
Applying first order logic decision tree
induction to opponent modelling in No-limit

Texas Hold’em Poker

R.J. Prinse
ICA-3019942

r.j.prinse@students.uu.nl

Supervised by:
dr. ir. J.M. Broersen
j.m.broersen@uu.nl

Department of Information and Computing Sciences
Faculty of Science, Utrecht University

June 7, 2012

Abstract

In this thesis methods will be discussed to attempt to improve the de-
cision making for agents involved in playing Texas Hold’em poker. Poker
is a card game which features uncertainty, hidden information, deception
and an environment in which multiple agents compete with each other to
win the game. Opponent modelling will play a key role in improving the
decision making of the agent(s).

The opponent models will help the agents to adapt more quickly to the
playing style of their opponents and help them to make a better prediction
of their next actions. In order for the agents to cope better with changes
in playing style or the environment, it is important that the models are
dynamic and keep evolving during the game.

Tilde, a first-order logic decision tree induction algorithm, will be used
to construct models from a dataset. In turn, Monte-Carlo tree search will
yield the action with the highest expected value after simulation. The op-
ponent models will guide the simulation.

1

Contents

1 Introduction 7
1.1 Artificial intelligence . 7
1.2 Games . 8
1.3 Poker . 9

1.3.1 Introduction . 9
1.3.2 Relevance to A.I. 9

1.4 Structure . 10

2 Background 10
2.1 Machine learning . 10

2.1.1 Taxonomy . 10
2.1.2 Approaches . 11

2.2 Game theory . 11
2.2.1 Utility . 11
2.2.2 Dominance . 13
2.2.3 Nash equilibrium . 14
2.2.4 Nash equilibria in tree search 15

2.3 Monte-Carlo tree search . 15
2.3.1 Introduction . 15
2.3.2 Selection . 15
2.3.3 Expansion . 16
2.3.4 Simulation . 16
2.3.5 Backpropagation . 17
2.3.6 MCTS algorithm . 17

2.4 Opponent modelling . 18
2.4.1 Learning the opponent model 18
2.4.2 Approach . 19
2.4.3 Integration with opponent model 20
2.4.4 Results . 20

3 Research 20
3.1 Motivation . 20
3.2 Research question . 21
3.3 Assumptions . 22
3.4 Theoretical approach . 22
3.5 Practical approach . 23
3.6 Previous work . 24

4 Concepts 24
4.1 Inductive reasoning . 24
4.2 Inductive learning . 24
4.3 Inductive logic programming . 25
4.4 Decision tree learning . 26
4.5 Opponent modelling . 26

2

5 Implementation 26
5.1 Poker Academy Pro . 26

5.1.1 Meerkat API . 27
5.2 Prolog . 27

5.2.1 JIProlog . 27
5.2.2 SWI-Prolog . 27

5.3 Decision trees . 28
5.3.1 Introduction . 28
5.3.2 Structure . 29
5.3.3 Framework . 29
5.3.4 Candidate tests . 30
5.3.5 Impurity measures . 32
5.3.6 Tree induction . 34
5.3.7 Classification . 34
5.3.8 Tree pruning . 35

5.4 Tilde . 36
5.4.1 Introduction . 36
5.4.2 Logical decision trees . 37
5.4.3 Refinement operator . 38
5.4.4 Language specification . 39
5.4.5 Discretization . 39

5.5 Model evaluation . 40
5.5.1 Accuracy . 41
5.5.2 Kappa-statistic . 42
5.5.3 Kappa-statistic interpretation 43
5.5.4 K-fold cross-validation . 44

5.6 Practical problems . 45

6 Results 46
6.1 Dataset . 46

6.1.1 Introduction . 46
6.1.2 Statistical analysis . 47

6.2 Evaluation . 47

7 Conclusion 48

8 Future work 50

9 Bibliography 51

3

List of Tables

1 Payoff matrix . 13
2 Commonly used confidence levelα to standardizedZ-value map-

pings . 36
3 Confusion matrix . 42
4 Unofficial kappa-statistic classification by Landis and Koch . . . 44
5 Iris class distribution . 47
6 Iris data statistics . 47
7 Statistics for the resulting model from J48 49
8 Confusion matrix for the resulting model from J48 49
9 Statistics for the resulting model from Tilde 49
10 Confusion matrix for the resulting model from Tilde 49

List of Figures

1 MCTS algorithm flow . 15
2 Example Tilde decision tree encoding the differentation function

for predicting cards[33] . 21
3 How models discriminate between players based on a single

model. 23
4 Example decision tree predicting whether or not to play tennis

based on the current weather conditions 28
5 Iris-setosa, Iris-versicolor and Iris-virginica 47
6 Iris data scatterplots . 48

List of Algorithms

1 MCTS Selection[1] . 16
2 MCTS Expansion[1] . 16
3 MCTS Backpropagation[1] . 17
4 MCTS (single iteration)[1] . 17
5 MCTS Selection with opponent model integration[33] 20
6 Generating all test conditions for attribute Ak[24] 31
7 Generic tree induction[24, 41, 36] 34
8 Classification[24, 41, 36] . 35
9 Tree pruning[24] . 36
10 Tilde tree induction[6, 5] . 40
11 k-fold cross-validation[41, 36] . 44

4

Acknowledgements

First of all, I would like to thank my thesis supervisor dr. ir. Jan M. Broersen.
His enthousiasm, friendliness, open attitude, support and encouragement made
me feel motivated to write and finish my thesis, which hasn’t always been that
easy. Thank you for all your help Jan!

Secondly, but not any less important, I would like to thank both of my par-
ents Antonie and Jack and my sister Stéphanie, for without them, I wouldn’t
have been where I am today! Thank you for your continued support, motiva-
tion and never ending love.

Lastly, I want to thank my girlfriend Ana. She is and always has been there
to help me, support me and keeping me motivated. Thank you for all your
love and everything you do for me Ana, because you help me to be the person
I want to be!

5

“Choose the right opponents. If
you don’t see a sucker at the table,

you’re it.”
Amarillo Slim, 2005, “Play Poker to Win”

6

1 Introduction

Artificial intelligent players have been able to play games such as chess or
checkers for quite some time now. They have been able to do so quite com-
petitively too. That is, on a high level of play. The main reason why they are
able to play those games so well is due to the fact that they provide perfect in-
formation. In other words, all players have access to all information at all times
during the course of the game. This is in complete contrast with games such
as poker. Poker is a game of imperfect information i.e. usually your cards are
hidden (and should be) from all the other players. This should hold for all the
other players as well, obviously.

The fact that not all information is observable at any time during the course
of the game, makes it a lot harder for AI players to play this game. It is really
hard to make well founded decisions without knowing everything about the
current state of the game. The more information that is hidden, the more com-
plex it will be to calculate a move or even solve the game. Thats because of the
fact that a lot more alternatives have to be considered during the calculations.
Up to the point of having to consider so much alternatives, that the compu-
tations simply become intractable. Therefore it is imperative that smarter and
quicker methods are being devised. It should be obvious by now that cutting
on the possible number of alternatives as early as possible is one way to im-
prove upon this.

1.1 Artificial intelligence

Every human being is unique. Even more so, when you look at the way people
think, reason and act. Artificial intelligence[36] is the field of science which
aims to simulate or recreate those aspects.

