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Summary 
In the procedure of trying to understand complex environmental processes, models have been widely 
used as tools in scientific research. According to their potential purposes, models have multiple 
applications, mainly linked to scientific research (scientific models) and to management advice 
provision (engineering models), with those aiming to form predictions gaining ground and forming the 
basis for public policy decision making in local, regional, national and international levels. Therefore, 
there is a need of an objective form of model assessment in order to evaluate the reliability of such 
models. There has been a lot of debate on the model validation issue, especially around the radical 
view of Oreskes et al. (1994) stating that is impossible. These discussions, although constructing, are 
at times hampering the processes for which models are made, such as decision and policy making. The 
implications on these procedures are increasingly being studied, and new methods are continuously 
being suggested in order to address and tackle them. 
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1. Introduction 

In the procedure of trying to understand complex environmental processes, models have been widely 
used as tools (Wainwright and Mulligan 2004). The limited knowledge humans are able to acquire on 
both time and space of various phenomena (Oreskes et al. 1994), is a major incentive for modelling 
their observable effects and outcomes. Although observation is always considered as a key element to 
scientific research, models are necessary in order to tackle problems like predictions and answers to 
theoretical problems that no traditional experiments can give. As Caswell (1988) stated, “models are to 
theoretical problems as experiments are to empirical problems”. They are always a simplification of 
the complex reality presenting only the features of the system (Khaiter and Erechtchoukova 2007) 
corresponding to the models’ application nature. 

According to their potential purposes, models have multiple applications, mainly linked to 
scientific research (scientific models) and to management advice provision (engineering models) 
(Rykiel 1996; van Voorn et al. under review). First, they can be used to test new hypotheses and 
support or confirm former proposed ones. For instance, ecological processes models can be targeted 
towards analysing environmental questions and developing of the ecological theory (Reynolds and 
Ford 1999). Moreover, models can verify inconsistencies in other models, as well as in performing 
sensitivity analyses in order to further explore understudied properties of the system under 
consideration. Furthermore, they can reveal patterns in observation data, or even synthesize new data 
when connecting elements of a system to reproduce its functions. Such models’ application is usually 
locally executed so as to characterise a specific study area with its unique characteristics (Beven 2002; 
Aral 2010). Last but not least, an increasingly appealing application of models is predicting the future 
behaviour of aspects of studied systems (Khaiter and Erechtchoukova 2007; Oreskes et al. 1994). The 
latter application, in spite of its weak reliance on the results, is largely used in management purposes 
for over a decade now. This kind of application-driven models, have been gaining ground in 
forecasting purposes and have formed the basis for public policy decision making in local, regional, 
national and international levels (Oreskes et al. 1994; Rykiel 1996). Attention has to be paid, however, 
due to the aforementioned weakness of models’ predictability, which derives from the uncertain nature 
of scientific knowledge. The facts that more than one model set-up can have similar output (non-
uniqueness of models), that temporal and spatial data vary, and, ultimately, that model assessment is 
subjective – given that all models are approximations of real systems – contribute to this uncertainty 
(Oreskes and Belitz 2001). Consequently, there is a need of an objective form of model assessment 
with respect to its scientific purpose or application, to cover for any deficiencies. 

As far as the ecological process models are concerned and according to Reynolds and Ford (1999), 
four major sources of models’ insufficiencies can be described. They can be found in the process of 
forming the hypotheses and their mathematical representation, during the fitting procedure of the 
model, and in the selection of the assessment criteria. In addition to these, the non-uniqueness of the 
models leads to their inadequate validation (Oreskes et al. 1994; Reynolds and Ford 1999). Different 
terms have been used to describe various types of model assessment, often leading to confusion due to 
lack of common definitions and implementations. Therefore, besides validation, verification, 
calibration, and confirmation are types of model assessment. Verification is linked with truth 
demonstration by the model, which sets the base for decision-making through its reliability. 
Validation, on the other hand, is relevant to the depiction of consistencies within a system or between 
systems, which is different from the accuracy with which the system represents the truth of natural 
phenomena. Moreover, calibration is the process of tuning the model in order to match predicted and 
obtained output of the model. Calibration can be strongly connected with the verification phase, as 
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additional tuning can be realised during the latter. Last but not least, when the model output is 
confirmed by empirical observations, it is a way of evaluating the probability of the model to 
reproduce observed data, but not necessarily demonstrating its veracity (Oreskes et al. 1994). 

