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Chapter 1

Introduction

Computability theory, which is concerned with the question what is and what is not com-
putable, has since the beginning of the twentieth century been based on the Turing machine
[56] model. The universal Turing machine, a machine which can simulate all other Tur-
ing machines, is the conceptual basis of general purpose computers. Turing’s thesis [56]
states that everything which is effectively computable, or alternatively, computable in an
algorithmic or mechanistic way, can be computed by some Turing machine. This has led
to a common belief in computer science that the Turing machine is a model for all com-
putations, and for computations performed by computers in specific. However, the notion
of computation has changed dramatically over the past decades. On the one hand, con-
temporary computing systems are being inspired more and more by nature. System such
as large computer networks, and multi-agent systems are massively parallel, open systems,
composed of interacting components. On the other hand, natural living systems are also
frequently being regarded as information processing, or computing systems. The change in
the nature of computing systems, as well as the computations they perform, leads some to
argue that the Turing machine is no longer a suitable model for contemporary computing
systems. Van Leeuwen and Wiedermann argue that “the classical Turing paradigm may
no longer be fully appropriate to capture all features of present-day computing” [61, p. 5].
Likewise, Goldin and Wegner argue that “[i]t is time to recognize that today’s computing
applications, such as web services, intelligent agents, operating systems, and graphical user
interfaces, cannot be modelled by Turing machines; alternative models are needed” [24, p.
153]. With alternative models may come alternative notions of what is computable. The
field of hypercomputation is concerned with studying models which compute more than
Turing machines, or are incomparable to Turing machines.

In 2001 and 2002, Van Leeuwen and Wiedermann [68, 69] claimed that hypercompu-
tational power can emerge in artificial living systems. In their articles, Van Leeuwen and
Wiedermann present computational models of individual living organisms — active cognitive
transducers— and “consider AL systems composed of evolving communities of communi-
cating active cognitive transducers” [69, p. 206]. The models compute under “a certain
non-commonly considered computational scenario” [68, p. 56], called “evolving interactive
computing” [62, p. 91], which combines the three features of interactivity, non-uniform
evolution, and infinity of operation. Then, Van Leeuwen and Wiedermann “show that a
‘super-Turing’ computational power can indeed emerge in such systems” [69, p. 206]. Van
Leeuwen and Wiedermann argue that their artificial living systems have hypercomputa-
tional power by showing that they are equally powerful as interactive Turing machines with
advice [61, 62]. Interactive Turing machines with advice compute with information from a
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special kind of oracle, which makes them more powerful than standard interactive Turing
machines. According to Van Leeuwen and Wiedermann, the hypercomputational power of
their artificial living systems is emergent. In the authors’ words, “a community of active
cognitive transducers has a much greater computing power than just the ‘sum’ of the powers
of the individual transducers. Here we see the emerging super-recursive computing power”
[69, p. 213]. One of Van Leeuwen and Wiedermann’s conclusions is that “[t]he information
processing capabilities of AL systems are far more powerful than commonly believed” [69,
p. 213].

The three features of evolving interactive computing — interactivity, non-uniform evolu-
tion, and infinity of operation — have been studied previously in isolation. The feature of
infinite operation has been studied, among others, by Thomas [55] in the form of a theory
of ω-automata. A paradigm shift from rule-based algorithms towards interactive computa-
tion was argued for by Wegner in his seminal paper [66], and by Goldin and Wegner [24].
Wegner [66] claims that interaction machines are more powerful than standard Turing ma-
chines. A theory of interaction was initiated by Van Leeuwen and Wiedermann [60] and
further developed in [63]. Van Leeuwen and Wiedermann [60] suggest that interaction alone
does not lead to super-Turing computing power, but rather “leads to a generalization of
standard computability theory to the case of infinite computations” [68, p. 63]. The aspect
of non-uniform evolution draws from non-uniform complexity theory, which has been stud-
ied, among others, by Karp and Lipton [31]. The combination of interaction, non-uniform
evolution, and infinity of operation, and the evolving interactive paradigm, was previously
considered by Van Leeuwen and Wiedermann [61, 62] in a different context. The complexity
of evolving systems is studied by Verbaan [64].

Van Leeuwen and Wiedermann’s claim that hypercomputational power can emerge in
artificial living systems involves three notions: hypercomputation, artificial life, and emer-
gence. Each of these three notions is studied extensively independently of the other notions.
The term ‘hypercomputation’ is introduced by Copeland and Proudfoot in [18]. Examples
of theoretical models claimed to possess hypercomputational power, and related to Van
Leeuwen and Wiedermann’s models, include Turing’s [57] o-machines, although the claim
was by Copeland [16], infinite time Turing machines by Hamkins and Lewis [25], and asyn-
chronous networks of Turing machines by Copeland and Sylvan [19]. An assessment of the
resources used by a selection of hypercomputational models from the literature, their physi-
cal realisability, exploitability and relative power is made by Ord [42]. Hypercomputation is
a controversial subject, which has passionate proponents, as well as opponents. The physi-
cal realisability and exploitability of hypercomputation are arguably its most controversial
aspects. Stannett [53], among others, argues that hypercomputation is not in principle im-
possible, and that irrespective of its physical possibility, it is a more insightful model of
mathematical, physical, and biological processes than classical computation. For Davis [22],
on the other hand, the implausibility of exploitable hypercomputation is reason to argue
that there is no such subject as hypercomputation.

Artificial living systems are studied in the field of ALife, which encompasses a very
broad and diverse range of research efforts. Artificial living systems and research efforts
in the literature include cellular automata, originally due to Von Neumann [65], genetic
algorithms (see for example Holland [28]), and biologically inspired robots (see for example
Brooks [8]). However, this list is far from an exhaustive one. An extensive study of cellular
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automaton behaviour, and the relation with computability theory is carried out by Wolfram
[72], Langton [35] and Cook [11], among others.

The third and final component of Van Leeuwen and Wiedermann’s claim is emergence.
Emergence has first been comprehensively worked out by a number of British scientists,
nowadays often called ‘British emergentists’ [41]. These British emergentists include Mill
[38], Broad [7], Morgan [40], and Alexander [1]. In recent years, the term ‘emergence’ is
being used in a variety of contexts, while according to Cooper, it has “generated more
questions than answers, and more excitement than clarity” [13, p. 194]. Humphreys [30]
has made a twofold taxonomy of existing approaches to emergence: the relational taxonomy
and the temporal taxonomy. Bedau [3] has formulated a notion of weak emergence, which
is especially relevant to ALife.

Although the three notions involved in Van Leeuwen and Wiedermann’s claim — hyper-
computation, artificial life, and emergence — are widely studied, they do not have generally
accepted definitions or theories. The main goal of this thesis is to review Van Leeuwen
and Wiedermann’s claim against a more detailed discussion of each of its components. The
aim of this review is to see whether Van Leeuwen and Wiedermann’s claim is indeed ten-
able. More specifically, we first discuss whether Van Leeuwen and Wiedermann’s models
can indeed be considered artificial living systems. Second, we discuss whether Van Leeuwen
and Wiedermann’s models are indeed capable of hypercomputation. Third, we examine
whether Van Leeuwen and Wiedermann’s results are indeed a case of emergence. Although
Van Leeuwen and Wiedermann’s approach is a computability-theoretic one, their claim lies
on the intersection between computability theory, ALife, philosophy, and physics. In our
discussion, we therefore take an interdisciplinary approach.

The outline of this thesis is as follows. First, we give an exposition of Van Leeuwen
and Wiedermann’s argument for their claim in Chapter 2. In Chapter 3, we discuss the
notion of hypercomputation. In Chapter 4, we discuss artificial living systems and the field
of ALife. In Chapter 5, we discuss a number of notions of emergence. In Chapter 6, we
discuss Van Leeuwen and Wiedermann’s claim against the background of our discussion of
hypercomputation, ALife, and emergence.
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Chapter 2

Emergent hypercomputational power in AL

systems

In this chapter, we give an exposition of Van Leeuwen and Wiedermann’s [68, 69] formali-
sation of their claim that hypercomputational power can emerge in artificial living systems.
First, we introduce two models of artificial living systems presented by the authors: lin-
eages of cognitive transducers and communities of active cognitive transducers. Second,
we introduce the interactive Turing machine with advice, which Van Leeuwen and Wie-
dermann use for benchmarking the computational power of their models of artificial living
systems. Finally, we show how Van Leeuwen and Wiedermann prove that the computational
power of lineages of cognitive transducers, and communities of active cognitive transducers
is equal to that of interactive Turing machines with advice, which shows that they possess
hypercomputational power.

2.1 Models of artificial living systems

In this section, we introduce two models of artificial living systems presented by Van Leeuwen
and Wiedermann [68, 69]: lineages of cognitive transducers, which model evolution of or-
ganisms, and communities of active cognitive transducers, which model conglomerates of
organisms. First, we introduce Van Leeuwen and Wiedermann’s model of an individual or-
ganism: the cognitive transducer, which is the building block for lineages and communities.

Cognitive transducers

In [68, 69], Van Leeuwen and Wiedermann present their model of an individual living or-
ganism: the cognitive transducer. The authors seem to be aware that, when modelling a
physical information processing system in order to investigate its computational power, it
is important that the model neither overestimates, nor underestimates the computational
power of the system at hand. Basically, a cognitive transducer is a finite discrete-state ma-
chine. The authors’ choice for finite discrete-state machines is based on their assumption
that living organisms can only enter into a finite number of different internal configurations.
Since living organisms both receive input and produce output, cognitive transducers are
finite state machines extended with the ability to produce output based on the input and
their internal state.

Van Leeuwen and Wiedermann point out that the computational scenario of cognitive
transducers has to reflect the scenario under which living organisms process information.
This scenario, they argue, is fundamentally different from the computational scenario of

5



6 2.1. MODELS OF ARTIFICIAL LIVING SYSTEMS

standard finite state machines.
Van Leeuwen and Wiedermann point out that standard finite state machines perform

their computation on a finite input string, which is fixed on their input tape prior to the start
of the computation. This input string is not allowed to be changed during computation, not
even the not-yet read parts of it. Moreover, the computation of standard finite state machines
terminates after a finite number of steps. The machines are not able to transfer information
they computed from one computation to the next. Every time a new computation is started,
the machine starts from the same initial state. This prevents standard finite state machines
from learning, because given the same input, the machine will always compute the same
output.

Living organisms, on the other hand, receive their inputs from their environment con-
stantly, and in an on-line manner, via their sensory systems. These sensory systems can
consist of multiple channels, depending on the organism’s complexity. Inputs thus ‘stream’
into organisms in a parallel way, and the organism also processes them in a parallel manner.
The computation performed by organisms does not terminate in principle. The computa-
tion only terminates when the organism dies. An organism’s output does not only depend
on the current input, but on the history of inputs up to now. Since organisms can modify
their environment or communicate with other systems in their environment, the inputs they
receive may depend on their own previous outputs, as well as the reactions of other organ-
isms. This information processing scenario, which the authors [68, p. 58] call ‘perpetual
interactive learning’, Van Leeuwen and Wiedermann state, leads to an organism’s potential
to learn from experience.

Taking this information processing scenario into account, Van Leeuwen and Wieder-
mann present the interactive finite state transducer as paradigmatic example of a cognitive
transducer. The interactive finite state transducer is a generalisation of a Mealy machine,
equipped with input and output ports rather than tapes and tape heads, which allow the
transducer to interact with its environment. Symbols arrive one at a time at the input port,
and are produced by the transducer at the output port in a similar way. Based on this
description, we define interactive finite state transducers as follows.

Definition 2.1.1 (Interactive finite state transducer). An interactive finite state transducer
(IFT) with k input ports and l output ports is a quintuple 〈Q,Σ,Γ, q0, δ〉, where

• Q is a finite set of states;

• Σ is a non-empty finite input alphabet;

• Γ is a non-empty finite output alphabet;

• q0 ∈ Q is the initial state;

• δ : Q× (Σ ∪ {λ})k → Q× (Γ ∪ {λ})l is a partial transition function.

Throughout their papers, Van Leeuwen and Wiedermann interpret λ as a fixed symbol
meaning, when appearing at an input or output port, that there is actually no meaningful
symbol at the respective port.

Van Leeuwen and Wiedermann note that, instead of Mealy machines, other finite-state
devices, such as discrete neural networks, can lay at the basis of a cognitive transducer. This
motivates the following definition of the class of cognitive transducers [69, p. 208].
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Definition 2.1.2 (Cognitive transducer). The class CT of cognitive transducers is induc-
tively defined as the minimal class that satisfies the following rules:

1. interactive finite transducers (IFTs) are in CT , and

2. any device computationally equivalent to IFTs is in CT .

Throughout our discussion, we use the interactive finite state transducer as the paradig-
matic example of cognitive transducers. Based on [60], we describe an interactive compu-
tation of a cognitive transducer and its environment as a translation of input streams from
the environment to output streams, which are the cognitive transducer’s response to the
input. Since cognitive transducers operate infinitely, at least in principle, they translate
infinite input strings into infinite output strings. In what follows, we refer to such infi-
nite strings as ‘streams’, denote the set of streams over alphabet Σ by Σω, and denote a
stream x ∈ Σω by x1x2 . . . . Hence, a cognitive transducer realises a partial translation
Φk,l : ((Σ ∪ {λ})k)ω → ((Γ ∪ {λ})l)ω. Since cognitive transducers are basically finite state
machines, the translations realisable by the class of cognitive transducers are called ‘regular
translations’ [68].

Definition 2.1.3 (Regular translation). A regular translation is a translation Φk,l : ((Σ ∪
{λ})k)ω → ((Γ ∪ {λ})l)ω realised by a cognitive transducer.

Without loss of generality, we assume that k = l = 1 in what follows.

Because we need it later on, we discuss here how each cognitive transducer can be encoded
into a finite string in an effective way.

Definition 2.1.4 (Encoding of a cognitive transducer). Let M = 〈Q,Σ,Γ, q0, δ〉 be a cog-
nitive transducer, and let |Q| = m, |Σ| = k, and |Γ| = l. Then an encoding 〈M〉 of M is a
binary string containing

• a list of states, with each qi ∈ Q represented by the number i in binary. The total list
is described by a string of length m logm;

• a list of tuples 〈q, σ, q′, γ〉 ∈ δ, with states q, q′ ∈ Q, symbol σ ∈ Σ, and symbol γ ∈ Γ.
There are l(m + 1)km possible transition tuples, each described by a string of length
2 logm+ log k + log l;

• a list containing the initial state, represented by a string of length logm.

Active cognitive transducers

Van Leeuwen and Wiedermann extend cognitive transducers to incorporate the ability of
living organisms to “influence and modify the environment in which they operate” [69, p.
211]. Thereto, the authors provide cognitive transducers with the ability to move around in
their potentially infinite environment, for example a two-way infinite tape, and mark cells
in that environment with symbols from a finite marking alphabet. Placed marks can be
read from the environment at a later time by the transducer. This extension yields active
cognitive transducers, also called ‘agents’ by the authors.
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Van Leeuwen and Wiedermann [69, p. 211] explain that “[m]odels of finite transducers
with a two-way input tape which can mark cells on their input tape have been studied
for years in automata theory” and that “[t]he machines are computationally provably more
powerful than their non-marking counterparts”. However, they do not explain how these
marking finite transducers are extended to their interactive versions. Still, Van Leeuwen and
Wiedermann [69, p. 211] state that “[a]ctive cognitive transducers have a computational
power equivalent to interactive Turing machines”. We introduce interactive Turing machines
in Section 2.2.

We give the following formal definition of active cognitive transducers.

Definition 2.1.5 (Active cognitive transducer). An active cognitive transducer is a 6-tuple
〈Q,Σ,Γ,Π, q0, δ〉, where

• Q is finite set of states;

• Σ is a non-empty finite input alphabet;

• Γ is a non-empty finite output alphabet;

• Π is a non-empty finite marking alphabet;

• q0 ∈ Q is the initial state;

• δ : Q × (Π ∪ {ε}) × (Σ ∪ {λ}) → Q × (Π ∪ {ε}) × {L,R, none}k × (Γ ∪ {λ}) is a
partial transition function, where ε is the empty symbol, and k ∈ N the dimension of
movement.

If the active cognitive transducer is non-deterministic, δ is a transition relation rather
than a function, and δ ⊆ Q×(Π∪{ε})×(Σ∪{λ})×Q×(Π∪{ε})×{L,R, none}k×(Γ∪{λ}).

Although an active cognitive transducer is not equipped with a work tape, like for ex-
ample a Turing machine, it can use its environment as a kind of work tape. Rather than
moving a tape head over the work tape, the active cognitive transducer moves around in the
environment itself. It is thus necessary to define an environment.

Definition 2.1.6 (Grid environment). A grid environment is a tuple 〈Π,L〉, where

• Π is a non-empty finite environment alphabet;

• L = Zk is a k-dimensional grid of cells, each containing a symbol of Π ∪ {ε}, where ε
denotes the empty symbol.

Now, we can define a configuration of an active cognitive transducer.

Definition 2.1.7 (Active cognitive transducer configuration). Let M = 〈Q,Σ,Γ,Π, q0, δ〉
be an active cognitive transducer, and E = {Π,L} its k-dimensional grid environment. A
configuration of M is a tuple c = 〈q, p〉, where

• q ∈ Q is the current state of M ;

• p = 〈p1, ..., pk〉 ∈ Zk is the current location of M in E.
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Remark 2.1.1. There seem to be two different notions of ‘environment’ in Van Leeuwen and
Wiedermann’s [69] article. The first notion refers to the environment with which an (active)
cognitive transducer interacts: the interaction partner. To this notion, the environment
seems to be an information processing entity itself, which “can behave like an adversary and
send signals in any arbitrary, unpredictable and ‘non-algorithmic’ way” [60, p. 102]. The
second notion of environment seems to refer to an external memory, possibly with private
as well as public parts. This notion of environment is modelled by our grid environment.
One could think of an active cognitive transducer sharing the public parts of a grid environ-
ment with its interaction partners. In this way, the grid environment can facilitate indirect
communication between the active cognitive transducer and its interaction partners.

Lineages

With a model of individual living organisms in place, Van Leeuwen and Wiedermann [69]
use lineages of cognitive transducers as a means to model the evolution of living organisms.
Lineages of interactive finite automata were introduced by Van Leeuwen and Wiedermann in
an earlier article [62] in the context of presenting a new model of computation that captures
the features of present-day computing. The following definition is from [69, p. 209]. Let U
be some universe of possible states.

Definition 2.1.8 (Lineage of cognitive transducers). Let A = {A1, A2, ...} be a lineage
of IFTs [cognitive transducers] over Σ, and let Qi ⊆ U be the set of states of Ai. Let
G = {G1, G2, ...} be a lineage of non-empty finite sets of U such that Gi ⊂ Qi and Gi ⊆ Gi+1,
for i ≥ 1. Then A with G is called a lineage of IFTs [cognitive transducers].

In what follows, we will often omit G from explicit mention. Moreover, we will often
abbreviate ‘lineages of cognitive transducers’ and just speak of ‘lineages’.

local state
global state

q0start q1

q2 q3

,
q4

q3start

q5

q6

,...,
start

q6start

q3start

,...

Figure 2.1: Illustration of a lineage A = {A1, A2, ..., An, ...} with global states G =
{q3, q6, ...}.

Given an input stream x ∈ (Σ ∪ {λ})ω, a lineage A computes as follows. Initially, A1 is
the controlling cognitive transducer. In general, if Ai is the controlling cognitive transducer
it performs computation using its local states, i.e. Qi − Gi, until it reaches a global state
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g ∈ Gi. It then passes on control to cognitive transducer Ai+1, who starts in state g ∈ Gi+1,
and continues reading the next symbol of the input stream.

The property of evolution is modelled by the fact that the next cognitive transducer in
the lineage has a possibly richer set of internal configurations than the previous one. With
passing over the control from one ‘generation’ i to the next, information assembled by the
previous generations is preserved, since Ai+1 starts in the same state as Mi stopped.

Instead of considering lineages of cognitive transducers, and model evolution in terms of
generations of automata, Van Leeuwen and Wiedermann note that one can also consider the
evolution of individual cognitive transducers. The cognitive transducer is then defined so
that it simulates Ai if and only if Ai ∈ A is the currently controlling cognitive transducer. In
parallel with lineages of cognitive transducers, in general, Ai remains active until it reaches
a global state g ∈ Gi. Then, Ai+1 becomes the controlling machine, and the cognitive
transducer proceeds by simulating Ai+1 from the state it is currently in.

It is important to note that Van Leeuwen and Wiedermann assume that there need not to
be an algorithmic way to compute the description of the cognitive transducer Ai in a lineage
given index i, or given the description of the previous elements in the lineage. Enumerating
all members of the lineage may thus be the only way to describe the lineage. However, Van
Leeuwen [58] adds that this is a worst case scenario. He also points to the possibility to
require the lineage to be bounded, for example by a polynomial function, to make it a more
plausible model for evolution. This goes beyond the scope of our thesis. For an account on
lineages of general classes of machines, as well as complexity classes for lineages of machines,
we refer to [64].

Van Leeuwen and Wiedermann point out that, although lineages are infinite objects, at
each time t, only one member of a lineage — a finite object — is actively engaged in the
computation.

Communities

Having introduced cognitive transducers and active cognitive transducers as a model for
individual living organisms, and lineages as a means to model their evolution or adaptation,
Van Leeuwen and Wiedermann [68, p. 61] state that “[u]ltimately, active cognitive transduc-
ers are of interest only in large conglomerates, interacting like ‘agents’ of individually limited
powers.” Finally, the authors present their model for artificial living systems: communities
of active cognitive transducers.

Van Leeuwen and Wiedermann [68, 69] define a community of active cognitive transduc-
ers as a set of active cognitive transducers, which varies over time, but is at each time finite.
The active cognitive transducers in the community share the same environment, in which
they can move around, as well as write and read symbols from a finite alphabet. In this
way, the active cognitive transducers in the community can communicate with each other.
Van Leeuwen and Wiedermann suggest that other mechanisms for communication, such as
an Internet-like infrastructure, mobile phones, or snail-mail, can be incorporated into the
model as well. Depending on the chosen mechanism, the active cognitive transducers need
to be extended, for example with a special message port, to facilitate communication using
the mechanism. However, the authors do not explicitly incorporate a specific mechanism for
communication in their model. In what follows, we assume the agents communicate by writ-
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ing messages in the environment, such that they can be read by other agents. Van Leeuwen
and Wiedermann assume that communication between active cognitive transducers in the
community may proceed unpredictably. The authors write that “[o]ne can see it also as if
the agents move in their environment and encounter each other randomly, unpredictably, or
intentionally, and exchange messages” [68, p. 61]. Van Leeuwen [58] points out that this
unpredictability can be the result of for example asynchrony in the community, assuming
that each agent has its own internal clock, or non-determinism in the agents’ transition
function.

Based on the informal description in [68, 69], we formalise the definition of communities
of active cognitive transducers as follows.

