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Abstract:

The LOOP CUTSET problem was historically posed by Pearl as a subroutine in Pearl’s

algorithm for computing inference in probabilistic networks. The efficiency of the

algorithm that solves the probabilistic inference highly depends on the size of the

smallest known LOOP CUTSET. This justifies the search for exact algorithms for find-

ing a minimum LOOP CUTSET. In this thesis we are investigating the algorithmic

complexity of the problem. We will look at both the unparameterized problem and

the problem parameterized by the treewidth of the input graph. For both we give

an exact exponential time algorithm. The running times of these algorithms are

O ? (1.7548n ) and O ? (4tw) respectively, where tw is the treewidth of the input graph.

Finally, we prove a lower bound of 3tw for the parameterized problem.
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Chapter 1

Introduction

The origin of the LOOP CUTSET problem resides with Pearl’s algorithm [20] for calculating

probabilistic inference in Bayesian Network models for probability distributions. Since the

complexity of Pearl’s algorithm depends exponentially on the size of the LOOP CUTSET that is

used by the algorithm, it is highly desirable to find an optimal solution to the LOOP CUTSET

problem. Even a constant addition to the size of the LOOP CUTSET increases the running time

by a factor that is exponential in the size of that addition. A loop in a directed graph is a cycle

in the underlying undirected graph. In particular the edges in a loop need not be directed

along the directions of the edges in the graph. The LOOP CUTSET problem is concerned with

finding a subset of vertices in a graph such that all loops are cut, with the restriction that a

vertex only cuts a loop if it is not a head-to-head vertex with respect to that loop. A vertex is

called a head-to-head vertex in a particular loop, if it is connected to both neighbors in that

loop through incoming edges.

LOOP CUTSET

Input: A directed, acyclic graph G = (V, E ) and an integer k
Question: Is there a set S ⊆ V of size at most k such that any loop in G contains a vertex

v ∈S that is not a head-to-head vertex in that loop?

The LOOP CUTSET problem can also be seen as a directed variation on FEEDBACK VERTEX

SET where only outgoing edges of the selected vertices are removed. It is intuitively true that

removing outgoing edges leaves head-to-head connections intact and breaks any other kind

of connection. This is the representation that we will mostly use throughout the rest of this

thesis.

LOOP CUTSET

Input: A directed, acyclic graph G = (V, E ) and an integer k
Question: Is there a set S ⊆ V of size at most k such that G ′ = (V,{(u , v )∈ E |u /∈S}) is a

forest?
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1. INTRODUCTION 1.1. BACKGROUND WORK

1.1 Background work

The LOOP CUTSET problem has obvious similarities to FEEDBACK VERTEX SET and DIRECTED

FEEDBACK VERTEX SET, problems that are both well studied [12, 14, 21]. The (UNDIRECTED)

FEEDBACK VERTEX SET problem is one of the problems on Karp’s original list of NP complete

problems [15]. Exact algorithms and FPT algorithms for this problem have been developed

over the years [7, 10, 12, 14, 21].
The first exact algorithm for FEEDBACK VERTEX SET is due to Razgon [21] in 2006. This

was improved by Fomin et al. [12] who provide a O (1.7548n ) algorithm for FEEDBACK VERTEX

SET and later by Fomin and Villanger [14] who reduce the upper bound to O (1.7348n ) using

potential maximal cliques.

Another well studied approach on combinatorial graph problems are FPT algorithms [11],
where the question is to find fast algorithms parameterized by the size of the solution. Well

known results include the work of Fomin et al. [12] and Chen et al. [7]. The latter provides a

O(5k k n 2) algorithm that solved FEEDBACK VERTEX SET to optimality. Recently the best known

FPT bound for FEEDBACK VERTEX SET was improved by Cao, Chen and Liu [6] to O (3.83k k n 2).
Recently also DIRECTED FEEDBACK VERTEX SET (where it is the goal the break all directed cy-

cles) has been solved in 4k k !nO (1) time by Chen et al. [8].
The LOOP CUTSET problem itself is less well known. In the context of exact algorithms

there are no previous results on the running time of exact algorithms for this problem. It is

known to be in NP for a long time [24] but little effort has been made to provide fast exact

algorithms. A lot of work was done on heuristic approaches. See for example the work of

Stillman [23]. Later the focus of research has shifted towards approximation algorithms [2,3].

1.2 In this thesis

In this thesis we present exact algorithms for the LOOP CUTSET problem, parameterized by

the treewidth as well as the size of the input. The notion of treewidth has been studied for a

long time [22], also in combination with exact exponential time algorithms [4, 13]. Although

the computation of treewidth and tree decompositions is a generally hard problem itself, it is

still a useful measure for the complexity of a graph. Besides that, we do not necessarily need

an optimal tree decomposition to find an optimal LOOP CUTSET.

More specifically, we have investigated the application of the Cut & Count technique to

the LOOP CUTSET problem. As we will describe in Chapter 4, it turns out that the problems to

which it applies are very well defined to be the class of connectivity problems. For many of

these problems the implications of the Cut & Count approach have been studied [9]. This is

however not true for LOOP CUTSET.

Investigating further into the exponential complexity of the LOOP CUTSET problem, I have

also studied Exact Algorithms for LOOP CUTSET. Based on the work of Fomin [12] we will

present anO ? (1.7548n ) time algorithm for LOOP CUTSET. This algorithm is a basic application

of Branch & Reduce. We also provide an algorithm that solves the problem in O ? (4tw) time,

based on the work of Cygan et al. [9]. Furthermore, when the problem is parameterized by

the treewidth of the input we show that no algorithm solves the problem in (3− ε)tw · nO (1)

time for any positive constant ε> 0.

In Chapter 2 we will introduce the preliminary theory and establish notational conven-

tions. We will provide an exact exponential time algorithm for LOOP CUTSET in Chapter 3.
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1. INTRODUCTION 1.2. IN THIS THESIS

In Chapter 4 follows the algorithm for the problem parametrized by the treewidth and the

lower bound proof for that problem. Finally, in Chapter 5 we discuss the results and some

concluding remarks.
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Chapter 2

Preliminaries

2.1 Definitions

Throughout this thesis we will denote by G = (V, E ) the input graph. Mostly this will be a

directed acyclic graph on vertices V and directed edges E =
¦

(vi , v j )
�

�vi , v j ∈V
©

(directed

from vi to v j ). In a directed graph a cycle consists of a closed, circular sequence such that

for every consecutive pair of vertices in this sequence there is an edges in the graph directed

from the first to the latter.

Definition 2.1. A directed graph is a directed acyclic graph or DAG iff it contains no directed

cycles.

In undirected graphs a cycle is just a circular sequence of vertices connected by edges.

A loop in a directed acyclic graph is a cycle in the underlying undirected graph. I.e, a loop

in a directed graph becomes a cycle if we drop the directions of the edges. Note that this

definition of loops includes, but is not restricted to cycles.

Many problem definitions will also contain a special subset F ⊆ V of forbidden vertices

as part of the input (or R ⊆V of required vertices) that must be (or may not be) present in the

solution.

