
Utrecht University

Master Thesis in Artificial Intelligence

GOMEA-SAT
Applying Gene-pool Optimal Mixing Evolutionary Algorithm for the Boolean Satisfiability

Problem

Author:
Krzysztof Leszek Sadowski, BSc

Supervisor:
Dr. ir. Dirk Thierens

Student Number:
3611914

July 10, 2012

Abstract

This paper explains the process of creating and optimizing GOMEA-SAT. It is a new Genetic
Algorithm designed to solve the Satisfiability Problem in a fashion which is competitive with
currently existing stochastic search solvers. A closer look is taken into the Gene-pool Optimal
Mixing Evolutionary Algorithm. This algorithm is adapted to solve the SAT Problem, then
modified and extensively tested in order to acquire the most optimal results. A local search is
then added into the GOMEA-SAT and the results are contrasted against known SAT Problem
solving algorithms such as Walksat and GASAT. Finally, Linkage Tree GA is modified and
used to determine if learning the structure of a SAT Problem could be a next step in improving
its solutions.

Contents

1 Introduction 4
1.1 Problem Description . 4
1.2 Boolean Satisfiability . 4

1.2.1 SAT Problem . 4
1.2.2 MAX-SAT Problem . 5
1.2.3 Motivation . 7

1.3 Genetic Algorithm . 7
1.4 GASAT . 8

1.4.1 Selection . 8
1.4.2 Recombination . 9
1.4.3 Local Search . 10
1.4.4 Insertion . 11

1.5 Walksat . 12

2 GOMEA 13
2.1 LTGA . 13
2.2 GOMEA-SAT . 15
2.3 Clause to FOS Mapping . 16

3 GOMEA-SAT Experimental Study 18
3.1 Study Overview . 18
3.2 Optimization Techniques and Results . 19

3.2.1 Population vs. Evolution Length . 19
3.2.2 Random FOS . 21
3.2.3 FOS Adjustments (Singletons) . 22
3.2.4 Tournament Selection . 24
3.2.5 Forced Improvement . 25
3.2.6 Conclusions . 27

4 Local Search 29
4.1 Local Search Integration . 29
4.2 Walksat, Multistart Walksat and GASAT . 30
4.3 Small LS Results . 31
4.4 Medium LS Results . 32
4.5 Large LS Results . 32
4.6 GASAT Comparison . 33

2

4.7 Results Conclusion . 34

5 Learning 37
5.1 Overview . 37
5.2 Configuration . 38
5.3 Results . 39

6 Conclusions 41
6.1 Summary . 41
6.2 Future Work . 42

A Benchmark Overview 43

3

Chapter 1

Introduction

1.1 Problem Description

Research Goal: Applying Gene-pool Optimal Mixing Evolutionary techniques enhanced with
a local search algorithm for the Boolean Satisfiability Problem will result in a new SAT-solving
method (GOMEA-SAT) which will match the performances of other currently existing algo-
rithms and due to its learning capacity often produce significantly better results.

Boolean Satisfiability Problem (SAT Problem) is a very well known problem in the science
community, with many real-world as well as academic applications. Due to its NP-complete
nature many approaches have been created in order to generate solutions as optimal as pos-
sible. This thesis focuses on applying evolutionary techniques into the SAT Problem, by
exploiting the existing structure of the SAT Problem with the use of the Gene-pool Optimal
Mixing Evolutionary Algorithm (GOMEA) and some variations of it, and in turn creating
a new algorithm GOMEA-SAT. This optimized technique is then combined with a Walksat
local search, in order to further improve the results. Those results are empirically tested
and compared over a series of benchmarks against other existing SAT Problem solving algo-
rithms such as GASAT, stand-alone Walksat, and Linkage Tree Learning Algorithm. All this
methodologies will be explained in the following sections.

1.2 Boolean Satisfiability

1.2.1 SAT Problem

Boolean Satisfiability Problem (SAT Problem) is considered to be one of the best known
NP-complete problems. It is a widely used modeling framework for solving combinatorial
problems [3]. A SAT Problem instance consists of a set of Boolean variables:

X = {x1, x2, x3, .., xn}

as well as a Boolean formula

F : {0, 1}n → {0, 1}.

4

The goal in solving an instance of a Satisfiability Problem is to determine if variables of
the given Boolean formula can be assigned in such a way, that with the given variable assign-
ments, the entire formula evaluates to TRUE.

The Boolean formula for the SAT Problem is a logical conjunction of a set of clauses

C = {c1, c2, c3, .., cm}

resulting in the Boolean formula being of form

c1 ∧ c2 ∧ c3∧, ..,∧cm

Each clause (ci) in turn is a logical disjunction of a subset of the Boolean variables present
in a given SAT Problem. The idea behind the structure of a SAT Problem can be easier
explained with the following simple example.

Let’s look at a problem with only four Boolean variables X = {p1, p2, p3, p4} and a set of
four clauses [4]:

(p1 ∨ p2 ∨ ¬p3), (¬p1 ∨ p2 ∨ p3), (¬p1 ∨ ¬p2 ∨ p3), (p1 ∨ ¬p3 ∨ p4)

With the earlier definition, this gives us the Boolean formula for this example instance of
the SAT Problem:

(p1 ∨ p2 ∨ ¬p3) ∧ (¬p1 ∨ p2 ∨ p3) ∧ (¬p1 ∨ ¬p2 ∨ p3) ∧ (p1 ∨ ¬p3 ∨ p4)

The goal in solving a SAT problem is to determine if variables of a Boolean formula can
be assigned in a way which will cause the formula to evaluate to TRUE. This means finding
an assignment v : X → {0, 1}, which satisfies the formula, if such assignment exists. In this
example such result can be achieved with the following assignment [4]:

p1 = FALSE
p2 = TRUE
p3 = TRUE
p4 = TRUE

With the above variable assignment all the individual clauses evaluate to TRUE, so by
logic their conjunction - the entire Boolean formula - evaluates to TRUE. This simple example
of a SAT Problem is solved, and the formula satisfied.

1.2.2 MAX-SAT Problem

Solving a SAT Problem instance is often not possible. In many theoretical as well as real-world
instances of the SAT Problem finding the ultimate solution (which results in the problem’s
Boolean formula evaluating to TRUE), is mathematically impossible. This complication can

5

be easily illustrated with another very simple SAT Problem example, where the set of vari-
ables is

X = {p1, p2, p3}

and the Boolean formula is:

(¬p1 ∨ p2) ∧ (p1 ∨ p3) ∧ (p2 ∨ ¬p3) ∧ (¬p1 ∨ ¬p2) ∧ (¬p2 ∨ ¬p3)

Creating a Boolean table for this formula results in the following:

Clause Clause Clause Clause Clause Formula Evaluation
p1 p2 p3 ¬p1 ∨ p2 p1 ∨ p3 p2 ∨ ¬p3 ¬p1 ∨ ¬p2 ¬p2 ∨ ¬p3 (clause conjunction)

0 0 0 1 0 1 1 1 FALSE
0 0 1 1 1 0 1 1 FALSE
0 1 0 1 0 1 1 1 FALSE
0 1 1 1 1 1 1 0 FALSE
1 0 0 0 1 1 1 1 FALSE
1 0 1 0 1 0 1 1 FALSE
1 1 0 1 1 1 0 1 FALSE
1 1 1 1 1 1 0 0 FALSE

As can be seen in the Boolean table, a variable assignment which satisfies the entire for-
mula does not exist, as any configuration of variables results in the formula failing to evaluate
to TRUE.

MAX-SAT is an extension of the satisfiability problem which addresses this issue, and
provides a mechanic to evaluate variable assignments even if they do not completely satisfy the
formula. In a MAX-SAT problem the goal is to determine a variable assignment v : X → {0, 1}
which will maximize the amount of satisfied clauses of the formula, even if the formula itself is
not completely satisfied. An assignment with the least amount of unsatisfied clauses (known
as false clauses) is superior to an assignment with more false clauses. Applying the MAX-SAT
mechanic to the previous example lets us differentiate between the variable assignments

Clause Clause Clause Clause Clause False Clause
p1 p2 p3 ¬p1 ∨ p2 p1 ∨ p3 p2 ∨ ¬p3 ¬p1 ∨ ¬p2 ¬p2 ∨ ¬p3 Count

0 0 0 1 0 1 1 1 1
0 0 1 1 1 0 1 1 1
0 1 0 1 0 1 1 1 1
0 1 1 1 1 1 1 0 1
1 0 0 0 1 1 1 1 1
1 0 1 0 1 0 1 1 2
1 1 0 1 1 1 0 1 1
1 1 1 1 1 1 0 0 2

6

Even though no assignment generates a satisfied formula (where the false clause count
would be equal to zero) we can determine that some solutions are better than others. For
example assignment {p1, p2, p3} = {0, 1, 0} which results in one false clause is superior to
{p1, p2, p3} = {1, 0, 1} which results in two false clauses. In this paper, any further reference to
the SAT Problem actually refers more specifically to the MAX-SAT Problem, as the objective
of the algorithms discussed here is to find the lowest possible number of false clauses in a
problem, if satisfying it completely is not possible or too difficult.

1.2.3 Motivation

The satisfiability problem is a very popular problem in computer science. By nature, its
structure creates many challenges for programmers attempting to find smart algorithms in
order to solve the SAT Problems. For years, SAT Competitions take place, where students,
researchers and programmers attempt to find the best ways and programs to solve them.

The SAT Problem is much more than just a theoretical problem, however. Its use extends
much further than academia, into very applicable fields such as Electronic Design Automation
(EDA). Examples of those problems include formal equivalence checking, model checking,
formal verification of pipelined multiprocessors or automatic test pattern generation. Modern
applications range from termination analysis in term-rewrite systems to circuit-level prediction
of crosstalk noise [11].

