
Master Thesis
ICA-3117375

Kernelization Rules for Special Treewidth
and Spaghetti Treewidth

Author:
V.J.C. Kreuzen
vjckreuzen@gmail.com

Supervisor:
Dr. Hans L. Bodlaender

H.L.Bodlaender@uu.nl

Secondary Supervisor:
Dr. Stefan Kratsch

S.Kratsch@uu.nl

Department of Information and Computing Sciences,
Faculty of Science

Utrecht University, Netherlands

June 26, 2012

Abstract

Using the framework of kernelization we study whether efficient preprocessing schemes for the
Special Treewidth problem can give provable bounds on the size of the processed instances. In
this paper it is shown that Special Treewidth has a kernel with O(`3) vertices, where ` denotes
the size of a vertex cover. This implies that given an instance (G, k) of Special Treewidth we
can efficiently reduce its size to O((`∗)3) vertices, where ` is the size of a vertex cover in G. Next
we provide a characterization of the special-partial 2-trees, the class of graphs bounded by Special
Treewidth 2, using the notion of mambas and Paths of Cycles.

We also introduce a new cousin of Treewidth and Special Treewidth, the Spaghetti
Treewidth problem. It is shown that Spaghetti Treewidth also has a kernel with O(`3)
vertices, where l denotes the size of a vertex cover.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Special Treewidth . 5
2.2 Spaghetti Treewidth . 6

3 Kernelization Rules for Special Treewidth 8
3.1 Trivial rules . 8
3.2 Simple rules for simplicial vertices . 10
3.3 Complex rules for removing simplicial vertices . 12
3.4 A Kernel for Special Treewidth . 15

4 Special Treewith on sp-partial 2-trees 17
4.1 Mambas . 17
4.2 Defining sp-partial 2-trees through means of mamba-trees 18
4.3 Defining sp-partial 2-trees through means of paths of cycles 20

5 Kernelization Rules for Spaghetti Treewidth 23
5.1 Trivial rules . 23
5.2 Simple rules for simplicial vertices . 24
5.3 Complex rules for removing simplicial vertices . 24
5.4 A Kernel for Spaghetti Treewidth . 27

6 Conclusions 28

1

Chapter 1

Introduction

Treewidth is a well-studied graph parameter, with many theoretical and practical applications. In
treewidth we use tree-decompositions, which can be defined informally as a tree-like representation
of an original graph, which is used to solve certain problems on the original graph more easily/faster.
The tree-decomposition is a tree of so called bags, with each bag holding a number of vertices from
the original graph. The maximum size of the bags determines the treewidth of the graph. Many
NP-hard combinatorial problems on graphs are solvable in polynomial time when restricted to
graphs of bounded (preferably low) treewidth.

A new notion of treewidth, Special Treewidth, was introduced by Courcelle [8, 1]. Special
Treewidth is a graph complexity measure between pathwidth and treewidth and is defined based
on the operations that define clique-width. Courcelle devised the notion of special treewidth to aid
in the model-checking problem for monadic second-order logic. For graphs of bounded treewidth,
the automata used for the verification of monadic second-order properties expressed with edge
set quantifications have exponential size in the bound of treewidth. Courcelle noted that the
exponential blow-up did not occur if path-decompositions were used instead of tree-decompositions.
This was the prime motivation to introduce special treewidth, a graph complexity measure for
which the basic automata are no more difficult to construct or specify than for graphs of bounded
clique-width.

An even newer notion of treewidth, Spaghetti Treewidth, will be introduced in this work, which
is a complexity measure between special treewidth and treewidth. Spaghetti treewidth is akin to
treewidth, with the exception that vertices are required to be in bags which form a (undirected)
subpath in the decomposition rather than a subtree. The introduction of this new graph complexity
measure came from the fact that it is the ”logical missing measure” between treewidth, which
requires vertices to be in bags which form a subtree in the decomposition, and special treewidth,
which requires vertices to be in bags which form a directed subpath in the decomposition. In this
work the decision problems related to these width parameters are studied, which given a graph G
and integer k ask whether the special/spaghetti treewidth of G is at most k. For precise definitions,
see Chapter 2.

In the field of parameterized complexity [11], a theoretical analysis of the potential of preprocess-
ing for Treewidth has been performed in [3], studying whether there are efficient preprocessing
procedures whose effectiveness can be proven, and what the resulting size bounds look like. These
studies have been made possible by using the concept of kernelization [12], a relatively young
subfield of algorithm design and analysis. Further research on parameterized complexity in the
field of monadic second-order logic has been performed by Courcelle, Downey and Fellows [9]. The
concept of kernelization is used in this paper as well, to study whether there are efficient prepro-
cessing procedures for Special Treewidth and Spaghetti Treewidth whose effectiveness can
be proven, and what the resulting size bounds look like.

Definition 1 (Bodlaender et al. [3]). Let Q ∈ Σ∗×N be a parameterized problem. A kernelization
algorithm Q (or kernel) is a polynomial-time algorithm which given an instance (x, k) ∈ Σ∗ × N
of Q, computes an equivalent instance (x′, k′) whose size is bounded by a function f(k) depending
only on the chosen parameter, i.e., |x′|, k′ ≤ f(k).

2

V.J.C. Kreuzen Page 3 of 29

It is unlikely that there is a polynomial-time algorithm that reduces the size of an instance
(G, k) of Treewidth to a polynomial in the desired treewidth k [2]. The same arguments also
apply to Special Treewidth. We therefore turn to other parameters (i.e., the vertex cover
number of the input graph), and determine whether an input of Special Treewidth can be
efficiently shrunk to a size which is polynomial in such a parameter. The parameterized problem
that is considered fits the following template, where F is a class of graphs:

Special Treewidth parameterized by a modulator to F
Instance: A graph G = (V,E), a positive integer k, and a set S ⊆ V such that G\S ∈ F .
Parameter: ` := |S|.
Question: Special Treewidth of (G) ≤ k?

The set S is a modulator to the class F .
Since it is unlikely that there is a polynomial-time algorithm that reduces the size of an instance

(G, k) of Special Treewidth to a polynomial in the desired treewidth k [2], it is also very unlikely
that such a polynomial-time algorithm exists for Spaghetti Treewidth. We therefore again
define the following template where F is a class of graphs:

Spaghetti Treewidth parameterized by a modulator to G
Instance: A graph G = (V,E), a positive integer k, and a set S ⊆ V such that G\S ∈ F .
Parameter: ` := |S|.
Question: Spaghetti Treewidth of (G) ≤ k?

and let the parameterized problem for Spaghetti Treewidth that is considered fit this template.
The set S is a modulator to the class G.

This work. In this paper we introduce a kernel for Special Treewidth parameterized by
the size of a vertex cover of G, resulting in the problem Special Treewidth parameterized
by a vertex cover (which fits into the given template when using F as the class of edgeless
graphs). It is proven that this problem admits a polynomial kernel with O(`3) vertices. Since
we can first compute a 2-approximation for the minimum vertex cover and then feed this to the
kernelization algorithm, this implies that an instance (G, k) of Special Treewidth on a graph
with a minimum vertex cover of size `∗ can be shrunk in polynomial-time into an instance with
O((`∗)3) vertices. We can do this even if we are not given a minimum vertex cover in the input.
Next we a characterization for the Special Treewidth problem on sp-partial 2-trees, and we
present a set of forbidden minors. We also introduce the notion of Spaghetti Treewidth, and
show that we can acquire a polynomial kernel (similar to the kernel for Special Treewidth) for
Spaghetti Treewidth with O(`3) vertices.

Organization of the paper. After this introduction, preliminary results are given in Section 2.
In Chapter 3, we show that Special Treewidth parameterized by a vertex cover has a
kernel with O(`3) vertices. To do so, we introduce a number of ’safe’ reduction rules, that are
variants of rules from the existing treewidth kernel, and some new rules that guarantee an upper
bound on the number of simplicial vertices parameterized by the size of the vertex cover.

In Section 4 we present a characterization of the set of sp-partial 2-trees, and introduce a set
of forbidden minors [13, 14] for this class of graphs.

In Sections 5 and 5.4, we show that Spaghetti Treewidth parameterized by a vertex
cover also has a kernel with O(`3) vertices. To do so, we again introduce a number of ’safe’
reduction rules, five of which are the same as the rules we used for Special Treewidth param-
eterized by a vertex cover and one new rule, which together guarantee an upper bound on
the number of simplicial vertices parameterized by the size of the vertex cover.

Some final remarks are made in Section 6.

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 3

Chapter 2

Preliminaries

In this work, all graphs are finite, simple and undirected (we will show below that the proofs hold
for directed graphs as well). We denote graphs as G = (V,E) with V the vertices and E the edges
in G, and we assume that V 6= ∅ and E 6= ∅. Since our graphs are undirected, edges are denoted
by unordered sets of size two.
The open neighbourhood of a vertex v ∈ V is the set of all neighbours of v and is denoted by
NG(v), and its closed neighbourhood is the set of all neighbours of v including v itself, and is
denoted by NG[v]. Let δG(v) denote the degree δ of a vertex v in G. A vertex v is simplicial in a
graph G if NG(v) is a clique.

Definition 2. A tree-decomposition of a graph G is a pair ({Xi|i ∈ I}, T = (I, F)) with {Xi|i ∈ I}
a family of subsets of V , and T a tree such that:

1.
⋃

i∈I Xi = V

2. For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.

3. For each v ∈ V , the set Iv = {i ∈ I|v ∈ Xi} induces a subtree in T .

The kernelization algorithms presented in this work consist of a number of reduction rules. In
each case, the input to the rule is a graph G = (V,E), an integer k, and a deletion set S ⊆ V
such that G\S is a member of the relevant graph class F , and the output is an instance (G′ =
(V ′, E′), k′, S′). A rule is said to be safe for Special Treewidth if for all inputs (G, k, S) which
satisfy G\S ∈ F we have sptw(G) ≤ k ⇔ sptw(G′) ≤ k′ and G′\S′ ∈ F . A rule is said to
be safe for Spaghetti Treewidth if for all inputs (G, k, S) which satisfy G\S ∈ G we have
spghtw(G) ≤ k ⇔ spghtw(G′) ≤ k′ and G′\S′ ∈ G We will sometimes say that the algorithm
answers Yes or No; this should be interpreted as outputting a constant-size Yes or No instance
of the problem at hand, i.e., a clique on three vertices with k = 2, respectively the same clique
with k = 1.