Definition 2.1.9 (Community of active cognitive transducers). A community of active
cognitive transducers is a triple G = 〈β,∆, E〉, where

• β : N → 2N×Σ∗ is the description function. The description function assigns to each
time t ≥ 0 the finite set β(t) = {〈i, 〈Mi〉〉 | active cognitive transducer Mi with id i and
encoding 〈Mi〉 is in the community at time t}. Thus, at each time t, community G has
|β(t)| members, i.e. the active cognitive transducers in the set {Mi | 〈i, 〈Mi〉〉 ∈ β(t)};

• ∆ : N → 2N×Σ∗ is the timing function. The timing function assigns to each time
t ≥ 0 a finite subset of β(t), consisting of the active cognitive transducers that make a
transition at time t;

• E is a grid environment.

Remark 2.1.2. Note the emphasis on asynchrony in our definition of a community. This
emphasis is absent in Van Leeuwen and Wiedermann’s [68, 69] informal description. We de-
fine asynchronous communities of active cognitive transducers to take the unpredictability
of agent communication into account. Note that synchronous communities are a special in-
stance of asynchronous communities, since the former are characterised by a timing function
such that ∀t ∈ N(∆(t) = β(t)).

Next, we define the description and the configuration of a community of active cognitive
transducers.

Definition 2.1.10 (Description of a community of active cognitive transducers). Let G =
〈β,∆, E〉 be a community of active cognitive transducers. The description of the G at time
t is given by β(t).

Definition 2.1.11 (Configuration of a community of active cognitive transducers). Let
G = 〈β,∆, E〉 be a community of active cognitive transducers. A configuration of G is a
tuple c = 〈C,X〉, where

• C is the set of configurations of the active cognitive transducers currently in the com-
munity

• X is a k-dimensional array of symbols, corresponding to the current contents of the
k-dimensional grid environment E.

According to Van Leeuwen and Wiedermann’s description, the input and output ports
of all active cognitive transducers in the community together represent the input and output
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ports of the community as a whole. Since the size of the community varies over time, so does
the number of input and output ports of the community. A community of active cognitive
transducers therefore realises a translation over streams of symbol ‘packages’ of varying size.
The input stream is denoted by

x = {(xi1,t, xi2,t, ..., xik,t)}∞t=0, with

{〈i1, 〈Mi1〉〉, 〈i2, 〈Mi2〉〉, ..., 〈ik, 〈Mik〉〉} = β(t).

The same holds for the community’s output stream, which is denoted by

y = {(yi1,t, yi2,t, ..., yik,t)}∞t=0.

It is important to note that Van Leeuwen and Wiedermann do not require β to be Turing-
computable. In fact, they assume that there need not be an effective way to compute the
set of id’s and encodings of the members of a community — the description of a community
— at a given time t. If the description function is indeed not Turing-computable, the only
way to have access to the description of the community at time t is to let the community
‘evolve’ over time, up to time t, and observe the community. On the other hand, this is a
worst case scenario. It could still be that β is indeed Turing-computable. The same holds
for the timing function ∆.

Moreover, Van Leeuwen and Wiedermann do not require the function β to be bounded
in some way. Therefore, there is no restriction on the growth of the size of the community
with the processing time.

2.2 Interactive Turing machines with advice

In order to investigate the computational power of lineages of cognitive transducers and
communities of active cognitive transducers, they need to be compared to another model,
one of which the computational power is known. Van Leeuwen and Wiedermann [68, 69]
use the interactive Turing machine with advice as their model for benchmarking. In this
section, we introduce the interactive Turing machine with advice.

Interactive Turing machines

First, we discuss the interactive Turing machine. The computational power of interaction
machines was studied by Van Leeuwen and Wiedermann in [60]. This study was motivated
by Wegner [66, p. 83], who suggested the extension of Turing machines “by addition of
input and output actions that support dynamic interaction with an external environment”.

An interactive Turing machine has an input port, an output port and k work tapes. The
machine is designed in such a way, that at each time t it requires a symbol at its input
port. Analogously, at each time the machine produces a symbol at its output port. In
the meanwhile, the machine can perform internal computation on the input it has received
up to then. Thereto, the machine enters an internal phase, in which the machine only
enters so called ‘internal states’. During such an internal phase, the machine can not receive
meaningful input at its input port, and does not produce meaningful output. On the other
hand, when the machine is in an ‘external state’, it is open for communication with the
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environment. To facilitate the constant reception and production of symbols at the input
and output port respectively, the symbol λ is fixed, meaning, when appearing at a port,
that there is currently no actual symbol at the respective port. The following definitions are
due to Verbaan [64]. We slightly modified the definitions for the sake of exposition.

Definition 2.2.1 (Interactive Turing machine (ITM)). An interactive Turing machine with
k work tapes is a 6-tuple 〈Q,Σ,Γ, I, q0, δ〉, where

• Q is a finite set of states;

• Σ is a non-empty finite input alphabet;

• Γ is a non-empty finite output alphabet;

• I ⊂ Q is a set of internal states;

• q0 ∈ (Q− I) is the initial state;

• δ : Q × Σk × (Σ ∪ {λ}) → Q × Σk × {L,R, none}k × (Γ ∪ {λ}) is a partial transition
function.

Definition 2.2.2 (ITM configuration). Let M = 〈Q,Σ,Γ, I, q0, δ〉 be an ITM with k work
tapes. A configuration of M is a tuple 〈q, w1, ..., wk, i1, ...ik〉, where

• q ∈ Q;

• wj ∈ Σ∗, for all 1 ≤ j ≤ k is the content of work tape j;

• ij ∈ Z≥0, and 1 ≤ ij ≤ |wj + 1|, for all 1 ≤ j ≤ k is the position of the tape head on
work tape j.

Definition 2.2.3 (Internal/external configuration). Let c = 〈q, w1, ..., wk, i1, ...ik〉 be a con-
figuration. Then

c is

{
an internal configuration if q ∈ I
an external configuration if q ∈ (Q− I).

Verbaan [64, p. 61] defines an internal phase as follows.

Definition 2.2.4 (Internal phase). An internal phase is a maximal part of a computation
that consists of only consecutive internal configurations.

Van Leeuwen and Wiedermann, as well as Verbaan, require the interactive Turing ma-
chine to produce a non-λ symbol after receiving a non-λ symbol from the environment within
finite time. This means that internal phases are required to be finite. Van Leeuwen and
Wiedermann [69, p. 209] refer to this condition as “interactiveness” or the “finite delay
condition”.

Although technically ITM’s receive input streams from (Σ ∪ {λ})ω, the λ’s are just a
placeholder for ‘nothing’, and are only interesting in the operational sense. When looking
at the translations realised by interactive Turing machines, they are of no importance.
Therefore, Verbaan [64, p. 60] proposes to filter the streams in the following way.
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Definition 2.2.5 (Filtered streams). Let x be a stream in (Σ∪ {λ})ω. We can filter x to a
stream x′ in Σω by replacing all substrings of the form λ∗ in x by empty strings. The same
can be done with streams in (Γ ∪ {λ})ω.

Yet, from an operational point of view, a given machine M can not process just any
input stream x that filters to x′. This is because the machine can not accept a symbol
other than λ at the input port during internal computation. Whenever the read prefix of
the input stream causes the machine to go into an internal state, the input stream should
be interleaved with λ’s for the duration of M ’s internal computation phase. Verbaan [64, p.
62] therefore introduces the notion of ‘valid input’.

Definition 2.2.6 (Valid input). We say that a string x ∈ Σω is a valid input to an ITM
M if M can process a string x′ that filters to x.

Now, Verbaan [64] defines what it is for a translation to be realisable by an interactive
Turing machine, or ‘interactively realisable’.

Definition 2.2.7 (Interactive realisability). Let M be an ITM. We define the partial trans-
lation ΦM : Σω → Γω by letting

ΦM (x) =

{
The output of M on input x if x is a valid input to M

undefined otherwise.

A translation Φ is interactively realisable if there exists an ITM M such that Φ = ΦM .

For an account on the properties and complexity of interactively realisable translations,
which goes beyond the scope of this thesis, we refer the reader to [64].

Advice

Having introduced the interactive Turing machine model, we now briefly discuss the notion
of advice. The concept of advice was first introduced by Karp and Lipton in [31], and plays
an important role in non-uniform complexity theory. Non-uniform complexity classes arise
when a different algorithm is used for each input size, as opposed to uniform complexity
classes, which arise when the same algorithm is used for inputs of all sizes. A thorough
account on non-uniform complexity can be found in [2]. A natural model of non-uniform
computation is the Boolean circuit, but the Turing machine, basically a uniform model
of computation, can be made non-uniform as well by providing it with an advice. Like the
more general oracles [57], advice functions provide external, possibly non-Turing-computable
information to the machine. Unlike oracles, whose information may depend on the concrete
input, the value of an advice function only depends on the length of the machine’s input.

Definition 2.2.8 (Advice function). An advice function is a total function α : N → Ω∗,
where Ω is a non-empty finite advice alphabet.

We illustrate the use of advice by an example. This example shows how every standard
Turing machine can be transformed into a decider, a machine that halts on all inputs, by
feeding it an advice function, whose value’s length is exactly the length of the input.
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Example 2.2.1. Let M be a Turing machine with finite input alphabet Σ. Without loss
of generality, we assume that Σ = {0, 1} throughout this example. For every n ∈ N, we
construct the advice value α(n) as follows. Let w1, w2, ..., w2n be an enumeration of all
strings over Σ of length n. For each string wi in the enumeration, mark the string if M
halts on wi, and if so, note down the number of computational steps it took the machine to
halt on wi. Let this number be denoted by swi . Let wn,max denote the string of length n
on which the machine M halts, but in a maximum number of steps. Let α(n) = wn,max.

Given an input string x, let M perform its computation as follows. First, M consults its
advice for the value α(|x|) = w|x|,max. Then, M performs its computation on x and w|x|,max
simultaneously. If the machine halts on x within the time it takes to halt on w|x|,max, output
1. If not, we know that M does not halt on x, otherwise sx would have been greater than
sw|x|,max , which is a contradiction. Therefore, in this case, output 0. Note that on all inputs
x′ in Σ∗, M outputs either 0 or 1 within sw|x′|,max computational steps.

Figure 2.2: Advice function turning Turing machine M into a decider.

Interactive Turing machines with advice

Having discussed the interactive Turing machine and the concept of advice separately, we
now discuss a model which combines the two: the interactive Turing machine with advice.
The interactive Turing machine with advice is an interactive Turing machine, which, at any
time t > 0 is allowed to consult its advice for values of at most t. Thereto, the interactive
Turing machine with advice uses a special read-only tape, called the advice tape. On
receiving the n-th input symbol at the input port, the n-th value of the advice function is



16 2.2. INTERACTIVE TURING MACHINES WITH ADVICE

automatically appended to the end of the advice tape in one step. The advice tape head
can remain where it is during the append operation. The subsequent advice values on the
advice tape are separated by a special marker symbol.

In [68, 69] Van Leeuwen and Wiedermann do not provide a formal definition of inter-
active Turing machines with advice. We present our definition here, based on the informal
descriptions provided by the authors.

Definition 2.2.9 (Interactive Turing machine with advice (ITM/A)). An interactive Turing
machine with advice and k work tapes is a 6-tuple M = 〈Q,Σ,Γ,Ω, q0, δ〉, where

• Q is a finite set of states;

• Σ is a non-empty finite input alphabet;

• Γ is a non-empty finite output alphabet;

• Ω is a non-empty finite advice alphabet;

• I ⊂ Q is a set of internal states;

• q0 ∈ (Q− I) is the initial state;

• δ : Q×Σk × (Σ∪ {λ})×Ω→ Q×Σk × {L,R, none}k × {L,R, none} × (Γ∪ {λ}) is a
partial transition function.

Definition 2.2.10 (ITM/A configuration). Let M = 〈Q,Σ,Γ,Ω, q0, δ〉 be an ITM/A with
k work tapes. A configuration of M is a tuple 〈q, w1, ..., wk, i1, ..., ik, a,m〉, where

• q ∈ Q;

• wj ∈ Σ∗, for all 1 ≤ j ≤ is the content of work tape j;

• ij ∈ Z≥0, and 1 ≤ ij ≤ |wj + 1|, for all 1 ≤ j ≤ k is the position of the tape head on
work tape j;

• a ∈ Ω∗ is the content of the advice tape;

• m ∈ Z≥0 is the position of the advice tape head.

Definition 2.2.3 of internal and external configurations and internal phases for ITM’s also
applies to ITM/A’s, as does Definition 2.2.6 of valid input.

Having defined interactive Turing machines with advice, we can now define what it means
to be computable by an ITM/A. The following definition is a slightly modified version of
Verbaan’s [64].

Definition 2.2.11 (Non-uniform realisability). Let M be an ITM/A with advice function
α. We define the partial translation ΦM :α : Σω → Γω by letting

ΦM :α(x) =

{
The output of M on input x using the advice α(|x|) if x is a valid input to M

undefined otherwise.

A translation Φ is non-uniformly realisable if there exists an ITM/A M with an advice
function α such that Φ = ΦM :α.

Van Leeuwen and Wiedermann [69, p. 210] state that interactive Turing machines with
advice are “provably more powerful than ITM’s without advice”. A proof of this result can
be found in [62].
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2.3 Computational power

Van Leeuwen and Wiedermann [68, 69] formalise their claim that a hypercomputational
potential can emerge in artificial living systems by showing that the computational power of
lineages of cognitive transducers and communities of active cognitive transducers equals the
computational power of interactive Turing machines with advice, which are in turn more
powerful than standard interactive Turing machines.

Lineages

First, we discuss the computational power of lineages of cognitive transducers. In [69, p.
210], Van Leeuwen and Wiedermann present the following theorem:

Theorem 2.3.1. A transduction φ : Σω → Σω is realised by a lineage of IFTs [lineage of
cognitive transducers] if and only if it can be realized by an interactive Turing machine with
advice.

The authors do not prove the theorem in the article, but refer to [62] for a sketch of
proof. This proof is very helpful in getting an insight in the idea behind the simulation of
ITM/A’s by lineages of cognitive transducers, and vice versa. To get a better understanding
of the simulation, we present a more detailed version of proof here. To that end, we present
and prove two lemma’s, that together form the proof for Theorem 2.3.1.

Lemma 2.3.1. Let Φ : Σω → Σω be a translation realised by a lineage of cognitive trans-
ducers. Then Φ can be realised by an interactive Turing machine with advice.

Our proof of lemma 2.3.1 is based on Verbaan [64].

Proof. Let Φ be realised by lineage A = {A1, A2, ...}, where each cognitive transducer Ai =
〈Qi,Σi,Γi, q0i , δi〉. We construct an ITM/AM and an advice function α, such thatM with
α simulates the computation of A, and hence ΦM :α = Φ. Besides an advice tape, M has
two work tapes, one of which is the so called ‘control tape’. Let α be such that α(k) is the
encoding of Ak, for all k ≥ 0.

Suppose that after processing prefix x1x2...xn of the input stream x, the controlling cog-
nitive transducer in A is Ak, and this transducer is in state q ∈ Qk (see 2.3). After processing
the first n symbols of the input,M’s advice tape contains the string α(1)#α(2)#...#α(k)#...
#α(n). The head ofM’s advice tape is at the beginning of the encoding of q in the encoding
of Ak (see 2.3).

On receiving input symbol xn+1, M continues its computation as follows. First, if the
control tape contains a 1, this indicates that q ∈ Gk and Ak passes over its control to Ak+1,
who continues computing from state q ∈ Gk+1. In this case, M copies the description of
q to its work tape, and moves the head of its advice tape to the description of cognitive
transducer Ak+1. Using its work tape,M locates the description of q in 〈Ak+1〉. Otherwise,
if the control tape does not contain a 1, indicating that q ∈ Qk −Gk, this step is skipped.

Then, M looks up the encoding of the transition tuple 〈q, xn+1, q
′, yn+1〉 corresponding

to state q and input symbol xn+1. It copies the destination state and the output symbol
to the work tape. M moves its advice tape head to the first symbol of the description of
destination state q′ in the description of the current automaton. If this state is a global
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A = A1 A2
. . . Ak . . .

q

xn

yn

(a) A after processing the n-th input symbol, with Ak being the con-
trolling cognitive automaton.

M

xn

yn . . . work tape

. . . control tape1

〈A1〉 . . . 〈Ak〉 . . . 〈An〉 . . . advice tape

. . . . . . 〈q〉 . . . . . .

〈Ak〉

(b) M after processing the n-th input symbol, with 1 on the control tape.

Figure 2.3: Lineage A and ITM/A M after processing the n-th input symbol.

state, i.e. q′ ∈ Gk+1, then M writes a 1 on its control tape. Otherwise, the content on the
control tape is erased. Finally,M produces the output symbol yn+1 at the output port.

Lemma 2.3.2. Let Φ : Σω → Σω be a translation realised by an interactive Turing machine
with advice. Then Φ can be realised by a lineage of cognitive transducers.

Our proof of lemma 2.3.2 is based on Verbaan [64], whose proof contains complexity
measures, which are not essential for the lemma we want to prove.

Proof. Let Φ be realised by an ITM/A M with an advice function α. We construct a
lineage of cognitive transducers A = {A1, A2, ...}, such that A simulates the computation of
M step by step. Let each Ak in A be such that it simulates M on input prefixes of length
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k. Thereto, Ak has all possible external configurations of M on an input prefix of length k
encoded into its states. Each state in Qk is a global state.

Suppose that after processing the (n − 1)-th non-λ input symbol, ITM/A M is in ex-
ternal configuration cn = 〈q, w1, ..., wk, i1, ..., ik〉, with q ∈ (Q − I). On receiving the n-th
input symbol, the controlling cognitive transducer in A is An. It starts in state q ∈ Qn,
corresponding to M’s external configuration after processing the (n − 1)-th input symbol.
On receiving the n-th input symbol,M either enters an internal phase, or makes a transition
to an external configuration directly. If M enters an internal phase, during this phase, M
requires only λ’s at its input port and produces only λ’s at its output port. An internal
phase is not simulated by An. On the other hand, λ’s do not contribute to the computation,
and can be safely ignored. Since internal phases are assumed to be finite, eventuallyM will
reach an external configuration. The whole phase between the two external configurations is
simulated by An in a single transition. After making this transition An passes over control
to An+1.

Communities

Second, we discuss the computational power of communities of active cognitive transducers.
In [69, p. 213] Van Leeuwen and Wiedermann present the following theorem:

Theorem 2.3.2. Communities of agents [active cognitive transducers] have a computational
power equivalent to interactive Turing machines with an advice function whose values grow
at most linearly in size with the processing time.

However, the theorem remains unproven in the article. Instead, the authors refer to [61],
where they prove a similar result for the case of an internet machine. An internet machine,
which is a model by Van Leeuwen and Wiedermann [61], is quite similar to a community of
active cognitive transducers; it is a finite, but time-varying set of simpler machines. In the
case of the internet machine, these simpler machines are site machines, which Van Leeuwen
and Wiedermann [61] presented to model a personal computer, operated by a human being.
According to Van Leeuwen and Wiedermann [69], the internet machine is thus a model of
real agents communicating with each other via an Internet-like infrastructure. We adjust the
sketch of proof provided by Van Leeuwen and Wiedermann in [62] to the case of communities
of active cognitive transducers. This adjustment only works for proving the following lemma.

Lemma 2.3.3. Let Φ : (Σ|β(t)|)ω → (Σ|β(t)|)ω be a translation realised by a community of
active cognitive transducers. Then Φ can be realised by an interactive Turing machine with
advice.

Proof. Let Φ be realised by community of active cognitive transducers G = 〈β,∆, E〉. We
construct an ITM/A M and an advice function α, such that M with α simulates the
computation of G with E.

First, observe that G processes and produces streams of symbol packages of varying
size, where the size of the package xt = {(xi1,t, xi2,t, ..., xik,t)} depends on the number of
community members at time t. The ITM/A, on the other hand, can only receive and produce
one symbol at a time via its input and output port respectively. Therefore, we slightly
adjust the architecture of the simulating ITM/A, and replace the input and output port by
an infinite one-way read-only input and output tape. We assume that the original stream
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of symbol packages {(xi1,t, xi2,t, ..., xik,t)}ωt=0 to G is translated into a stream processable
by the adjusted ITM/A as follows. For consecutive t = 1, 2, ..., the symbol package xt =
{(xi1,t, xi2,t, ..., xik,t)} is written on the input tape in the form of a so called input ‘block’
xi1,txi2,t...xik,t. Subsequent blocks are separated by a special marking symbol #. Outputs
are written in a similar block-wise manner on the output tape.

Let the advice function α be such that α(k) = 〈β(k),∆(k)〉. For the sake of exposition,
we assumeM has two advice tapes: the description tape where the values of β are written,
and the timing tape, where the values of ∆ are written. Moreover, we assume M has two
work tapes: the configuration tape, and the communication tape.

Suppose that after processing the first n symbol packages of the input stream, the config-
uration of the community is cn = 〈{c1, ..., ck}, X〉, where ci denotes the current configuration
of active cognitive transducer Mi in the community that that time, for each 1 ≤ i ≤ k, and
{〈i1, 〈Mi1〉〉, 〈i2, 〈Mi2〉〉, ..., 〈ik, 〈Mik〉〉} = β(n). After processing the first n input blocks,
M’s configuration tape contains for each 〈i, 〈Mi〉〉 ∈ β(n) the id i followed by the encoding
〈ci〉 of Mi’s current configuration. The communication tape contains the current contents
X of the grid environment.

On receiving input package xn+1, ITM/AM continues its computation as follows. First,
M goes into an internal state. It consults its advice for ∆. ITM/AM’s timing tape’s head
is at the beginning of the encoding of ∆(n + 1), reading the first id i1 of the cognitive
transducers in the community that are updated at this time. In general, when reading the
id ij on the advice tape, on its configuration tape M looks up the current configuration
cij = 〈qij , pij 〉 of Mij . On its communication tape, M looks up the symbol π at Mij ’s
current location pij . Next, on its description tape,M looks up the encoding of the transition
tuple 〈qi,j , π, xij ,t+1, q

′
ij
, π′ij ,m, yij 〉 in the encoding 〈Mij 〉. On its configuration tape, M

overwrites the current state qij of Mij with the new state q′ij . Then, M overwrites the cell

under its communication tape head with the symbol π′, and moves its communication tape
head according to m. Finally, M writes the output symbol yij to the output tape.

Then, M moves its timing tape’s head to the next id on the timing tape, and proceeds
with the simulation of the next active cognitive transducer, until it reads a # on the timing
tape. Finally, M enters an external state again.

The reverse comparison, which must also hold to prove Theorem 2.3.2, can not be di-
rectly deduced from the case of the Internet machine. This is because Van Leeuwen and
Wiedermann’s proof relies on the fact that a single site machine operated by a real agent,
whose role it is to supply the values of the advice function, can simulate an interactive
Turing machine with advice. This is not the case for a single active cognitive transducer.