1.3 Genetic Algorithm

Genetic algorithm (GA) in computer science is a population based stochastic search algo-
rithm, which through intelligent selection and recombination of existing solutions attempts to
generate better ones [5]. The concepts of Genetic Algorithms are very strongly based on the
principles of biological evolution. In nature, populations of species evolve over time. These
species are capable of mutating or crossing over its genes as the evolution progresses. Only the
best fit individuals survive, while the weakest ones do not. This process of natural selection
can be applied to genetic computation [5].

Specific algorithms applied to the evolutionary learning can greatly vary in how new so-
lutions are introduced into the population (such as in GOMEA-SAT or GASAT approaches),
however the main structure of an evolutionary system remains the same.

An initial population is a collection of solutions (known as population members) which is
generated before the genetic learning takes place. These population members are (usually)
randomly generated, and each represents a possible solution for the given problem. In the
case of the SAT Problem, a solution is considered to be a binary sequence, where each bit
represents the value for one of the variables of the problem. The fitness measure of how good
a given solution is, is also calculated here. In the SAT Problem, fitness refers to the amount
of false clauses present in the given solution. The closer the fitness value is to zero, the better
the solution.

7

This is when the evolution process begins. Through selection, recombination and mutation
existing solutions are altered in an intelligent way, and new candidate solutions are created.
Given a population of solutions selection pressure is applied on this population causing a
process of natural selection. Only some subset of solutions is allowed to be picked, forcing the
genetic process to work only with better solutions. This has to be done carefully, in order not
to loose the diversity in the population. Recombination is a process which happens at every
generation step, and results in crossing over two selected solutions (parents), or mutating
them, and reintroducing the newly created solution into the population only if it improves
it. This process is repeated and over time only the good solutions (ones with the best fitness
value) remain.

The details of how new solutions are created, whether it is by recombination with another
solution, crossover of multiple solutions, mutation of the current member or a combination of
both are algorithm specific and will be explained in later sections of this chapter when some
specific algorithms are explained.

At this point in many Genetic Systems the new solution is subject to a local search
algorithm, which performs a neighborhood search allowing the new solution to be improved
even further by finding its local optimum. This step is not necessary, but often very beneficial.

If the newly created solution satisfies the insertion criteria, meaning it is fit enough to
join the population, this new solution replaces one of the previously existing solutions. This
process is repeated over time, resulting in the population becoming taken over by better fitted
solutions, until a suitable one is discovered.

1.4 GASAT

Genetic Local Search Algorithm for the Satisfiability Problem (GASAT) is one of the hy-
brid SAT Problem solving algorithms described above. It is based on crossover operators
followed by Tabu local search algorithm [7]. The genetic crossover is responsible for finding
new, promising starting solutions for local search, while the Tabu search (TS) performs a
neighborhood search around this solution in order to optimize the solution [7].

This section describes in more detail the generic concepts and mechanics GASAT uses to
accomplish selection, recombination and insertion phases of this evolutionary system.

1.4.1 Selection

In a Genetic Algorithm selection refers to the process of choosing one or more already exist-
ing solutions. These candidate solution(s) are subject to genetic alterations which generate
a modified candidate solution(s), which can in turn be reintroduced into the population [5].
The specific ways of how GASAT handles this recombination and insertion phases is explained
in the next sections.

8

The selection process itself can become quite complicated, and varies greatly depending
on which algorithm is in use. One known technique, which will be used later in this paper, is
tournament selection. With tournament selection some number of solutions are first randomly
selected from the population. These selected solutions compete against each other and only
the best one (one with the best fitness value) becomes selected as a candidate solution during
a given tournament.

GASAT does not use tournament selection. Instead it exerts selection pressure directly
onto the population. For a given current population P a subpopulation P ′ is temporarily cre-
ated. This subpopulation (P ′ ⊂ P) consists of a fraction p (0 ≤ p ≤ 1) of the best currently
existing solutions. With accordance to the GASAT documentation in experiments performed
for this paper the value p = 0.15, which means that the subpopulation P ′ consists of the top
15% solutions in the current population [7].

For the recombination stage GASAT needs two candidate solutions. These are randomly
chosen from the subpopulation P ′ [7].

1.4.2 Recombination

The standard evolutionary algorithm approach of modification and recombination of candi-
date solutions is by performing genetic mutations and crossovers [5]. This can be accomplished
in many ways, and many algorithms were created which handle this phase very differently.

GASAT performs a specific crossover operation on two candidate solutions which were
chosen during the selection stage. The authors of GASAT put a lot of effort in choosing
the most optimal crossover operator for their system. They have determined that using the
Collective Clause Crossover (CC) yields best results. This crossover operator takes the two
candidate (parent) solutions supplied by the selection process and generates a new, child
solution [7].

Corrective Clause Crossover (CC)

This crossover iterates through all clauses looking for ones which are false in both supplied can-
didate (parent) solutions from the selection process. In order to fix a clause c which is false for
parent solutions, flipping one of the variables of the current clause will satisfy it (turn it true).

This very simple solution can be very destructive however, as flipping one variable in or-
der to fix the current clause may affect many other clauses in a negative way. This is why
the CC Crossover considers the effect on both parents of flipping each variable for the given
clause. For each of the possible flips a collective improvement σ is calculated and compared to
other alternatives. In the end, the variable from clause c which causes the greatest collective
improvement is flipped [7].

The above process happens only for clauses which are false for both of the original candi-
date (parent) solutions. For all other variables remaining after this process is completed, the
resulting solution takes the variable value of one of the parents with equal probability [7].

9

1.4.3 Local Search

After the Collective Clause Crossover generates a new solution from its parents, this solution
is further improved upon. GASAT performs a neighborhood search, in order to explore nearby
solutions and find the local optimum for the given solution.

The authors of GASAT decided to use the Tabu Search (TS) as the local search algorithm.
The Collective Clause Crossover followed by a SAT Problem optimized Tabu Search results
in a powerful search algorithm. The basic ideas behind the TS are explained here.

Tabu Search (TS)

The simple concept behind a Tabu search is to always make the most beneficial move (one
that improves the fitness the most, by performing a variable value flip). The best possible
move is determined by the same improvement calculation as the one used during the crossover
operation [7].

The uniqueness of this search lies in the use of a so called tabu-list. Once the best pos-
sible flip is performed the resulting configuration is labeled tabu, and added to the tabu-list.
The local search continues searching for another move (variable flip) which causes a maximal
improvement, however this flip is only allowed if the resulting binary configuration is not in
the tabu-list already. The selection of the best available bit follows this algorithm [7]:

10

The tabu-list (λ) is always of certain length. At each iteration the newfound configuration
is added to the list. Once the tabu-list reaches it capacity, it begins acting as a First In First
Out (FIFO) queue, and at every new iteration the oldest solution in the tabu-list is released.
The tabu-list (λ) length and the amount of flips (TS iterations) are configurable and provided
by an empirical study.

Basically, as the local search continues, best nearby solutions are being found without the
risk of falling back into the same local optimum, because the solutions found once are already
on the tabu-list, until they are released due to the FIFO mechanism. This allows for a very
broad exploration of the neighborhood space.

1.4.4 Insertion

Insertion is the final stage of GASAT’s evolutionary step. After two solutions are selected and
the crossover operation generates a new solution the Tabu Search attempts to optimize this
solution. Now, this solution needs to be inserted back into the population. In GASAT (as
well as vast majority of other evolutionary systems) the population size is kept constant. This
means that in order for this newly found solution to be inserted back into the population, it
needs to replace one of the already existing solutions.

If the new solution does not meet the insertion condition, it is discarded and the popu-
lation remains unchanged. This insertion condition requires the fitness of this new solution
to be better than the worst individual in the current sub-population P ′ which was created
during the selection phase of this generation step. If this insertion condition is met, the new
child solution replaces the individual of the population P [7] [8].

The following diagram illustrates the selection, recombination and insertion process [7]:

11

1.5 Walksat

Walksat is not a Genetic Algorithm. It is a randomized neighborhood search algorithm which
is considered to be a very efficient SAT problem solver.

The execution process of Walksat starts with assigning each variable a random binary
value. Then the algorithm picks a random clause, out of the ones which are currently not
satisfied. Once the clause is selected the algorithm picks a variable which is a part of the
clause and flips it [10]. This process is then repeated, and the algorithm keeps track of the
improvements caused by the bit flipping. The execution of Walksat is limited only by the
amount of bit flips which are allowed during a single execution. It is worth noting that after
every bit flip, Walksat needs to recalculate how many false clauses remain in the current
solution. This is important because this recalculation can be seen as equivalent to fitness
function evaluations for the evolutionary solver approaches. This observation will be useful
in creating criteria for comparing the genetic algorithms to Walksat.

A Multi-start Walksat is also used in this paper. Multi-start Walksat simply refers to
simultaneous execution of independent Walksat instances on the same SAT Problem. Based
on the amount of instances running, the amount of flips allowed for each instance is adjusted
so that the total matches a single execution of a one standard Walksat run.

12

Chapter 2

GOMEA

2.1 LTGA

Linkage Tree Genetic Algorithm (LTGA) is a genetic algorithm which relies on finding variable
correlations through a process of building and traversing a linkage tree. Then, the algorithm
uses genetic operations in a population based environment in order to optimize existing solu-
tions [13]. Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is integrated into
the Linkage Tree Genetic Algorithm. In this paper the core ideas of GOMEA are extracted
from Linkage Tree GA, and applied into the SAT Problem resulting in creation of a new
algorithm GOMEA-SAT.

First, the original LTGA will be explained. The next section will show how the core con-
cepts of GOMEA are extracted, applied to the satisfiability problem and how some properties
of SAT Problems are used in creating GOMEA-SAT.