In this work, we also provide a rule for a preprocessing setting for each kernelization rule.
These preprocessing rules can be used to preprocess graphs before running algorithms to discover
the treewidth. The key difference between the kernelization rules and these preprocessing rules is
the fact that in the preprocessing setting, there is no target treewidth k which can be used in the
rules. The preprocessing rules circumvent this by using lower and upper bounds. We use lowG and
upperG to denote the lower and upper bounds on the special/spaghetti treewidth of G respectively.
Upper bounds can easily be acquired through use of the GreedyDegree heuristic [5, 6].

Definition 3. A chordal graph is a graph where each of its cycles of 4 or more vertices has a
chord. A chord is an edge which connects two vertices on a cycle which are not adjacent on the
cycle. Chordal graphs are also know as Triangulated graphs, and we call the process of turning a
graph G in a chordal graph G′ triangulation.

4

V.J.C. Kreuzen Page 5 of 29

2.1 Special Treewidth

In [8], Courcelle introduced a new notion of treewidth, special treewidth. Special treewidth differs
from treewidth in the sense that bags in a tree-decomposition T containing a vertex v need to form
a subtree in T , whereas bags in a special tree-decomposition T ′ containing a vertex v need to form
a directed subpath in T ′.

Definition 4 (Courcelle [8]). A special tree-decomposition of a graph G is a pair ({Xi|i ∈ I}, T =
(I, F)) with {Xi|i ∈ I} a family of subsets of V , and T a rooted and directed tree such that:

1.
⋃

i∈I Xi = V

2. For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.

3. For each v ∈ V , the set Iv = {i ∈ I|v ∈ Xi} induces a directed (rooted) path in T .

Condition 3) characterizes special tree-decompositions. The sets Xi are called the bags of the
special tree-decomposition. The width of a special tree-decomposition ({Xi|i ∈ I}, T = (I, F))
is maxi∈I |Xi| − 1, and the special treewidth of G is denoted by the minimum over all special
tree-decompositions of G. Let sptw(G) be the special treewidth of G.

We define the set of sp-partial k-trees to be the set of graphs of special treewidth at most k.

Proposition 1 (Courcelle [1]). For each k, the class of sp-partial k-trees is closed under the
following transformations:

1. Removal of vertices and edges,

2. Reversals of edge directions,

3. Addition and removal of loops incident with existing vertices,

4. Addition of edges parallel to existing edges,

5. Smoothing vertices of degree 2.

Smoothing a vertex of degree 2 means contracting any one of its two incident edges.
Since the class of sp-partial k-trees is closed under 4) and 2), we know that we can get from

any undirected graph G = (V,E) to a directed graph G′ = (V,E′) where E′ ⊆ E while retaining
the same special treewidth.

Proposition 2 (Courcelle [8]). The special treewidth of a graph is the maximal special treewidth
of its connected components. It is at most one plus the maximal special treewidth of its biconnected
components. This upper bound is tight.

We define a bridge (or: cut-edge) in a graph to be an edge whose deletion increases the number
of connected components, i.e. an edge in a graph G is a bridge if and only if it is not contained in
any cycle in G.

Let P and P ′ be directed paths in a special tree-decomposition ({Xi|i ∈ I}, T = (I, F)). We
introduce three new structures for sets of bags P ∪ P ′ in T namely the Join, Split and Prior.

1. P ∪ P ′ is a Join iff P ∩ P ′ 6= ∅ i.e. paths P and P ′ have at least 1 bag in common.

2. P ∪ P ′ is a Split iff P ∩ P ′ = ∅ and there does not exist a directed path P ′′ in T such that
P ⊂ P ′′ and P ′ ⊂ P ′′ i.e. P and P ′ do not have any bags in common and there is no directed
path P ′′ with P and P ′ on that path.

3. P ∪P ′ is a Prior iff P ∩P ′ = ∅ and there exists a directed path P ′′ in T such that P ⊂ P ′′
and P ′ ⊂ P ′′ i.e. P and P ′ are on the same path P ′′ but do not have any bags in common

An illustration of the different occurrences of the three structures can be found in Figure 2.1.

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 5

V.J.C. Kreuzen Page 6 of 29

Figure 2.1: Examples of the Join, Split and Prior.

2.2 Spaghetti Treewidth

We define a new cousin of the Treewidth-family called Spaghetti Treewidth. Spaghetti Treewidth
behaves almost the same as Special Treewidth, only it allows for bags containing the same
vertex to form an undirected path in the spaghetti tree-decomposition, whereas a special tree-
decomposition only permits a directed path of bags. We define spaghetti treewidth with the
notion of a spaghetti tree-decomposition.

Definition 5. A spaghetti tree-decomposition of a graph G is a pair ({Xi|i ∈ I}, T = (I, F)) with
{Xi|i ∈ I} a family of subsets of V , and T a rooted and directed tree such that:

1.
⋃

i∈I Xi = V

2. For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.

3. For each v ∈ V , the set Iv = {i ∈ I|v ∈ Xi} induces a simple path in T .

Condition 3) characterizes the spaghetti tree-decomposition. The width of a decomposition T
is the the maximal cardinality minus 1 of a bag, i.e. of a set Ix.

Proposition 3. The spaghetti treewidth of a graph is the minimal width of a spaghetti tree-
decomposition of this graph. There are linear-time algorithms for converting a graph G into a
spaghetti tree-decomposition of width k and vice-versa.

The name spaghetti treewidth is chosen since it gives a nice intuition of how a spaghetti tree-
decomposition looks like. Each vertex v in a graph G forms an undirected path of bags, like a
spaghetti string. When we pull the spaghetti out of the pan, some strings stick together completely
and some strings stick together for some part.

We define the set of spgh-partial k-trees to be the set of graphs of spaghetti treewidth at most
k. It should be easy to see that from Proposition 1 we get the following proposition for spaghetti
treewidth;

Proposition 4. For each k, the class of spgh-partial k-trees is closed under the following trans-
formations:

1. Removal of vertices and edges,

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 6

V.J.C. Kreuzen Page 7 of 29

2. Reversals of edge directions,

3. Addition and removal of loops incident with existing vertices,

4. Addition of edges parallel to existing edges,

5. Smoothing vertices of degree 2.

From the fact that each vertex in a clique must be in the same bag as its clique-neighbours we
get the following proposition.

Proposition 5. For the Spaghetti Treewidth of a clique C we have that spghtw(C) = |C| − 1

In Section 12, we look further into a kernelization for Spaghetti Treewidth.
In the next chapter, the kernelization for Special Treewidth parameterized by a Vertex

Cover (i.e., parameterized by a modulator to an independent set) is presented. The kernelization
focuses mostly on simplicial vertices, and reducing the size and occurrences of these simplicial
vertices. We first give a set of 6 reduction rules, and then prove that with these rules we have a
kernel of size O(l3).

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 7

Chapter 3

Kernelization Rules for Special
Treewidth

In this chapter, a kernelization for Special Treewidth parameterized by a Vertex Cover
(i.e., parameterized by a modulator to an independent set) is presented. The kernelization focuses
mostly on simplicial vertices and reducing the size and occurrences of these simplicial vertices. A
set of 6 reduction rules is presented, and it is proven that with these rules a kernel of size O(`3)
can be made.

3.1 Trivial rules

The Islet Rule

We specify a rule which deals with vertices of degree 0.

Rule 1 (Islet Rule). If v is a vertex of degree 0 then remove v.

Proof. It is clear that S′ = S is a vertex cover of G′ = G\{v}.
Removing a vertex does not increase the special treewidth of the graph [8].

Now let G′ = (V ′, E′) be the reduced graph acquired from removing vertex v, with V ′ = V \{v}
and E′ = E. From Proposition 2 we know that the special treewidth of a graph is equal to
the maximum treewidth of its disjoint connected components. Thus we have that sptw(G) =
max(sptw(G′), sptw({v})). Since δG(v) = 0 we have that sptw({v}) = 0 (The special tree-
decomposition of v consists of one bag with one vertex and thus has sptw = 0) and thus sptw(G) =
max(sptw(G′), 0), and since E′ 6= ∅ (E′ is a non-empty set of edges) this implies that there are at
least two connected vertices which have to be in the same bag in any special tree-decomposition
of G′ which implies that sptw(G′) ≥ 1, and thus sptw(G) = sptw(G′).

An illustration of the application of the rule can be found in Figure 3.1.

Figure 3.1: Application of the Islet Rule.

Next we also define a corresponding preprocessing rule for vertices of degree 0.

8

V.J.C. Kreuzen Page 9 of 29

Reduction Rule I (Islet Rule). Let v be a vertex of degree 0. Remove v from V .

Proof. Disjoint vertices of degree 0 do not contribute to the special treewidth of a graph. Thus it
is safe to remove v from G.

Trivial Decision

We specify a rule which deals with parameters k which are greater than the size of our vertex
cover.

Rule 2 (Trivial Decision). If k ≥ |S|, then answer Yes.

Proof. This rule is safe since the special treewidth of G is at most |S|. We show this as follows:
For each v ∈ V \S, make a bag with vertex set S ∪ {v}, and connect these bags such that they
form a directed path. This gives a special tree decomposition of G of width |S|.

The Twig Rule

We specify a rule which deals with vertices of degree 1.

Rule 3 (Twig Rule). If v is a vertex of degree 1 then remove v. If v ∈ S, then let S′ := S\{v},
else let S′ := S.

Proof. It is clear that S′ is a vertex cover of G′. Removing a vertex does not increase the special
treewidth of the graph [8].