Besides the fact that this is sometimes necessary for the algorithm, it is also advantageous

because it allows us to formulate a constructive algorithm that returns a solution of size k

rather than just the (non-)existence of such a solution. This is done by iteratively adding or

removing a vertex to the solution and using the decision algorithm to determine whether a

feasible solution still exists. If so we recurse on the smaller problem, if not we can remove the

vertex from the graph because we know that it does not occur in any minimum solution.

On various occasions, we will be reasoning about the underlying undirected graph. This

is the graph with the same vertex set but where the direction of the edges is dropped.

By N (v ) we will denote the (open) neighborhood of a vertex v : N (v ) = {v ′ ∈ V |(v ′, v ) ∈
E ∨ (v, v ′) ∈ E } . The closed neighborhood N [v ] contains v itself as well and is defined as

N (v )∪ {v }. With the neighborhood of a set X ⊆ V we will refer to the union of the neighbor-
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2. PRELIMINARIES 2.2. EXACT ALGORITHMS

hoods of that set; N (X ) =
⋃

x∈X N (x ) and N [X ] =
⋃

x∈X N [x ] respectively for open and closed

neighborhoods.

For any subset of vertices X the graph G [X ] denotes the subgraph of G induced by X . That

is, G [X ] =
�

X ,
¦

E = (vi , v j )
�

�(vi , v j )∈ E ∧vi , v j ∈X
©�

2.2 Exact algorithms

The field of Exact Algorithms is concerned with the construction of algorithms that solve

their problem in an optimal way. Many of these problems are known to be NP Hard and

therefore it is assumed that these algorithms will always be exponential in their worst case

running time. The goal of the research into exact algorithms is to minimize the base of the

exponent, and therefore increase the size of the largest instance that can be solved within

limited computation time. The problem at hand is the LOOP CUTSET problem that was already

defined in the Introduction.

We will very often be dealing with FEEDBACK VERTEX SET instances as well, since on mul-

tiple occasions we will transform our LOOP CUTSET into a FEEDBACK VERTEX SET problem and

solve that instead. The Minimum FEEDBACK VERTEX SET problem is equivalent to the MAXI-

MUM INDUCED FOREST problem. The definitions of these problems are:

FEEDBACK VERTEX SET
Input:

An undirected graph G = (V, E ) and an integer k
Question:

Is there a set S ⊆V of size at most k such that V \S is acyclic?

MAXIMUM INDUCED FOREST
Input:

An undirected graph G = (V, E ) and an integer l
Question:

Is there a set X ⊆V of size at most l such that G [X ] is a forest?

It should be clear that these problems are equivalent, since any FEEDBACK VERTEX SET of

size k is the complement of a Maximum Induced Forest of size n −k and vice versa. We will

use both representations in the rest of this thesis.

Now for the LOOP CUTSET problem, we need a definition of the notion of a head-to-head

vertex. We will say that:

Definition 2.2. Given a loop of vertices (c1, c2, . . . , c j ) and a vertex c i on that loop, this vertex

is a head-to-head vertex if (c i−1, c i )∈ E and (c i+1, c i )∈ E .

Something similar to the transformation to a maximum tree problem can be done for

LOOP CUTSET. In the LOOP CUTSET problem, however, we are not just interested in the forests

induced by the remainder of some set S. We specifically want that the removal of all outgoing

edges of the set S makes the graph a forest. We define the operation of cutting all out-edges

from the graph as G 〉S〈:

Definition 2.3. The graph G 〉S〈 is the graph G ′ = (V, E ′) where E ′ = {(v, w )∈ E |v /∈S} are the

edges from the original graph minus the outgoing edges from S.
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2. PRELIMINARIES 2.3. BRANCH & REDUCE

Using this notation we can then write down an even more straight forward definition of

the LOOP CUTSET problem:

LOOP CUTSET

Input: A directed acyclic graph G = (V, E ) and an integer k

Question: Is there a set S of size at most k such that G 〉S〈 is a forest?

The operation G 〉S〈 is demonstrated in Figure 2.1. The inverse operation G 〈X 〉 is the

equivalent to LOOP CUTSET of taking the induced subgraph for FEEDBACK VERTEX SET. So Fig-

ure 2.1 is also an example of the operation G 〈X 〉 on the set of white vertices X =V \S.

Definition 2.4. G 〈X 〉=G 〉V \X 〈

Figure 2.1: Example of the cutout operation G 〉S〈. The set S is filled in dark gray. Edges
that got removed are shown with dotted lines. The number of connected components will
become important later, so we have shown the connected components of G 〉S〈 in light gray.
Note that the elements of S itself are also part of a connected component. In this particular
case the set S is not a LOOP CUTSET since there is a loop in the right most component.

2.3 Branch & Reduce

The exact algorithm presented in Chapter 3 uses a branch & reduce technique. This tech-

nique was introduced by Land and Doig [17] in 1960. Branching algorithms in general ex-

plore the tree of possible solutions by splitting the problem in two subproblems in which the

choice of one of the vertices is fixed. In one subproblem some vertex is required in the solu-

tion and in the other this vertex is forbidden to be in the solution. We refer to vertices that

are in this way required to be in the solution as selected or chosen vertices.

For FEEDBACK VERTEX SET selecting a vertex in the solution or forbidding it in the remain-

der(the maximum induces forest) is equivalent to removing the vertex and all connected

edges from the graph. For LOOP CUTSET however we need to keep track of deleted vertices

and in particular the head-to-head connections in that vertex.

The main idea behind branch & reduce algorithms is that in the selection or non-selection

of a vertex we not only make progress for that vertex but it also has implications for the possi-

bilities of other vertices. This is measured by assigning a weight to every vertex, that not only

depends on the state (selected or not) but also on some property of the neighbors. From the

initial weight, the reduction of weight per branching and the number of branches we can cal-

culate the running time in which α is still a variable. Finally is it possible to solve for which α

the running time of the branching algorithm is minimal.
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2. PRELIMINARIES 2.4. TREEWIDTH

2.4 Treewidth

One way to express the complexity of a graph is by looking at the treewidth [22] of the graph

instead of the number of vertices. In many practical applications this treewidth is relatively

low compared to the number of vertices.

A tree decomposition (T,B) of a graph G = (V, E ) is a rooted treeT= (X , F ) in which every

node x ∈ X has a bag Bx ∈ B associated to it that contains a subset of the vertices from G;

Bx ⊆V . This assignment of vertices to the bags must satisfy two additional properties:

• Every vertex and every edge occurs in the induced subgraph G [Bx ] of at least one x ∈X.

• For every vertex v ∈V , the nodes of the bags that contain v induce a subtree in the tree

decomposition.

The width of a tree decomposition is the cardinality of the largest bag in T, minus 1.

The treewidth of a graph is the minimum width over all possible tree decompositions of that

graph. Any tree has treewidth 1, hence the name.

Furthermore, we may refer to Vx as the union of By over all descendants y of x (including

x itself):

Vx =
⋃

y ‘descendant of’ x

By

2.4.1 Pathwidth

In the proof of the lower bound for LOOP CUTSET we use the notion of pathwidth instead of

treewidth. The pathwidth is the minimum width of a tree decomposition in whichT is a path.

Such a decomposition is called a path decomposition instead of a tree decomposition. In our

proof for the lower bound we restrict ourselves to path decompositions because known lower

bounds on FEEDBACK VERTEX SET are defined in terms of pathwidth.