Notice the very subtle difference between simulate or recreate here. The
former implies that mechanical or software entities or will never spring a form
of self-awareness and/or intelligence. The latter of course does. This very
distinction spawned two main branches[38] in A.I., namely:

• Strong A.I.; at some point in the future we will be able to create a self-
aware entity with an intelligence that matches or exceeds that of humans.

• Weak A.I.; we will only be able to approximate or simulate intelligence,
in other words, we cannot match or exceed the capabilities of the human
intelligence.

Some subfields of A.I. zoom in on one of those aforementioned aspects of
human intelligence. But in general A.I. could be abstractly viewed as a black-
box function, that takes a certain input and produces a certain output. Besides
those two, it could also possibly have 1 or more side-effects on the environment
it exists in.

The term black-box emphasises the fact that an external observer doesn’t
know how the A.I. function is implemented. It could even be a very simple
and trivial implementation, that tricks the observer into believing the entity is
actually showing self-awareness. This of course creates more (philosophical)
questions, as to what intelligence and/or self-awareness actually means.

7

In order to actually implement that function, A.I. researchers have over time
created a great array of tools[36]. Some of those tools are:

• Math;

• Logics (temporal, modal, first-order, propositional);

• Statistics and probability;

• Simulation (of natural processes);

• Algorithms and datastructures.

From all this follows that A.I. is very tightly connected with other sciences
such as math, computer science, philosophy, psychology, and many others.

In a society where a lot of (automated) processes are becoming more de-
manding and complex and where we, us (simple) humans, just cannot keep
track of everything anymore, A.I. becomes more and more important. Not the
mention the entertainment industry, the games industry, etc.

1.2 Games

Games, in all its current forms, are a perfect test environment for A.I. The in-
teractions between all the players and the game often are really complex.

Decision making, prediction, simulation, reasoning are one of the key as-
pects needed in playing a game (well). The major drawback here is that all
of those things are far from trivial to implement. And most of those are also
heavily dependent on added domain knowledge. This necessitates that almost
every game needs to be solved in a different way.

Games often have a clear definition of the rules and the winconditions. This
makes them perfectly suitable to test the performance of an A.I. player, against
another human player or maybe another A.I. player.

Games can be classified along a few criteria[46]:

• cooperative vs. non-cooperative; a game is cooperative if it allows for the
players to work together, committing to the same shared goal,

• symmetric vs. asymmetric; a game is symmetric if the identity of a player
can be changed without changing the payoff to the strategies,

• zero-sum vs. non-zero-sum; a game is zero-sum if the gain of a certain
player is equal to the loss of the rest (i.e. -1 + 1 = 0),

• simultaneous vs. sequential; games are simultaneous if all players make
their move simultaneously (i.e. at the exact same moment in time),

• perfect information vs. imperfect information; a game of perfect infor-
mation is a game where all actions by all players can be observed,

• discrete vs. continuous; in discrete games, most things are finite, whereas
in continuous games players can pick from an infinitively large strategy
set,

• deterministic vs. stochastic; deterministic games are games where each
action a player takes, will always have the same effect, whereas stochastic
games incorporate outcomes dependent on chance.

8

1.3 Poker

1.3.1 Introduction

Poker[47] is a family of card games that is played between 2 to 10 players.
Playing the game dates back to the early 1900s. Each player gets dealt a certain
number of cards, some or all of them being hidden to the other players.

During multiple betting rounds, each player can bet a certain amount of
chips. During these betting rounds a shared card will also be revealed to all
players. At the end of all betting rounds, the winner is usually determined by
the player who still is in the game and also has the “best” combination of his
own cards and the shared community cards.

Each poker variant has its own set of rules governing the structure of bet-
ting. Also, the definition of “best” combination of cards varies among these
different poker game variants. The most popular poker variant being Texas
Hold’em.

Following now is a brief and probably incomplete introduction to the com-
mon structure of a poker game. In Texas Hold’em poker, there are 4 betting
rounds. Namely; Pre-flop, Flop, Turn and River. Each round usually starts with
one or more shared cards getting revealed after which a certain player starts
by making a predetermined forced bet (called the small or big-blind). After that,
the action continues clock-wise, with every player having 3 options:

call: match the amount bet by the previous player;

raise: match and raise the amount bet by the previous player.

fold: throw your cards away, meaning you’re out of the current game.

After all the active players have the same amount of chips in the pot, the
current betting round ends. After all betting rounds have finished, the show-
down phase starts. Every active player folds, or shows his cards. The winner
is the person who has the best combination of cards, and wins all the chips
currently in the pot. In case of a tie, the pot is split equally.

1.3.2 Relevance to A.I.

Where biology and physics can draw emperical knowledge directly from na-
ture herself, computer science draws from algorithms, datastructures and their
implementations.

Poker lends itself so well to being a proper test environment for computer
science but most importantly for artificial intelligence. This is because of the
complex nature of the game, the intricate interactions between players, and the
inherent uncertainty of the cards.

All of this means that older and newer algorithms, learning and search tech-
niques need to be combined and improved upon, to discover new and exciting
methods to produce better poker playing agents during each such iteration.

Human poker playing experts and general playing strategies are also a big
inspiration to keep improving the level of performance of the currently, most
well known and best performing pokerbots.

9

1.4 Structure

This thesis is structured as follows: in section 2 on page 10, the background re-
search on which this thesis is based is introduced and discussed. Section 3 on
page 20 discusses the approach to the research presented in this thesis. The un-
derlying concepts of this research are dicussed in section 4 on page 24. All the
algorithms, implementation details and the formal framework are presented
in section 5 on page 26. The results of this thesis are presented in section 6 on
page 46. Finally, the conclusion and the future work discussion can be found
in section 7 on page 48 and section 8 on page 50, respectively.

2 Background

2.1 Machine learning

Machine learning[36, 28] is a certain branch of A.I. that focusses on giving in-
telligent software the ability to evolve a certain behaviour based on empirical
data. This data can stem from multiple sources such as sensors or databases.
Data could be viewed as examples that illustrate or exhibit certain (hidden) re-
lationships between the observed variables. Patterns need to be extracted from
these examples to help make the intelligent software make better decisions.

Learning is a concept that is studied by a lot of branches in science. Biology
being a prime example of this. It does pose the question however, if machines
will be able to learn as well? The answers to this question will in fact draw a
lot of inspiration from those other branches in science.

But how does a machine learn exactly? In a very broad, generic way it could
be stated that a machine or piece of intelligent software learns when its internal
structure changes, that is, its programming, its data (based on internal datas-
tructures or external data inputs) with the expectation that its performance im-
proves over time.

Tim M. Mitchell[28] states this as: “A computer program is said to learn
from experience E with respect to some class of tasks T and performance mea-
sure P , if its performance at tasks in T , as measured by P , improves with ex-
perience E”

2.1.1 Taxonomy

Algorithms used in machine learning could be classified into different cate-
gories based on their desired outcome:

supervised learning: algorithms in this category learn from labeled (class la-
bels) examples, for instance, making new predictions based on known
data.

unsupervised learning: in this category algorithms operate on unlabeled exam-
ples, modelling their inputs, as for instance in clustering and data mining.

reinforcement learning: algorithms learn based on (positive or negative) feed-
back provided by the environment they operate in, which is based on the
action that was performed.