Let w be the neighbour of v. Now let G′ = (V ′, E′) be the reduced graph acquired from removing
vertex v, with V ′ = V \{v} and E′ = E\{v, w}.

Now let ({Xi|i ∈ I ′}, T ′ = (I ′, F ′)) be a special tree-decomposition of G′. Suppose sptw(G′) =
h with minimal special tree-decomposition T ′. We can transform T ′ into T with special width h
as follows:

Select the bag Xw from T ′ such that w ∈ Xw and | {{w, y} ∈ F |w ∈ Xy} | ≤ 1, i.e. w /∈
children(Xw). Make a new bag Xv = {v, w} and add Xv as a child of Xw to T ′ to get T . T is
now a special tree-decomposition of G with sptw(G) ≥ 1.

Since Xw was the last bag on the directed path of bags in T ′ containing vertex w, Xv must
now be the last bag on the directed path of bags in T containing vertex w. Since we look only at
graphs with special treewidth ≥ 1 and the size of our bag |Xv| = 2, we know that adding Xv to
T ′ will not increase its special width, and thus this rule is safe.

An illustration of the application of the rule can be found in Figure 3.2.

Figure 3.2: Application of the Twig Rule.

Next we also define a corresponding preprocessing rule for vertices of degree 1.

Reduction Rule III (Twig Rule). Let v be a vertex of degree 1. Remove v from V .
Set lowG = max(lowG, 1). This is redundant: sptw ≥ 1 if E 6= ∅

Proof. A graph consisting of vertices of degree ≤ 1 only has bags of size ≤ 2 i.e. trees/forests.
The special treewidth of such trees is 1. Thus vertices of degree 1 do not contribute to graphs of
special treewidth ≥ 2 and thus we can safely remove v and set the lower bound of the graph to
max(lowG, 1).

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 9

V.J.C. Kreuzen Page 10 of 29

3.2 Simple rules for simplicial vertices

The Duplicate Simplicial Vertex Rule

We specify a rule which deals with duplicate simplicial vertices. Removing simplicial vertices is a
well known and often used preprocessing and kernelization rule for Treewidth; see [3, 7].

Rule 4 (Duplicate Simplicial Vertex Rule). Let v and w be two simplicial vertices with
NG(v) = NG(w). If v 6= w then remove w. If w ∈ S then let S′ := S\{w}. Else let S′ := S.

Proof. It is clear that S′ is a vertex cover of G′.
Removing a vertex does not increase the special treewidth of the graph [8].

Let G′ = (V ′, E′) be the reduced graph acquired from removing vertex w, with V ′ = V \{w} and
E′ = E\

⋃
a∈NG(w){w, a}.

Now let ({Xi|i ∈ I ′}, T ′ = (I ′, F ′)) be a special tree-decomposition of G′. Suppose sptw(G′) =
h with minimal special tree-decomposition T ′. We can transform T ′ into T with special width h
as follows:

Select the bag Xv from T ′ such that v ∈ Xv and NG(v) ∈ Xv. This bag must exist since NG[v]
is a clique and thus must exist in at least 1 bag. Since v is simplicial and T ′ is minimal, we know
that v need only be in this bag Xv. Make a new bag Xw = (Xv\{v})∪ {w}. Clearly we have that
|Xv| = |Xw|. Now add Xw as a child of parent(Xv) to T ′ and let Xv be the child of Xw in T to
get T . Since v was only contained in bag Xv we do not break any directed paths by adding bag
Xw in this way to T ′. T is now a special tree-decomposition of G with sptw(G) > 1.

An illustration of the application of the rule can be found in Figure 3.3.

Figure 3.3: Application of the Duplicate Simplicial Vertex Rule.

Next we also define a corresponding preprocessing rule for duplicate simplicial vertices.

Reduction Rule IV (Duplicate Simplicial Vertex Rule). Let v and w be two simplicial
vertices with NG(v) = NG(w). If v 6= w then remove w.

Proof. The proof is the same as above. If v and w are simplicial on the same clique, then the
special treewidth does not change by deleting one of the two simplicial vertices.

Singular Simplicial Vertices of degree≤ k

Next we look at singular simplicial vertices of degree ≤ k. A singular simplicial vertex is a simplicial
vertex v ∈ V for which there is no vertex w ∈ V for which we have w 6= v and NG(v) = NG(w).

Using a counterexample, we show that we cannot safely remove singular simplicial vertices
from a graph G when looking at bounded special treewidth. Let G = (V,E) be a 3-sun(S3) as in
Figure 3.4.

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 10

V.J.C. Kreuzen Page 11 of 29

Figure 3.4: Counterexample for removing simplicial vertices in special treewidth

Let A,B,C be the three sets containing the vertices of the three outer cliques and let X be the
set containing the vertices of the inner clique. Since |A| = |B| = |C| = |X| = 3 we have that the
special treewidth of G is at least 2.

Let v ∈ A be the simplicial vertex of G which we will try to remove. Now let ({Xi|i ∈ I ′}, T ′ =
(I ′, F ′)) be the special tree-decomposition of graph G′ = (V ′, E′) where G′ = G\{v}. We can
construct T ′ as follows:

Let I ′ = {B,C,X} and let F ′ = {{B,X}, {X,C}}. Now T ′ is a special tree-decomposition of
special width 2 rooted at B.

When constructing a special tree-decomposition ({Xi|i ∈ I}, T = (I, F)), the root of tree T has
to be either X, the bag containing the center clique, or A, B or C, the bags containing the outer
cliques. In case of the first, we cannot add bags A, B and C to T such that for each vertex x ∈ V
the bags containing x form a directed path in the graph. In case of the latter, we also cannot add
X and the other two remaining bags to T such that for each vertex x ∈ V the bags containing x
form a directed path in the graph. Hence we can conclude that T has to contain at least 1 bag of
size ≥ 4 and thus the special width of T is 3.

Thus, since sptw(G′) = 2 and sptw(G) = 3, we can conclude that we cannot safely remove
singular simplicial vertices from a graph G when looking at bounded special treewidth.

We now give two definitions which we will use to lift the counterexample to a higher level.

Definition 6 (Special Treewidth Defining Bag). A special treewidth defining bag (sptw-defining
bag) of a special tree-decomposition ({Xi|i ∈ I}, T = (I, F)) of G = (V,E), is a bag Xv such that
|Xv| = sptw(G) + 1.

Definition 7 (Uniquely Special Treewidth Defining Bag). A uniquely special treewidth defining bag
(uniquely sptw-defining bag) of a special tree-decomposition ({Xi|i ∈ I}, T = (I, F)) of G = (V,E),
is a bag Xu such that ∀i∈I\{u}|Xi| < |Xu|.

The counter example for removing singular simplicial vertices can be easily lifted to show that
removing a singular simplicial vertex v from a graph G when looking at bounded special treewidth is
unsafe, when v is in the uniquely sptw-defining bag Xv in the minimal special tree-decomposition
T with special treewidth h. When removing this vertex v, for the special treewidth h′ of T ′

we will have that h ≥ h′. Since altering the graph is only safe when max{sptw(G), lowG} =
max{sptw(G′), low′G} holds, we have that in this case low′G = |Xv| must hold. However, since
Xv is the uniquely sptw-defining bag, we know that |Xv| = sptw(G) + 1. Thus we have that
low′G = sptw(G) + 1 must hold. Thus we first have to know the special treewidth of G before we
can safely remove singular simplicial vertices from G to get G′. This implies that we cannot safely
remove singular simplicial vertices.

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 11

V.J.C. Kreuzen Page 12 of 29

The High Degree Simplicial Vertex Rule

Next we define another trivial rule which handles simplicial vertices of degree > k. This rule is not
necessary to achieve our kernelization of Special Treewidth parameterized by a Vertex
Cover, but it is an elegant rule which could save some extra work when dealing with simplicial
vertices.

Rule 4b (High Degree Simplicial Vertex Rule). If v is a simplicial vertex of degree > k then
answer No.

Proof. If v is simplicial with degree > k, then there is a clique NG[v] in G of size at least k + 1.
This implies that the special treewidth is at least k + 1 and thus we can safely answer No.

Next we also define a corresponding preprocessing rule for simplicial vertices of degree > lowG.

Reduction Rule IVb (High Degree Simplicial Vertex Rule). Let v be a simplicial vertex
of degree > lowG Then lowG = max{lowG, δG(v)}.

Proof. Clearly, a simplicial vertex v of degree δG(v) implies a clique of size ≥ δG(v) and thus
implies a special treewidth ≥ δG(v)− 1. Thus we can safely remove v and set the lower bound of
G to δG(v)− 1.

3.3 Complex rules for removing simplicial vertices

The Common Neighbours Improvement Rule

We specify a rule which deals with pairs of vertices with at least k+1 common neighbours. Adding
edges between vertices with many common neighbours is a well known and often used preprocessing
and kernelization rule for Treewidth; see [3].

Although adding edges when trying to reduce instance sizes may seem counterproductive at
first, it can be easily seen that by adding edges between vertices with many common neighbours, we
might introduce new cliques into our graph, which in turn could make certain vertices simplicial,
allowing for the use of Rules 4 and 6.

Figure 3.5: Application of the Common Neighbours Improvement Rule.

Rule 5 (Common Neighbours Improvement Rule). Suppose that {v, w} /∈ E and that v ∈ S
or w ∈ S. If |NG(v) ∩NG(w)| ≥ k + 1, then add edge {v, w} to E. Let S′ := S.

Proof. It is clear that S′ is a vertex cover of G′.
Clearly, adding the edge {v, w} does not decrease the special treewidth of the graph, since in a
minimal special tree-decomposition T of G, v and w could already have been in the same bag.

Let G′ = (V ′, E′) be the reduced graph acquired from adding the edge {v, w}, with V ′ = V and

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 12

V.J.C. Kreuzen Page 13 of 29

E′ = E ∪ {v, w}, and let Q denote the set containing the common neighbours of v and w, i.e.
Q = NG(v) ∩NG(w).