2.4.2 Nice tree decomposition

Common practice when working with tree decompositions, is to transform the decomposi-

tion into a nice tree decomposition. In a nice tree decomposition only one of the following

operations takes place between a vertex x and the children of x . Note that we use a different,

larger set of (smaller) operations than the commonly used notion of nice tree decomposi-

tions. Besides the finer grained operations, we also require that leaf bags and the root bag are

empty. Finally, besides the subset of vertices we associate a subgraph of G with every bag.

This subgraph contains the vertices from Bx and some of the edges between those vertices,

but not necessarily all. Edges will be introduced explicitly. The nice tree decompositions that

we will use exists of the following types of bags:

• x is a leaf: x has no children and Bx has no vertices: Bx = ;.

• x introduces a new vertex v : x has only one child y and it contains Bx = By ∪ {v }.
The associated subgraph also contains exactly the same edges so the new vertex is of

degree 0 in this subgraph.

• x introduces a new edge (u , v ): x has one child with exactly the same vertices Bx = By ,

but this bag is labeled with the edge (u , v ). Every edge is introduced exactly once. The

associated subgraph now contains this edge.

10



2. PRELIMINARIES 2.5. A TREE PROPERTY

• x joins two other bags y and z : these are the only two children of x . They both have

exactly the same vertex sets and the same edge set, Bx = By = Bz .

• x forgets a vertex v ∈ By : x has one child y that contains v , Bx = By \ {v }.

This kind of nice tree decomposition was introduced by Cygan et al. [9].
Every tree decomposition of width p can be transformed into a nice tree decomposition

of equal width [16]. The same holds for path decompositions. This is done by expanding ev-

ery parent child pair in the tree decomposition into a chain of operations until all operations

are of one of the atomic kinds.

2.4.3 Dynamic programming on tree decompositions

The algorithm in the Chapter 4 works by performing a dynamic programming routine on

the bags of the tree decomposition. It tabulates all possible assignments of some state S ∈
{s1, s2, . . .} to the vertices. When we count the number of possible state assignments to all

vertices this would amount to |S|n records; one for every possible combinations of states. If,

however, we can limit the number of vertices for which we tabulate the state assignments to

the vertices in one bag, we can reduce this to a number of tables of size |S|tw, which reduces

the running time of the algorithm to O ? (|S|tw).

2.5 A tree property

In the argumentation in Chapter 4 we will use the following lemma on the number of con-

nected components of a tree.

Lemma 2.1. (Folklore) Considering a graph G = (V, E ). Call the number of vertices n = |V |
and the number of edges m = |E |. Let c be the number of connected components of G . Then, G

is a forest if and only if c = n −m .

Proof. We prove the lemma by induction to |E |, first showing that the graph without edges

satisfies the condition and then showing that adding an edge does not change the validity.

• Any graph G = (V,;) with n vertices has c = n connected components, since every

vertex is a connected component by itself. There are no edges, therefore m = |;| = 0.

The equality c = n −m follows.

• Assuming we are given a forest G = (V, E ) with n vertices and m edges for which the

equality c = n −m holds. Adding one edge to the graph increases the number of edges

to m ′ = m + 1 and the number of vertices remains n ′ = n . This operation can ei-

ther connect two components into one, or connect one component to itself, which

introduces a loop. In the first case the number of connected components decreases by

one so the new number of connected components is c ′ = c − 1, so we can derive that

c ′ = c − 1= (n −m )− 1= (n ′− (m ′− 1))− 1= n ′−m ′. If, on the other hand, we intro-

duce a loop, the number of connected components remains the same and the equality

is violated.

The above argumentation ensures that all forests have this property. For the implication to

hold both ways we have to show that only forests have this property, i.e. no cyclic graph has

n −m connected components. We can see that this is true if we look at the procedure above.
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2. PRELIMINARIES 2.6. ISOLATION LEMMA

Once the first loop has been introduced the graph has c = n−m +1 connected components.

In every step from then on the number of connected components can only increase by zero

or one, while m increases by 1, therefore c = n −m can never be reached again.

2.6 Isolation Lemma

A very useful concept that we will need in the analysis in Chapter 4 is the Isolation Lemma [19].
A weight functionω : U →Z is used to assign integer weights to vertices (or more generally, a

universe U ). We denote byω(v ) the weight of vertex v and byω(X ) the total weight
∑

v∈X ω(v )
of some subset of vertices X ⊆V .

Now we consider a collection of subsets of U . This a called the set familyF ⊆ 2U . In our

case this will be the family of solutions.

A weight functionω(v ∈U ) = {0, 1, . . .} is said to be isolating a set familyF if there is only

one unique set inF of minimum weight according to that function. Mathematically we can

express this as:

Definition 2.5. Given a weight function ω : U →Z and a set family F ⊆ 2U , ω isolates F if

and only if there is a set S ∈F withω(S)<ω(S′) for every other set S′ ∈F \{S} .

The Isolation Lemma now states that:

Lemma 2.2 (Isolation Lemma [19]). Suppose we are given a universe U and a set family over

that universe F ⊆ 2U of size at least one. If we assign independent random weights ω(u ) ∈
{1, 2, . . . , N } to all elements u ∈ U uniformly, then this weight function ω separates that set

family with probability at least 1− |U |
N

.

More specifically, we can use the set of solutions to some graph problem as the set family.

If we are given a graph with n vertices and we assign them weights in the range {1, 2, . . . , 2n}
then the set of minimum cardinality solutions to the problem contains one unique solution

of minimum weight with probability at least 1
2

.
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Chapter 3

An Exact Algorithm

3.1 Introduction

Fomin et al. [12] have developed an exact algorithm to compute a minimum FEEDBACK VER-

TEX SET of a graph in O ? (1.7548n ) time. This algorithm uses branch & reduce as well as

branch & bound to achieve this fast running time. We will use this algorithm as a black box

subroutine to obtain an equally fast algorithm for LOOP CUTSET. However, in order to prove

that the worst case running time is indeed equally low, we will show that a problem arises in

the analysis of the new running time. Therefore we cannot approach the known algorithm as

black box when analysing the worst case running time. We will describe the original analysis

and how it can be translated to the LOOP CUTSET problem.

Given an instance of LOOP CUTSET we can transform this into an instance of BLACKOUT

FEEDBACK VERTEX SET (the name was given by van Dijk [5], but the notion was implicitly used

by Fomin et al. as well). On this transformed instance we can run the branching algorithm

for FEEDBACK VERTEX SETS, and transform the result back into a solution for the LOOP CUTSET

problem. Unfortunately, we will see this transformation doubles the number of vertices in

the graph and therefore the running time would increase to O ?
�

1.75482·n� = O ? (3.0793n ).
However, when we consider the graphs that can result from this particular transformation

we show that the the running time of this algorithm is still bounded by O ? (1.7548n ) .

3.2 Transformation to BLACKOUT FEEDBACK VERTEX SET

Let us first define the BLACKOUT FEEDBACK VERTEX SET problem. This is the variant of the

FEEDBACK VERTEX SET problem where part of the input is excluded from the solution. I.e.

some subset F of vertices is forbidden. We will also refer to these vertices as blacked out. The

13



3. AN EXACT ALGORITHM 3.2. TRANSFORMATION

formal definition of the problem is:

BLACKOUT FEEDBACK VERTEX SET

Input: An undirected graph G = (V, E ), a set of forbidden vertices F ⊆V and an integer k
Question: Is there a set S ⊆V of size at most k with S∩F = ;, such that V \S induces a forest

in G?