The model validation problem and its legitimacy have been debated since the 1960s. A 
chronological review of validation concepts in the ecological literature was given by Rykiel (1996), 
two years after the publication of the Oreskes et al. (1994) article, which triggered a philosophical 
discussion on the model validation issue. In his review, Rykiel points out that there are not available 
universal criteria for a unified perspective of the validation problem. Despite their common view for 
the necessity of purpose-driven models, ecological modellers present different opinions on model 
validation definition and application. 

In the present paper, a brief review of views and opinions on ecological model validation from the 
1960s until the early 1990s will be given, according to Rykiel (1996). After that, an outline of the 
Oreskes et al. (1994) paper “Verification, Validation, and Confirmation of Numerical-Models in the 
Earth-Sciences” will be presented, as well as the reception of it in the environmental modelling 
community. Furthermore, the implications of model validation on decision and policy making will be 
described. 

2. Pre – existing, to Oreskes et al. (1994) paper, views on ecological model validation 
(Rykiel, 1996) 

The main source of disagreement among ecological modellers, concerning model validation, is the 
disambiguation of models nature and purpose; the question of whether a model should be used in 
forming scientific hypotheses or in testing one. The high variation in opinions resulted in different 
validation definitions and terminology. 

A first entry to the discussion was made by Levins (1966). They supported the idea that models 
being neither hypotheses nor theories, they rather generate hypotheses which can be tested. Goodall 
(1972), however, rejected the need for hypothesis testing issue as being irrelevant, paying attention to 
the most important, according to them, question of the predictive value of a model. According to him, 
the match between a model and a real system should be the centre of validation process. The generated 
acceptable predictions, though, of a specific ecosystem model are not automatically applicable to a 
generalised variety of other ecosystems. Caswell (1976) used the term validation only to describe 
predictive models which can be validated or invalidated for their engineering performance testing. 
Thus, model validation is considered purpose-driven. Mankin et al. (1977) suggested that models’ 
purposes can be realised without any validation, and that instead of focusing on that, we should value 
more the usefulness of them. They define a useful model as one that its behaviour corresponds to some 
real behaviour; this model is considered valid, according to the objectives set in the process of 
validation. Therefore, the notion of purpose-driven model evaluation is appearing as in Caswell 
(1976). On the other hand, Overton (1977) during the same year, stressed the relation of validation to 
hypothesis testing, along with its importance after the model built. As far as the validation process is 
regarded, they agreed with Goodall (1972) on testing the model predictions with independent data, and 
with Levins (1966) on model validation generating testable hypotheses in order to answer questions 
and deal with problems for which the model was designed (purpose-driven model validation). One 
year later, Holling (1978) – opposing to Levins (1966) is stating that models are hypotheses which can 
only be falsified. Their view is in line with Karl Popper’s argument on the impossible validation of 
hypotheses (Konikow and Bredehoeft 1992). Shugart’s (1984) point of view corresponds to that of 
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Overton (1977) and Goodall (1972), who indicate as validation, the procedure of testing independent 
observations against data used to build the model. Konikow and Bredehoeft (1992), combining the 
above mentioned comparison of observations with experimental measurements (history matching) and 
the Popperian view on models’ invalidation (1959), present the reliable predictability of a model as the 
ultimate goal of validation. They are sceptical, however, about the use of the term “validation”, 
because it implies that a model can produce valid, accurate and reliable predictions, which is not 
possible for natural systems. Lastly, Botkin (1993) agreed with Konikow and Bredehoeft (1992) to the 
extent of the term usage, but not to that of the validation procedure. They consider validation through 
history matching with independent data not consistent with its logical meaning, while validation 
should be deducting a logical conclusion from the arguments used to set up the model. 

