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Summary

In the procedure of trying to understand complexirenmental processes, models have been widely
used as tools in scientific research. Accordingtteir potential purposes, models have multiple
applications, mainly linked to scientific resear(dtientific models) and to management advice
provision (engineering models), with those aimindgdrm predictions gaining ground and forming the
basis for public policy decision making in locadgional, national and international levels. Therefo
there is a need of an objective form of model assesat in order to evaluate the reliability of such
models. There has been a lot of debate on the nwadidition issue, especially around the radical
view of Oreske®t al. (1994) stating that is impossible. These discussialthough constructing, are
at times hampering the processes for which modelsiade, such as decision and policy making. The
implications on these procedures are increasinglggostudied, and new methods are continuously
being suggested in order to address and tackle. them
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1. Introduction

In the procedure of trying to understand complexirenmental processes, models have been widely
used as tools (Wainwright and Mulligan 2004). Tindted knowledge humans are able to acquire on
both time and space of various phenomena (Orestkak 1994), is a major incentive for modelling
their observable effects and outcomes. Althougleniagion is always considered as a key element to
scientific research, models are necessary in dodéackle problems like predictions and answers to
theoretical problems that no traditional experirsazan give. As Caswell (1988) stated, “models are t
theoretical problems as experiments are to empipicgblems”. They are always a simplification of
the complex reality presenting only the featureghef system (Khaiter and Erechtchoukova 2007)
corresponding to the models’ application nature.

According to their potential purposes, models hameltiple applications, mainly linked to
scientific research (scientific models) and to ngmmaent advice provision (engineering models)
(Rykiel 1996; van Voorret al. under review). First, they can be used to test hgpotheses and
support or confirm former proposed ones. For inamcological processes models can be targeted
towards analysing environmental questions and deusy of the ecological theory (Reynolds and
Ford 1999). Moreover, models can verify inconsistes in other models, as well as in performing
sensitivity analyses in order to further explorederstudied properties of the system under
consideration. Furthermore, they can reveal patarrobservation data, or even synthesize new data
when connecting elements of a system to reprodaderictions. Such models’ application is usually
locally executed so as to characterise a specifitysarea with its unique characteristics (Beved220
Aral 2010). Last but not least, an increasinglyesging application of models is predicting the fetu
behaviour of aspects of studied systems (KhaitdrEznechtchoukova 2007; Oresketsal. 1994). The
latter application, in spite of its weak relianae tbe results, is largely used in management pegos
for over a decade now. This kind of applicationsdn models, have been gaining ground in
forecasting purposes and have formed the basipuiolic policy decision making in local, regional,
national and international levels (Oreslke¢sl. 1994; Rykiel 1996). Attention has to be paid, hoeve
due to the aforementioned weakness of models’ gagallity, which derives from the uncertain nature
of scientific knowledge. The facts that more thare anodel set-up can have similar output (non-
uniqueness of models), that temporal and spatial ¢y, and, ultimately, that model assessment is
subjective — given that all models are approxinregiof real systems — contribute to this uncertainty
(Oreskes and Belitz 2001). Consequently, therenge of an objective form of model assessment
with respect to its scientific purpose or applioatito cover for any deficiencies.

As far as the ecological process models are coadaand according to Reynolds and Ford (1999),
four major sources of models’ insufficiencies candescribed. They can be found in the process of
forming the hypotheses and their mathematical ssmtation, during the fitting procedure of the
model, and in the selection of the assessmentiarite addition to these, the non-uniqueness ef th
models leads to their inadequate validation (Oreskel. 1994; Reynolds and Ford 1999). Different
terms have been used to describe various type®déinassessment, often leading to confusion due to
lack of common definitions and implementations. rBfiere, besides validation, verification,
calibration, and confirmation are types of modetessment. Verification is linked with truth
demonstration by the model, which sets the base dimision-making through its reliability.
Validation, on the other hand, is relevant to tepidtion of consistencies within a system or betwee
systems, which is different from the accuracy withich the system represents the truth of natural
phenomena. Moreover, calibration is the procedsirifig the model in order to match predicted and

obtained output of the model. Calibration can ergily connected with the verification phase, as
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additional tuning can be realised during the latteast but not least, when the model output is
confirmed by empirical observations, it is a way efaluating the probability of the model to
reproduce observed data, but not necessarily derating its veracity (Oreske=t al.1994).

The model validation problem and its legitimacy éabeen debated since the 1960s. A
chronological review of validation concepts in #ological literature was given by Rykiel (1996),
two years after the publication of the Oreskesal. (1994) article, which triggered a philosophical
discussion on the model validation issue. In hiseng, Rykiel points out that there are not avaiabl
universal criteria for a unified perspective of thaidation problem. Despite their common view for
the necessity of purpose-driven models, ecologwatiellers present different opinions on model
validation definition and application.

In the present paper, a brief review of views apuhions on ecological model validation from the
1960s until the early 1990s will be given, accogdio Rykiel (1996). After that, an outline of the
Oreskeset al (1994) paper “Verification, Validation, and Camnfiation of Numerical-Models in the
Earth-Sciences” will be presented, as well as #gmeption of it in the environmental modelling
community. Furthermore, the implications of modalidation on decision and policy making will be
described.

2. Pre — existing, to Oreskest al. (1994) paper, views on ecological model validatio
(Rykiel, 1996)

The main source of disagreement among ecologicaefi@s, concerning model validation, is the
disambiguation of models nature and purpose; ttrestgqpn of whether a model should be used in
forming scientific hypotheses or in testing oneeTigh variation in opinions resulted in different
validation definitions and terminology.