Note that the blacked out vertices are forbidden in the FEEDBACK VERTEX SET. This means

that they are a mandatory part of the solution to the equivalent MAXIMUM INDUCED FOREST

problem.

Given a LOOP CUTSET instance we can transform it in the following fashion [2]. Every

vertex vi is split in two vertices v i n
i and v ou t

i connected by an edge. All incoming edges in

the original graph are directed to v i n
i while outgoing edges are transfered to v ou t

i . In this

transformed graph we then emphblackout all v i n vertices. The intuition behind this, is that

it prevents the cutting of head-to-head connections. See Figure 3.1 for an example.

We will capture the described transformation as follows:

Definition 3.1. The transformation T applied to a directed graph G = (V, E ) yield a new undi-

rected graph T (G ) =G ′ = (V ′, E ′, F ) for which:

• V ′ =
⋃

vi∈V

¦

v i n
i , v ou t

i

©

• E ′ =
¦

(v i n
i , v ou t

i )
�

�vi ∈V
©

∪
n

(v ou t
i , v i n

j )
�

�

�(vi , v j )∈ E
o

• F =
¦

v i n
i |vi ∈V

©

The transformation T also maps solutions: T (S) is, for a solution S ⊆V , the set

T (S) =
¦

v ou t
i

�

�vi ∈S
©

Suppose that we find a solution S′ to the BLACKOUT FEEDBACK VERTEX SET on T (G ), we

can find the transformed solution to the LOOP CUTSET Problem by the simple construction of

S =
¦

vi

�

�v ou t
i ∈S′

©

. We now claim that this set S is a solution to the LOOP CUTSET problem on

G .

Lemma 3.1 (Bar-Yehuda and Geiger [2]). S′ is a solution to the BLACKOUT FEEDBACK VERTEX

SET on T (G ) if and only if S is a solution to the LOOP CUTSET problem on G .

Proof. Suppose there exists a LOOP CUTSET A for G that does not have a corresponding FEED-

BACK VERTEX SET T (A) in T (G ) that solves the transformed FEEDBACK VERTEX SET instance.

Then there still exists a cycle in T (G \ A). If we contract the vertices v i n
i and v ou t

i together

again, we obtain a loop in the original graph G that does not include any of the removed

vertices and therefore such a solution A cannot exist.

Now for the other way around; suppose S is not a solution on G , then there exists a loop

C = (c1, c2, . . . , c1) in G such that every vertex c i ∈ A is a head-to-head vertex in that loop. This

loop correspond to a cycle in the transformed graph T (G ). For head-to-head vertices, this

transformed cycle only contains vi n . Thus, the transformed cycle contains only out-vertices

that are not in the solution and in-vertices that can by definition not be in the solution so

none of the vertices in this cycle is in S. This is in contradiction with the fact that the set S′

was a solution to the FEEDBACK VERTEX SET problem.
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Now that we know that the solutions are mapped one on one, we can be sure that a min-

imum solution in one problem is also minimum in the other, otherwise a smaller solution

would exists, which could be mapped back, which then would yield a solution smaller than

the current one that we supposed to be a minimum solution in the first place.

⇒

Figure 3.1: Transformation from LOOP CUTSET to BLACKOUT FEEDBACK VERTEX SET; Blackout
vertices are indicated in gray.

3.3 Analysis

The above transformation duplicates the number of vertices in the graph. Therefore, if the

LOOP CUTSET problem had n vertices, we now have a BLACKOUT FEEDBACK VERTEX SET with

2n vertices. That means that if we run the BLACKOUT FEEDBACK VERTEX SET algorithm by

Fomin et al. on this graph it will spend time in the order of O ?
�

1.75482n
�

= O ? (3.0792n ) to

solve the problem. However, we know that the BLACKOUT FEEDBACK VERTEX SET instances that

we obtain, are the result of this transformation and we can exploit this fact in the analysis.

The property that we use to improve the analysis, is the fact that half of the vertices in the

obtained graph is already blacked out. There are only n vertices for which we need to make

the decision and the other n vertices need to be in the MAXIMUM INDUCED FOREST. We will

see that these vertices do not contribute to the complexity of the problem.

We will now review the way Fomin et al. obtained the upper bound on the running time

for their FEEDBACK VERTEX SET algorithm. They solve the FEEDBACK VERTEX SET problem in

O (1.7548n ) by solving BLACKOUT FEEDBACK VERTEX SET with a non-standard measure µ in

O ? (1.3328µ) time, where µ is the total weight of the graph. The total weight is defined as

the sum of the weights of all vertices in the input. For vertices the following weights apply:

µ(v ) =







0 if v ∈ F

1 if v ∈N (t ), the neighborhood of some vertex t

1+α otherwise

The bound of O ? (1.3328µ) is obtained by an extensive case analysis, in which every case

results in a sufficiently high weight reduction. These reductions are dependent on α. The

upper bound on the running time is then a function of α, minimizing this functions yields

the bound ofO ? (1.3328µ) forα= 0.995. From the fact that any vertex can have weight at most

1+α it follows that the weight of any graph is at most n (1+α). It can then be concluded that

the running time is bounded by O ?
�

1.33281.995n
�

=O ? (1.7548n ).
Now, consider again how instances of the LOOP CUTSET problem are transformed to in-

stances of BLACKOUT FEEDBACK VERTEX SET. In particular, we observe that when a directed

acyclic graph G = (V, E ) with n vertices is transformed to an BLACKOUT FEEDBACK VERTEX SET

instance G ′, then G ′ has n blacked out vertices, which have weight 0, and n vertices that

15
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are not blacked out, which have weight 1+α. The total weight will therefore still be at most

n (1+α) and the running time of the whole procedure is still bounded by O ? (1.7548n ).
Thus, applying the algorithm of Fomin et al. [12] to G ′ costs O ? (1.7548n ) time. As the

transformation can be done in linear time, we obtain the following result.

Theorem 3.1. LOOP CUTSET can be solved in O ? (1.7548n ) time.
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Chapter 4

Using Tree Decompositions: Cut & Count

4.1 Introduction

In this chapter we will discuss a randomized algorithm that finds a LOOP CUTSET of size k in

a graph for which we know a tree decomposition. This algorithm has a worst case running

time of O ? (4tw) for a tree decomposition of width tw and it is randomized in the sense that it

may conclude false negatives with probability at most 1
2

. I.e. it may conclude that no LOOP

CUTSET of size k exists, while such a solutions does exist. On the other hand, if a solution does

not exists, the algorithm will always conclude so. The probability of false negatives may be

decreased by running the algorithm multiple times or by choosing the random weights from

a larger interval. The algorithm below is tailored to obtain a minimal chance of correctness

of 1
2

, but any target probability strictly below one can be achieved.

Since we are dealing with problem instances where we are given a tree decomposition of

the graph, we need to redefine the problem accordingly:

LOOP CUTSET
Input: A directed acyclic graph G = (V, E ), a tree decomposition of width tw, a set of re-

quired vertices R ⊆V and an integer k .