Within this framework and background, Oreskes et al. (1994) paper “Verification, Validation, and 
Confirmation of Numerical-Models in the Earth-Sciences” was added to the philosophical debate 
literature on model validation, presenting the extreme view of the impossibility of natural systems’ 
validation, due to fact that they are never closed. Models are considered as representations which lead 
to further research, an attribute of their heuristic value. These models are by no means reliable 
representations of natural phenomena and their validity lies within the boundaries of as system or 
between systems’ consistencies. According to Oreskes et al., the definition of validation is “the 
establishment of legitimacy, typically given in terms of contracts, arguments and methods”. Therefore, 
only generic computer codes can be validated and not actual model results. The latter, depends, 
though, on the quantity and quality of the input parameters and the accuracy of the auxiliary 
hypotheses. Although the philosophical, restricted sense of the term “validation” is regarded as 
conflicting to common practice, numerical simulation models for large – scale or complex physical 
processes have been forming the basis for public policy decisions. Consequently, the validation issue 
remains always controversial, because it creates a division between philosophers and modellers / 
policy makers. 

3. Reception of Oreskes et al. (1994) paper in the environmental community 

For the paper purposes the fifty first most relevant – according to the Google Scholar citation ratings - 
citations of the paper “Verification, Validation, and Confirmation of Numerical-Models in the Earth-
Sciences” of Oreskes et al. (1994) were studied. Only scientific journal articles were included, whilst 
book excerpts and papers out of the environmental science field were excluded (Table 1). 

 

Table 1: Fifty citations of Oreskes et al. (1994) paper and the environmental science field they belong to. 
The articles are ranked according to their relevance to the paper, using Google Scholar. 

Authors Field in environmental science 
Guisan & Zimmermann 2000 Ecological modelling 
Parker et al. 2003 Land-use and land-cover change modelling 
Scheffer & Carpenter 2003 Ecosystem shifts modelling 

Beissinger & Westphal 1998 Ecological modelling 

Vanclay 1994 Ecological modelling 
Rykiel 1996 Ecological modelling 
Boyce et al. 2002 Ecological modelling 
Beven 2006 Hydrological modelling 
Araujo et al. 2005 Climate change modelling 
Araujo & guisan 2006 Ecological modelling 
Reddy et al. 1999 Environmental modelling 
Heikkinen et al. 2006 Climate change modelling 
Refsgaard 1997 Hydrological modelling 
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Demeritt 2001 Climate modelling 
Finnveden et al. 2009 Environmental modelling 
Weaver et al. 2001 Climate modelling 
Saltelli et al. 2000 Modelling: sensitivity analysis 
Shaw 2003 Climate modelling 
Jakeman et al. 2006 Environmental modelling 
Bugmann 2001 Ecological modelling 
Kirchner et al. 1996 Ecological modelling 
Martinez-Meyer et al. 2004 Climate change modelling 
Araujo et al. 2005 Climate change modelling 
Perrin et al. 2001 Hydrological modelling 
Kobayashi & Salam 2000 Agronomy simulation modelling 
Vanclay & Skovsgaard 1997 Ecological modelling 
Chang & Hanna 2004 Air quality modelling 
Beven 2002 Hydrological modelling 
Wagener et al. 2003 Hydrological modelling 
Beven 2002 Hydrological modelling 
Schneider 1997 Climate change modelling 
Erasmus et al. 2002 Ecological modelling 
Hilborn et al. 1995 Ecological modelling 
Saltelli 2002 Computational modelling 
Refsgaard & Henriksen 2004 Hydrological modelling 
Pontius et al. 2004 Land-use and land-cover change modelling 
Van Asselt & Rotmans 2002 Integrated assessment modelling 
Bradshaw & Borchers 2000 Climate modelling 
Warren & Haack 2001 Geochemical modelling 
Nathan et al. 2001 Ecological modelling 
Grimm et al. 1996 Ecological modelling 
Saltelli et al. 2006 Environmental modelling 
Van Der Sluijs et al. 2005 Environmental modelling 
Corwin et al. 1997 Environmental modelling 
Van Lieshout et al. 2004 Climate modelling 
Refsgaard et al. 2006 Hydrological modelling 
Young 2002 Hydrological modelling 
Rastetter 1996 Ecological modelling 
Knutti et al. 2010 Climate modelling 
Stanley 2003 Ecological modelling 

In total, all papers accept Oreskes et al. (1994) view on validation, although it is very difficult to 
distinguish which of the authors actually agree with them on its strict definition. The main trend 
followed is the approval of the Oreskes et al. (1994) validation concept in a philosophical framework, 
which is often detoured when the implementation of the models is concerned. 

