′
j

(−λ′2j )1−ε =
∫ 0

−mλi

dy

m

e−y

(−y2)1−ε (−m2)1−ε = m
(−λi)2)ε

(−mλi)2ε
Γ(−1 + 2ε,−mλi) (3.19)

where Γ(x, y) is the incomplete Gamma function Γ(a, x) =
∫∞
x dt ta−1 e−t. Because later on we

are again going to take the limit ε → 0, we can now already throw away the ε dependence of the
constant factors. Putting our result back in and integrating again:

MB = g2T iT j
1

4π2

∫ ∞
0

dλi
me−2mλi

(−mλi)2ε
(−λ2

i )
εΓ(−1 + 2ε,−mλi)

= −g2T iT j
1

4π2

[
1
2

(−λ2
i )
ε(

Γ(−1 + 2ε,−mλi)e−2mλi

(−mλi)2ε
+

Γ(−1 + 2ε,mλi)
(mλi)2ε

)
]∞

0

Now we see that indeed our infrared regulator makes sure that the λi =∞ term does not contribute.
For the UV divergence, I first expand around ε→ 0, only keeping the ε dependence in the Γ.

MB = −g2T iT j
1

8π2
Γ(2ε− 1) (3.20)

= −g2T iT j
1

8π2

Γ(2ε)
2ε− 1

(3.21)
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3.3. ANOMALOUS CUSP DIMENSION

= g2T iT j
1

8π2

1
2ε

(3.22)

Since we can have this configuration both on the left and on the right Wilson line, we have to count
it twice in the calculation of the anomalous cusp dimension.

3.3 Anomalous Cusp Dimension

Now we are ready to calculate the anomalous cusp dimension Γ up to first loop order. Γ is obtained
from the renormalization factor Z as follows:

Γcusp = µ
d

dµ
logZcusp (3.23)

Now Zcusp is used to pull out the divergent factor from the Wilson line. This divergent factor is
given by the ∼ 1

2ε terms calculated above:

Z = 1− g2
∑
i<j

T iT j
1

4π2

1
2ε

(βij − iπ) cothβij + 2g2
∑
i<j

T iT j
1

8π2

1
2ε

(3.24)

= 1− g2
∑
i<j

T iT j
1

4π2

1
2ε

((βij − iπ) cothβij − 1) (3.25)

where we take the sum over all possible color configurations i, j. We can make the µ dependence
apparent by writing g2(µ) = g2µ2ε. Then we can calculate Γ:

Γ = µ
d

dµ
log(1− g2

∑
i<j

T iT j
1

4π2

µ2ε

2ε
((βij − iπ) cothβij − 1)) (3.26)

= µ
d

dµ
(−g2

∑
i<j

T iT j
1

4π2

µ2ε

2ε
)((βij − iπ) cothβij − 1)) (3.27)

= −g2
∑
i<j

T iT j
1

4π2
((βij − iπ) cothβij − 1) (3.28)

So we have found here the cusp anomalous dimension at one-loop order. We can see that as
expected it only depends on the cusp angle.

3.4 The Limit γ → 0

When we go from βij to γij and take the limit γ → 0, we see that the cusp anomalous dimension
vanishes:

Γ = −g2
∑
i<j

T iT j
1

4π2
((βij − iπ) cothβij − 1)
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= −g2
∑
i<j

T iT j
1

4π2
(γij coth γij − 1)

lim
γ→0

Γ = −g2
∑
i<j

T iT j
1

4π2
(γij coth γij − 1)

= −g2
∑
i<j

T iT j
1

4π2
(1− 1)

= 0

This could have been expected, because of the following: if we interpret the two quarks fields as
operators, we find for the diagrams in figure D.1 something like Qn1γµQ̄n2 . When γ goes to zero, we
align n1 and n2, so we find Qn1γµQ̄n1 , which we recognize as a conserved current. This conserved
current corresponds to flavour conservation. Conserved currents are not renormalized and hence
there is no cusp anomalous dimension involved, so we expected it to be zero [5].
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Chapter 4

Conformal Symmetry and the
Conformal group

Conformal transformations are coordinate transformations that leave the metric invariant up to a
scale factor: gµν → g′µν = ω(x)gµν . Field theories that are invariant under such transformations
are called Conformal Field Theories (CFTs). Many theories that exhibit conformal invariance at
the classical level do not retain this invariance once quantum corrections are added. This also turns
out to be the case for QCD. But when using the free field theory limit αs → 0 one can use the
conformal symmetry, since quantum corrections are suppressed. Additionally, conformal invariance
is also found at the critical point of a statistical system, or equivalently at the fixed point in the
before mentioned renormalization group of a theory. In paragraph 2.3 we saw that for λ = λ∗, the
theory is scale independent because of the vanishing β function. This allows us to use some of the
features of CFT to compute the anomalous dimension [2], [6].

4.1 The Conformal Group

The conformal group is defined as the group of coordinate transformations changing only the scale
of the metric, thus preserving angles and leaving the lightcone invariant:

x → x′

gµν(x) → g′µν(x′) = ω(x)gµν(x)
(4.1)

with ω(x) the scale factor. We can distinguish four types of transformations obeying conformality,
together with their generators:
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x′µ = xµ + aµ Pµ = −i∂µ (Translation)
x′µ = Λµνxν Mµν = i(xµ∂ν − xν∂µ) (Rotation)
x′µ = αxµ D = −ixµ∂µ (Dilation)
x′µ = xµ−bµx2

1−2b·x+b2x2 Kµ = −i(2xµxν∂ν − x2∂µ) (Special Conformal Transformation)

These four types generate together fifteen transformations (in four-dimensional spacetime): four
translations, six Lorentz transformations (rotations), one dilatation and four special conformal
transformations. The first two together form the Lie algebra of the Poincaré group. We can write
the commutation relations in a simple form after redefining the generators:

Jµν = Mµν

J−1,0 = D
J−1,µ = Pµ−Kµ

2

J0,µ = Pµ+Kµ

2

(4.2)

Thus obtaining the following commutator:

[Jab,Jcd] = i(ηadJbc + ηbcJad − ηacJbd − ηbdJac) (4.3)

where a, b, c, d ∈ −1, 0, 1, .., d and ηab = diag(−1, 1, ..., 1) in Euclidean spacetime. From this we can
see that the conformal group in d dimensions is isomorphic to the group SO(d + 1, 1) which has
dimension 1

2(d+ 2)(d+ 1), agreeing with d = 4 which would lead to the previously found 6×5
2 = 15

transformations [6].

4.2 The Dilatation Operator in Minkowski Space

The Dilatation operator generates the following transformation:

xµ → x′µ = λxµ (4.4)
Φ → Φ′(x′) = λ−∆Φ(x) (4.5)

were ∆ is called the scaling dimension. We can compute the infinitisimal generator D of this
transformation, writing λ = 1 + α, where 0 < α << 1:

δΦ(x) = Φ′(x)− Φ(x) = −iωDΦ(x) (4.6)
= −(Φ′(x′)− Φ′(x)) + Φ′(x′)− Φ(x) (4.7)
= −(αxµ∂µ − (1 + α)−∆ + 1)Φ(x) (4.8)
= −(αxµ∂µ + α∆)Φ(x) (4.9)
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where I used that ∂µΦ(x) = Φ(x+αx)−Φ(x)
αx . The factor α∆ that we did not find in the definition of

the dilatation operator above is caused by the fact that Φ is not scale invariant. I will elaborate a
bit more on this below.
One can see that the Jacobian of this transformation is |∂x′∂x | = λd, where d is the dimension. To
obtain a scale invariant action one therefore needs to consider the power of λ that each term of
the Lagrangian obtains; for every Φ this is λ−∆, for every ∂µΦ this is λ−∆−1. This restrains the
possible powers of Φ and ∂µΦ in the Lagrangian when requiring conformal invariance.
Depending on the exact definition, the dilatation operator can measure the dimension. To achieve
this we define DR1,3

= xµ∂µ. We have seen from the discussion above how Φ changes; when we
let our D work on Φ, in a conformally invariant theory (such that the δΦ(x) from (4.6) is equal
to zero), we obtain the scaling dimesion ∆ which is equal to the canonical dimension of the field
[Φ]. Moreover, in a theory were this conformal symmetry is broken by quantum effects, Φ will not
scale exactly with λ∆, but will obtain a anomalous dimension γ so that it scales with λ∆−γ . So D
measures the difference between ∆ and γ:

DR1,3
Φ(x) = xµ∂µΦx = (∆− γ)Φ(x) (4.10)

Physically this can be understood from the definition of the anomalous dimension; it gives a measure
for the renormalization group flow. When γ is zero, there is no flow, making the theory the same
at all scales, hence conformally invariant.

4.3 Conformal Coordinate Transformation

A Wilson line starting at the origin in direction nµ contains the points xµ = snµ for s > 0. A
conformal transformation then simplifies to putting s → s′ = cs. Now define τ = ln |x|, with
|x| = √t2 − ~x2. A scale change in s now leads to a translation in τ :

s→ s′ = cs

xµ → x′µ = cxµ

τ → τ ′ = ln |x′| = ln |
√
c2(t2 − ~x2)| = ln |cx| = ln |c|+ ln |x|

So if we originally had a conformal symmetry, with this new ‘time’ coordinate τ we will have
translational symmetry. A scale transformation as generated by the dilatation operator will after
this coordinate transformation become a time translation, whose generator is the Hamiltonian in
these new coordinates.
To exploit the conformal symmetry, it is convenient to work in a radial coordinate system. Consider
a Wilson line in the directon nµ = (cosh(β), sinh(β)n̂), where n̂ is a unit vector in R3. Then we
can describe the path of the Wilson line by

t = eτ coshβ, r = eτ sinhβ (4.11)
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Figure 4.1: Figure adapted from [1]. In this figure one can see at the left side the dynamic situation
in Minkowski space. After the coordinate change the situation on the right side is obtained: the
origin is mapped to −∞ and the charges are static. The constant cusp angle between two lines at
the left figure has become the distance of two static objects in AdS in the right figure.

where β, θ and φ are fixed and τ runs form −∞ to∞. Now we can take τ and β as our coordinates
instead of t and r. The fact that β has a constant value for every Wilson line is a key point of
this transformation. We have changed the moving Wilson lines into static objects, that can be
treated as charges. Moreover, when looking at a spatial slide, we see that it is no longer R3, but
has changed to 3-dimensional Euclidean Anti-deSitter space (from now on abbreviated as AdS):

ds2 = dt2 − dr2 − r2dΩ2
2 (4.12)

= e2τ [dτ2 − (dβ2 + sinh2 βdΩ2
2)] (4.13)

AdS is the maximally symmetric solution to the Einstein equation with negative cosmological
constant, and has constant negative curvature (as opposed to deSitter space, wich has constant
positive curvature). Let us take a closer look at the new coordinates. How are they related
to our well-known Minkowski coordinates t and r? τ actually is the natural logarithm of the

proper time s =
√
t2 − x2 =

√
s2(cosh2 β − sinh2 β). β is related to the fourvelocity Uµ := dxµ

ds =
(coshβ, sinhβ, 0, 0), that is of the form (1, 0, 0, 0) in a particles restframe. Actually U0 = γ = coshβ,
with γ = 1√

(1−v2)
. Since the Wilson lines move with constant speed, we can appreciate the fact

that β is constant. See also figure 4.1.
The factor e2τ in the metric (4.13) is just a conformal factor like ω(x) in (4.1), so as long as we
stick to calculating quantities that are conformally invariant we might as well just drop it.

4.4 The Dilatation Operator in AdS

Using the coordinate transformation (4.11) from Minkowski space to R × AdS the operator xµ∂µ
is changed into ∂τ :

xµ∂µ = t
∂

∂t
− r ∂

∂r
= eτ coshβ

∂τ

∂t
∂τ − eτ sinhβ

∂τ

∂r
∂τ

= eτ

(
coshβ

∂ ln
√

(t2 − r2)
∂t

− sinhβ
∂ ln

√
(t2 − r2)
∂r

)
∂τ (4.14)
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= eτ
(

coshβ
t

t2 − r2
− sinhβ

−r
t2 − r2

)
∂τ

= eτ
(

coshβ
eτ coshβ

e2τ (cosh2 β − sinh2 β)
− sinhβ

−eτ sinhβ
e2τ (cosh2 β − sinh2 β)

)
∂τ

= ∂τ

This operator we recognize immediately as a Hamiltonian, the generator of time translations. So
we obtain the important equality:

DR1,3
= xµ∂µ = ∂τ = iHR×AdS (4.15)

As a consequence, we can calculate energies in R × AdS to obtain the anomalous dimensions in
R1,3. The fact that Wilson lines turn from dynamic objects into static charges in AdS simplifies
the calculation; the situation is now similar to electrostatics in the new space.
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Chapter 5

Calculating in AdS

5.1 The Energy of two Static Charges

In order to calculate the energy of two static charges we need to solve Laplace’s equation for the
scalar potential Aτ : ∇2Aτ = Jτ

1, where J is the charge current. So when looking at a point charge
Jτ = δ3(x) we have ∇2Aτ = δ3(x). In AdS, using that in spherical coordinates δ3(x) = δ(r)

2πr2
and

we put r = (eτ ) coshβ, this becomes:

∇2Aτ =
δ(sinhβ)
2π sinh2 β

(5.1)

(5.2)

Now we need the Laplacian for Anti de Sitter space. In a general spacetime the Laplacian is given
by∇µ∇µ = 1√

g∂µ(
√
ggµν∂ν), where g = |det(gµν)|. We are working with

gµν = diag(1,−1,− sinh(β)2,− sinh(β)2 sin(θ)2).