A first entry to the discussion was made by Le\ibh866). They supported the idea that models
being neither hypotheses nor theories, they rajhaerate hypotheses which can be tested. Goodall
(1972), however, rejected the need for hypothesisng issue as being irrelevant, paying atterttoon
the most important, according to them, questiothefpredictive value of a model. According to him,
the match between a model and a real system shettlte centre of validation process. The generated
acceptable predictions, though, of a specific estesy model are not automatically applicable to a
generalised variety of other ecosystems. Casw8Irgl used the term validation only to describe
predictive models which can be validated or invatiedl for their engineering performance testing.
Thus, model validation is considered purpose-drivdankin et al. (1977) suggested that models’
purposes can be realised without any validatiod,that instead of focusing on that, we should value
more the usefulness of them. They define a usebdleias one that its behaviour corresponds to some
real behaviour; this model is considered valid,oading to the objectives set in the process of
validation. Therefore, the notion of purpose-driveiodel evaluation is appearing as in Caswell
(1976). On the other hand, Overton (1977) durirgdame year, stressed the relation of validation to
hypothesis testing, along with its importance after model built. As far as the validation procisss
regarded, they agreed with Goodall (1972) on tgdtie model predictions with independent data, and
with Levins (1966) on model validation generatiegtable hypotheses in order to answer questions
and deal with problems for which the model was gle=il (purpose-driven model validation). One
year later, Holling (1978) — opposing to Levins§&Yis stating that models are hypotheses which can
only be falsified. Their view is in line with KaRopper’'s argument on the impossible validation of
hypotheses (Konikow and Bredehoeft 1992). Shugdit®84) point of view corresponds to that of
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Overton (1977) and Goodall (1972), who indicateva&dation, the procedure of testing independent
observations against data used to build the mdtmiikow and Bredehoeft (1992), combining the
above mentioned comparison of observations witleemgental measurements (history matching) and
the Popperian view on models’ invalidation (1958gsent the reliable predictability of a modelfsss t
ultimate goal of validation. They are scepticalwkwger, about the use of the term “validation”,
because it implies that a model can produce valturate and reliable predictions, which is not
possible for natural systems. Lastly, Botkin (1988)eed with Konikow and Bredehoeft (1992) to the
extent of the term usage, but not to that of tHelaaon procedure. They consider validation thrioug
history matching with independent data not consisteith its logical meaning, while validation
should be deducting a logical conclusion from ttgaiments used to set up the model.

Within this framework and background, Oresk¢®l (1994) paper “Verification, Validation, and
Confirmation of Numerical-Models in the Earth-Saer” was added to the philosophical debate
literature on model validation, presenting the exte view of the impossibility of natural systems’
validation, due to fact that they are never cloddddels are considered as representations which lea
to further research, an attribute of their hewistalue. These models are by no means reliable
representations of natural phenomena and theiditsaliies within the boundaries of as system or
between systems’ consistencies. According to Oeeskeal, the definition of validation is “the
establishment of legitimacy, typically given inrtes of contracts, arguments and methods”. Therefore,
only generic computer codes can be validated artdaomal model results. The latter, depends,
though, on the quantity and quality of the inputrapaeters and the accuracy of the auxiliary
hypotheses. Although the philosophical, restrickethse of the term “validation” is regarded as
conflicting to common practice, numerical simulatimodels for large — scale or complex physical
processes have been forming the basis for publicypdecisions. Consequently, the validation issue
remains always controversial, because it creatdgsigion between philosophers and modellers /
policy makers.

3. Reception of Oreskest al. (1994) paper in the environmental community

For the paper purposes the fifty first most relévaaccording to the Google Scholar citation raing
citations of the paper “Verification, Validationné Confirmation of Numerical-Models in the Earth-
Sciences” of Oreskest al (1994) were studied. Only scientific journal elds were included, whilst
book excerpts and papers out of the environmeaoiahse field were excluded (Table 1).

Table 1: Fifty citations of Oreskeset al. (1994) paper and the environmental science fielthey belong to.
The articles are ranked according to their relevane to the paper, using Google Scholar.

Authors Field in environmental science

Guisan & Zimmermann 2000 Ecological modelling

Parkeret al. 2003

Land-use and land-cover change modelling

Scheffer & Carpenter 2003

Ecosystem shifts modelling

Beissinger & Westphal 1998

Ecological modelling

Vanclay 1994 Ecological modelling
Rykiel 1996 Ecological modelling
Boyceet al. 2002 Ecological modelling
Beven 2006 Hydrological modelling

Araujoet al. 2005

Climate change modelling

Araujo & guisan 2006

Ecological modelling

Reddyet al. 1999

Environmental modelling

Heikkinenet al. 2006

Climate change modelling

Refsgaard 1997

Hydrological modelling




Demeritt 2001

Climate modelling

Finnvederet al 2009

Environmental modelling

Weaveret al 2001

Climate modelling

Saltelliet al. 2000

Modelling: sensitivity analysis

Shaw 2003

Climate modelling

Jakemaret al 2006

Environmental modelling

Bugmann 2001

Ecological modelling

Kirchneret al. 1996

Ecological modelling

Martinez-Meyeret al. 2004

Climate change modelling

Araujoet al. 2005

Climate change modelling

Perrinet al. 2001

Hydrological modelling

Kobayashi & Salam 2000

Agronomy simulation modelling

Vanclay & Skovsgaard 1997

Ecological modelling

Chang & Hanna 2004

Air quality modelling

Beven 2002 Hydrological modelling
Wageneeet al 2003 Hydrological modelling
Beven 2002 Hydrological modelling

Schneider 1997

Climate change modelling

Erasmuset al. 2002

Ecological modelling

Hilborn et al 1995

Ecological modelling

Saltelli 2002

Computational modelling

Refsgaard & Henriksen 2004

Hydrological modelling

Pontiuset al. 2004

Land-use and land-cover change modelling

Van Asselt & Rotmans 2002

Integrated assessment modelling

Bradshaw & Borchers 2000

Climate modelling

Warren & Haack 2001

Geochemical modelling

Nathanet al. 2001

Ecological modelling

Grimm et al. 1996

Ecological modelling

Saltelliet al. 2006

Environmental modelling

Van Der Sluijset al 2005

Environmental modelling

Corwinet al. 1997

Environmental modelling

Van Lieshougt al 2004

Climate modelling

Refsgaarcet al 2006

Hydrological modelling

Young 2002

Hydrological modelling

Rastetter 1996

Ecological modelling

Knutti et al. 2010

Climate modelling

Stanley 2003

Ecological modelling

In total, all papers accept Oresketsal. (1994) view on validation, although it is veryffault to
distinguish which of the authors actually agreehwtitem on its strict definition. The main trend
followed is the approval of the Oresketsal (1994) validation concept in a philosophical feamork,
which is often detoured when the implementatiothefmodels is concerned.