Chapter 3

Hypercomputation

In the previous chapter, we discussed Van Leeuwen and Wiedermann’s [68, 69] claim that a
hypercomputational potential can emerge in artificial living systems. In order to understand
Van Leeuwen and Wiedermann’s claim, as well as to place their contribution in a broader
scientific debate, we discuss the notion of hypercomputation in this chapter.

According to Copeland [17, p. 251], “[h]ypercomputation is the computation of functions
or numbers that cannot be computed in the sense of Turing”. He refers to hypercomput-
ers as machines that “compute functions or numbers, or more generally solve problems or
carry out tasks, that lie beyond the reach of the standard universal Turing machine” [17, p.
251]. Stannett [52, p. 115] refers to a hypercomputational system as “one that ‘computes’
non-computable behaviours”, where the term ‘non-computable’ means ‘not computable by
Turing machines’. Stannett [52] makes a distinction between ‘non-Turing machines’ and
‘super-Turing machines’. The former refers to all those machines that “can behave in hy-
percomputational ways” [52, p. 116]. Non-Turing machines may include machines whose
computations are incomparable to those of standard Turing machines. On the other hand,
the term ‘super-Turing machines’ refers to those machines that, besides being able to behave
hypercomputationally, can also simulate standard Turing machines. Therefore, super-Turing
machines can be said to be more powerful than Turing machines.

As is clear from the above definitions, the notion of being computable by Turing machines
is central to hypercomputation. Therefore, we first discuss Turing-computability in Section
3.1. Then, we discuss a more general notion of computability — relative computability —
of which Turing-computability is a special instance. A more general notion of computability
is advocated by Copeland and Sylvan [19], who argue that all computation is performed
relative to some set of resources or primitive capabilities. An interesting question is what
resources can lead to hypercomputational power. Ord [42] has made an assessment of the re-
sources used by a selection of hypercomputational models from the literature. In Section 3.2,
we discuss the resources that are relevant to Van Leeuwen and Wiedermann’s [68, 69] mod-
els: non-Turing-computable information sources, infinite operation, interaction, evolution,
asynchrony, and infinite specification. In Section 3.3, we discuss a framework for measuring
and comparing the relative power of hypercomputational models. We extend Ord’s [42]
assessment of the power of several hypercomputational models by including Van Leeuwen
and Wiedermann’s [68, 69] models. Although the study of theoretical models of hypercom-
putation gives insight in the resources required for a model to gain hypercomputational
power, the question remains whether these hypercomputational models can be physically
realised. Another question is whether the hypercomputational power of hypercomputational
systems can be exploited for solving given non-Turing-computable problems. In Section 3.4,
we discuss physical realisability, as well as exploitability of hypercomputation.

21
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3.1 Computability

Hypercomputation is computation of functions that are not ‘computable’ by Turing ma-
chines. To understand hypercomputation, one should therefore know what it is to be, or not
to be computable by a Turing machine. The notion of ‘computability’ is a central subject
of computability theory, a branch of theoretical computer science. It is concerned with the
question of what is, and what is not computable.

Computability is often explicitly defined for functions f ⊆ Σ∗ → Σ∗ on the set of finite
strings over an arbitrary finite alphabet Σ. Computation can also be defined for functions
on other sets M , such as the set of natural numbers N. Finite words in Σ∗ are then used as
‘names’ for elements of M [67]. Each natural number n ∈ N, for example, can be represented
in unary as the string 1n, which is the string of n times the symbol 1. In computable analysis
[67], a branch of computability theory, computability is defined for functions f ⊆ Σω → Σω

on the set of infinite streams over an arbitrary finite alphabet Σ. This set Σω has continuum
cardinality, and can therefore be used as a set of names for other sets M with the same
cardinality, such as the set of real numbers R. In the examples provided in this chapter, we
assume that Σ is a fixed alphabet containing the symbols 0 and 1. Moreover, computability
can be defined on elements of Σ∗ and Σω. A finite string w ∈ Σ∗ is computable if and
only if the constant function f : {ε} → Σ∗ with f(ε) = w is computable, where varepsilon
denotes the empty string. Likewise, an infinite stream y ∈ Σω is computable if and only if
f : {ε} → Σω with f(ε) = y is computable [67].

Before being able to investigate what functions are or are not computable, one should
first have a clear and formal definition of what one intuitively understands by ‘computing’
and a ‘computation’.

Turing-computability

The most well-known notion of computation is the notion that refers to the calculation of
mathematical functions, according to an ‘algorithm’. Soare refers to this notion of compu-
tation as “a process whereby we proceed from initially given objects, called input, according
to a fixed set of rules, called a program, procedure, or algorithm, through a series of steps and
arrive at the end of those steps with a final result, called the output” [51, p. 6]. An algorithm,
according to Rogers [26, p. 1], is “a clerical (i.e. deterministic, book-keeping) procedure
which can be applied to any of a certain class of symbolic inputs and which eventually yield,
for each such input, a corresponding symbolic output”. This notion of computation is also
referred to as ‘effective computation’, ‘algorithmic computation’, or ‘mechanistic computa-
tion’. In what follows, we will use the term ‘effective computation’. It is this notion of
effective computation and effective computability which was formalised by Turing [56].

In an article published in 1937, Turing [56] introduced a conceptual model for effective
computation: the computing machine, which has come to be known as the Turing machine
(TM). The Turing machine is a formal model of an idealised human computing agent — a
‘computor’ — calculating real numbers using a pencil, a rubber, and a potentially unlimited
amount of paper, according to a set of rules, but without insight. Where the human com-
putor is supplied with paper, the Turing machine is supplied with a potentially infinite tape,
consisting of a number of squares, each capable of bearing a symbol from a finite alphabet.
The machine has a tape head, which can read the symbol in the square it is currently on.
The machine can enter a finite number of states. Its possible behaviour is at any moment
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determined by its current state and read symbol. The machine has a small repertoire of
elementary operations. First, it can erase the symbol in the observed square, or write down
a symbol in the observed square if the respective square is blank. Second, it can change
the square being observed by moving its tape head one square to the left or to the right.
Finally, the machine can change its state. Turing argues that “these operations include all
those which are used in the computation of a number” [56, p. 232]. In Turing’s definition,
“a number is computable if its decimal can be written down by a machine” [56, p. 230].

Instead of producing real numbers digit by digit, in modern definitions Turing machines
often compute functions from f ⊆: Σ∗ → Σ∗. First, we give a formal definition of a Turing
machine.

Definition 3.1.1 (Turing machine). A Turing machine (TM) is a 6-tuple 〈Q,Σ,Γ, q0, F, δ〉,
where

• Q is a finite set of states;

• Σ is a non-empty finite input alphabet;

• Γ ⊇ Σ ∪ {t} is a non-empty finite tape alphabet, where t is a special blank symbol;

• q0 ∈ Q is the initial state;

• F ⊆ Q is a set of halting states;

• δ : Q× Σ→ Q× Γ× {L,R, none} is a partial transitions function.

Prior to the start of the computation, a finite input string x ∈ Σ∗ is inscribed on the
Turing machine’s tape. The Turing machine starts in its special initial state q0. Then,
the Turing machine makes state transitions according to its transition function δ, thereby
manipulation the string on its tape. If the Turing machine reaches one of its special halting
states, the computation stops and the string on the tape is the resulting output. If the Turing
machine never halts on its input, it means it is in an infinite loop, and does not produce
an output. Then the function is not defined on that specific input. Let φT (x) denote
the output of TM T on input x. Then each Turing machine T computes a single partial
function φT . Turing identified the ‘computable’ numbers as those that can be computed by
a Turing machine. To avoid confusion, we refer to this notion of computability as ‘Turing-
computability’, and in general use the bare term ‘computable’ relative to some specific model
of computation. We rephrase Turing-computability in terms of functions.

Definition 3.1.2 (Turing-computability). A function f is Turing-computable if and only if
there exists a Turing machine T such that f = φT .

The thesis that the functions that are intuitively effectively computable are exactly the
Turing-computable functions has come to be known as Turing’s thesis.

Thesis 3.1.1 (Turing’s thesis). Every function which is intuitively effectively computable is
Turing-computable.

Turing’s thesis is a claim that can not be proven, because the underlying notion of
effective procedure remains an intuitive one. On the other hand, Turing’s thesis can be re-
garded as a kind of definition of effective computability. Actually, there exist many different
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interpretations of Turing’s thesis. Goldin and Wegner [24] point out that a common inter-
pretation of Turing’s thesis is the claim that all kinds of computation, not just the effective
computation of mathematical functions, can be accurately modelled by Turing machines.
Goldin and Wegner [24], among others, argue that this is in fact a misinterpretation of the
thesis. For now, we stress that the scope of Turing’s thesis is limited to the intuitive notion
of effective computability.

Turing showed that “although the class of computable numbers [or functions] is so great,
and in many ways similar to the class of real numbers, it is nevertheless enumerable” [56,
p. 230]. We do not go into detail on how to show this. We just assume that there exists
a total Turing-computable surjection from N to the set of Turing machines— an encoding
— such that every e ∈ N is the index of exactly one Turing machine T , or of the empty
Turing machine, and every Turing machine T is encoded into a number e ∈ N. We refer to
the encoding of a Turing machine T as 〈T 〉. Then we denote the e-th Turing-computable
function by φe, and φe = φT if e = 〈T 〉. For an example using a Gödel numbering we refer
to [12].

After introducing the Turing machine, Turing even went a step further and introduced
the universal Turing machine (UTM), which takes as input an index e of a Turing machine, as
well as an input string x and simulates the e-th TM on input x. The universal Turing machine
can be seen as the early conceptual model of general purpose computers. In the theoretical
context, the universal Turing machine can compute all Turing-computable functions.

The Turing machine has been, and still is, the paradigmatic model of effective computa-
tion. Numerous other models of effective computation have been shown equally powerful as
the Turing machine. Among these models are combinatory logic [49], the λ-calculus [9, 10],
general recursive functions [23], as well as more recent models, such as cellular automata
[65, 11]. When we speak of ‘computable by Turing machines’, we thus implicitly include
‘computable by every Turing-equivalent model of computation’. The thesis stating that
the functions that are effectively computable according to the intuitive notion are exactly
the Turing-computable, general recursive, or λ-definable functions, or those computable by
equivalent models of computation, is known as the Church-Turing thesis.

So far, we have only discussed the Turing machine as a model positively identifying those
functions that are effectively computable. Interestingly, Turing [56] used his Turing machine
model to show that there exist functions that are not effectively computable. Actually,
since there exist uncountably many functions from Σ∗ to Σ∗ and only countably many of
these functions are Turing-computable, this leaves uncountably many functions non-Turing-
computable. A famous example of such a non-Turing-computable function is the halting
function, which is defined as follows.

Definition 3.1.3 (Halting function). The halting function h is the function given by

h(e, x) =

{
1 if φe(x) is defined (alternatively: TM with index e halts on input x)
0 otherwise.

Closely related to the halting function is the halting set.

Definition 3.1.4 (Halting set). The halting set K0 is defined as

K0 = {〈e, x〉 | the e-th Turing machine halts on input x}.
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Theorem 3.1.1. The halting function is not Turing-computable.

Proof. Suppose that the halting function h is Turing-computable. In other words, suppose
there exists a Turing machine H that computes h. Now we construct a new machine H ′,
which on input e first simulates H on tuplee, e as a subroutine on the input, and goes into
an infinite loop if H outputs 1 (if the e-th Turing machine T halts on input e), and outputs
1 if H outputs 0 (if the e-th Turing machine T does not halt on input e). Now consider what
happens when H ′ is fed input 〈H ′〉. First assume that H ′ halts on 〈H ′〉, and therefore its
subroutine H outputs 1. Then by definition of H ′, H ′ goes into an infinite loop, and does
not halt. On the other hand, assume that H ′ does not halt on input 〈H ′〉, and therefore
H ′’s subroutine H outputs 0. Then by definition of H ′, H ′ halts and outputs 1. In both
cases, we derive a contradiction.

The existence of non-Turing-computable functions has motivated the study of models
that actually do compute the non-Turing-computable. In other words, it motivated the study
of hypercomputation. On the one hand, would one find a model of effective computation
that computes a non-Turing-computable function, Turing’s thesis would be proven false. On
the other hand, hypercomputational models do not necessarily violate Turing’s thesis, since
they might compute in a non-effective way.

Computability, decidability, and enumerability

Before we discuss a more general view of computation and computability, we briefly dis-
cuss two other important concepts in computability theory: decidability, and enumerability.
Computation usually concerns the calculation of functions, and computability the existence
of a procedure to perform the computation of a given function. Decidability, on the other
hand, concerns the existence of a procedure for solving a given ‘decision problem’. A deci-
sion problem is a problem of the form “is x an element of A?”, where A is a set. The answer
to a decision problem is either ‘yes’ or ‘no’, or 1 or 0 respectively. Semi-decidability is the
existence of a procedure that answers 1 if the element is indeed an element of the set, and
doesn’t give an answer otherwise. Enumerability is about the existence of a procedure for
enumerating the elements of a given set in any order, possibly with duplicates. As in the case
of computability, the most well-known notions of decidability and enumerability are effective
decidability and effective enumerability. As we will see now, the effective computability of
functions, the effective decidability of sets and the effective enumerability of sets are closely
related.

The problem of deciding membership of a set A can be formulated in terms of the problem
of computing A’s characteristic function χA.

Definition 3.1.5 (Characteristic function). The characteristic function χA of a set A is
defined by

χA(x)

{
1 if x ∈ A
0 if x 6∈ A.

Using the characteristic function, effective decidability can be defined in terms of Turing-
computability as follows.



26 3.1. COMPUTABILITY

Definition 3.1.6 (Effective decidability). A set A ⊆ N is effectively decidable if and only
if its characteristic function χA is Turing-computable.

A set is thus effectively decidable if and only if there exists a Turing machine that
computes its characteristic function. Characteristic functions are total functions, and Turing
machines computing these functions halt on all inputs. Such Turing machines are called
‘deciders’. In general, Turing machines compute partial functions. The partial variant of a
set’s characteristic function is its semi-characteristic function.

Definition 3.1.7 (Semi-characteristic function). The semi-characteristic function SA of a
set A is defined by

SA(x)

{
1 if x ∈ A
undefined if x 6∈ A.

The effective semi-decidability of a set A can be formulated in terms of the effective
computability of its semi-characteristic function SA.

Definition 3.1.8 (Effective semi-decidability). A set A ⊆ N is effectively semi-decidable if
and only if its semi-characteristic function SA is Turing-computable.

On the other hand, every function from Σ∗ to Σ∗ can be turned into the problem of
deciding the graph associated with the function.

Definition 3.1.9 (Graph). Let f : Σ∗ → Σ∗ be a partial function, where Σ is some finite
non-empty alphabet. Then the graph of f is defined as

Graph(f) = {〈x, y〉 ∈ Σ∗ × Σ∗ | f(x) = y}.

Proposition 3.1.1. A total function f is Turing-computable ⇔ Graph(f) is effectively
decidable.

Proof. (⇒) Suppose f : N → N is a total Turing-computable function. Then there is a
Turing machine T , such that φT = f and T halts on all inputs. Now we can design
a Turing machine M which for all 〈x, y〉 simulates T on input x and outputs 1 if
φT (x) = y, and outputs 0 otherwise. This Turing machine M decides Graph(f).

(⇐) Suppose Graph(f) is effectively decidable. Then there is a Turing machine T com-
puting the characteristic function χGraph(f). Now we can design a Turing machine M
which on input x simulates T sequentially on 〈x, 1〉, 〈x, 2〉, ... until T outputs a 1 on
input 〈x, y〉. Since f is assumed to be a total function, this will happen eventually.
Then M outputs y. Turing machine M computes f .

Proposition 3.1.2. A partial function f is Turing-computable ⇐⇒ Graph(f) is effectively
semi-decidable.

Proof. (⇒) Suppose f : N → N is a partial Turing-computable function. Then there is a
Turing machine T , such that φT = f . Now we can design a Turing machine M which
for all 〈x, y〉 simulates T on input x, and outputs 1 if T halts on x and φT (x) = y.
Otherwise, M does not halt. This Turing machine M semi-decides Graph(f).
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(⇐) Suppose Graph(f) is effectively semi-decidable. Then there is a Turing machine T
computing the semi-characteristic function SGraph(f). Now we can design a Turing
machine M which on input x simulates T in parallel on 〈x, 1〉, 〈x, 2〉, ... using the
dovetailing technique. If T halts on input 〈x, y〉 and outputs 1, then M outputs 1.
Otherwise, M does not halt. This Turing machine computes the partial function f .

A set A is enumerable if there exists a process for enumerating the members of A. Effective
enumerability is related to Turing-computability in the following way:

Definition 3.1.10 (Effective enumerability). A set A is effectively enumerable if and only if
A = ∅ or there is a total Turing-computable function f such that A is {f(0), f(1), f(2), ...} =
range(A).

Enumerability is sometimes called semi-decidability, because a set A is effectively enu-
merable if and only if the semi-characteristic function of A is Turing-computable. A set A
is called co-effectively enumerable if its complement A is effectively enumerable. Moreover,
if both A and A are effectively enumerable, A is also effectively decidable.

Relative computability

In the above, we have mainly focussed on one particular, very important notion of com-
putability: effective computability. Now it is time to take a more general view of compu-
tation and computability again and discuss relative computability. Copeland and Sylvan
[19, p. 46] argue that “[c]omputability is a relative notion, not an absolute one” and “[t]he
extent of the computable functions is resource-relative”. They add that “[a]ll computation,
classical or otherwise, takes place relative to some set or other of primitive capabilities: all
computation is relative computation” [19, p. 47]. Copeland and Sylvan admit that the
Turing-computable functions are of special interest because these are the functions that are
computable by an idealised human mathematician. On the other hand, they point out that
another interesting set of functions is the set of functions that are in principle implementable
in the real world. They add that this set of functions may or may not coincide with the
set of Turing-computable functions. Taking a more general view of computation and com-
putability is therefore relevant to our discussion of hypercomputation. Moreover, relative
computability theory gives insight in the different levels of hypercomputational power by
means of the arithmetical hierarchy, which we discuss in Section 3.3.

Turing’s o-machine [57] is a model of relative computation. An o-machine is a Turing
machine that can be supplied with some possibly non-algorithmic information in the form
of an ‘oracle’. An oracle is usually represented as a subset of the natural numbers A ⊆ N.
Beside the primitive operations performable by a standard Turing machine, an o-machine
can ask its oracle questions of the form “is n in A?”, to which the oracle responds directly
with 1 if n is indeed a member of A, or with 0 otherwise. One can also see it as if an
o-machine with oracle A is a Turing machine equipped with the primitive capability to solve
the decision problem associated with A. It is also possible to formulate oracles in terms of
functions from Σ∗ to Σ∗. An o-machine with an oracle function g can ask its oracle questions
of the form “what is g(m)?”, to which the oracle responds directly with the value of g(m)
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if g(m) is defined and with “undefined” otherwise. In order to ask questions to the oracle,
and to receive answers, the o-machine is equipped with a special query tape.

To illustrate the power of oracles, we describe how every effectively enumerable set can
be decided by an o-machine with the halting set K0 as its oracle set.

Example 3.1.1. As a trivial case, consider the halting set, which is effectively enumerable.
Let M be an o-machine computing the characteristic function of its oracle. Then with oracle
K0, o-machine M computes the halting function. In the general case, consider a recursively
enumerable set B. From Definition 3.1.8, we know that since B is recursively enumerable,
there is a Turing machine T computing SB . By definition, T will halt on input x and output
1 if x ∈ B and will not halt otherwise, on all inputs x. On input x, the o-machine M deciding
B asks its oracle whether 〈〈T 〉, x〉 ∈ K0. If this is the case, indicating that T halts on x,
and therefore x ∈ B, the o-machine outputs 1. If this is not the case, the M outputs 0.
Note that M halts on all inputs x. Besides the recursively enumerable sets, o-machines with
the halting set as oracle also decide the co-recursively enumerable sets. This computation
proceeds in the same way as that described above, except that the o-machine outputs 0
instead of 1 and vice versa.

It’s important to note that an o-machine itself is a finite object, which has no oracle
associated to it, but can use any oracle which may be provided to it. In fact, the functions
computed by o-machines have two arguments: an oracle and an input string. Therefore,
technically they compute a functional — a mapping whose arguments may themselves be
number-theoretic functions or sets — rather than a function. In the following definition,
we make use of the fact that o-machines can be enumerated in the same way as standard
Turing machines.

Definition 3.1.11 (The e-th partial computable functional). The e-th partial computable
functional — Φe — is the functional computed by the e-th o-machine Me. Then ΦAe denotes
the e-th functional acting on oracle set A, and Φge denotes the e-th functional acting on
oracle function g.

The o-machine gives rise to the following definition of relative Turing-computability of
functions and Turing-reducibility of sets.

Definition 3.1.12 (Relative Turing-computability).

• A partial function f is A-Turing-computable if f is computable by an o-machine with
oracle set A.

• A partial function f is g-Turing-computable, written f ≤T g, if f is computable by an
o-machine with oracle function g.

• A set B is A-Turing-decidable or Turing-reducible to A, written B ≤T A, if the char-
acteristic function of B — χB — is A-Turing-computable.

Relative Turing-computability gives rise to a degree structure, called the Turing universe.
We begin with defining the Turing-equivalence relation.

Definition 3.1.13 (Turing-equivalence). Let A,B ⊆ N. We say A is Turing-equivalent to
B (write A ≡T B) if A ≤T B and B ≤T A.
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Now, we can define the notion of a Turing degree, also called ‘degree of unsolvability’,
based on [12].

Definition 3.1.14 (Turing degree).

• The Turing degree of a set A ⊆ N is defined to be

deg(A) =def {X ⊆ N|X ≡T A}.

• The Turing degree of a function f : Σ∗ → Σ∗ is defined to be

deg(f) =def deg(Graph(f)).

The Turing degree of a set A can be understood as the equivalence class of a set A —
that is, [A]≡T — or a function f with respect to Turing-equivalence. The Turing degree
of a set A shows the class of problems that becomes solvable given solutions to a certain
problem A. Formulated differently, a Turing degree gathers sets, binary reals, or functions
which are “computationally indistinguishable from each other, in the sense that they are
mutually Turing computable from each other” [14, p. 1356]. The set of all computable sets
has Turing degree 0 = deg(∅). This is also the least Turing degree. With the definition of
Turing degrees in place, we define the Turing universe.

Definition 3.1.15 (Turing universe). The Turing universe D is the set 2N/ ≡T — that is,
the set of all Turing degrees. We define a partial ordering ≤ induced by ≤T on D by

deg(B) ≤ deg(A)⇔def B ≤T A.

The set D is uncountable, and there is no greatest member of D.

Definition 3.1.16 (Halting set of the e-th Turing machine). The halting set of the e-th
Turing machine is defined as We = dom(φe), for each e ∈ N. We relativise We to subsets
A ⊆ N, such that WA

e = dom(ΦAe ), for each e ∈ N.

Next, we define the jump, which is a generalisation of the halting set K0 to o-machines
with oracle A. The definitions are based on [12].

Definition 3.1.17 (Jump). The jump A′ of a set A is defined as

A′ =def {〈x, y〉 | x ∈WA
y } = KA

0 .