10

2.1.2 Approaches

The actual “learning” can be approached in a lot of ways, some (but not all)
example approaches are:

decision tree learning: learning based on constructing a predictive model us-
ing decision trees.

artificial neural networks: learning based on biological neural networks nat-
urally found in brains, computations are structured in terms of intercon-
nected neurons which only fire off when their activation value is higher
than some threshold, feedback is usually propagated back through the
network, adjusting several weights assigned to neurons.

bayesian networks: learning based on Bayes’ rule, in terms of conditional in-
dependencies expressed in a directed acyclic graphs, with interconnected
random variables, on which algorithms perform probabilistic inference.

clustering: large sets of unlabeled examples subdivided into smaller subsets
based on a certain measure of similarity, where examples being more sim-
ilar to each other end up together in the same cluster.

2.2 Game theory

As stated before games involve complex interaction between players[46, 49].
What makes those interactions even more difficult in terms of decision making,
is that each player has their own goals, desires and preferences about what the
world (gamestate) should look like.

2.2.1 Utility

Utilty is a way to formally express desirability for a certain outcome of the
world. Or a game, in this matter. Utility could be compared to real world
money, although not being exactly the same. For example, a big international
company could be in debt for millions of dollars. Obviously this state is really
undesirable and consequently has a really low utility value.

Where 100 million dollars or 99 million dollars aren’t really a big difference,
relatively speaking, every company would pick being in debt for 99 million
dollars over 100 million dollars.

Both numbers are still really big, but they are both (almost) equally unde-
sirable, however. Therefore, it is not a linear relationship (i.e. the utility value
for both numbers is about the same).

This works in the opposite way too, having a lot of money on your bank-
account generally is believed to have a high utility value. But again, while the
difference between having 100 million dollars or 99 million dollars is 1 million
dollars, it both still is a lot of money. Therefore, the increase in utility isn’t as
big as the increase in money.

Def. 2.2.1. Let Ω be the set of all the n possible (abstract) outcomes of the
world, namely ω1 to ωn, be defined as:

Ω = {ω1, ω2, . . . , ωn} .

11

�

Def. 2.2.2. Given any two players i and j and a set of outcomes Ω, the utility
functions ui and uj of both players, map every possible world outcome to a
real value. Formally expressing a preference relationship over all the world
outcomes:

ui : Ω→ R,
uj : Ω→ R.

Note that there are no further restrictions on those particular values, and they
are supposed to be modelled on a case by case basis.

�

Defining utility functions like that, naturally leads to the notion of an or-
dering on the preferences on outcomes of a player. It also helps to formally
express that a player prefers outcome ω over ω′.

Def. 2.2.3. Given any player i and any two possible world outcomes ω, ω′ ∈ Ω,
let �i be defined as the utility ordering relationship for player i:

∀i∀ω, ω′ ∈ Ω : ω �i ω′ ⇒ ui(ω) ≥ ui(ω′).

Or when ω is strictly prefered over ω′:

∀i∀ω, ω′ ∈ Ω : ω �i ω′ ⇒ ui(ω) > ui(ω
′).

�

In most games, but not all, the actions of the players are performed in a
sequential manner. Although a famous counter-example to this is the game
rock-paper-scissors. However, in both situations, the actions of all the individual
players taken together will determine the outcome of the world or game. This
doesn’t necessarily imply that all the players will affect the current outcome
though. The environment transition function defined below maps the actions
from all the players to a new outcome.

Def. 2.2.4. Let Ai denote the set of the possible n actions ai1 to ain player i can
take. It’s called the action set and is defined as follows:

Ai =
{
ai1, a

i
2, . . . , a

i
n

}
.

�

Def. 2.2.5. Given n players, let A be the set, which defines for every player i, a
possible action aij ∈ Ai. It’s called the action profile and is defined as follows:

A = A1 ×A2 × . . .×An.

�

12

Def. 2.2.6. Let A denote the action profile as defined in Def. 2.2.5 on page 12.
Given any two players i and j and a set of outcomes Ω, the outcome of both
their actions is defined in the environment transition function called τ :

τ : A→ Ω.

Informally, it maps any action profile A to a possible outcome defined in Ω.
Note that this implies that each player will have to perform an action. They
don’t have to necessarily be aware of the action performed by the other player
though.

�

Def. 2.2.7. Given any two players i and j, outcomes ω1 to ω4 from Ω, let the
environment transition function be defined as:

τ(〈ai1, a
j
1〉) = ω1, τ(〈ai2, a

j
1〉) = ω2, τ(〈ai1, a

j
2〉) = ω3, τ(〈ai2, a

j
2〉) = ω4.

In order to neatly represent this two player interaction given their utility func-
tions, they are put in matrix form as shown in table 2.2.1 on page 13 and is
called the payoff matrix. The payoff matrix for a game represents the normal or
strategic form of a game.

�

i
j

ai1 ai2

aj1
ui(ω1)

uj(ω1)
ui(ω2)

uj(ω2)

aj2
ui(ω3)

uj(ω3)
ui(ω4)

uj(ω4)

Table 1: Payoff matrix

2.2.2 Dominance

Now that the basics are covered, the real question is; how do players pick an
action to perform? While this is a seemingly very simple question, it deeply
touches upon all the things that will be covered in this thesis. It would take
way to much time and space to cover everything, but a nice start is the concept
of a dominant strategy.

Def. 2.2.8. Given any player i, the corresponding preference ordering relation-
ship �i covered in Def. 2.2.3 on page 12 and finally a set of outcomes Ω. Let
the following be the case:

Ω1 ⊂ Ω, Ω2 ⊂ Ω, Ω1 ∩ Ω2 = ∅.

If the following condition is true then Ω1 is said to be strongly dominating Ω2:

∀ω1 ∈ Ω1,∀ω2 ∈ Ω2 : ω1 �i ω2.

13

Intuitionally, this makes sense because every outcome ω1 is strictly prefered,
by player i, over outcome ω2.

�

Def. 2.2.9. Given any strategy s1 and s2, let Ωs1 and Ωs2 be the sets of possible
outcomes after playing s1 or s2, respectively. Then if Ωs1 strongly dominates
Ωs2 as defined in Def. 2.2.8 on page 13 it is said that s1 strictly dominates s2.

�

The notion of dominance is very important. It makes sense for a rational
player i to pick a strategy (i.e. a sequence of actions from the set Ai), which
leads to dominating outcomes.

On the contrary, if there exist dominated strategies, it makes sense for the
player to eliminate them from consideration. Because it can do better by choos-
ing to play the strategy that is dominating the others.

2.2.3 Nash equilibrium

Nash equilibrium[31, 30, 49] is an important concept in game theory. It is a
state in a game where no player can do better by deviating from their current
strategy, assuming the other players will stick to their current strategy. In other
words; it mutually locks each player in a certain action.

For most european countries, driving on the right is a nice example of a
Nash equilibrium. Assuming other drivers will be driving on the right as well,
there is no incentive for the driver to deviate to driving to the left (for obvious
collision-avoiding reasons).

More formally it could be described as:

Def. 2.2.10. Given any two players i and j and their respective strategies si
and sj , then a Nash equilibrium is:

• assuming player j plays sj , player i can do no better than to play si; and

• assuming player i plays si, player j can do no better than to play sj .