Question: Is there a set S with R ⊆S ⊆V of size at most k such that G 〉S〈 is a forest?

In other words the graph where all outgoing edges of S are deleted must be a forest. That

is equivalent to the requirement that any loop in G is cut by at least one vertex in S that is

not a head-to-head vertex in that loop. Recall that with respect to a certain loop, a vertex

v is a head-to-head vertex iff the arcs from both neighbors are directed towards v , i.e. if

(u , v ), (v, w )∈ E then v is a head-to-head vertex with respect to any loop (. . . , u , v, w , . . .).
In the above definition a set R is required to be in the solution. Note that we cannot

simply remove those vertices from the graph as we would have done for FEEDBACK VERTEX

SET. For LOOP CUTSET, removed vertices can still contribute to loops in which they are a head-

to-head vertex. The vertices of R are forbidden to be in the remaining forest. This can also be

used to find a concrete solution and not only the existence of a solution of a particular size.

This is done by iteratively adding vertices to the required part of the solution and checking

whether a solution of the requested size still exists.
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This problem is remarkably similar to the FEEDBACK VERTEX SET problem with the differ-

ence that parents of a head-to-head vertex are not disconnected by selecting that vertex. The

described algorithm is based on the algorithm for FEEDBACK VERTEX SET by Cygan et al. [9].
In the second part of this chapter we will also show that under the Strong Exponential

Time Hypothesis no algorithm solves LOOP CUTSET in (3−ε)p ·poly(n ) for any ε > 0 where p

is the pathwidth of the input graph.

4.1.1 A Failing Attempt

After the previous chapter in which we extensively leaned on a simple transformation from

LOOP CUTSET to FEEDBACK VERTEX SET, we could be tempted to try and do the same for the

problem parameterized by treewidth. However, it turns out that we cannot easily transform

LOOP CUTSET into a FEEDBACK VERTEX SET while maintaining the treewidth. This would not

be a problem if we could prove that the treewidth increases by a constant additive term for

the whole graph, but this turns out to be difficult to prove. In all our attempts the treewidth

increases by a multiplicative factor in the worst case. We demonstrate this by means of a sim-

ple example in which the treewidth increases from three to four in the operation of splitting

a single vertex v . See Figure 4.1. This Figure shows that the treewidth can increase in a single

splitting operation. Since the transformation of the graph splits all vertices, the treewidth

could potentially increase by a factor two. That means we cannot use this transformation

to obtain an equally fast algorithm for LOOP CUTSET. Whether a transformation exists that

changes the treewidth by at most an additive term, remains an open question.

v o

v i

v ⇒

Figure 4.1: One step in the transformation from LOOP CUTSET (left) to FEEDBACK VERTEX SET

(right); The vertex v is split in v i and v o . In this single operation the treewidth increases from
3 to 4. The vertex v i gets blacked out, which is indicated in gray.

4.1.2 Catching global constraints in local properties

Tree decompositions are extremely useful for many problems with local constraints. Prob-

lems like INDEPENDENT SET and DOMINATING SET can be solved to optimality with a dynamic

programming algorithm on the bags of the tree decomposition [1, 4]. For some problems

the constant factor can be improved using convolutions [26], but this is not the case for the

algorithm presented here.

For INDEPENDENT SET for instance, we can work from the bottom up, tabulating for every

bag x in the tree decomposition and every target size k , the number of sets in Bx that allow

an INDEPENDENT SET of size k in the graph that is induced by Vx , all vertices that have been

introduced so far (and have possibly been forgotten again). A key idea in this method is that

18



4. USING TREE DECOMPOSITIONS 4.2. CUT & COUNT

we calculate the number of solutions in the subsets rather than that we calculate all solutions.

Finally the answer of the algorithm is true if that number is more than 0 for the root bag and

the requested value of k , and false otherwise. We will use something similar in the dynamic

programming for LOOP CUTSET.

For each type of bag in a nice tree decomposition the table of values can be computed

from the tables of the child bag(s). In the case of INDEPENDENT SET again, there are 2b possible

sets that we need to tabulate for a bag of size b and since the largest bag has size tw+ 1 we

tabulate O (2tw) sets per bag. The number of bags in a nice tree decomposition is polynomial

in the size of the graph as is the target size k and therefore we tabulate O ? (2tw) entries in

total.

We observe that in this case there is a global constraint that says that adjacent vertices

cannot be in the solution simultaneously. Since every edge occurs in at least one bag, we

can guarantee the correctness of the final answer by filtering the partial solutions that violate

the constraint locally. In this way we check the constraint locally and still find all (and only)

correct solutions.

For problems like FEEDBACK VERTEX SET and LOOP CUTSET a similar approach is more com-

plicated because the globally required property for the solutions to these problems cannot

simply be checked by verifying a local constraint. The required global properties for such

problems are connectivity constraints, and therefore these problems are called connectivity

problems. In this case the problem specification requires that the remainder of a solution in-

duces a forest, which is a global structure that cannot easily be guaranteed by looking at the

properties of individual vertices, because loops are structures that can span multiple vertices

and edges. In a naïve application of dynamic programming we would need to know for every

partial solution and every pair of vertices in a bag whether there is a path or not between

those vertices in that partial solutions.

Now that we have seen how dynamic programming on tree decompositions works and

why it does not work for connectivity problems, we will introduce the Cut & Count tech-

nique which will prove to solve the problem by converting the global constraint to a local

constraint, albeit a more relaxed constraint that allows some fake solutions as well. The de-

tails will be described later, but the local constraint that we are going to introduce is that

neighboring vertices obey some rules with respect to an assignment of states to the vertices.

In the above description of the INDEPENDENT SET these states would be in and out, repre-

senting the choices for taking this vertex in the set and leaving it out respectively. For LOOP

CUTSET we will consider four possible states.

4.2 Cut & Count

We have seen that the answer to the question whether a solution of size k exists, can be an-

swered by counting the number of solutions in partial structures. The Cut & Count technique

extends this approach by relaxing the structures that are being counted, but always such that

the number of them increases by an even amount. The idea is that we count the combination

of a solution, a marker assignment, and a consistent cut. We can prove that the number of

counted objects differs an even amount from the number of real solutions. The combined

objects that we do count but do not contain an actual solution will be referred to as fake or

false candidates. We are thus no longer interested in the question if at least one solution ex-

ists, but whether the number of solutions is odd or even. We will therefore only tabulate the
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parity of the number of counted objects. Furthermore we will see that if we choose weight

uniformly and at random, there is a chance of getting a single minimum weight solution of at

least 1
2

. That means that with probability at least 1
2

we can detect that there is a solution, and

with probability at most 1
2

we get an even number of counted objects and we do not know

whether a solution exists.

4.2.1 Global approach

Let us now formalize the approach described above. Suppose that S ⊆ 2V is the family of

solutions, i.e. 2V is the power set of V that includes all possible subsets of vertices and S is

the subset of those that actually fulfill the requirement that they cut all loops. For every S ∈S
we have that G 〉S〈 is a forest. Since we concluded in the previous subsection that we cannot

check this by looking at the the partial solutions, we define the notion of markers. As we

mentioned, the counted objects contain a marker assignment. In the dynamic program we

keep track of the number of markers that was used. A key observation is that in the dynamic

program we can exclude partial solutions that have a marker partitioned on the wrong side

(to be defined later). This marker assignment can be verified locally and we will see that it

can be used to check if the graphs are acyclic.