The difference between GOMEA and LTGA can be a bit fuzzy. GOMEA can be seen as
the genetic algorithm which performs evolutionary operations on population members, based
on existence of specific variable subsets. LTGA is an instance of GOMEA which uses Linkage
Tree learning in order to generate those clusters. GOMEA-SAT uses a different methodology
to generate the clusters. The creation of clusters, and the methods of performing the crossover
operations of both LTGA and GOMEA-SAT are explained below.

With LTGA before any genetic crossover operations are performed, the algorithm at-
tempts to learn important information about the problem itself. A Family of Subsets (FOS)
is created in this process by learning correlations between different variables present in the
problem [13]. Unlike GOMEA-SAT, LTGA accomplishes this by building and traversing a
Linkage Tree structure. The aim of using linkage learning is to discover interactions between
problem variables. This allows to create subsets (FOS) which are believed to be good build-
ing blocks (partial solutions) and should not be disrupted by crossover operations [13]. The
official definition of a Linkage Tree used by LTGA is as follows:

Definition: The Linkage Tree of a population of solutions is the hierarchical cluster tree
of the problem variables using an agglomerative hierarchical clustering algorithm with a dis-

13

tance measure D. The distance measure D(X1,X2) measures how much dependency there is
between two sets of variables X1 and X2 [13].

In order to better understand how a Linkage Tree is created, it is important to know
how the hierarchical clustering algorithm determines which variables (and sets of variables)
to cluster together. This algorithm can be shown in a few steps [12]:

• Compute the proximity matrix using metric D

• Assign each variable to a single cluster

• Repeat until one cluster left:

– Join two nearest clusters ci and cj into cij
– Remove ci and cj from the proximity matrix

– Compute distance between cij and all clusters

– Add cluster cij to the proximity matrix

After the linkage tree is created, LTGA traverses through the entire population, using each
solution along with a randomly selected donor solution (which is also a population member)
to create a new solution (child) through a process of copying over parts of the the donor
solution. This operation is directly based on the clusters created by the Linkage Tree. These
clusters are used as masks in order to create the child solutions. This masking process is identi-
cal to the one used in GOMEA-SAT, and will be explained in greater detail in the next section.

Once the child solution is generated, its fitness value is calculated. If the child has a better
fitness value then its original, parent solution, the parent is replaced with the child solution,
and the traversal of the tree continues. If the child solution in not better than the parent, then
the traversal continues without replacing the parent. The LTGA process can be summarized
in the following steps [12]:

• Create initial population of size N

• Repeat until stop criteria is met:

– Build Linkage Tree

– For every solution in the population:

∗ Set crossover mask to current clustering

∗ Apply the mask from donor to the current solution

∗ If the offspring solution is better then the parent, replace the parent

– If tree fully traversed: Copy best solution to next population

– Else: continue traversing

The process of traversing the list of clusters and masking parent solutions is the core of
GOMEA and is used in a similar fashion for the GOMEA-SAT. The differences and similari-
ties will be discussed in detail in the next section.

14

2.2 GOMEA-SAT

Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) has been used as a core part
of the Linkage Tree GA. In fact, as mentioned earlier, LTGA can be viewed as an instance
of GOMEA with a specific learning mechanism. Evolutionary system created as a part of
this thesis, GOMEA-SAT, uses GOMEA as a stand-alone genetic algorithm in order to solve
SAT Problems. The FOS structure is created in a very different way than with LTGA, which
used Linkage Tree learning [13]. GOMEA-SAT uses the data already present within a SAT
Problem to generate the cluster structure (explained in detail in the next section). With this
structure GOMEA-SAT performs the evolutionary operations, similar to the ones of LTGA.

Firstly the FOS Structure is determined by a direct variable mapping. Depending on
which optimization technique is used, this FOS Structure may be further altered by addition
of Singleton subsets. The exact mechanism of creating this structure is explained in the next
section. After the FOS Structure is established the initial population of the Evolutionary
System is created.

Initial population consists of n randomly generated solutions. Each solution is a binary
sequence of length equal to the amount of Boolean variables present in a given SAT Problem,
and the location of the bit in the binary sequence represents the current value of the corre-
sponding variable.

For example, a candidate solution for SAT Problem with the Boolean variable set

X = {x1, x2, x3}

could take any of the following bit sequences:

000 001 010 011
100 101 110 111

Once all n population members are randomly initialized, each initial solution is measured
with the use of fitness evaluation function. The result of the evaluation function is the fitness
of a given solution. This fitness directly corresponds with the amount of false clauses this
solution would generate if applied to the given SAT Problem’s Boolean formula. Of course
the ideal value of the fitness function is zero, which implies satisfying the entire formula and
guaranteeing the optimal solution. This is followed by the execution of GOMEA. The goal
of GOMEA, and the whole Evolutionary System is to minimize the fitness value as much as
possible.

GOMEA examines and attempts to modify each of the n solutions present in the popu-
lation. In most aspects it very closely follows the GOMEA algorithm used with the Linkage
Tree GA [13]. Each of the solutions in the current population is looked at, and considered a
candidate solution. One donor solution is picked from the remaining n − 1 solutions in the
current population. The process of selecting the donor can be random, as in LTGA, however
other possibilities such as applying selection pressure with the use of tournament selection
were tested.

15

Once the donor solution is determined, traversing the FOS Structure takes place. Each
individual subset in the FOS is considered as a mask, and examined individually. The order
of traversing individual subsets has been randomized in order to avoid possible bias towards
some subsets. While examining an individual subset, the values of the variables contained
within this subset from the donor solution are masked onto the candidate solution, by replac-
ing the original candidate values for those variables. This can be illustrated with a simple
example.

Let the set of Boolean variables include five variables,

X = {p1, p2, p3, p4, p5}

and the FOS subset currently being examined be

si = (p2, p4, p5)

Lets assume the candidate solution from the population which is currently being examined
is 11001 and the Donor solution chosen from the remaining population is 00100. Now a mask
needs to be applied from the Donor solution to the Candidate solution for variables p2, p4 and
p5, in accordance with the currently examined FOS Subset. This operation will result in:

Binary Sequence
Candidate 11001

Donor 00100

Result 10000

For each subset, after the donor mask is applied, the new candidate’s fitness is calculated.
If the new fitness is better than the earlier candidate (before the mask was applied), the new
solution becomes the current candidate. After this process is repeated for each FOS subset,
the final candidate solution replaces the original solution from the population, unless not a
single improvement was possible. In that case, the final candidate solution is discarded and
the original solution survives within the population till the next generation step.

This concludes a single evolutionary step of GOMEA-SAT. Depending on the configuration
of the Evolutionary System, further evolutionary steps are performed in order to further
improve the fitness of existing solutions within the population. The System terminates when
either the Boolean formula is completely satisfied (a solution with a fitness of zero is discovered
in the population), or when the execution reaches a limit of allowed evolutionary steps. If
this limit is reached, the solution with the best fitness present in the population is returned
as the result.

2.3 Clause to FOS Mapping

As explained earlier, a Family of Subsets is a structure of clusters of variables. Grouping of
those variables in a certain way is very important to the quality of the solution discovered.
Before GOMEA is applied in the Linkage Tree GA, this FOS Structure is carefully built.
However, building of this linkage tree can be very expensive and the amount of processing

16

needed in order to create the LTGA’s Family of Subsets is a very big drawback.

In the GOMEA-SAT the linkage learning process needed to generate the FOS Structure is
replaced with the pre-existing structure which inherently exists in every SAT Problem. This
can be accomplished due to the existence of already clustered sets of variables present in a
SAT Problem. Recall, the Boolean formula for the SAT Problem is a logical conjunction of a
set of clauses:

C = {c1, c2, c3, .., cm}

resulting in the Boolean formula of form:

c1 ∧ c2 ∧ c3∧, ..,∧cm

where each clause is a disjunction of a subset of variables (or its negations), such as
cx = (±pa,±pb,±pc, ...,±pk), where a..k are some unique variable indexes. With a simple
transformation we can use this existing clause structure, and generate a corresponding Family
of Subsets:

FOS = {s1, s2, ..., sn}
sx = |cx|,

where sx is an indexed subset, and cx is a corresponding clause, so

FOS = {s1, s2, ..., sn} = {|c1|, |c2|, ..., |cn|}
It is important to note that in this case the absolute value operator gets rid of the logical

negation which could be present within a clause, and the logical disjunction is ignored.

This could be easily illustrated with a simple example. Let:

X = {p1, p2, p3, p4}

and the Boolean formula be

F = (p1 ∨ ¬p3)(¬p1 ∨ p2 ∨ p3)(¬p1 ∨ ¬p2 ∨ p4)(p1 ∨ ¬p3 ∨ p4)
This yields four clauses:

c1 = (p1 ∨ ¬p3)
c2 = (¬p1 ∨ p2 ∨ p3)
c3 = (¬p1 ∨ ¬p2 ∨ p4)
c4 = (p1 ∨ ¬p3 ∨ p4)

To obtain the FOS Structure, the simple transformation can be applied:

FOS = {s1, s2, s3, s4} = {(|c1|, |c2|, |c3|, |c4|)}
which yields

FOS = {(p1, p3), (p1, p2, p3), (p1, p2, p4), (p1, p3, p4)}

17

Chapter 3

GOMEA-SAT Experimental Study

3.1 Study Overview

The goal of the first stage of this research is to create an optimal configuration of the evo-
lutionary system for the SAT Problem. Just as the Linkage Tree GA uses GOMEA, so does
the GOMEA-SAT. However in order to adapt GOMEA to the Satisfiability problems some
alterations need to be made. In order to acquire closer to optimal results from this new
algorithm, some changes and additions are implemented and empirically tested on series of
benchmarks and configurations. These modifications, which are explained in detail in later
sections consisted of testing effects of:

• Population vs. Evolution Length

• Randomizing the FOS Structure

• Singleton additions to the FOS

• Addition of Tournament Selection

• Addition of Forced Improvement

All the additions and configuration modifications were empirically tested on a set of bench-
marks acquired from the official SAT Problem on-line library [6]. Specific information about
the benchmarks can be found in the Appendix. These benchmarks are divided into three
categories:

• Random : where the Boolean Formula and clause variable distribution is randomized

• Handmade : which are specifically designed and implemented manually

• Industrial : which are SAT Problem representations of the real-world problems

By testing benchmarks from each of those categories, the research results are more general
and applicable to a much wider range of problems.