�

Or in context of all the previous defined notions:

Def. 2.2.11. Given a player i and a corresponding action set Ai, let A−i denote
an action profile for all the players except player i. Then an action profile A∗ is
a Nash equilibrium if and only if:

∀i,∀ai ∈ Ai : ui(A
∗) ≥ ui(A∗−i ∪

{
aij
}

).

where ai 6= ai∗ and ai∗ ∈ A∗. Informally, this states that all players can do no
better by taking another action except the action from the nash equilibriumA∗.

�

Note that in a Nash equilibrium every player is assumed to be rational, i.e.
only taking the best possible actions. It is important to note however, that it
has been proven that there are games with multiple Nash equilibria, or even
worse, none at all.

Game theory comprises much more, this was only a brief introduction into
some basic concepts, which will be refered to later.

14

2.2.4 Nash equilibria in tree search

The notion of Nash equilibria in games is relevant, because section 2.3 on page
15 discusses the Monte Carlo Tree Search technique. Using the standard im-
plementation presented in that section, i.e. without the addition of additional
domain knowledge to guide the search process, will most likely produce an
(approximated) Nash equilibrium strategy. Section 2.4 on page 18 discusses
the need for additional domain knowledge.

2.3 Monte-Carlo tree search

2.3.1 Introduction

Monte Carlo Tree Search[8, 7] (MCTS) is a best-first search algorithm. Which
means that instead of exploring and trying everything, it will try to explore the
most promising part of the gametree first. So that more time could be spent on
doing a better analysis of the game in that particular part of the tree.

Monte Carlo methods rely on sampling. Sampling of the enormous state-
space of a poker game in our case. Basically it will simulate a lot of games,
starting from the current game state. It keeps track of each unique gamestate it
comes across during the simulation. Gamestates which are seen more often are
apparently more significant. The following simulations will be drawn to those
parts in the tree. In effect satisfying our premise, that MCTS will explore the
most promising parts in the gametree first. MCTS algorithm consists of 4 steps
which will be explained in the following subsections.

Figure 1: MCTS algorithm flow

2.3.2 Selection

Selection balances between exploration and exploitation. Too much explo-
ration and its all over the place. Not finding a strategy that exploits the weak-
ness(es) of an opponent. Too much exploitation and it will never find interest-
ing and possibly even better strategies against said opponent. In other words,
does the search has to broaden or deepen? Selection, as the name implies, se-
lects the gamestate which is next to be further explored.

Selection is usually guided by a strategy that balances between exploration
and exploitation. One the one hand, the task is to select the action that leads to

15

the highest expected value, (exploitation). On the other hand, there is a chance
that more promising game states are hiding behind actions with a smaller ex-
pected value. This necessitates the need for the consideration of those actions
as well (exploration).

Def. 2.3.1. Given a game-tree node Ti, the parent node Tp of Ti and a coefficient
C which determines the balance between exploration and exploitation (usually
C = 2), let v be the expected value for node Ti and let np and ni be the visit
count of nodes Tp and Ti respectively. Then the formula for Upper Confidence
Bound applied to trees[22] is defined as:

UCT (Ti) = v + C ∗
√

lnnp
ni

Note that in an actual implementation, care has to be taken for the fact that a
division by zero error could occur. This is usually solved by introducing a very
small constant ε = 1 ∗ 10−9.

�

Algorithm 1 MCTS Selection[1]
Precondition: T , a MCTS game tree node,
Postcondition: a descendent node Ti with the highest UCT value.

1: procedure SELECT(T)
2: return arg maxdescendants Ti of T UCT (Ti)

This doesn’t however imply that UCT has to be used. Other alternatives
for selection methods are greedy, ε-greedy or softmax selection.

2.3.3 Expansion

Expansion, adds some or all alternatives which are reachable from the current
state. I.e. it expands the current node in the game tree.

Algorithm 2 MCTS Expansion[1]
Precondition: T , a MCTS game tree node,
Postcondition: expanded node T .

1: procedure EXPAND(T)
2: for all possible actions ai in node T do
3: add Ti as descendent of T with edge labeled as ai

2.3.4 Simulation

Simulation, plays out the game till the end, from a formerly expanded games-
tate using random moves. Although if more informed decisions are being

16

made, the simulation will be more effective. The downside of course being
that more informed decisions cost more computation time.

Note that simulation does not expand nodes. No algorithm is provided for
simulation as this is entirely dependent on the current game and/or domain.

2.3.5 Backpropagation

The result from the simulation, winning or losing for instance, will be propa-
gated back up the tree along the path from which it came. This will update the
expected value of the gamestates, making them more or maybe less promising
than the rest in the gametree.

Algorithm 3 MCTS Backpropagation[1]
Precondition: T , a MCTS game tree node,
Precondition: v, the resulting simulation value,
Postcondition: updated values in MCTS game tree.

1: procedure BACKPROPAGATE(T, v)
2: T.num visits← T.num visits+ 1
3: T.value← T.value+ v . expected value of node T

2.3.6 MCTS algorithm

The complete algorithm composed of Alg. 1 on page 16, Alg. 2 on page 16
and Alg. 3 on page 17 is shown in Alg. 4 on page 17. Note that simulation
does not expand nodes. The algorithm is usually repeated for as long as there
is computation time, or for as long as some user defined counter is less then or
equal to some predefined maximum number of iterations.

Algorithm 4 MCTS (single iteration)[1]
Precondition: T , a MCTS game tree root node,
Postcondition: new MCTS game tree rooted at T .

1: procedure MCTS(T)
2: V ← {T} . add T to visited nodes set
3: P ← T . make P the current pointer
4: while P is not a leaf node do
5: P ∗i ← SELECT(P)
6: V ← V ∪ {P ∗i } . add P ∗i to visited nodes set
7: P ← P ∗i
8: EXPAND(P)
9: T ∗j ← SELECT(P) . T is ancestor of T ∗j

10: v← SIMULATE(T ∗j) . v is the resulting value
11: for all Vi ∈ V do . backpropagate over all visited nodes
12: BACKPROPAGATE(Vi, v)

17

2.4 Opponent modelling

Pure implementations of the MCTS algorithm have been used before, primarily
in the game Go. This pure form of MCTS produces an approximated Nash
equilibrium strategy (i.e. the best possible strategy against itself, see Def. 2.2.11
on page 14). In other words, the resulting strategy will be completely oblivious
to opponent mistakes and treats them as rational players. In this thesis it has
already been established that poker is inherently far more complex.

Instead of producing an approximated Nash equilibrium strategy, MCTS
should be adapted to take advantage of the predictability, mistakes and general
patterns in any opponents’ playstyle. Which will most likely yield a larger net
profit than a purely rational strategy.

In order for MCTS to take into account the specific opponents, Ponsen et
al. propose the some adaptations[33]. Note however that they assume a two
player heads-up Texas Hold’em Limit poker game. This places considerable
constraints on the allowed bets a player can make. It reduces the number of
possible actions a player can take and as such dramatically reduces the com-
plexity of the state space.

Moreover, they opt to train their opponent models specifically to each op-
ponent. Alternatively one could chose to learn models specific to player types.
They collected 5000 games for each of the two pokerbots, ACE1 and Poki, they
were trying to model. Note that those are implemented to behave according to
(simple) predictable rules.