Now let ({Xi|i ∈ I}, T = (I, F)) be a special tree-decomposition of G. We now make a special
tree-decomposition T ′ for G′ of the same width as T . In T , there must be a directed path
{Pv = {Xv1, . . . , Xvn}|∀iv ∈ Xvi} which contains Q, and there must be a directed path{
Pw = {Xw1, . . . , Xwn}|∀jw ∈ Xwj

}
which contains Q. According to the definition of special

treewidth, Pv ∪ Pw has to be either a Join or a Prior (Since a Split would imply that Q would
either be in two disjoint paths or would be in a non-directed path. Both situations would break
the special treewidth rules).

If Pv ∪ Pw is a Join, then there is at least 1 bag Xj |{v, w} ⊆ Xj . Thus adding the edge
{v, w} to E to get G′ would result in a special tree-decomposition T ′ = T . If Pv ∪ Pw is a Prior,
then there must be a directed path PQ of size ≥ 0 in between Pv and Pw, and in particular there
must be a bag Xvn at the tail of Pv and a bag Xw1 at the head of Pw, with Q ∪ {v} ⊆ Xvn

and Q ∪ {w} ⊆ Xw1. Clearly, |Xvn| ≥ k + 2 and |Xw1| ≥ k + 2, and thus we would have special
treewidth ≥ k + 1 and thus answer No for both sptw(G) ≤ k and sptw(G′) ≤ k (since adding
edges does not decrease the special treewidth).

Thus we can safely add edge {v, w} to G to get G′, where we have that sptw(G) = sptw(G′) ≥
2

An illustration of the application of the rule can be found in Figure 3.5.
Next we also define a corresponding preprocessing rule for pairs of vertices with at least upperG+

1 common neighbours.

Reduction Rule V (Common Neighbours Improvement Rule). Suppose that {v, w} /∈ E.
If |NG(v) ∩NG(w)| ≥ upperG + 1, then add edge {v, w} to E.

Proof. The proof goes as the proof for the kernelization rule. Pv ∪ Pw is either a Join, in which
case v and w are already in a bag in the minimal decomposition and thus adding the edge does
not change the minimum decomposition, or Pv ∪ Pw is a Prior, in which case there is at least a
bag in Pv and a bag in Pw with size ≥ upperG + 2. This would imply that the special treewidth of
G′ is ≥ upperG + 1. However, since upperG denotes the upper bound for our graph, we know that
there exists a special tree-decomposition of width ≤ upperG. Thus we know that we have that
Pv ∪ Pw has to be a Join for the special tree-decomposition to have width ≤ upperG and thus we
can safely add the edge.

The Simplicial Vertex Partition Rule

We specify a rule which deals with singular simplicial vertices of degree ≤ k. A singular simplicial
vertex is a simplicial vertex v ∈ V for which there is no vertex w ∈ V for which we have w 6= v
and NG(v) = NG(w).

This rule, combined with Rules 2 and 4, removes all simplicial vertices v with δG(v) > 2.

Rule 6 (Simplicial Vertex Partition Rule). If v is a simplicial vertex with degree 3 ≤ δG(v) ≤
k, then for each pair of vertices {w, x} ⊂ NG(v), make a new vertex incident to both w and x.
Then remove v. If v ∈ S then let S′ := S\{v} ∪ {z} where z ∈ NG(v), z /∈ S, else let S′ := S.

Proof. Since v is simplicial, either v ∈ S or NG(v) ∈ S. If NG(v) ∈ S, then splitting v into vertices
incident to vertices in NG(v) will not affect the vertex cover S; each newly created edge is incident
to a vertex in S. If v ∈ S, then there is at most 1 vertex in NG(v) which is not in S; NG[v] is
a clique, and thus to cover all edges in the clique at least all vertices but one have to be in the
vertex cover. Let z be the vertex which is not in the vertex cover. Now if we add z to the vertex
cover, we have that NG(v) ∈ S and the reasoning above tells us that we have a vertex cover when
splitting v. Thus S′ is a vertex cover of G′.
Removing a vertex does not increase the special treewidth of the graph [8].
Let G′ = (V ′, E′) be the reduced graph acquired from doing the following: let δG(v) = q be
the degree of v. Since v is simplicial, we have a clique of size q. Now replace v with the vertex
set N = {v1, . . . , v 1

2n·(n−1)
}, and assign to each pair {x, y} ⊂ NG(v) a vertex vi ∈ N such that

{vi, x} ∈ E′ and {vi, y} ∈ E′.

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 13

V.J.C. Kreuzen Page 14 of 29

Figure 3.6: Application of the Simplicial Vertex Partition Rule.

Now let ({Xi|i ∈ I}, T = (I, F)) be a special tree-decomposition of G. We show that
sptw(G′) ≤ sptw(G) as follows: Let T be the special tree-decomposition of G with special
treewidth h, and v in only one bag Xi. This is a reasonable assumption; since v is simpli-
cial it has to be in a bag together with NG(v), and it does not need to be in any other bag.
Thus take {Xi|NG[v] ⊆ Xi}. We can now split bag Xi such that we get a directed path of
bags P{X1, . . . , X 1

2n·(n−1)
} such that for each w ∈ N there is exactly 1 bag {Xw ∈ P |Xw =

{w} ∪ (Xi\{v})}. Now replace Xi in T with P to get T ′. Clearly, we now have a special tree-
decomposition T ′ of G′ of width h and thus we can conclude that sptw(G′) ≤ sptw(G).

We now show that sptw(G′) ≥ sptw(G) as follows: Let T be the minimal special tree-decomposition
of G with special treewidth h, and v in only one bag Xi. This is a reasonable assumption; since v
is simplicial it has to be in a bag together with NG(v), and it does not need to be in any other bag.
Thus take {Xi|NG[v] ⊆ Xi}. Since T is minimal, we know that Xi = NG[v]. Now go from T to T ′

as follows: Replace Xi ∈ T by {Xq|Xq = Xi\{v}}. Clearly, we now have that |Xi| = |Xq|+ 1. We
will now try to get T ′ from T by adding all vertices x ∈ N to the bags in T , such that each x is
in a bag with its neighbours and sptw(G′) < sptw(G).

Figure 3.7: Illustration of the proof for Rule 06.

We first look at the case where Xq has multiple children-paths P ′′ which contain vertices
∈ NG(v). Let Y = NG(v) = Y1∪Y2 with Y1∩Y2 = ∅ and Y1 6= ∅, Y2 6= ∅. Let NG(v) = {y1, . . . , yr}

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 14

V.J.C. Kreuzen Page 15 of 29

and let {sij ∈ V ′|{sij , yi} ∈ E, {sij , yj} ∈ E}. First look at the case that there are multiple paths
P ′′ below Xq. Let P ′′1 be the path below Xq which contains vertices from set Y1 but not from
Y2, and let P ′′2 be the path below Xq which contains vertices from set Y2 but not from Y1. Now
for each vertex {sij ∈ V ′|yi ∈ Y1, yj ∈ Y2} we know that {sij , yi, yj} must be on path P ′, since it
cannot be on paths P ′′1 or P ′′2 (Since neither of these paths contain both yi and yj), nor in bag Xq

(since that would mean that we would have sptw(G′) ≥ sptw(G)). Since for every vertex yi ∈ Y1
there is at least 1 vertex yj ∈ Y2, and for every vertex yj ∈ Y2 there is at least 1 vertex yi ∈ Y1,
we have that every vertex y ∈ Y must be on path P ′. Since P ′ must now contain Y = NG(v),
we know that the lowest bag on P ′ has to contain NG(v). Thus, the lowest bag XP ′ on P ′ which
contains any sij must also contain NG(v). Since sij 6⊆ NG(v), we know that |XP ′ | ≥ |NG(v)| + 1
and thus sptw(G′) ≥ sptw(G) if NG(v) is partitioned to be in multiple children-paths of Xq.

We now look at the case where Xq has only 1 single child-path P ′′ which contains vertices
∈ NG(v). Since we have that NG(v) = Xq, we know that every vertex x ∈ N will have to be in a
bag on the directed path through Xq (since it will have to be in bags together with vertices from
NG(v)). Let P be this path through Xq where P = P ′ ∪ Xq ∪ P ′′ and P ′ and P ′′ the directed
paths in T neighbouring Xq, with P ′ the parent path and P ′′ the child-path.

Now let XP ′′ be the highest bag on path P ′′ with Y \Y1 ⊆ XP ′′ and let XP ′ be the lowest
bag on path P ′ with Y \Y2 ⊆ XP ′ . Clearly, since all vertices Sij must be on P we have again
that Y = NG(v) = Y1 ∪ Y2 with Y1 ∩ Y2 = ∅. Thus every vertex sij such that yi ∈ Y \Y1 and
yj ∈ Y1 must be on P ′ and every vertex sij such that yi ∈ Y \Y2 and yj ∈ Y2 must be on P ′′. Since
Y1∩Y2 = ∅ and Y ⊆ P ′∪P ′′, we have that Y \Y1 = Y2 and Y \Y2 = Y1 and thus we have that every
vertex y ∈ Y must be on path P ′. Since P ′ must contain NG(v), we know that the lowest bag on
P ′ has to contain NG(v). Thus, the lowest bag XP ′ on P ′ which contains any sij must also contain
NG(v). Since {sij 6⊆ NG(v), we know that |XP ′ | ≥ |NG(v)|+ 1 and thus sptw(G′) ≥ sptw(G) if
NG(v) is partitioned to be in multiple children-paths of Xq.

Thus we can conclude that sptw(G′) = sptw(G) and thus this rule is safe.

An illustration of the application of the rule can be found in Figure 3.6.
Next we also define a corresponding preprocessing rule for the rule.

Reduction Rule VI (Simplicial Vertex Partition Rule). If v is a simplicial vertex with
degree 3 ≤ δG(v) ≤ lowG, then for each pair of vertices {w, x} ⊂ NG(v), make a new vertex
incident to w and x. Then remove v.