18

3.2 Optimization Techniques and Results

3.2.1 Population vs. Evolution Length

Hypothesis: With careful adjusting of allowed population size and the amount of generation
steps allowed, it will be possible to determine a configuration which will perform statistically
better than others with the same amount of processing.

Intuitively, in an environment without any limitations it would be logical that the more
evolutionary steps are allowed during execution of a genetic algorithm, the better the chances
of finding a more fit solution. Likewise, the greater the population size of initial solutions,
the better the chances of finding more fit solutions over time.

Of course, in reality, GAs are faced with limitations such as time or performance con-
straints. Given some constrains, a GA needs to be configured correctly. Increasing the popu-
lation size implies increasing the time and processing needed for every generation step, which
in turn results in the need for cutting down on generation steps allowed or the constraint
will not be met. Alternatively, increasing the amount of generation steps allowed, forces the
decrease of the population size.

A Genetic Algorithm is very susceptible to such adjustments, and trading off too much
population space for more generation steps or the other way around can have a very negative
effects on the results. Finding a good balance is therefore very important. There are many
possible measures which can be used as a constraining factor. Time of execution is a possi-
bility likely used in real-world applications. This is however not a great limiting factor for
research purposes, as the same algorithm can have a strongly varying physical runtime based
on different hardware/software specifications and conditions of performing the experiments.
For this thesis a performance limitation is used as the limiting factor. More specifically -
the maximum number of fitness function evaluations is set. With this constraint, it becomes
possible to measure and compare how a differently parametrized Evolutionary System be-
haves purely on algorithmic performance, without the bias of different software or hardware
specifications of the machine performing the experiments.

A series of experiments were conducted on three different benchmarks which were param-
eterized with the following Population / Evolutionary Steps configurations:

• Population: 25 , Evolutionary Steps: 40

• Population: 50 , Evolutionary Steps: 20

• Population: 100, Evolutionary Steps: 10

• Population: 200, Evolutionary Steps: 5

• Population: 500, Evolutionary Steps: 2

All of the above configurations are designed so that each of them performs the same
amount of fitness function evaluations, and the differences in results are only based on the

19

effects of trading off population size for the length of a run and vice-versa. The results of
every configuration are gathered and averaged over twenty independent runs.

First benchmark tested was glassyb-v399-s732524269.shuffled-as.sat03-1680.cnf (abbrev.
”Glassy”). This benchmark consists of 399 variables used in 1862 clauses.

Population / Evo Steps False Clause Avr Std Dev

Glassy 25 / 40 26.0 0.707
Glassy 50 / 20 25.0 1.871
Glassy 100 / 10 25.4 0.548
Glassy 200 / 5 25.8 1.095
Glassy 500 / 2 39.2 2.774

Results of this experiment point to the 50/20 and 100/10 configurations as the most
efficient ones. However the significance test was only conclusive in showing that 500/2 con-
figurations is statistically worse. This suggests that too much trade off in the length of the
evolution is not desirable, even if it allows for larger populations.

The same experiment was conducted on another benchmark: hidden-k3-s2-r4-n500-01-
S1373238829.shuffled-as.sat03-1035.cnf (abbrev. ”Hidden”). This benchmark consists of 500
variables and 2000 clauses.

Population / Evo Steps False Clause Avr Std Dev

Hidden 25 / 40 17.6 0.894
Hidden 50 / 20 14.4 2.296
Hidden 100 / 10 14.8 2.280
Hidden 200 / 5 19.2 0.837
Hidden 500 / 2 28.4 2.074

Results of this experiment yield more conclusive results. They confirm that the really
large populations are bad, if in order to have them evolutionary steps need to be traded off.
They also show that having a very large amount of evolution steps, but small population is
significantly inferior as well. In this benchmark, the 50/20 and 100/10 configurations were
statistically better than any others.

The final benchmark tested is hgen8-n120-03-S1962183220.shuffled-as.sat03-877.cnf (ab-
brev. ”Hgen8”), with 120 variables and 198 clauses.

Population / Evo Steps False Clause Avr Std Dev

Hgen8 25 / 40 1.37 0.296
Hgen8 50 / 20 1.27 0.152
Hgen8 100 / 10 1.05 0.229
Hgen8 200 / 5 1.16 0.175
Hgen8 500 / 2 1.84 0.375

20

Results here have only one statistically superior configuration: 100/10.

The hypothesis is confirmed. While keeping the amount of function evaluations constant,
configuring the Population Size versus the length of evolutionary steps is very important. Of
course the configurations can be more or less successful based on a given benchmark, however
using large populations with little evolutionary steps or vice versa is never desirable, and a
good balance needs to be found for a successful EA. For most of further experiments in this
paper a population of a hundred solutions and ten generation steps will be used, as it exhibits
the most efficient behavior.

3.2.2 Random FOS

Hypothesis: The usage of Clause to FOS Mapping has a positive effect on the results. Using
a randomly generated Family of Subsets will generate significantly worse results.

Unlike LTGA, in order to greatly speed up the Family of Subsets creation, GOMEA-SAT
generates the FOS by some simple transformations to the SAT Problem’s clause structure. It
is assumed that the very rigid and structured clauses used by the system as building blocks
and masks for the genetic operations carry information which are useful for the GA. In or-
der to verify this assumption is correct, and show that the FOS structure created from the
Boolean formula truly inherits information useful to the GA process, empirical tests were per-
formed. These experiments tested a FOS structure which is not created from the given SAT
Problem, but generated in a random fashion instead. Then, the results of running GOMEA
on randomly generated subsets are compared with ones which inherit the structure from the
SAT Problem.

The random algorithm used in order to generate random FOS structures was created
based on some characteristics of the real SAT benchmarks. For a given problem, the Random
FOS algorithm creates the same amount of subsets as the real algorithm would. However, for
each individual subset a pseudo-random number of variables is assigned, and each of these
variables is randomly picked from X, the set of variables available for the benchmark. This
process is then repeated at every step. The term pseudo-random is used here in order to
highlight that despite the number of variables within a subset is random (within reasonable
range), the average number of variables per subset is forced to become the same as for the
real SAT benchmark.

The purpose of enforcing this condition is guaranteeing that the number of fitness eval-
uations is the same for both, random and correctly generated FOS. This constraint allows
for a much better comparison of the two approaches as the computing power is kept the same.

Three benchmarks were used, and the results were verified with the use of the statistical
significance test (t-test)

• ”Hgen8”, with 120 variables and 193 clauses
(hgen8-n120-03-S1962183220.shuffled-as.sat03-877.cnf)

21

• ”Hidden”, with 500 variables and 2000 clauses
(hidden-k3-s2-r4-n500-01-S1373238829.shuffled-as.sat03-1035.cnf)

• ”Homer19”, with 330 variables and 2340 clauses
(homer19.shuffled-as.sat03-430.cnf)

Following are results of the experiments and statistical significance tests:

Benchmark False Cl. Std Dev False Cl. Std Dev p-value
Normal Normal Random Random (T-test)

Hgen8 1.06 0.191 1.60 0.4000 < 0.00001
Hidden 14.25 2.194 27.10 2.171 <0.00001

Homer19 8.00 0.000 8.00 0.000 >0.99999

The results clearly show that if the system is not capable of finding the best solution (it
was found in the Homer19 benchmark for both approaches) the Random FOS approach is
very inferior. Statistical significance test confirms the hypothesis, and shows that a rigid FOS
structure carries advantages over a random and more dynamic one.

3.2.3 FOS Adjustments (Singletons)

Hypothesis: Adjusting the original FOS structure containing only the existing clauses by
adding singleton subsets will significantly improve the results given the same amount of pro-
cessing allowed.

So far the FOS structure has been acquired by a direct translation from the SAT Prob-
lem’s clause structure. Recall, the clause masks used to create candidate solutions during the
genetic steps are directly related to each existing subset. This results in no mask being of
lesser length than the shortest clause in the SAT problem. This could potentially be a problem.

If, on average, the clause length of a given SAT Problem is relatively large, the building
blocks used to mask the donor solution onto the candidate are also large. This could be prob-
lematic as consistently masking large subsets could be failing to generate potentially good
solutions which could only be found using smaller modifications.

In order to counteract this unwanted potential effect, a modification to the FOS structure
is proposed in this section. Normal FOS Structure generated from SAT Problem’s Boolean
formula remains intact, however it is now appended with a new set of subsets - Singletons.
The singleton subsets are generated directly from X, the variable set of the SAT Problem.
Recall each SAT problem consists of such set:

X = {x1, x2, x3, .., xn}

the singleton subsets are a direct one-to-one translation ofX, which generates a set of singleton
subsets of length one:

FOSsingleton = {p1, p2, p3, .., pn} = {x1, x2, x3, .., xn}

22

The new extended subset structure (FOSext) is simply the union of the originally created
FOS and the singleton addition (FOSsin)

FOSext = FOSsin ∪ FOS

With this extended FOS structure the genetic algorithm is now capable of exploring what
happens when only very small changes are done to the candidate solution, by not only mask-
ing clauses with many variables but also by applying single bit masks.