a. Ecological modelling

The paper of Oreskext al (1994) made an impression even to papers publigteesame year as that
of Vanclay (1994) who considers validation as aessary step in the process of model evaluation,
along with verification. In their field, that of fest growth modelling, validation equals quantitati
tests. They conclude, nevertheless, that the teenchmarking” should replace that of validation in
accordance with Oreskes al. Hilborn et al (1995) illustrate the inability to extensivelyesify initial
conditions, and consequently to base predictionthem. They deny successful model testing, driven
by the inevitable result of multiple alternativeployheses matching the data. Rykiel (1996) considers
the validation debate an obstacle to models’ acts@land performance, while he states that vatidati
criteria should be accessible to the user, whaiin will judge their adequacy. Lastly, they poinit o
the lack of universal validation criteria and tpatcedures. Kirchnest al (1996) pay also attention to
the practical side and the purpose of modellingpdeix judgement and model building are both
considered as appropriate tools when the modelogerps policy analysis. Their uncertain use is
necessary for predictions and decision-makinghénsame practical way, by accepting that models in
population ecology for a great simplification ofligy, Grimmet al (1996), proceed at the usage of
the models in research. This simplicity in modedigring is also applied by Beissinger and Westphal
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(1998). Similarly, despite the weak model evaluatly model tests used to deal with the problem of
extrapolating from the specific to the general, tBsr (1996) regards a model as an essentiabpart
the evaluation of the responses of ecosystemsotmagktlimate and carbon dioxide change. In their
opinion, models can synthesize scientific informatfrom diverse sources in order to evaluate full
ecosystem responses. The avoidance of the terndé&wain” is followed by Vanclay and Skovsgaard
(1997) too. They propose a model evaluation witivitinout external data, and that a model cannot be
proven correct, but instead only the inferences lmatialsified. Guisan and Zimmerman (2000), are
also in line with Oreskest al (1994) validation perspective, and present twor@gches for model
evaluation, which is their preferred term. Theyfpan cross-validation techniques with the use of
either two independent data sets or just one. Apesable approach is implemented by Bugmann
(2001), as they stress the need for quantitativiheds for model evaluation, and from Natlediral
(2001) who compare predicted with observed dat& ddmparisons of present against past data is
supposed to be of little predictive value by Bowteal (2002) due to the fact that these models
describe dynamic systems which change in time. Weroapproach followed by other modellers is to
fill absence data in by interpolation (Erasnaisal 2002). Modellers nowadays recognise this poor
predictability of models and the numerous limitaidhey present in their implementation, but their
importance in environmental managing renders thesergtial (Aradjo and Guisan 2006; Scheffer and
Carpenter 2003; Stanley 1995).

b. Hydrological modelling

Model validation is described by Refsgaard (19%7}hee process that demonstrates how accurate the
model’'s predictions are. They implement a splitigknprocedure to evaluate hydrological models,
and accept a model validation only within limitsitsf accuracy and predictive capability. Pewetral
(2001), however, prefer model simplicity over ae@my, which causes less parameter uncertainty
problems. The incapability of models to descrilaitg as far as hydrological models are concems,
also accepted by Beven (Beven 2002a; Beven 2002kerB2006). They avoid the philosophical
debate over the model validation, and suggest proaph based on the falsification of models where
it can reduce the range of hypotheses’ possilsliiem which one has to choose. The arguments on
the possibility of model validation are regarded fhilosophical by Young (2002) as well. They
support the quantitative, predictive validation gfiuses two different sets to evaluate the model,
similar to the split-sample technique of Refsga@@P7). The type of failure of a model’'s structure
(failure a structural model component and of thpdtlgesis underlying it) is interpreted by Wageeter

al. (2003) as the key to develop an improved hypdathasd, therefore, an even more acceptable
model structure, until a better one to be foundstlya a significant addition to the hydrological
modelling literature is made by Refsgaard and Hwsen (2004) who, in agreement with the view of
Oreskeset al. (1994), proposed modelling guidelines, termingland guiding principles. Their
definition of validation is restrained to the dommiof applicability and performance accuracy of
models.

c. Environmental modelling

Corwinet al (1997) point out that the major problem in appiymodel simulations, like the nonpoint
source pollutants models, to real problems is #loe that the uncertainties at large scales (egipmel
scales) are high and lead to errors. Accuracy -etent to which model-predicted values approach a
corresponding set measured observations — andsfnect the degree to which model-predicted
values approach a linear function of measured ghtiens — are the two operational components of
model evaluation. To the inaccurate and incompjiekaelown empirical data attribute Redeéy al
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(1999) the incapability of models to be validatétbwever, they support the idea of models’
descriptive power when tested against observatideia. In addition, Van der Sluigg al (2005) also

are in favour of applying methods such as the Naimdnit Spread Assessment Pedigree (NUSAP)
method for multidimensional uncertainty assessmehigh they trust for applying it even to complex
models. Their attempt is to deal with the uncetyaproduced by the degree at which modes are based
on observations, informed judgement and scientegisivenience. Jakemat al (2006) appear to be
flexible at the setting of the criteria by whichredel performance can be assessed, implying that th
philosophical basis of the validation term of Oeeskt al (1994) is too strict, forcing the choice
between confirmation or rejection of a model. Skl al. (2006), on the other hand, keep a more
neutral position, characterising, though, the deleait model validation as “blunt”. Their focus lays
corroborating models via sensitivity analysis, levaate uncertainties. Finnveden al (2009) do not
elaborate on the model validation issue and them@ioty caused by the comparison of measurements
or calculations with “truth”, suggesting furthetaaition and development in the area.

d. Climate and climate change modelling

For climate and, especially, climate change mod#ish represent a very complex system with many
influencing factors, empirical evidence is diffictb obtain prior to the actual experimental phase.
Thus, Schneider (1997) agreed with Oresieal (1994) that validation is not possible in advance
They still use the term, though, to define the masitesting strategies used to provide subjectavity
credibility to the models’ results and insights itbegrated assessment models (multi-disciplinary
models). The uncertainty of large-scale and comp@gstems like the global change models is
accepted by Bradshaw and Borchers (2000) too. Aghoscientific confirmation helps increase
confidence in public’s trust towards the impleméntaof policies, the inability of simulating chaot
systems and producing the needed certainty lewelsnbdels’ performance is a fact affecting the
relation between science and policy-making. Martileyer et al. (2004) highlight, however, that
while the ecosystem models have undergone someaefrtesting and validation, the species-level
models under the scope of climate change haveldteror no direct testing. Aradjet al (2005a;
2005b), are also working on species’ responsebn@ai® change modelling and they are stressing the
weak predictive ability of such model estimatiofitiey, moreover, argue that it is vital that such
models - although useful in providing an approxiomaf climate-driven range of changes - have to
be applied critically, while unrealistic optimistestimates of predictive ability have to be avoided
Heikkinen et al (2006) consider Oreskexst al (1994) view on model validation as extreme, but
recognise that as all natural systems are notdJosany factors as e.g. the potential driving ferag
species distributions are not possible to accoantDemeritt (2001) and Weavet al (2001) are
influenced by the Oreskex al. (1994) paper and in response, they prefer tahesdéerm evaluation
instead of validation. Both papers accept the coimpa of model output with observations as the
suitable evaluation process. In the same directiéimaw (2003) suggests comparison of cloud
processes models outputs with actual observatias. Lieshoutet al (2004) state that modelling,
despite its decreased inaccuracy and simplificafiallows for adequate prioritisation and risk
estimation. Knuttiet al (2010), finally, reason that models adequatefparticular purpose should be
satisfying, in spite of the accuracy not being getrf