a. Ecological modelling 

The paper of Oreskes et al. (1994) made an impression even to papers published the same year as that 
of Vanclay (1994) who considers validation as a necessary step in the process of model evaluation, 
along with verification. In their field, that of forest growth modelling, validation equals quantitative 
tests. They conclude, nevertheless, that the term “benchmarking” should replace that of validation in 
accordance with Oreskes et al. Hilborn et al. (1995) illustrate the inability to extensively specify initial 
conditions, and consequently to base predictions on them. They deny successful model testing, driven 
by the inevitable result of multiple alternative hypotheses matching the data. Rykiel (1996) considers 
the validation debate an obstacle to models’ actual use and performance, while he states that validation 
criteria should be accessible to the user, who in turn will judge their adequacy. Lastly, they point out 
the lack of universal validation criteria and test procedures. Kirchner et al. (1996) pay also attention to 
the practical side and the purpose of modelling. Expert judgement and model building are both 
considered as appropriate tools when the model purpose is policy analysis. Their uncertain use is 
necessary for predictions and decision-making. In the same practical way, by accepting that models in 
population ecology for a great simplification of reality, Grimm et al. (1996), proceed at the usage of 
the models in research. This simplicity in model designing is also applied by Beissinger and Westphal 
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(1998). Similarly, despite the weak model evaluation by model tests used to deal with the problem of 
extrapolating from the specific to the general, Rastetter (1996) regards a model as an essential part of 
the evaluation of the responses of ecosystems to global climate and carbon dioxide change. In their 
opinion, models can synthesize scientific information from diverse sources in order to evaluate full 
ecosystem responses. The avoidance of the term “validation” is followed by Vanclay and Skovsgaard 
(1997) too. They propose a model evaluation with or without external data, and that a model cannot be 
proven correct, but instead only the inferences can be falsified. Guisan and Zimmerman (2000), are 
also in line with Oreskes et al. (1994) validation perspective, and present two approaches for model 
evaluation, which is their preferred term. They perform cross-validation techniques with the use of 
either two independent data sets or just one. A comparable approach is implemented by Bugmann 
(2001), as they stress the need for quantitative methods for model evaluation, and from Nathan et al. 
(2001) who compare predicted with observed data. The comparisons of present against past data is 
supposed to be of little predictive value by Boyce et al. (2002) due to the fact that these models 
describe dynamic systems which change in time. Another approach followed by other modellers is to 
fill absence data in by interpolation (Erasmus et al. 2002). Modellers nowadays recognise this poor 
predictability of models and the numerous limitations they present in their implementation, but their 
importance in environmental managing renders them essential (Araújo and Guisan 2006; Scheffer and 
Carpenter 2003; Stanley 1995). 

b. Hydrological modelling 

Model validation is described by Refsgaard (1997) as the process that demonstrates how accurate the 
model’s predictions are. They implement a split-sample procedure to evaluate hydrological models, 
and accept a model validation only within limits of its accuracy and predictive capability. Perrin et al. 
(2001), however, prefer model simplicity over accuracy, which causes less parameter uncertainty 
problems. The incapability of models to describe reality, as far as hydrological models are concerns, is 
also accepted by Beven (Beven 2002a; Beven 2002b; Beven 2006). They avoid the philosophical 
debate over the model validation, and suggest an approach based on the falsification of models where 
it can reduce the range of hypotheses’ possibilities from which one has to choose. The arguments on 
the possibility of model validation are regarded too philosophical by Young (2002) as well. They 
support the quantitative, predictive validation which uses two different sets to evaluate the model, 
similar to the split-sample technique of Refsgaard (1997). The type of failure of a model’s structure 
(failure a structural model component and of the hypothesis underlying it) is interpreted by Wagener et 
al. (2003) as the key to develop an improved hypothesis and, therefore, an even more acceptable 
model structure, until a better one to be found. Lastly, a significant addition to the hydrological 
modelling literature is made by Refsgaard and Henriksen (2004) who, in agreement with the view of 
Oreskes et al. (1994), proposed modelling guidelines, terminology and guiding principles. Their 
definition of validation is restrained to the domains of applicability and performance accuracy of 
models. 