In order to verify if this approach has a positive effect on the GA results, more modifica-
tions to the GA process are necessary. Because of extending the FOS structure with the new
subsets more function evaluations will be needed for every examined solution. The amount
of additional evaluations needed is unique to a individual SAT Problem as it depends on how
many variables a given problem has, with respect to how many clauses are present. In order to
account for this, for each problem the fraction representing the increase of evaluations needed
is calculated. This fraction is then taken away from the original amount of evolutionary steps
allowed for the given experiment. This way, an extended FOS performs more evaluations
within a single evolutionary step, however it is allowed proportionally less steps. Thanks to
this modification, the number of fitness function evaluation remains the same, and allows
for non bias comparison of the GA using either the standard or the singleton extended FOS
Structures.

Three SAT Problem benchmarks are used here to evaluate the effects of replacing the FOS
Structure, with the FOSext Structure defined earlier. These benchmarks are:

• ”Hgen8”, with 120 variables and 193 clauses
(hgen8-n120-03-S1962183220.shuffled-as.sat03-877.cnf)

• ”Hidden”, with 500 variables and 2000 clauses
(hidden-k3-s2-r4-n500-01-S1373238829.shuffled-as.sat03-1035.cnf)

• ”Homer19”, with 330 variables and 2340 clauses
(homer19.shuffled-as.sat03-430.cnf)

Following are results of the experiments:

Benchmark False Cl. Std Dev False Cl. Std Dev p-value
(FOS) (FOS) (FOSext) (FOSext) (T-test)

Hgen8 1.06 0.191 1.09 0.302 >.9999
Hidden 14.25 2.194 15.25 1.861 0.2354

Homer19 8.00 0.000 8.00 0.000 >.9999

After examining the results it is clear that the hypothesis of this section is not correct.
Performing the significance test (t-test) does not show any statistically significant improve-
ment of using FOSext over regular FOS. It is however important to note that this result does
not render using the extended FOS useless. The results of both methods are equivalent, as
the same amount of function evaluations is enforced, and neither result is significantly worse
than the other. In this paper I will continue using the standard FOS method, as the FOSext
creates a small additional overhead, without improving the results.

23

3.2.4 Tournament Selection

Hypothesis: Using a size s=2 or s=3 Tournament Selection in the process of determining
the donor solution will produce significantly better results than choosing the donor randomly.

Selection Pressure is a characteristic of many genetic algorithms. This characteristic is
used to describe how a parent solution is determined during the selection stage. For GOMEA
such selection pressure could be applied to the process of choosing the donor solution, which is
then used for masking the candidate solutions. Original GOMEA does not apply any pressure
to the donor selection process and simply randomly picks one of the existing solutions within
the current population [13]. In this section selection pressure will be applied to the donor
solution, specifically Tournament Selection.

Tournament Selection is a known evolutionary algorithm technique used for applying se-
lection pressure to the population. Instead of simply choosing one solution to use as a parent
(or a donor in GOMEA case), a pool of solutions of size n (s = n) is picked. Only the best
solution from this pool will be allowed to become selected. The goal of this technique is to
slightly increase the probability of choosing a better solution as a parent/donor, instead of
giving equal chances to all solutions, despite how fit they are [9].

For GOMEA-SAT two variants of the Tournament Selection were implemented and tested.
The first one, s=2, would pick two solutions from the populations, and only allow the better
one to become the donor. The second one, s=3, works analogically and chooses the best out
of three randomly picked solutions as a donor.

Two sets of series of experiments (for s=2 and s=3) are performed of the following SAT
Problem benchmarks:

• ”Hgen8”, with 120 variables and 193 clauses
(hgen8-n120-03-S1962183220.shuffled-as.sat03-877.cnf)

• ”Hidden”, with 500 variables and 2000 clauses
(hidden-k3-s2-r4-n500-01-S1373238829.shuffled-as.sat03-1035.cnf)

• ”Homer19”, with 330 variables and 2340 clauses
(homer19.shuffled-as.sat03-430.cnf)

• ”Genurq4”, with 64 variables and 298 clauses
(genurq4Sat.shuffled-as.sat03-1510.cnf)

At first the s=2 case is examined. The values in the columns represent the average amount
of false clauses and their standard deviations for the no tournament case and the t=2 case.
Last column, p-value, is a statistical significance test indicator. It is a standard assumption
that the p-value needs to be smaller than 0.05 on order for there to be a statistically significant
difference.

24

Benchmark Normal Std Dev Tournament Std Dev p-value
(No Tournament) (No Tournament) s=2 s=2 (T-test)

Hgen8 1.06 0.191 1.07 0.257 0.9294
Hidden 14.25 2.194 15.55 1.238 0.1250

Homer19 8.00 0.000 8.00 0.000 >.9999
Genurq4 0.35 0.489 0.30 0.470 0.7436

Tournament with three possible donors is examined next (s=3). Format of the data is
identical to the size = 2 tournament explained above.

Benchmark Normal Std Dev Tournament Std Dev p-value
(No Tournament) (No Tournament) s=3 s=3 (T-test)

Hgen8 1.06 0.191 1.04 0.190 0.8158
Hidden 14.25 2.194 14.15 1.424 0.9054

Homer19 8.00 0.000 8.00 0.000 >.9999
Genurq4 0.35 0.489 0.35 0.489 >.9999

Results of the experiments on both Tournament Selection sizes are very conclusive. Nei-
ther attempt of improving the results by forcing the possible donor solutions to compete
against each other has any statistically significant effect on the results. This can be observed
by examining the T-test’s p-values, which are very high. While adding the Tournament Selec-
tion can be extremely useful in many Genetic Algorithms, it does not cause any improvement
for the GOMEA. The hypothesis of this section does not hold and the addition of Tournament
Selection to the GOMEA-SAT would only create an unnecessary overhead.

3.2.5 Forced Improvement

Hypothesis: Addition of the Forced Improvement mechanism to the GOMEA Algorithm will
generate statistically significant improvements with the same amount of processing allowed.

Forced Improvement (FI) is a mechanism which changes the behavior of GOMEA in cer-
tain cases in order to attempt to force-find a better solution when the unmodified GOMEA
cannot. The FI mechanism is triggered only when GOMEA traversed the whole FOS struc-
ture of a given candidate population member, but none of the masks created from the donor
solution succeed in improving this particular solution. If the standard algorithm finds even
the slightest improvement by itself, FI is not triggered [1].

Recall that in the standard GOMEA the solution being examined remains unchanged in
the current population if the building block masks are not capable of improving it. The same
solution will be again present in the next step’s population, and a different donor solution
will attempt to improve it.

Forced Improvement manages the scenario described above differently. Instead of leaving
the solution unchanged in the population and allowing the next generation to handle it, FI

25

attempts to fix it. The best currently available solution is located in the population. This so-
lution becomes the new donor, and the masking process is repeated until a single improvement
is found or all the masks from the new donor are tried and still no improvement is possible [1].

A very important aspect of Forced Improvement is that traversing and applying the masks
of the best fit donor only happens until any single mask improves the candidate solution. This
is very different than the standard GOMEA process, where even after a mask improves the
candidate solution, the change is kept with the candidate and the process continues until all of
the subsets have been masked [12]. The reason for this difference is very important. Allowing
a solution to be fully masked with the current best solution in the population every time the
original donor was not able to find an improvement affects the diversity of the population in
a strong and negative way. Applying all the masks of the same same solution, even a very
good one, to many solutions in the population is likely to force the population to converge
towards a false optimum.

The goal of the Forced Improvement is not to force the best solution onto the candidate
solution, but to use this good solution in order to find a very small improvement on a candi-
date solution which a random donor could not improve. With a very small improvement to
the candidate solution the population will not start losing diversity, but at the next generation
step the regular GOMEA process will have an easier job improving the new candidate solution.

A downside to the Forced Improvement mechanism is that it requires more processing and
more function evaluations within a single generation step. This in turn results in shortening
the evolutionary steps proportionally.

This mechanism was tested with the following SAT Problem benchmarks:

• ”Hgen8”, with 120 variables and 193 clauses
(hgen8-n120-03-S1962183220.shuffled-as.sat03-877.cnf)

• ”Hidden”, with 500 variables and 2000 clauses
(hidden-k3-s2-r4-n500-01-S1373238829.shuffled-as.sat03-1035.cnf)

• ”Homer19”, with 330 variables and 2340 clauses
(homer19.shuffled-as.sat03-430.cnf)

• ”Homer17”, with 286 variables and 1742 clauses
(homer17.shuffled-as.sat03-430.cnf)

• ”Glassy”, with 399 variables and 1862 clauses
(glassyb-v399-s732524269.shuffled-as.sat03-1680.cnf)

The following table presents the results of measuring the average false clauses (f.c.) on the
SAT Problem benchmarks for the regular GOMEA approach as well as the GOMEA with the
built-in Forced Improvement mechanism. For the approach using FI, maximum evolution-
ary steps allowed has been shortened proportionally to the average of additional evaluations

26

needed in a solution. P-value is again the indicator of statistical significance.

Benchmark False Clauses Std Dev False Clauses Std Dev p-value
(No FI) (No FI) (with FI) (with FI) (T-test)

Hgen8 1.06 0.191 1.11 0.310 0.6694
Hidden 14.25 2.194 15.30 2.145 0.2344

Homer19 8.00 0.000 8.00 0.000 >.9999
Homer17 4.00 0.000 4.00 0.000 >.9999
Glassy 28.2 2.049 25.2 1.549 0.002

The hypothesis is confirmed. Adding Forced Improvement to the GOMEA process doesn’t
always significantly improve results, however it does accomplish that in some cases. At the
same time, the FI addition does not create significantly worse results in any of the tested
cases, which implies that Forced Improvement does in fact improve GOMEA-SAT.