Now, instead of counting solutions in S we are going to count the elements of C . This

set C contains consistently cut, marked, relaxed solutions. We will now define this set, step

by step.

Definition 4.1. The set of relaxed or candidate solutionsR contains all possible selections of

vertices with all possible assignments of markers.

Definition 4.2. The setC of consistently cut subgraphs, contains elements ofR together with

a marker assignment and a consistent cut of V . All together this amounts to elements of the

form ((S, M ), (CL ,CR )) where S ∈ R is the set of vertices in this candidate solution, M ⊆ V is a

set of marked vertices and (CL ,CR ) is a consistent cut in V .

The use and purpose of markers will be explained in more detail when we prove that the

number of fake elements ofC is even.

The sets CL and CR are the left and right part of an empty cut in V . I.e. Together they

must span V and they cannot overlap. Note that we cut all vertices in V , not just the vertices

in S.

Definition 4.3. A cut (CL ,CR ) is called consistent iff:

• there are no edges (u , v ) from u ∈CL to v ∈CR with u ∈S and v ∈V or vice versa, i.e. all

vertices of any connected component of G 〉S〈 are partitioned on the same side.

• and all markers are in the left part of the cut; M ⊆CL .

From now on we will consider the sets CW = {c ∈C |ω(c ) =W } and SW = {s ∈ S |ω(s ) =
W } to be the selection of solutions with a certain total weight. Solving the problem for every

weight is not considerably harder than solving the problem for one weight W because there

is only a polynomial number of total weights possible. Every vertex has an integer weight at

most 4n , so the total weight can at most be 4n 2 and the total weight must be integer as well.

Now we can proceed with the main theorem of Cut & Count, applied to the LOOP CUTSET

problem:
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Lemma 4.1 (Cygan et.al. [9]). Suppose that we can provide the following two ingredients for

the LOOP CUTSET problem:

1. The number of fake candidate solutions is even: CW ≡SW (mod 2)

2. A dynamic program to count the elements ofCW (modulo 2);

then this dynamic program can be used to obtain a randomized algorithm that returns false

positives with probability at most 1
2

.

Proof. We know that if the dynamic program returns an odd number of minimum weight

solutions, there must have been an odd number of actual solutions of the desired size, which

implies that there was at least one solution. If on the other hand we find an even number of

consistent cuts we do not know if these all correspond to fake solutions or if there were any

actual solutions. In the latter case we return false wrongly, since we may have missed some

solutions (but always an even number of them) in this conclusion. However we can invoke on

the Isolation Lemma to show that if the weights were chosen uniformly and at random, this

cannot happen too often. In particular, a minimum weight solution is unique amongst the

minimum cardinality solutions with probability at least 1
2

. Since one is odd by definition the

number of minimum weight minimum cardinality solution is odd with probability at least
1
2

.

Notice that we only need to know the parity of the number of consistent cuts. This means

we need to store for every table entry in the dynamic program only whether it has an odd or

an even number of possible consistent cuts. That means we can use a dynamic program that

works modulo two. In the following sections we will provide the two required components of

the Cut & Count technique separately in 4.2.2 and 4.2.3. In section 4.2.4 we state the formal

definition of the dynamic programming algorithm.

4.2.2 Defining the Cuts

In order to maintain consistency with existing work on FEEDBACK VERTEX SET we will from

now on consider X to be the complement of the set S, where S is the cutset and X the vertices

that remain. The set X is the set that we are going to construct. For FEEDBACK VERTEX SET this

set must induce a forest, but for LOOP CUTSET it must also induce a forest together with all

incoming edges from S to X , i.e. G 〈X 〉must be a forest.

Since the Cut and Count technique requires us to know the maximum number of con-

nected components in the tabulated solutions so far, we need a way to identify those. This

is done by putting a marker on some of the vertices. In order to make sure that identical

solutions with different marker-configurations have different weights we also assign an ad-

ditional weight to all vertices that is only added to the total weight of a solution if that vertex

is marked in that solution.

We will now give the formal definition of the weights. We first define the universe U =
V × {W, M}. Elements (v, W) indicate the normal wight of vertex v , and elements (v, M) are

used to assign weights to marked vertices. We assign weights to vertices with a function

ω : U →{1, . . . , N }where N = 2|U |= 4|V |. Every vertex has a weight that is added when it is in

X and a weight that is added when it is marked.
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We can then use the Isolation Lemma [19] to derive that this functionω isolates the fam-

ily of minimum cardinality solutions with probability at least 1
2

, which means that there is

exactly one minimum weight solution, which will be found by a dynamic program.

Now we define the following sets:

Definition 4.4. RA,B ,C
W is the family of solution candidates. A candidate solution is a marked

subset that excludes R that has A vertices, B edges in G 〉S〈 and C markers. We denote the

elements of this set by tuples (X , M ) where M , X ⊆ V where X are the selected vertices and M

the marked vertices.

The elements ofRA,B ,C
W are candidates for the forest, not for the LOOP CUTSET. Note also

that the number of vertices refers to the number of vertices in some set X , but the number of

edges refers to all outgoing edges from X , not only the edges between vertices in X .

Definition 4.5. S A,B ,C
W is the family of real, marked solutions. These are the sets in RA,B ,C

W

that satisfy the additional constraint that every connected component in G 〉S〈 is a tree that

contains at least one marker.

It is easy to verify that any actual solution leads to at least one element in one of the sets

S A,B ,C
W , but could lead to more solutions where the markers are places differently. We can

now define the family of consistently cut subsets:

Definition 4.6. C A,B ,C
W is the family of consistently cut subsets ((X , M ), (CL ,CR ))where (X , M )∈

RA,B ,C
W is a candidate solution and (CL ,CR ) is an empty cut in V that satisfies M ⊆CL i.e. there

are no edges from CL to CR or vice versa in G 〉S〈 and all markers are partitioned on the left.

4.2.3 Counting Consistent Cuts

We are now going to count the number of consistent cuts of candidate solutions by means

of dynamic programming. We will first show that the number of fake candidate solutions is

even. This fact follows from the following two simple lemmas:

Lemma 4.2. Every candidate solution with C ≤ n − B for which G 〉S〈 is not a forest has at

least one unmarked component, i.e. a connected component that does not contain any marked

vertices.

Proof. Forests with n vertices and m edges have exactly n −m connected components(see

Lemma 2.1). Every candidate solution has n vertices since the operation G 〉S〈 does not re-

move vertices. Suppose some candidate solution G 〉S〈 has B edges but it is not a forest. Not

to be a forest means that the graph G 〉S〈must have more than n−B connected components.

Since there are only C ≤ n − B markers, and more than n − B connected components there

must be connected components without a marker.

Lemma 4.3. Every element in the solution set that contains unmarked components appears

an even number of times in the set of consistent cuts.

Proof. Since any unmarked component can be partitioned either left or right, there are 2cc

possibilities to divide the components over X1 and X2 where cc is the number of unmarked

connected components. The lemma follows from the simple fact that 2x is even for every

x ≥ 1. The number of cuts 2cc can only be odd for cc= 0.
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Lemma 4.4. the number of fake candidate solutions with C ≤ n − B is even:

S A,B ,C
W

mod 2= C A,B ,C
W

Proof. This follows immediately from the combination of Lemma 4.2 and Lemma 4.3.