2.4.1 Learning the opponent model

In order to train their model they introduce some notation first:

Def. 2.4.1. Let ai be the action player p took at timestep i, moreover let cp be
the private cards of player p at timestep i and let Si−1 be the complete history
(i.e. community cards and the action history of all the other players) of the
game state up until timestep i. Then the example is defined as:

〈i, p, ai, cp, Si−1〉.

�

Given those examples, they can be used to train a classifier as follows:

Def. 2.4.2. Given a set E of examples as defined in Def. 2.4.1 on page 18, the
learning tasks can be formulated as follows; predicting the private cards cp of
player p using the examples being labeled with cp, given the complete game
state history Si−1:

Pr(cp | Si−1).

or predicting the action ai of player p using the examples being labeled with
ai, given the private cards cp and the complete game state history Si−1:

Pr(ai | Si−1, cp).

�

18

2.4.2 Approach

Ponsen et al. propose a two fold learning approach:

1. settle on a certain prior distribution, which an be achieved in many ways
(learning functions over general poker players, player types or rational
players).

2. learning a differentiating function, by adapting the prior distribution to the
observed distribution of the particular player.

Consider two distributions D∗ and Dp, the prior distribution of examples
drawn randomly from the prior distribution and the distribution of examples
drawn randomly from the observed player p distribution respectively. The
distribution D∗+p is then a mixture of D∗ and Dp. The learning problem could
then be viewed as:

Def. 2.4.3. Given a randomly drawn example x from the mixtureD∗+p, predict
whether x belongs to D∗ or Dp. Learning the function Pr(Dp | x), which gives
for each example x the probability that it belongs to Dp, can be achieved by
generating examples from D∗ and Dp and labeling them with ∗ or p. Learning
the function Pr(x | Dp) in terms of Pr(Dp | x) is possible using Bayes’ rule:

Pr(x | Dp) =
Pr(Dp | x) Pr(x)

Pr(Dp)
.

Since |D∗| = |Dp|, by generating an equal amount of examples for both:

Pr(D∗) = Pr(Dp) =
1

2
,

and
Pr(x) = Pr(D∗) Pr(x | D∗) + Pr(Dp) Pr(x | Dp).

Substituting the latter two in the first:

Pr(x | Dp) =
Pr(Dp | x)(1

2 Pr(x | Dp) + 1
2 Pr(x | D∗))

2
= Pr(Dp | x) Pr(x | Dp) + Pr(Dp | x) Pr(x | D∗)

=
Pr(x | D∗) Pr(Dp | x)

1− Pr(Dp | x)
.

Where Pr(x | D∗) is the prior probability of x, Pr(Dp | x) is the learned differ-
entiating function and finally Pr(x | Dp) is the posterior probability for example
x belonging to player p. Which can be used in MCTS.

�

The big advantage of this approach over others is that this is an elegant
method to learning a multi-class classifier (e.g. predicting over 52∗51

2 possible
card combinations). Secondly, assuming the prior distribution D∗ is reason-
able, accurate predictions of player p are possible with only a few examples.

19

2.4.3 Integration with opponent model

The opponent modelling is integrated into the MCTS algorithm. Using the
opponent model the card probilities can be sampled much more accurately. In-
stead of sampling at random during each MCTS iteration, the opponent model
might state that after having observed a bet from a certain opponent, the likeli-
hood of higher ranked private cards is much higher. Attaching a higher prob-
ability the these cards, will lead to MCTS executing more iterations with them.

At the start of each game state where the MCTS player has to act, a proba-
bility distribution of the opponent’s private cards will be computed (according
to Pr(cp | Si−1)). During the current iteration the cards will be sampled from
this distribution. Whenever an opponent has to take an action the action prob-
abilities are queried from the opponent model (according to Pr(ai | Si−1, cp)).

During simulation, roll-out simulations are employed. Which means that
each player will only check or call for the rest of the game. Then all community
and private cards are dealt to determine the winner(s). The value returned by
the simulation step is the amount of chips lost or gained.

Note that the simulation is performed twice. Once from the view MCTS
player itself and once from the view of all the opponents. For the MCTS player
its private cards are known. For the opponents the private cards have to sam-
pled (as described above).

Algorithm 5 MCTS Selection with opponent model integration[33]
Precondition: T , a MCTS game tree node,
Precondition: cp, the sampled private card combination for this iteration,
Postcondition: a node with the highest value

1: procedure SELECT(T, cp)
2: if T is not opponent node then
3: return arg maxdescendants Ti of T UCT (Ti)
4: else
5: return arg maxdescendants Ti of T Pr(ai | Si−1, cp) . for every action ai

leading to Ti

2.4.4 Results

Ponsen et al. report that using an opponent model improves the performance
a lot. The ACE1 bot is beaten quite easily as it’s based on simple rules. Even
though the number of iterations of the MCTS algorithm are quite small, the
Poki bot gets beaten by a small margin. Without the opponent model (i.e. pure
MCTS), the performance is relatively quite bad.

3 Research

3.1 Motivation

Improving the performance of intelligent computer players has been a very
significant part of research since the inception of artificial intelligence. Mostly

20

Figure 2: Example Tilde decision tree encoding the differentation function for
predicting cards[33]

because games offer such a well defined environment to test the performance
of any intelligent implementation.

Games like Tic-tac-toe, Chess and Checkers, have been completely analysed
in the past. Which wouldn’t be as easy or even possible if those games had any
elements of uncertainty or complexity induced by a very large action set. Not
to mention more than two players.

This is were Poker differs greatly from those games. Poker is still largely
misunderstood by a large group of people, even professionals, who still learn
about new game mechanics every day. The rules of Poker are relatively simple
but they provide for a very rich set of possible strategies.

Research in Poker, or uncertainty in games in general, will hopefully pro-
vide more insight into the complex decision making process necessary to play
those games on a reasonable level.

3.2 Research question

The main goal for this thesis is testing whether or not the approach[33] pro-
posed by Ponsen et al. could be extended in such a way that it would also be
viable in a no-limit Texas Hold’em poker game with more than two players.
No-limit Texas Hold’em poker has an even larger state space, because of the
less constrained betting structures.

The big challenge is partly how to deal with such a large state space. The
other part is how to incorporate the opponent modelling into all of this. The
working hypothesis guiding this thesis is formulated as:

• Using real tournament no-limit Texas Hold’em pokerdata to learn a rea-
sonable prior opponent model of a generic poker player in combination
with the Tilde and Monte Carlo tree search algorithms, applied in a no-
limit Texas Hold’em poker game environment will result in a perfor-
mance conform the results reported by Ponsen et al.

21

3.3 Assumptions

During this research the following assumptions will be made:

• players will be able to switch between strategies, they can both exhibit a
static or dynamic play style,

• players’ beliefs and goals could conflict between each other,

• the game state is not influenced by a single individual player only (i.e. no
trivial folding),

• each player is self-interested (i.e. no cooperation),

• the opponents can consist of real human or computer A.I. players,

• the number of players active in a game of poker can vary from 2 to 10.

3.4 Theoretical approach

Game tree search is not a new concept. It’s a very useful technique, which has
been applied on many occasions in the past. Especially in the field of perfect
information games. The most well known example is the minimax algorithm.