3.2.6 Conclusions

The Gene-pool Optimal Mixing Evolutionary Algorithm adapted for the Satisfiability Problem
was extensively tested in this part of the research. The goal of this testing was to determine
and examine configurations, modifications and extensions to GOMEA which would result in
optimizing the results of this algorithm. Some of this research resulted in not finding any im-
provements and sometimes even worsening the outcome, however a few approaches generated
very promising results.

GOMEA-SAT benefits from the fact that its Family of Subsets structure is easily derived
from the existing clause structure of the Satisfiability problem. One premise of this thesis
relied on the assumption that even if not ideal, the use of SAT clauses as building blocks for
the genetic processes will carry enough information and stability to be a very good alternative
for generating and using the FOS structure. This hypothesis was confirmed. Testing the same
SAT Problem benchmarks on a more dynamic and randomly generated subsets turned out to
be very statistically inferior.

Genetic Algorithms are very sensitive to how some of their parameters are configured.
Many configurations were tested in order to determine a good combination of population size
and the amount of evolutionary steps a GA should be able to take. Of course, increasing
population size along with increasing the number of steps is likely to generate better results.
This isn’t always possible as there are constraints on the execution of a genetic algorithm.
With some constraints in place, increasing population size forces a trade off in evolution
length, and vice versa. Some configurations tested a lot better than others, allowing to find
the parameters generating much better results.

There was some concern that the building blocks generated from the SAT Problem’s clause
structure might affect the creation of new solutions too strongly. Extending the FOS structure
with a set of singletons (FOSsin), which consisted of subsets of length one was theorized to
improve the results. While the use of extended FOS structure did not have a negative effect

27

on the results, it also did not improve them.

Another failed approach of improving the results was the application of selection pressure.
A Tournament Selection mechanism was introduced to the genetic algorithm. The goal was to
force the donor solution to be more fit than one chosen randomly, with the hope of generating
better results. This hypothesis was also proven wrong, as both of the tournament sizes tested
(s=2 and s=3) had virtually no significant effects on the outcome.

The Forced Improvement mechanism turned out a lot more useful. By giving an un-
improved candidate solution another chance at improvement within the same generation step,
some significant improvements were recorded, making the integration of FI into GOMEA-SAT
a welcome addition.

The goal of this section was to determine the correct configurations and useful additions
and modifications to the pure genetic algorithm. But even an optimized GOMEA algorithm
is not yielding results competitive with some other SAT Solving methods. Next section will
address this by introducing a neighborhood search into the GOMEA-SAT in hopes of making
it much more powerful.

28

Chapter 4

Local Search

Hypothesis:Addition of the short local search (LS) with every new solution will greatly im-
prove the previous experiments, and will result in creating a system significantly competitive
with, or better than GASAT, single long-run Walksat and multi-start Walksat Algorithms.

As introduced earlier, Walksat is a neighborhood search algorithm designed for solving
satisfiability problems. As any local search Walksat performs a series of small changes to the
solution exploring the nearby solutions in order to determine the optima [10]. It is designed
to perform a big scale bit modifications in order to find optimal SAT Problem solutions. It is
a very efficient and effective algorithm.

Walksat performs a great amount bit flips as it has no other mechanism to generate solu-
tions. GOMEA-SAT on the other hand can easily move around the solution space, however it
often takes big, and not optimized leaps. This section will focus on incorporating the power
of a local search into the GOMEA-SAT created in the previous sections.

Every new candidate solution inserted into the population is better than its predecessor,
however it is incapable of knowing if an even better solution exists somewhere very near in
the solution space. With an addition of a small local search to any newly found solution, the
population will be updated not with just a better solution, but instead with an even better
local optimum result surrounding the solution.

In order to verify that using a GA in combination with the Walksat local search is desirable,
the final results will be compared with a Multi-start Walksat Algorithm as well as the pure
Walksat. All three methods will be explained in detail in the following section.

4.1 Local Search Integration

Part of incorporating a local search into the GA requires determining how long for every new
solution is the local search allowed to run while searching for a local optimum. Three cases
are considered:

• Small LS

29

• Medium LS

• Large LS

Each case has a different cutoff value for flips allowed. Small local search only allows 100
bit flips for every solution in the population per generation step. Medium local search can
perform 20,000 flips, while the Large search is allowed to flip up to 40,000 bits. Each of these
LS configurations are tested over a range of benchmarks.

As GOMEA-SAT performs an evolutionary step every solution in the population is looked
at. With the use of the FOS structure every solution is attempted to be improved upon. If
this process succeeds a new solution replaces the original one. If it does not succeed, the
original solution remains in the population. With the local search integration into the GA
process, weather a new solution is introduced or the original remains, a Walksat local search
will be performed before advancing to the next solution.

4.2 Walksat, Multistart Walksat and GASAT

A measure of GOMEA-SAT is needed to determine if the use of this genetic algorithm in
combination with the local search creates a new, viable alternative to solving SAT Problems.

Walksat is already a stand-alone powerful SAT Problem solver. It can be used as a great
comparison tool in order to see how much impact the evolutionary learning aspect of GOMEA-
SAT really has. The amount of total local search flips performed by the GOMEA-SAT’s bursts
of Walksat LS can be easily calculated:

Flipstotal = Cutoff ∗ PopulationSize ∗NumberofEvolutionarySteps

By allowing the stand-alone Walksat to perform Flipstotal bit flips and comparing the re-
sults to GOMEA-SAT it will be possible to determine how much impact the genetic algorithm
really has.

Another measure of determining the usefulness of GOMEA-SAT is to compare it against
a Multi-start Walksat. In a sense, GOMEA-SAT keeps restarting a local search on each of its
solutions. However in between of these searches, the evolutionary learning takes place which
improves the solutions before the local search is triggered again. If this intelligent learning
part is removed, all that remains is a Multi-start Walkat algorithm. Total bit flips performed
by the local search if GOMEA-SAT can be split into independent Multi-start runs. The com-
parison between GOMEA-SAT and this Multi-start Walksat should also highlight how much
does the evolutionary system affect the results.

The same set of benchmarks is used for the experimental results sections below, and con-
sists of:

• ”Hgen8”, with 120 variables and 193 clauses
(hgen8-n120-03-S1962183220.shuffled-as.sat03-877.cnf)

30

• ”Hidden”, with 500 variables and 2000 clauses
(hidden-k3-s2-r4-n500-01-S1373238829.shuffled-as.sat03-1035.cnf)

• ”Genurq4”, with 64 variables and 298 clauses
(genurq4Sat.shuffled-as.sat03-1510.cnf)

• ”2nc”, with 2756 variables and 10886 clauses
(2000009987nc.shuffled-as.sat03-1665.cnf)

• ”Glassy”, with 399 variables and 1862 clauses
(glassyb-v399-s732524269.shuffled-as.sat03-1680.cnf)

4.3 Small LS Results

This section looks into the smallest cutoff value for the local search. Every solution after
being examined by GOMEA will perform a short Walksat with a cutoff of 100 flips. All the
benchmarks are parametrized with a population of one hundred solutions and five evolution-
ary steps are allowed.

Using the Flipstotal formula this implies that the stand-alone Walksat will be permitted
to run for 5 ∗ 104 flips, while the Multi-start Walksat will have ten start points each allowed
5 ∗ 103 flips.

Benchmark GOMEA-SAT (with LS) Stand alone Walksat Multi Start Walksat
false cl. avr false cl. avr false cl. avr

Hgen8 1.00 1.00 1.00
Hidden 4.40 0.00 0.00

Genurq4 0.00 0.00 0.00
2nc 128 94.8 248

Glassy 17.9 7.80 16.5

The significance test results of GOMEA-SAT versus the two Walksat configurations are
summarized in the following table:

GOMEA-SAT (with LS) GOMEA-SAT (with LS)
Benchmark vs. Stand alone Walksat vs. Multi Start Walksat

p-value (T-test) p-value (T-test)

Hgen8 >.9999 >.9999
Hidden <.0001 <.0001

Genurq4 >.9999 >.9999
2nc <.0001 <.0001

Glassy <.0001 0.1422

The results do not look promising for the evolutionary system. GOMEA-SAT never gains
any statistical advantage over the other two algorithms, moreover it is statistically worse on
a couple occasions (Glassy and Hidden benchmarks). This implies that using a very small
local search within the GOMEA-SAT is in no way beneficial, and a pure local search is likely
to outperform it.

31

4.4 Medium LS Results

The cutoff is greatly increased here. Every solution within the population is now allowed
2∗104 local search flips at every generation step. The other parameters remain the same with
population of one hundred and five evolutionary steps.

In the same fashion as in the previous section the Flipstotal for stand alone Walksat is
calculated to be 107 flips, and the Multi-start Walksat is allowed 106, while having 10 different
parallel starting points.

After conducting the experiments, the results are as follows:

Benchmark GOMEA-SAT (with LS) Stand alone Walksat Multi Start Walksat
false cl. avr false cl. avr false cl. avr

Hgen8 1.00 1.00 1.00
Hidden 0.00 0.00 0.00

Genurq4 0.00 0.00 0.00
2nc 44.7 50.0 60.1

Glassy 5.80 5.50 6.00

The statistical significance results are as follows:

GOMEA-SAT (with LS) GOMEA-SAT (with LS)
Benchmark vs. Stand alone Walksat vs. Multi Start Walksat

p-value (T-test) p-value (T-test)

Hgen8 >.9999 >.9999
Hidden >.9999 >.9999

Genurq4 >.9999 >.9999
2nc 0.3092 <.0001

Glassy 0.1974 0.2140

Examining these results yields very different conclusions than the previous section. GOMEA-
SET is no longer statistically worse than any benchmark with respect to both Stand-alone and
Multi-start Walksat. Moreover, in one instance it significantly outperforms the Multi-Start
local search. Keeping the previous section’s result in mind, it is becoming more clear that a
longer local search is beginning to work in favor of the evolutionary system.