Candidate solutions for which C > n−B are not relevant, since they either are not a forest

and therefore not a real solution, or they are a forest, but that means that the induces graph

of that solution could also have been marked with n−B markers, thus there must be another

solution that is just as good that is in the set that we do consider. Since we are answering

the question whether at least one solution exists we can thus ignore candidate solutions for

which C > n−B . Note that we do not look at the size of the solutions A here(in contrast with

the Cut & Count technique for FEEDBACK VERTEX SET), but we do need it to keep track of the

size of partial solutions in order to check the final size of solution.

4.2.4 Dynamic Programming

We will now formulate a dynamic program to count the number of consistently cut, marked

candidate solutions. Note that we pose the dynamic program as is, without a formal correct-

ness proof.

4.2.4.1 The Tabulated elements

We are going to maintain a table of values Ax (a ,b , c , w , s) that represent, for some bag x in

T, the number of consistently cut candidate solutions of size a with b edges and c markers

and a total weight of w that satisfies the assignment of states s to the vertices in the bag Bx .

The state assignment s maps every vertex to one of the states {FL , FR , SL , SR}where the states

Fi represent the fact that this vertex should be part of the remainder forest and Si indicates

that this vertex is part of the LOOP CUTSET. The subscripts L and R refer to the Left and Right

partitions of the cut.

We define the relevant sets as:

Rx (a ,b , c , w ) =







































(X , M ) | X ⊆Vx

∧ M ⊆Vx \ Bx

∧ X ∩R = ;
∧ |X |= a

∧ |{(v, w )∈ Ex |v /∈X }|=b

∧ |M |= c

∧ ω(X ×{W})+ω(M ×{M}) =w







































Cx (a ,b , c , w ) =







((X , M ), (CL ,CR )) | (X , M )∈Rx (a ,b , c , w )
∧ M ⊆CL

∧ (CL ,CR ) is a consistently cut in G [Vx ]







Ax (a ,b , c , w , s) =

�

�

�

�

�

�

�







((X , M ), (CL ,CR )) ∈ Cx (q ,b , c , w )
| s (v ) = Fj ⇒ v ∈X j

∧ s (v ) = Sj ⇒ v ∈X j







�

�

�

�

�

�

�

There are thus four states per vertex. So when we do dynamic programming on the bags

of the tree decomposition, we know that there are 4y combinations of states possible for a bag
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of size y , and therefore O ? (4y ) records in the dynamic program for every bag. All possible

values of a , b ,c and w are polynomial in the size of the instance. The number of bags is

polynomial as well.

4.2.4.2 Update rules

We can now define the actual dynamic programming rules. Note that we will just state the

update rules here without further proof of correctness. As described, we slightly deviate from

the standard nice tree decomposition. We assume that the tree decomposition has empty

leaves and an empty root. There is also a separate introduce edge bag. Every edge is intro-

duced exactly once, namely in a special bag that is inserted just above the bag where both

endpoint appear for the first time together, as seen from the root.

Leaf bag: Leave bags can only have solutions of size and weight zero, and in that case there

is exactly one solution:

Ax (0, 0, 0, 0,;) = 1

Introduce vertex bag: Initially a vertex is not connected to any other vertex because the

edges are introduces separately. There are two options for these new vertices; they are either

in or out of the solution.

Ax (a ,b , c , w , s∪{v → Sj }) = Ay (a ,b , c , w , s) ∀j ∈ {L, R}
Ax (a ,b , c , w , s∪{v → Fj }) = [v /∈R]Ay (a −1,b , c , w −ω((v, W), s ), s) ∀j ∈ {L, R}

Introduce edge bag: Suppose we want to introduce the edge from u to v . By ()−1 we denote

the function that maps L to R and vice versa.

Ax (a ,b , c , w , s) =















0 if s(u ) = FL ∧ s(v ) = vR

0 if s(u ) = FR ∧ s(v ) = vL

Ay (a ,b −1, c , w , s) otherwise if s(u ) = Fj

Ay (a ,b , c , w , s) otherwise (s(u ) = Sj )

∀j ∈ {L, R}∀v∈ {T, S}

Forget bag: When we forget a vertex, we have the option to mark it:

Ax (a ,b , c , w , s) = Ay (a ,b , c −1, w −ω((v, M)), s[s (v )→ FL ∪SL])+Ay (a ,b , c , w , s)

Join bag: We can only join two bags when they have exactly the same state. The weight and

cardinality of overlap is subtracted from the new values:

Ax (a ,b , c , w , s ) =
∑

a 1+a 2−|s−1(Fi )|=a
b1+b2=b
c1+c2=c

w1+w2−ω(s−1(Fj )×F )=w

Ay (a 1,b1, c1, w1, s )Az (a 2,b2, c2, w2, s ) ∀i , j ∈ {R , L}

Theorem 4.1. There exists a randomized algorithm for LOOP CUTSET that solves the problem

in O ? (4tw) for graphs of treewidth tw that reports false negatives with probability at most 1
2

.
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Proof. We refer to Lemma 4.1 to ensure that both ingredients are now present. We just for-

mulated the dynamic program to count the number of candidate solutions modulo 2, and

Lemma 4.4 ensures that the number of candidate solutions and the number of actual solu-

tions differ an even number.

4.3 Lower bound on LOOP CUTSET in terms of Treewidth

Due to Cygan et al. [9] it is known that under the Strong Exponential Time Hypothesis no

algorithm solves FEEDBACK VERTEX SET in (3− ε)p ·nO (1) time for a graph with a known path

decomposition of width p and any constant ε > 0. We will show that the same lower bound

holds for LOOP CUTSET by giving a reduction from FEEDBACK VERTEX SET to LOOP CUTSET. First

we presume the existence of a black box algorithm that does solve LOOP CUTSET instances in

(3−ε)p ·nO (1) time, and then we show that any such algorithm can be used to solve FEEDBACK

VERTEX SET instances. Since Cygan et al. proved the latter to be impossible assuming the

Strong Exponential Time Hypothesis, this proves that no algorithm can solve LOOP CUTSET in

(3−ε)p ·nO (1) time for any ε> 0 assuming the Strong Exponential Time Hypothesis.

We will first discuss a transformation from FEEDBACK VERTEX SET to LOOP CUTSET and ar-

gue that it preserves solutions. In the second part we show that this transformation increases

the pathwidth by at most one, and therefore maintains the exponential lower bound.

4.3.1 Transformation

The transformation from FEEDBACK VERTEX SET to LOOP CUTSET is as follows: Given an FEED-

BACK VERTEX SET instance (G , k ), we create an instance (T (G ), k ) for the LOOP CUTSET problem

by transforming the graph by some transformation T .

This transformation replaces every edge (vi , v j ) by a vertex x i j and two directed edges

(vi ,x i j ) and (v j ,x i j ). See Figure 4.2a for an example. In Section 4.3.2 we will show that this

transformation increases the pathwidth by at most one. Let us first prove the correctness of

this transformation. I.e. the sets of solutions to the problem and the transformed problem

are exactly equal. We start with the following observation:

Lemma 4.5. Let T (G ) be the (directed) transformation of the (undirected) input graph G .