The (n+ 1)-th jump of A is defined as

A(n+1) =def (A(n))′.

The jump a′ of a degree a is defined as

a′ =def deg(A′).

The (n+ 1)-th jump of a degree a is defined as

a(n+1) =def (a(n))′ =def deg(A(n+1)).
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3.2 Resources
In the previous section, we discussed a general notion of computability: relative computabil-
ity. A relative view of computability is advocated by Copeland and Sylvan [19], who argue
that all computation takes place relative to a set of resources or primitive capabilities. Some
resources, such as extra work tapes, multiple tape heads, non-determinism and synchronous
parallelism, may lead to more efficiency, but do not lead to an increase in computational
power when added to a standard Turing machine. A central question for hypercomputation
is which resources do actually lead to hypercomputational power.

Ord [42] identifies a number of resources used by a variety of hypercomputational models
from the literature. Among these resources are infinite memory, which Ord points out is not
in itself sufficient for hypercomputation, non-Turing-computable information sources, infi-
nite specification, infinite computation and fair non-determinism. Ord [42, p. 44] concludes
his study by adding that “[i]t would also be of considerable interest to examine the more
‘realistic’ resources of interaction an infinite run-time as discussed by Jan van Leeuwen and
Jiŕı Wiedermann”, referring to Van Leeuwen and Wiedermann’s article [61]. Actually, Van
Leeuwen and Wiedermann [61] argue that it is the simultaneous use of the resources infinite
operation, interaction, and non-uniform evolution which leads to their models’ hypercom-
putational potential. In this section, we discuss a selection of resources relevant to our
discussion of Van Leeuwen and Wiedermann’s [68, 69] lineages of cognitive transducers and
communities of active cognitive transducers: non-Turing-computable information sources,
infinite operation, interaction, non-uniform evolution, asynchrony and infinite specification.

Non-Turing-computable information sources

Oracles and advice functions are external information resources which can provide a com-
putational model with possibly non-Turing-computable information. Although there is no
reason to believe that Turing [57] actually proposed the o-machine as a hypercomputational
model, the model is brought into the realm of hypercomputation by Copeland [16]. In Ex-
ample 3.1.1, we have shown that o-machines with the universal halting set K0 as oracle can
solve the non-Turing-computable halting function. An advice function is a special kind of
oracle, whose value does not depend on the concrete input, but rather on the size of the
input. Advice functions are functions α : N → Ω∗, whereas oracle functions are functions
g : Ω∗ → Ω∗, where Ω denotes a non-empty advice or oracle alphabet. In Example 2.2.1,
we have shown that a Turing machine with advice with linear advice can solve the halting
function.

Here, we show that as a resource advice is as powerful as oracles. More specifically, we
show that the set of functions computable by Turing machines with advice coincides with
the set of functions computable by o-machines, relative to comparable advice and oracle
functions. This will be useful in measuring the hypercomputational power of Van Leeuwen
and Wiedermann’s models later on in Section 3.3.

Theorem 3.2.1. Let Φ be a partial functional. Then Φ = ΦM for some o-machine M ⇐⇒
Φ = ΦM ′ for some Turing machine with advice M ′, in such a way that for all oracle functions
g, ΦgM = f ⇒ Φα

g

M ′ = f , where αg is an advice function comparable to g and for all advice

functions α, ΦαM ′ = Φg
α

M = f , where gα is an oracle function comparable to α.

First, we introduce the notion of ‘comparable advice’ and ‘comparable oracle’.
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Definition 3.2.1 (Comparable advice). Let g : Σ∗ → Σ∗ be an oracle function. First, ob-
serve that for all n ∈ N, the number of strings over Σ of length n is |Σ|n. Let {wn,1, wn,2, ...,
wn,|Σ|n} denote the set of strings over Σ of length n. The cardinality of this set increases as
n increases, but it is finite for all n. We construct the comparable advice αg : N→ Σ∗ such
that αg(n) is the concatenation of all |Σ|n oracle values of arguments of length n, for all n.
In other words: αg(n) = g(wn,1)#g(wn,2)#...#g(wn,|Σ|n), for all n.

For the other way around, we introduce the notion of a ‘comparable oracle’.

Definition 3.2.2 (Comparable oracle). Let α : N→ Σ∗ be an advice function. We construct
the comparable oracle function gα such that gα maps all arguments of length n to the same
value α(n), for all n. In other words, gα(wn,1) = gα(wn,2) = ... = gα(wn,|Σ|n) = α(n).

Now, we prove Theorem 3.2.1 by proving Lemma 3.2.1 and Lemma 3.2.2.

Lemma 3.2.1. Suppose Φ = ΦM is a functional computable by a o-machine M . Then there
is a Turing machine with advice M ′ such that for all oracle functions g, Φα

g

M ′ = ΦgM , where
αg is the advice comparable to g.

Proof. Let Φ = ΦM be the partial functional computed by o-machine M . Suppose M acts
on oracle function g and let M ′ act on advice function αg. TM/A M ′ works just like o-
machine M , but every time M consults its oracle for the value g(x), M ′ consults its advice
for the value of αg(|x|). This advice value contains the oracle values for all inputs of size
|x|, including that of x itself. Therefore, M ′ moves its advice tape head to the oracle value
corresponding to x. Then, M ′ continues its computation like M .

Lemma 3.2.2. Suppose Φ = ΦM ′ is a functional computed by a Turing machine with advice
M ′. Then there is an o-machine M such that for all advice functions α, Φg

α

M = ΦαM ′ , where
gα is an oracle comparable to α.

Proof. Let Φ = ΦM be the partial functional computed by TM/A M ′. Suppose M ′ acts on
advice function α and let M act on oracle function gα. O-machine M works just like TM/A
M ′. Every time M ′ consults its advice for the value α(|x|), M consults its oracle for the
value gα(x). Then, M continues its computation like M ′.

Now in a sense we can say that if a function f is computable by a Turing machine with
advice α, then f is computable by an o-machine with comparable oracle function gα. Hence,
f is Turing-reducible to gα. More formally

f is computable by an Turing machine with advice α⇒ f ≤T gα.

On the other hand, if a function f is computable by an o-machine with oracle function g,
and hence f ≤T g, then f is computable by a Turing machine with advice αg. More formally

f ≤T g ⇒ f is computable by an Turing machine with advice αg.



32 3.2. RESOURCES

Infinite operation

Another resource which is used by some models from the literature to gain hypercompu-
tational power is infinite operation. Models that use the resource of infinite operation are
allowed to perform an infinite number of computational steps.

There seem to be two kinds of models using infinite operation. On the one hand, there
are models that compute on a finite input string and produce a finite result after finitely
or infinitely many computational steps. The underlying model of computation remains a
standard Turing machine. Like Turing machines, these models compute values of functions
from Σ∗ to Σ∗, or solve decision problems. Examples of such models include accelerated
Turing machines [16] and infinite time Turing machines [25]. The accelerated Turing machine
performs infinitely many computational steps in finite time. It performs each step in half
the time used for the step before. The first step is performed in 1 time unit, the second step
in 1

2 time unit, the third one in 1
4 time unit, etc. The total time needed for an infinity of

computational steps is 1+ 1
2 + 1

4 + 1
8 +... < 2 time units. To illustrate the hypercomputational

power of accelerated Turing machines, we explain how the halting function can be computed
by an accelerated Turing machine. This example is based on [42].

Example 3.2.1. Let A be an accelerated universal Turing machine. A starts with a 0 in the
first square of its output tape. On input 〈e, x〉, A simulates the e-th Turing machine T on
input x. If T halts on input x, A outputs a 1. Otherwise, A leaves the symbol in its first
square a 0. The result of A’s computation is considered to be the symbol in the first square
of its tape after 2 time units.

On the other hand, there are models which are inspired by a different view of computing,
reflecting that of contemporary information processing systems, such as operating systems
[70]. Instead of computing finite function values on finite inputs, using infinitely many
computational steps, these models process infinite streams of symbols or streams of finite
symbol packages in an ongoing fashion. In the computations they carry out, there is no
notion of a final result, as the models are not constructed to halt. A theory of ω-automata
— automata that compute on infinite inputs — can be found in [55].

Although adding the ability to perform computations on infinite inputs does not change
the internal behaviour of the models, it does allow the possibility for the models to receive
non-Turing-computable inputs. These inputs can be translated into non-Turing-computable
outputs in an effective way, for example by just computing the characteristic function of the
input.

Interaction

Closely related to infinite operation is the resource of interaction. The need for a theory
of interactive computation was motivated by a paradigm shift from sequential computing
towards concurrent computing. In his Turing award lecture, Milner [39, p. 80] writes of his
conviction that “a theory of concurrency and interaction requires a new conceptual frame-
work, not just a refinement of what we find natural for sequential computing”. In his seminal
paper “Why interaction is more powerful than algorithms”, Wegner [66] argues that theo-
retical computer science should make a paradigm shift from rule-based algorithms towards
interaction, paralleling the paradigm shift from logic-based to object-based or agent-oriented
models in software engineering. He argues that “[t]hough object-based programming has be-
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come a dominant practical technology, its conceptual framework and theoretical foundations
are still unsatisfactory” [66, p. 82]. Wegner proposes a new class of machines as a basis for
the interactive paradigm: interaction machines. He claims that the behaviour of interaction
machines is not reducible to Turing machine behaviour. Therefore, he argues, interaction is
more powerful than algorithms.

Interaction machine

c0 c1 c2 . . . cn . . .

Environment

x1 y1 x2 y2 x3 yn xn+1

Figure 3.1: Interaction.

A Turing machine, Wegner points out, is provided with a finite input prior to the com-
putation, but cannot accept external input during computation. This makes the Turing
machine a closed system. However, Wegner argues, tasks like driving home from work can
not be realised by closed, non-interactive systems, that do not take notice of interactive
events in the external environment while computing. He proposes the interaction machine:
a standard Turing machine extended with the ability to dynamically interact with the ex-
ternal environment, which it cannot control. Thereto it has input and output actions to
its disposal. These input and output actions turn interaction machines into open systems.
Input and output actions can either be synchronous or asynchronous, and moreover differ
along other axes. Wegner [66, p. 83] states that “[i]nteraction machines can model objects,
software engineering applications, robots, intelligent agents, distributed systems, and net-
works, like the Internet and the World-Wide-Web”. Objects, for example, interact with the
environment through an interface, and their outputs depend on changes of states controlled
by unpredictable external actions.

Wegner points out that whereas the behaviour of Turing machines is defined by Turing-
computable functions on finite input strings, the behaviour of interaction machines is defined
on interaction histories. Therefore, he argues, interactive systems are able to learn from
experience and adapt to the environment. However, Wegner [66] does not make explicit what
he means by interaction histories, nor does he give a formal definition of interaction machines
and interaction. Still, Wegner [66, p. 83] claims that “[i]nteraction-machine behavior is not
reducible to Turing-machine behavior”. As formal evidence of this irreducibility, Wegner [66,
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p. 83] gives that “[i]nput streams of interaction machines are not expressible by finite tapes,
since any finite representation can be dynamically extended by uncontrollable adversaries”.
He also challenges the Church-Turing thesis when he states that “when the intuitive notion
of what is computable is broadened to include interactive computations, Church’s thesis
breaks down. Though the thesis is valid in the narrow sense that Turing machines express the
behavior of algorithms, the broader assertion that algorithms capture the intuitive notion of
what computers compute is invalid.” [66, p.81]. Note that in fact, Wegner does not challenge
the Church-Turing thesis in the narrow sense that all algorithmic computation is captured
by Turing machines, but rather what Goldin and Wegner [24] call a misinterpretation of the
Church-Turing thesis.

Wegner’s [66] claim about the hypercomputational power of interaction machines is sub-
ject to criticism. Prasse and Rittgen [45] acknowledge Wegner’s achievements in recognising
the importance of investigating the influence of interaction on the performance of computers.
However, they point out that since Wegner [66] does not formalise his interaction machine,
the validity of his claims concerning the power of interaction can hardly be assessed. Like-
wise, Van Leeuwen [59] points out that, although Wegner’s [66] article was very readable,
as well as stimulating, the claim that interaction is more powerful than algorithms did not
seem to be substantiated well enough.

Prasse and Rittgen stress that the internal behaviour of interaction machines does not
differ from that of equivalent Turing machines. Therefore, they argue, an interaction ma-
chine itself does not possess greater computational power than standard Turing machines.
However, the possibility to communicate allows the machine to utilise computational capa-
bilities of other machines. If this is indeed what Wegner means by interaction, Prasse and
Rittgen explain, interaction can be compared to a subroutine call. Then, interaction ma-
chines are models of relative computation, comparable to o-machines. Prasse and Rittgen
note that, like o-machines, interaction machines have an incomplete specification, and can
not compute any function by themselves. A specific oracle needs to be supplied in order
for an o-machine to solve a certain problem. Likewise, an interaction machine for solv-
ing a concrete problem needs a suitable interaction partner. An increase in computational
power beyond that of Turing machines relies on the external interaction partner, not on the
possibility to interact itself. Prasse and Rittgen argue that interaction machines are not
themselves algorithms, but rather components of interactive systems. In fact, these interac-
tive systems are protocols, which specify how procedures are performed by the interaction
machine components, and how interaction proceeds.

Prasse and Rittgen point out that it is not obvious what it is an interaction machine
computes, if it actually computes anything at all. The computation depends on input
from the environment, which unpredictable. The environment generally refers to those
components which do not belong to the system under consideration. Prasse and Rittgen
suggest that one solution might be to consider machine-environment pairs, in which case
the corresponding function is from environment input streams to machine output-streams.
However, in this case, Prasse and Rittgen add, the overall function is derived by integrating
the environment into the computation. This adheres to closing the system. Therefore,
Prasse and Rittgen argue, “the difference between open and closed systems ‘lies in the eye
of the beholder’” [45, p. 359].

Van Leeuwen [59] points out that Wegner seemed to have simply changed the rules of
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computation by allowing inputs to continuously stream into the machine, thereby allowing
the inputs to be potentially infinite. According to Van Leeuwen, Wegner did not seem to
realise that a model of such computations already existed in ω-Turing machines. Wegner’s
article motivated Van Leeuwen and Wiedermann to formalise the notion of interaction in
[60]. Van Leeuwen and Wiedermann conclude that “[f]rom the viewpoint of computability
theory, interactive computation e.g. with ITMs does not lead to super-Turing computing
power. Interactive computing merely extends our view of classically computable functions
over finite domains to computable functions (translations) defined over infinite domains.
Interactive computers simply compute something different from non-interactive ones because
they follow a different scenario” [70, p. 582]. Moreover, “[r]emembering the respective inputs
over time, a finite computation of an interactive machine can always be replayed a posteriori
by a non-interactive machine giving the same outputs as the interactive machine” [70, p.
582]. The following definition is based on [60].

Definition 3.2.3 (Monotonic function). A partial function f : 2∗ → 2∗ is called monotonic
if for all x, y ∈ 2∗, if x ≺ y (x is finite and a strict prefix of y) and f(y) is defined, then
f(x) is defined as well and f(x) � f(y).

Van Leeuwen and Wiedermann [60, 63] modify the classical definition of continuous
functions to the case of functions on infinite strings as follows.

Definition 3.2.4 (Limit-continuous function). A partial function f : 2ω → 2ω is called
limit-continuous if there exists a Turing-computable partial function g : 2∗ → 2∗ such that:

• g is monotonic; and

• for all strictly increasing chains u1 ≺ u2 ≺ ... ≺ ut ≺ ... with ut ∈ 2∗ for t ≥ 1, it
holds that f(limt→∞ ut) = limt→∞ g(ut), as soon as either the left-hand side or the
right-hand side of the equality is defined.

Van Leeuwen and Wiedermann [60] point out that all interactively computable functions
share the property that on finite parts of infinite strings on which they are defined they are
continuous. That is, at any moment, any further extension of the input should lead to an
extension of the output as it is at that moment. The following theorem is from [60, p. 110].

Theorem 3.2.2. If f : 2ω → 2ω is interactively computable, then f is limit-continuous.

For a proof of this theorem, we refer to [60]. In [63, p. 140], Van Leeuwen and Wie-
dermann conclude that “When considering only finite computations, there is no difference
between the power of classical and interactive computations. Keeping the classical com-
putation time-bounded on the one hand and considering infinite interactive computations
on the other, is to draw a comparison between two incomparable things: while the former
computes with finite objects (finite streams), the latter operates on infinite objects. Thus,
the two modes are incomparable; each of them computes with different entities. Therefore
it is not possible to say which of the two has a greater computational power. However, our
results show that in the limit the computational power in both modes tends to coincide”.



36 3.2. RESOURCES

Here, we explore the possibility of viewing interactive Turing machines as defined in
Section 2.2 as models of relative computation. This would allow us to measure the hyper-
computational power of Van Leeuwen and Wiedermann’s models later on in Section 3.3. The
idea is to look at the stream producible by an interactive Turing machine and interaction
partner pair. Given an interaction partner E, an interactive Turing machine M can only
produce a single output stream. In fact, every interactive Turing machine thus computes a
functional where the argument is an interaction partner and the output an infinite stream.
We will show that this functional is comparable to the functional computed by o-machines
producing streams from a blank input tape. The idea of Turing machine based models pro-
ducing infinite streams instead of computing functions from Σ∗ to Σ∗ is not new, and was
expressed by Turing himself in [56].

First, we redefine what it is interactive Turing machines compute. Thereto, we first
define the notion of a ‘suitable interaction partner’.

Definition 3.2.5 (Suitable interaction partner). Let M be an interactive Turing machine
with input alphabet Σ and output alphabet Γ. Let E be an environment with input alphabet
Γ and output alphabet Σ. Then E is a suitable interaction partner of M if and only if E
produces a λ symbol at each time when M is in an internal state, and M and E satisfy the
interactiveness condition.

Instead of interactively realisable translations from Σω to Γω, we define interactive pro-
ducibility on infinite output streams.

Definition 3.2.6 (Interactively producible stream). Let M be an interactive Turing ma-
chine with input alphabet Σ and output alphabet Γ. Let E be an environment. Let

ΦEM =

{
the stream produced by M in interaction with E if E is suitbale to M
undefined otherwise

.

A stream y ∈ Γω is called interactively producible if there exists an interactive Turing ma-
chine M and an environment E such that ΦEM = y.

Now we associate with each possible environment a ‘comparable oracle’, defined as fol-
lows.

Definition 3.2.7 (Comparable oracle). Let E be an environment, let Γ denote its input
alphabet, and Σ its output alphabet. A comparable oracle has the same input and output
alphabet as E. Let x1 denote the first input symbol sent by E to the interaction machine.
Construct ΘE such that on query “ε?” it answers with x1. For each n ∈ N, enumer-
ate all words over Γ of length n. Let yn,1, yn,2, ..., yn,|Γ|n be such an enumeration. Let
xn,1, xn,2, ..., xn,|Γ|n denote E’s reactions to the respective combinations of first n output
symbols of the interaction machine, with each xn,i ∈ Σ ∪ {λ}. Now construct ΘE such that
to each query of the form “Θ(yn,i)” it responds with xn,i if xn,i ∈ Σ, and with ε if xn,i = λ,
for all n ∈ N.

We also define a comparable o-machine for every interactive Turing machine. A compa-
rable o-machine is an o-machine without an input tape, but with a work tape, an output
tape, and an oracle tape. The output tape also serves as query tape.
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Definition 3.2.8 (Comparable o-machine ). Let M = 〈Q,Σ,Γ, I, q0, δ〉 be an interactive
Turing machine. Without loss of generality, we assume that M has a single input port
and a single output port, as well as a single work tape. Then we construct a comparable
o-machine M ′ = 〈Q′,Σ,Γ,Ω, A, q0, δ

′〉 as follows.

• A = {(q, query) | q ∈ (Q− I)} is the set of query states;

• Q′ = A ∪ {q | q ∈ I} is the set of states;

• Ω = Σ is the oracle alphabet;

• q0 ∈ A is the initial state;

• δ′ is the transition function such that for each transition tuple

δ(〈q, w, i〉, σ) = 〈〈r, w′, i′〉, γ〉

of M , M ′ has the transition tuple

δ′(〈q′, w, i, y, k, o, 1〉) = 〈r′, w′, i′, y′, k′, o′, 1〉

satisfying the following conditions.

– if q is internal, then q′ = q is not a query state, and o = ε;

– if q is external, then q′ = (q, query) is a query state, and o = Θ(y);

– if r is internal, then r′ = r is not a query state, y′ = y, k′ = k, and o′ = ε;

– if r is external, then r′ = (r, query) is a query state, y′ = yγ, and k′ = k + 1.

A comparable o-machine M ′ with oracle Θ computes as follows (see also Figure ??).
At time t = 0, before the start of the computation, M is in its initial state q0, which is a
query state. In the first step, M ′ queries Θ for the value of the empty string ε, because
the output/query tape is then empty. The oracle returns Θ(ε) ∈ Ω. This symbol can be
interpreted as the first input symbol to M ′. Then, M ′ makes its transition based on its
current configuration and the oracle value, and either appends a symbol y1 ∈ Γ or the
empty string ε to the contents of its output tape, depending on whether the new state is a
query state or not. In the following step, there are two cases. First, if M ′ is in a query state,
M ′ queries its oracle. The string on its query tape is then y1. The oracle responds with
Θ(y1) ∈ Ω, and M ′ makes a transition according to its current configuration and the oracle
value. Otherwise, if M ′ is in a state which is not a query state, it doesn’t query the oracle
during this step, and makes a transition based on its current configuration and a blank
oracle symbol. In general, in each time step t, if M ′ is in a query state, M ′ queries its oracle
for the value Θ(y1y2 . . . ym), where y1y2 . . . ym denotes the content of M ′’s output/query
tape, and makes a transition. If M ′ is in a state which is not a query state, it doesn’t
query its oracle, and makes a transition. If the new state is a query state, M ′ appends a
symbol yt ∈ Γ to the contents of its output/query tape, and moves the tape head one step
right. Otherwise, the contents of the output/query tape remain unchanged. The stream
x = Θ(ε)Θ(y1)Θ(y1y2)Θ(y1y2y3) . . . can be interpreted as input to M ′, and y = y1y2y3 . . .
as M ’s output. We denote the output stream produced by M ′ with oracle Θ in this way by
ΦΘ
M ′ .
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oracle Θ

(q0, query)

“ε?” Θ(ε)

y1

(q′, query)

“y1?” Θ(y1)

y1y2

(q′′, query)

“y1y2?” Θ(y1y2)

y1y2y3

. . . (q′′′, query)

“y1y2 . . . yn?” Θ(y1y2 . . . yn)

y1y2y3 . . . yn

. . .

Figure 3.2: Stream production by o-machine M ′ with oracle Θ.

Now our aim is to show that for every interactively producible stream y, if y is produced
by M in interaction with environment E, it can also be produced by comparable o-machine
M ′ with comparable oracle ΘE . Then, in a sense it can be said that stream y is Turing-
reducible to ΘE . Therefore, we argue, we can measure that power of interactive Turing
machines in terms of the streams they can produce relative to the degree of unsolvability of
their environment.