e. Other types of modelling

Kobayashi and Salam (2000) argue that model's pedoce can only be discussed relatively, which
is in accordance with the view of Saltadtial (2000) that models are built for a specific tagkl their
complexity should not exceed the needed requiresn&aitelli (2002) become more specific later on
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by suggesting that the focus should be on gloh#&ntitative and model free capable of testing the
robustness and relevance of a model-based anatyslse presence of uncertainties. Warren and
Haack (2001), in their geochemical modelling, fitltht the utility of models lies only in the
examination of the extent of a hypothesis, andmthe establishment of the validity of a modelduhs
on the “goodness of fit". Van Asselt and Rotman80@) are detouring the validation issue by
incorporating multiple perspectives in Integratess@dssment modelling in order to assess the most
salient uncertainties (structural and multiple moaeites) derived during the model built process.
Parkeret al (2003) place the validation process after théfigation and the check of models correct
function, and stress the necessity of the usevdfla range of techniques for model development and
empirical assessment. Chang and Hanna (2004) eeagnt with Oreskest al. (1994) prefer the
term evaluation over validation and state that rhadefirmation or evaluation are achieved by the
demonstration of good agreement between sevesbsebservations and predictions. The scientist’s
decision on the validity of a model for a particulidmain of application suggest Ponteisal (2004),

as an inevitable condition in practice. They findmore helpful, when model improvement is
concerned, to view validation as a standard praeedfi science that is designed to how in what
respects models perform well and poorly.

Number of citations per field
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Figure 1: The amount of Oreskest al. (1994) citations per environmental science field.



4. Decision and policy making: uncertainty and implicdions of model validation

Apart from the major aim of environmental modellibging the gain of an insight into system’s
functions and translating them in mathematical timtships, another goal is the generation of
predictions to be used for management and decrmagking purposes (van Asselt and Rotmans 1996;
Beven 2009). Therefore, models’ credibility is grdficant feature in order to base decisions upon
their results (Holzbecher 1997). Credibility is idetl as the scientific adequacy of the technical
evidence and arguments (Casthal 2003). Thus, the incapability of defining modalidation, along
with the uncertainty of model accuracy in descigbihe underlying natural processes of the system
under research, results in questioning the reitgbif model-based decision-making (Oreskes and
Belitz 2001). Decision and policy makers are ofteterested in certain, feasible, and deterministic
solutions (Bradshaw and Borchers 2000), unawar¢heffact yet familiar to scientists, that the
magnitude and degree of complexity is continuoustyeasing. Consequently, scientists / modellers
and decision makers have to deal with uncertairftickvis also increasing, despite the accumulation
of knowledge (van Asselt and Rotmans 1996). In ease, the scientist must have an established
communication with the decision maker, otherwissrehs little chance that the information, derived
from this knowledge, will be salient, and thus u$d¢d the decision maker (Cash al 2002). An
appealing approach to tackle the problem of thieidiht perspectives in the model-based policy and
decision-making in the environmental research fisldn integrated assessment approach, aiming to
facilitate these processes on complex issues. &mwiental decision-making is considered as one, due
to the complexity of the systems considered andcthapeting interests of multiple stakeholders
(Cummings and Cayer 1993; van Asselt and Rotma86;Man Asselt and Rotmans 2002; Ascough
et al 2008).

Problem identification & framing by
policymakers, stakeholders and
/ analysts
Monitoring Decision support Scientific
\ / activities <——— community
/
Implementation & ™~ Peer reviews
communication
/ Evaluation of outcomes by
Policy decision policymakers & stakcholders

Figure 2: The policy making process viewed as a ntislstage iterative process (Walkeret al. 2003,
modified)

Uncertainty exists in all levels of the policy madgi process, as well as in the outcome of the
simulation models used for it, or the assumptioaslen For scientists it is rather an expected olestac
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whereas for the decision makers, it hampers ttabksttment of confidence and trust in the model and
the modelling process (Bradshaw and Borchers 28@@penberger and Beven 2006). In order to
bridge this perception gap between actors involiredhe policy making process (i.e. between
scientists and the decision makers), a closer fodke process of an integrated assessment has to b
taken. This process is considered as an iterativeular process (Figure 2), where the scientific
community provide decision support to decision makey creation of a model of the system under
research, and in turn, decision makers contribatéhe input of scientific investigations by the
experience gained from the results of the analysis, the policy choice and implementation (van
Asselt and Rotmans 1996; Walket al 2003). All actors, participating at a policy addcision
making process, have different perceptions of fygatiriginating from their different views of the
world. That explains the variety on their perspexgiof uncertainty; that of the modellers focusgei
on the accumulated uncertainties associated wilothicomes of the model and the (robustness of)
conclusions of the decision support exercise, wiiéepolicy makers’ on how to value the outcomes
regarding the goals and possibly conflicting ohjesd, priorities, and interests (Walketral 2003).

Notwithstanding the understanding for the neednahéerdisciplinary research process, which will
solve problems characterised by complexity andréoienectedness (Cagt al. 2002), and which
emerge from the different actors involved in iterth is neither a commonly shared terminology nor
agreement on a generic typology of uncertaintiaschSa typology would solve issues such as
problematic communication among policy analysts,omgn policy analysts, policy makers and
stakeholders, and, finally, it would help in theridification and prioritisation of effective andieient
research and development activities for decisioppstt. Therefore, the sources and types of
uncertainty have to be identified. According to threcertainty classification of Ascougt al (2008)
(Figure 3), uncertainty between lack of knowledgd ancertainty resulting from intrinsic variability
in the systems or processes of interest are disshgd. Decision-making involved uncertainty isoals
considered as another type, as well as linguistiertainty.