c. Environmental modelling 

Corwin et al. (1997) point out that the major problem in applying model simulations, like the nonpoint 
source pollutants models, to real problems is the fact that the uncertainties at large scales (e.g. regional 
scales) are high and lead to errors. Accuracy – the extent to which model-predicted values approach a 
corresponding set measured observations – and precision – the degree to which model-predicted 
values approach a linear function of measured observations – are the two operational components of 
model evaluation. To the inaccurate and incompletely known empirical data attribute Reddy et al. 
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(1999) the incapability of models to be validated. However, they support the idea of models’ 
descriptive power when tested against observational data. In addition, Van der Sluijs et al. (2005) also 
are in favour of applying methods such as the Numeral Unit Spread Assessment Pedigree (NUSAP) 
method for multidimensional uncertainty assessment, which they trust for applying it even to complex 
models. Their attempt is to deal with the uncertainty produced by the degree at which modes are based 
on observations, informed judgement and scientists’ convenience. Jakeman et al. (2006) appear to be 
flexible at the setting of the criteria by which a model performance can be assessed, implying that the 
philosophical basis of the validation term of Oreskes et al. (1994) is too strict, forcing the choice 
between confirmation or rejection of a model. Saltelli et al. (2006), on the other hand, keep a more 
neutral position, characterising, though, the debate on model validation as “blunt”. Their focus lays on 
corroborating models via sensitivity analysis, to alleviate uncertainties. Finnveden et al. (2009) do not 
elaborate on the model validation issue and the uncertainty caused by the comparison of measurements 
or calculations with “truth”, suggesting further attention and development in the area. 

d. Climate and climate change modelling 

For climate and, especially, climate change models which represent a very complex system with many 
influencing factors, empirical evidence is difficult to obtain prior to the actual experimental phase. 
Thus, Schneider (1997) agreed with Oreskes et al. (1994) that validation is not possible in advance. 
They still use the term, though, to define the various testing strategies used to provide subjectivity and 
credibility to the models’ results and insights to integrated assessment models (multi-disciplinary 
models). The uncertainty of large-scale and complex systems like the global change models is 
accepted by Bradshaw and Borchers (2000) too. Although scientific confirmation helps increase 
confidence in public’s trust towards the implementation of policies, the inability of simulating chaotic 
systems and producing the needed certainty levels for models’ performance is a fact affecting the 
relation between science and policy-making. Martínez-Meyer et al. (2004) highlight, however, that 
while the ecosystem models have undergone some degree of testing and validation, the species-level 
models under the scope of climate change have seen little or no direct testing. Araújo et al. (2005a; 
2005b), are also working on species’ responses to climate change modelling and they are stressing the 
weak predictive ability of such model estimations. They, moreover, argue that it is vital that such 
models - although useful in providing an approximation of climate-driven range of changes - have to 
be applied critically, while unrealistic optimistic estimates of predictive ability have to be avoided. 
Heikkinen et al. (2006) consider Oreskes et al. (1994) view on model validation as extreme, but 
recognise that as all natural systems are not closed, many factors as e.g. the potential driving forces of 
species distributions are not possible to account for. Demeritt (2001) and Weaver et al. (2001) are 
influenced by the Oreskes et al. (1994) paper and in response, they prefer to use the term evaluation 
instead of validation. Both papers accept the comparison of model output with observations as the 
suitable evaluation process. In the same direction, Shaw (2003) suggests comparison of cloud 
processes models outputs with actual observations. Van Lieshout et al. (2004) state that modelling, 
despite its decreased inaccuracy and simplifications, allows for adequate prioritisation and risk 
estimation. Knutti et al. (2010), finally, reason that models adequate for a particular purpose should be 
satisfying, in spite of the accuracy not being perfect. 

e. Other types of modelling 

Kobayashi and Salam (2000) argue that model’s performance can only be discussed relatively, which 
is in accordance with the view of Saltelli et al. (2000) that models are built for a specific task and their 
complexity should not exceed the needed requirements. Saltelli (2002) become more specific later on 
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by suggesting that the focus should be on global, quantitative and model free capable of testing the 
robustness and relevance of a model-based analysis in the presence of uncertainties. Warren and 
Haack (2001), in their geochemical modelling, find that the utility of models lies only in the 
examination of the extent of a hypothesis, and not in the establishment of the validity of a model based 
on the “goodness of fit”. Van Asselt and Rotmans (2002) are detouring the validation issue by 
incorporating multiple perspectives in Integrated Assessment modelling in order to assess the most 
salient uncertainties (structural and multiple model routes) derived during the model built process. 
Parker et al. (2003) place the validation process after the verification and the check of models correct 
function, and stress the necessity of the use of a wide range of techniques for model development and 
empirical assessment. Chang and Hanna (2004) in agreement with Oreskes et al. (1994) prefer the 
term evaluation over validation and state that model confirmation or evaluation are achieved by the 
demonstration of good agreement between several sets of observations and predictions. The scientist’s 
decision on the validity of a model for a particular domain of application suggest Pontius et al. (2004), 
as an inevitable condition in practice. They find it more helpful, when model improvement is 
concerned, to view validation as a standard procedure of science that is designed to how in what 
respects models perform well and poorly. 

