The Effects of Problem Representation and Network Representation
on Training Results of Artificial Neural Networks

A. van den Berg,
supervised by D. Thierens
and G.A.\W. Vreeswijk,
September 28, 2013,

7.5 ECTS.

Abstract

There are different ways to obtain a good Artificial Neural Network. When
training, the choice of the data set is of importance to the quality of the
resulting network. When evolving a network using Genetic Algorithms, it is
important that the representation of the network does not interfere with
the passing-on of information to next generations. | looked into the effects
of data representation on the quality of the trained networks, and |
investigated one solution proposed by Thierens (1996) to unheuristically
remove redundancies in genotype. | could not verify the results found in
the proposed solution.

1 Introduction

In Computer Science, Artificial Neural Networks (ANNs) are models inspired by the workings of
animal neural networks. They are mostly used for two different purposes: either they are trained to
perform specific tasks, such as pattern recognition tasks, or they are used to gain insight in natural
neural capabilities.

ANNSs are generally modelled using a simple layered approach with nodes being the processing
units and weights between those nodes being the 'strength' between nodes. When training such
networks to recognize for example handwritten digits, input data, represented for example as pixels
with a specific shade of grey, are fed into the first layer of the network. In the last layer of the
network the calculated result can then be found, which hopefully is the correct digit.

There are different ways to acquire a network that performs well on your data. The first method that
pops to mind is training. Different training algorithms have been developed to adapt the network to
the data depending on the availability of those data, such as Supervised learning, Unsupervised
learning and Reinforcement learning. In order to train the network fast, many measures have to be
taken into account.

First, the network topology needs to be large enough to be able to abstract over the input data, but
it should be small enough to be trained fast, as large networks take longer to process.

Second, the representation of the data should fit the inner workings of ANNs. Moreover, the
complexity of the data should match the proposed topology of the network: a smaller amount of
(hidden) neurons is able to abstract less than more neurons can, so the relation between the given
input and the desired output should be fit to the network.

Third, the training algorithm itself needs to be fast. Some of the fastest trainers are readily
available.

One part of the remainder of this paper will go into some depths regarding the second option: data
representation. Tests will show how the original data set and the adapted data set compare.

Another method to obtain a good network is through Evolutionary Algorithms. Those algorithms are
used to optimize solutions to all kinds of problems, by means of evolution. Their use is based on
nature itself, where species adapt to their environment through individuals passing their information
(in the form of genes in nature's case) on to the next generation. In Genetic Algorithms (GA's),

'parent’ solutions that solve a problem are recombined into 'child' solutions that hopefully perform
even better than their parents, all the way until the children perform their task well enough.

The other maijority of this paper will deal with GA's and the effect of the representation of an
individual neural network on the speed of finding a good solution. Much of this work is based on
the paper by [Thierens, 1996] who proposes a means to make the representations more suitable
for GA's. There are others who have attempted to improve the performance of the representation
of ANNs themselves. [8]

1.1 Structure of this Paper

First off, a specific data representation case will be covered. Background for this case will be given,
followed by the experimental setup, and concluded with the results. Then there is a section
covering findings on network representation. Again, first off there will be background information
about this case, followed by the experimental setup and concluded with results.

2 Data Representation

When proposing input-output pairs of data to be learnt by an ANN, it is feasible to state those
relations in terms which the network can comprehend. ANNs can find simple relations easily, but as
they become more difficult, networks have increased trouble learning the data as a whole. Not only
can the number of variables become more burdensome, which means that more and more weights
need to be changed for each additional input neuron, but the increased difficulty can also lie in the
number of abstractions that need to be made. Margolis [1] went into depths for the following
problem space.

21 Background

A problem that is used often in ANN research is the
Two Spirals Problem. In order to show to a human what
the meaning of this problem is, we usually resort to an
image. This is a picture of the Two Spirals Problem,
and you can easily see what has to be learnt by the
network: there are two spirals, a black one and a white
one, which interlock. The question is what colour an
arbitrary point on each of those spirals has. Or worse,
because the input values for ANNs are real-valued:
what is the colour of some random (x,y) point?
Traditionally, the input-output pairs are given with three
values, the first two being the x and y values, the third
being either one or minus one, denoting either black or
white. It should be noted that the invisible axes of this
graph run through the centre of the picture, such that
the inner dot of the black spiral is at (0,1), for example.
(Coordinates can be multiplied by any factor while
retaining the relation.) The white dot would then be at (0,-1).