Proof. The proof is the same as above. If v is simplicial with δG(v) ≤ lowG, then the special
treewidth remains bounded by lowG if v is replaced with vertices of degree 2 on each pair of
vertices in NG(v), and the special treewidth does not increase as shown above.

3.4 A Kernel for Special Treewidth

We can now reason that the exhaustive application of Rule 1 through 6 (i.e., until we answer Yes
or No or no application of one of these rules is possible) gives a polynomial kernel for Special
Treewidth parameterized by a vertex cover. It is clear that this reduction can be per-
formed in polynomial time (it is easy to do it in time O(|V | · |E|). Let S denote a vertex cover of
G.

Theorem 1. Special Treewidth parameterized by a vertex cover has a kernel with
O(`3) vertices, where ` denotes the size of a vertex cover.

Proof. Let |S| = `. Let (G, k, S) be an instance of Special Treewidth parameterized by a
vertex cover. Let (G′, k′, S′) be the instance obtained from exhaustive application of Rules 01
through 06. By safety of the reduction rules, we have that (G′, k′, S′) answers as Yes iff (G, k, S)
answers as Yes.

The reduction rules guarantee that S′ ⊆ S is a vertex cover in G′, with |S′| ≤ `. Each vertex
v ∈ V ′\S′ either has at least one pair of distinct neighbors in S′ that are not adjacent, or v has
exactly 1 pair of distinct neighbours in S′ that are adjacent (a clique of size 2 which does not

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 15

V.J.C. Kreuzen Page 16 of 29

have a simplicial vertex besides v, otherwise it would have been handled by Rule 4), otherwise v
is simplicial and has degree ≥ 3 and would have been handled by Rules 4 and 6, or v is simplicial
and has degree ≤ 1 and would have been handled by Rules 1 and 3.

In some cases it might be beneficial to not apply Rule 06, since this actually increases the
amount of vertices outside the vertex cover. However, this does not affect our worst-case analysis.

Assign v to this pair. If we assign v to the pair {w, x}, then v is a common neighbor of w
and x. Hence a pair of vertices in S cannot have more than k vertices in V \S assigned to it,
otherwise Rule 5 applies, which would make all vertices in V \S assigned to {w, x} simplicial, and
thus Rule 4 would apply until only 1 vertex in V \S assigned to {w, x} remains. As there are at
most ` · (`− 1)/2 pairs of neighbors in S′, we have |V ′\S′| ≤ k · ` · (`− 1)/2. Since Rule 2 handles
instances where k ≥ `, we have that k ≤ `. Thus we have that |V ′\S′| ≤ `2 · (`− 1)/2 ∈ O(`3).

By combining Theorem 1 with a polynomial-time 2-approximation algorithm for vertex cover,
we obtain the following corollary.

Corollary 1. There is a polynomial-time algorithm that given an instance (G = (V,E), k) of
Special Treewidth computes an equivalent instance (G′ = (V ′, E′), k) such that V ′ ⊆ V and
|V ′| ∈ O((`∗)3), where `∗ is the size of a minimum vertex cover of G.

In the next chapter, we present a characterization for the Special Treewidth problem on
sp-partial 2-trees using the notion of mamba-trees and Paths of Cycles.

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 16

Chapter 4

Special Treewith on sp-partial
2-trees

In this chapter, a characterization for the Special Treewidth problem on sp-partial 2-trees is
presented.

4.1 Mambas

In this section we define the notion of mambas.

Lemma 1. If a biconnected graph G has special treewidth ≤ 2 then G has pathwidth ≤ 2.

Proof. If G has special treewidth ≤ 2, then we can make a minimal special tree-decomposition
({Xi|i ∈ I}, T = (I, F)) of width 2. We now prove by contradiction. Suppose T is not a path-
decomposition. Then there is a bag Xj such that Xj has two child-bags. Let these bags be Xa

and Xb.
Suppose Xj ∩Xa = ∅. Then we know that G is not connected. Contradiction.
Now suppose |Xj ∩Xa| = 1. Let v ∈ Xj ∩Xa and let W =

⋃
{Xk|k = a or Xk is a descendant

of Xa}.

• If |W | = 1, then W = {v}, and thus T is not minimal. Contradiction.

• Else take w ∈W such that w 6= v. All paths from w to a vertex in Xb must use v, thus v is
a cut vertex and thus we know that G is not biconnected. Contradiction.

Thus we know that |Xj∩Xa| ≥ 2, and by the same reasoning as above we know that |Xj∩Xb| ≥ 2.
Since T is a special tree-decomposition, we know that Xa ∩Xb = ∅ and thus |Xj | ≥ 4. Thus T has
width ≥ 3. Contradiction.

Thus we know that T is a path-decomposition of G of width ≤ 2.

Lemma 2. If a graph G has pathwidth ≤ 2 then G has special treewidth ≤ 2.

Proof. Trivial. If G has pathwidth ≤ 2, then we can make a path-decomposition P of width 2.
Now let P be a special tree-decomposition of G. P has width 2 and thus G has special treewidth
≤ 2.

Lemma 3. A biconnected graph G has special treewidth ≤ 2 if and only if G has pathwidth ≤ 2.

Proof. This lemma follows directly from Lemma 1 and Lemma 2.

We now define the notion of mambas.

Definition 8. We call a subgraph H of a graph G a mamba if H is a maximal biconnected
component in G with special treewidth ≤ 2.

17

V.J.C. Kreuzen Page 18 of 29

Figure 4.1: Left Graph: A mamba M , Right Graph: The cell completion of M , M̄ . Grey
vertices are head-vertices

4.2 Defining sp-partial 2-trees through means of mamba-
trees

In this section we show how to characterize sp-partial 2-trees using the notion of mambas.

Definition 9. A head-vertex is a vertex v in a graph G such that there is a directed(rooted) special
tree-decomposition ({Xi|i ∈ I}, I = {1, . . . ,m}, T = (I, F)) of width 2 such that v ∈ X1.

We now give a recursive definition of a mamba-tree.

Definition 10. The class of mamba-trees is the class of graphs recursively defined as follows.

• Each mamba is a mamba-tree.

• For each mamba-tree G and each mamba M , the graph obtained by identifying a vertex in G
with a head-vertex in M , is a mamba-tree.

Next, we show that the special treewidth of a mamba-tree is ≤ 2 by constructing a special
tree-decomposition.

Lemma 4. The special treewidth of a mamba-tree is ≤ 2.

Proof. We will prove this lemma by means of induction. Let G = (V,E) be a mamba-tree. We
construct a special tree-decomposition of width ≤ 2 as follows:

• IfG is a mamba then we know from Definition 8 that we can make a special tree-decomposition
T of width ≤ 2

• Otherwise, select a maximal biconnected component B ⊂ G such that only one vertex v ∈ B
is a cut-vertex. Clearly, B is a mamba. We know from Definition 10 that v must be a head-
vertex. Thus we can make a special tree-decomposition ({Xi|i ∈ I}, I = {1, . . . ,m}, TB =
(I, F)) of B of width 2 such that v ∈ X1.

Now make a special tree-decomposition TG\B of G\B by induction. Next, let X1 be the child
of the lowest bag in TG\B containing v. We now have a special tree-decomposition of G of
width ≤ 2.

Thus we know that the special treewidth of a mamba-tree is ≤ 2.

Next we will characterize the set of graphs with special treewidth ≤ 2 using the notion of mamba-
trees.

Lemma 5. If a graph G = (V,E) is a disjoint union of mamba-trees, then G has special treewidth
≤ 2.

Proof. Trivial. We know from Lemma 4 that a mamba-tree has special treewidth ≤ 2, and thus G
has special treewidth ≤ 2.

Lemma 6. If a graph G has special treewidth ≤ 2, then G is a disjoint union of mamba-trees.

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 18

V.J.C. Kreuzen Page 19 of 29

b

a

g

e c

d

n p

q r

h

i

j

k

l

m

Figure 4.2: A disjoint union of two mamba-trees

Proof. We will prove this lemma with a minimal counterexample. Let G be a minimal graph
of special treewidth ≤ 2 that is not a disjoint union of mamba-trees. Since G is a minimal
counterexample, we know that every subgraph of G has special treewidth ≤ 2 and must be a
disjoint union of mamba-trees.

Now let Xr be a bag in T and let Xc be a child of Xr, let V =
⋃
{Xk|k = c or Xk is a descendant

of Xc} and let W = (
⋃
{Xk|k = r or Xk is a descendant of Xr})\V . Clearly, V

⋂
W = G.

• Suppose Xc ∩Xr = ∅. Then we know that V ∩W = ∅. Thus we know that V and W are
two disjoint graphs in G. Since V and W are both a disjoint union of mamba-trees, we know
that the union of V and W is also a disjoint union of mamba-trees. Contradiction.

• Now suppose |Xc∩Xr| = 1. Let v ∈ Xc∩Xr. Then we know that V ∩W = {v}, and thus v is
a cut vertex between V and W in G. Since Xc is the top bag of the special tree-decomposition
of V and Xc contains v, we know that v is a head-vertex on V . Since V and W are both
a disjoint union of mamba-trees, we know from the recursive definition of mamba-trees that
G can be constructed by identifying v ∈ V with vertex v ∈ W . Hence we know that G is a
disjoint union of mamba-trees. Contradiction.

• Next suppose |Xc ∩Xr| = 2. We know that V and W are both a disjoint union of mamba-
trees, Xr is a bag of a mamba Mw ⊆ W and Xc ⊆ V is the top bag of the root mamba of
V . Since there can be only one child Xc such that |Xc ∩Xr| = 2 for each parent bag Xr, we
know that Xr and Xc are part of the same path-decomposition for a biconnected component
in G. Thus we know that Xr and Xc belong to the same mamba, and thus G is a disjoint
union of mamba-trees. Contradiction.

• Finally, suppose |Xc ∩ Xr| ≥ 3: since T is minimal, we know that no two bags contain
all the same vertices, and a bag in a special tree-decomposition of width 2 can contain at
most 3 vertices. Thus we know that G was not a minimal graph of special treewidth ≤ 2.
Contradiction.