 

 

Figure 1: The amount of Oreskes et al. (1994) citations per environmental science field. 

  

0
2
4
6
8

10
12
14
16

A
g

ro
n

o
m

y 
si

m
u

la
tio

n
m

o
de

lli
ng

A
ir

 q
ua

lit
y 

m
o

de
lli

n
g

C
om

p
ut

at
io

na
l

m
o

de
lll

in
g

G
eo

ch
em

ic
al

 m
o

d
el

lin
g

In
te

gr
at

ed
 a

ss
es

sm
en

t
m

o
de

lli
ng

M
o

de
lli

n
g:

 s
en

si
tiv

ity
an

al
ys

is

L
an

d-
u

se
 a

n
d 

la
n

d
-

co
ve

r 
ch

an
g

e 
m

od
el

lin
g

C
lim

at
e 

ch
an

g
e

m
o

de
lli

ng

C
lim

at
e 

m
od

el
lin

g

E
n

vi
ro

n
m

en
ta

l
m

o
de

lli
ng

H
yd

ro
lo

gi
ca

l m
o

d
el

lin
g

E
co

lo
g

ic
al

 m
o

de
lli

n
g

F
ie

ld
 in

 e
nv

iro
nm

en
ta

l s
ci

en
ce

Number of citations per field



10 

 

4. Decision and policy making: uncertainty and implications of model validation 

Apart from the major aim of environmental modelling being the gain of an insight into system’s 
functions and translating them in mathematical relationships, another goal is the generation of 
predictions to be used for management and decision-making purposes (van Asselt and Rotmans 1996; 
Beven 2009). Therefore, models’ credibility is a significant feature in order to base decisions upon 
their results (Holzbecher 1997). Credibility is defined as the scientific adequacy of the technical 
evidence and arguments (Cash et al. 2003). Thus, the incapability of defining model validation, along 
with the uncertainty of model accuracy in describing the underlying natural processes of the system 
under research, results in questioning the reliability of model-based decision-making (Oreskes and 
Belitz 2001). Decision and policy makers are often interested in certain, feasible, and deterministic 
solutions (Bradshaw and Borchers 2000), unaware of the fact yet familiar to scientists, that the 
magnitude and degree of complexity is continuously increasing. Consequently, scientists / modellers 
and decision makers have to deal with uncertainty which is also increasing, despite the accumulation 
of knowledge (van Asselt and Rotmans 1996). In any case, the scientist must have an established 
communication with the decision maker, otherwise there is little chance that the information, derived 
from this knowledge, will be salient, and thus useful to the decision maker (Cash et al. 2002). An 
appealing approach to tackle the problem of the different perspectives in the model-based policy and 
decision-making in the environmental research field is an integrated assessment approach, aiming to 
facilitate these processes on complex issues. Environmental decision-making is considered as one, due 
to the complexity of the systems considered and the competing interests of multiple stakeholders 
(Cummings and Cayer 1993; van Asselt and Rotmans 1996; van Asselt and Rotmans 2002; Ascough 
et al. 2008). 