The reason why this problem is so hard to learn for ANNs is because networks can't easily learn
curves. They only learn linear relations between variables, which in this case means straight lines.
The networks needs many lines to describe this relation, as can be clearly seen from this picture.
So is this the best approach to state intrinsically difficult problems?

The traditional representation feels more like a game of Battleship, where one person calls two
values and the other person calls either 'hit' or 'miss'. And as this picture is composed of 194

points, even a human being could not learn these 194 examples by heart and conclude by saying
‘ahh, you mean two interlocking spirals!" without having seen the picture. It is not required to mirror
machine intelligence to human intelligence, but there is something intrinsically difficult in this
representation that should or should not be asked to be solved by a small network with at most 20
hidden neurons.

But there is more to this representation than philosophical questions. The ever-expanding series of
coordinates never stays within the domain of [-1,1], whereas ANNs are mathematically tuned to
processing values between those boundaries. Traditional representations cold-heartedly feed
values of minus 6 into the input layer neurons. It is found customary to adjust all input values to the
range [-1,1].

2.2 Methodology +

There are some adjustments that can Q2 Q1
be made to this representation to fit it i
into a relation that a human can readily
understand. And if a human can easily
understand the relation without having PEN
to think, it is assumed that a network
can learn the data too. So the outcome oA
space is divided into four sectors, being 95
[positive,positive], [negative,positive] NGE =11

and so on. This accounts for four input = -+
values, each having the value called
Range in the picture for the sector that
the value is in, and zero for the other
three inputs. The Range value is of
course the distance from the centre,
essentially denoting which curve it's at.
As a trivial side-note, all input values g
were scaled down to fit into the [-1,1]

interval. Q3 Q4.

The Step-Size Problem

The learning rate of the training algorithm determines how fast weights of the network change
according to a correction value. If the learning rate is high, a correction will more easily lead to a
correction in the neighbouring values as well, whereas if the learning rate is very low, it will take
way too many training steps to slowly adjust the weights to their proper values.

Now if we leave the output values at their extremes, the learning rate has to be extremely low to
learn the distinction between, for example, 0.00037 for white and 0.00039 for black. And if the
learning rate would be larger, it would over-step the other value and change the neighbouring value
for the wrong. So we really need to introduce some uncertainty into the output values. For this, the
Pan value is used. Margolis claims that there is more uncertainty around the axes than around the
45 degree angles. That is where | disagree, as | think that there is uncertainty depending on the
Range value, so the network should have to learn how wide each curve is and then modulate that
over the Range value to obtain how certain a point is some colour. Nevertheless | followed the
advice to take the Pan value into consideration. This value ranges from minus one to one
depending on the distance to the axes. The absolute value of this Pan is added or subtracted from
the output value to lean it towards zero, which means uncertainty in ANNSs.

23 Experimental Setup

The Framework to compute and train ANNSs is Encog [2]. For this experiment, it was only needed to
choose a training algorithm and to load the correct dataset. What | wanted to find out was the
difference in performance of each training set. The traditional set, containing values outside the [-
1,1] range and giving no hint as of the structure of the data, was expected to be harder to learn
both in time needed and in error rate itself. The improved dataset should however train very fast,
require smaller networks and show less error after training than the original dataset.

Encog provides an rProp (Resilient Propagation) algorithm for training networks. Parameters for
this training method are customizable but for standard runs, they are picked automatically. It was
not in my interest to know the parameters, | was only interested in the training speed and training
performance of the algorithm on each data set.

| ran several tests, of which two were of main interest. The first test ran the training for at most
40,000 training steps, after which the fitness, or error rate, of the data set was recorded. The
fithess was computed using the MSE (Mean Squared Error) algorithm, which is the standard for
the Encog Framework. A low fitness is preferable, as a low MSE means little error on average.

| used many networks of different size for training, preserving the four input neurons but varying
the number of hidden neurons and number of hidden layers from zero to five neurons in the
second layer, and five to fifteen neurons in the first layer. It was not my main interest to compare
the topologies, but rather to give each topology it's own share of the testing benchmark and
evaluate the error levels of each and every topology.