Thus we know that G is a disjoint union of mamba-trees.

We can now derive the following corollary from Lemma 5 and Lemma 6.

Corollary 2. A graph G = (V,E) has special treewidth ≤ 2 ⇔ G is a disjoint union of mamba-
trees.

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 19

V.J.C. Kreuzen Page 20 of 29

a b

d

a b

c

c h

i

a b

e

d n

p

b e

g

n p

q

p q

r

c h i k

l m

Figure 4.3: A special tree-decomposition of the graph shown in Figure 4.2

4.3 Defining sp-partial 2-trees through means of paths of
cycles

In this section, we will use results by de Fluiter [10] to further characterize mamba-trees.

Definition 11 (de Fluiter [10]). Given a biconnected graph G = (V,E), the cell completion Ḡ of
G is the graph which is obtained from G by adding an edge {u, v} for all pairs u, v of non-adjacent
vertices in V , u 6= v, such that G[V (G)\{u,v}] has at least three connected components.

Definition 12 (de Fluiter [10], Bodlaender and Kloks [4]). The class of trees of cycles is the class
of graphs recursively defined as follows.

• Each cycle is a tree of cycles.

• For each tree of cycles G and each cycle C, the graph obtained from G and C by taking the
disjoint union and then identifying an edge and its end vertices in G with an edge and its
end vertices in C, is a tree of cycles.

Note that two different chordless cycles in a tree of cycles have at most one edge in common

Definition 13 (de Fluiter [10]). A path of cycles is a tree of cycles G for which the following
holds.

1. Each chordless cycle of G has at most two edges which are contained in other chordless cycles
of G.

2. If an edge e ∈ E(G) is contained in m ≥ 3 chordless cycles of G, then at least m − 2 of
these cycles have no other edges in common with other chordless cycles, and consist of three
vertices.

Lemma 7 (de Fluiter [10]). Let G be a biconnected graph. G is a partial two-path if and only if
Ḡ is a path of cycles.

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 20

V.J.C. Kreuzen Page 21 of 29

Lemma 8. A biconnected graph G = (V,E) is a mamba if and only if Ḡ is a path of cycles.

Proof. SupposeG is a mamba. We know from the definition of mambas thatG has special treewidth
≤ 2. Since G is biconnected, we know from Lemma 3 that G must have pathwidth ≤ 2, and thus
G is a partial two-path. Thus we know from Lemma 7 that Ḡ is a path of cycles.

Now suppose Ḡ is a path of cycles. Since G is biconnected, we know from Lemma 7 that G is
a partial two-path. Thus we know that G has pathwidth ≤ 2. Thus we know from Lemma 3 that
G must have special treewidth ≤ 2, and thus we now know that G is a mamba.

Definition 14 (de Fluiter [10]). Let G be a path of cycles, let C = (C1, . . . , Cp) be a sequence of
chordless cycles as defined above, and let E = (e1, . . . , ep−1) be the corresponding set of common
edges. The pair (C,E) is called a cycle path for G.

Lemma 9. Let G = (V,E) be a biconnected graph with v ∈ V . We can make a special tree-
decomposition ({Xi|i ∈ I}, I = {1, . . . ,m}, T = (I, F)) of width ≤ 2 such that v ∈ X1, if and only
if there exists a cycle path (C,E), C = (C1, . . . , Cp) of (̄G) such that v ∈ C1.

Proof. Suppose we have a special tree-decomposition ({Xi|i ∈ I}, I = {1, . . . ,m}, T = (I, F)) of
width ≤ 2 such that v ∈ X1. Suppose there does not exist a cycle path (C,E), C = (C1, . . . , Cp)
of (̄G) such that v ∈ C1. Then we know that v has to be in a cycle Cv such that Cv shares
two edges with other chordless cycles. However, this means that we cannot make a special tree-
decomposition of width ≤ 2 such that v ∈ X1. Thus we know that there must exist a cycle path
(C,E), C = (C1, . . . , Cp) of (̄G) such that v ∈ C1.

Now suppose we have a cycle path (C,E), C = (C1, . . . , Cp) of (̄G) such that v ∈ C1. For
each cycle Ck ∈ C, make a special tree-decomposition Tk of width ≤ 2, such that the vertices
neighbouring edge ek−1 are in the first bag, and the vertices neighbouring ek+1 are in the last
bag. Make the special tree-decomposition T1 such that v is in each bag in T1. Now make the
path-decomposition of G by pasting the special tree-decompositions of each cycle in order. We
now have a special tree-decomposition ({Xi|i ∈ I}, I = {1, . . . ,m}, T = (I, F)) of width ≤ 2 such
that v ∈ X1.

Lemma 10. A vertex v in a mamba M is a head-vertex if and only if v is on a chordless cycle in
M̄ which has at most one edge which is contained in other chordless cycles in M̄ .

Proof. Suppose v is a head-vertex in mamba M . Then we know that we can make a special tree-
decomposition ({Xi|i ∈ I}, I = {1, . . . ,m}, T = (I, F)) of width ≤ 2 such that v ∈ X1. Thus, from
Lemma 9, we know that there must exist a cycle path (C,E), C = (C1, . . . , Cp) of (̄M) such that
v ∈ C1. Since a cycle Ci in a cycle path shares exactly one edge with the cycles before it on the
cycle path, and one edge with the cycles that come after it on the cycle path, we know that C1

shares at most one edge with other cycles.
Now suppose v is on a chordless cycle Cv in M̄ which has at most one edge which is contained

in other chordless cycles in M̄ . Since M is a mamba, we know from Lemma 8 that M̄ is a path
of cycles. Since Cv shares at most one edge with other cycles, we know that there exists a cycle
path (C,E), C = (C1, . . . , Cp) such that C1 = Cv. We now know from Lemma 9 that we can now
make a special tree-decomposition ({Xi|i ∈ I}, I = {1, . . . ,m}, T = (I, F)) of width ≤ 2 such that
v ∈ X1.

Lemma 11. G is a disjoint union of mamba-trees if and only if

• G is a graph where the cell completion of each maximal biconnected component is a path of
cycles,

• and for each connected component C there exists a tree-like ordering Oc of the maximal
biconnected components in C such that each maximal biconnected component M in C is
connected to its parent in Oc through a cut vertex v ∈ V that is on a chordless cycle in M̄
which has at most one edge which is contained in other chordless cycles in M̄ .

Proof. Suppose G is a disjoint union of mamba-trees. Then we know from the definition of mamba-
trees that every biconnected component in G is a mamba. We know from Lemma 8 that if a
graph-component M is a mamba, then the cell completion M̄ of M is a path of cycles. Thus G

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 21

V.J.C. Kreuzen Page 22 of 29

is a graph where the cell completion of each maximal biconnected component is a path of cycles.
We know from the recursive definition of mamba-trees that there is a tree-like ordering Oc of the
mambas in a mamba-tree C, such that each mamba M ∈ Oc is connected to its parent through a
head vertex v on M . We know from Lemma 10 that v is a head-vertex in M if and only if v is
on a chordless cycle in M̄ which has at most one edge which is contained in other chordless cycles
in M̄ . Thus we know that G is a graph where the cell completion of each maximal biconnected
component is a path of cycles, and for each connected component C there exists a tree-like ordering
Oc of the maximal biconnected components in C such that each M ∈ Oc is connected to its parent
through a cut vertex v ∈ V , such that v is on a chordless cycle in M̄ which has at most one edge
which is contained in other chordless cycles in M̄ .

Now suppose G is a graph where the cell completion of each maximal biconnected component is
a path of cycles, and for each connected component C there exists a tree-like ordering Oc of the
maximal biconnected components in C such that each M ∈ Oc is connected to its parent through
a cut vertex v ∈ V , such that v is on a chordless cycle in M̄ which has at most one edge which
is contained in other chordless cycles in M̄ . We know from Lemma 8 that if the cell completion
M̄ of a graph-component M is a path of cycles, then M is a mamba. Thus we know that each
biconnected component in G is a mamba. We know from Lemma 10 that v is a head-vertex in M
if and only if v is on a chordless cycle in M̄ which has at most one edge which is contained in other
chordless cycles in M̄ . Thus we know that there exists an ordering Oc of the mambas in G such
that each mamba M ∈ Oc is connected to its parent through a head-vertex on M . Thus we know
that we can recursively construct a mamba-tree from each connected component in G and thus G
is a disjoint union of mamba-trees.

We can now derive the following corollary from Corollary 2 and Lemma 11:

Corollary 3. A graph G = (V,E) has special treewidth ≤ 2 if and only if

• G is a graph where the cell completion of each maximal biconnected component is a path of
cycles,

• and for each connected component C there exists a tree-like ordering Oc of the maximal
biconnected components in C such that each maximal biconnected component M in C is
connected to its parent in Oc through a cut vertex v ∈ V that is on a chordless cycle in M̄
which has at most one edge which is contained in other chordless cycles in M̄ .

In the next chapter, the kernelization for Spaghetti Treewidth parameterized by a
Vertex Cover (i.e., parameterized by a modulator to an independent set) is presented. The
kernelization again focuses mostly on simplicial vertices, and reducing the size and occurrences
of these simplicial vertices. We recycle five of the reduction rules used for Special Treewidth
parameterized by a Vertex Cover and introduce one new rule. With these rules we prove
that we acquire a kernel of size O(l3).

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 22

Chapter 5

Kernelization Rules for Spaghetti
Treewidth

In this chapter, the kernelization for Spaghetti Treewidth parameterized by a Vertex
Cover (i.e., parameterized by a modulator to an independent set) is presented. Like the kernel-
ization for the Special Treewidth problem, this kernelization again focuses mostly on simplicial
vertices and reducing the size and occurrences of these simplicial vertices. Five of the reduction
rules used for Special Treewidth parameterized by a Vertex Cover are recycled to be
used for this kernel, and one new rule is introduced. It is shown that with these rules a kernel of
size O(`3) can be made.