Leaving out the ∂θ and ∂φ terms because of spherical symmetry we obtain for the Laplacian:

∇µ∇µ =
1

sinh2 β
(∂µ(sinh2 βgµν∂ν)

=
1

sinh2 β
(∂τ (sinh2 βgττ∂τ ) + ∂β(sinh2 βgββ∂β))

=
1

sinh2 β
(sinh2 β∂2

τ +−∂β(sinh2 β∂β))

= ∂2
τ −

1
sinh2 β

∂β(sinh2 β∂β) (5.3)

1Note that the other components of J , Jβ , Jθ and Jφ, are zero because there is only a static charge.
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Since we are looking at static charges, there will be no time dependence, so ∂τAτ = 0. So we only
need the ∂β term from the Laplacian:

1
sinh2 β

∂β(sinh2 β ∂βAτ ) =
δ(sinhβ)
2π sinh2 β

=
δ(β)

2π sinh2 β
(5.4)

Now multiplying both sides with sinh2 β we obtain ∂β(sinh2 β ∂βAτ ) = δ(β)
2π . Integrating over β

gives us 2:

sinh2 β ∂βAτ =
1

4π
+ C = C1 (5.5)

Dividing by sinh2 β and integrating again we obtain:

Aτ (β) = C1 cothβ + C2 (5.6)

This first attempt does not satisfy the right boundary conditions. One can see that cothβ has
a pole not only for β = 0 but also for β = iπ. An easier way to describe this is by analytical
continuation to Euclidean space, putting β = iα. The metric then changes into

ds2 = dτ2 + dα2 + sin2(α)dΩ2
2 (5.7)

so that we have the Euclidean cylinder R×S3. The solution to Laplace’s equation is then Aτ (α) =
C1 cotα+ C2. cotα has a pole at α = 0 and α = π, describing a plus charge at the northpole and
an unphysical minus charge at the southpole (since the scalar potential of a charge q is proportional
to ∼ q

r we expect a pole at the position of each charge and the other way around).
Looking at the different spaces we are working with in a little more detail, we see that the Euclidean
cylinder can be seen to connect the two copies of AdS that are obtained from Minkowski space.
The transformation we did took only positive time t > 0 into account. There is another copy of
AdS for t < 0. When we put β = iα, we can go to our positive time AdS setting Re(α) = 0,
and to negative time AdS setting Re(α) = π. Now we want to know where this second pole at
the southpole of the Euclidean sphere comes from. We see now that since it appears at α = π, it
lives in the negative time copy of AdS. So the phantom charges corresponds to forward scattering.
Since we are not considering that here we want to remove this contribution. To get rid of the
incoming Wilson charges it is easier to work in R× S3, since there both the charges corresponding
to incoming and to outgoing Wilson lines can be found, enabling us to remove the incoming ones.
We can do that by subtracting an overal charge density 1

2π2 from the source current Jτ 3. Then we
still have a point charge at x = 0 but now the the overall charge is zero. This effect is explained in

2Note that at β = 0 the δ function blows up. Still we can do the integration and obtain a finite potential, except
for at β = 0, which simply corresponds to being on top of the charge.

3note that the surface area of S3 with radius put to 1 is 1
2π2
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more detail in the Appendix A. Now we simply add the constant 1
2π2 to the right side of (5.4). For

later convenience we immediately calculate in R×AdS:

1
sinh2 β

∂β(sinh2 β ∂βA
′
τ ) =

δ(sinhβ)
2π sinh2 β

− 1
2π2

∂β(sinh2 β ∂βA
′
τ ) =

δ(sinhβ)
2π

− sinh2 β

2π2

sinh2 β ∂βA
′
τ =

1
4π
− 2β − sinh(2β)

8π2

∂βA
′
τ =

1
4π sinh2 β

+
β

4π2 sinh2 β
− cothβ

4π2

A′τ =
cothβ

4π
− β cothβ

4π2
=

1
4π2

(π − β) cothβ

where we left out the integration constants. We are ready to calculate the energy of two point
charges, using ~E = ~∇(qAτ ) and that Epair(β12) = 1

2

∫
Ω3

( ~E1 + ~E2)2:

1
2

∫
Ω3

( ~E1 + ~E2)2 =
q1q2

2

∫
Ω3

~∇Aτ,1 · ~∇Aτ,2 (5.8)

where the infinite self-energies where thrown away. Now if we put q1 at the origin and q2 at distance
β12, Aτ,1 = Aτ (β) and Aτ,2 = Aτ (β−β12). Integrating by parts and applying the equation of motion
~∇2Aτ,2 = δ(β − β12):

Epair(β12) =
q1q2

2

∫
Ω3

~∇Aτ,1 · ~∇Aτ,2 (5.9)

=
q1q2

2

∫
Ω3

Aτ,1~∇2Aτ,2 (5.10)

=
q1q2

2

∫
Ω3

Aτ,1δ(β − β12) (5.11)

=
q1q2

2
Aτ (β12). (5.12)

Putting in our expression for Aτ we obtain:

Epair(β12) =
q1q2

4π2
[(π + iβ12) cothβ12 + C] (5.13)

We still need to fix the constant C. Unfortunately we can not use the limit β → 0 to do this
since this point is singular. Luckily we can use β − iπ = γ12 → 0 , since this corresponds to an
incoming charge continuing without a cusp. When there is no cusp, the corresponding divergence
is absent and Γcusp has to be zero. Hence the corresponding energy has to be zero as well. So

27



CHAPTER 5. CALCULATING IN ADS

Epair(γ12 = 0) = 0 which fixes C at −i. Restoring color factors and the coupling constant for
QCD, we obtain:

Etot =
iαs
π

∑
i<j

Ti ·Tj [(βij − iπ) cothβij − 1] (5.14)

Going back to the cusp anomalous dimension in R1,3 by multiplying with i we obtain for Γ:

Γ = −αs
π

∑
i<j

Ti ·Tj [(βij − iπ) cothβij − 1] (5.15)

which agrees with equation (3.28).

5.2 Calculating Energies in AdS using the AdS propagator

In this section we will repeat the calculation done above using field theory. Besides using the Laplace
equation, the potential Aτ can also be calculated using the gluon propagator. The potential induced
by the charge density Jν(y) is then found as follows:

Aµ(x) = −i
∫
d4yDµν(x, y)Jν(y) (5.16)

Just as before we use Jτ (y) = δ3(y) and ~J(y) = 0:

Aτ (x) = −i
∫
d4yDττ (x, y)δ3(y) = −i

∫ ∞
0

dt′Dττ (x; t′, 0). (5.17)

Where we used that the gluon propagator is diagonal (i.e. is zero for µ 6= ν. The position space
gluon propagator in minkowski space is given by Dµν(x, y) = 1

4π2
gµν

(x−y)2
(for now we use the exact

propagator, without regulators). Going to AdS coordinates, projecting on the τ coordinate:

Dττ (x, y) = Dµν(x, y)
∂xµ

∂τ

∂yν

∂τ
=

1
4π2

xµyνgµν
(x− y)2

=
1

4π2

x · y
(x− y)2

. (5.18)

Now using x = eτ (− cosh γ,− sinh γ, 0, 0) 4 and y = eτ
′
(1, 0, 0, 0) we can calculateDττ (τ, γ; τ ′, 0):

Dττ (τ, γ; τ ′, 0) =
1

4π2

eτ+τ ′ · − cosh γ
(−eτ cosh γ − eτ ′)2 − e2τ sinh2 γ

= − 1
4π2

cosh γ
e−(τ+τ ′)(e2τ cosh2 γ + e2τ ′ − 2eτ+τ ′ cosh γ − e2τ sinh2 γ

4Note that we are doing the calculation for the DIS case, where γ (and not β = γ+ iπ) is real, since this simplifies
the calculations
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= − 1
4π2

cosh γ
e−(τ+τ ′)(e2τ + e2τ ′ − 2eτ+τ ′ cosh γ

= − 1
4π2

cosh γ
eτ−τ ′ + e−(τ−τ ′) − 2 cosh γ

= − 1
8π2

cosh γ
cosh(τ − τ ′) + cosh γ

Putting this together and integrating we obtain for Aτ :

Aτ (τ, γ) =
i

8π2

∫ ∞
−∞

dτ ′
cosh γ

cosh(τ − τ ′) + cosh γ
=

i

4π2
(γ coth γ + C), (5.19)

which agrees with (5.13). We see now that Aτ (γ) does not depend on τ , even though in principle
there could have been some τ dependence left after the integration. This confirms again that the
cusp anomalous dimension only depends on γ. The constant C can again be determined by setting
the energy of a conserved current (γ = 0) to zero, so that C = −1.
We are now also able to make the connection with the one-loop calculation from paragraph 3.1 (see
figure 3.1), but now with one outgoing and one incoming Wilson line in respectively the directions
n1 = (1, 0, 0, 0) and n2 = (− cosh γ,− sinh γ, 0, 0), as we just did in order to calculate the potential.
Without dimensional regularization and infrared regulator the integral for this diagram in position
space is

I =
g2

(4π)2

∫ 0

∞
ds

∫ ∞
0

dt
n1 · n2

(sn1 − tn2)2
. (5.20)

To solve this integral we put the components of n1 and n2 in. The next step is to do the coordinate
transformation t = seτ to make use of the AdS coordinates, and at the same time pulling the overall
scale to the ds integral:∫ 0

∞
ds

∫ ∞
0

dt
n1 · n2

(sn1 − tn2)2

=
∫ 0

∞
ds

∫ ∞
0

dt
− cosh γ

(s+ t cosh γ)2 − t2 sinh2 γ

=
∫ ∞

0
ds

∫ ∞
0

dt
cosh γ

s2 + t2 cosh2 γ + 2st cosh γ − t2 sinh2 γ

=
∫ ∞

0
ds

∫ ∞
0

dt
cosh γ

s2 + t2 − 2st cosh γ

=
∫ ∞

0
ds

∫ ∞
−∞

dτ
seτ cosh γ

s2 + s2e2τ + 2s2eτ cosh γ

=
∫ ∞

0

ds

s

∫ ∞
−∞

dτ
eτ cosh γ

1 + e2τ + 2eτ cosh γ
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=
∫ ∞

0

ds

s

∫ ∞
−∞

dτ
cosh γ

2(cosh τ + cosh γ)

=
∫ ∞

0

ds

s
γ coth γ.

The integral over ds can be regulated to log( ΛIR
ΛUV

). Putting this altogether:

I =
g2

(4π)2
log(

ΛIR
ΛUV

)γ coth γ (5.21)

So again we find the same dependence on γ.
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Chapter 6

Beyond the Eikonal Approximation

All the calculations done so far made use of the eikonal approximation, in which only the lowest
order in the gluon momentum q was taken into account. In position space this leads to the simple
expression for a Wilson line from equation (2.13), which is conformally invariant. This conformal
invariance no longer holds for the next to eikonal cases. In the following section I will give an
overview of the steps done to calculate the cusp anomalous dimension, starting from the one loop
diagram. I will do the same steps for the next to eikonal diagram, showing the difference between
the two.

6.1 Eikonal vs. Next-to-Eikonal

Eikonal: Step 1 As shown above, the one gluon vertex in the eikonal approximation is

n ·A(q)
n · q

Next to Eikonal: Step 1 Expanding the propagator around small q, the first term appearing
after the eikonal approximation is given by:

1 :
q ·A(q)
2p · q

And the second term is given by:

2 : −p ·A(q) q2

2(p · q)2

For a detailed derivation of these terms, see appendix B
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CHAPTER 6. BEYOND THE EIKONAL APPROXIMATION

Eikonal: Step 2 As I showed in section 3, using eikonal exponentiation the Wilson line is given
by

W (C) = P exp(ig
∫ ∞

0
dλ n ·A(nλ)).

Next to Eikonal: Step 2 Using the same method (see appendix B), the next to eikonal correc-
tions can also be exponentiated, obtaining a derivative of Aµ in position space:

WNE1(C) = P exp(− g

2κ

∫ ∞
0

dλ ∂ ·A(nλ))

WNE2(C) = P exp(
g

2κ

∫ ∞
0

dλλ(−∂2)n ·A(nλ))

where we put p = κn.

Eikonal: Step 3 This expression is invariant under conformal transformations over the line:

λ → λ′ = cλ

Aµ(λn) → A′µ(λ′n) = c−1Aµ(λn)

where the transformation of Aµ(λn) is calculated as: A′µ(λ′n) = dxν

dx′µAν(λn) = δνµ
c Aν(λn) =

c−1Aµ(λn). Now the conformal invariance of the expression can be shown:

ig

∫ ∞
0

dλ n ·A(nλ)

→ ig

∫ ∞
0

dλ′ n′ ·A(nλ′)

= ig

∫ ∞
0

dλ c nc−1 ·A(nλ)

= ig

∫ ∞
0

dλ n ·A(nλ)

where n→ n′ = n

Next to Eikonal: Step 3 Imposing the same transformation, looking again at first order in g,
we see that the next to eikonal expressions do not exhibit conformal symmetry:

1 : −g
2κ

∫ ∞
0

dλ ∂ ·A(nλ)
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→ −g
2κ

∫ ∞
0

dλ′ ∂ ·A(nλ′)

= −g
2κ

∫ ∞
0

dλ c
∂

c
· c−1A(nλ)

= −g
2κ c−1

∫ ∞
0

dλ ∂ ·A(nλ)

2 : g
2κ

∫ ∞
0

dλλ(−∂2)n ·A(nλ)

→ g
2κ′

∫ ∞
0

dλ′ λ′(−∂′2)n ·A′(nλ′)

= g
2κ

∫ ∞
0

dλc λc(
−∂2

c2
)n · c−1A(nλ)

= g
2κ c−1

∫ ∞
0

dλλ(−∂2n ·A(nλ)

These expressions are clearly not invariant under a conformal transformation λ → cλ, instead the
symmetry is broken by 1

c .

Eikonal: Step 4 When we do a coordinate transformation to τ = ln |x|, scale invariance is
turned into translation invariance. Putting at the same time nµ = (coshβ, sinhβ n̂) we end up in
R × AdS. In this space, the Wilson lines can be represented by static charges; they can be fully
described by a constant β, independent of τ . In the new coordinates (τ, β), the Wilson line can
be described by a charge located at some constant βi. The current density four vector Jµ is thus
reduced to Jτ = δ(β − βi) (up to some constant normalization factor). Jβ is zero, because there is
no charge flowing in the β direction. This can be shown explicitly (see [7]):

ig

∫ ∞
0

dλ n ·A(nλ)

= ig

∫ ∞
0

dτeτnµAµ(nλ)

= ig

∫ ∞
0

dτẋµAµ(nλ)

= ig

∫ ∞
0

dτAτ (nλ)

= ig

∫ ∞
0

dτ

∫
d3x

√
−g(3)δ(3)(x)Aτ (neτ )
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where g(3) is the spatial (AdS) part of the metric. Now we recognize the general form of a source
term in curved space i

∫
d4x
√−gjµAµ. Equating the two:

ig

∫ ∞
0

dτ

∫
AdS

d3x

√
−g(3)δ(3)(x)Aτ (neτ )

= i

∫
d4x
√−gjµAµ

gδ(3)(x) = jτ (x)

where I used that for our metric
√−g =

√
−g(3).