The second test would see how well a network could be trained in virtually infinite time. It was
expected that the improved dataset would have a better time abstracting away over the problem
and should thus converge to an error level of zero, in contrast to the original dataset which should
have more trouble training for faultless fitness, especially for the smaller networks. Again, networks
of varying topology were used to train and all runs were treated evenly, so that smaller networks
were equally important than bigger networks. It was of only interest to see the difference in fithess
convergence.

24 Results 45000
The First Experiment 40000

35000
This graph shows the
results of running 30000 = BETTER 0,01
nmeutltlglreks gl? pclj('af?eregz 25000 — BETTER 0,005

W i

topologies on the two 20000 BETTER 0,001
different datasets until 15000 = STANDARD_0,01
they reached the == STANDARD_0,005
target fitness or until 10000 STANDARD 0,001
the 40,000 runs limit ‘
was reached. On the 5000
horizontal axis each 0

networks is depicted.
They are sorted by
the number of runs
needed, so it is
possible for a small
network to come before a large network if by chance its fithess was better than the other network.
In practise, larger networks have better fitness because of their increased means of abstraction,
but the difference between topology is uninteresting in this case.

For a first quick look, compare the dark blue line to the green line. The dark blue line is more to the
right, meaning more networks reached the target fitness level of, in this case, 0.01, meaning one in
hundred inputs evaluated wrongly. (Note that the Dutch way of denoting fractions is preserved in
the picture.) The green line shows that only very few networks learnt until the target fitness level
before the maximum number of runs was reached. Clearly, the improved dataset, namely BETTER
or concretely the blue line, performs way better than the original dataset.

Now let's look into the other two pairs. An error level of 0.005 is also easily reached by the
improved dataset, contrary to the original dataset which has much trouble training until the target
fitness. Probably only the largest networks reach the target in the original dataset case, but this
information is not preserved in the graph. More interesting is the yellow line. This line belongs to
the 0.001 fitness target. No single network topology trains until that level when confronted with the
improved dataset. On the contrary, the original dataset can be learnt up to that level in at least
some cases.

The Second Experiment 0,16

For this case, virtually 0,14

infinite training steps

were allowed. Three 0.12

indication lines are

added, denoting the 01

three error levels that ’ = BETTER

could be reached. Again, == STANDARD
0,08

the networks are sorted, 0,01

this time by their fithess -

value, so the topology of 0,06 _ 888?

each networks is not
preserved in this graph. 0.04

Let's first focus on the 0,02

orange line. This line #—4_
0

depicts the fitness level
of all networks trained V > © 2O IO PO PO O D

on the original dataset. N D 9 APPSR DO D

The first 19 networks

could be trained until

error level zero, while the next networks all perform worse than the most easily reachable target of
0.01.

As can clearly be seen, the improved dataset, denoted by the blue line named BETTER, only fails
to train until the target of 0.01 for 7 or 8 networks. The other networks all perform good enough for
that goal. The middle goal of 0.005 error-level is passed by all but only ten networks. So the
improved dataset is clearly more easily learnable by all but some networks. But although this result
looks very promising, what this graph cannot show is that the improved dataset can never be learnt
until error-level zero. So that means that, however long any network is trained, it will never really
understand the problem. But it should be noted that this is a dataset that involves uncertainty. My
first intuition was that this inability to perform faultlessly is a flaw of the dataset. | initially thought
that it was completely trivial to say which colour each point would have, given even that each point
lies on a spiral per-se. On the other hand, the uncertainty that was put into the dataset might
account for the inability to reach the lowest error level. And how bad is it to have less than one-in-
thousand questions wrong?