Lemma 3.2.3. Let ΦEM be the stream producible by an interactive Turing machine M in

interaction with environment E. Let ΦΘE

M ′ be the stream producible by comparable o-machine

M ′ with comparable oracle Θ. Then ΦΘE

M ′ = ΦEM .

Proof. We show that at each time the sequence of oracle values provided by ΘE to M ′ up
to that time is the filtered version of the input stream provided by the environment E to
interactive Turing machine M up to that time. Moreover, we show that at each time the
output on M ′’s output tape is equal to the filtered version of the output produced by M up
to that time.

Suppose at time t, interactive Turing machine M is in state q. Suppose M has received n
non-λ input symbols up to now, together forming the sequence filtered(x1x2...xt) = f1f2...fn.
Moreover, suppose M has produced m non-λ outputs symbols up to now, which together
form the sequence filtered(y1y2...yt) = u1u2...um. At this time, M ′ has queried its oracle n
times, and has received the sequence f1f2...fn of oracle answers. Moreover, M ′ has u1u2...um
on its output tape. There are four cases to consider.

• First, consider the case that q is an internal state. Then M ′ is in state q as well, which
is not a query state. At time t + 1, M receives the next input symbol xt+1 from E.
Since q is an internal state, it is required that xt+1 = λ. Now M makes a transition
according to δ(〈q, w, i〉, λ) = 〈〈q′, w′, i′〉, γ〉. Again, there are two cases to consider.
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– First, if q′ is internal, γ = λ. Hence, M makes a transition according to

δ(〈q, w, i〉, λ) = 〈〈q′, w′, i′〉, λ〉.

Now M ′ makes a transition according to

δ′(〈q, w, i, u1u2...um,m+ 1, ε, 1〉) = 〈q′, w′, i′, u1u2...um,m+ 1, ε, 1〉.

After this transition, filtered(y1y2...ytyt+1) = filtered(y1y2...yt) = u1u2...um, be-
cause γ = λ. Likewise, after this transition M ′’s output tape still contains
u1u2...um (see Figure 3.3(a) and Figure 3.3(b)).

– Second, if q′ is external, γ ∈ Γ. Hence, M makes a transition according to

δ(〈q, w, i〉, λ) = 〈〈q′, w′, i′〉, γ〉.

Now M ′ makes a transition according to

δ′(〈q, w, i, u1u2...um,m+ 1, ε, 1〉) = 〈(q′, query), w′, i′, u1u2...umγ,m+ 2, ε, 1〉.

After this transition, filtered(y1y2...ytyt+1) = filtered(y1y2...yt) = u1u2...umγ, be-
cause γ ∈ Γ. Likewise, after this transition M ′’s output tape contains u1u2...umγ
(see Figure 3.3(c) and Figure 3.3(d)).

In both cases, after this transition filtered(x1x2...xtxt+1) = filtered(x1x2...xt) = f1f2...fn,
because xt+1 = λ. Likewise, after this transition M ′ has not queried its oracle, and
not received an oracle answer. Therefore, the sequence of oracle answers received up
to now is still f1f2...fn.

• Second, consider the case that q is an external state. Then M ′ is in query state
(q, query). At time t+1, M receives the next input symbol xt+1 from E. This symbol
can be any symbol in σ ∈ Σ ∪ {λ}. Now M makes a transition according to

δ(〈q, w, i〉, σ) = 〈〈q′, w′, i′〉, γ〉.

NowM ′ is in a query state, and therefore first queries its oracle for the value Θ(u1u2...um).
Since Θ is comparable to E, the value Θ(u1u2...um) will be equal to σ if σ ∈ Σ and
equal to ε if σ = λ. Again, there are two cases to consider.

– First, if q′ is internal, γ = λ. Hence, M makes a transition according to

δ(〈q, w, i〉, σ) = 〈〈q′, w′, i′〉, λ〉.

Now M ′ makes a transition according to

δ′(〈(q, query), w, i, u1u2...um,m+ 1, σ, 1〉) = 〈q′, w′, i′, u1u2...um,m+ 1, ε, 1〉.

After this transition, filtered(y1y2...ytyt+1) = filtered(y1y2...yt) = u1u2...um, be-
cause γ = λ. Likewise, after this transition M ′’s output tape still contains
u1u2...um (see Figure 3.4(a) and Figure 3.4(b)).
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– Second, if q′ is external, γ ∈ Γ. Hence, M makes a transition according to

δ(〈q, w, i〉, σ) = 〈〈q′, w′, i′〉, γ〉.

Now M ′ makes a transition according to

δ′(〈(q, query), w, i, u1u2...um,m+1, σ, 1〉) = 〈(q′, query), w′, i′, u1u2...umγ,m+2, ε, 1〉.

After this transition, filtered(y1y2...ytyt+1) = filtered(y1y2...yt) = u1u2...umγ, be-
cause γ ∈ Γ. Likewise, after this transition M ′’s output tape contains u1u2...umγ
(see Figure 3.4(c) and Figure 3.4(d)).

In both cases, after this transition

filtered(x1x2...xtxt+1) =

{
filtered(x1x2...xt) = f1f2...fn if xt+1 = λ
filtered(x1x2...xtxt+1) = f1f2...fnxt+1 if xt+1 ∈ Σ.

Likewise, after this transition M ′ has queried its oracle, and the sequence of oracle
answers received up to now is

f1f2...fnΘ(u1u2...um) =

{
f1f2...fnε = f1f2...fn if xt+1 = λ
f1f2...fnxt+1 if xt+1 ∈ Σ.

Now we have that if y ∈ Γω is interactively producible with respect to environment E,
then y is producible by an o-machine with comparable oracle ΘE . Hence, we conjecture
than if y is interactively producible with respect to environment E, then y ≤T ΘE .
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q q′

environment E

λ λ

fn um

...
...

f2 u2

f1 u1

(a) In case M makes a transition to an
internal state q′, and outputs a λ.

q q′

u1u2 . . . um u1u2 . . . um

oracle ΘE

fn

...

f2

f1

(b) M ′ makes a transition to q′, which is not a query state, and
the contents of M ′’s output tape remain unchanged.

q q′

environment E

λ γ

fn um

...
...

f2 u2

f1 u1

(c) In case M makes a transition to an
external state q′, and outputs γ.

q (q′, query)

u1u2 . . . um u1u2 . . . um γ

oracle ΘE

fn

...

f2

f1

(d) M ′ makes a transition to query state (q′, query), and ap-
pends γ to the end of the contents of its output tape.

Figure 3.3: M starts in an internal state, receives a λ from the environment and makes
a transition. O-machine M ′ does not query its oracle during the simulation of M ’s this
transition.
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q q′

environment E

σ λ

fn um

...
...

f2 u2

f1 u1

(a) In case M makes a transition to an
internal state q′, and outputs a λ.

(q, query) q′

u1u2 . . . um u1u2 . . . um

oracle ΘE

“u1u2 . . . um?” ΘE(u1u2 . . . um) = σ

fn

...

f2

f1

(b) M ′ makes a transition to q′, which is not a query state, and
the contents of M ′’s output tape remain unchanged.

q q′

environment E

σ γ

fn um

...
...

f2 u2

f1 u1

(c) In case M makes a transition to an
external state q′, and outputs γ.

(q, query) (q′, query)

u1u2 . . . um u1u2 . . . um γ

oracle ΘE

“u1u2 . . . um?” ΘE(u1u2 . . . um) = σ

fn

...

f2

f1

(d) M ′ makes a transition to query state (q′, query), and ap-
pends γ to the end of the contents of its output tape.

Figure 3.4: M starts in an external state, receives γ from the environment and makes a
transition. O-machine M ′ queries its oracle during the simulation of M ’s this transition.
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Evolution

Another resource which is relevant to Van Leeuwen and Wiedermann’s [68, 69] models is the
resource of evolution. Van Leeuwen and Wiedermann’s [69] lineages of cognitive transducers,
which we introduced in Section 2.1, can be interpreted as a models of subsequent generations
of cognitive transducers. On the other hand, a lineage of cognitive transducers can also be
interpreted as a model of an the adaptation of an individual cognitive transducer, unfolded
in time. In general, a lineage can be constructed only a posteriori, after observing the actual
evolutionary process the generations of cognitive transducers, or the individual cognitive
transducer have gone through respectively. Yet, for our purpose, it is useful to define an
evolution function corresponding to a lineage of cognitive transducers.

Definition 3.2.9 (Evolution function). Let A = {A1, A2, ...} be a lineage of cognitive trans-
ducers and let M denote the set of all cognitive transducers. Then the evolution function ε
corresponding to A is defined as ε : N→M, where

ε(i) = Ai, for all i ∈ N.

Theorem 2.3.1 in Chapter 2 states that lineages of cognitive transducers are as powerful
as interactive Turing machines with advice. However, the hypercomputational power of a
lineage of cognitive transducers depends on the non-Turing-computability of its evolution
function. Every lineage of cognitive transducers corresponding to a Turing-computable
evolution function can be simulated a posteriori by an interactive Turing machine without
advice. Informally, at each time, this ITM simulates the controlling cognitive transducer in
the lineage until this cognitive transducer reaches a global state. Then the ITM computes
the description of the next cognitive transducer in the lineage according to the Turing-
computable evolution function and proceeds by simulating this cognitive transducer from
the global state on the next input symbol.

Besides on the a non-Turing-computable evolution function, the hypercomputational
power of a lineage of cognitive transducers depends on infinite operation. In finite time,
only a finite prefix of a lineage of cognitive transducers participates in the computation.
This computation can be simulated a posteriori by a single cognitive transducer.

Theorem 3.2.3. For each lineage of cognitive transducers A, each finite prefix of A can be
simulated by a cognitive transducer.

Proof. We make use of the technique of merging successive automata in a lineage outlined
by Verbaan [64]. Let A = {A1, A2, ...} be a lineage of cognitive transducers. Denote by Qi
and Gi ⊂ Qi the set of states and the set of global states of Ai ∈ A respectively, for all i ∈ N.
Let di denote the transition function of Ai ∈ A, for all i ∈ N. Consider a length m prefix
prefixm(A) = {A1, ..., Am} of A. Construct a cognitive transducer M = 〈Q,Σ,Γ, q0, δ〉, such
that Q is the disjoint union of Q1, ..., Qm. That is

Q =
⋃

i=1...m

{(q, i) | q ∈ Qi}

Moreover, q0 = (q0, 1). Construct δ such that for a ∈ Σ and b ∈ Γ, the transition δ((q, i), a)
is defined

δ((q, i), a) =

 ((r, i), b) if δi(q, a) = (r, b) and r ∈ Qi −Gi
((r, i+ 1), b) if δi(q, a) = (r, b) and r ∈ Gi
undefined if δi(q, a) is undefined
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Since we are dealing with a finite prefix, we define a set of halting states FA,m for prefixm(A,
such that FA = Gm. Likewise, we define a set of halting states F for M , such that F =
{(q,m) | q ∈ Gm}. An example of the construction of a cognitive transducer for simulating
a prefix is given in Figure 3.5.

local state
global state

q0start q1

q2 q3

,
q4

q3start

q5

q6

(a) Length 2 prefix of a lineage of cognitive transducers: {A1, A2}.

(q0, 1)start (q1, 1)

(q2, 1) (q3, 1)

(q4, 2)

(q3, 2)

(q5, 2)

(q6, 2)

(b) Cognitive transducer M simulating the prefix {A1, A2}.

Figure 3.5: A cognitive transducer constructed for simulating a prefix of a lineage.

On input x ∈ Σ∗∪Σω, cognitive transducer M simulates prefixm(A) as follows. Suppose
that after processing the n-th input symbol, Ak is the controlling cognitive transducer in
prefixm(A). Suppose Ak is in state q ∈ Qk. At this time M is in state (q, k). If k = m
and q ∈ Gm, Ak is in a halting state, and so is M . Otherwise, on receiving the (n + 1)-th
input symbol xn+1, Ak makes a transition according to dk(q, xn+1) = (r, yn+1) to state r,
outputting yn+1. There are two cases.

• If r ∈ Qk − Gk, then Ak remains the controlling cognitive transducer. Now M ’s
transition function δ is such that δ((q, k), xn+1) = ((r, k), yn+1). Hence, M makes a
transition to state (r, k), and outputs symbol yn+1.

• Otherwise, if r ∈ Gk, Ak passes over control to Ak+1. Now M ’s transition function δ
is such that δ((q, k), xn+1) = ((r, k + 1), yn+1). Hence, M makes a transition to state
(r, k + 1), and outputs symbol yn+1.
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At each step, M outputs the same symbol as the prefix of A. Cognitive transducer M
realises the same transduction as prefixm(A).

On the other hand, if prefixm(A) is simulated by cognitive transducer M , in general M
can not simulate prefixm+1(A). Although a cognitive transducer M ′ which can prefixm+1(A)
does exist, in general it is not Turing-computable from M .

Asynchrony

Asynchrony is another resource which can be used to gain hypercomputational power.
Copeland and Sylvan [19] introduce asynchronous networks of Turing machines as a hy-
percomputational model. Copeland and Sylvan illustrate their claim that asynchronous
networks of Turing machines can invoke hypercomputation by an example, in which two
Turing machines, M1 and M2 operate on a shared tape. M0 only prints 0’s and M1 only
prints 1’s. Both Turing machines only write on blank portions of the tape, and only on
those cells whose predecessors have already been written on. With each Turing machine
Mi is associated a timing function ∆i, where ∆i(n) = k if and only if k moments of oper-
ating time separate the nth atomic operation of Mi from its n + 1th operation. Copeland
and Sylvan state that if M0 and M1 operate asynchronously, and at least one of ∆0 and
∆1 is not Turing-computable, then M0 and M1 are possibly in the process of inscribing an
non-Turing-computable real number on the tape.

Actually, if M0 and M1 alternate their printing randomly, they can be shown to inscribe
a non-Turing-computable infinite string on the tape almost surely (i.e. with probability
one).

Proof. We use a measure theoretical argument. Let I denote the set of all right-infinite
strings over {0, 1}. This set I is uncountable. Let E denote the subset of all Turing-
computable right-infinite strings over {0, 1}. This set E, on the other hand, is countable.
There is a theorem in measure theory that states that countable subsets have measure zero,
so µ(E) = 0. The complement of E therefore has full measure, so µ(I −E) = 1. Hence, the
probability that infinite string produced is non-Turing-computable is 1.

On the other hand, when both ∆0 and ∆1 are Turing-computable, or M0 and M1 operate
synchronously, the resulting network of Turing machines is equivalent to a single Turing
machine.

Infinite specification

Finally, we discuss the resource of infinite specification . In [42], Ord discusses the infinite
state Turing machine. An infinite state Turing machine is a Turing machine whose set of
states is allowed to be infinite. More specifically, an infinite state Turing machine can have
a state for every input string over its alphabet Σ. In this way, for each function from N to
{0, 1}, including for example the halting function, or for each function from Σ∗ to Σ∗, an
infinite state Turing machine can be specified. Figure 3.2 shows a template of an infinite
state Turing machine with alphabet Σ = Γ = {0, 1}. The infinite state Turing machine has
a special state qw for every possible finite input string w over its input alphabet. It also
has a special state pv for every possible finite output string v over its output alphabet. The
transition arrows between qi and qj are labelled with operations on the machine’s input
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qinitialstart

q0

q1

q00

q01

q10

q11

...

...

...

......

...

...

...

0/R

1/R

0/R

1/R

0/R

1/R

0//R

1/R

0/R

1/R

0/R

1/R

0/R

1/R

...

...

...

......

...

...

...

p00

p01

p10

p11

p0

p1

qhalt

0/R

1/R

0/R

1/R

0/R

1/R

0/R

1/R

0/R

1/R

0/R

1/R

0/R

1/R

t/none

t/none

t/none

t/none

t/none

t/none

Figure 3.6: Template for an infinite state Turing machine with alphabet {0, 1}.

tape, for all i, j ∈ Σ∗. The transition arrows between pk and pl are labelled with operations
on the machine’s output tape, for all k, l ∈ Σ∗. By rearranging the dotted transition arrows,
any function from Σ∗ to Γ∗ can be specified.



3.3. HYPERCOMPUTATIONAL POWER 47

3.3 Hypercomputational power

Hypercomputational power is the ability to compute functions, or solve problems that can-
not be solved by standard Turing machines. In this section, we take a more detailed look
into the world beyond the Turing-computable. It turns out that this world is hierarchically
structured. This structure allows for a more specific characterisation of the hypercomputa-
tional power of hypercomputational models. We introduce the arithmetical hierarchy and
use it as a framework for measuring the relative powers of hypercomputational models.

The arithmetical hierarchy

The arithmetical hierarchy is a classification of sets based on the complexity of the formulas
in first-order arithmetic that define them. The first level of the arithmetical hierarchy is
defined as follows [12, p. 74].

Definition 3.3.1 (Level 1 of the Arithmetical Hierarchy). 1. If ∀x ∈ N we have x ∈
A ⇐⇒ (∃y)R(x, y) for some computable relation R then we say that A is a Σ0

1 set,
and write A ∈ Σ0

1.

2. If we have x ∈ A⇐⇒ ∀y[R(x, y)], some computable R, then we say that A is a Π0
1 set,

and write A ∈ Π0
1.

3. If A ∈ Σ0
1 ∩Π0

1, then we say that A is a ∆0
1 set, and write A ∈ ∆0

1.

Π0
1

co-effectively
decidable

Σ0
1

effectively
semi-decidable

∆0
1

effectively
decidable

Figure 3.7: The first level of the arithmetical hierarchy.

The classes of the first level of the arithmetical hierarchy are related to the effectively
decidable, semi-decidable, and co-semi-decidable sets in the following way.

Theorem 3.3.1. Σ0
1 coincides with the set of effectively enumerable, or effectively semi-

decidable sets.

Proof. This proof is based on [12].
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(⇒) Suppose A is effectively enumerable. Then, by Definition 3.1.10, A = ∅ or A = range(f)
for some total Turing-computable function f . If A = ∅ then

x ∈ A ⇐⇒ ∃s(x+ 1 = x).

Since (x + 1) = x is a Turing-computable relation of x and s, by Definition 3.3.1
A ∈ Σ0

1. Otherwise, if A = range(f) for some total Turing-computable function f ,

x ∈ A ⇐⇒ ∃s(f(s) = x).

Since f(s) = x is a Turing-computable relation of x and s, A ∈ Σ0
1.

(⇐) Suppose A ∈ Σ0
1. Then, x ∈ A ⇐⇒ ∃s(R(x, s) for some Turing-computable relation

R. Consider the following function:

ψ(x) =

{
1 if ∃s(R(x, s))
undefined otherwise

.

The function ψ is Turing-computable; given x, we can subsequently check whether
R(x, 1), R(x, 2), ... holds, until we come across an s for which R(x, s) holds. If this
search never terminates, we have ψ(x) is undefined as required. Hence, there is an e
such that φe = ψ. Now

x ∈ A ⇐⇒ ψ(x) is defined.

Hence, A = dom(ψ), the domain of a Turing-computable function. Therefore, by
definition, A is effectively enumerable.

Theorem 3.3.2. Π0
1 coincides with the set of co-effectively enumerable sets.

Theorem 3.3.3. ∆0
1 coincides with the set of effectively decidable sets.

For a proof of Theorem 3.3.2 and Theorem 3.3.3 we refer to a standard textbook on
computability theory, such as [12]. The halting set K0 is an example of a set in Σ0

1, since it
is effectively enumerable, but not effectively decidable.

The first level of the arithmetical hierarchy can be extended to higher levels. The following
definition is from [12, p. 154]

Definition 3.3.2 (The Arithmetical Hierarchy). 1. Σ0
0 = Π0

0 = ∆0
0 = all computable

relations. And for n ≥ 0:

2. Σ0
n+1 = all relations of the form (∃~yl)R(~xk, ~yl), with R ∈ Π0

n.

3. Π0
n+1 = all relations of the form (∀~yl)R(~xk, ~yl), with R ∈ Σ0

n.

4. ∆0
n+1 = Σ0

n+1 ∩Π0
n+1.

R is arithmetical if R ∈
⋃
n≥0(Σ0

n ∪Π0
n).
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. . .. . .

...

Π0
nΣ0

n

∆0
n

. . .. . .

...

Π0
2Σ0

2

∆0
2

Π0
1Σ0

1 ∆0
1

Figure 3.8: The arithmetical hierarchy.

It holds that

∆0
0,Σ

0
0,Π

0
0 ⊆ ∆0

1 ⊆ Σ0
1,Π

0
1 ⊆ ... ⊆ Σ0

n,Π
0
n ⊆ ∆0

n+1 ⊆ Σn+1,Πn+1 ⊆ ...

Since we can identify functions with their graphs, we can say that a function f is classified
into the class in the arithmetical hierarchy to which its graph belongs. In other words, a
function f ∈ Σ0

n ⇐⇒ Graph(f) ∈ Σ0
n, and f ∈ Π0

n ⇐⇒ Graph(f) ∈ Π0
n. By Proposition

3.1.1 and Proposition 3.1.2, Σ0
1 then contains the partial Turing-computable functions, and

∆0
1 contains the total Turing-computable functions.

The arithmetical hierarchy captures all relations describable in true first order arithmetic
— that is, relations which are definable in Peano arithmetic. Cooper [14, p. 1355] points to
the difference in definability on the one hand, and computability on the other hand, for which
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the arithmetical hierarchy is a metaphor: “[w]hat the arithmetical hierarchy encapsulates
is the smallness of the computable world in relation to what we can describe”. Since only
the sets in ∆0

1 are effectively decidable, any model or machine deciding a set outside ∆0
1 is

capable of hypercomputation. The arithmetical hierarchy also shows that the world beyond
the Turing-computable is not a total chaos, but is structured indeed.

The usefulness of the arithmetical hierarchy as a framework for measuring the relative
power of models of hypercomputation comes from Post’s theorem [44], which relates the
levels of the arithmetical hierarchy to the degree structure arising from Turing-reducibility.

Theorem 3.3.4 (Post’s theorem). Let A ⊆ N. Then for all n ∈ N and all B ⊆ N,

B ∈ ∆A
n+1 ⇔ B ≤T A(n).

For a proof of Post’s theorem, we refer to [26]. The following corollary follows immedi-
ately from Theorem 3.3.4.

Corollary 3.3.1. Let B ⊆ N. Then for all n ∈ N,

B ∈ ∆0
n+1 ⇔ B ≤T ∅(n).

Measuring hypercomputational power

The arithmetical hierarchy can be used as a framework to measure and compare the relative
power of hypercomputational models. The power is measured in terms of the sets that can
be decided by each model. Ord [42] assesses the power of a selection of hypercomputational
models, among which the o-machine, and asynchronous networks of Turing machines. We
extend this assessment by including Turing machines with advice.