Next to Eikonal: Step 4 When performing the coordinate transformation, the next-to-eikonal
correction can not be mapped to a static charge anymore. Of course changing λ into c · λ is still
the same as changing τ into τ + c. But this translation in τ does not leave the next to eikonal
correction invariant, so we do not obtain static charges. Furthermore, because we lost conformal
invariance, we are no longer allowed to discard the conformal factor e2τ that we had in front of
the metric in equation (4.13). Still we can try to apply the method used to find the eikonal charge
density to these next to eikonal cases.

1 : −g
2κ

∫ ∞
0

dλ ∂ ·A(nλ)

= −g
2κ

∫ ∞
0

dτeτ ∂ ·A(nλ)

Now it is not so clear how to project this onto the τ coordinate. Jµ does not consist of Jτ only,
since also the Ai can participate. The solution to the Maxwell equations in R×AdS then becomes
considerably more complicated. Presumably it requires solving an electrodynamics problem in
R × AdS. Even though it is not immediately clear how, one can see that when Ji 6= 0 one also
obtains a nonzero magnetic field ~B, on top of the ~E field obtained in the eikonal case. So even
if the current describing this situation could be found, it would make the calculation a lot more
complicated than the eikonal one.

2 : g
2κ

∫ ∞
0

dλλ(−∂2)n ·A(nλ)
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= g
2κ

∫ ∞
0

dτ e2τ (−∂2)n ·A(nλ)

= g
2κ

∫ ∞
0

dτ e2τnµ(−∂2)Aµ(nλ)

= g
2κ

∫ ∞
0

dτ eτ ẋµ(−∂2)Aµ(nλ)

As long as we do not know how to write ∂2Aµ as a function times Aµ, we do not know how to
extract jτ from this. But we can calculate the whole integral, and will find that is is equal to zero.
So since this next to eikonal correction does not contribute to the cusp anomalous dimension, we
could say that the charge density is equal to zero as well.

Eikonal: Step 5 The dilatation operator xµ∂µ that is used to calculate Γcusp becomes the energy
operator i∂τ . This implies that the cusp anomalous dimension can be calculated as an energy. The
constancy in time allows us to calculate the energy doing classical electrostatics, the only possible
issue being the AdS space in which we’re working. Indeed, analytical continuation shows us the
appearance of a phantom charge. This issue was addressed and the right anomalous dimension
found (see section 5.1 and appendix B).

Next to Eikonal: Step 5 Even though we can not use the classical electrostatics approach that
worked so well in the eikonal case, the coordinate transformation to AdS space still helps to solve
the position space integral for the next to eikonal contribution to the cusp anomalous dimension.
This is worked out below.

6.2 Next to Eikonal One Loop Calculation I

Even though we can’t make use of conformal invariance as with the eikonal approximation, we can
at least use the AdS coordinates to simplify the calculation. The first correction to the one loop
diagram is given by the next to eikonal correction of one of the two vertices, combined with the
eikonal approximation of the other vertex:

MNE = −ig2T iT j
∫ ∞

0
dλin

µ
i Aµ(λini)e−mλi

√
n2
i

∫ ∞
0

dλj∂
νAν(λjnj)e

−mλj
q
n2
j (6.1)

Putting n2
i = 1 and contracting A(λini)µA(λjnj)ν we write this as:

MNE = −ig2T iT j
∫ ∞

0
dλi

∫ ∞
0

dλjn
µ
i g

νρ ∂

∂yρ
Dµν(x− y)e−m(λi+λj) (6.2)
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i j

Figure 6.1: Diagram to be computed to obtain one loop cusp anomalous dimension at next to
eikonal order. The next to eikonal vertex is denoted by a black dot.

where we put back xµ = λin
µ
i and yµ = λjn

µ
j . Performing the derivative we obtain

MNE = ig2T iT j
∫ ∞

0
dλi

∫ ∞
0

dλjn
µ
i g

νρ ∂

∂yρ
Dµν(x− y)e−m(λi+λj)

= −ig2T iT j
∫ ∞

0
dλi

∫ ∞
0

dλjn
µ
i g

νρ ∂

∂yρ
(−Γ(1− ε)

4π2−ε
gµνe

−m(λi+λj)

(−(x− y)2)1−ε )

= −ig2T iT j
∫ ∞

0
dλi

∫ ∞
0

dλjn
µ
i g

νρ(−Γ(1− ε)e−m(λi+λj)

4π2−ε
gµν · −(xρ − yρ)(2− 2ε)

(−(x− y)2)2−ε )

= −ig2T iT j
∫ ∞

0
dλi

∫ ∞
0

dλj
Γ(1− ε)e−m(λi+λj)

4π2−ε
(λi − λjni · nj)(2− 2ε)
(−(λini − λjnj)2)2−ε .

Now we make use of the AdS description and take out the scale dependence by putting ni =
(− cosh γ,− sinh γn̂), nj = (1, 0, 0, 0) and λj = λie

τ :

MNE = −ig2T iT j
Γ(1− ε)(2− 2ε)

4π2−ε

∫ ∞
0

dλi

∫ ∞
−∞

dτ λie
τ λi(1 + eτ cosh γ)e−mλi(1+eτ )

(−λ2
i e
τ (eτ + e−τ + 2 cosh γ))2−ε .

Now interchanging the integrals, to first integrate over λi:

MNE = −ig2T iT j
Γ(1− ε)(2− 2ε)

4π2−ε

∫ ∞
−∞

dτ
eτ (1 + eτ cosh γ)

(−eτ (eτ + e−τ + 2 cosh γ))2−ε

×
∫ ∞

0
dλi

λ2
i e
−mλi(1+eτ ))

λ4−2ε
i
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evaluating the integral over λi:

MNE = −ig2T iT j
Γ(1− ε)(2− 2ε)

4π2−ε

∫ ∞
−∞

dτ
eτ (1 + eτ cosh γ)

(−eτ (eτ + e−τ + 2 cosh γ))2−ε

×(m(1 + eτ ))1−2εΓ(−1 + 2ε).

Now we take the limit ε→ 0, keeping the ε dependence only in the divergent Γ(2ε− 1):

MNE = −ig2T iT j
2m Γ(−1 + 2ε)

4π2

∫ ∞
−∞

dτ
(1 + eτ )(e−τ + cosh γ)

4(cosh τ + cosh γ)2
,

where we extracted e2τ from the denominator and the denumerator. Evaluating the integral:

MNE = −ig2T iT j
2m Γ(−1 + 2ε)

4π2
(
2
4

+
2γ

4 sinh γ
)

= −ig2T iT j
m

4π2
(1 +

γ

sinh γ
)

Γ(2ε)
2ε− 1

(6.3)

= ig2T iT j
m

4π2
(1 +

γ

sinh γ
)

1
2ε
.

Extracting the ε dependence from g2 as before we can add the term to the anomalous dimension
calculated in (3.28), so that we obtain for the next to eikonal correction to the anomalous cusp
dimension:

ΓNE = ig2
∑
i<j

T iT j
m

4π2
(1 +

γ

sinh γ
) (6.4)

Having found this, we should also take into account the next to eikonal contribution from the other
side:

MNE′ = −ig2T iT j
∫ ∞

0
dλi∂

µ
i Aµ(λini)e−mλi

√
n2
i

∫ ∞
0

dλjn
ν
jAν(λjnj)e

−mλj
q
n2
j (6.5)

Applying the same steps as before:

MNE′ = ig2T iT j
∫ ∞

0
dλi

∫ ∞
0

dλjn
ν
j g
µρ ∂

∂xρ
Dµν(x− y)e−m(λi+λj)

= −ig2T iT j
∫ ∞

0
dλi

∫ ∞
0

dλjn
ν
j g
µρ ∂

∂xρ
(−Γ(1− ε)

4π2−ε
gµνe

−m(λi+λj)

(−(x− y)2)1−ε )

= −ig2T iT j
∫ ∞

0
dλi

∫ ∞
0

dλjn
ν
j g
µρ(−Γ(1− ε)e−m(λi+λj)

4π2−ε
gµν · (xρ − yρ)(2− 2ε)

(−(x− y)2)2−ε ) (6.6)

= −ig2T iT j
∫ ∞

0
dλi

∫ ∞
0

dλj − Γ(1− ε)e−m(λi+λj)

4π2−ε
(λini · nj − λj)(2− 2ε)
(−(λini − λjnj)2)2−ε
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Again using the AdS fourvectors ni = (− cosh γ,− sinh γn̂), nj = (1, 0, 0, 0) and λj = λie
τ :

MNE′ = −ig2T iT j
Γ(1− ε)(2− 2ε)

4π2−ε

∫ ∞
0

dλi

∫ ∞
−∞

dτ λie
τ λi(cosh γ + eτ )e−mλi(1+eτ )

(−λ2
i e
τ (eτ + e−τ + 2 cosh γ))2−ε (6.7)

Integrating over λi:

MNE′ = −ig2T iT j
Γ(1− ε)(2− 2ε)

4π2−ε

∫ ∞
−∞

dτ
eτ (cosh γ + eτ )

(−eτ (eτ + e−τ + 2 cosh γ))2−ε

×
∫ ∞

0
dλi

λ2
i e
−mλi(1+eτ ))

λ4−2ε
i

= −ig2T iT j
Γ(1− ε)(2− 2ε)

4π2−ε

∫ ∞
−∞

dτ
eτ (cosh γ + eτ )

(−eτ (eτ + e−τ + 2 cosh γ))2−ε

×(m(1 + eτ ))1−2εΓ(−1 + 2ε)

Taking the limit ε→ 0 and integrating over τ :

MNE′ = −ig2T iT j
2m Γ(−1 + 2ε)

4π2

∫ ∞
−∞

dτ
(1 + e−τ )(eτ + cosh γ)

4(cosh τ + cosh γ)2

= −ig2T iT j
2m Γ(−1 + 2ε)

4π2
(
1
2

+
γ

2 sinh γ
) (6.8)

= −ig2T iT j
m

4π2
(1 +

γ

sinh γ
)

Γ(2ε)
2ε− 1

= −ig2T iT j
m

4π2
(1 +

γ

sinh γ
)

1
2ε
· −1

So the two contributions add:

MNE,combined = 2ig2
∑
i<j

T iT j
m

4π2
(1 +

γ

sinh γ
)

1
2ε

(6.9)

so that Γcusp,NE = 2ig2
∑

i<j T
iT j m

4π2 (1 + γ
sinh γ ).

6.3 Next to Eikonal Self Energy I

The next calculation I will do is the first next-to-eikonal self energy. Analogous to (3.15) the integral
to be solved is:

MNESE = −ig2T iT j
∫ ∞

0
dλi

∫ λi

0
dλjn

µ
i Aµ(λini)e−mλi

√
n2
i ∂νAν(λjni)e−mλj

√
n2
i
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i j

Figure 6.2: Diagram to be computed to obtain self energy at next to eikonal order. The next to
eikonal vertex is denoted by a black dot.

= −ig2T iT j
∫ ∞

0
dλi

∫ λi

0
dλjn

µ
i g

νκ ∂

∂yκ
Dµν(λini − λjni)e−m(λi+λj)

= −i g
2

4π2
T iT j

∫ ∞
0

dλi

∫ λi

0
dλjn

µ
i g

νκ−gµν(2− 2ε) · −(xκ − yκ)
(−(x− y)2)2−ε

−m(λi+λj)

(6.10)

= −i g
2

4π2
T iT j

∫ ∞
0

dλi

∫ λi

0
dλjn

µ
i

(2− 2ε)(λi − λj)niµ
(−n2

i (λi − λj)2)2−ε e
−m(λi+λj)

To solve this integral we do not even need the AdS coordinates, since everything ‘lives on one line’
and nµi niµ = 1. First we rescale the integral over t: t→ t′ = st

MNESE = −i g
2

4π2
T iT j

∫ ∞
0

ds

∫ s

0
dt

(2− 2ε)(s− t)
(−(s− t)2)2−ε e

−m(s+t)

= −i g
2

4π2
T iT j

∫ ∞
0

ds

∫ 1

0
dt′s

(2− 2ε)s(1− t′)
(−s2(1− t′)2)2−ε e

−ms(1+t′)

= −i g
2

4π2
T iT j

∫ 1

0
dt′

(2− 2ε)(1− t′)
(−(1− t′)2)2−ε

∫ ∞
0

ds
s2

s4−2ε
e−ms(1+t′) (6.11)

= −i g
2

4π2
T iT j

∫ 1

0
dt′

(2− 2ε)(1− t′)
(−(1− t′)2)2−ε

Γ(−1 + 2ε)
(m(1 + t′))−1+2ε

= −i g
2

4π2
T iT j(2− 2ε)Γ(−1 + 2ε)m1−2ε

∫ 1

0
dt′(1− t′)−3+2ε(1 + t′)1−2ε

Now we recognize the hypergeometric function: B(b, c− b) 2F1(a, b; c; z) =
∫ 1

0 x
b−1(1− x)c−b−1(1−

zx)−a dx, with

39
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b− 1 = 0 → b = 1
c− b− 1 = −3 + 2ε → c = −1 + 2ε
−a = 1− 2ε → a = −1 + 2ε
z = −1

Plugging this in we obtain:

MNESE = −i g
2

4π2
T iT j(2− 2ε)Γ(−1 + 2ε)m1−2εB(1,−2 + 2ε) 2F1(−1 + 2ε, 1;−1 + 2ε;−1)

= −i g
2

4π2
T iT j(2− 2ε)Γ(−1 + 2ε)m1−2εΓ(1)Γ(−2 + 2ε)

Γ(−1 + 2ε) 2F1(1,−1 + 2ε;−1 + 2ε;−1)

= −i g
2

4π2
T iT j(2− 2ε)m1−2εΓ(−2 + 2ε)(1−−1)−1

= −i g
2

4π2
T iT jm1−2ε 2− 2ε

(−2 + 2ε)(−1 + 2ε)
1
4ε

= −i g
2

4π2
T iT j

m

2
1
2ε

Now we can have both the eikonal and the next to eikonal vertex ’first’, and on both lines, so that
the whole thing has to multiplied by 4. Extracting the anomalous dimension gives us

−i g
2

4π2
T iT j2m

Combining this with the cusp anomalous dimension we found from this first next to eikonal cor-
rection, we obtain:

ΓNE = 2ig2
∑
i<j

T iT j
m

4π2
(1 +

γ

sinh γ
) +−i g

2

4π2
T iT j2m (6.12)

= 2ig2
∑
i<j

T iT j
m

4π2

γ

sinh γ
(6.13)

Note that in this result m did not drop out. The linear dependence on m was expected from the
linear divergence, but makes it difficult to compare this result to massless literature.