25 Conclusions and Insights

The results clearly show superiority of the improved dataset over the original. It is thus important to
present data in a manner that is easily understandable for an ANN. But does this defeat the
purpose of the dataset, namely being difficult to learn? | think it does. | think this specific problem is
formulated wrongly to be regarded as a difficult problem. The real difficult problems are way more
abstract in nature. This though can lead to different conclusions. Firstly | thought that we should
focus on neural constructions that can solve primitive tasks fast and efficiently. We should then
combine the parts into more higher-level constructions that can deal with more difficult problems. |
presume that is what happened in the evolutions of the natural brain, too. On the other hand, such
problems as stated in the original formulation, more or less like the game of Battleship, are highly
valuable for evolving networks that can pre-process data themselves, just like we humans just did
while optimizing the dataset for use by more primitive networks. This, however, means that we
should most probably evolve topologies that are not pre-set in size. Neither should they be smaller
than a set size we would assume. In such cases, the impossibly stated formulation of this problem
helps create an abstraction that might well be reused in other problems, which is one of the main
goals of research in Artificial Intelligence.

So should we use the original or the advanced data representation when comparing network
trainers or network recombination operators (a topic following this conclusion)? | strongly lean
towards the improved dataset, because | feel that the original dataset is just not useful because of
its too low-level formulation. Moreover, should we ever want to explore modular neural network
implementations, then optimization will mainly be done in each module, where the problems is
broken down into smaller parts, meaning it will have to deal with only little abstraction per module.
Those are my interpretations concerning the choice of the dataset representation.

3 Network Representation

Genetic Algorithms (GA's) [6], [7] are used to optimize individual solutions in order to find a solution
that explains a problem well enough. With this strategy, populations of individuals are kept, which
are merged with each other while trying to find a combination that works best. In such algorithms, it
is very important that recombining 'parent' solutions into 'child' solutions preserves the most
information possible. It is desirable that children look like their parents, while otherwise children
would be more 'random’, which would result in a more randomized search.

3.1 Background

GA's rely on passing useful information from one generation to the next, just like what happens in
real-life evolution: as the fittest individuals survive, their children will possess the same useful
qualities their parents had with high probability. This makes the children equally fit to the
environment as their parents. The same goes for GA's in Computer Science. However, the
recombination operator that combines information from both parents into (both) children, will have
to be coded by a programmer. The difficulty lies in the nature of ANNs: the complex relation
between each weight between each neuron cannot be understood on a per-case basis. The
network can only be evaluated as a whole. So the question how each part of each parent should
be used in the children cannot be clearly understood.

ANNSs themselves are naturally represented in one kind of structure. Normally they are thought of
as special nodes connected with vertices storing the weights. This representation does not model
the mathematical properties of ANNs all too well. There are two main (and easily reducible)
redundancies in the representation. The rest of this section will deal with a solution proposed by
(Thierens, 1996) [3].

Neural Networks have nodes connected to other nodes, usually presented in layers. In order to
calculate the response of a neuron, it will calculate the sum of all incoming signals, transform that
sum using the sigmoid function, and pass that value to each of its successor nodes. The first
redundancy is found at the summation: when calculating the sum of all previous nodes, the order
of those nodes is irrelevant. Mathematically there is no difference in the calculated result of the
network if the order of the nodes in one layer is shuffled.

Another redundancy has to do with the logistic function used
to squash the summed value between the interval [-1,1]. For /
the computed result, it is not important if the sum of the
values is negated (by negating all incoming values, the sum

!
is also negated), fed into the sigmoid function, and then 054
negated again. There are now two configurations that /
compute the same result, so only one of those has to be /
preserved. Transforming the weights in such a way that only i —_—;‘"" e . ? .

one fixed neuron has a positive weight, this redundancy is

eliminated. In this case, the bias node is chosen to have positive weights. In order to get rid of the
differences in order of neurons in one layer, again the bias node is taken as sorting token. So the
weights of the bias node, that only feeds one weight to each node in the next layer, are sorted.

ANNs can be coded in different ways. The representation that is chosen here is one where all
weights are jammed in one array. The length of the array is fixed, and the network has a fixed
topology. Encog codes the weight array from the output layer to the input layer, listing all weights
that arrive at one neuron, continuing to the next node until the layer is done and then skipping to
the next layer, performing the same list-all-incoming-weights algorithm. Encog keeps certain
indices in order to navigate through the weight array quickly.