Game tree search algorithms can be applied to fully expanded game trees,
or the search can be guided by an heuristic function. This function returns the
best estimate of the objective value for a particular node in the game tree (with
respect to the current player).

This works well in “simple” perfect information games such as tic-tac-toe or
checkers, because of the fact that, relatively speaking, these games don’t have
a very large state space. In other words, the entire game tree fits into modern
day computers’ memories. Game tree search algorithms are applied to these
game trees and are able to solve the game to return the best move available for
the current player.

As mentioned before, problems arise in imperfect information games. Be-
cause inherently not all information is known during play time, game trees
cannot be structurally analyzed as before. The best option is to design a really
good heuristic function, where care has to be taken to find the best balance
between accuracy and computational costs.

In this thesis, the newer Monte Carlo tree search algorithm, as explained
in section 2.3 on page 15 will be used. This algorithm has proven to work
very well for perfect information games with extremely large state spaces such
as the game of Go. It iteratively expands and samples the state space so that
approximately the most available computational time is spend on expanding
the most “promising” nodes in the game tree.

As explained before, MCTS, in its pure form, uses the very generic UCT
heuristic to guide the search. In this form the search is mostly oblivious to
exploiting the opponents’ weaknesses. Which is a crucial part of playing poker
well.

In order to enable the game tree search algorithm to find exploitative game
states, opponent modelling will be used in place of the heuristic function. In
this thesis the opponent models will be provided by the Tilde algorithm, which
is explained in detail in section 2.4 on page 18 and section 5.4 on page 36.

22

Tilde, is a top-down decision tree induction algorithm, which uses first or-
der logic. This is a major difference with respect to the more common decision
tree induction algorithms such as C4.5. These algorithms use propositional
logic to calculate the “best” splits (see section 5.3 on page 28). Because of this
fact Tilde is able to find and express more complex relationships between play-
ers and/or gamestates.

Figure 3: How models discriminate between players based on a single model.

In figure 3 on page 23 is depicted how N players can be discriminated by
only using a single opponent model. Optionally one could even start from a
uniform poker player (i.e. all actions have an equal probability of being per-
formed during tree expansion). The generic poker player will serve as a prior
distribution, and the opponent model will serve as the differentiating function,
as is all explained in section 2.4.2 on page 19.

The main motivation of this approach is that, learning the difference be-
tween two distributions is a very elegent way of learning a multi-class classifier,
by generalizing over many one-against-all learning tasks (i.e. not N player
specific classifiers). The other one is that, assuming the prior distribution is
reasonable, already accurate predictions are possible.

3.5 Practical approach

In order to test the validity of the hypothesis the approach taken in this thesis
consists of:

1. collecting the necessary high quality poker data,

2. implementing the algorithms discussed in this thesis,

3. learning a generic poker player model from the aforementioned poker
data,

4. collecting enough data from playing against players and/or pokerbots,

5. applying the prior generic poker playing model in combination with the
collected data from the players who are to be modelled,

6. comparing the resulting performance of this implementation, with the
results reported by Ponsen et al.

23

3.6 Previous work

As an introduction into computer poker[2], Billings extensively writes about
the relevance of computer poker in artificial intelligence. Answering why poker
is such a great game to study in the context of computer science.

In his following PhD thesis[3], he describes all the current techniques, algo-
rithms and approaches to computer poker. This is probably the most extensive
guide in the field of computer poker.

Billings et al. describe their implementation of the poker bot called Loki[4].
Each opponent gets assigned a weights table indexed by starting hands. De-
pending on the actions of those opponents some card combinations get a higher
weighting, where others get a lower one.

Neural networks[13, 14] are applied by Davidson et al. to poker as well. A
neural network is trained on certain input variables which describe the game
state, to predict if an opponent would fold, call or raise. An additional ad-
vantage is that the resulting weights of the internal network connections are a
great indication of the most predictive input attributes.

Bayesian networks are also a popular approach to opponent modelling in
computer poker. Southy et al. reduce the complexity of poker to a more simple
variant called Leduc Hold’em[39]. A bayesian network is trained using observa-
tions from opponents in combination with a prior distribution, to calculate a
best response to a certain move. Korb et al. introduced bayesian networks to
model poker opponents[25].

4 Concepts

4.1 Inductive reasoning

Inductive reasoning[36, 26] is the complete opposite of deductive learning. De-
ductive logic arrives at a conclusion by applying the rules of logic to a set of
premises or hypotheses. When those are true and valid, the process of deduction,
shows that this newly gained knowledge necessarily follows from them.

If deduction were to be labeled as a bottom-up approach to gaining new
knowledge, induction should be labeled as the top-down approach to gaining
knowledge. Induction uses a set of, possibly abstract, examples or observa-
tions, from the environment where those were extracted from. It then uses
those examples or observations, to possibly discover a more general rule or
hypothesis that describes them.

The problem with inductive reasoning is that, there will never be concrete
absolute proof for the existance of those induced rules or hypotheses. Take
for instance this classic statement: “I have never seen a black swan before,
so by induction I state that all swans must be white.” When a black swan
would however be observed, then the whole reasoning would collapse and
its meaning would be void. This is more generally known as the induction
problem[26].

4.2 Inductive learning

Inductive learning[36] is a form of supervised learning. It involves learning from
examples, which are already labeled with their corresponding output value.

24

The problem of inductive learning is then to induce an hypothesis, an ap-
proximation to the true output function, which is often unknown. More formally
the problem could be expressed as:

Def. 4.2.1. Let an example be an ordered pair 〈~x, f(~x)〉, where ~x is the input
value and f(~x) the output value. Then the task of induction is:

Given a set of examples of f , return a function h that approximates f.

�

This function h is then called the hypothesis. When the true function f is
unknown, which is almost always the case, it’s impossible to know if h is a
good approximation of f . One property of a good hypothesis is, that it general-
izes well.

To break ties between multiple equally performing hypotheses, Ockham’s
razor is used. In other words; the most simple hypothesis consistent with the
data, is the prefered one. Intuitively this makes sense because a really complex
model is more likely to suffer from overfitting and most probably doesn’t gener-
alize well, that is, being really bad at predicting the outcome for new examples.

4.3 Inductive logic programming

Inductive logic programming[36, 35, 29] (ILP) takes the inductive methods and
combines them with the power of first-order logic. Specifically the ability to
represent the learning problem in terms of background theories using logic
programming.

A widely known and popular implementation of such a system is the Prolog
programming language. Which uses facts and rules, represented as predicates
and Horn clauses respectively, to express its logic theories. This enables ex-
tensions of the core Prolog programming language which allow for inductive
logic programming. Or more formally:

Def. 4.3.1. Let B be any background theory, H be any hypothesis, E be the set
of examples and C the set of corresponding classifications, all expressed in the
same logic programming language, then the entailment constraint to be solved
is defined as:

B ∧H ∧ E |= C.

where H is unknown and needs to be induced.

�

One of the main reasons why ILP techniques gained so much popularity
over existing supervised learning methods is that, first-order logic enables the
ability to capture underlying relationships between attributes, whereas other
methods wouldn’t be able to do so.

This makes ILP more suitable to more complex induction problems, espe-
cially those with attributes being heavily biased to being described by their
inherent relationships that are existing between them.