6.4 Next to Eikonal One Loop Calculation II

In the same way as the first next to eikonal correction, the second next to eikonal correction can
be calculated using the coordinate transformation inspired by AdS. The next to eikonal correction
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is given by 1
2κ

n·A(q) q2

(n·q)2 in momentum space. As is derived in the appendix B this can be written
in position space as 1

2κ

∫∞
0 dλλ(−∂2)n · A(nλ). The correction to the cusp anomalous dimension,

taking into account only UV regulators, can thus be calculated through the following integral:

MNE2 = −ig2T iT j
∫ ∞

0
dλin

µ
i Aµ(λini)

∫ ∞
0

dλjλjn
ν
j ∂

2Aν(λjnj)

= −ig2T iT j
∫ ∞

0
dλi

∫ ∞
0

dλjλjn
µ
i n

ν
j Aµ(λini)∂2Aν(λjnj)

= −ig2T iT j
∫ ∞

0
dλi

∫ ∞
0

dλjλjn
µ
i n

ν
j ∂

2Dµν(λini, λjnj)

Now in principle ∂2Dµν(x − y) = gµνδ
d(x − y). But to make sure that the ‘+im’ description

(where m is a small mass) that is usually omitted in the denominator of Dµν is right, I use the

momentum space description: ∂2Dµν(x − y)e−m(
√
x2+
√
y2) =

∫
ddk

(2π)d
k2

k2+im
e−ik(x−y)−m(

√
x2+
√
y2).

Using ni = (− cosh γ,− sinh γ, 0, 0) and nj = (1, 0, 0, 0), we can compute the integral as follows:

MNE2 = −ig2T iT j
∫ ∞

0
dλi

∫ ∞
0

dλj λjn
µ
i n

ν
j ∂

2Dµν(λini, λjnj)

= −ig2T iT j
∫ ∞

0
dλi

∫ ∞
0

dλj λjni · nj
∫

ddk

(2π)d
k2

k2 + im
e−ik(x−y)−m(

√
x2+
√
y2)

= −ig2T iT j cosh γ
∫ ∞

0
dλi

∫ ∞
0

dλj λj

∫
ddk

(2π)d
k2

k2 + im
e−i(k0(−λi cosh γ−λj)−k1λi sinh γ)−m(λi+λj)

= −ig2T iT j cosh γ
∫ ∞

0
dλi

∫ ∞
0

dλj λj

∫
dd−2k

(2π)d−2
δ(λi cosh γ + λj)δ(λi sinh γ)e−m(λi+λj)

= −ig2T iT j
cosh γ

2

∫ ∞
0

dλi

∫
dd−2k

(2π)d−2

(
−λi cosh γδ(λi sinh γ)e−2mλi

)
= 0

We see that the integral vanishes due to the delta function.

6.5 Next to Eikonal Self Energy II

The self energy of the second next to eikonal correction can also be calculated, analogous to the
previous section:

MNESE2 = −ig2T iT j
∫ ∞

0
dλin

µ
i Aµ(λini)

∫ λi

0
dλjλjn

ν
i ∂

2Aν(λjni)

41



CHAPTER 6. BEYOND THE EIKONAL APPROXIMATION

= −ig2T iT j
∫ ∞

0
dλi

∫ λi

0
dλjλjn

µ
i n

ν
i Aµ(λini)∂2Aν(λjni)

= −ig2T iT j
∫ ∞

0
dλi

∫ λi

0
dλjλjn

µ
i n

ν
i ∂

2Dµν(λini, λjni)

= −ig2T iT j
∫ ∞

0
dλi

∫ ∞
0

dλj

∫
ddk

(2π)d
k2

k2 + im
e−ik·(λi−λj)nλje

−m(λi+λj)

One important difference is that now the vertices are on the same line, so that that we will get
only one delta function:

∫
dk0

2π
e−ik0(λi−λj) = δ(λi − λj) (6.14)

Plugging this back in the whole integral:

MNESE2 = −ig2T iT j
∫ ∞

0
dλi

∫ ∞
0

dλj

∫
dd−1k

(2π)d−1
δ(λi − λj)λje−m(λi+λj)

= −ig2T iT j
∫ ∞

0
dλi

∫
dd−1k

(2π)d−1
λie
−2mλi

= −ig2T iT j
∫

dd−1k

(2π)d−1

1
4m2

Another approach would be to really use the spacetime propagator and actually calculate the
derivative:

∂2 1
[(x− y)2 + im]1−ε

= gµν
∂2

∂xµ∂xν
1

[(x− y)2 + im]1−ε

= gµν
∂

∂xµ
−(2− 2ε)(xν − yν)
[(x− y)2 + im]2−ε

= gµν
( −(2− 2ε)gµν

[(x− y)2 + im]2−ε
− (2− 2ε)(xν − yν)(4− 2ε)(xµ − yµ)

[(x− y)2 + im]3−ε

)
=

−(2− 2ε)d
[(x− y)2 + im]2−ε

− (2− 2ε)(4− 2ε)(x− y)2

[(x− y)2 + im]3−ε

=
im

[(x− y)2 + im]3−ε

Now since x and y lie on the same line, (x− y)2 = (λi − λj)2. We now rescale λj = λiλ
′
j :

MNESE2 = −ig2T iT j
∫ ∞

0
dλi

∫ λi

0
dλjλj

im

[(λi − λj)2 + im]3−ε
e−m(λi+λj)
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= −ig2T iT j
∫ ∞

0
dλi

∫ 1

0
dλ′jλ

2
iλ
′
j

im

[λ2
i (1− λ′j)2 + im]3−ε

e−mλi(1+λ′j)

= −ig2T iT j
∫ ∞

0
dλi

λ2
i

λ6−2ε
i

∫ 1

0
dλjλje

−mλi(1+λj)
im

[(1− λj)2 + im]3−ε

= −ig2T iT j
∫ 1

0
dλjλj

im

[(1− λj)2 + im]3−ε

∫ ∞
0

dλi
λ2
i

λ6−2ε
i

e−mλi(1+λj)

= −ig2T iT j
∫ 1

0
dλjλj

im

[(1− λj)2 + im]3−ε
Γ(−3 + 2ε)(m(λj + 1))3−2ε

= −ig2T iT j
∫ 1

0
dλjλj

im

[(1− λj)2 + im]3
−1
6

1
2ε

(m(λj + 1))3

= −ig2T iT jim4

√
m((20 + 3im)m− 16i) + 3 4

√−1(1 + im)(m− 2i)(m− 4i) tan−1
(

(−1)3/4√
m

)
8m5/2(m− i)

= g2T iT j
m3/2

(√
m((20 + 3im)m− 16i) + 3 4

√−1(1 + im)(m− 2i)(m− 4i) tan−1
(

(−1)3/4√
m

))
8(m− i)

= 0 +O(m3/2)

where in the last time the O(m) term is zero, so that the whole expression vanishes when putting
terms of higher order than linear in m to zero.

6.6 The Limit γ → 0

An interesting limit to examine is when γ → 0. This is the same as stretchting the cusp to a
straight line, so that one expects the cusp anomalous dimension to reduce to the self energy, so
that the total anomalous dimension is zero. As we have seen, this is straightforward for the eikonal
situation:

Γ = −g2
∑
i<j

T iT j
1

4π2
((βij − iπ) cothβij − 1)

= −g2
∑
i<j

T iT j
1

4π2
(γij coth γij − 1)

lim
γ→0

Γ = −g2
∑
i<j

T iT j
1

4π2
(1− 1) = 0

For the first next to eikonal correction, this is not so obvious. Taking the limit γ → 0 for the cusp
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anomalous dimension gives the following self energy:

lim
γ→0

2ig2
∑
i<j

T iT j
m

4π2
(1 +

γ

sinh γ
) = 2ig2

∑
i<j

T iT j
m

4π2
(1 + 1) = 4ig2

∑
i<j

T iT j
m

4π2

This is a factor two bigger than the self energy we found, so the self energy does not immediately
cancel the stretched out cusp anomalous dimension. This make sense if we think about the conserved
current we found for the eikonal case; for the next to eikonal case, the operator Qn1 associated with
the next to eikonal line will change. Since the next to eikonal vertex obtaines a term ∼ the gluon
momentum, we will probably find a derivativelike term. Allthough it would be interesting to find
an exact expression in terms of an operator, this goes beyond the scope of this thesis.

6.7 Summary

The most important ingredient of the calculations above is the use of conformal symmetry to map
the Wilson lines to AdS. This allows us to calculate the cusp anomalous dimension as a static
electric charge, using Laplace’s equation. Another possibility is to calculate it using the usual
integral approach, but now exploiting the AdS coordinates to simplify the integral. For next to
eikonal calculations, the main computation advantage of the symmetry is lost. Though it might
be possible to write down equations for the next to eikonal charges in AdS or something similar
to AdS, this is not as clear as with the eikonal case. Also the re-introduction of the conformal
factor e2τ that could be neglected in the eikonal case complicates the calculation. Still the next
to eikonal integrals can be written down, and the coordinate transformation used to map to AdS
can be applied. This somewhat simplifies the integrals. The first next to eikonal correction gives
a contribution dependent on the infrared regulator m. This agrees with the linear divergence
expected, but makes it hard to compare with the massless literature otherwise. The second next
to eikonal correction vanishes, which agrees with the ‘Glasgow prescription’ in momentum space.
A better way to exploit the conformal symmetry is by applying the procedure described above to
eikonal two-loop calculations. This will be worked out below, but first it is necessary to define a
conformal gauge.
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Conformal Gauge

If one wants to fully use the AdS description given above for higher loop computations, it is no
longer convenient to use the Feynman Gauge propagator. To be able to describe the particles as
static charges one needs to decouple the time and spatial coordinates. In other words, one would
like to have a gauge that satisfies Dτi(x, y) = 0, where Dτi(x, y) = xµDµν(x, y). One can impose
this as follows: given that Aτ = xµAµ(x), it is required that xµDµν(x, y)Aν(y) = 0 whenever
yµAµ(y) = 0. This garantuees that Dτi = 0:

xµDµν(x, y)Aν(y) = 0 (7.1)
Dτν(x, y)Aν(y) = 0 (7.2)

Dττ (x, y)Aτ (y) +Dτi(x, y)Ai(y) = 0 (7.3)

Dττ (x, y) · 0 +Dτi(x, y)Ai(y) = 0 (7.4)

hence

Dτi(x, y) = 0 (7.5)

Now instead of fixing a gauge using a gauge fixing term in the Lagrangian and from there on
deriving the propagators, the gauge freedom is used to find a suitable propagator immediately. In
order to do so, a class of propagators is considered:

Dµν = DF
µν(x, y) +

∂

∂yν
Λµ(y, x) +

∂

∂xµ
Λν(x, y) (7.6)

7.1 Fixing the Gauge

Now the following Ansatz is done:

Λµ(y, x) = κd
xµ
|x|d−2

g(α, β), (7.7)
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with α ≡ x·y
|x||y| and β ≡ |y||x| . Plugging this into equation (7.1):

xµDµν(x, y)Aν(y) = 0 (7.8)

xµDF
µν(x, y)Aν(y) + xµ

(
∂

∂yν
Λµ(y, x) +

∂

∂xµ
Λν(x, y)

)
Aν(y) = 0. (7.9)

I will first calculate ∂
∂yν Λµ(y, x) + ∂

∂xµΛν(x, y) separately:

∂

∂yν
Λµ(y, x) +

∂

∂xµ
Λν(x, y) =

∂

∂yν
κd

xµ
|x|d−2

g(α, β) +
∂

∂xµ
κd

yν
|y|d−2

g(α, β−1)

= κd(
xµ
|x|d−2

∂

∂yν
g(α, β) +

yν
|y|d−2

∂

∂xµ
g(α, β−1)

= κd

( xµ
|x|d−2

(
∂g(α, β)
∂α

∂α

∂yν
+
∂g(α, β)
∂β

∂β

∂yν
)

+
yν
|y|d−2

(
∂g(α, β−1)

∂α

∂α

∂xµ
+
∂g(α, β−1)
∂β−1

∂β−1

∂xµ
)
)

= κd

( xµ
|x|d−2

(
∂g(α, β)
∂α

(
xν
|y||x| −

yνx · y
|x||y|3 ) +

∂g(α, β)
∂β

yν
|x||y|)

+
yν
|y|d−2

(
∂g(α, β−1)

∂α
(
yµ
|x||y| −

xµx · y
|x|3|y| ) +

∂g(α, β−1)
∂β−1

xµ
|x||y|)

)
(7.10)

Now remembering the condition xµDµν(x, y)Aν(y) = 0 whenever yµAµ(y) = 0, we see that all
terms containing yν will vanish upon contraction with Aν(y). So we can simplify:

xµDF
µν(x, y)Aν(y) + xµκd

( xµ
|x|d−2

(
∂g(α, β)
∂α

(
xν
|y||x| −

yνx · y
|x||y|3 ) +

∂g(α, β)
∂β

yν
|x||y|)

+
yν
|y|d−2

(
∂g(α, β−1)

∂α
(
yµ
|x||y| −

xµx · y
|x|3|y| ) +

∂g(α, β−1)
∂β−1

xµ
|x||y|)

)
Aν(y)

= xµDF
µν(x, y)Aν(y) + xµκd

xµ
|x|d−2

∂g(α, β)
∂α

xν
|y||x|A

ν(y)

= xµDF
µν(x, y)Aν(y) + κd

∂g(α, β)
∂α

x2xν
|x|d−1|y|A

ν(y)

= xµ · −gµν κd

[−(x− y)2]
d
2
−1
Aν(y) + κd

∂g(α, β)
∂α

xν
|x|d−3|y|A

ν(y)

= −κdxν(
1

[−(x− y)2]
d
2
−1
− 1
|x|d−3|y|

∂g(α, β)
∂α

)Aν(y) = 0
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where I put in the Feynman propagator DF
µν(x, y). we obtain a differential equation for g(α, β):