 

 

 

Figure 2: The policy making process viewed as a multi-stage iterative process (Walker et al. 2003, 
modified) 

 

 

Uncertainty exists in all levels of the policy making process, as well as in the outcome of the 
simulation models used for it, or the assumptions made. For scientists it is rather an expected obstacle, 

Scientific 
community 
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whereas for the decision makers, it hampers the establishment of confidence and trust in the model and 
the modelling process (Bradshaw and Borchers 2000; Pappenberger and Beven 2006). In order to 
bridge this perception gap between actors involved in the policy making process (i.e. between 
scientists and the decision makers), a closer look to the process of an integrated assessment has to be 
taken. This process is considered as an iterative, circular process (Figure 2), where the scientific 
community provide decision support to decision makers by creation of a model of the system under 
research, and in turn, decision makers contribute to the input of scientific investigations by the 
experience gained from the results of the analysis, and the policy choice and implementation (van 
Asselt and Rotmans 1996; Walker et al. 2003). All actors, participating at a policy and decision 
making process, have different perceptions of reality, originating from their different views of the 
world. That explains the variety on their perspectives of uncertainty; that of the modellers focus being 
on the accumulated uncertainties associated with the outcomes of the model and the (robustness of) 
conclusions of the decision support exercise, while the policy makers’ on how to value the outcomes 
regarding the goals and possibly conflicting objectives, priorities, and interests (Walker et al. 2003).  

Notwithstanding the understanding for the need of an interdisciplinary research process, which will 
solve problems characterised by complexity and interconnectedness (Cash et al. 2002), and which 
emerge from the different actors involved in it, there is neither a commonly shared terminology nor 
agreement on a generic typology of uncertainties. Such a typology would solve issues such as 
problematic communication among policy analysts, among policy analysts, policy makers and 
stakeholders, and, finally, it would help in the identification and prioritisation of effective and efficient 
research and development activities for decision support. Therefore, the sources and types of 
uncertainty have to be identified. According to the uncertainty classification of Ascough et al. (2008) 
(Figure 3), uncertainty between lack of knowledge and uncertainty resulting from intrinsic variability 
in the systems or processes of interest are distinguished. Decision-making involved uncertainty is also 
considered as another type, as well as linguistic uncertainty. 

The knowledge uncertainty is referring to the fact that there is a limitation to our knowledge, which 
can either increase or be reduced by additional research and empirical efforts. It is identical to the 
epistemic nature of uncertainty of Walker et al. (2003), which consists of the process understanding 
and the model uncertainty; the former representing the background scientific knowledge describing the 
system under consideration, and the latter, including the mechanistic parts of a model, from its 
designing, to its structure and function. The variability uncertainty has to do with the variability in 
natural and human systems, which refer to the stochastic nature of natural processes, and the influence 
of social structure and cultural standards (Bradshaw and Borchers 2000) on the environmental 
decision-making process. All these types of uncertainty lead to the decision-making uncertainty, due 
to mal-interpretation or miscommunication of model predictions, which can be part of the failure to 
embody social objectives in the policy analysis. Lastly, the linguistic uncertainty is describing the 
characteristics of our natural language, inhibiting constant clarity and precision. 
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Figure 3: Description of uncertainty in environmental management and decision-making based on 
knowledge uncertainty, system variability, linguistic uncertainty, and decision-making uncertainty 

(Ascough et al. 2008). 

 

In addition to these types of uncertainty, outlining more the scientists’ perception, Bradshaw and 
Borchers (2000) introduced two more types, viewed by the public and policy makers perspective; first, 
there is uncertainty about the uncertainty and, secondly, the difficulty to translate science into 
decision-making as a result of lacking knowledge of scientific methods. 

Having identified a classification of the types of uncertainty definitely enhances already the policy 
and decision-making process. However, there are several drawbacks in the addressing of uncertainty in 
an integrated assessment plan. To start with, there are not adequate methods and tools available, in 
order to address all uncertainties. This especially holds for uncertainty in model structure and 
uncertainty due to behavioural and societal variability, value diversity, technological surprise, 
ignorance and indeterminacy. However, there have been attempts to of methods in order to approach 
this range of uncertainties, like the dynamic identifiability analysis (DYNIA) of Wagener et al. (2003) 
for applications to analyse model structures or to estimate calibration parameters. Furthermore, 
virtually all current methods do not include evaluation of the impacts of specific uncertainties, because 
it is not considered a primary issue. Lastly, when there are no ways of indicating the magnitude and 
source of the underlying uncertainties – due to inadequate methods – actors other than scientists (i.e. 
decision-makers) find it difficult to deal with aggregated uncertainty measures (van Asselt and 
Rotmans 2002). Although it is inarguably a necessity to communicate uncertainty in the science/policy 
interface, when model-based decision support is considered (Walker et al. 2003), the uncertainty 
analysis has been doubted for its usefulness, as for example, by several scientists in water resources 
research, whose arguments are all refuted though by Pappenberg and Beven (2006). They conclude 
that uncertainty analysis is greatly influencing decisions in the direction of future predictions and, 
thus, in the decision and policy making in environmental matters. The reluctance of participating 
actors in these processes, to address and deal with uncertainty analyses, is only resulting in disputed 
results instead of the main goal which is a risk evaluation. In addition to this, Ascough et al. (2008) is 
stressing that is essential to address uncertainty in any comprehensive and defendable environmental 
decision-making situation, or the unreliability of the results with a consequential loss of public trust 
and confidence will be unavoidable. 
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5. Discussion and conclusions 