25

4.4 Decision tree learning

Decision trees are an algorithmically perfect fit to inductive learning. They are
so succesful because of their generally great performance with respect to the
amount of input data and the quality of the resulting models.

The models resulting from running those algorithms are very easy to inter-
pret because of their rule-based nature, which is a huge advantage in compar-
ison to more abstract models resulting from other learning algorithms.

Decision tree theory will be discussed more in depth in section 5.3 on page
28.

4.5 Opponent modelling

One way to reduce uncertainty in any imperfect information game is to make
sure you have at least an idea about your opponent(s)[33, 4, 3, 2, 14, 13, 39, 25,
40]. An idea about their style of playing. Initially this could be having no idea
at all. Or you could assume your opponent to play exactly as you would.

In most games, in order to achieve the “best” performance of an intelligent
computer player, it is safely assumed that the opponent is 100% rational. That
is, given that the opponent is assumed to take the best possible action at any
given time during a game, the game tree is expanded to find the best possible
response to beat your opponent.

The major caveat here is that, this only works in perfect information games.
Secondly, the state space of the game has to be of manageable size (i.e. it has to
be possible to somehow fit it all into the current memory). In other words, this
is only feasable for a game of a highly analytical nature.

Then there are games with an amazingly large state space, imperfect im-
formation, uncertainty, and a relatively huge variety of actions to choose from.
Add to this complex and involved player interaction dynamics. Poker is one
of those games.

In poker, the assumption that every player is 100% rational, is not a safe one
to make. Players often switch from one strategy to another. The state space is
just so large that even human players cannot possibly make a 100% rational,
informed decision.

On which basis do they, or should they, make their decisions then? This is
where opponent modelling plays a really important part. It helps players to
make decisions on the basis of what they believe the gamestate looks like for
their opponents.

In this thesis, two techniques will be discussed to render the immense state
space of poker into a more managable one, using monte carlo sampling dis-
cussed in section 2.3 on page 15 and logical decision trees discussed in section
5.4 on page 36.

5 Implementation

5.1 Poker Academy Pro

Poker Academy Pro[19], produced by Biotools Inc., is essentially a poker simu-
lation and analysis tool. It also creates profiles of previously encountered play-
ers during online play, which includes the storage of all their observed hands

26

in their corresponding profile. It supports limit hold’em and no-limit hold’em
poker.

Besides its extensive poker game playing and analysis capabilities, it also
features the creation and interaction with pokerbots. A great tool for poker re-
searchers. It also features the inclusion of several popular pokerbots created by
the University of Alberta Computer Poker Research Group, such as: Vezbot[37],
Loki[32] and Poki[15].

Although it has been mentioned before that it’s considered dangerous to
draw generic conclusions about the performance of your own pokerbot with
respect to those existing implementations. Especially about the extrapolation
of those results into the domain of real online play for actual real money!

5.1.1 Meerkat API

The Meerkat API[18] is a small Java library that comes with Poker Academy
Pro. The API is event driven and therefore the pokerbots have access to all the
information which a normal human player could observe as well.

Implementing your own pokerpot is very straightforward and relatively
easy to do. As a programmer of pokerbots, you don’t want to be concerned
about implementing a poker engine, instead Poker Academy Pro already takes
care of all those details.

5.2 Prolog

A substantial part of this project uses the Prolog programming language. Be-
cause of the fact that learning from data, requires a lot of it, a performant im-
plementation of the language is needed. The faster, the better.

5.2.1 JIProlog

Java Internet Prolog or JIProlog is implemented in 100% pure Java, developed
by dr. Ugo Chirico[10]. It’s also fully compliant to the ISO Prolog standard[20,
21]. Some mobile devices are supported as well. It’s fairly backwards compat-
ible with respect to older Java versions, dating back to JRE version 1.1.

JIProlog is still actively used in 2APL[12] (pronounced as double-a-p-l) the
agent platform developed here at the University of Utrecht, as the internal Pro-
log based plan and goal based reasoning engine.

The main advantage of JIProlog is the full two-way integration of Java and
Prolog. It also provides the ability to write your own custom Prolog predicates
in Java. Providing you with the tools to create your own personal Prolog suite
for custom implementation needs.

The downside however is that the code is getting older. Java and Prolog are
both moving ahead, while JIProlog hasn’t received any update in years.

5.2.2 SWI-Prolog

SWI-Prolog[43, 44, 45] is a fully featured Prolog, portable, free as in speach,
opensource implementation, licenced under LGPL/GPL. It’s being developed
by Jan Wielemaker and it has a lot of other active contributors in its community.

27

Some, but absolutely not all, of the features are; a large collection of li-
braries, integration with C and C++ languages, Java interface, multi-threading
support, socket support, etc.

The big advantage of SWI-Prolog is how mature the codebase is. With a
wide range of builtin predicates. Features which JIProlog clearly lacked.

5.3 Decision trees

5.3.1 Introduction

Classification[36, 41, 34] is the act of assigning a class to a certain object. The
meaning of class and or object can be very loosely interpreted here. Most usu-
ally the object is a record, stemming from a certain database.

Why do decision trees matter and why are they so popular? One of the ma-
jor reasons is the fact, that a fully induced decision tree is very easy to interpret
and understand by a human. Which again allows for possible further analysis
by a human domain-expert. Decision trees produce so-called white-box models.

Other advantages over other data-mining techniques are:

• The input data requires little to no preprocessing or data normalisation;

• The ability to handle multiple types of data (numerical or categorical);

• The resulting models can be easily validated by statistical tests;

• The ability to cope with large amounts of data in a fairly straightforward
manner;

• The core techniques are relatively easy to implement.

Of course, decision tree induction has its own limitations and problems too:

• Learning an optimal model is known to be NP-complete. (i.e. only ap-
proximations are tractible);

• The resulting tree models are often overly complicated and do therefore
not generalize well, most algorithms have to deal with over-fitting;

Note that optimal wasn’t defined. The most obvious definition would of
course be in terms of the complexity of the resulting tree. Under most defini-
tions of optimality, the induction of such models is still NP-complete.

Figure 4: Example decision tree predicting whether or not to play tennis based
on the current weather conditions

28

Def. 5.3.1. Let Ai be any attribute. Ai is called continuous or discrete if its
possible values are numerical or nominal respectively.

�

Def. 5.3.2. A single record or example from a certain dataset, which will be
used for machine learning purposes is called labeled if it includes the class label.
Otherwise it is called unlabeled.

�

5.3.2 Structure

A decision tree is a rooted tree, which stores a set of nodes such that the nodes
have a parent-child relationship.

Or more formally recursively defined as:

Def. 5.3.3. Let T be a rooted tree such that T is:

• a leaf -node l, storing an element e.

• a root-node r and a set of trees whose roots are the children of r.