The knowledge uncertainty is referring to the thett there is a limitation to our knowledge, which
can either increase or be reduced by additionalareb and empirical efforts. It is identical to the
epistemic nature of uncertainty of Walleral (2003), which consists of the process undersitandi
and the model uncertainty; the former represeritiegoackground scientific knowledge describing the
system under consideration, and the latter, inolydhe mechanistic parts of a model, from its
designing, to its structure and function. The Jahiy uncertainty has to do with the variability i
natural and human systems, which refer to the sxiithnature of natural processes, and the inflienc
of social structure and cultural standards (Bradsl@d Borchers 2000) on the environmental
decision-making process. All these types of unadstdead to the decision-making uncertainty, due
to mal-interpretation or miscommunication of mogdeddictions, which can be part of the failure to
embody social objectives in the policy analysisstlya the linguistic uncertainty is describing the
characteristics of our natural language, inhibitiogstant clarity and precision.
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Environmental Management and Decision Making

Uncertainty Typology
T
. Y. ) v . -
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Underspecificity |
Technological
Aleatory or Irreducible
_,‘ Decision Uncertainty l(—

Goals/Objectives

i i [ Assessmentcriterias | 7> Courses
PerformanceMeasures | : of Action

Figure 3: Description of uncertainty in environment@l management and decision-making based on
knowledge uncertainty, system variability, linguistc uncertainty, and decision-making uncertainty
(Ascoughet al. 2008).

In addition to these types of uncertainty, outlqiimore the scientists’ perception, Bradshaw and
Borchers (2000) introduced two more types, viewgdthie public and policy makers perspective; first,
there is uncertainty about the uncertainty andorsély, the difficulty to translate science into
decision-making as a result of lacking knowledgsaéntific methods.

Having identified a classification of the typesuricertainty definitely enhances already the policy
and decision-making process. However, there arerabdrawbacks in the addressing of uncertainty in
an integrated assessment plan. To start with, therenot adequate methods and tools available, in
order to address all uncertainties. This especihfiyds for uncertainty in model structure and
uncertainty due to behavioural and societal vditgbivalue diversity, technological surprise,
ignorance and indeterminacy. However, there haes lagtempts to of methods in order to approach
this range of uncertainties, like the dynamic idfediility analysis (DYNIA) of Wageneet al. (2003)
for applications to analyse model structures orettimate calibration parameters. Furthermore,
virtually all current methods do not include evdioa of the impacts of specific uncertainties, heea
it is not considered a primary issue. Lastly, whiggre are no ways of indicating the magnitude and
source of the underlying uncertainties — due ta@gaate methods — actors other than scientists (i.e
decision-makers) find it difficult to deal with aggated uncertainty measures (van Asselt and
Rotmans 2002). Although it is inarguably a necgdsittommunicate uncertainty in the science/policy
interface, when model-based decision support isidered (Walkeret al. 2003), the uncertainty
analysis has been doubted for its usefulness, raaxomple, by several scientists in water resources
research, whose arguments are all refuted thoughappenberg and Beven (2006). They conclude
that uncertainty analysis is greatly influencingcidions in the direction of future predictions and,
thus, in the decision and policy making in enviremtal matters. The reluctance of participating
actors in these processes, to address and deaumgtrtainty analyses, is only resulting in dispute
results instead of the main goal which is a riskleation. In addition to this, Ascougt al (2008) is
stressing that is essential to address uncertairdynyy comprehensive and defendable environmental
decision-making situation, or the unreliability the results with a consequential loss of publisttru
and confidence will be unavoidable.
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5. Discussion and conclusions

Model validation has been debated since the 196t$,has initiated several discussions among the
scientific community, both from a philosophical apdactical point of view. All arguments derive
from the fact that human knowledge for natural exyst is limited and little. Our perception of the
systems’ functions and characteristics is restilictdespite the series of observations and
measurements which become increasingly more aecarat abundant compared to the past. In spite
of the technology progress and achievements, thidralways be elements and natural processes that
we cannot have a grip on. Especially when futuoeg@dures are concerned, accurate predictions seem
to be impossible, given the natural history of tierld as we know it now. Thus, models built to
describe natural systems, in order to explain t&iucture or to form predictions, are logically
guestioned regarding their validity of their perfance. On the other hand, though, models have been
a useful tool in actually gaining more knowledgetloé natural processes for a long time, so their
utility is relatively proven in practice.

The need to evaluate models is not only intringibuman nature and scientific precision, but it has
a practical aspect and is essential to the purfgoseghich the models are built in the first pladde
inability of model validation with the strict seneéthe meaning, as Oreskesal (1994) define it,
accepted as a notion by the scientific communigs been under great consideration in order to
overcome it and, finally, assess the models. Asqmed in Part 2, there have been quite a few
different theoretical views on model validation amdether it is possible or not, which they seem to
converge after the statement that model validatbmatural systems is impossible. Despite this
convergence, there is not still a unified, univertgaminology on model evaluation, resulting in
difficulties in interactions within the scientiftommunity, but also between the scientific communit
and the model users who are representing a lange raf functions and interests. Oreskesal (1994)
view was received rather positively, however, sistém from various domains of environmental
sciences (Part 3), had to face the questions dilatvf this ascertainment; what is the next stepy ho
can models be evaluated and what are the consezgiehnon-validated models.

In Part 3 some approaches of the concept of malility are outlined, originating from different
perspectives in the environmental science fielde Tost popular model evaluation method is the
comparison of observed data with model output dette. degree of the data match is proportional to
the model assessment for the purpose initiallytlail This history matching, as called differently
when successful, increases the model’s credibbBiggause it reproduces real data. A model which can
somewhat accurately reconstruct past events araingsers that have already been reported is more
easily trusted to predict the future behaviour loé same system; notwithstanding uncertainties
emerged at every stage of the model building ardRart 4).