5.1 Trivial rules

In this section a number of reduction rules are listed for instances of Spaghetti Treewidth.
The five rules are the same as rules 1-4 and 6 for instances of Special Treewidth, which hold
for both instances. Proofs for these rules have been omitted, since they are exactly the same as
discussed in previous sections.

The Islet Rule

We specify a rule which deals with vertices of degree 0.

Rule 7 (Islet Rule). If v is a vertex of degree 0 then remove v.

Proof. Removing a vertex does not increase the spaghetti treewidth of the graph (Proposition 4).
The rest of the proof goes the same as the proof for Rule 1 for Special Treewidth.

Trivial Decisision

We specify a rule which deals with parameters k which are greater than the size of our vertex
cover.

Rule 8 (Trivial Decision). If k ≥ |S|, then answer Yes.

Proof. The proof goes the same as the proof for Rule 2 for Special Treewidth.

The Twig Rule

We specify a rule which deals with vertices of degree 1.

Rule 9 (Twig Rule). If v is a vertex of degree 1 then remove v. If v ∈ S, then let S′ := S\{v},
else let S′ := S.

Proof. Removing a vertex does not increase the spaghetti treewidth of the graph (Proposition 4).
The rest of the proof goes the same as the proof for Rule 3 for Special Treewidth.

23

V.J.C. Kreuzen Page 24 of 29

5.2 Simple rules for simplicial vertices

The Duplicate Simplicial Vertex Rule

We specify a rule which deals with duplicate simplicial vertices.

Rule 10 (Duplicate Simplicial Vertex Rule). Let v and w be two simplicial vertices with
NG(v) = NG(w). If v 6= w then remove w. If w ∈ S then let S′ := S\{w}. Else let S′ := S.

Proof. Removing a vertex does not increase the spaghetti treewidth of the graph (Proposition 4).
The rest of the proof goes the same as the proof for Rule 4 for Special Treewidth.

The High Degree Simplicial Vertex Rule

Next we define another trivial rule which handles simplicial vertices of degree > k. Again, this
rule is not necessary to achieve our kernelization of Spaghetti Treewidth parameterized by
a Vertex Cover, but it is an elegant rule which could save some extra work when dealing with
simplicial vertices.

Rule 10b (High Degree Simplicial Vertex Rule). If v is a simplicial vertex of degree > k
then answer No.

Proof. The proof goes the same as the proof for Rule 4b for Special Treewidth.

5.3 Complex rules for removing simplicial vertices

The Common Neighbours Improvement Rule

We specify a rule which deals with pairs of vertices with at least k + 1 common neighbours.

Rule 11 (Common Neighbours Improvement Rule). Suppose that {v, w} /∈ E and that
v ∈ S or w ∈ S. If |NG(v) ∩NG(w)| ≥ k + 1, then add edge {v, w} to E. Let S′ := S.

Proof. The proof goes the same as the proof for Rule 5 for Special Treewidth.

The Simplicial Vertex Partition Rule

In this subsection it is shown that Rule 6 for Special Treewidth, which removes simplicial
vertices of degree ≥ 3, can not be applied on instances of Spaghetti Treewidth. Instead, a new
rule is introduced which removes simplicial vertices of degree ≥ 4. The new set of rules provide us
with a kernel for Spaghetti Treewidth parameterized by a vertex cover.

We first show that Rule 6 for Special Treewidth does not apply to the case of Spaghetti
Treewidth, unlike the other 5 rules for Special Treewidth, which did.

Suppose we have a clique C with |C| = 4. It is clear from Proposition 5 that spghtw(C) = 3.
Now if we try to apply Rule 6 on vertex v ∈ C, we get a graph C ′ which is a 3-sun(S3) as in
Figure 5.1. Let A,B,C be the three sets containing the vertices of the three outer cliques and let
X be the set containing the vertices of the inner clique. Since |A| = |B| = |C| = |X| = 3 we have
that the spaghetti treewidth of G is at least 2.

We can now make a spaghetti tree-decomposition T as follows: Let bag X be the root of T ,
and let A,B and C be the children of X in T . It should be clear that T is now a spaghetti tree-
decomposition of spaghetti treewidth 2. Thus we cannot safely split simplicial vertices into vertices
of degree 2.

We now give two definitions which we will use to prove simplicial vertices cannot simply be
removed.

Definition 15 (Spaghetti Treewidth Defining Bag). A spaghetti treewidth defining bag (spghtw-
defining bag) of a spaghetti tree-decomposition ({Xi|i ∈ I}, T = (I, F)) of G = (V,E), is a bag Xv

such that |Xv| = spghtw(G) + 1.

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 24

V.J.C. Kreuzen Page 25 of 29

Figure 5.1: Counterexample for splitting simplicial vertices into vertices of degree 2 in spaghetti
treewidth

Definition 16 (Uniquely Spaghetti Treewidth Defining Bag). A uniquely spaghetti treewidth defin-
ing bag (uniquely spghtw-defining bag) of a spaghetti tree-decomposition ({Xi|i ∈ I}, T = (I, F)) of
G = (V,E), is a bag Xu such that ∀i∈I\{u}|Xi| < |Xu|.

A counter proof for removing singular simplicial vertices can be easily constructed to show
that removing a singular simplicial vertex v from a graph G when looking at bounded spaghetti
treewidth is unsafe, when v is in the uniquely spghtw-defining bag Xv in the minimal spaghetti
tree-decomposition T with spaghetti treewidth h. When removing this vertex v, for the spaghetti
treewidth h′ of T ′ we will have that h ≥ h′. Since altering the graph is only safe when
max{spghtw(G), lowG} = max{spghtw(G′), low′G} holds, we have that in this case low′G =
|Xv|. However, if we want to know the size of bag Xv, we first have to make a spaghetti tree-
decomposition of spaghetti width k. However, in order to make this we would first have to know
whether the spaghetti treewidth is bounded by k. But this was what we wanted to know in the
first place! Thus we cannot safely remove singular simplicial vertices.

We now specify a rule which deals with singular simplicial vertices of degree ≤ k. A singular
simplicial vertex is a simplicial vertex v ∈ V for which there is no vertex w ∈ V for which we have
w 6= v and NG(v) = NG(w).

This rule, combined with rules 8 and 10, removes all simplicial vertices v with δG(v) > 3.

Rule 12 (Simplicial Vertex Partition Rule). If v is a simplicial vertex with degree 4 ≤ δG(v) ≤
k, then for each triplet of vertices {w, x, y} ⊂ NG(v), make a new vertex incident to w,x and y.
Then remove v. If v ∈ S then let S′ := S\{v} ∪ {z} where z ∈ NG(v), z /∈ S, else let S′ := S.

Proof. It is clear that S′ is a vertex cover of G′.
Removing a vertex does not increase the spaghetti treewidth of the graph (Proposition 4).
Let G′ = (V ′, E′) be the reduced graph acquired from doing the following: let δG(v) = n be the
degree of v. Since v is simplicial, we have a clique of size n. Let q = n · (n − 1) · (n − 2)/5. Now
replace v with the vertex set N = {v1, . . . , vq}, and assign to each pair {x, y} ⊂ NG(v) a vertex
vi ∈ N such that {vi, x} ∈ E′ and {vi, y} ∈ E′.

Now let ({Xi|i ∈ I}, T = (I, F)) be a spaghetti tree-decomposition of G and let ({Xi|i ∈
I ′}, T ′ = (I ′, F ′)) be a spaghetti tree-decomposition ofG′. We show that spghtw(G′) ≤ spghtw(G)
as follows:

Let T be the spaghetti tree-decomposition of G with spaghetti treewidth h, and v in only one
bag Xi. This is a reasonable assumption; since v is simplicial it has to be in a bag together with
NG(v), and it does not need to be in any other bag. Thus take {Xi|NG[v] ⊆ Xi}. We can now
split bag Xi such that we get a directed path of bags P{X1, . . . , Xq} such that for each w ∈ N
there is exactly 1 bag {Xw ∈ P |Xw = {w} ∪ (Xi\{v})}. Now replace Xi in T with P to get T ′.
Clearly, we now have a spaghetti tree-decomposition T ′ of width h and thus we can conclude that

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 25

V.J.C. Kreuzen Page 26 of 29

spghtw(G′) ≤ spghtw(G).

We assume spghtw(G′) < spghtw(G).

Figure 5.2: Illustration of the proof for Rule 12.

We now show that spghtw(G′) ≥ spghtw(G) as follows: Let T be the spaghetti tree-
decomposition of G with spaghetti treewidth h, and v in only one bag Xi. This is a reasonable
assumption; since v is simplicial it has to be in a bag together with NG(v), and it does not need
to be in any other bag. Thus take {Xi|NG[v] ⊆ Xi}. We simplify the proof by stating that
Xi = NG[v]. This does not affect our proof: simply add Xi\NG[v] to each bag Xt containing a
vertex w ∈ NG[v], where Xt is a bag created to get from T to T ′.

Now go from T to T ′ as follows: Replace Xi ∈ T by {XNG|XNG = Xi\{v}}. Clearly, we now
have that |Xi| = |XNG|+ 1. We will now try to get T ′ from T by adding all vertices x ∈ N to the
bags in T , such that each x is in a bag with its neighbours and spghtw(G′) < spghtw(G).