1

[−(x− y)2]
d
2
−1
− 1
|x|d−3|y|

∂g(α, β)
∂α

= 0

∂g(α, β)
∂α

=
|x|d−3|y|

[−(x− y)2]
d
2
−1

=
|x|d−3|y|

(−x2 − y2 + 2x · y)
d
2
−1

Now we can use that x · y = α|x||y| and |y| = β|x| to write:

|x|d−3|y|
(−x2 − y2 + 2x · y)

d
2
−1

=
|x|d−3|y|

(−x2 − β2x2 + 2α|x||y|) d2−1

=
|x|d−2β

[x2(2αβ − 1− β2)]
d
2
−1

=
β

(2αβ − 1− β2)
d
2
−1

so we find
∂g(α, β)
∂α

=
β

(2αβ − 1− β2)
d
2
−1

(7.11)

This can be integrated easily to

g(α, β) =
1

4− d
(

(2αβ − β2 − 1)2− d
2 − f(β)2− d

2

)
(7.12)

where f(β) is an arbitrary function of β and the power 2− d
2 garantuees the right behavior in the

limit d→ 4. Plugging this into our Ansatz (7.7) for Λµ(y, x) we obtain:

Λµ(y, x) = κd
xµ
|x|d−2

1
4− d

(
(2αβ − β2 − 1)2− d

2 − f(β)2− d
2

)
=

κd
4− d

xµ
|x|2|x|d−4

(
(2
x · y
|x||y|

|y|
|x| −

y2

x2
− 1)2− d

2 − f(β)2− d
2

)
=

κd
4− d

xµ
x2

(
(x2)2− d

2 (2
x · y
x2
− y2

x2
− 1)2− d

2 − |x|4−df(β)2− d
2

)
=

κd
4− d

xµ
x2

([−(x− y)2]2−
d
2 − |x|4−df(β)2− d

2 )

In principle we now are ready to find the conformal gauge propagator. First I work out the derivative
terms ∂g(α,β)

∂α , ∂g(α,β)
∂β , ∂g(α,β−1)

∂α and ∂g(α,β−1)
∂β−1 , because we will need them to calculate (7.10):

∂g(α, β)
∂α

=
β

(2αβ − 1− β2)
d
2
−1

=
|x|d−3|y|

[−(x− y)2]
d
2
−1
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∂g(α, β)
∂β

=
1

4− d
(

(2− d

2
)(2αβ − β2 − 1)1− d

2 (2α− 2β)− (2− d

2
)f(β)1− d

2
∂f(β)
∂β

)
=

1
2

(
(2
x · y
x2
− y2

x2
− 1)1− d

2 · 2(
x · y
|x||y| −

|y|
|x|)− f(β)1− d

2
∂f(β)
∂β

)
=

1
2

((2x · y − y2 − x2)1− d
2

|x|2−d · 2(
x · y
|x||y| −

|y|
|x|)− f(β)1− d

2
∂f(β)
∂β

)
=

1
2

(
[−(x− y)2]1−

d
2 · 2
|x|3−d (

x · y
|y| − |y|)− f(β)1− d

2
∂f(β)
∂β

)
∂g(α, β−1)

∂α
=

β−1

(2αβ−1 − 1− β−2)
d
2
−1

=
|y|d−3|x|

[−(x− y)2]
d
2
−1

∂g(α, β−1)
∂β−1

=
1

4− d
(

(2− d

2
)(2αβ−1 − β−2 − 1)1− d

2 (2α− 2β−1)− (2− d

2
)f(β−1)1− d

2
∂f(β−1)
∂β−1

)
=

1
2

(
[−(x− y)2]1−

d
2 · 2
|y|3−d (

x · y
|x| − |x|)− f(β−1)1− d

2
∂f(β−1)
∂β−1

)
Now plugging everything into equation (7.6):

Dµν = DF
µν(x, y) +

∂

∂yν
Λµ(y, x) +

∂

∂xµ
Λν(x, y)

= −gµν κd

[−(x− y)2]
d
2
−1

+ κd

( xµ
|x|d−2

(
∂g(α, β)
∂α

(
xν
|y||x| −

yνx · y
|x||y|3 ) +

∂g(α, β)
∂β

yν
|x||y|)

+
yν
|y|d−2

(
∂g(α, β−1)

∂α
(
yµ
|x||y| −

xµx · y
|x|3|y| ) +

∂g(α, β−1)
∂β−1

xµ
|x||y|)

)
= κd

(
− gµν

[−(x− y)2]
d
2
−1

+
( xµ
|x|d−2

[
|x|d−3|y|

[−(x− y)2]
d
2
−1

(
xν
|y||x| −

yνx · y
|x||y|3 )

+
1
2
(
[−(x− y)2]1−

d
2 · 2
|x|3−d (

x · y
|y| − |y|)− f(β)1− d

2
∂f(β)
∂β

) yν
|x||y| ]

+
yν
|y|d−2

[
|y|d−3|x|

[−(x− y)2]
d
2
−1

(
yµ
|x||y| −

xµx · y
|x|3|y| )

+
1
2
(
[−(x− y)2]1−

d
2 · 2
|y|3−d (

x · y
|x| − |x|)− f(β−1)1− d

2
∂f(β−1)
∂β−1

) xµ
|x||y| ]

))
=

κd

[−(x− y)2]
d
2
−1

(
−gµν +

xµ|y|
|x| (

xν
|x||y| −

yνx · y
|x||y|3 ) +

xµyν
x2y2

(x · y − y2)

+
yν |x|
|y| (

yµ
|x||y| −

xµx · y
|x|3|y| ) +

yνxµ
y2x2

(x · y − x2)
)
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− κd
( xµyν
|x|d−1|y|

1
2
f(β)1− d

2
∂f(β)
∂β

+
xµyν
|y|d−1|x|

1
2
f(β−1)1− d

2
∂f(β−1)
∂β−1

)
=

κd

[−(x− y)2]
d
2
−1

(
−gµν +

xµxν
x2
− 2

xµyν
x2y2

x · y +
xµyν
x2y2

(2x · y − x2 − y2) +
yµyν
y2

)
+ κd

( xµyν
|x|d−1|y|

1
2
f(β)1− d

2
∂f(β)
∂β

+
xµyν
|y|d−1|x|

1
2
f(β−1)1− d

2
∂f(β−1)
∂β−1

)
= − κd

[−(x− y)2]
d/2
− 1

(gµν − xµxν
x2
− yµyν

y2
+

2xµ(x · y)yν
x2y2

)

+ κd
xµyν
x2y2

(
[−(x− y)2]2−

d
2 − χ(|x|, |y|)4−d

)
where χ(|x|, |y|)4−d = |y|

|x|d−3
1
2f(β)1− d

2
∂f(β)
∂β + |x|

|y|d−3
1
2f(β−1)1− d

2
∂f(β−1)
∂β−1 .

For later purpose it will be convenient to separate the radial part of the propagator from the spatial
(angular) part. This can be done by writing it in the following form:

Dµν = − κd

[−(x− y)2]
d
2
−1
|x||y|∂xµ∂yν

( x · y
|x||y|

)
− κdxµyν

x2y2

( x · y
[−(x− y)2]

d
2
−1
− 1

[−(x− y)2]
d
2
−2

+ χ(|x|, |y|)4−d
)
. (7.13)

Here the first term is the angular part, since it will vanish when contracted with xµ or yν , and the
second term is the radial part that will survive after contraction. There are no mixing terms left.
If we choose χ to be d-independent, the last two terms cancel in 4 dimensions. Actually we see now
that Dττ equals the feynman propagator from (5.18), the difference being the absence of mixing
terms like Dτβ . But since for the one loop calculation these mixing terms did not contribute, this
calculation would be completely the same. Only when going to two-loop calculation one needs
the conformal propagator. The mixing terms in Feynman gauge are moved to non-mixing terms
starting at order ε.

7.2 Conformal Gauge versus Radial Gauge

At first sight, a simple way to obtain xµDµν(x, y)Aν(y) = 0 is to put Aτ = 0. This is called radial
gauge, and in Minkowski space boiles down to xµA

µ(x) = 0. When Aτ = 0, the Wilson lines
are trivial and the loop corrections and anomalous dimension seem to vanish. This can not be
right, and indeed it is not, for the following reason: the Wilson line is not invariant under gauge
transformations that do not vanish at infinity. Going from Feynman to radial gauge is nontrivial at
infinity, so that the Wilson line expectation value changes and Dµν will carry ultraviolet divergences.
One could solve this by closing the loop at a finite distance, preserving gauge invariance, but the
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procedure is not very transparant. The conformal gauge derived above does not have this problem;
the conformal propagator does not contain ultraviolet divergences, as can be seen from taking the
limit d→ 4.
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Chapter 8

Anomalous Cusp Dimension at Two
Loop, Three Lines

The calculation of the contribution of the two-loop diagram involving three Wilson lines has been
studied widely, for example in [8], [9], [10] and [11]. Especially the diagram involving a three gluon
vertex (see figure 8.1(a)) was a hard nut to crack. The final result was surprisingly simple:

F
(a)
Feyn. = −1

2
(γij coth γij)γ2

jk + antisym., (8.1)

where “antisym.” denotes the sum of all signed permutations of i,j and k. The simplicity of the
answer suggests an underlying structure. Using the conformal propagator, this structure comes in
naturally, as will be explained below.
When using the conformal propagator, the contribution of the diagram involving the three gluon
vertex is zero. This can be understood in two different ways. Firstly, in conformal gauge, the three
gluon vertex involves three τ -polarized gauge fields. Since the three gluon vertex is antisymmetric,
it vanishes. Secondly, using the R×AdS description, one can dimensionally reduce the computation
to AdS because of the τ independence. The τ -integral will then contribute an overall logarithmic
divergence. Now we are looking at a theory on AdS involving a scalar and a three-dimensional
gauge field. Every Wilson line sources a scalar, resulting in a three-point function of scalars in
AdS. But in the dimensional reduction of Yang-Mills theory there is no three-point interaction,
hence this contribution vanishes (see Appendix C for details). The contribution to F (a)

Feyn. should
now come from the planar diagram and the counterterm.
To actually do the computation, we need to compute again the Coulomb potential of a line emitting
one gluon, this time using the conformal gauge propagator. The reason that we need the conformal
gauge propagator is that we need to take into account it’s O(ε) contributions, since we are at two
loop order. First only the scaleless integral is computed (by taking out t one can make the integral
over s scaleless), using the conformal propagator from (7.13), from which only the ‘radial’ part
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(a) Non-Planar Diagram (b) Planar Diagram (c) Counterterm Diagram

Figure 8.1: Two-loop Contributions

survives: ∫ ∞
0

nµi n
ν
jDµν(sni, tnj)ds

= κd(−1)ε
∫ ∞

0
ds
( −ni · nj

(sni − tnj)2−2ε
+
χ(s, t)2ε − (sni − tnj)2ε

st

)
(8.2)

= κd
(−1)ε

t1−2ε

(
E

(0)
F (γij) + εE

(1)
F (γij) + εE

(1)
C (γij)

)
where we now need to keep the terms up to O(ε) because we want to look at two-loop diagrams.
This because there will be a factor 1

ε for every loop, so that we will find a 1
ε2

pole for a two-loop
diagram.

8.1 The Conformal propagator up to order ε

Expanding the first term from the propagator (denoted by capital F because it is identical to the
Feynman propagator) −ni·nj

(sni−tnj)2−2ε around ε = 0, we obtain:

−ni · nj
(eτni − nj)2−2ε

≈ −ni · nj
(eτni − nj)2

+
−ni · nj log((eτni − nj)2)

(eτni − nj)2
ε. (8.3)

The first term is simply the scalar potential that we computed before (see 5.2).

E
(0)
F (γ)
t1−2ε

=
∫ ∞
∞

dτ
−tni · nj

t2−2ε(eτni − nj)2−2ε
=
γ coth γ
t1−2ε

. (8.4)
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To compute the second term, it is easier to go back to s = eτ . The integral to solve is then:

E
(1)
F (γ) =

∫ ∞
−∞

dτeτ
−ni · nj log((eτni − nj)2)

(eτni − nj)2

=
∫ ∞

0
ds
−ni · nj log((sni − nj)2)

(sni − nj)2

=
∫ ∞

0
ds

cosh(γ) log(1 + s2 + 2s cosh γ)
1 + s2 + 2s cosh γ

.

To solve this integral, the first step now is to decompose the fraction: writing

s2 + 2s cosh γ + 1 = (s+ cosh γ + sinh γ)(s+ cosh γ − sinh γ), (8.5)

one obtains:

E
(1)
F (γ)

=
∫ ∞

0
ds cosh(γ) log(1 + s2 + 2s cosh γ)

1
2 sinh γ

(
1

s+ cosh γ − sinh γ
− 1
s+ cosh γ + sinh γ

)

=
coth(γ)

2

∫ ∞
0

ds(
log(1 + s2 + 2s cosh γ)
s+ cosh γ − sinh γ

− log(1 + s2 + 2s cosh γ)
s+ cosh γ + sinh γ

)

=
coth(γ)

2

∫ ∞
0

ds(
log(s+ cosh γ − sinh γ)
s+ cosh γ − sinh γ

+
log(s+ cosh γ + sinh γ)
s+ cosh γ − sinh γ

− log(s+ cosh γ − sinh γ)
s+ cosh γ + sinh γ

− log(s+ cosh γ + sinh γ)
s+ cosh γ + sinh γ

)

=
coth(γ)

2

∫ ∞
0

ds
( log(s+ cosh γ − sinh γ)

s+ cosh γ − sinh γ
− log(s+ cosh γ + sinh γ)

s+ cosh γ + sinh γ

+
log(s+ cosh γ + sinh γ)
s+ cosh γ − sinh γ

− log(s+ cosh γ − sinh γ)
s+ cosh γ + sinh γ

)
.