The uncertainty issue in the model evaluation pmsces of great significance, due to the
implications that it has at the decision and pelitgking. Models are use in a great extent from
decision and policy makers, in order to designtagiias of dealing with a problem. Therefore, the
result of this interaction between science andcgadlinplementation is of public interest and, theem
involve a broad range of participating actors oftealevant to the model making procedure. The
different perspectives and intentions are souréesiscommunication and conflict, if the gap created
is not bridged. Traditionally, the roles of thefditnt functions were separated and discrete, which
renders the communication necessary, as well asreons, instructions and feedback provision.
Nowadays, there is a trend of domains overlappangl, of going towards an integrated approach of
problem solving. This is consistent with the appeaae of the integrated assessment models which
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have a multi-disciplinary character, and thus, udel a variety of points of views, which makes the

model more objective and, consequently, more cledilp a broader public. Such examples are quite
optimistic and available, as the Numeral Unit Sgrédessessment Pedigree (NUSAP) method for

multidimensional uncertainty assessment which aaplied to complex models (van der Slgijs

al. 2005). Lastly, avoidance of application of methedtablishing and increasing the model function
power and, thus, credibility, like the uncertaiatyalyses, is no longer regarded as reasonable sinc
the arguments against it have all been comproni{RBeppenberger and Beven 2006).

6. Acknowledgments

I would like to thank dr. Patrick Bogaart for hisoperation, continuous guidance and support during
the entire master thesis writing. Furthermore, ulddike to thank dr. Stefan Dekker for his general
supervision.

7. References

Aral, MustafaM. 2010. “Principles of Environmenbbdeling.” 2. http://dx.doi.org/10.1007/978-90-
481-8608-2_2.

Araujo, Miguel B., and Antoine Guisan. 2006. “Fiige so) Challenges for Species Distribution
Modelling.” Journal of Biogeographg3 (10): 1677-1688. doi:10.1111/j.1365-
2699.2006.01584 x.

Araujo, Miguel B., Richard G. Pearson, Wilfried Tlker, and Markus Erhard. 2005. “Validation of
Species?climate Impact Models Under Climate Chdngkmbal Change Biologg1 (9):
1504-1513. doi:10.1111/j.1365-2486.2005.01000.x.

Araujo, Miguel B., Robert J. Whittaker, Richard_adle, and Markus Erhard. 2005. “Reducing
Uncertainty in Projections of Extinction Risk frablimate Change.Global Ecology and
Biogeographyl4 (6): 529-538. doi:10.1111/j.1466-822X.2005.00%8

Ascough, J.C., H. R. Maier, J. K. Ravalico, andwl.Strudley. 2008. “Future Research Challenges
for Incorporation of Uncertainty in EnvironmentaldaEcological Decision-making.”
Ecological Modelling219 (3-4): 383—399. doi:10.1016/j.ecolmodel.2008@5.

Van Asselt, M. B. A., and J. Rotmans. 2002. “Uraiaty in Integrated Assessment Modelling - From
Positivism to Pluralism.Climatic Changeés4 (1-2). doi:10.1023/A:1015783803445.

Van Asselt, Marjolein, and Jan Rotmans. 1996. “Utadety in Perspective.Global Environmental
Changeb6 (2): 121-157. doi:10.1016/0959-3780(96)00015-5.

Beissinger, S. R., and M. I. Westphal. 1998. “Omnltlse of Demographic Models of Population
Viability in Endangered Species Managemeabtrnal of Wildlife Managemeg (3).
doi:10.2307/3802534.

Beven, K. 2002. “Towards a Coherent PhilosophyModelling the Environment.Proceedings of
the Royal Society A-Mathematical Physical and Eeglimg Science458 (2026): 2465-2484.
doi:10.1098/rspa.2002.0986.

Beven, K. J. 200Environmental Modelling: An Uncertain Future?: Amtioduction to Techniques
for Uncertainty Estimation in Environmental Preddct Taylor & Francis.

Beven, Keith. 2002. “Towards an Alternative Bluepifor a Physically Based Digitally Simulated

Hydrologic Response Modelling Systeri{drological Processe$6 (2): 189-206.

doi:10.1002/hyp.343.

. 2006. “A Manifesto for the Equifinality ThesisThe Model Parameter Estimation

Experiment MOPEX MOPEX Worksh8p0 (1-2): 18-36. doi:10.1016/j.jhydrol.2005.07.00

14



Botkin, D. B. 1993Forest Dynamics: An Ecological Mod&xford University Press, USA.
http://books.google.com/books?hl=nl&lr=&id=8azZM4f VN QC&oi=fnd&pg=PR15&dqg=Fo
rest+Dynamics+botkin&ots=tFYRTCtzTd&sig=nNYigdG_VMDIQUNeqWNgszAVA.

Boyce, Mark S., Pierre R. Vernier, Scott E. Nie|ssamd Fiona K. A. Schmiegelow. 2002. “Evaluating
Resource Selection Function&tological Modellingl57 (2—-3): 281-300.
doi:10.1016/S0304-3800(02)00200-4.

Bradshaw, G. A., and J. G. Borchers. 2000. “Unaeastas Information: Narrowing the Science-
policy Gap.”Conservation Ecolog¥ (1): 7-7.

Bugmann, H. 2001. “A Review of Forest Gap Mode@lifnatic Changebl (3-4).
doi:10.1023/A:1012525626267.

Cash, D., W. Clark, F. Alcock, N. Dickson, N. Eckland J. Jager. 2002. “Salience, Credibility,
Legitimacy and Boundaries: Linking Research, Assest and Decision Making.”
http://papers.ssrn.com/sol3/papers.cfm?abstracd 72280.

Cash, D. W., W. C. Clark, F. Alcock, N. M. Dicksaw, Eckley, D. H. Guston, J. Jager, and R. B.
Mitchell. 2003. “Knowledge Systems for Sustainab&relopment.’Proceedings of the
National Academy of Scienc&80 (14): 8086—8091.

Caswell, H. 1976. “The Validation Problengystems Analysis and Simulation in Ecolég$13—-325.

Caswell, Hal. 1988. “Theory and Models in EcologyDifferent Perspective.Ecological Modelling
43 (1-2): 33-44. doi:10.1016/0304-3800(88)90071-3.

Chang, J. C., and S. R. Hanna. 2004. “Air Qualitydel Performance EvaluatiorMeteorology and
Atmospheric Physidd7 (1-3). doi:10.1007/s00703-003-0070-7.

Corwin, DL, PJ Vaughan, and K. Loague. 1997. “Moriitg Nonpoint Source Pollutants in the
Vadose Zone with GIS Environmental Science & Technolog¥ (8): 2157-2175.
doi:10.1021/es960796v.

Cummings, LE, and NJ Cayer. 1993. “Environmentdlelgdndicators - a Systems-Model.”
Environmental Manageme® (5): 655-667. doi:10.1007/BF02393727.