We observe that according to the definition of Spaghetti Treewidth, we do not care if
vertices are on a rooted path or on an unrooted path. Thus it suffices to only look at the case where
XNG has children (i.e. it is easy to see that we can root one of the children of XNG to make it the
parent path ofXNG). We look at the case whereXNG has multiple children-paths P ′′ which contain
vertices ∈ NG(v). Let Y = NG(v) = Y1 ∪ Y2 ∪ Y3 with Y1 ∩ Y2 ∩ Y3 = ∅ and Y1 6= ∅, Y2 6= ∅, Y3 6= ∅.
Let NG(v) = {y1, . . . , yr} and let {sijk ∈ V ′|{sijk, yi} ∈ E, {sijk, yj} ∈ E, {sijk, yk} ∈ E}. Let
P ′′1 be the path below XNG which contains vertices from set Y1 but not from Y2 ∪ Y3, let P ′′2 be
the path below XNG which contains vertices from set Y2 but not from Y1 ∪ Y3, and let P ′′3 be the
path below XNG which contains vertices from set Y3 but not from Y1 ∪ Y2. Now for each vertex
{sijk ∈ V ′|yi ∈ Y1, yj ∈ Y2, yk ∈ Y3} we know that {sijk, yi, yj , yk} must be on a single path P ′′n ; if
sijk would be on more than one child-path, it would imply that sijk had to be in XNG and since
sijk 6⊆ NG(v), we know that in this case |XP ′′

n
| ≥ |NG(v)|+ 1 and thus spghtw(G′) ≥ spghtw(G)

if NG(v) is partitioned to be in multiple children-paths of XNG.
We now know that every sijk must be on at most one of two paths P ′′1 and P ′′2 . Let P ′ = P ′′1

and P ′′ = P ′′2 , and let Y = Y1 ∪ Y2.
Now let XP ′′ be the highest bag on path P ′′ with Y \Y1 ⊆ XP ′′ and let XP ′ be the lowest

bag on path P ′ with Y \Y2 ⊆ XP ′ . Clearly, since all vertices Sijk must be on P we have that
Y = NG(v) = Y1 ∪ Y2 with Y1 ∩ Y2 = ∅. Thus every vertex sijk such that yi/yj/yk ∈ Y \Y1 and
yi/yj/yk ∈ Y1 must be on P ′ and every vertex sijk such that yi/yj/yk ∈ Y \Y2 and yi/yj/yk ∈ Y2
must be on P ′′. Since Y1 ∩ Y2 = ∅ and Y ⊆ P ′ ∪ P ′′, we have that Y \Y1 = Y2 and Y \Y2 = Y1 and
thus we have that every vertex y ∈ Y must be on path P ′. Since P ′ must contain NG(v), we know
that the lowest bag on P ′ has to contain NG(v). Thus, the lowest bag XP ′ on P ′ which contains
at least one sijk must also contain NG(v). Since {sijk 6⊆ NG(v), we know that |XP ′ | ≥ |NG(v)|+ 1
and thus spghtw(G′) ≥ spghtw(G).

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 26

V.J.C. Kreuzen Page 27 of 29

Thus we can conclude that spghtw(G′) = spghtw(G) and thus this rule is safe.

5.4 A Kernel for Spaghetti Treewidth

We can now reason that the exhaustive application of Rule 7 through 12 (i.e., until we answer Yes
or No or no application of one of these rules is possible) gives a polynomial kernel for Spaghetti
Treewidth parameterized by a vertex cover. It is clear that this reduction can be per-
formed in polynomial time (it is easy to do it in time O(|V | · |E|). Let S denote a vertex cover of
G.

Theorem 2. Special Treewidth parameterized by a vertex cover has a kernel with
O(`3) vertices, where ` denotes the size of a vertex cover.

Proof. Let |S| = `. Let (G, k, S) be an instance of Spaghetti Treewidth parameterized by
a vertex cover. Let (G′, k′, S′) be the instance obtained from exhaustive application of Rules 7
through 12. By safety of the reduction rules, we have that (G′, k′, S′) answers as Yes iff (G, k, S)
answers as Yes.

The reduction rules guarantee that S′ ⊆ S is a vertex cover in G′, with |S′| ≤ `. Each vertex
v ∈ V ′\S′ either has at least one pair of distinct neighbors in S′ that are not adjacent, or v has
exactly 1 pair of distinct neighbours in S′ that are adjacent (a clique of size 2 which does not have
a simplicial vertex besides v, otherwise it would have been handled by Rule 10), or v has exactly
1 triplet of distinct neighbours in S′ that are adjacent (a clique of size 3 which does not have
a simplicial vertex besides v, otherwise it would have been handled by Rule 10), otherwise v is
simplicial and has degree ≥ 3 and would have been handled by Rules 10 and 12, or v is simplicial
and has degree ≤ 1 and would have been handled by Rules 7 and 9.

Assign v to the triplet. If we assign v to the pair {w, x} (if we assign v to the triplet {w, x, y}
then we implicitly assign v to the pairs {w, x}, {w, y} and {x, y}), then v is a common neighbor of
w and x. Hence any pair of vertices in S cannot have more than k vertices in V \S assigned to it,
otherwise Rule 11 applies, which would make all vertices in V \S assigned to {w, x} simplicial, and
thus Rule 10 would apply until only 1 vertex in V \S assigned to {w, x} remains. As there are at
most ` ·(`−1)/2 pairs of neighbors in S′ and at most ` ·(`−1) ·(`−2)/5 triplets of neighbours in S′,
we have |V ′\S′| ≤ k · ` · (`−1)/2 + ` · (`−1) · (`−2)/5. Since Rule 8 handles instances where k ≥ `,
we have that k ≤ `. Thus we have that |V ′\S′| ≤ `2 · (`− 1)/2 + ` · (`− 1) · (`− 2)/5 ∈ O(`3).

By combining Theorem 2 with a polynomial-time 2-approximation algorithm for vertex cover,
we obtain the following corollary.

Corollary 4. There is a polynomial-time algorithm that given an instance (G = (V,E), k) of
Spaghetti Treewidth computes an equivalent instance (G′ = (V ′, E′), k) such that V ′ ⊆ V and
|V ′| ∈ O((`∗)3), where `∗ is the size of a minimum vertex cover of G.

May 2012 Kernelization Rules for Special Treewidth and Spaghetti Treewidth 27

Chapter 6

Conclusions

We introduced a new logical cousin to the Treewidth and Special Treewidth problems, the
Spaghetti Treewidth problem. We then considered the vertex cover parameterization for the
Special Treewidth and Spaghetti Treewidth problems. Cubic kernels for both Special
Treewidth parameterized by a vertex cover and Spaghetti Treewidth parameter-
ized by a vertex cover were achieved through the use of a total of seven different reduction
rules. It might be interesting to carry out experimental research to see how good rules 4, 6 and 12
behave when compared to the rules which remove simplicial vertices in Treewidth parameter-
ized by a vertex cover.

Apart from improving upon the kernel size for Special Treewidth parameterized by a
vertex cover and Spaghetti Treewidth parameterized by a vertex cover, it seems
interesting to look for other polynomial kernels, e.g. by parameterization by a feedback vertex set.

In this work we also presented a characterization for the sp-partial 2-trees using the concept of
mamba-trees, and a characterization using the concept of Paths of Cycles.

As a side-result, the characterization of mamba-trees led to the conjecture that the sp-partial
2-trees are closed under taking minors. Our conjecture proposes that that the obstruction-set
for the sp-partial 2-trees consists of the minors K4, S3, D3 and B4. These minors are shown in
Figure 6.1. Further research will be needed to prove this conjecture.

K4 S3 D3
B4

Figure 6.1: The forbidden sp-partial 2-tree minors K4, S3, D3 and B4.

28

Bibliography

[1] Achim Blumensath and Bruno Courcelle. On the monadic second-order transduction hierarchy.
Logical Methods in Computer Science, 6(2), 2010.

[2] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.

[3] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Preprocessing for treewidth:
A combinatorial analysis through kernelization. In Luca Aceto, Monika Henzinger, and Jiri
Sgall, editors, ICALP (1), volume 6755 of Lecture Notes in Computer Science, pages 437–448.
Springer, 2011.

[4] Hans L. Bodlaender and Ton Kloks. A Simple Linear Time Algorithm for Triangulating
Three-Colored Graphs. J. Algorithms, 15(1):160–172, 1993.

[5] Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth computations I. Upper bounds.
Inf. Comput., 208(3):259–275, 2010.

[6] Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth computations II. Lower bounds.
Inf. Comput., 209(7):1103–1119, 2011.

[7] Hans L. Bodlaender, Arie M. C. A. Koster, and Frank van den Eijkhof. Preprocessing rules
for triangulation of probabilistic networks. Computational Intelligence, 21(3):286–305, 2005.

[8] Bruno Courcelle. Special tree-width and the verification of monadic second-order graph prop-
erties. In Kamal Lodaya and Meena Mahajan, editors, FSTTCS, volume 8 of LIPIcs, pages
13–29. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

[9] Bruno Courcelle, Rodney G. Downey, and Michael R. Fellows. A Note on the Computability
of Graph Minor Obstruction Sets for Monadic Second Order Ideals. J. UCS, 3(11):1194–1198,
1997.

[10] Babette de Fluiter. Algorithms for Graphs of Small Treewidth, Ph.D. thesis. 1997.

[11] Rodney G. Downey and M.R. Fellows. Parameterized Complexity (Monographs in Computer
Science). Springer, 1998.

[12] Jiong Guo and Rolf Niedermeier. Invitation to data reduction and problem kernelization.
SIGACT News, 38(1):31–45, 2007.

[13] Neil Robertson and Paul D. Seymour. Graph minors. I. Excluding a forest. J. Comb. Theory,
Ser. B, 35(1):39–61, 1983.

[14] Neil Robertson and Paul D. Seymour. Graph Minors. XX. Wagner’s conjecture. J. Comb.
Theory, Ser. B, 92(2):325–357, 2004.

29

	Introduction
	Preliminaries
	Special Treewidth
	Spaghetti Treewidth

	Kernelization Rules for Special Treewidth
	Trivial rules
	Simple rules for simplicial vertices
	Complex rules for removing simplicial vertices
	A Kernel for Special Treewidth label

	Special Treewith on sp-partial 2-trees
	Mambas
	Defining sp-partial 2-trees through means of mamba-trees
	Defining sp-partial 2-trees through means of paths of cycles

	Kernelization Rules for Spaghetti Treewidth
	Trivial rules
	Simple rules for simplicial vertices
	Complex rules for removing simplicial vertices
	A Kernel for Spaghetti Treewidth

	Conclusions