4.5 Large LS Results

In this section a very large local search is allowed within the evolutionary system. The cutoff
becomes 4 ∗ 104 which analogically to the previous sections allows for 2 ∗ 107 flips for the
Stand-alone Walksat, and 2 ∗ 106 flips for the ten restarts of the Multi-start Walksat each.

This computationally heavy configurations generate the following results:

32

Benchmark GOMEA-SAT (with LS) Stand alone Walksat Multi Start Walksat
false cl. avr false cl. avr false cl. avr

Hgen8 1.00 1.00 1.00
Hidden 0.00 0.00 0.00

Genurq4 0.00 0.00 0.00
2nc 38.4 47.7 58.0

Glassy 5.50 5.6 6.00

Statistical analysis on these experiments results in the following:

GOMEA-SAT (with LS) GOMEA-SAT (with LS)
Benchmark vs. Stand alone Walksat vs. Multi Start Walksat

p-value (T-test) p-value (T-test)

Hgen8 >.9999 >.9999
Hidden >.9999 >.9999

Genurq4 >.9999 >.9999
2nc <.0001 <.0001

Glassy >.9999 >.9999

These results are even more in favor of the GOMEA-SAT. With respect to the Multi-start
system, the evolutionary algorithm either significantly outperformed it, or both managed to
find the globally optimal solution. Stand-alone Walksat was also either statistically inferior
or the same as GOMEA-SAT, but never managed to be better anymore.

4.6 GASAT Comparison

Previous results show that GOMEA-SAT is most efficient when a larger local search is allowed.
GOMEA-SAT can be considered a hybrid algorithm, as it combines genetic manipulation with
a neighborhood search. Another hybrid algorithm which has been described earlier in this
paper, GASAT, also attempts to solve the same problem. GASAT is a known and successful
genetic algorithm specifically designed to solve the satisfiability problem [7] [8].

GASAT uses a very different method of genetic alteration, and a very different neighbor-
hood search method. While GOMEA-SAT uses Walksat LS, GASAT uses Tabu search, as
explained in detail in the introductory section. They are, however, both genetic algorithms
designed to solve the same problem.

In order to make a fair comparison of the performance of the two algorithms some lim-
itations are put in place, and the two algorithms are tested against each other on the same
benchmarks. The amount of function evaluations is the same, as is the number of flips allowed
during the local search phase. The population size n is also kept the same at n = 100.

In order to compare the two algorithms the following benchmarks are used:

• ”Hgen8”, with 120 variables and 193 clauses
(hgen8-n120-03-S1962183220.shuffled-as.sat03-877.cnf)

33

• ”Hidden”, with 500 variables and 2000 clauses
(hidden-k3-s2-r4-n500-01-S1373238829.shuffled-as.sat03-1035.cnf)

• ”Genurq4”, with 64 variables and 298 clauses
(genurq4Sat.shuffled-as.sat03-1510.cnf)

• ”2nc”, with 2756 variables and 10886 clauses
(2000009987nc.shuffled-as.sat03-1665.cnf)

• ”Glassy”, with 399 variables and 1862 clauses
(glassyb-v399-s732524269.shuffled-as.sat03-1680.cnf)

The empirical results are as follows:

Benchmark GOMEA-SAT (with LS) GASAT p-value
false cl. avr false cl. avr T-Test

Hgen8 1.00 1.02 >.9999
Hidden 0.00 0.00 >.9999

Genurq4 0.00 0.00 >.9999
2nc 38.4 51.3 <.0001

Glassy 5.50 5.25 0.5990

These results also confirm the hypothesis. GOMEA-SAT performance is not significantly
inferior to the one of GASAT. In most of the tested benchmarks GOMEA-SAT performs just
as well as GASAT, and even significantly outperforms it on one occasion.

4.7 Results Conclusion

Adding a local search into the evolutionary system created for this thesis very significantly
improved the system. However, the GOMEA-SAT with the local search doesn’t always look
good when contrasted against pure local searches. It is very clear that the overhead carried
by the evolutionary operations is actually disruptive when the local search bursts are very
small.

34

The two graphs presented here show how much effect the amount of local search has on
the different algorithms tested. These two benchmarks were chosen as they presented the
most statistically significant results.

In most cases Stand-alone and Multi-start Walksat both easily outperformed GOMEA-
SAT when the duration of the local search was short, despite those two algorithms being
much simpler and faster. However when the duration of the local searches are made larger,
the advantages of genetic computing emerge. Pure Walksat starts to lose its advantage, and
the intelligent learning of the genetic system starts to pay off. This becomes most clear on
the longest tested run, when the genetic properties of GOMEA-SAT are clearly the reason
why pure Walksat is statistically equal and even significantly outperformed at times by the

35

GA, while allowed the same amount of local search flips. It can be seen from the graphs that
the GOMEA-SAT gains advantage as the local search becomes long.

In comparison with another hybrid local search genetic algorithm - GASAT, GOMEA-SAT
also performs very well. Most of the time it is not able to outperform GASAT, however it is
never statistically significantly worse, which shows a lot of promise in further development of
this approach.

36

Chapter 5

Learning

5.1 Overview

One of the main features of GOMEA-SAT is a unique way of generating the Family of Sub-
sets. Recall that this operation is done by a simple mapping from the inherent structure of a
SAT Problem’s Boolean formula onto the FOS clause structure. This transformation is very
efficient as far as time complexity (O(n)) and has proven successful in creating a competitive
SAT Problem solver. It might however not be the optimal FOS creation method.

The goal of this chapter is to focus on the FOS structure creation and examine if applying
dynamic learning to this structure can benefit GOMEA-SAT and generate statistically better
results. In order to test this hypothesis, the mapping of Boolean formula clauses onto the
FOS will be completely replaced by the Linkage Tree learning algorithm, which was discussed
in earlier chapters, and will be adapted for the Satisfiability problem.

This means that a Linkage Tree will be created for the SAT Problem instance, and the
correlations of variables (and sets of variables) will be kept and recalculated at every genera-
tion step. As mentioned earlier the Linkage Tree creation is expensive and is most likely too
computationally heavy for many large SAT benchmarks. The goal of this chapter is not to
create a much better solver than the GOMEA-SAT discussed so far, but to verify if addition
of Linkage Tree learning to that system can have a positive effect.

The experiments are ran with the same conditions and parameters, despite the fact that
the use of Linkage Trees is much heavier computationally than the original SAT Problem to
FOS mapping. The purpose of that is to see how much the learning of structure can influence
the final results.

In order to accomplish this, the LTGA (Section 2.1) is modified in order to be compatible
with satisfiability problem benchmarks. The results are then compared to the GOMEA-SAT
algorithm running under the same conditions, but without the Linkage Tree structure learning
mechanism.

37

5.2 Configuration

In order to make GOMEA-SAT comparable to LTGA the amount of function evaluations for
each algorithm needs to be the same for a given benchmark. This constraint is not completely
straightforward to implement as the size of the Family of Subsets differs based on the bench-
mark and algorithm used.

The amount of function evaluations performed by GOMEA-SAT is

EvalsGS = c ∗ nGS ∗ sGS

where c is the number of clauses of the Boolean formula, nGS is the population size and s is
the amount of generation steps allowed.

For LTGA, the number of evaluations performed is

EvalsLT = (2l − 2) ∗ nLT ∗ sLT
where l is the length of the solution bit string (the amount of variables present in a given SAT
Problem), nLT is the size of the population and sLT is the amount of generation steps.

In order to keep the allowed amount of function evaluations equal between the two algo-
rithms, the length of evolution for LTGA (amount of evolutionary steps sLT) will be adjusted:

EvalsLT = EvalsGS

(2l − 2) ∗ nLT ∗ sLT = c ∗ nGS ∗ sGS

Evaluating for sLT leads to:

sLT = c∗nGS∗sGS
(2l−2)∗nLT

Some of these variables are already known, as the GOMEA-SAT experiments were per-
formed when nGS = 100 and sGS = 10. This simplifies the formula:

sLT = 500c
(l−1)∗nLT

For the experiments performed in the next section, three different values of nLT are used in
order to allow a balance of population size and evolution length while keeping the amount of
function evaluations consistent. The nLT values used are 100, 250 and 500, which result in
three different evolution lengths sLT100 , sLT250 , sLT500 :

sLT100 =
5c
l−1

sLT250 =
2c
l−1

sLT500 =
c
l−1

As explained earlier the values c (amount of clauses of a SAT Problems Boolean formula) and
l (the amount of variables of a SAT Problem) vary depending on the benchmark tested. In the
experiments, the above formulas were applied in order to modify the amount of evolutionary
steps of LTGA. This way, the amount of function evaluations for a given benchmark is kept
equal between GOMEA-SAT and LTGA, while different population sizes are tested.