Demeritt, David. 2001. “The Construction of Globdarming and the Politics of Sciencénnals of
the Association of American Geograph@is(2): 307-337. doi:10.1111/0004-5608.00245.

Erasmus, Barend F. N., Albert S. Van Jaarsveldiggte. Chown, Mrigesh Kshatriya, and Konrad J.
Wessels. 2002. “Vulnerability of South African ArahTaxa to Climate ChangeGlobal
Change Biology (7): 679-693. doi:10.1046/].1365-2486.2002.00%502

Finnveden, Goéran, Michael Z. Hauschild, Tomas BkJaroen Guinée, Reinout Heijungs, Stefanie
Hellweg, Annette Koehler, David Pennington, andgsam Suh. 2009. “Recent
Developments in Life Cycle Assessmerdgurnal of Environmental Managemedt (1): 1—
21. doi:10.1016/j.jenvman.2009.06.018.

Grimm, V., K. Frank, F. Jeltsch, R. Brand|, J. Uemski, and C. Wissel. 1996. “Pattern-oriented
Modelling in Population Ecology.Science of the Total Environmet@3 (1-2): 151-166.
doi:10.1016/0048-9697(95)04966-5.

Guisan, Antoine, and Niklaus E. Zimmermann. 2000etictive Habitat Distribution Models in
Ecology.” Ecological Modellingl35 (2—3): 147-186. doi:10.1016/S0304-3800(00)@eR5

Hall, Charles AS, and John W. Day Jr. 1977. “EctssypsModeling in Theory and Practice: An
Introduction with Case Histories.”
http://www.osti.gov/energycitations/product.bibjgp?osti_id=5835861.

Heikkinen, Risto K., Miska Luoto, Miguel B. Araujgaimo Virkkala, Wilfried Thuiller, and Martin
T. Sykes. 2006. “Methods and Uncertainties in Bioatic Envelope Modelling Under
Climate Change.Progress in Physical Geograpl® (6). doi:10.1177/0309133306071957.

Hilborn, R., C. J. Walters, and D. Ludwig. 1995us&inable Exploitation of Renewable Resources.”
Annual Review of Ecology and Systema2igs45—-67.

Holling, Crawford S. 1978. “Adaptive Environmentsdsessment and Managememdaptive
Environmental Assessment and Management.
http://www.cabdirect.org/abstracts/19800666996.html

HOLZBECHER. 1997Remarks on the Paper by E.J. Rykiel, Entitled: firgsEcological Models:
The Meaning of Validation” (Ecol. Model. 90, 22944.996) Vol. 102. Ecological
Modelling. Amsterdam, PAYS-BAS: Elsevier.

15



Jakeman, A. J., R. A. Letcher, and J. P. NortoA620Ten Iterative Steps in Development and
Evaluation of Environmental ModelsEnvironmental Modelling & Softwar2l (5): 602-614.
doi:10.1016/j.envsoft.2006.01.004.

Jeffers, John Norman Richard. 19KRathematical Models in Ecology: The 12th Sympositithe
British Ecological Society, Grange-Over-Sands, lasinire, 23-26 March 197 Blackwell
Scientific Publications.

Khaiter, P. A., and M. G. Erechtchoukova. 20Bibm Complex to Simple in Environmental
Simulation Modelling

Kirchner, J. W., R. P. Hooper, C. Kendall, C. Neald G. Leavesley. 1996. “Testing and Validating
Environmental Models.Science of the Total Environmet83 (1-2). doi:10.1016/0048-
9697(95)04971-1.

Knutti, Reto, Reinhard Furrer, Claudia Tebaldi, Tammak, and Gerald A. Meehl. 2010. “Challenges
in Combining Projections from Multiple Climate Mddé Journal of Climate23 (10).
doi:10.1175/2009JCLI3361.1.

Kobayashi, K., and M. U. Salam. 2000. “Comparingu@ated and Measured Values Using Mean
Squared Deviation and Its Componengsgronomy Journad2 (2).
doi:10.1007/s100870050043.

KONIKOW, LF, and JD BREDEHOEFT. 1992. “Groundwakéodels Cannot Be Validated.”
Advances in Water ResourcHs (1): 75-83. do0i:10.1016/0309-1708(92)90033-X.

Levins, R. 1966. “The Strategy of Model BuildingRopulation Biology.”American Scientisg21—
431.

Van Lieshout, M., RS Kovats, MTJ Livermore, andvRrtens. 2004. “Climate Change and Malaria:
Analysis of the SRES Climate and Socio-economiai&ages.”Global Environmental
Change-Human and Policy Dimensiat (1): 87-99. doi:10.1016/j.gloenvcha.2003.10.009

Martinez-Meyer, Enrique, A. Townsend Peterson,\afiilam W. Hargrove. 2004. “Ecological
Niches as Stable Distributional Constraints on Maih&pecies, with Implications for
Pleistocene Extinctions and Climate Change Praestfor Biodiversity."Global Ecology
and Biogeographyt3 (4): 305-314. doi:10.1111/j.1466-822X.2004.0040

Nathan, R., UN Safriel, and I. Noy-Meir. 2001. “Ki&/alidation and Sensitivity Analysis of a
Mechanistic Model for Tree Seed Dispersal by Wirketblogy82 (2): 374—-388.
doi:10.2307/2679866.

Oreskes, N., and K. Belitz. 2001. “Philosophicallss in Model Assessmenkfodel Validation:
Perspectives in Hydrological Scien28. http://history.ucsd.edu/_files/faculty/oreskes
naomi/PhillssuesModelAssessOreskes.pdf.

Oreskes, N., K. Shraderfrechette, and K. Belit2419Verification, Validation, and Confirmation of
Numerical-Models in the Earth-ScienceScience263 (5147): 641-646.
doi:10.1126/science.263.5147.641.

Pappenberger, F., and K. J. Beven. 2006. “IgnorénBéiss: Or Seven Reasons Not to Use
Uncertainty Analysis.Water Resources Researth (5): n/fa—n/a.
doi:10.1029/2005WR004820.

Parker, Dawn C., Steven M. Manson, Marco A. Janddetthew J. Hoffmann, and Peter Deadman.
2003. “Multi-Agent Systems for the Simulation ofrichUse and Land-Cover Change: A
Review.” Annals of the Association of American Geograpl9&$2): 314-337.
doi:10.1111/1467-8306.9302004.