Model validation has been debated since the 1960s, and has initiated several discussions among the 
scientific community, both from a philosophical and practical point of view. All arguments derive 
from the fact that human knowledge for natural systems is limited and little. Our perception of the 
systems’ functions and characteristics is restricted, despite the series of observations and 
measurements which become increasingly more accurate and abundant compared to the past. In spite 
of the technology progress and achievements, there will always be elements and natural processes that 
we cannot have a grip on. Especially when future procedures are concerned, accurate predictions seem 
to be impossible, given the natural history of the world as we know it now. Thus, models built to 
describe natural systems, in order to explain their structure or to form predictions, are logically 
questioned regarding their validity of their performance. On the other hand, though, models have been 
a useful tool in actually gaining more knowledge of the natural processes for a long time, so their 
utility is relatively proven in practice. 

The need to evaluate models is not only intrinsic to human nature and scientific precision, but it has 
a practical aspect and is essential to the purposes for which the models are built in the first place. The 
inability of model validation with the strict sense of the meaning, as Oreskes et al. (1994) define it, 
accepted as a notion by the scientific community, has been under great consideration in order to 
overcome it and, finally, assess the models. As presented in Part 2, there have been quite a few 
different theoretical views on model validation and whether it is possible or not, which they seem to 
converge after the statement that model validation of natural systems is impossible. Despite this 
convergence, there is not still a unified, universal terminology on model evaluation, resulting in 
difficulties in interactions within the scientific community, but also between the scientific community 
and the model users who are representing a large range of functions and interests. Oreskes et al (1994) 
view was received rather positively, however, scientists from various domains of environmental 
sciences (Part 3), had to face the questions that follow this ascertainment; what is the next step, how 
can models be evaluated and what are the consequences of non-validated models. 

In Part 3 some approaches of the concept of model validity are outlined, originating from different 
perspectives in the environmental science field. The most popular model evaluation method is the 
comparison of observed data with model output data. The degree of the data match is proportional to 
the model assessment for the purpose initially built for. This history matching, as called differently, 
when successful, increases the model’s credibility, because it reproduces real data. A model which can 
somewhat accurately reconstruct past events and parameters that have already been reported is more 
easily trusted to predict the future behaviour of the same system; notwithstanding uncertainties 
emerged at every stage of the model building and use (Part 4). 

The uncertainty issue in the model evaluation process is of great significance, due to the 
implications that it has at the decision and policy-making. Models are use in a great extent from 
decision and policy makers, in order to design strategies of dealing with a problem. Therefore, the 
result of this interaction between science and policy implementation is of public interest and, thus, can 
involve a broad range of participating actors often irrelevant to the model making procedure. The 
different perspectives and intentions are sources of miscommunication and conflict, if the gap created 
is not bridged. Traditionally, the roles of the different functions were separated and discrete, which 
renders the communication necessary, as well as explanations, instructions and feedback provision. 
Nowadays, there is a trend of domains overlapping, and of going towards an integrated approach of 
problem solving. This is consistent with the appearance of the integrated assessment models which 
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have a multi-disciplinary character, and thus, include a variety of points of views, which makes the 
model more objective and, consequently, more credible by a broader public. Such examples are quite 
optimistic and available, as the Numeral Unit Spread Assessment Pedigree (NUSAP) method for 
multidimensional uncertainty assessment which can be applied to complex models (van der Sluijs et 
al. 2005). Lastly, avoidance of application of methods establishing and increasing the model function 
power and, thus, credibility, like the uncertainty analyses, is no longer regarded as reasonable, since 
the arguments against it have all been compromised (Pappenberger and Beven 2006). 
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