38

5.3 Results

Performance of LTGA against GOMEA-SAT is tested on the following six benchmarks:

• ”Hgen8”, with 120 variables and 193 clauses
(hgen8-n120-03-S1962183220.shuffled-as.sat03-877.cnf)

• ”Hidden”, with 500 variables and 2000 clauses
(hidden-k3-s2-r4-n500-01-S1373238829.shuffled-as.sat03-1035.cnf)

• ”Homer19”, with 330 variables and 2340 clauses
(homer19.shuffled-as.sat03-430.cnf)

• ”Homer17”, with 286 variables and 1742 clauses
(homer17.shuffled-as.sat03-430.cnf)

• ”Genurq4”, with 64 variables and 298 clauses
(genurq4Sat.shuffled-as.sat03-1510.cnf)

• ”Glassy”, with 399 variables and 1862 clauses
(glassyb-v399-s732524269.shuffled-as.sat03-1680.cnf)

The results are as follows for GOMEA-SAT versus LTGA (sLT100), LTGA (sLT250) and
LTGA (sLT500) respectfully :

Benchmark GOMEA-SAT GOMEA-SAT LTGA (sLT100) LTGA (sLT100) p-value
false cl. avr. st. dev. false cl. avr. st. dev. (T-test)

Hgen8 1.06 0.191 1.50 0.527 0.0008
Hidden 14.25 2.194 21.00 3.391 <.0001

Homer19 8.00 0.000 8.00 0.000 >.9999
Homer17 4.00 0.000 4.00 0.000 >.9999
Genurg4 0.35 0.489 1.00 0.000 <.0001
Glassy 28.2 2.049 30.90 2.508 0.0002

Benchmark GOMEA-SAT GOMEA-SAT LTGA (sLT250) LTGA (sLT250) p-value
false cl. avr. st. dev. false cl. avr. st. dev. (T-test)

Hgen8 1.06 0.191 1.00 0.000 >.9999
Hidden 14.25 2.194 18.80 1.483 <.0001

Homer19 8.00 0.000 8.00 0.000 >.9999
Homer17 4.00 0.000 4.00 0.000 >.9999
Genurg4 0.35 0.489 0.579 0.507 0.1676
Glassy 28.2 2.049 26.20 1.304 0.0008

39

Benchmark GOMEA-SAT GOMEA-SAT LTGA (sLT500) LTGA (sLT500) p-value
false cl. avr. st. dev. false cl. avr. st. dev. (T-test)

Hgen8 1.06 0.191 1.10 0.316 >.9999
Hidden 14.25 2.194 20.40 2.701 <.0001

Homer19 8.00 0.000 8.00 0.000 >.9999
Homer17 4.00 0.000 4.00 0.000 >.9999
Genurg4 0.35 0.489 0.36 0.495 0.9466
Glassy 28.2 2.049 27.20 0.837 0.0538

The results show that with equal amount of function evaluations the Linkage Tree learn-
ing fails to significantly improve the GOMEA-SAT results. Most of the results do not show
statistical difference between the LTGA and GOMEA-SAT. GOMEA-SAT even manages to
perform better in some benchmarks, while the LTGA approach performs significantly better
at only one instance (”Glassy” with sLT250).

These results show that while the Linkage Tree learning generates good and comparable
results to GOMEA-SAT, it fails to significantly improve upon them. Furthermore, LTGA’s
tree generation process is very expensive making it difficult to use on benchmarks with very
large amounts of variables. GOMEA-SAT is capable of producing similar, and often better
results with less overhead than LTGA.

40

Chapter 6

Conclusions

6.1 Summary

A new SAT Problem solving genetic algorithm was introduced, developed and tested through-
out this paper. In the first stage of this project, research was conducted in order to find the
correct and most optimal configuration of GOMEA applied to the satisfiability problem. This
included testing the aspects of population size manipulation, evolution length, modification
of the Family of Subsets structure and addition of the Forced Improvement mechanism.

Once the pure genetic system was optimized, a neighborhood search was introduced into
the algorithm in order to further improve the results. With the addition of the Walksat local
search algorithm, GOMEA-SAT became competitive with successful SAT Problem solvers
such as GASAT or Walksat.

Due to its genetic nature, GOMEA-SAT carries a lot of overhead, and can take up a lot of
processing power compared to other algorithms in order to catch up with them. This makes
it an unnecessarily complicated system for solving small SAT Problems, as other simpler al-
gorithms might accomplish it faster.

However, with time, this new GOMEA-SAT algorithm becomes more powerful, and for
harder problems it becomes more efficient and often significantly better than the other algo-
rithms it was tested against. This shows that the GOMEA-SAT based genetic approach can
be very powerful and successful in solving satisfiability problems.

Not all the hypothesis throughout this paper have turned out to be true. Some experiments
turned out successful - such as the addition of Forced Improvement into GOMEA. Some turned
out to have little or no effect, such as the Tournament Selection. However the research goal
was met. The Gene-pool Optimal Mixing Evolutionary approach enhanced with a local search
algorithm resulted in a competitive SAT Problem solving algorithm - GOMEA-SAT.

41

6.2 Future Work

After a lot of optimization and testing, GOMEA-SAT shows a lot of promise as a successful
SAT Problem solving algorithm. At its most optimal configuration it is capable of competing
against successful algorithms such as Walksat or GASAT.

During the testing of this system it became clear that even though creating the Family
of Subsets structure by a direct mapping from the SAT Problem formula is a very efficient
approach, it is not the most optimal one. Creating the clause structure based on the Boolean
formula of the SAT Problem is crucial to the performance of GOMEA-SAT, but could still
be improved upon.

The LTGA approach, which uses linkage learning in order to generate the FOS structure
is a possible alternative, however due to its potentially high time complexity it is not feasible
for a vast number of SAT Problems, due to the large amount of variables and clauses present.
The experimentation data also shows that the LTGA approach failed to significantly improve
upon the GOMEA-SAT results. This does not mean however that learning of structure and
dynamic subset manipulation cannot improve the results.

An addition of a lighter version of learning based on variable correlation could be very
beneficial to GOMEA-SAT and produce even better results in the future. This will however
require a significant amount of research. As shown in the results of the GOMEA-SAT opti-
mization section, changes to the FOS structure can have very devastating effects on the result.
This is why any learning additions and modifications to the FOS structure will have to be
carefully designed, implemented and extensively tested.

42

Appendix A

Benchmark Overview

All benchmarks used in this research were from the official benchmark library - SATLIB -
The Satisfiability Library, and were used in the SAT Competitions at some point in the past.

Below is the full summary of all benchmarks used in this paper, research and all the ex-
periments

43

Full Name glassyb-v399-s732524269.shuffled-as.sat03-1680.cnf

Abbreviation Name Glassy

Type Random

Number of Variables 399

Number of Clauses 1826

Full Name hidden-k3-s2-r4-n500-01-S1373238829.shuffled-as.sat03-1035.cnf

Abbreviation Name Hidden

Type Random

Number of Variables 500

Number of Clauses 2000

Full Name hgen8-n120-03-S1962183220.shuffled-as.sat03-877.cnf

Abbreviation Name Hgen8

Type Random

Number of Variables 120

Number of Clauses 198

Full Name homer19.shuffled-as.sat03-430.cnf

Abbreviation Name Homer19

Type Industrial

Number of Variables 330

Number of Clauses 2340

Full Name homer17.shuffled-as.sat03-430.cnf

Abbreviation Name Homer17

Type Industrial

Number of Variables 286

Number of Clauses 1742

Full Name genurq4Sat.shuffled-as.sat03-1510.cnf

Abbreviation Name Genurq4

Type Handmade

Number of Variables 64

Number of Clauses 298

Full Name 2000009987nc.shuffled-as.sat03-1665.cnf

Abbreviation Name 2nc

Type Handmade

Number of Variables 2756

Number of Clauses 10886

44

Bibliography

[1] Peter A. N. Bosman and Dirk Thierens, Linkage Neighbors, Optimal Mixing and Forced
Improvements in Genetic Algorithms. In Proceedings of the Genetic and Evolutionary
Computation Conference - GECCO-2012.

[2] Peter A. N. Bosman and Dirk Thierens, Genetic Recombination, Distribution Sampling
and Optimal Mixing with a Family of Subsets in Evolutionary Algorithms (2011).

[3] Stephen A. Cook, The complexity of theorem proving procedures in Proceedings of the
Third Annual Symposium on Theory of Computing, pp. 151-158 (1971)

[4] Stefan Harmeling, Solving Satisfiability Problems with Genetic Algorithms (March 9,
2000).

[5] John H. Holland, Genetic Algorithms, (2001), available at http://www2.econ.iastate.

edu/tesfatsi/holland.gaintro.htm.

[6] Holger H. Hoos and Thomas Stutzle, SATLIB: An Online Resource for Research on SAT.
In: I.P.Gent, H.v.Maaren, T.Walsh, editors, SAT 2000, pp.283-292, IOS Press, 2000.
SATLIB is available online at www.satlib.org

[7] Frederic Lardeux and Frederic Saubion and Jin-kao Hao, GASAT: A genetic local search
algorithm for the satisfiability problem, Evolutionary Computation (2006, Vol 14), pp.
223–253.

[8] Frederic Lardeux and Frederic Saubion and Jin-kao Hao, Recombination Operators for
Satisfiability Problems, Lecture Notes in Computer Science (2004, Vol 2936/2004)

[9] Brad L. Miller and David E. Goldberg,Genetic Algorithms, Tournament Selection, and
the Effects of Noise. In Complex Systems Vol.9 pp. 193-212 (1995).

[10] Bart Selman and Henry Kautz and Bram Cohen, Local Search Strategies for Satisfiability
Testing. In, Dimacs Series in Descrete Mathematics and Theoretical Computer Science,
pp. 521-532 (1995).

[11] Joao Marques-Silva, Practical Applications of Boolean Satisfiability. In, Workshop on
Discrete Event Systems (WODES’08), Goteborg, Sweden, IEEE Press (2008).

[12] Dirk Thierens and Peter A. N. Bosman, Predetermined versus Learned Linkage Models.
In Proceedings of the Genetic and Evolutionary Computation Conference - GECCO-2012.

45

[13] Dirk Thierens and Peter A. N. Bosman, Optimal Mixing Evolutionary Algorithms. In
Proceedings of the Genetic and Evolutionary Computation Conference - pages 617-624,
ACM Press, New York, New York (2011).

46