The hypercomputational power of models that use an external information resource,
such as an oracle, advice, or timing function, depends on the degree of unsolvability of
this source. An o-machine with a ∅ or Turing-computable oracle can not compute non-
Turing-computable functions, since consulting such an oracle can be compared to making a
subroutine call to another Turing machine. The same holds for asynchronous networks of
Turing machines with synchronous or Turing-computable timing functions [42]. O-machines
with an ∅(n) oracle can compute ∆n+1 functions, as can Turing machines with ∅(n) advice.

Van Leeuwen and Wiedermann’s [68, 69] lineages of cognitive transducers and commu-
nities of active cognitive transducers are interactive models of computation, which compute
translations over infinite symbols streams instead of functions from finite strings to finite
strings. We explore the possibility to measure the power of interactive models by the streams
they can produce relative to an interaction partner of a certain degree of unsolvability, com-
parable to the streams producible by o-machines relative to an oracle of a certain degree of
unsolvability. In Section 3.2, we showed that if a stream y ∈ Γω is interactively producible
with respect to an interaction partner E, then y is producible by a comparable o-machine
with comparable advice ΘE . We argued that if a stream y is interactively producible with
respect to an interaction partner E, it is Turing-reducible to ΘE . Now we can apply Post’s
Theorem and state that if y is interactively producible with respect to environment E and
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ΘE ∈ ∅(n), then y ∈ ∆0
n+1. This could serve as an upper bound to the power of interactive

Turing machines.

Conjecture 3.3.1. If y ∈ Γω is interactively producible with respect to environment E and
the oracle comparable to E — ΘE — is in ∅(n), then y ∈ ∆0

n+1.

Proof. Suppose y is interactively producible by interactive Turing machine M with respect
to environment E. Then by Lemma 3.2.3, y is also producible by a comparable o-machine
M ′ with comparable oracle ΘE . Then y ≤T ΘE . Since ΘE is assumed to be in ∅(n), also
y ≤T ∅(n). By Post’s Theorem, then y ∈ ∆0

n+1.

Corollary 3.3.2. The set of streams producible by interactive Turing machines with an ∅(n)

environment ⊆ ∆0
n+1.

Van Leeuwen and Wiedermann [68, 69] argue that lineages of cognitive transducers and
communities of active cognitive transducers are as powerful as interactive Turing machines
with advice. These interactive Turing machines with advice are non-uniform interactive
models of computation. We propose to compare the streams producible by interactive Tur-
ing machines with advice to those producible by o-machines with two oracles: the first
oracle providing the information provided by the interaction partner of the interactive Tur-
ing machine with advice, and the other oracle providing the information of the advice.
Then, we conjecture that the power of o-machines with two oracles A1 and A2 depends
on the degree of unsolvability of the most unsolvable oracle. If this conjecture is true,
o-machines with two Turing-computable oracles can not produce non-Turing-computable
output streams. In general, o-machines with ∅(n) and ∅(m) oracle can produce ∆k+1 output
streams, where k = max(n,m). This adheres to saying that interactive Turing machines
with advice with ∅(n) interaction partner and ∅(m) advice can produce ∆k+1 output streams,
where k = max(n,m). Since lineages of cognitive transducers and communities of active cog-
nitive transducers are equally powerful as interactive Turing machines with advice, lineages
of cognitive transducers with ∅(n) interaction partner and ∅(m) evolution function, and com-
munities of active cognitive transducers with ∅(n) interaction partner and ∅(m) description
function can produce ∆k+1 output streams.

3.4 Realisability and exploitability

In Section 3.2, we discussed a selection of resources used by models of computation in order
to gain hypercomputational power. These models are theoretical ones, and the resources
they use, as well as the objects they manipulate, are abstract ones. We refer to such mod-
els capable of hypercomputation as ‘hypercomputational models’. An interesting question is
whether these hypercomputational models are physically realisable. In other words, whether
nature allows for the existence or construction of physical systems that implement the hy-
percomputational models. We refer to physical systems capable of hypercomputation as
‘hypercomputational systems’. Another question concerns the exploitability of the hyper-
computational power of such systems; whether or not their hypercomputational power can
be used to solve some predefined non-Turing-computable problem.

The physical realisability of hypercomputational models and the exploitability of their
hypercomputational power is subject to debate. In fact, the issues seem to be at the heart
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of the controversy around hypercomputation. Ord [43, p. 144] states that “[t]he question
whether or not we can physically compute more than the Turing machine is of fundamen-
tal importance and very much open”. He [42] points out that claims about the physical
realisability and exploitability are in fact claims about the nature of physics. Therefore,
he adds, an assessment of the physical realisability of hypercomputational models and the
exploitability of their hypercomputational power can only be based on current physics. Ac-
cording to Ord [43, p.144], “there are several places within current physical theories that
hypercomputational processes might be found and there is little argument in the literature
to show that of all the myriad ways that physical processes might combine, none of them will
be hypercomputational”. Davis [21, 22], on the other hand, argues that physical hypercom-
putation seems to be impossible according to currently accepted physical theories. For Davis
[21, 22], the infeasibility of exploitable hypercomputation with respect to current physics
is even reason to argue that “there is no such discipline as hypercomputation” [22, p. 4].
Stannett [53, p. 8] remarks that physical realisability is “in a sense a secondary issue”, since
“even if we accepted hypercomputation as having no basis whatsoever in physical reality, it
is nonetheless an eminently useful logical idea, which offers a more comprehensive model of
mathematical, physical and biologic processes than its merely computational counterpart”.
According to Copeland and Proudfoot, “‘hypermachines’ can be described on paper, but no
one as yet knows whether it will be possible to build one” [18, p. 101]. It is clear that, up
to the present, there is no generally accepted answer to the question of physical realisability
and exploitability of hypercomputation.

In this section, we discuss issues concerning the physical realisability and exploitability
of hypercomputational models with respect to the resources they use. In this discussion,
we focus on resources used by Van Leeuwen and Wiedermann’s lineages of cognitive trans-
ducers and communities of active cognitive transducers. For an assessment of a selection of
other resources, such as infinite memory, and fair non-determinism, with respect to physical
realisability and exploitability, we refer to [42].

External information resources

First, we discuss the issues of realisability and exploitability with regard to hypercomputa-
tional models making use of an external information resource. These models, among which
o-machines, and Turing machines with advice are basically standard machines, like Tur-
ing machines. Hence, these models are physically realisable as far as Turing machines are.
Technically, the external resources they use are not part of the models. However, whether
or not the physical implementation of these models are also capable of hypercomputation
depends on whether nature provides for the external resources they use. The existence or
constructibility of physical implementations of non-Turing-computable information sources
is crucial to the hypercomputational power of the systems corresponding to these models.
Ord [42] points out that in order for physical systems implementing such models to be able
to perform hypercomputation, the systems must have access to an external non-Turing-
computable information source in nature.

According to Ord [42], candidates for such physical non-Turing-computable information
sources are real valued quantities, as well as non-Turing computable processes. He states
that since there are uncountably many real numbers, but only countably many Turing-
computable real numbers, it is quite plausible that quantities exist in nature which take
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non-Turing computable values. Unfortunately, Ord adds, accessing such a non-Turing-
computable real value requires arbitrary precision measurement, which seems impossible
according to current physical theories. Davis [21] is pessimistic about the existence of non-
Turing-computable values in nature. He states that “twentieth century physics has tended
to see physical quantities as made up of discrete units” [21, p. 206].

The other approach, according to Ord [42], would be to observe some non-Turing-
computable physical process, and use it in the computation. He points out that quan-
tum mechanics suggests that random processes exist, and these processes are non-Turing-
computable with probability one. However, Ord adds that even if processes existed in nature
which are completely random in the sense of probability theory, these processes would be
completely useless in the computation of a non-Turing computable mathematical function.
Ord states that the existence of other non-Turing-computable processes, such as processes
that could be used to produce for example τ — the real number corresponding to the halt-
ing set — is not physically impossible. On the other hand, he adds, we could not know for
certain that we were actually dealing with the required process for our problem. Checking if
we really dealt with, say τ , would require us to generate τ in the first place, and then check
whether the process indeed corresponds to τ bit by bit. Davis [21] argues that even if one
had access to a non-Turing-computable real number, “in order to use it as an oracle, one
would also have to know its degree of unsolvability” [21, p. 207]. Ord explains that the best
way would be if our best physical theory predicts this process to be the required one. He
concludes that the ability to justify scientifically that using the resource gives the intended
results is indeed a condition for all potential hypercomputational information resources to
be harnessable. Davis states that “[i]n any case, a usable physical representation of an un-
computable function, would require a revolutionary new physical theory, and one that would
be impossible to verify because of the inherent limitations of physical measurement” [21, p.
207]. Although the existence of non-Turing-computable quantities and processes in nature
is not implausible, Cooper and Odifreddi [15] and Cooper [14] note that there is currently
no evidence for the existence of non-Turing-computability in nature.

Infinite operation

Second, we consider the resource of infinite operation. Models using infinite operation as
a resource, such as ω-machines and interaction machines, are basically classical models.
Therefore, they are physically realisable as far as Turing machines are. However, their hy-
percomputational power relies on infinite computation time. For systems based on models
which compute functions from finite inputs to finite outputs using infinitely many computa-
tional steps, one cannot wait infinitely long for the result of the computation. From systems
based on models which translate infinite streams to infinite streams, in finite time, only a
finite part of the translation can be finished. The only way for their hypercomputational
power to be exploitable seems to be to observe the results of infinitely many computational
steps in finite time. Hogarth [27] argues that there are relativistic space-times which allow
an observer to view the eternity of the computer’s computational process in finite time.
Malament-Hogarth space-times, as such space-times are called now, are predicted to occur
around black holes.

The accelerated Turing machine explicitly performs infinite computations in finite time
by performing each time step in half the time used for the previous step. Ord [42] points
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out that this acceleration is highly problematic. One possibility would be for the tape head
to move faster and faster with each step, which means that it eventually must go faster than
the speed of light. As Ord [42] explains, this is at the edge of physical plausibility. Another
possibility would be to decrease the distance that the head needs to move at each step [20].
However, this approach requires infinite spatial precision, which according to Ord [42] seems
to be in conflict with quantum mechanics.

Infinite specification

In the infinite state Turing machine, the distinction between a classical part and an external
resource cannot be made. Infinite state Turing machines have an explicit. As Ord [42]
points out, specifying an infinite state Turing machine to compute an arbitrary function
from N to N seems at least as hard as computing the function itself. On the other hand, if
an infinite state Turing machine would be physically realisable, then its hypercomputational
power would be exploitable.
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Decide ∆0
1 sets/ Produce ∆0

1 streams

Turing machines

o-machines Turing-computable oracle [42]

TM/A’s Turing-computable advice

asynchronous networks of TM’s synchronous or

Turing-computable timing function [42]

interactive Turing machines with interaction partner whose

comparable oracle is Turing-computable

(conjecture)

interactive Turing machines with advice with Turing-computable interaction partner and

Turing-computable advice

(conjecture)

lineages of cognitive transducers Turing-computable interaction partner and

Turing-computable evolution function

(conjecture)

communities of active cognitive transducers Turing-computable interaction partner and

Turing-computable description function

(conjecture)

Decide ∆0
n+1 sets/ Produce ∆0

n+1 streams

o-machines ∅(n) oracle [42]

TM/A’s ∅(n) advice

interactive Turing machines with interaction partner whose

comparable oracle is ∅(n)

(upper bound, conjecture)

interactive Turing machines with advice with ∅k interaction partner and

∅l advice, where max(k, l) = n

(upper bound, conjecture)

lineages of cognitive transducers ∅(k) interaction partner

∅(l) evolution function

where max(k, l) = n

communities of active cognitive transducers ∅(k) interaction partner

∅(l) description function

where max(k, l) = n

Table 3.1: The relative computational powers of models.
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Chapter 4

Artificial life

In [69, 68], Van Leeuwen and Wiedermann study the computational power of artificial living
systems. The study of artificial living systems is called ‘Artificial Life’ or ‘ALife’. ALife is a
relatively new field of research, which encompasses a broad range of research efforts. We do
not go into detail on examples of ALife here, but rather discuss some of its central concepts
and main methods. The aim of this discussion is to better understand the scope of Van
Leeuwen and Wiedermann’s results, as well as the implications of these results for ALife.

Bedau [5, p. 595] very generally refers to ALife as “an interdisciplinary study of life and
life-like processes”. Bonabeau and Theraulaz consider ALife as “a general method consist-
ing in generating ... behaviors that are interpretable as lifelike” [6, p. 303]. They add that
although this definition applies to almost everything that is done within the framework of
ALife, “depending on the field to which it applies, this framework leads to very different
results. For example, biologists do not have the same vision of artificial life as, say, com-
puter scientists, artificial intelligence (AI) researchers, engineers or even artists” [6, p. 303].
Although there is an overlap with biology, Langton points out that ALife [34, p. 1] “com-
plements the traditional biological sciences concerned with the analysis of living organisms
by attempting to synthesize life-like behaviors within computers and other artificial media”.
In Section 4.1, we discuss the characteristics of living systems, and in Section 4.2, we discuss
synthesis as the main method of ALife.

There are mainly two approaches to ALife [54]: the modelling and the engineering ap-
proach. The modelling approach aims at constructing systems that accurately model living
systems. These models can then be used to test hypotheses regarding the behaviour of living
systems. In this context, Bedau writes that ALife “attempts to understand living systems
by artificially synthesizing extremely simple forms of them”, whereby “it focuses on the
essential rather than the contingent features of living systems” [5, p. 595]. The engineer-
ing approach aims at designing systems to accomplish some given complex task, inspired
by the way natural systems accomplish it. Langton [36, p. x] explains that “[n]ature has
discovered ingenious solutions to many hard engineering problems, problems that we have
not been able to solve by our traditional engineering methods. The synthetic process of
attempting to recreate these biological solutions in other materials will be of great practical
use”.

Based on the medium used for synthesising, ALife is usually divided into three approaches
(see e.g. [5]): ‘wet’ ALife is concerned with the creation of life-like systems using biochemical
materials, ‘soft’ ALife involves simulating life-like behaviour on a computer or other purely
digital constructions, and ‘hard’ ALife creates hardware implementations of life-like systems.
In soft ALife computers are used as a tool for synthesising life, and therefore there is an
interesting link between ALife and the theory of computation. Langton [34] points out that
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ALife requires a computational paradigm that differs from the standard Turing machine
paradigm in a number of ways. We discuss this paradigm, as well as a model that is
exemplary for this paradigm — the cellular automaton — in Section 4.3. In Section 4.4, we
discuss hard ALife with a focus on concepts like embodiment and situatedness, and the role
of a real physical environment.

4.1 Living systems

ALife is characterised by Langton as “the study of man-made systems that exhibit behaviors
characteristic of natural living systems” [34, p. 1]. A natural living system is a multilevel
phenomenon. Taylor and Jefferson [54, p. 1] explain that “[n]atural life on earth is organized
into at least four fundamental levels of structure: the molecular level, the cellular level, the
organism level, and the population-ecosystem level”. Similarly, Bedau [4, p. 506] states that
“[l]ife exhibits complex adaptive behavior at many different levels of analysis: metabolic
and genomic networks, single cells, whole organisms, social groups, evolving ecologies, and
so forth”. Taylor and Jefferson add that “[a] living thing at any of these levels is a complex
adaptive system exhibiting behavior that emerges from the interaction of a large number of
elements from the levels below” [54, p. 1]. A complex system is “a network of interacting
objects, agents, elements, or processes that exhibit a dynamic, aggregate behaviour” [6, p.
305]. Complex adaptive systems are special cases of complex systems, in which the elements
adapt or learn as they interact [29]. That is, in complex adaptive systems, “the rules
governing the elements are reshaped over time by some process of adaptation or learning”
[4, p. 506]. Complex adaptive systems are central to artificial life, and ALife models reflect
the complex adaptive nature of natural living systems.

4.2 Synthesis

Synthesis is the procedure of combining elements or components into a whole, as opposed
to analysis, which is the procedure of breaking down a whole into parts or components. Ac-
cording to Bonabeau and Theraulaz, most of the work that has been done in ALife is based
on the assumption that “synthesis is the most appropriate approach to the study of complex
systems in general and of living complex systems in particular” [6, p. 303]. They add that
synthesis “seems to be a good candidate, if not the only one, to explore the behavioral space
of complex systems” [6, p. 305]. Bonabeau and Theraulaz [6] explain that it seems harder
to start from manifestations of life, and try to find its basic underlying principles by top-
down analysis than to start from simulations and try to synthesise behaviours of increasing
complexity, which might eventually capture some aspects of life. Rather than top-down,
models in ALife are therefore typically constructed from the bottom up by synthesis. This
is also a fundamental difference between the approach of traditional symbolic AI and ALife
in studying complex natural phenomena. As Bedau [5, p. 597] points out, “[m]ost tradi-
tional AI models are top-down-specified serial systems involving a complicated, centralized
controller that makes decisions based on access to all aspects of global state. The controller’s
decisions have the potential to affect directly any aspect of the whole system”. Artificial life
models, on the other hand, reflect the distributed, parallel, and interactive nature of many
natural living systems. As Bedau [5, p. 597] explains, alife models “are bottom-up-specified
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parallel systems of simple agents interacting locally. The models are repeatedly iterated
and the resulting global behavior is observed ... The whole system’s behavior is represented
only indirectly. It arises out of interactions among directly represented parts (‘agents’ or
‘individuals’) and their physical and social environment”.

The synthetic method of ALife allows for studying “life-as-it-could-be”, rather than re-
stricting the study to “life-as-we-know-it” [34, p. 1]. Langton [36, p. x] states that “[t]he
set of biological entities provided to us by nature, broad and diverse as it is, is dominated by
accident and historical contingency. We trust implicitly that there were lawful regularities
at work in the determination of this set, but it is unlikely that we will discover many of these
regularities by restricting ourselves only to the set of biological entities that nature actually
provided us with. Rather, such regularities will be found only by exploring the much larger
set of possible biological entities ... This is the role of synthesis, and this is the primary
motivation for the field of Artificial Life: to give us a glimpse of that wider space of possible
biologies”.

However, Bonabeau and Theraulaz [6] point to the drawbacks of the synthetic approach
in ALife. They explain that life-as-it-could be is ill-defined, and without taking into account
empirical constraints observed by higher-level sciences, synthesis leads to exploration of all
behaviours allowed by the exploration. This space of exploration then becomes immense.
Moreover, Bonabeau and Theraulaz explain that the models constructed by synthesis have
weakened explanatory status for the phenomenon or behaviour they reproduce. They refer
to the distinction made by Putnam [46] between deducing and explaining properties of a
phenomenon from a set of causes. To explain the phenomenon is to determine the relevant
causes. Although for certain systems the microstructure might be largely irrelevant, the
number of remaining relevant causes might also be very high.

4.3 Soft ALife

Synthesis is the main method in the field of ALife, but different media can be used for
synthesis. The media used are often divided in three categories: biochemical materials,
digital computers, and hardware. In ‘soft ALife’ (‘soft’ from ‘software’), the computer is
used as a tool for synthesising life-like systems. The use of computers points to a relation
between soft ALife and the theory of computation. In this section, we discuss this relation in
more detail. Then, we discuss a prototypical example of soft ALife: the cellular automaton.
The cellular automaton is a well-studied model, and its behaviour has been characterised
into four classes by Wolfram [72]. These classes of cellular automaton behaviour have been
related to results from computability theory.

Soft ALife and computation

Langton [34] points out that the work of Gödel, Church, Kleene, Turing, and Post in the
theory of computation led to the realisation that “the essence of a mechanical process — the
‘thing’ responsible for its dynamic behavior — is not a thing at all, but an abstract control
structure, or ‘program’ — a selection of simple actions from a finite repertoire”, the essential
features of which “could be captured within an abstract set of rules — a formal specification
— without regard to the material out of which the machine was constructed” [34, p. 11].
The universal Turing machine provides an insightful illustration of this; it receives a formal
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description of a Turing machine M as input, and simulates M on provided input. In this
way, the behaviour of M is produced without actually building a machine for M . General
purpose computers are machines that resemble the universal Turing machine in this respect.

Machines can thus be thought of in terms of their formal description. Reversely, Langton
explains, “we can ... view abstract, formal specifications as potential machines” [34, p. 11].
He argues that “[i]n mapping the machines of our common experience to formal specifica-
tions, we have by no means exhausted the space of possible specifications. Indeed, most of
our individual machines map to a very small subset of the space of specifications — a subset
largely characterized by methodical, boring, uninteresting dynamics. When placed together
in aggregates, however, even the simplest machines can participate in extremely complicated
dynamics” [34, p. 11]. Here, general purpose computers come in as a useful tool, since they
can be given a program, or formal description, and simulate the corresponding machine.

However, work in the theory of computation has also revealed the intrinsic limitations of
universal Turing machines, and hence of general purpose computers that operate under the
scenario of the Turing machine. Langton [34] points out that the behaviours that can be
generated by general purpose computers are limited in two ways. First, for some behaviours,
it is not possible in principle to give an algorithm that produces that behaviour. These are
the behaviours that are non-Turing-computable. An example of a non-Turing-computable
function is the halting function we mentioned in Chapter 3. The non-Turing-computability
of the halting function is a special case of a more general result by Rice [47]. Informally,
Rice’s theorem states that it is not in general effectively decidable whether the function
φM computed by some Turing machine M has a certain non-trivial property. A non-trivial
property is a property that is held by at least one, but not all Turing-computable functions.
Rice’s theorem states that non-trivial properties of the future behaviour of an algorithm
cannot be predicted in an effective way. Second, Langton [34] points out that there are
behaviours for which we do not know an algorithm to produce it, even though such an
algorithm may exist in principle. Therefore, he explains, “[w]e need to separate the notion
of a formal specification of a machine ... from the notion of a formal specification of a
machine’s behavior — that is, a specification of the sequence of transitions that the machine
will undergo. We have formal systems for the former, but not for the latter. In general we
can neither derive behaviors from specifications nor derive specifications from behaviors”
[34, p. 12]. This is an important insight for ALife, since it entails that for some machines,
in order to determine their behaviour, the only option is to run the machine and observe
their behaviour. Langton adds that “[t]his has consequences for the methods by which we
(or nature) go about generating behavior generators themselves” [34, p. 12].

Although general purpose computers are used as a tool for synthesising life-like behaviour
in ALife , the computational paradigm of the Turing machine is not suitable for ALife.
Langton [34, p. 3] points out that ALife requires a new approach to computation: “one that
focuses on ongoing dynamic behaviour rather than on any final result”. It is this ongoing
dynamics, or behaviour of the system at hand that is interesting to ALife, not the ultimate
state reached by that dynamics. Langton [34] explains that most historical attempts to
build imitations of living things involved a central program which was responsible for the
dynamical behaviour of the model. However, he argues, “[t]he most promising approaches
to modeling complex systems like life or intelligence are those which have dispensed with
the notion of a centralized global controller, and have focused instead on mechanisms for
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the distributed control of behavior” [34, p. 21]. Langton identifies some essential features to
computer-based alife models. First, they should consist of populations of simple programs.
Second, there should be no program controlling all of the other programs. Third, each
program should specify the way in which a simple entity reacts to local situations in its
environment, including interactions with other entities. Finally, there should be no rules
that dictate global behaviour. As a result, any behaviour at levels higher than the individual
programs should be emergent.