Realizing that cosh γ + sinh γ = eγ and cosh γ − sinh γ = e−γ simplifies this expression. Now the
first two terms integrated together vanish:

=
coth(γ)

2

∫ ∞
0

ds
( log(s+ e−γ)

s+ e−γ
− log(s+ eγ)

s+ eγ
+

log(s+ eγ)
s+ e−γ

− log(s+ e−γ)
s+ eγ

)
=

coth(γ)
2

(
[log2(s+ e−γ)− log2(s+ eγ)]∞0 +

∫ ∞
0

ds(
log(s+ eγ)
s+ e−γ

− log(s+ e−γ)
s+ eγ

)
)

= 0 +
coth(γ)

2

∫ ∞
0

ds(
log(s+ eγ)
s+ e−γ

− log(s+ e−γ)
s+ eγ

).
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The second integral can be handled by using the following coordinate transformations: for the first
one s→ se−γ and for the second one s→ seγ :

E
(1)
F (γ) =

coth(γ)
2

∫ ∞
0

ds(
log(s+ eγ)
s+ e−γ

− log(s+ e−γ)
s+ eγ

)

=
coth(γ)

2

(∫ ∞
0

ds

eγ
(
log(se−γ + eγ)
se−γ + e−γ

−
∫ ∞

0

ds

e−γ
log(seγ + e−γ)

seγ + eγ
)
)

=
coth(γ)

2

∫ ∞
0

ds

1 + s

(
log(se−γ + eγ)− log(seγ + e−γ)

)

Now after combining the logarithms, we use s → v = 1
1+s , so that the integral now runs from

v(0) = 1
1+0 = 1 up till v(∞) = 1

1+∞ = 0 and ds = − 1
v2

:

coth(γ)
2

∫ ∞
0

ds

1 + s

(
log(se−γ + eγ)− log(seγ + e−γ)

)
=

coth(γ)
2

∫ ∞
0

ds

1 + s
log(

se−γ + eγ

seγ + e−γ
)

=− coth(γ)
2

∫ 0

1

dv v

v2
log

(
1−v
v e−γ + eγ

1−v
v eγ + e−γ

)

=− coth(γ)
2

∫ 0

1

dv v

v2
log
(

(1− v)e−γ + veγ

(1− v)eγ + ve−γ

)
=− coth(γ)

2

∫ 0

1

dv v

v2
log
(
e−γ − v(e−γ − eγ)
eγ − v(eγ − e−γ)

)
=

coth(γ)
2

∫ 1

0

dv

v

(
log(e−γ − v(e−γ − eγ))− log(eγ − v(eγ − e−γ))

)
=

coth(γ)
2

∫ 1

0

dv

v

(
log(e−γ) + log(1− v(1− e2γ))− log(eγ)− log(1− v(1− e−2γ))−)

=
coth(γ)

2

[∫ 1

0

dv

v

(
log(e−γ)− log(eγ)

)
+ Li2(1− e−2γ)− Li2(1− e2γ)

]

Notice that at v=0 an infrared divergence appears, which we must account for. To regularize this
infrared divergence occuring in the first two terms (remember that v → 0 corresponds to s → ∞)
we replace the lower boundary by ΛIR:

E
(1)
F (γ) =

coth(γ)
2

[∫ 1

ΛIR

dv

v
(−γ − γ) + Li2(1− e−2γ)− Li2(1− e2γ)

]
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=
coth(γ)

2
[
log(ΛIR)2γ + Li2(1− e−2γ)− Li2(1− e2γ)

]
For now I focus on the Li2 terms, using the identities Li2(z) = −Li2(1− z)− log(1− z) log(z) + π2

6

and Li2(z)− Li2
(
z−1
z

)
= log2(z)

2 − log(1− z) log(z) + π2

6 , with z = e−2γ :

coth(γ)
2

(Li2(1− e−2γ)− Li2(1− e2γ))

=
coth(γ)

2
(−Li2(e−2γ)− log(1− e−2γ) log(e−2γ) +

π2

6

− Li2(e−2γ) +
log2(e−2γ)

2
− log(1− e−2γ) log(e−2γ) +

π2

6

=
coth(γ)

2
(−2Li2(e−2γ) + 2γ log(1− e−2γ) +

2π2

6
+ 2γ2

= coth(γ)(γ2 + 2γ log(1− e−2γ)− Li2(e−2γ) +
π2

6
)

So our total result voor E(1)
F (γij) is given by

E
(1)
F (γij) = coth(γij)

(
γij log(ΛIR) + γ2

ij + 2γij log(1− e−2γij )− Li2(e−2γij ) +
π2

6

)
(8.6)

When we take the sum over antisymmetric permutations further on, the ∼ log(ΛIR) term will
vanish, because it is multiplied by exactly the one loop result γ coth γ. We will see later on that
when taking the antisymmetric part, only the O(ε) term times the counterterm survive. But the
counterterm is exactly the one loop result γ coth γ, so that the we find that the term multiplying
the log(ΛIR) is symmetric, and vanishes after all.
The third term, E(1)

C (γij), is given by the O(ε) term in the expansion of the last term of (8.2):

χ(s, t)2ε − (sni − tnj)2ε

st

=
χ(s, 1)2ε − (sni − nj)2ε

s

1
t2−2ε

≈ 1
t2−2ε

χ(s, t)0 − (sni − tnj)0

s
+
χ(s, t)0 log(χ(s, t)2)− (sni − tnj)0 log((sni − nj)2)

s
ε

=
1

t2−2ε

log( χ(s,t)2

(sni−nj)2 )

s
ε

The s-integral is now given by

E
(1)
C (γij) =

∫ ∞
0

ds

s
log

χ(s, 1)2

(sni − nj)2
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=
∫ ∞

0

ds

s
log
(

χ(s, 1)2

(sni − nj)2

1 + s2

1 + s2

)
=
∫ ∞

0

ds

s
log
(
χ(s, 1)2

1 + s2

)
+
∫ ∞

0

ds

s
log
(

1 + s2

(sni − nj)2

)
=
∫ ∞

0

ds

s
log
(
χ(s, 1)2

1 + s2

)
+
∫ ∞
−∞

dτ log
(

1 + e2τ

1 + e2τ + 2eτ cosh γij

)
=
∫ ∞

0

ds

s
log
(
χ(s, 1)2

1 + s2

)
+
∫ ∞
−∞

dτ log
(

cosh τ
cosh τ + cosh γij

)
The integral involving the χ(s, 1) function will only contribute a constant that will drop out in the
final result. Moreover, when one chooses χ(|x|, |y|) =

√
x2 + y2 one finds χ(s, 1) =

√
s2 + 1. So one

obtains
∫∞

0
ds
s log

(
χ(s,1)2

1+s2

)
=
∫∞

0
ds
s log

(
1+s2

1+s2

)
=
∫∞

0
ds
s 0 = 0. The second integral can be solved

as follows:

E
(1)
C (γij) =

∫ ∞
−∞

dτ log
(

cosh τ
cosh τ + cosh γij

)
= 2Li2(−eγij ) + 2Li2(sinh(γij)− cosh(γij)) +

π2

12

= 2Li2(−eγij ) + 2Li2(−e−γij ) +
π2

12

= 2
(
−1

2
log2(eγ)− π2

6

)
+
π2

12

= −γ2 − π2

4

8.2 The Anomalous Cusp Dimension

Now that we found all terms, we can put them together to find the two loop cusp anomalous
dimension. We can combine the two graphs (see fig. 8.1(b) and 8.1(c) as

I(b) + I(c) =
∫ ∞

0

dt1

t1−2ε
1

(
E

(0)
F (γij) + εE

(1)
F (γij) + εE

(1)
C (γij)

)
×
{
−1
ε
E

(0)
F (γjk) +

∫ t1

0

dt2

t1−2ε
2

(
E

(0)
F (γjk) + εE

(1)
F (γjk) + εE

(1)
C (γjk)

)}
+ antisym.,

where antisym. again denotes the signed permutations of i, j and k. The reason to take the
antisymmetric permutations is that the symmetric part turns out to be zero. This can be seen for
example using webs [12]. When taking the antisymmetric part, a factor 1

2 needs to be put in as
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well. Due to the antisymmetric nature of this expression most of the terms cancel, except for the
O(ε) terms times the counterterm:

I(b) + I(c) =
∫ ∞

0

1
2
dt1

t1−2ε
1

(
εE

(1)
F (γij) + εE

(1)
C (γij)

)
×−1

ε
E

(0)
F (γjk) + antisym.

=
∫ ∞

0

dt1

t1−2ε
1

ε

2

{
coth(γij)(γ2

ij + 2γij log(1− e−2γij )− Li2(e−2γij ) +
π2

6
)− γ2

ij −
π2

4

}
×−1

ε
γjk coth γjk

= −
∫ ∞

0

dt1

t1−2ε
1

1
2

[
γjk coth γjk coth γij

(
γ2
ij + 2γij log(1− e−2γij )− Li2(e−2γij ) +

π2

6

)
− γjk coth γjkγ2

ij

]
+ antisym.

Note that the (symmetric) log(ΛIR) term also vanished because of the antisymmetric sum over
permutations, as predicted above.

8.3 Final Remarks

The two-loop cusp anomalous dimension calculation is simplified a lot by using the conformal gauge
propagator. This propagator makes full use of the conformal symmetry of the theory. Because of
that, only one integral has to be computed to calculate three diagrams. Also, the three-gluon vertex
that used give rise to the hardest diagram to compute, vanishes because of symmetry considerations.
This leads to another advantage: the pairwise structure that seemed to appear accidentally after
the rigorous computation in Minkowski space appears naturally when computing in AdS space.
There is one drawback: the main advantage of this method, integrating once to compute multiple
diagrams, only works when integrating s over the whole line. It is not so straightforward to apply
this method to for example the two-loop diagram with only two lines: since the integral are nested,
they will all have to be done separately.
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Chapter 9

Preparation for Three Loop
Calculations

Given the (relative) simplicity of the two-loop calculation, it is interesting to see if the set up used
for two loop calculations can be applied to three loop computations as well. One of the difficulties
is that now the gluon propagator has to be calculated up to order ε2, since a 1

ε3
term arises in the

three loop calculation. So before looking at three loop diagrams, the first thing to do is calculate
the O(ε2) term in the propagator.

9.1 The Feynman propagator

Looking again at the ’Feynman’ part of the propagator, as in section 8.1, we now expand up to
order ε2:

−ni · nj
(eτni − nj)2−2ε

≈ −ni · nj
(eτni − nj)2

+
−ni · nj log((eτni − nj)2)

(eτni − nj)2
ε+
−ni · nj log((eτni − nj)2)2

(eτni − nj)2

ε2

2

so that

E
(2)
F =

∫ ∞
0

ds
−ni · nj log((sni − nj)2)2

(sni − nj)2

=
∫ ∞

0
ds

cosh γ log2(s2 + 2s cosh γ + 1)
s2 + 2s cosh γ + 1

where in the second line again ni = (− cosh γ,− sinh γ, 0, 0) and nj = (1, 0, 0, 0) is used. The
fraction can be split in the same way as before, using s2 + 2s cosh γ + 1 = (s + eγ)(s + e−γ). The
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argument of the logarithm can be written in the same way, giving rise to the following:

E
(2)
F =

∫ ∞
0

ds
cosh γ log2(s2 + 2s cosh γ + 1)

s2 + 2s cosh γ + 1

=
∫ ∞

0
ds

cosh γ log2 ((s+ eγ)(s+ e−γ))
(s+ eγ)(s+ e−γ)

=
∫ ∞

0
ds coth γ

(
log(s+ eγ) + log(s+ e−γ)

)2( 1
(s+ e−γ)

− 1
(s+ eγ)

)
=
∫ ∞

0
ds coth γ

( log2(s+ eγ) + log2(s+ e−γ) + 2 log(s+ eγ) log(s+ e−γ)
s+ e−γ

− log2(s+ eγ) + log2(s+ e−γ) + 2 log(s+ eγ) log(s+ e−γ)
s+ eγ

)
=
∫ ∞

0
ds coth γ

( log2(s+ e−γ)
s+ e−γ

− log2(s+ eγ)
s+ eγ

+
log2(s+ eγ)
s+ e−γ

− log2(s+ e−γ)
s+ eγ

+
2 log(s+ eγ) log(s+ e−γ)

s+ e−γ
− 2 log(s+ eγ) log(s+ e−γ)

s+ eγ
)

Now for calculational convenience I split the integral in three parts that I will calculate separately:

I1 =
∫ ∞

0
ds(

log2(s+ e−γ)
s+ e−γ

− log2(s+ eγ)
s+ eγ

)

I2 =
∫ ∞

0
ds(

log2(s+ eγ)
s+ e−γ

− log2(s+ e−γ)
s+ eγ

)

I3 =
∫ ∞

0
ds(

2 log(s+ eγ) log(s+ e−γ)
s+ e−γ

− 2 log(s+ eγ) log(s+ e−γ)
s+ eγ

)

I start with I1:

I1 =
∫ ∞

0
ds(

log2(s+ e−γ)
s+ e−γ

− log2(s+ eγ)
s+ eγ

)

= [
1
3

log(s+ e−γ)3 − 1
3

log(s+ eγ)3]∞0

=
2
3
γ3

Note that a similar term occured in the O(ε) calculation, but there two ∼ γ2 terms exactly cancelled
each other. I2 is a harder nut to crack:

I2 =
∫ ∞

0
ds(

log2(s+ eγ)
s+ e−γ

− log2(s+ e−γ)
s+ eγ

)
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To tackle this integral, the first step is to do a transformation of variables: s→ se−γ and s→ seγ

for the first and second term respectively:

I2 =
∫ ∞

0
ds(

log2(s+ eγ)
s+ e−γ

− log2(s+ e−γ)
s+ eγ

)

=
∫ ∞

0
ds(e−γ

log2(se−γ + eγ)
se−γ + e−γ

− eγ log2(seγ + e−γ)
seγ + eγ

)

=
∫ ∞

0
ds(

log2(e−γ(s+ e2γ))
s+ 1

− log2(eγ(s+ e−2γ)
s+ 1

)

=
∫ ∞

0
ds

1
s+ 1

(
(−γ + log(s+ e2γ))2 − (γ + log(s+ e−2γ))2

)
=
∫ ∞

0
ds

1
s+ 1

(
log2(s+ e2γ)− 2γ log(s+ e2γ)− log2(s+ e−2γ)− 2γ log(s+ e−2γ)

)
Now a finite answer is obtained for the two quadratic terms together (the s→∞ part cancels after
integration). The integral over the logarithms is not finite, so for now I just leave it:

I2 = 0−
(

2Li3

(
1

1− e2γ

)
− 2Li3

(
1

1− e−2γ

)
− 2Li2

(
1

1− e2γ

)
log
(
e−2γ

)
+ 2Li2

(
1

1− e−2γ

)
log
(
e2γ
)

− log
(

1
1− e−2γ

)
log2

(
e−2γ

)
+ log2

(
e2γ
)

log
(

1
1− e2γ

)
−
∫ ∞

0
ds

1
s+ 1

2γ(log(s+ e2γ) + log(s+ e−2γ))
)

= −2
(

Li3

(
1

1− e2γ

)
− Li3

(
1

1− e−2γ

)
+ 2γLi2

(
1

1− e2γ

)
+ 2γLi2

(
1

1− e−2γ

)
+ 2γ2 log

(
1− e−2γ

1− e2γ

))
−
∫ ∞

0
ds

1
s+ 1

2γ(log(s+ e2γ) + log(s+ e−2γ))
)