3.2 Methodology

In order to find the effect of transforming one representation into another, it is sufficient to look at
the correlation coefficient. This value expresses the amount of covariance between two datasets.
In this case, to compute the correlation coefficient, you first calculate the covariance between the
two sets, and divide that figure by the product of the individual variances. This value then gives an
indication of how the second set relates to the first.

In this case we wanted to see how much information was passed onto the children, so to compute
this in a figure, first a large number of parent-couples was generated. Each couple then created
two offspring individuals. In order to calculate the coefficient, the mean of the fithess of each
couple was taken. So there we had many mean-fitness values for both parents and children, and
the coefficient would then say the correlation between the sets. A correlation of 1 would mean that
good parents get good children, and bad parents always get bad children. That is the most
favourable case, as the maximum amount of information is passed from the parents to the children.
The other case, minus one, would mean that good parents always get bad children and visa versa.
This is also very interesting, but unwanted in this setting. A value of zero means no correlation, so
we effectively end up with random search.

Initially there are many possible parameters that we can vary. For example, Network Size plays a
role in fitness evaluation. As we have seen in the first part of this paper, some networks will never
learn the dataset, as other networks become lucky to learn it while large networks have a higher
chance to eventually understand the problem. | started out testing two network topologies, one
having 15 hidden neurons and one having an additional hidden layer containing 5 hidden neurons.

Another parameter is what | call the Initializer, which takes a network and trains it before it is
recombined with another parent. | proposed several settings, ranging from zero pre-training to test
purely the crossover operator (and pre-crossover operator coming next), to training for 200 steps
before crossover.

Third, the Crossover itself can be varied. Thierens proposes to only crossover the input weights of
a layer, which means that a child gets the input weights from one parent while retaining the output
weights from the other parent. Moreover, after the crosspoint, all information of one parent is
received. This is contrary to my own idea that a neuron as a whole is crossed, so inside the cross
section, both input and output weights are passed on. The big distinction is of course the amount of
information mixing. Eventually | tried both approaches.

Fourth, the way to change the representation can be varied. There are several ways to do this.
First off, there are two operations to be done: rearrange the neurons in one layer (sorting) and flip
the weights so the bias weights are all positive. | tried performing both operations and | tried
performing only the sorting, as the flipping of the weights showed to be of great influence on the
quality of the children.

The second way to change the representation is at the level of the sorting. Traditionally, the
neurons are sorted according to the lonely weight of the bias neuron. As is obvious from a
mathematical perspective, there need only be an arbitrary sorting of neurons to eliminate 'shuffled'
configurations. Although this should be sufficient, | would like to propose two alternative ways to
sort the neurons: in order to preserve information regarding the sum of all incoming weights, it
might be worthwhile to sort the neurons according to this sum. Then, by crossing neurons, whether
in total or only a part of their weights, neurons with few incoming weights are exchanged by
neurons with also few incoming weights, and so on. This change may greatly increase the
efficiency of the crossover operator, as similar information is exchanged.

It is also possible to base the sorting of the neurons on the spread of incoming weights. Then
(simply) the variance of the weights has to be calculated in order to find the correct order in which
to sort the nodes. As is obvious in ANNs, it is unclear whether this parameter has any effect on the
efficiency of the crossover operator, but nevertheless, when crossing on end of the nodes with the
same end of another parent, nodes with a similar spread of weights will be exchanged. It might well
be that critical nodes which receive a wide range of incoming data, will be exchanged while nodes
that simply pass on information will be exchanged with other nodes that perform a similar job.

This method can be expanded to the outgoing neurons, too. Another factor then comes into play,
namely the bias towards input or output neurons. Do they weigh evenly, or is input variance more
important than output variance? Or should we combine both notions to sort by some combination
of strength of weights and spread between those weights? | have not incorporated these variables
into my research, but this still is very interesting. This is definitely something for future research.