Cellular automata

A prototypical model of the computational paradigm suitable for soft ALife is the cellular
automaton (CA). This model of computation is originally due to Van Neumann [65] by
Ulam’s suggestion. According to Wolfram [72, p. 1] “Cellular automata are mathematical
models for complex natural systems containing large numbers of simple identical components
with local interactions”. Langton [34, p. 13] states that “CA’s are good examples of the
kind if computational paradigm sought after by Artificial Life: bottom-up, parallel, local-
determination of behavior”.

A standard cellular automaton consists of a regular lattice of cells L, each of which
contains an identical deterministic finite state automaton. At any time, each finite state
automaton can be in only one of a finite number of states. A neighbourhood relation is
defined over the lattice, assigning to each cell a set of neighbour cells. At each time, every
finite state automaton makes a state transition according to its transition function. Thereby,
it takes as input the states of all cells in its immediate neighbourhood, including its own
state. The state of the CA at time t is the collection of states of each of its components.

At time t = 0, the initial state of the CA must be given. In one time-step, all finite
state automata residing at the cells are updated. Since each of the finite state automata
behaves deterministically, the evolution of the CA is also deterministic. In fact, since each
of the finite state machines has only a finite set of possible states, say Q, a CA with n cells
can enter only in |Q|n different states. The set of possible states a CA can enter is called
its ‘state space’. The evolution of a cellular automaton can be studied by observing the
sequence of configurations it goes through in its state space. Note that it is the state of the
CA that changes over time, not the structure of the CA.

Wolfram [72] studied cellular automata in a systematic way and found empirical evidence
for the existence of four qualitative classes of cellular automaton limiting behaviour (see
Table 4.1). In [71], Wolfram relates this classification to characterisations in the stability or
predictability of the cellular automata behaviour under small perturbations in their initial
configurations. Wolfram’s classes and their stability and predictability characteristics are
shown in Table 4.1. Langton [35] makes a connection between Wolfram’s classes of automata
and the halting problem. He explains that there are three possibilities for the ability to decide
the outcome of a computation: we are able to determine that the computation eventually
halts, or that it will never halt, or we are not able to determine whether or not it will halt.
These three possibilities, Langton continues, are reflected in the possibilities for the ultimate
outcome of cellular automaton behaviour. Class I and II automata “‘freeze up’ into short-
period behavior from any possible configuration” [35, p. 33]. Class III automata, on the
other hand, “will never freeze into periodic behaviour” [35, p. 33]. For Class IV automata it
“will be ‘effectively’ undecidable whether a particular rule operating on a particular initial
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Class Limiting behaviour Stability Predictability

I Evolution to a ho-
mogeneous state

No change in final
state

Entirely predictable, in-
dependent of initial state

II Evolution to a set
of simple stable or
periodic states

A change of a cell
state in the initial
configuration only
affects the final
cell state of cells
relatively nearby
the changed cell

Local behaviour is pre-
dictable from local initial
state

III Evolution to a
chaotic, aperiodic
configuration

A small change in
the initial state
leads to changes
over an ever-
increasing region

Behaviour depends on
ever-increasing initial re-
gion

IV Evolution to com-
plex localised pat-
terns, which are
sometimes propa-
gating

Irregular changes Effectively unpredictable

Table 4.1: Wolfram classes of cellular automata, and their characteristic limiting behaviour,
stability under small perturbations, and predictability.

configuration will ultimately lead to a frozen state or not” [35, p. 33].

In [11], Cook proves Wolfram’s [72] conjecture that cellular automata are capable of
universal computation. In fact, Cook proves this for one of the most simple one-dimensional
cellular automata. The implication of this result is that many questions concerning the
behaviour of cellular automata, such as whether the CA will reach a stable state in the limit
for arbitrary initial condition, are in general undecidable.

4.4 Hard ALife

In the previous section, we discussed soft ALife, which is concerned with synthesising life-
like behaviour using digital computers as a medium. Hard ALife , on the other hand, its
concerned with physical artificial living systems. Much of the work in hard ALife involves
autonomous agents, or robots. According to Bedau, “[h]ard artificial life tries to synthesize
autonomous adaptive and intelligent behavior in the real world ... by exploiting biological
inspiration whenever possible” [5, p. 600]. Hard ALife is especially suitable for the relatively
new approach of ‘adaptive autonomous agents’, although Maes [37] notes that this approach
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is not necessarily restricted to hardware forms of ALife.

Adaptive autonomous agents

Research in adaptive autonomous agents is also called ‘behaviour-based AI’, or ‘bottom-
up AI’. Adaptive autonomous agents are “systems that inhabit a dynamic, unpredictable
environment in which they try to satisfy a set of time-dependent goals or motivations” [37,
p. 135]. Maes [37] identifies some key points that distinguish traditional AI, or ‘top-down
AI’, from the research in autonomous agents. One of these key points is that mainstream
AI focuses on ‘closed’ systems. These systems do not directly interact with their problem
domain — their environment — but only in an indirect and controlled way via a human
operator. Autonomous agents, on the other hand, are ‘open systems’, which are ‘situated’ in
their environment. This means that an agent has sensors and actuators through which it is
directly connected to its problem domain. Actuators enable the agent to affect its problem
domain. This domain is typically dynamic, unpredictable, and possibly incorporates other
natural or artificial agents. The dynamic nature of the environment puts time constraints
on actions or reactions of autonomous agents.

Another key difference identified by Maes [37] is that traditional AI systems typically deal
with one problem at a time, and that the system shuts out the environment while solving
the problem. This means that “from the system’s point of view, the problem domain does
not change while the system is computing” [37, p. 137]. In contrast, autonomous adaptive
agents have to monitor their environment for new problems and goals, and possibly deal
with conflicting goals simultaneously.

Moreover, Maes [37] points out that traditional AI is typically not concerned with how
systems have to adapt over time to changing situations. In autonomous agents research, on
the other hand, adaptation is a central focus point. Either the agents improve their own
structure, and hence their behaviour over time based on experience, or the designer evolves
gradually adds structure to the existing system to evolve it into a more sophisticated system.

Maes [37] discusses two important insights in which research in autonomous agents is
grounded. The first insight is that “[l]ooking at complete systems changes the problems often
in a favorable way” [37, p. 139]. Among other things, complete systems are situated in an
environment. According to Bedau [5], the fact that hardware agents are embodied as well as
situated in a real environment yields an advantage for hard ALife. The physical environment
can be exploited for generating autonomous, adaptive, and intelligent behaviour. Bedau
explains that “[o]ne of the tricks is to let the physical environment be largely responsible
for generating the behavior. Rather than relying on an elaborate and detailed internal
representation of the external environment, the behavior of biologically-inspired robotics
quite directly depends on the system’s sensory input from its immediate environment. With
the right sensory-motor connections, a system can quickly and intelligently navigate in
complex and unpredictable environments” [5, p. 600]. Moreover, Maes [37] points out that
agents are typically part of a society, composed of other agents, solving similar problems in
the same environment. This allows agents to make use of the problem solving abilities of
other agents, for example by observing or imitating others.

The second insight is that “[i]nteraction dynamics can lead to emergent complexity [37,
p. 139]. This means that “the internal structures controlling an agent need not be complex
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to produce complex resulting behavior” [37, p. 140]. In bottom-up generated complexity,
none of the components is primarily responsible for the complex behaviour. Therefore, this
emergent complexity is often more robust than top-down organised complexity. Moreover,
Maes [37] argues that systems consisting of parallel, interacting components are able to
adapt more quickly to the dynamical environment than sequential systems, since multiple
solutions can be explored in parallel.



Chapter 5

Emergence

The third and last notion present in Van Leeuwen and Wiedermann’s [68, 69] claims is
the notion of emergence. In order to review Van Leeuwen and Wiedermann’s claims more
critically, we discuss emergence in more detail in this chapter. Although the idea of emer-
gence probably can be traced back to ancient philosophy, the concept was first worked out
comprehensively by a number of British scientists in the late nineteenth and early twentieth
century, among which Mill [38], Broad [7], Morgan [40], and Alexander [1]. These scientists
and their view of emergence are nowadays referred to as ‘British emergentists’ and ‘British
emergentism’ respectively. For a brief history of British emergentism, we refer to [41]. Since
then, the term ‘emergence’ has been used in various contexts, for different purposes, and
with different meanings. This has become even more apparent now that there is renewed
interest in emergence within in the field of complex system theory. Kim [33, pp. 547-548]
nicely verbalises the lack of consistency in the use of the term emergence that has come
with its recent growth in popularity when he states that “[w]e now see the term being freely
bandied about ... with little visible regard for whether its use is underpinned by a consis-
tent, tolerably unified, and shared meaning”. Cooper [13, p. 194] writes that “[f]or the most
part, the emergence of Emergence as something about which everyone has something to say,
has generated more questions than answers, and more excitement than clarity”. Ronald,
Sipper and Capcarrère even observe that “overly facile use of the term emergence has made
it controversial” [48, p. 225]. According to Cooper [14, p. 1352], “[e]mergence lies at the
core of a number of controversies in science”.

As appears from the above statement, there is no generally accepted notion of emergence.
However, before discussing some of the existing notions of emergence, we try to pin down
a number of its general characteristics. According to Schröder [50], things, properties, and
laws can be labelled ‘emergent’. However, he adds, the most basic class of the three seems
to be the class of emergent properties, as a thing can be emergent only if it has at least one
emergent property, and a law can be considered emergent if it connects emergent proper-
ties. According to Schröder, emergent properties are generally considered the properties of
complex systems, not properties of elementary particles. Moreover, in general, in order to
be considered emergent, a property of a complex thing must not be a property of a proper
part of that thing. O’Connor and Wong [41] give a general definition of emergent entities as
entities that “‘arise’ out of more fundamental entities and yet are ‘novel’ or ‘irreducible’ with
respect to them”. According to Kim, “the intuitive idea of an emergent property stems from
the thought that a purely physical system, composed exclusively of bits of matter, when it
reaches a certain degree of complexity in its structural organization, can begin to exhibit
genuinely novel properties not possessed by its simpler constituents” [33, p. 548]. However,
Kim adds, in this idea it is not yet made precise what is meant by a ‘novel’ property. It is
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exactly in making the idea of what emergence is more precise that disputes arise.
In Section 5.1, we first introduce Humphreys’ [30] twofold taxonomy of emergence. Then,

we discuss two notions of emergence in more detail: a version of strong emergence by Kim [33,
32] in Section 5.2, and Bedau’s [3] notion of weak emergence in Section 5.3. Strong emergence
[33] has significant continuity with the traditional, British emergentist view of emergence.
Weak emergence [3] is specifically applicable in the context of complex systems. Therefore,
it is especially relevant to ALife, and our discussion of Van Leeuwen and Wiedermann’s
claim.

5.1 A relational and temporal taxonomy
Humphreys [30] presents a relational, as well as a temporal taxonomy of emergence. The
relational taxonomy is based on the relation between the emergent entity and the entities
from which it emerges. The taxonomy has three divisions: the inferential approach, the
conceptual approach, and the ontological approach. In the inferential approach, “an entity
... is emergent with respect to a domain D if and only if it is impossible, on the basis of
a complete theory of D, to effectively predict that entity or to effectively compute a state
corresponding to that feature” [30, p. 584]. According to Humphreys, one of the examples
of computationally based treatments of the inferential approach is weak emergence, which
we discuss below. In the conceptual approach, “an entity ... is conceptually emergent with
respect to theoretical framework F if and only if a conceptual or descriptive apparatus that
is not in F must be developed in order to effectively represent that entity” [30, p. 585].
In the ontological approach, “an entity is ontologically emergent with respect to domain D
if and only if that entity is ontologically irreducible to entities in domain D” [30, p. 585].
Humphrey adds that the three approaches are not mutually exclusive. He stresses that in
order for elements to fall into either one of these three categories, the elements ought to be
relational. That is, the criteria for emergence are not applicable to an entity in isolation, but
with respect to a domain D or framework F . The relevant relations between the emergent
entity and the domain or framework determine the emergent status of the entity.

The temporal taxonomy has two divisions: diachronic emergence, and synchronic emer-
gence. An emergent phenomenon is a case of diachronic emergence if it emerges from
preceding phenomena due to a temporally extended process. Synchronic emergence, on the
other hand, involves properties at a higher-level, which emerge from lower level properties
existing at the same time.

5.2 Strong emergence
Kim [33] argues for significant continuity with the concept that British emergentists seem
to have had in mind. He identifies two components that are necessary for any concept of
emergence that is true to its historical origins: supervenience and irreducibility of emergents.
Supervenience is defined in [33, p. 550] as follows.

Definition 5.2.1 (Supervenience/determination). Property M supervenes on, or is deter-
mined by, properties N1, ..., Nn in the sense that whenever anything has N1, ..., N2 [sic], it
necessarily has M .

According to Kim [33], supervenience is the first condition for emergence. Kim explains
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that the second condition — irreducibility — requires more discussion. First, he defines
two other relations a property can bear to a set of other properties: predictability and
explainability. The following definitions are from [33, p. 550].

Definition 5.2.2 (Predictability). The occurrence of M – that is, whether M will be in-
stantiated on a given occasion – can be predicted from the occurrence of N1, ..., N2 [sic];
full information concerning whether N1, ..., Nn are instantiated in a system suffices for the
prediction of whether the system instantiates M .

Definition 5.2.3 (Explainability). Why a system instantiates M can be explained, under-
stood, and made intelligible in terms of its instantiating N1, ..., Nn.

According to Kim [33], British emergentists seemed to deny predictability or explain-
ability of emergent properties from its basal conditions. However, in the above definitions,
the notions of prediction and explanation remain vague and intuitive ones. This can be
problematic. Kim [33] points out that if the ‘emergence law’ linking the phenomenon with
facts at a basal level is included in the evidence base, in some sense, the occurrence of an
emergent phenomenon can indeed be predicted inductively. The same holds for explainabil-
ity. Nagelian ‘bridge-laws’, connecting properties to be reduced with base-level properties,
are not allowed in reductive prediction or explanation. The very question of emergentists is
why these particular bridge laws hold.

Kim [32] introduces a model to accommodate what he calls ‘functional reduction’. Func-
tional reduction proceeds via the process of ‘functionalisation’ of the property to be reduced
in terms of properties at the base level. This process proceeds as follows. Let B be the
reduction base, the domain of facts, properties, containing the basal conditions for emergent
properties. Property E must be functionalised, that is, “construed ... as a property defined
by its causal/nomic relations to other properties, specifically properties in the reduction base
B” [32, p. 10]. Having E is then defined as having some property P in B such that C1, ..., Cn
cause P to be instantiated, and P causes F1, ..., Fm to be instantiated. Any property P that
satisfies this specification is a so called ‘realiser’ of E. Then, realisers of E are to be found
in B through empirical scientific research. Finally, a theory is to be found at the level of B
that explains how realisers of E perform the causal task that is constitutive of E. Kim [33]
identifies irreducibility of emergents as the second condition of emergence.

(Condition 1. Supervenience). If property M emerges from properties N1, ..., Nn, then M
supervenes on N1, ..., Nn.

(Condition 2. Irreducibility of emergents). Property M is emergent from a set of properties,
N1, ..., Nn only if M is not functionally reducible with the set of the Ns as its realiser.

Although Kim argues that supervenience and irreducibility are indeed necessary compo-
nents of emergence in the classical, British emergentism conception, he proceeds by arguing
that these two components are not sufficient conditions of emergence. Actually, he states,
the two conditions are essentially negative: “[t]hey tell us what emergence is not; they do
not tell us anything – at least, not much – about what it is” [33, p. 557]. Kim adds that
any positive characterisation of emergence should “explain why emergents so characterized
supervene on their base properties and why, in spite of the supervenience relation, the for-
mer are not reducible to the latter; second, it must successfully cope with the problem of
downward causation” [33, p. 557].
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Kim [33] explains downward causation as follows. Suppose an instance of an emergent
property M causes another emergent property M∗ to instantiate. This is an instance of
so called ‘same-level causation’. As an emergent, M∗ must have a basal property P ∗ from
which it emerges. Since supervenience is a condition for emergence, M must supervene on
P ∗, which means that the presence of P ∗ itself guarantees that M∗ will be instantiated at
that time. That is, whenever P ∗ is present at that time, M∗ will also be present at that
time, regardless of whether M has been there at all. However, we assumed M to be the
cause of M∗. The only way to save the claim that M caused M∗ is to say that M caused
M∗ by causing P ∗. However, since P ∗ is a property at the base level, this would entail
‘downward causation’ from M to P ∗.
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Figure 5.1: Downward causation.
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Figure 5.2: Problem with downward causation.

Kim points out the problem with downward causation. Since M is itself an emergent
property, it must also have a base property, say P (see Figure 5.2(a)). If causation is under-
stood as nomological sufficiency, P is nomologically sufficient for M , and M is nomologically
sufficient for P ∗. It follows that P is nomologically sufficient for P ∗, and hence P qualifies
as a cause for P ∗ (see Figure 5.2(b)). If both M and P retain as a cause of P ∗, downward
causation has lead to causal overdetermination. Moreover, it goes against the emergentist
idea that emergents are to make distinctive and novel causal contributions.

5.3 Weak emergence
The notion of weak emergence, defined by Bedau [3], is a more “innocent form of emergence”
[3, p. 375]. Bedau points out that whereas strong emergence suffers from the problem
of downward causation by requiring emergents to have irreducible causal influences, weak
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emergence “involves downward causation only in the weak form created by the activity of the
micro-properties that constitute structural macro-properties” [3, p. 376]. Moreover, Bedau
argues that weak emergence is ubiquitous in complex systems, and is therefore especially
relevant to science. Since natural and artificial living systems are regarded as complex
systems, weak emergence is specifically relevant to ALife.

Weak emergence applies when there is a system S, which is composed out of a time-
varying set of low-level parts. S has various ‘microstates’, which are the intrinsic states of
its low-level parts. S also has various ‘macrostates’, which are structural properties fully
constituted out of its microstates. There is a microdynamic, denoted by D, which governs
the evolution of S’s microstates over time. This microdynamic might be ‘local’ in the sense
that it takes only the microstates of parts in a local neighbourhood into account when
determining the new state of a low-level part. External conditions are those conditions that
are “outside the system” [3, p. 378], affecting the system’s microstates. Bedau [3, p. 378]
defines weak emergence as follows.

Definition 5.3.1 (Weak emergence). Macrostate P of S with microdynamic D is weakly
emergent iff P can be derived from D and S’s external conditions but only by simulation.

If D is deterministic and S is a closed system, the only external condition is the system’s
initial condition. However, Bedau adds, “[i]f the system is open, then another kind of
‘external’ condition is the contingencies of the flux of parts and states through S. If the
microdynamic is non-deterministic, then each accidental effect is an ‘external’ condition” [3,
p.378].

Given the initial condition of the system, as well as the stream of all other external
conditions, one can simulate the system by iterating its microdynamic. Given the sequence
of external conditions, the microdynamic completely determines the sequence of microstates
the system goes through. Bedau points out that “[s]ince the macrostate P is a structural
property constituted out of the system’s microstates, the external conditions and the micro-
dynamic completely determine whether P materializes at any stage in the simulation. By
simulating the system in this way one can derive from the microdynamic plus the external
conditions whether P obtains at any given time after the initial condition. What distin-
guishes a weakly emergent macrostate is that this sort of simulation is required to derive
the macrostate’s behavior from the system’s microdynamic” [3, p. 287].

Bedau [3] points to a number of problems concerning weak emergence. First, a weakly
emergent property can in principle be ‘predicted’ from information about the system’s mi-
crodynamic and external conditions. This seems to go against traditional ideas of emergence.
However, Bedau [3] points out that in case of open systems, such a ‘prediction’ is only pos-
sible in principle. In practice, he explains, we do not have prior knowledge of accidental
changes resulting from interaction with the external world in the case of open systems. More-
over, he adds, even for closed, deterministic systems, ‘prediction’ by step-by-step iteration
of the system to observe its behaviour over time can hardly be called prediction.

Second, Bedau explains that in general, we may not have proof that a given macrostate
of a given system is not derivable without simulation. Hence, we cannot in general prove
that a property is weakly emergent. However, Bedau argues that weak emergence claims
can have substantial empirical support.
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Chapter 6

Discussion

In [68, 69], Van Leeuwen and Wiedermann claim that hypercomputational power can emerge
in artificial living systems. In this chapter, we review Van Leeuwen and Wiedermann’s claim
in more detail. Based on our previous account on hypercomputation, artificial life, and
emergence, we discuss in Section 6.1 whether Van Leeuwen and Wiedermann’s claim is indeed
tenable. In Section 6.2, we point to some implications of Van Leeuwen and Wiedermann’s
results for the field of ALife.

6.1 Tenability

In this section, we review the tenability of Van Leeuwen and Wiedermann’s [68, 69] claim
that hypercomputational power can emerge in artificial living systems. This discussion is
based on our reproduction of Van Leeuwen and Wiedermann’s argument in Chapter 2, as
well as our account on hypercomputation, artificial living systems, and emergence. First, we
discuss whether the computational models proposed by Van Leeuwen and Wiedermann can
indeed be considered artificial living systems. Then, we discuss whether Van Leeuwen and
Wiedermann’s models are indeed hypercomputational, and if so, whether we can give a more
specific characterisation of their power. Moreover, we point out what the hypercomputa-
tional power of the models means for the computational power of artificial or natural living
systems. Third, we examine whether Van Leeuwen and Wiedermann’s results, restated here
in Theorem 2.3.1 and Theorem 2.3.2, indeed involve a case of emergence, and if so, according
to which notion.

Artificial life

First, we discuss whether Van Leeuwen and Wiedermann’s [68, 69] results indeed say some-
thing about the computational power artificial living systems. In Chapter 2, we have seen
that to measure the computational power of natural or artificial living systems, Van Leeuwen
and Wiedermann present three computational models: the active cognitive transducer as a
model of an individual organism, the lineage of cognitive transducers as a model of subse-
quent generations of organisms, or alternatively of the subsequent stages in the process of
an individual organism’s adaptation, and the community of active cognitive transducers as
a model of a time-varying population of individuals. For Van Leeuwen and Wiedermann’s
claim to hold, it is important that their models are indeed accurate models of natural or
artificial living systems. In this discussion, we focus on communities of active cognitive
transducers.

In Chapter 4, we have seen that artificial living systems are man-made systems that
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exhibit life-like behaviour. One of the goals of the modelling approach to ALife is to find the
essential features of living systems. Research in ALife is mostly based on the assumption
that it is hard to find the underlying principles of life by analysing manifestations of life.
Rather, the central method used in ALife to find the fundamental features of living systems
is the synthesis of simple systems to generate of behaviours of increasing complexity. The
formulation of computational models of natural or artificial living systems seems to go
against this central assumption in ALife.