Then, in T (G ) the following two statements hold:

1. when selected, all vertices vi break any loop they are on.

2. all vertices x i j do not break any loop when selected.

Proof. For part 1, the vertices vi have only outgoing edges in the transformed graph, and

selecting a vertex is equivalent to removing outgoing edges. For part 2, these vertices have

only incoming edges, and therefore they cannot break loops.

Now the following theorem states the correctness of the transformation:

Theorem 4.2. A set S is a solution to the FEEDBACK VERTEX SET problem on G if and only if it is

a solution to the LOOP CUTSET problem on T (G ).

Proof. The proof consists of two parts. For the first part, consider a solution set S and the

LOOP CUTSET problem on T (G ). According to part 2 of Lemma4.5 the vertices x i j will not

break any loop. Therefore they do not contribute anything to the solution and will thus never
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be part of a minimum solution S. Any loop in G can be mapped to a loop in T (G ). The set

S can only be a solution to the LOOP CUTSET problem on T (G ) if it cuts this loop, but since

in can only do so by selecting one of the vertices vi on the loop, this also cuts the loop in G .

Therefore, any solution to the LOOP CUTSET problem is also a solution to the FEEDBACK VERTEX

SET problem.

For the second part we need to show that any solution to the FEEDBACK VERTEX SET prob-

lem can indeed be found by finding a minimum LOOP CUTSET in T (G ). We call on part 1

of Lemma 4.5 to assure that any vertex vi that cuts a loop in G also cuts the corresponding

loop in T (G ) because it can –by definition– not be a head-to-head vertex, since it has only

outgoing edges.

4.3.2 Transformation of path decompositions

We will now show that this transformation increases the pathwidth by at most one. For every

new vertex x i j in the transformed graph we duplicate one of the bags that was already present

in the original path decomposition and that contains both endpoints of the edge (vi , v j ) in

the original graph. The definition of path decompositions states that at least one such bag

exists. To this bag we then add x i j . The duplicated bag is inserted immediately next to (either

before or after) the original bag. So if a bag Bx was originally connected to By and Bz , the

local order of bags will become . . . , By , Bx , B ′x , Bz , . . ..

Lemma 4.6. Let T (G ) be the transformation of G . Then, the pathwidth p ′ of T (G ) is at most

one more than the pathwidth p of G .

v1

v2

v1

v2

x12

⇒

(a) Transformation of the graph

. . . vi v j . . .

. . . vi v j
vi v j

x i j
. . .

⇒

(b) Transformation of a path decomposition

Figure 4.2: Transformation from FEEDBACK VERTEX SET to LOOP CUTSET
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Proof. We prove this by showing that the described construction of a path decomposition for

T (G ) is indeed correct and has width p + 1. The latter part is trivial if we observe that every

new bag has the same vertices as one of the original vertices plus one. For the correctness of

the transformation we argue that this transformation maintains the properties of a path de-

composition and introduces the bags required by the newly introduced vertices in the graph.

A path decomposition must satisfy the following two criteria:

• Both endpoints of every edge occur together in at least one bag. The new vertices x i j

have two edges each. Since a bag is duplicated that already contained vi and v j , we

know that there is now a bag that contains vi and x i j , thus fulfilling this requirement

for a path decomposition for the new edge (vi ,x i j ). The same holds for the new edge

(v j ,x i j ).

• The set of bags that contain some vertex v induce a sub path. The new vertex x i j oc-

curs only in bag and therefore this criteria is met by definition for those vertices. The

original vertices vi formed a sub path in the original path decomposition. But neither

the operation of duplicating a bag, not the operation of adding vertices to a bag can

break the induced sub path. Therefore, after the transformation this must still hold.

Thus the new path decomposition is correct for the transformed graph.

Now we can easily conclude with the following theorem on the lower bound of the LOOP

CUTSET problem.

Theorem 4.3. Assuming the Strong Exponential Time Hypothesis, there cannot exist an algo-

rithm that, given a graph G of pathwidth p , solves LOOP CUTSET on G in (3− ε)p ·poly(n ) for

any constant ε> 0.

Proof. Suppose such an algorithm exists, we could take any instance for the FEEDBACK VERTEX

SET problem and transform it as described above. The pathwidth of the transformed graph

would be at most p +1, the algorithm will therefore take (3−ε)p+1 ·poly(n ) = (3−ε) · (3−ε)p ·
poly(n ) = (3−ε)p ·poly’(n ), which means we would have solved FEEDBACK VERTEX SET in that

same running time, which is in contradiction with Strong Exponential Time Hypothesis.
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Chapter 5

Discussion and Conclusions

5.1 Exponential Complexity of the LOOP CUTSET problem

We have studies the exponential time complexity of the LOOP CUTSET problem. This problem

has a very specific application in the inference of probabilities in probabilistic networks. It

occurs as a black box subroutine in Pearl’s algorithm for probabilistic inference.

Based on the exponential algorithms for FEEDBACK VERTEX SET by Fomin et al. we have

given an algorithm that solves the LOOP CUTSET problem in O ? (1.7548n ) time, where n is the

number of vertices in the input graph.

We have also found an application of the Cut and Count technique for LOOP CUTSET re-

sulting in an O ? (4tw) time algorithm where tw is the treewidth of the input.

5.2 FPT algorithm for LOOP CUTSET

We also looked into FPT algorithms for LOOP CUTSET, but it turns out that the algorithms by

Fomin [12], Chen [7] and Cao et al. [6] all apply to the LOOP CUTSET problem as well if we apply

the simple transformation that we used in Chapter 3. This transformation made a BLACKOUT

FEEDBACK VERTEX SET instance given a LOOP CUTSET instance. It follows straightforward from

the definition of that transformation that the size of the solution remains equal. When we

look at the implementation of the known FPT algorithm we see that all these algorithms

actually work for BLACKOUT FEEDBACK VERTEX SET as well as FEEDBACK VERTEX SET. That means

we can use them to find a LOOP CUTSET of a particular size just by transforming it into a

BLACKOUT FEEDBACK VERTEX SET.

5.3 Future work

For the problem parameterized by treewidth we found a lower bound proof of O ? (3tw) . The

actual algorithm that we provided solves the problem in O ? (4tw) time. That means that there

is a gap between the lower bound and the running time of the analysis. Either the lower

bound or the algorithm could be improved. However, we suspect that this is very difficult.
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The algorithm that we provided for LOOP CUTSET cannot easily be improved. In order to ob-

tain a faster algorithm a whole new approach would have to be found. The same holds for

the lower bound proof. We deducted the lower bound from the lower bound of the FEEDBACK

VERTEX SET problem keeping the treewidth the same. If we want to increase the lower bound

in this way, we would need to decrease the treewidth in that process which is very unlikely to

be possible.

For the FEEDBACK VERTEX SET problem specialised algorithms for 3-regular graphs are

known [18,25] that take only linear time in the size of the input. We speculate that it could be

possible to adept such algorithms to the BLACKOUT FEEDBACK VERTEX SET problem or at least

to the BLACKOUT FEEDBACK VERTEX SET instances that can arise from the transformation from

LOOP CUTSET. In that way it would be possible to solve LOOP CUTSET in linear time for graph

of maximum degree three.
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