Then we come to the variable named Fitness Evaluation. MSE (Mean-Square-Error) or SSE (Sum-
Square-Error) can be used, where Encog uses MSE and other (older) research [3] used SSE. But
there is more to this case. What about networks that are not able to learn this problem very well,
but are able to learn any problem fast? Then the fitness function would have to train a network for
a fixed amount of steps, and obtain the MSE fitness of the network after the training. It is even
possible to include the number of steps needed to learn until a fixed fitness threshold. Moreover, it
is also possible to retain the trained network for future recombinations, thus effectively merging GA
search with training. This is tightly couples to the Baldwin Effect [4] which states that learning a skill
will slowly develop into genetic information. That means that it is important to allow networks to
train next to evolving, in order to favour abstract 'learning' to just learning this very problem.

Important also is the choice for the data set. As seen in the previous part, the data needs to be
suited to the network architecture. We do not want to present data to networks that they will never
be able to learn. What then does the value of the fitness mean, if the children have the same clue
about the problem as their parents. Not much.

We should also pay attention to training data vs. evaluation data. This is not needed if a network is
only evaluated and not trained, because then the training data can function as the evaluation data,
but if the network is trained and then evaluated, the researcher should pay close attention to use

the evaluation data in the fitness function as otherwise the network might over-fit and does not
abstract over the data, instead only learning the training set by heart. This is equally the case for
untraining networks, but then the researcher should split up the data and test on each part
separately, which makes each data set smaller. So this is a difficult situation. It might also be a
favour for training networks while performing GA.

Finally, the way the parent fithesses are combined into one number can be changed. | have always
used the mean of both values, but it is also possible to take the highest of the parents and
compare that value to the best child. Or choose the worst of both parents and children. Choosing
the best parent and child may even be better, as it is of lesser importance that both children be
good, than it is that one child is very good.

Many different test have been run in order to prove the superiority of the changed representation
over the original one. A large number of parents were generated randomly using Nguyen &
Widrow's algorithm[5], coupled, and copied for use in both tests. All tests were two-fold, the first
calculating the correlation for the original representation, the second for the changed
representation. The way the representation was changed could vary, but the comparison was
always between changed vs. not changed.

3.3 Results and Adaptations

Early tests used only one network configuration of 15 hidden neurons, had a void initializer (so only
random parents were crossed), used a pre-crossover that both sorted the neurons and flipped the
weight signs, and calculated the fitness based on MSE. The original Two Spirals Dataset was used
and the fitness was based on all 194 data entries in this set.

In this case, the correlation of the unchanged representation floated around 0.92, contrary to the
expected value of around 0.5 found elsewhere. On the other hand, the correlation of the changed
representation was very bad, 0.022, almost zero!

So there were two possibilities that could possibly coincide, but one was to lower the correlation of
the unchanged representation, the second being to increase the changed one. Decreasing the high
correlation was very difficult to almost impossible. The only way to lower this value proved to be to
change the crossover point. Changing the amount of information that was actually crossed
changed the coefficient from 0.89 to 0.94, so when little information was crossed then the
coefficient was even higher, and lower when more information was crossed. That was more or less
expected as merging parents always destroys information.

Changing the fithess evaluation from MSE to SSE had no noticeable impact. Neither did the
network configuration change any value. Changing the initializer so it pre-trains the networks
before crossing over, the values changed considerably, but so did the values for the changed
representation, for the worse. After training, more information is lost when merging parents than
when merging untrained parents. But this was still not the expected result. | did not change the
dataset, so the solution had to be in the crossover operator.

34 Crossover Operator

The Crossover Operator takes two parents and splits their
genetic information at one or several points in order to merge
them into two children. As in Encog the network is stored as
one large list of weights, and also in a way in which each
neuron stores its incoming weights adjacently, a special
function is needed to find the proper indices in this list storing
the weights that need to be crossed. These indices are also
dependent on the crossover point that is chosen. So let's say
that we have a network like the network to the right. When we
choose to split this network after hidden neuron H1, that
means that one child will get weights from H1 to O1 and all
weights from the input layer neurons to H1. The list of neurons
is like this:
[H1->01],[H2->01],[B2->0O1],[I1->H1]....,[B1->H1],[B1->H2].