To solve the third integral we use the same approach as with I2: first we do a variable transformation
to obtain the 1

1+s everywhere:

I3 =
∫ ∞

0
ds(

2 log(s+ eγ) log(s+ e−γ)
s+ e−γ

− 2 log(s+ eγ) log(s+ e−γ)
s+ eγ

)

=
∫ ∞

0
ds(e−γ

2 log(se−γ + eγ) log(se−γ + e−γ)
se−γ + e−γ

− eγ 2 log(seγ + eγ) log(seγ + e−γ)
seγ + eγ

)

=
∫ ∞

0
ds(

2 log(e−γ(s+ e2γ)) log(e−γ(s+ 1))
s+ 1

− 2 log(eγ(s+ 1)) log(eγ(s+ e−2γ))
s+ 1

)
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= 2
∫ ∞

0

ds

s+ 1
(−γ + log(s+ e2γ))(−γ + log(s+ 1)− (γ + log(s+ 1))(γ + log(s+ e−2γ))

= 2
∫ ∞

0

ds

s+ 1
(−γ log(s+ e2γ)− γ log(s+ 1) + log(s+ 1) log(s+ e2γ)

− (γ log(s+ 1) + γ log(s+ e−2γ) + log(s+ 1) log(s+ e−2γ))

= 2
∫ ∞

0

ds

s+ 1

[
−γ (log(s+ e2γ) + log(s+ e−2γ) + 2 log(s+ 1)

)
+ log(s+ 1)

(
log(s+ e2γ)− log(s+ e−2γ)

)]

The integral over the last term is finite and gives the following result:

2
∫ ∞

0

ds

s+ 1
log(s+ 1)

(
log(s+ e2γ)− log(s+ e−2γ)

)
=2Li3

(
1
2

(1− coth(γ))
)
− 2Li3

(
1
2

(coth(γ) + 1)
)

=2Li3

(
1

1− e2γ

)
− 2Li3

(
1

1− e−2γ

)
Again I leave the other terms aside for a second, they will have to be regularized. Combining all
three terms now gives:

E
(2)
F = coth γ(I1 + I2 + I3)

= −2 coth γ
{1

3
γ3 +

(
Li3

(
1

1− e2γ

)
− Li3

(
1

1− e−2γ

)
+ 2γLi2

(
1

1− e2γ

)
+ 2γLi2

(
1

1− e−2γ

)
+ 2γ2 log

(
1− e−2γ

1− e2γ

))
− Li3

(
1

1− e2γ

)
+ Li3

(
1

1− e−2γ

)
+
∫ ∞

0

ds

s+ 1
γ(log(s+ e2γ) + log(s+ e−2γ))

)
+
∫ ∞

0

ds

s+ 1
(γ
(
log(s+ e2γ) + log(s+ e−2γ) + 2 log(s+ 1)

)}
= −4γ coth γ

{1
6
γ2 + Li2

(
1

1− e2γ

)
+ Li2

(
1

1− e−2γ

)
+ γ log

(
1− e−2γ

1− e2γ

)
+
∫ ∞

0

ds

s+ 1
(log(s+ e2γ) + log(s+ e−2γ) + log(s+ 1))

}
= −4γ coth γ

{1
6
γ2 − log(1− e2γ) log(1− e−2γ) +

π2

6
+ γ log

(
1− e−2γ

1− e2γ

)
+
∫ ∞

0

ds

s+ 1
(log(s+ e2γ) + log(s+ e−2γ) + log(s+ 1))

}
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Now the three terms that still have to be integrated can be regulated by using a cut-off ΛIR. We
can see now allready that these terms are analogous to the infrared divergent term log ΛIR that
we encountered in the two loop computation. In the loop calculation it dropped out of the final
answer after antisymmetrizing, so we might see the same thing happening here.
It is interesting to note that the Li2 and Li3 functions drop out in the final result. This suggests
that the transcedentality of the function is lower than it seems at first sight. One could expect that
there is a way to combine I2 and I3 together into an easier function.

9.2 The Conformal Term

Now that we found the O(ε2) part of the Feynman part, the O(ε2) term of the ‘conformal’ part of
the propagator has to be calculated as well:

EC ≈ 0 +
∫ ∞

0

ds

s
log

χ(s, 1)2

(nis− nj)2
ε+

∫ ∞
0

ds

s

(
log2(χ(s, 1)2)− log2((sni − nj)2)

) ε2
2

(9.1)

So that the integral we need to calculate now is given by:

E
(2)
C =

∫ ∞
0

ds

s

(
log2(χ(s, 1)2)− log2((sni − nj)2)

)
=
∫ ∞

0

ds

s

(
log2(χ(s, 1)2)− log2(1 + s2 + 2s cosh γ)

)

where we can use again χs, 1 = 1 + s2. To simplify this integral, the first thing to do is again write
1 + s2 + 2s cosh γ = (1 + eγ)(1 + e−γ):

E
(2)
C =

∫ ∞
0

ds

s
log2(1 + s2)−

∫ ∞
0

ds

s
log2

(
(s+ eγ)(s+ e−γ)

)
=
∫ ∞

0

ds

s
log2(1 + s2)−

∫ ∞
0

ds

s

(
log(s+ eγ) + log(s+ e−γ)

)2
=
∫ ∞

0

ds

s
log2(1 + s2)−

∫ ∞
0

ds

s

(
log2(s+ eγ) + log2(s+ e−γ) + 2 log(s+ eγ) log(s+ e−γ)

)
=
∫ ∞

0

ds

s
log2(1 + s2)−

∫ ∞
0

ds

s

(
log2(s+ eγ) + log2(s+ e−γ) + 2 log(s+ eγ) log(s+ e−γ)

)

Now we apply a coordinate transformation s → seγ and s → se−γ to the second and third term,
and pull the factor eγ out of the logarithm:

E
(2)
C =

∫ ∞
0

ds

s

(
log2(1 + s2)− log2(s+ eγ) + log2(s+ e−γ) + 2 log(s+ eγ) log(s+ e−γ)

)
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=
∫ ∞

0

ds

s

(
log2(1 + s2)− log2(eγs+ eγ) + log2(e−γs+ e−γ) + 2 log(s+ eγ) log(s+ e−γ)

)
=
∫ ∞

0

ds

s

(
log2(1 + s2)− log2(eγ(s+ 1)) + log2(e−γ(s+ 1)) + 2 log(s+ eγ) log(s+ e−γ)

)
=
∫ ∞

0

ds

s

(
log2(1 + s2)− (γ + log(s+ 1))2 + (−γ + log(s+ 1))2 + 2 log(s+ eγ) log(s+ e−γ)

)
=
∫ ∞

0

ds

s

(
log2(1 + s2)− (γ2 + 2γ log(s+ 1) + log2(s+ 1) + γ2 − 2γ log(s+ 1) + log2(s+ 1)

+2 log(s+ eγ) log(s+ e−γ)
)

=
∫ ∞

0

ds

s

(
log2(1 + s2)− (2γ2 + 2 log2(s+ 1) + 2 log(s+ eγ) log(s+ e−γ)

)

Unfortunately these integrals are not finite, which would be expected from the fact that the scale
has been taken out already. Since we do not expect a divergence higher than 1

ε3
, and we will obtain

exactly this from the integrals over t, the integral over s should be finite. It is at this phase not yet
clear how these extra divergences will contribute to the final result; when a certain combination of
diagrams is taken, there might be some cancellations. At two-loop order there was no divergence
at the conformal part of the propagator, so we can not draw from that experience here.

9.3 First Steps towards Three Loop Calculation

The three loop diagram that can be computed making full advantage of the conformal properties
of the propagator can be found in figure 9.1.
Diagrams of this form satisfy the requirement that for all exchanged gluons, one of the two vertices
are the only vertices on that line. In this configuration we have to integrate the endpoint of the
gluon propagator over the whole line, thus enabling us to use the already calculated integral over
the propagator. Still it is not so easy to extract the right cusp anomalous dimension. Firstly, one
has to combine the six possible diagrams obeying this configuration. A way to find how to combine
these diagrams is the replica trick [12]. For each diagram one has to do the following calculation:

∫ ∞
0

dt1

t1−2ε
1

[
E

(0)
f (γij) + εE

(1)
F (γij) + εE

(1)
C (γij) +

ε2

2
E

(2)
F (γij) +

ε2

2
E

(2)
C (γij)

]
×
{(
−1
ε
E

(0)
F (γjk) +

∫ t1

0

dt2

t1−2ε
2

[
E

(0)
f (γjk) + εE

(1)
F (γjk) + εE

(1)
C (γjk) +

ε2

2
E

(2)
F (γjk) +

ε2

2
E

(2)
C (γjk)

])
×
(
−1
ε
E

(0)
F (γjl) +

∫ t2

0

dt3

t1−2ε
3

[
E

(0)
f (γjl) + εE

(1)
F (γjl) + εE

(1)
C (γjl) +

ε2

2
E

(2)
F (γjl) +

ε2

2
E

(2)
C (γjl)

])
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Figure 9.1: Three Loop Diagram

− ∼ 1
ε2
Counterterm

}
where we have

E
(0)
F (γij) = γij coth γij

E
(1)
F (γij) = coth(γij)

(
γij log(ΛIR) + γ2

ij + 2γij log(1− e−2γij )− Li2(e−2γij ) +
π2

6

)
E

(1)
C (γij) = −γ2

ij −
π2

4

E
(2)
F (γij) = −4γij coth γij

{1
6
γ2
ij − log(1− e2γij ) log(1− e−2γij ) +

π2

6
+ γij log

(
1− e−2γij

1− e2γij

)
+
∫ ∞

0

ds

s+ 1
(log(s+ e2γij ) + log(s+ e−2γij ) + log(s+ 1))

}
= 4γij coth γij

{1
6
γ2
ij − log(1− e2γij ) log(1− e−2γij ) +

π2

6
+ γij log

(
1− e−2γij

1− e2γij

)
+ log

(
e2γij + Λ

)
log
(
−1

2
(Λ + 1)(coth(γij)− 1)

)
+ log

(
e−2γij + Λ

)
log
(

1
2

(Λ + 1)(coth(γij) + 1)
)

− log
(
e2γij

)
log
(

1
2

(1− coth(γij))
)
− log

(
e−2γij

)
log
(

1
2

(coth(γij) + 1)
)

+
1
2

log2(Λ + 1)

+ Li2

(
1
2

(coth(γij)Λ− Λ + coth(γij) + 1)
)

+ Li2

(
1
2

(−Λ− (Λ + 1) coth(γij) + 1)
)

− Li2

(
1
2

(1− coth(γij))
)
− Li2

(
1
2

(coth(γij) + 1)
)}

E
(2)
C (γij) =

∫ ∞
0

ds

s

(
log2(s+ eγij ) + log2(s+ e−γij ) + 2 log(s+ eγij ) log(s+ e−γij )

)
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When one has found all this integrals and knows how to add up the different diagrams, one can
calculate the contribution of this type of diagram. It is not so straightforward however to apply
this method to other three loop diagrams with four legs. Since the other diagrams all contain lines
that have multiple gluons attached to it, the scaleless integral over s will have to be adapted so
that it runs from 0 to some finite s′. This will make the calculations much harder and less elegant
than the two loop computation.

9.4 Conclusion

In principle the three-loop calculation for the specific type of diagram mentioned above seems to
be doable using this approach. The calculation is simplified a lot by using this method instead of
the standard approach. There are some technical issues to be overwon though, such as finding the
right combination of the diagrams and the cancelling of the (extra) divergent parts of the integrals.
Once this is achieved, it would be interesting to see if a procedure could be developed to apply this
method to other types of three-loop diagrams as well in a systematic way.
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Chapter 10

General Conclusions

The method introduced by Chien et al. provides a nice method to calculate the cusp anomalous
dimension for eikonal Wilson lines at one- and two-loop order by viewing them as static charges in
AdS space [1]. Even though there are some subtleties such as the appearance of a phantom charge
in AdS and the cancellations of extra divergences for the two-loop calculation, this method still
has large calculational advantages over the traditional method. Besides, we gained new insight in
the origin of some of the qualitative properties of the results, such as the pairwise structure at two
loop.
The limits of this method were found when applying them to higher order calculations. Because the
conformal symmetry is broken at next-to-eikonal order, the step by step procedure does not work as
for the eikonal case. Since at the eikonal level conformal invariance corresponded to static charges
in AdS, one would expect that a breaking of this invariance leads to dynamic charges in AdS. Even
though this sounds as a nice way to extend the ‘charges in AdS picture’ to next-to-eikonal level, it
is not so straightforward to implement. Already the first step, extracting an equation for the charge
in AdS, is not obvious. One can also doubt the calculational advantage of such a picture, since the
main reason for calculational simplicity in the eikonal case is the static state of the charges. Still
it would be interesting to find a description of next-to-eikonal diagrams, mainly to gain insight in
the physical properties.
Even though the aforementioned method did not immediately lead to new results at next-to-eikonal
level, the conformal coordinates were used to calculate the contributions of next-to-eikonal diagrams
to the cusp anomalous dimension in coordinate space. Some progress is made here: firstly, for the
first next-to-eikonal correction the contribution was calculated and shown to be dependent on
the regulator. The second next-to-eikonal contribution appeared to vanish, which agrees with
momentum space calculations.
Moreover, an attempt is made to apply this method to three-loop calculations. To do so, a higher
order term of the gluon propagator in conformal gauge has to be taken into account. This poses
significant challenges: when integrating over this propagator, many extra divergent terms appear.
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‘Extra’ in this context means that they appear on top of the expected divergences. These extra
divergences should cancel when the different diagrams that contribute are added. Since something
similar happens at two-loop level, there is good hope that this will indeed happen. We suggest the
application of webs such as in [12] as an approach to obtain this cancellation. The finite part of the
result has been calculated and appeared to be more simple than the integral suggested: even though
we had to integrate over the square of logarithms, the polylogarithmical terms cancelled in the final
results. It would be very interesting to look at this calculation in greater detail, especially since
this method, if it could be succesfully applied, would offer great simplifications to the three-loop
calculation compared to the ‘traditional’ methods.
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Appendix A

Electrostatics on the 3-sphere

Figure A.1: Field lines emitting from the charge at the northpole come together at the southpole,
creating a minus charge there.