Perrin, C., C. Michel, and V. Andréassian. 20010éB a Large Number of Parameters Enhance
Model Performance? Comparative Assessment of Con@®adchment Model Structures on
429 Catchments.Journal of Hydrology242 (3—4): 275-301. doi:10.1016/S0022-
1694(00)00393-0.

Pontius, RG, D. Huffaker, and K. Denman. 2004. ‘fus&echniques of Validation for Spatially
Explicit Land-change ModelsEcological Modellingl79 (4): 445—-461.
doi:10.1016/j.ecolmodel.2004.05.010.

Popper, Karl R. 1959. “THE LOGIC or SCIENTIFIC DIS¥ERY.” http://terra-
geog.lemig2.umontreal.ca/donnees/ge01512/POPPER_116§ic_chapterl.pdf.

16



Rastetter, Edward B. 1996. “Validating Models obEgstem Response to Global Change.”
Biosciencet6 (3): 190.

Reddy, K. R., R. H. Kadlec, E. Flaig, and P. M. &41999. “Phosphorus Retention in Streams and
Wetlands: A Review.Critical Reviews in Environmental Science and Tebbgy 29 (1).
doi:10.1080/10643389991259182.

Refsgaard, JC, and HJ Henriksen. 2004. “Modellingl€lines - Terminology and Guiding
Principles.”Advances in Water Resourc®s (1): 71-82.
doi:10.1016/j.advwatres.2003.08.006.

Refsgaard, Jens Christian. 1997. “Parameterisdfialiration and Validation of Distributed
Hydrological Models.”Journal of Hydrology198 (1-4): 69—97. doi:10.1016/S0022-
1694(96)03329-X.

Reynolds, JH, and ED Ford. 1999. “Multi-criteriastssment of Ecological Process Models.”
Ecology80 (2): 538-553. doi:10.1890/0012-9658(1999)088f0BICAOEP]2.0.CO;2.

Rykiel, EJ. 1996. “Testing Ecological Models: Theahing of Validation.Ecological Modelling90
(3): 229-244. doi:10.1016/0304-3800(95)00152-2.

Saltelli, A., S. Tarantola, and F. Campolongo. 20@@nsitivity Analysis as an Ingredient of
Modeling.” Statistical Sciencé5 (4): 377-395.

Saltelli, Andrea. 2002. “Sensitivity Analysis fanportance AssessmenRisk Analysi®2 (3): 579—
590. doi:10.1111/0272-4332.00040.

Saltelli, Andrea, Marco Ratto, Stefano Tarantolan€esca Campolongo, European Commission, and
Joint Res Citr Ispra. 2006. “Sensitivity Analysisi€tices: Strategies for Model-based
Inference.”Reliability Engineering & System Safé&y (10-11): 1109-1125.
doi:10.1016/j.ress.2005.11.014.

Scheffer, Marten, and Stephen R. Carpenter. 2@0&&strophic Regime Shifts in Ecosystems:
Linking Theory to ObservationTrends in Ecology & Evolutioh8 (12): 648—-656.
doi:10.1016/j.tree.2003.09.002.

Schneider, Stephen H. 1997. “Integrated Assessmedeling of Global Climate Change:
Transparent Rational Tool for Policy Making or Opadscreen Hiding Valuaden
Assumptions?Environmental Modeling & Assessméni4) (December 1): 229-249.
doi:10.1023/A:1019090117643.

Shaw, Raymond A. 2003. “PARTICLE-TURBULENCE INTERAMNS IN ATMOSPHERIC
CLOUDS.” Annual Review of Fluid Mechani@$ (1): 183-227.
doi:10.1146/annurev.fluid.35.101101.161125.

Shugart, Herman H. 198A.Theory of Forest Dynamics. The Ecological Impglmas of Forest
Succession ModelSpringer-Verlag. http://www.cabdirect.org/abstsdt®850602322.html.

Van der Sluijs, JP, M. Craye, S. Funtowicz, P. Ktmyge, J. Ravetz, and J. Risbey. 2005. “Combining
Quantitative and Qualitative Measures of UncenjaimtModel-based Environmental
Assessment: The NUSAP SysterRisk Analysi®5 (2): 481-492.

STANLEY, TR. 1995. “Ecosystem Management and thedance of HumanismConservation
Biology 9 (2): 255-262. d0i:10.1046/].1523-1739.1995.9GH02

Vanclay, J. K. 1994. “Modelling Forest Growth angM: Applications to Mixed Tropical Forests.”
School of Environmental Science and ManagementrBape?’ .

Vanclay, J. K., and J. P. Skovsgaard. 1997. “Exadgd-orest Growth ModelsDesign, Performance
and Evaluation of Models for Forest Stand Dynam8g1): 1-12. doi:10.1016/S0304-
3800(96)01932-1.

Wagener, T., N. Mcintyre, M. J. Lees, H. S. Wheaded H. V. Gupta. 2003. “Towards Reduced
Uncertainty in Conceptual Rainfall-runoff Modellingynamic Identifiability Analysis.”
Hydrological Processe$7 (2): 455-476. doi:10.1002/hyp.1135.

Wainwright, John, and Mark Mulligan. 200Bnvironmental Modelling: Finding Simplicity in
Complexity Wiley.

Walker, W. E., P. Harremoés, J. Rotmans, der Shaijs M. B. A. van Asselt, P. Janssen, and von
Krauss Krayer. 2003. “Defining Uncertainty: A Coptgal Basis for Uncertainty
Management in Model-Based Decision Suppdrtégrated Assessmeht(1): 5-17.
doi:10.1076/iaij.4.1.5.16466.

17



Warren, LA, and EA Haack. 2001. “Biogeochemical €ols on Metal Behaviour in Freshwater
Environments.’Earth-Science Revieviigl (4): 261-320. doi:10.1016/S0012-8252(01)00032-
0.

Weaver, Andrew J., Michael Eby, Edward C. WiebsilzeM. Bitz, Phil B. Duffy, Tracy L. Ewen,
Augustus F. Fanning, et al. 2001. “The UVic Eanyist&m Climate Model: Model
Description, Climatology, and Applications to P&&tesent and Future Climates.”
Atmosphere-OceaBd (4): 361-428. doi:10.1080/07055900.2001.9649686

Young, P. C. 2002. “Advances in Real-time Flooddeassting."Philosophical Transactions of the
Royal Society of London Series A-Mathematical Raysind Engineering Scienc880
(1796). doi:10.1098/rsta.2002.1008.

18