On the other hand, it is often held that to produce life-like behaviour, a system should
at least share the main characteristics of complex adaptive systems; it should be composed
of multiple interacting elements, which adapt as they interact, and which exhibit a dynamic,
aggregate behaviour. Van Leeuwen and Wiedermann’s communities of active cognitive trans-
ducers incorporate these characteristics of complex adaptive systems. At each time they are
composed of a number of individual active cognitive transducers, which communicate, or
interact with each other and the environment. At each time, the configuration of a com-
munity is described in terms of the configurations of its constituting parts at that time.
Likewise, the input and output to and from the community is described in terms of the in-
put and output to and from its constituting parts. Although the individual active cognitive
transducers in a community are not assumed to adapt or evolve over time, the community
as a whole evolves, since its composition changes over time. This scenario seems to include
evolutionary scenario’s that can be interpreted as evolving components. Therefore, it seems
that Van Leeuwen and Wiedermann’s communities of active cognitive transducers can be
interpreted as models of complex adaptive systems.

In Chapter 4, we have seen that living systems are multi-levelled phenomena, and a living
thing at each level is a complex adaptive system, consisting of multiple interacting elements,
which change over time. This means that communities of active cognitive transducers need
not necessarily be interpreted as models of systems on the population level, but can be
interpreted as complex adaptive system on different levels of structure.

Although the class of communities of active cognitive transducers seems to correspond to
the class of complex adaptive systems, this doesn’t mean that all instances of communities of
active cognitive transducers can automatically be considered artificial living systems as well.
Whether or not a given instance of the class of communities of active cognitive transducers is
an artificial living system can only be determined by finding out whether its behaviour can be
considered life-like. Rice’s theorem [47] states that even for Turing-equivalent systems, any
non-trivial property of a system’s behaviour is in general not effectively decidable by looking
at its description alone; it can only be concluded after running the system and observing its
behaviour. The same holds for properties of the behaviour of communities of active cognitive
transducers, which can in general not even be simulated by standard Turing machines.
Therefore, given an instance of communities of active cognitive transducers, determining
whether or not it is an artificial living system requires running the system and observing its
behaviour. The behaviour of a community of active cognitive transducers depends largely
on its description function, which determines how the community evolves over time, and on
its timing function, which has an influence on how the components communicate. The class
of communities of active cognitive transducers may include a large number of communities
of active cognitive transducers that exhibit non-interesting behaviour, which is either too
simple, or too chaotic to be considered life-like.

Therefore, our first conclusion is that Van Leeuwen and Wiedermann’s communities
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of active cognitive transducers seem to be accurate models of complex adaptive systems,
which include natural and artificial living systems. Determining whether an instance of the
class of communities of active cognitive transducers is an artificial living systems in general
requires running the system and observing its behaviour. Consequently, Van Leeuwen and
Wiedermann’s results seem to be assertions about the computational power of complex
adaptive systems in general, rather than of artificial living systems in specific.

Hypercomputation

Our second point of discussion concerns the hypercomputational power of Van Leeuwen and
Wiedermann’s [68, 69] models. More specifically, we first examine whether Van Leeuwen
and Wiedermann’s lineages of cognitive transducers and communities of active cognitive
transducers are indeed hypercomputational models. Then, we discuss whether it is possible
to give a more specific characterisation of the computational power of the models. Finally,
we discuss what the hypercomputational power of lineages of cognitive transducers and
communities of active cognitive transducers means for the computational power of their
physical counterparts: complex adaptive systems.

Before we discuss whether Van Leeuwen and Wiedermann’s models indeed possess hyper-
computational power, we remark that the authors use the term ‘super-Turing computing
power’ rather than ‘hypercomputational power’ to characterise the power of their models.
The authors refer to a system possessing super-Turing computing power as a system that
“can perform computational tasks that cannot be achieved by classical means, making use of
the computational mechanism of standard Turing machines or its equivalents” [69, p. 205].
In this description of super-Turing power, Van Leeuwen and Wiedermann do not seem to
require that the super-Turing system is also capable of computing the Turing-computable
functions. Therefore, the set of computing systems applying to Van Leeuwen and Wie-
dermann’s description of super-Turing systems may include systems that are ‘non-Turing’
according to Stannett’s [52] definition. Using the terminology adopted in this thesis, the
more inclusive term ‘hypercomputational power’ thus seems the most suited to the authors’
informal description.

Van Leeuwen and Wiedermann’s [68, 69] argument for the hypercomputational power of
lineages of cognitive transducers and communities of active cognitive transducers proceeds
by stating that the models are equally powerful as interactive Turing machines with advice.
ITM/A’s, in turn, are proven to be strictly more powerful than interactive Turing machines
without advice. We reproduced Van Leeuwen and Wiedermann’s statements in Theorem
2.3.1 and Theorem 2.3.2. Van Leeuwen and Wiedermann do not prove Theorem 2.3.2 in
[68, 69]. Therefore, we developed our own proof for one way of this theorem in Section
2.3. From the results in Section 2.3, we conclude that lineages of cognitive transducers and
communities of active cognitive transducers are indeed more powerful than ITM’s without
advice.

Still, for Van Leeuwen and Wiedermann’s models to be super-Turing in Stannett’s [52]
sense, they must also be able to compute the Turing-computable functions. Van Leeuwen
and Wiedermann [68, 69] do not make explicit how the power of interactive Turing machines
with advice relates to that of standard, non-interactive Turing machines. In Section 3.2
we have seen that there seems to be no consensus on the power of interactive models of
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computation. Wegner [66] claims that interactive computation is in itself more powerful
than non-interactive computation, such as the computation performed by standard Turing
machines. Van Leeuwen and Wiedermann [63] suggest that since interactive Turing machines
compute translations on the set of infinite streams rather than on the set of finite strings,
their power is incomparable to that of standard Turing machines. Since interactive Turing
machines with advice, lineages of cognitive transducers and communities of active cognitive
transducers are also interactive models, this suggestion would imply that lineages of cognitive
transducers and communities of active cognitive transducers are non-Turing rather than
super-Turing in Stannett’s [52] sense.

On the other hand, in Section 3.2 we proposed to view interactive Turing machines as
models of relative computability, as suggested by Prasse and Rittgen [45]. Instead of the
translations realisable by interactive Turing machines, we looked at the streams producible
by interactive Turing machines relative to an interaction partner. This allows us to com-
pare the streams producible by interactive Turing machines directly to those producible by
standard Turing machines, as a special case of those producible by o-machines relative to
an oracle. We conjectured that the set of infinite streams producible by interactive Turing
machines relative to a given interaction partner is a subset of the set of streams producible
by comparable o-machines with a comparable oracle. If this conjecture is indeed true, in-
teractive Turing machines can themselves be seen as hypercomputational models. The set
of streams producible by interactive Turing machines with advice relative to an interaction
partner and an advice is then a subset of the streams producible by o-machines with two
oracles: the first comparable to the interaction partner and the second to the advice.

We conclude that as conceptual models of computation, lineages of cognitive transducers
and communities of active cognitive transducers indeed possess hypercomputational power,
but that there seems to be no consensus on whether they are super-Turing or non-Turing
in Stannett’s [52] sense. Further research is needed to gain more insight in the power of
interactive models of computation. One direction for further research could be to look at
our proposal in Section 3.2 in more detail.

Having seen that Van Leeuwen and Wiedermann’s [68, 69] models are indeed hypercom-
putational, we now discuss the possibility of giving a more specific characterisation of the
computational power of the models. We consider both the framework of the arithmetical
hierarchy, which we discussed in Section 3.3, and the cellular automaton based Wolfram
classes [71, 72], which we discussed in Section 4.3.

In Section 3.3, we have seen that the world beyond the Turing-computable problems is
hierarchically structured in the arithmetical hierarchy. The arithmetical hierarchy is related
to the o-machine based Turing-reducibility via Post’s theorem [44]. Therefore it seems a
suitable framework for measuring the power of Van Leeuwen and Wiedermann’s models,
which are related to another model of computation making use of external information re-
sources: interactive Turing machines with advice. The power of hypercomputational models
or systems can be measured by identifying the class of sets in the arithmetical hierarchy they
can decide, or the class of functions they can compute. In Section 3.3, we extended Ord’s
[42] assessment of capabilities of hypercomputational models by including Turing machines
with advice, as well as Van Leeuwen and Wiedermann’s [68, 69] models.

We found that Turing machines with advice are as powerful as o-machines with com-
parable oracles. Therefore, in general, TM/A’s with ∅(n) advice can solve ∆0

n+1 decision
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problems. Van Leeuwen and Wiedermann’s lineages of cognitive transducers and commu-
nities of active cognitive transducers, on the other hand, are shown to be equally powerful
as interactive Turing machines with advice. Like interactive Turing machines with advice,
the models compute translations over infinite streams rather than over finite strings. There-
fore, their power seems not to be measurable with respect to the arithmetical hierarchy —
a framework based on functions from Σ∗ to Σ∗ or subsets of the natural numbers — in a
straightforward way. In Section 3.2, we explored the possibility of taking a different view
on interactive computation, in order to compare the power of interactive Turing machines
relative to an interaction partner to that of o-machines relative to an oracle. In Section
3.3, we conjectured that in this view, the set of streams producible by interactive Turing
machines with an interaction partner whose comparable oracle is in ∅(n) is a subset of ∆0

n+1

streams. We proposed to compare interactive Turing machines with advice to o-machines
with two oracles: one comparable to the interaction partner and the other to the advice.
We conjectured that the set of streams producible by interactive Turing machines with ad-
vice with an interaction partner whose comparable oracle is ∅(k) and with an advice whose
comparable oracle is ∅(l) is a subset of ∆0

n+1, where n = max(k, l). Since lineages of cog-
nitive transducers are proven to be as powerful as interactive Turing machines with advice,
we conjectured that the set of streams producible by lineages of cognitive transducers with
∅(k) interaction partner and ∅(l) evolution function is a subset of ∆0

n output streams. We
conjectured that the same holds for communities of active cognitive transducers with ∅(k)

interaction partner and ∅(l) description function. The proposal of comparing interaction to
relative computation and the conjectures regarding the relative powers of interactive Turing
machines, interactive Turing machines with advice, lineages of cognitive transducers and
communities of active cognitive transducers require more investigation.

The Wolfram classes [71, 72] of complex system behaviour, which we discussed in Sec-
tion 4.3, seem a suitable framework for classifying Van Leeuwen and Wiedermann’s models,
because of the emphasis on behaviour. On the other hand, the Wolfram classes are based
on the cellular automaton model, and there are some important differences between the
cellular automaton and Van Leeuwen and Wiedermann’s communities of active cognitive
transducers. First, the components of a cellular automaton have the computing power of fi-
nite state machines, whereas the components of communities of active cognitive transducers
have the computing power of interactive Turing machines. This is because the individual ac-
tive cognitive transducers, which are basically only finite state transducers, are able to walk
around in their environment and use it as an external memory. Second, communities of ac-
tive cognitive transducers compute under an interactive scenario, whereas the computations
performed by cellular automata resemble those performed by standard Turing machines.
The initial configuration is regarded as the input, and during the computation, there is no
external input. Cellular automata are thus closed systems, like Turing machines, whereas
communities of active cognitive transducers are open systems. Third, the rules governing
a standard cellular automaton do not change over time. On the contrary, the composition
of communities of active cognitive transducers does change over time. Taking the three
differences into consideration, the Wolfram classes seem not to be easily applicable as a
framework for classifying the behaviour of Van Leeuwen and Wiedermann’s models. More-
over, Wolfram’s classification of cellular automaton behaviour is based on empirical study.
It would be interesting to study the qualitative behaviour of cellular automata extended
with the ability to interact with an external environment, and evolve themselves.
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Van Leeuwen and Wiedermann’s [68, 69] two main theorems, restated here in Theorem
2.3.1 and Theorem 2.3.2, indeed show that lineages of cognitive transducers and communities
of active cognitive transducers are hypercomputational models. Now we discuss what this
result means for the computational power of the physical systems they model: complex
adaptive systems, including natural and artificial living systems. This discussion is based on
our account of physical realisability and exploitability in the context of hypercomputation
in Section 3.4.

Physical realisability of hypercomputational models concerns the possibility to construct
physical systems that implement the model. The issue of realisability is especially relevant to
Van Leeuwen and Wiedermann’s claim, because it is a claim about the hypercomputational
power of systems which are actually realised in nature. Still, the question remains whether
these realisations are capable of hypercomputation like their models. In order to answer this
question, one needs to take both the model and the resources used by the model to gain
hypercomputational power into account.

Basically, both lineages of cognitive transducers and communities of active cognitive
transducers are finite state transducers, and therefore physically realisable. However, the
models gain their hypercomputational power by using the resources of infinite operation,
interaction, and evolution simultaneously. The use of infinite operation does not pose a
problem for the physical realisability of lineages of cognitive transducers and communities of
active cognitive transducers. The use of interaction is somewhat more debatable. Interactive
machines can produce non-Turing-computable output if they are supplied with non-Turing-
producible input from a hypercomputational interaction partner. This makes the resource
of interaction quite comparable to external information resources. It shows that in order to
produce non-Turing-computable output, physical realisations of interactive machines need to
have a physical hypercomputational interaction partner. Such an interaction partner could
be a non-Turing-computable quantity, or a non-Turing-computable process, produced by a
hypercomputational system. On the other hand, interaction itself need not to happen in
a Turing-computable way. Interactive systems can produce non-Turing-computable output
by communicating or interacting in a non-Turing-computable way with their interaction
partners. This could happen for example if the interactive systems would interact with their
interaction partners asynchronously, according to a non-Turing-computable timing function.
The use of the resource of evolution is crucial to the hypercomputational power of lineages
of cognitive transducers and communities of active cognitive transducers. Together with
infinite operation, evolution implicitly yields infinite specification. In order for physical
evolving systems to be hypercomputational, their evolution must proceed according to a
non-Turing-computable process.

Whether the physical realisations of lineages of cognitive transducers and communities
of active cognitive transducers are hypercomputational thus depends on the existence of
non-Turing-computable information sources in nature. In Section 3.4, we saw that it is not
clear whether the universe actually accommodates non-Turing-computable quantities and
processes. It might as well turn out that the universe can in principle be simulated completely
by a standard Turing machine. On the other hand, it is also not totally implausible that non-
Turing-computable quantities and processes do exist in nature. An answer to this question
is up to empirical physics.

Exploitability concerns the question whether the hypercomputational power of hyper-
computational systems can be exploited to solve given non-Turing-computable problems.
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The issue of exploitability is especially relevant to Van Leeuwen and Wiedermann’s claim,
because at least in the engineering approach to ALife, artificial living systems are intended
to solve given problems. Therefore, we discuss whether the hypercomputational power of the
physical counterparts of lineages of cognitive transducers and communities of active cogni-
tive transducers is exploitable. First of all, since both lineages of cognitive transducers and
communities of active cognitive transducers rely on infinite operation for their hypercompu-
tational power, their physical counterparts also do. This is problematic, because all that we
experience is finite, and it seems implausible that we can observe more than a finite part of
the computation in finite time. There are some proposed ways to view an infinite computa-
tional process in finite time, such as using Malament-Hogarth space-times, but these are also
problematic. Second, the hypercomputational power of lineages of cognitive transducers and
communities of active cognitive transducers comes from the use of non-Turing-computable
information sources. Even if non-Turing-computable quantities or processes existed in na-
ture, which could act as interaction partners, timing functions, or evolutionary processes
for the physical realisations of lineages of cognitive transducers and communities of active
cognitive transducers, the question whether the systems could use their hypercomputational
power to solve a given problem would remain. First, a non-Turing-computable quantity must
be a real value, and accessing such a value would require infinite precision measurement.
Moreover, in order to solve a given non-Turing-solvable problem, the quantity or process
governing the evolution of the system must be exactly the quantity or process needed by
the system to solve the given problem. The problem is, that since the quantity or process
is non-Turing-computable, it is not effectively decidable whether the quantity or process at
hand is indeed the required one.

We conclude that Van Leeuwen and Wiedermann’s lineages of cognitive transducers and
communities of active cognitive transducers are basically physically realisable. Although
the models are hypercomputational, the question whether their physical counterparts are
also hypercomputational is an open question, up to empirical physics. If so, whether the
hypercomputational power of these physical systems can be exploited for solving a given non-
Turing-solvable problem is not impossible, but seems highly implausible according to current
physics. Still, irrespective of the physical realisability and exploitability of their models, Van
Leeuwen and Wiedermann’s study of computational models of complex adaptive system is
very relevant. The models better capture the features of complex adaptive system than
Turing machines do, even though it may turn out that their behaviour can in principle by
simulated by Turing machines.

Emergence

Finally, we discuss whether Van Leeuwen and Wiedermann’s [68, 69] results indeed involve a
case of emergence. In Chapter 5, we have seen that the term ‘emergence’ is used in a variety
of contexts, with a variety of different meanings. Implicitly, Van Leeuwen and Wiedermann
seem to refer to an emergent property as a property of the whole which is ‘more’ than
the sum of the properties of its constituting parts. In Van Leeuwen and Wiedermann’s
words, “a community of active cognitive transducers has a much greater computing power
than just the ‘sum’ of the powers of the individual transducers. Here we see the emerging
super-recursive computing power” [69, p. 213].

We stress that Van Leeuwen and Wiedermann suggest that it is the hypercomputational
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power which is an emergent property of their modelled systems. Therefore, we first dis-
cuss whether hypercomputational power can be considered an emergent property in the first
place. As we have seen in Chapter 5, there are several notions of emergence, each with their
own conditions for a property to be emergent. In general, an emergent property is a property
of a complex thing that is not a property of its proper parts. Certainly, communities of active
cognitive transducers model multi-levelled systems, and the hypercomputational power is a
property at the system level, which is not held by any of its individual components. Further-
more, the emergence referred to seems to be a case of synchronic emergence in Humphreys
[30] temporal taxonomy, because it involves the simultaneous coexistence of the higher-level
property hypercomputational power and lower-level property Turing-equivalence. A prob-
lem, on the other hand, is that although computational power is a property of a system, it
is not a property that can be associated with having a certain state at a certain time that
can be observed. Therefore, as an emergent property, hypercomputational power does not
seem to fit in the definitions of emergence we discussed in Chapter 5.

There seems to be another case of emergence involved in Van Leeuwen and Wiedermann’s
results, one that is specifically relevant because of its relation to ALife. Bedau’s [3] notion
of weak emergence seems applicable to the behaviour of communities of active cognitive
transducers. Weak emergence refers to an emergent property as a property of a system,
such that an answer to the question “does the system have property P?” is deducible
from the external conditions and the microdynamic, but only by simulation. By Rice’s
theorem [47], non-trivial properties of the behaviour of Turing machines are not Turing-
computable from the Turing machines’ description. This holds for communities of active
cognitive transducers as well, because they are even more powerful than Turing machines.
Moreover, in general, the description function of communities of active cognitive transducers
need not be Turing-computable. Therefore, although at each time the configuration of the
community is fully constituted out of the configurations of the active cognitive transducers in
the community, answers to questions concerning the configuration of a community of active
cognitive transducers at a given time can in general not be computed. They can, on the other
hand, be obtained by simulating, or running the community of active cognitive transducers.
Therefore, the behaviour of communities of active cognitive transducers can be considered
weakly emergent. According to Humphreys [30], we may speak of weak emergence as a case
of diachronic inferential emergence.

We conclude that although hypercomputational power is a property had by communities
of active cognitive transducers while not had by their constituting parts, it does not seem
to fit into the definition of an emergent property in the different notions of emergence we
discussed in Chapter 5. Rather than the hypercomputational power of communities of active
cognitive transducers, it is the behaviour of communities that is emergent. More specifically,
it is weakly emergent. This case of emergence is especially relevant, because weak emergence
is ubiquitous in complex systems, and communities of active cognitive transducers are models
of such systems.

6.2 Implications

In this section, we point to a number of implications of Van Leeuwen and Wiedermann’s
results for the field of ALife, based on our discussion of ALife in Chapter 4. Although
Van Leeuwen and Wiedermann’s work in [68, 69] is situated in an ongoing debate in the
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theory of computation, focussed on new computational paradigms, the authors’ results do
not seem to have made an entry in the field of ALife. This is surprising, since Van Leeuwen
and Wiedermann’s conclusion that artificial living systems are more powerful than often
believed could have major implications for ALife.

Van Leeuwen and Wiedermann’s results seem to have the most immediate implications
for soft ALife. This is because in soft ALife, the digital computer is used as a tool for syn-
thesising lifelike behaviour, and Van Leeuwen and Wiedermann’s results are computability
theoretic ones. If Van Leeuwen and Wiedermann’s claim is true, living systems may show
behaviours which cannot be generated by a standard Turing machine. This stresses the po-
tential limitations of general purpose computers as tools for synthesising life-like behaviour.
That is, general purpose computers computing in isolation as a closed system, without for
example access to the Internet, a true random generator, or unpredictable user input.

At the same time, Van Leeuwen and Wiedermann’s models and the non-uniform in-
teractive paradigm they are part of, point to some directions for overcoming the potential
limitations of computers as tools for synthesising life. The three features of the non-uniform
interactive paradigm are infinite operation, interaction, and non-uniform evolution. Infinite
operation is already reflected in the computational view of soft ALife, whose emphasis is on
ongoing behaviour rather than final results. Moreover, the emphasis in soft ALife is already
on networks of parallelly operating and interacting simpler programs, devices or systems.
In parallel computation, asynchrony becomes an issue. Van Leeuwen and Wiedermann’s re-
sults suggest that complex adaptive system behaviour can in general only be generated if the
systems also evolve during the simulation. Interaction, asynchrony and evolution allow for
the influence of possibly non-Turing-computable information on the behaviour of complex
adaptive systems. Natural living systems are situated in a real word environment, which
may inhibit non-Turing-computable processes. Therefore, the key to generating life-like be-
haviour in an artificial way seems to be making use of exogenous information. Environments
produced in an algorithmic way seem not to be good candidates for supplying such infor-
mation, because they are necessarily Turing-computable. Situating artificial systems in a
real world environment, already commonplace in hard ALife, seems to be a good solution.
Situated agents can exploit their complex environment to generate possibly richer behaviour.

Although letting possibly non-Turing-computable information enter artificial living sys-
tems via openness to a real environment leads to richer behaviour, it also leads to an increase
in unpredictability of the systems’ behaviour. This may pose a serious problem for the en-
gineering approach to ALife, which is aimed at designing systems for solving given complex
problems. Van Leeuwen and Wiedermann’s results suggest that non-Turing-computable
inputs from the environment may be exploited for solving even non-Turing-solvable prob-
lems. However, as we saw in Section 3.4, these external inputs must be exactly right for the
problem at hand. This means that care must be taken to ensure that the environment is
‘cooperative’. However, this is problematic, since there is no effective way to check whether
the environment indeed behaves as desired.

In conclusion, there seems to be a trade-off for ALife. On the one hand, it may be that
ALife can only succeed in generating life-like behaviour through artificial systems by letting
possibly non-Turing-computable information influence these systems. On the other hand,
opening systems up to such information may make it extremely hard, or even impossible to
retain control over the behaviour of artificial living systems.
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