In our first naive calculation of the scalar potential of a single charge in AdS we obtained an extra
phantom charge. The appearance of this charge can be explained when looking at the analytical
continuation to the 3-sphere. Consider a charge placed at the northpole of the sphere. The electric
field lines will be directed away from the pole, pointing to the south along the meridians. It’s
inevitable that they will all come together at the south pole. When looking at the south pole this
way, it works like a sink for electric field lines; hence a minus charge. That this should happen
could already be foreseen from Gauss law

∫
∂U E · dS = 4π

∫
U ρ(x)dV . If U is a closed manifold it

doesn’t have a bounday, hence ∂U is empty. Therefore the integral over the charge distribution
vanishes. In other words, the total charge on a 3-dimensional closed manifold must be zero. [13]
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Appendix B

Next to Eikonal Quark Propagator

The eikonal quark propagator in momentum space can be written in position space quite easily, as
I showed in section 2.4: ∫ ∞

0
dλn ·A(nλ) =

∫ ∞
0

dλnµ
∫
d4q Aµ(q)e−iq·nλ

= nµ
∫
d4q

Aµ(q)
iq · n = −i

∫
d4q

A(q) · n
q · n (B.1)

To find the next to eikonal terms, we do a Taylor expansion around qµ = 0, up to the term quadratic
in q:

kµ + qµ
(k + q)2 + im

≈ kµ
2k · q + im

+
∂

∂qν

kµ + qµ
(k + q)2 + im

qν +
∂2

∂qλ∂qν

kµ + qµ
(k + q)2 + im

qνqλ

=
kµ

2k · q + im
+
(

δµν
(k + q)2 + im

− 2(kν + qν)(kµ + qµ)
[(k + q)2 + im]2

)
q=0

qν+

∂

∂qλ

(
δµν

(k + q)2 + im
− 2(kν + qν)(kµ + qµ)

[(k + q)2 + im]2

)
qνqλ

=
kµ

2k · q + im
+

qµ
2k · q + im

− kµ
2k · q + im

+
(δµν · −2(kλ + qλ)

[(k + q)2 + im]2

− 2
(

δνλ(kµ + qµ)
[(k + q)2 + im]2

+
(kν + qν)δµλ

[(k + q)2 + im]2
+

(kν + qν)(kµ + qµ) · −4(kλ + qλ)
[(k + q)2 + im]3

))
q=0

qνqλ

=
qµ

2k · q + im
+
( −2δµνkλ

[2k · q + im]2
− 2

[2k · q + im]2

(
δνλkµ + kνδµλ − 4

kνkµkλ
2k · q + im

))
qνqλ

=
qµ

2k · q + im
+
−2qµk · q

[2k · q + im]2
− 2

[2k · q + im]2

(
q2kµ + k · qqµ − 4

(k · q)2kµ
2k · q + im

)
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=
kµ

2k · q + im
− qµ
k · q + im

− 2q2kµ
[2k · q + im]2

So we find the next to eikonal terms −k·A(q)
2k·q+im and −2k·A(q) q2

(2k·q+im)2
. To find the position space integrals,

we can use a Schwinger parametrisation:

1
A± iε = ∓i

∫ ∞
0

due±iu(A±iε) (B.2)

For the first correction this gives us

1
2κ

∫
ddq

(2π)2

q ·A(q)
n · q + im

=
1

2κ

∫
ddq

(2π)2

(
−iq ·A(q)

∫ ∞
0

dueiu(n·q+im)

)
= − 1

2κ

∫
ddq

(2π)2

∫ ∞
0

du∂µA
µ(q)eix

µqµ−mu

= − 1
2κ

∫ ∞
0

du∂µA
µ(unµ)e−mu

And for the second one we need the Schwinter parametrisation for a square:

1
(A+ iε)2

= −
∫ ∞

0
duu eiu(A+iε) (B.3)

so that we get:

−1
2κ

∫
ddq

q2n ·A(q)
(q · n+ im)2

=
−1
2κ

∫
ddq q2n ·A(q) · −

∫ ∞
0

duueiu(n·q+im

=
1

2κ

∫ ∞
0

du

∫
ddq n ·A(q)u∂2eix·q−mu

=
1

2κ

∫ ∞
0

duu ∂2n ·A(q)e−mu
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Appendix C

Dimensionally Reduced Yang-Mills
Theory

To see what vertices occur in dimensionally reduced Yang-Mills Theory, one breaks up the GµνGµν
term, in µ = τ and µ = i, where i = 1, 2, 3. This gives us the following terms:

GµνGµν = GττGττ +GτiGτi +GijGij (C.1)

= 0 +GτiGτi +GijGij (C.2)

Now since the τ dimension has decoupled from the spatial AdS dimension, the W τ has become
a scalar. Remembering that Gµν = ∂µW

a
ν − ∂νW a

µ + gεabcW
b
µW

c
ν , we see now that the GττGττ

vanishes because it is not antisymmetric. So we can conclude that indeed there is no three scalar
vertex in dimensionally reduced Yang-Mills Theory.
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Appendix D

Eikonal and Next to Eikonal Ward
Identities

The Ward Identity assures gauge invariance at the level of Feynmann diagrams. In this case it
tells us that the sum of these three diagrams should vanish. This can be calculated explicitly,
by summing the three diagrams. I will carry out this calculation first without taking the eikonal
approximation, so using the full momentum space expression:

M =
∫
ddkūs(q)

[
γκ

i

/q − /kγ
µ i

/q − /k − /l
γν + γκ

i

/q − /kγ
ν i

/q
γµ (D.1)

+ γµ
i

/q − /l
γν

i

/q − /k − /l
γκ
] gκν
k2 + iε

εµ(l)us(q − l)

Now one write εµ(l) = lµ and contracts it with γµ. In the first term of the equation we can write
/l = /q − /k − (/q − /k − /l), so that we obtain:

γκ
i

/q − /kγ
µ i

/q − /k − /l
γνεµ(l)

=γκ
i

/q − /k
/l

i

/q − /k − /l
γν

=γκ
i

/q − /k (/q − /k − (/q − /k − /l)) i

/q − /k − /l
γν

=γκ
−1

/q − /k − /l
γν − γκ −1

/q − /kγ
ν .

Recognizing that the −1

/q−/k−/l
and −1

/q−/k term also occur in the other two terms, we can group the
whole expression in two terms:
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q

q − kq − k − l

l

q − l k

↑

→

(a) Cusp

q

q − k

l

q − l

k

↑

→q

(b) Self Energy 1

q

q − k − l

l

q − l

k

↑

→
q − l

(c) Self Energy 2

Figure D.1: Diagrams contributing to Ward Identity

M =
∫
ddkūs(q)

[
γκ

−1

/q − /k − /l
γν − γκ −1

/q − /kγ
ν

+ γκ
i

/q − /kγ
ν i

/q
/l + /l

i

/q − /l
γν

i

/q − /k − /l
γκ
] gκν
k2 + iε

us(q − l)

=
∫
ddkūs(q)

[
γκ

−1

/q − /k − /l
γκ − γκ −1

/q − /kγκ

+ γκ
i

/q − /kγκ
i

/q
/l + /l

i

/q − /l
γκ

i

/q − /k − /l
γκ
] 1
k2 + iε

us(q − l)
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=
∫
ddkūs(q)

[
(1 + /l

1

/q − /l
)γκ

−1

/q − /k − /l
γκ − γκ −1

/q − /kγκ(1− 1
/q
/l)
] 1
k2 + iε

us(q − l)

=
∫
ddkūs(q)

[
(/q − /l + /l)

1

/q − /l
γκ

−1

/q − /k − /l
γκ − γκ −1

/q − /kγκ
1
/q

(/q − /l)
] 1
k2 + iε

us(q − l)

=
∫
ddkūs(q)

[
/q

1

/q − /l
γκ

−1

/q − /k − /l
γκ − γκ −1

/q − /kγκ
1
/q

(/q − /l)
] 1
k2 + iε

us(q − l)

= 0,

where I used that ūs(q)/q = 0 and (/q − /l)us(q − l) = 0.
Now we are interested in what happens when we apply the eikonal approximation. As we will see,
the Ward identity still holds, so that we indeed have a conserved current. To apply the eikonal
approximation, all terms including a k will be modified as follows:

i

/q − /k =
i(/q − /k)

(q − k)2 + iε
→ i/q

−2q · k
i

/q − /k − /l
=

i(/q − /k − /l)
(q − k − l)2 + iε

→ i(/q − /l)
−2(q − l) · (k − l)

where I leave out the +iε term for calculational convenience. Note that, different to paragraph
2.4, I do not remove the gamma matrices at this point for later calculational convenience. Now
plugging the eikonal terms in the original expression:

M =
∫
ddkūs(q)

[
γκ

i/q

−2q · kγ
µ i(/q − /l)
−2(q − l) · (k − l)γ

ν + γκ
i/q

−2q · kγ
ν i

/q
γµ

+ γµ
i(/q − /l)
(q − l)2

γν
i(/q − /l)

−2(q − l) · (k − l)γ
κ
] gκν
k2 + iε

εµ(l)us(q − l)

Now first contracting γκ and γν :

M =
∫
ddkūs(q)

[
γκ

i/q

−2q · kγ
µ i(/q − /l)
−2(q − l) · (k − l)γκ + γκ

i/q

−2q · kγκ
i

/q
γµ

+ γµ
i(/q − /l)
(q − l)2

γκ
i(/q − /l)

−2(q − l) · (k − l)γ
κ
] 1
k2 + iε

εµ(l)us(q − l)

=
∫
ddkūs(q)

[
γκ

i/q

−2q · kγ
µ i(/q − /l)
−2(q − l) · (k − l)γκ +

−2i/q
−2q · k

i

/q
γµ

+ γµ
i(/q − /l)
(q − l)2

−2i(/q − /l)
−2(q − l) · (k − l)

] 1
k2 + iε

εµ(l)us(q − l)
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=
∫
ddkūs(q)γκ

i/q

−2q · kγ
µ i(/q − /l)
−2(q − l) · (k − l)γκ

1
k2 + iε

εµ(l)us(q − l),

where the last two terms vanish upon applying Diracs equations ūs(q)/q = 0 and (/q−/l)us(q− l) = 0.
The next step is to contract γµ with lµ, and to write /l = /k − (/k − /l):

γκ
i/q

−2q · k/l
i(/q − /l)

−2(q − l) · (k − l)γκ = γκ
i/q

−2q · k /k
i(/q − /l)

−2(q − l) · (k − l)γκ − γ
κ i/q

−2q · k (/k − /l) i(/q − /l)
−2(q − l) · (k − l)γκ

Now I need the following equation: /q/k(/q − /l) = 2q · k(/q − /l)− /k/q(/q − /l), and /q2 = q2 = 0, so that
/q/k(/q − /l) = 2q · k(/q − /l) + /k/q/l . Using this we find:

γκ
i/q

−2q · k /k
i(/q − /l)

−2(q − l) · (k − l)γκ − γ
κ i/q

−2q · k (/k − /l) i(/q − /l)
−2(q − l) · (k − l)γκ

=− γκ 2q · k(/q − /l) + /k/q/l

−2q · k − 2(q − l) · (k − l)γκ + γκ
/q2(k − l) · (q − l) + /q/l /k

−2q · k − 2(q − l) · (k − l)γκ,

where I used in the last line that l2 is zero. Plugging this back in the whole expression:

M =
∫
ddkūs(q)[−γκ

2q · k(/q − /l) + /k/q/l

−2q · k − 2(q − l) · (k − l)γκ + γκ
/q2(k − l) · (q − l) + /q/l /k

−2q · k − 2(q − l) · (k − l)γκ]
1

k2 + iε
us(q − l)

=
∫
ddkūs(q)[−γκ

2q · k(/q − /l)
2q · k 2(q − l) · (k − l)γκ − γ

κ
/k/q/l

2q · k 2(q − l) · (k − l)γκ

+ γκ
/q2(q − l) · (k − l)

2q · k 2(q − l) · (k − l)γκ + γκ
/q/l /k

2q · k 2(q − l) · (k − l)γκ]
1

k2 + iε
us(q − l)

=
∫
ddkūs(q)[

2(/q − /l)
2(q − l) · (k − l) +

2/l/q/k
2q · k 2(q − l) · (k − l) −

2/q
2q · k −

2/k/l/q
2q · k 2(q − l) · (k − l) ]

1
k2 + iε

us(q − l)

=
∫
ddkūs(q)[

2/l/q/k
2q · k 2(q − l) · (k − l) −

2/k/l/q
2q · k 2(q − l) · (k − l) ]

1
k2 + iε

us(q − l)

where we contracted the γ matrices in the third line and applied the Dirac equations in the last
line. Now the only terms surviving are linear in /l , so that they will vanish when taking the limit
l→ 0.

D.1 The Next to Eikonal Ward Identity

In section D I calculated the Ward identity in the eikonal approximation. To see if we expect the
next to eikonal current to be conserved, we can calculate the Ward identity at next to eikonal level
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again. The eikonal expression was:

M =
∫
ddkūs(q)

[
γκ

i/q

−2q · kγ
µ i(/q − /l)
−2(q − l) · (k − l)γ

ν + γκ
i/q

−2q · kγ
ν i

/q
γµ

+ γµ
i(/q − /l)
(q − l)2

γν
i(/q − /l)

−2(q − l) · (k − l)γ
κ
] gκν
k2 + iε

εµ(l)us(q − l)

Now since it is the first order correction I replace only half of the propagators with the next to
eikonal one:

MNE =
∫
ddkūs(q)

[
γκ

i/k

−2q · kγ
µ i(/q − /l)
−2(q − l) · (k − l)γ

ν + γκ
i/k

−2q · kγ
ν i

/q
γµ

+ γµ
i(/q − /l)
(q − l)2

γν
i(/q − /l)

−2(q − l) · (k − l)γ
κ
] gκν
k2 + iε

εµ(l)us(q−

Different to the eikonal case, this time the two contributions from the self energy diagrams do not
vanish upon contracting γκ and γν . Moreover, when contracting γµ with lµ in the first term, there
is no obvious way to write /l so that the fraction can be decomposed. This could have been expected
when interpreting the hard quarks as operators: one can write a current Qn1γµQ̄n2 , where n2 is
spatial direction. When n1 = n2, which is equivalent to l→ 0, one finds a conserved current QγµQ̄.
For the next to eikonal case, one of the operators Q will obtain an extra derivative (corresponding to
the gluon momentum in momentum space). With this extra term, it will no longer be a conserved
current, so the above expression is not expected to vanish.
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