&

One child will end up with one part of the list of one parent, and another part of the list of the other
parent. When choosing a single crosspoint, for example after H1, we have two actual crosspoints:
the weight from H1 to O1 is one part, while the other part of the crossover takes a consecutive part
of all incoming weights for H1. When choosing two points to crossover, things get complicated fast.
But considering only the input weights when crossing over, the situation becomes very easy,
because then you need only copy the parent and replace one consecutive part of the other
parent's incoming weights. This is more or less the setup | used, trying both cases where only the
input weights were crossed and where both input and output weights were passed to the next
generation.

3.5 Results Continued

As there seemed nothing more to do to downgrade the very good correlation of the unchanged
representation, the only thing left to do was to upgrade the bad correlation of the changed
representation. One main flaw of the pre-crossover, which actually changes one representation to
the other, is the weight flip. After disabling the weight flipping, correlations reached the original
correlations and surpassed those values very little. That was not surprising, as changing the order
of the hidden neurons should have no noticeable effect on the network itself, contrary to actually
changing weights and the more. The increase in correlation can be attributed to the reduction of
equivalent representations, although by sorting the neurons on an arbitrary basis, | can hardly
imagine the effects: if we assume that the chances are minimal that two equivalent representations
show up as parents-to-be-coupled, then there should be minimal impact on the correlation if the
neurons are only sorted on a basis that does not contribute or take into consideration any
constructive aspect of the ANN. Sorting on the value of the bias neuron is not very constructive, as
the value is completely random as each network is completely random.

| can therefore conclude that the introduction of the pre-crossover operator has no use in Genetic
Algorithms, because the original representation passes most information on to the next generation
and the pre-crossover only yields very minimal increase in suitability.

4 Future Research

It is very unexpected to find the correlation to be so high in the traditional representation. It is
important to find out why this crossover operator performs so well, or why there is so much
information passed on. Assuming that the crossover correlation coefficient is found to be actually
lower, then it is interesting to compare the many options in choosing the hidden neuron sorting
order.

More research could also be conducted in finding networks that are able to learn things fast,
instead on relying on random networks that need to be trained from scratch. Using the initializer
scheme to pre-train networks before they are being crossed over, and evaluating the fitness of an
individual on the basis of the quality of its ability to learn data, abstract modules can be generated
that can then be used to build more complex solver or recognition networks. If indeed the pre-
crossover operator greatly increases the power of GA search, then these abstract modules and
more high-level networks become an interesting research topic.

We could also try to get more details on the effect of data representation on the suitability of
research using those data. If insensibly represented data indeed works worse in comparisons of
network topologies or advanced algorithms, then we might indeed stick with the more easy
problems and use those to climb to higher-level problems.

5 References

1. http://www.benmargolis.com/compsci/ai/two_spirals_problem.htm

— referencing as similar research: Jiancheng Jia; Hock-Chuan Chua, Solving two-spiral problem
through input data representation. Neural Networks, 1995. Proceedings., IEEE International
Conference on (Volume:1) (pp. 132-135).

2. http://www.heatonresearch.com/encog

3. Thierens D., Non-Redundant Genetic Coding of Neural Networks. Proceedings of the 1996
IEEE International Conference on Evolutionary Computation-ICE'96 (pp. 571-575).

4. Depew, David J. (2003), "Baldwin Boosters, Baldwin Skeptics" in: Weber, Bruce H.; Depew,
David J. (2003). Evolution and learning: The Baldwin effect reconsidered. Cambridge, MA: MIT
Press. pp. 3-31. ISBN 0-262-23229-4.

5. Nguyen D. & Widrow B., Improving the learning speed of 2-layer neural networks by choosing
initial values of the adaptive weights. Proceedings of the International Joint Conference of Neural
Networks, Vol3 1990.

6. L. Davis (Ed.), Genetic Algorithms and Simulated Annealing, London: Pitman, 1987.

7. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Reading,
MA: Addison Wesley. 1989.

8. Nicolas Garcia-Pedrajas, Domingo Ortiz-Boyer, César Hervas-Martinez, An alternative
approach for neural network evolution with a genetic algorithm: Crossover by combinatorial
optimization, Neural Networks, Volume 19, Issue 4, May 2006, Pages 514-528.

http://www.benmargolis.com/compsci/ai/two_spirals_problem.htm
http://www.heatonresearch.com/encog