�

5.3.3 Framework

Imagine a simple database table with historical data about loan applicants. Ap-
plications are often accepted or rejected depending on certain characteristics of
the applicant. Those could be name, age, gender, income, marital status, etc.
These are considered to be the attributes. Applications are therefore classified
as either accepter or rejected and thus are the class labels in this particular ex-
ample. Or more abstractly:

Def. 5.3.4. Let D = 〈C,A, T,E〉 denote a generic framework to express any
decision tree induction problem in. Then the individual components of that
framework are defined as:

• Let C be the set of discrete classlabels then it is defined as:

C = {c1, c2, . . . , cn} where n ≥ 1. (5.3.1)

• Let A be the set of attributes, which characterizes E, then it is defined as:

A = {A1, A2, . . . , An} where n ≥ 1. (5.3.2)

• Let T be the set of tests, defined as:

T = {t1, t2, . . . , tn} where n ≥ 1. (5.3.3)

where each individual test ti ∈ T is defined as a function:

ti : E → V ti . (5.3.4)

and where each V ti is the set of values, function ti can take on:

V ti =
{
vt1, v

t
2, . . . , v

t
n

}
where n ≥ 1. (5.3.5)

29

• Let E be the set of labeled examples then it is defined as:

E = {e1, e2, . . . , en} where n ≥ 1. (5.3.6)

where each individual labeled example ei ∈ E is constructed as a tuple of
length n+ 1, as follows:

ei = 〈ai1, ai2, . . . , ain, cij〉. (5.3.7)

under the following restrictions that ∀1 ≤ k ≤ n : aik ∈ Ak, Ak ∈ A
and cij ∈ C. In other words, an example ei takes on a value aik for every
attribute Ak and labels that combination of values with a class label cij .
For convenience, the function which returns the label for example ei is
defined as:

lbl(ei) = cij . (5.3.8)

�

One important thing to note is, that the tests are not usually pre-defined but
calculated on the fly, during the execution of the tree induction algorithm. That
doesn’t necessarily restrict our abstract notion of such a generic framework
however.

Given this framework, the objective of any tree induction algorithm is to
find a function that predicts the class label for any new unseen examples. This
implies of course that those are unlabeled examples.

Def. 5.3.5. GivenD = 〈C,A, T,E〉 as defined in Def. 5.3.4, let the goal function
g, which predicts the classlabel for a given unlabeled example, be defined as:

g : ×|A|i=1Ai → C.

�

5.3.4 Candidate tests

As discussed before there are multiple kinds of attributes, continuous or discrete
resp. Each of those kinds impose a different kind of condition to test on.

Def. 5.3.6. Given D = 〈C,A, T,E〉 as defined in Def. 5.3.4, let Ak ∈ A be any
attribute and let t ∈ T be any test condition:

• Ak is discrete with n different values:

– t(〈. . . , aik, . . . , cj〉) := [aik = x]: a test condition that tests on a single
value x ∈ Ak.

– t(〈. . . , aik, . . . , cj〉) := [aik ∈ Xp]: a test condition that tests if a single
value aik is contained in a proper subset of all values in Ak.

where aik ∈ Ak, Xp ⊂ Ak, Xp ∈ X and
⋂
Xp∈X = ∅.

30

Algorithm 6 Generating all test conditions for attribute Ak[24]
Precondition: S, the set of examples,
Precondition: Ak, the set of attribute values for attribute k,
Postcondition: set of generated tests T for attribute k.

1: procedure GENERATETESTCONDITIONS(S,Ak)
2: T ← ∅
3: if Ak is discrete then
4: for all x ∈ Ak do
5: T ← T ∪

{
t(ei) := [aik = x]

}
6: else if Ak is continuous then
7: S∗← sort S in ascending order according to the value of ak
8: for i← 1 to |S∗| − 1 do
9: if lbl(e∗i) 6= lbl(e∗i+1) then

10: τ ← (aik + ai+1
k)/2

11: T ← T ∪
{
t(ei) := [aik ≤ τ]

}
12: return T

• Ak is continuous:
t(〈. . . , aik, . . . , cj〉) := [aik ≤ τ].

a test condition that tests if a single value aik is smaller than or equal to
some threshold τ .

�

Def. 5.3.7. Given D = 〈C,A, T,E〉 as defined in Def. 5.3.4, let S ⊆ E be any
training set of examples:

• Given any function t ∈ T , let it : E → N be the function that assigns a
number to any example ej ∈ E such that, that number equals the index
of the corresponding index of the value vti in the codomain V ti of function
t:

it(ej) = i where t(ej) = vti .

• Given the function it the splits pertaining to any function t ∈ T can be
elegantly defined as: (note that applying the function t is implied by ap-
plying it)

Π(S, t) =
{
St1, S

t
2, . . . , S

t
n

}
where Sti = {ej ∈ S | it(ej) = i} .

where Π is called the partition function, which partitions a set of exam-
ples into subsets according to some test or condition.

�

31

5.3.5 Impurity measures

Now that some methods of splitting any set S of examples is defined, the next
problem to solve is; how is the quality of a certain split with regards to a test
condition t determined? Before that can be answered, the following piece of
information is required:

Def. 5.3.8. Given D = 〈C,A, T,E〉 as defined in Def. 5.3.4, let S ⊆ E be any
training set of examples and let the relative frequency of classlabel cj ∈ C in S
be defined as:

fr(cj , S) = p(cj | L).

where L = {ci ∈ C | ei ∈ S ∧ ci = lbl(ei)} is the sequence of all classlabels in S.

�

Def. 5.3.9. Given D = 〈C,A, T,E〉 as defined in Def. 5.3.4, let S ⊆ E be any
training set of examples, then a few well-known and/or widely used impurity
measures are defined as:

Resubstitution error: Measures the fraction of incorrectly classified examples,
when every example is assigned to the majority class in S:

IR(S) = 1−max
cj∈C

fr(cj , S).

Gini-index: Intuition behind this index is, that it captures the notion of label-
ing every example in S randomly according to the statistical distribution
of said labels in S. It then measures how often a random example from S
would be incorrectly classified:

IG(S) =
∑
cj∈C

fr(cj , S)(1− fr(cj , S))

=
∑
cj∈C

fr(cj , S)− fr(cj , S)2

=
∑
cj∈C

fr(cj , S)−
∑
cj∈C

fr(cj , S)2

= 1−
∑
cj∈C

fr(cj , S)2.

Entropy: Measures the chaos, or rather, the unpredictability. Shannon denoted
the entropyH of a discrete stochastic variableX with n outcomes {xi}ni=1

as:
H(X) = E(I(X)).

where E is the expected value operator and I is the information content of
a stochastic variable. I(X) is in itself another stochastic variable. I(xi) is
called the self-information of an outcome of a stochastic variable X . The
lower the probability p(xi) of outcome xi the higher the self-information
is of that outcome. Intuitionally; when an event with low probability

32

occurs, inherently, it carries much more information than an event which
occurs very commonly. It is defined as:

I(xi) = log

(
1

p(xi)

)
=− logb (p(xi)) .

The expected value of a stochastic variable is of course defined as:

E(X) =

n∑
i=1

p(xi)xi.

plugging the above all into the first one, the derivation of the formula for
entropy follows quite trivially:

H(X) =

n∑
i=0

p(xi)I(xi)

=−
n∑
i=0

p(xi) logb(p(xi)).

Plugging in that p(cj) = fr(cj , S) to derive the final formula:

IE(S) = −
∑
cj∈C

fr(cj , S) logb(fr(cj , S)).

Note that logb(0) is taken to be 0, which is consistent with limx→0+ x logb x = 0.

�

Now that some impurity measures are defined upon a single set of exam-
ples, the last part that’s missing is measuring the quality of a certain split. This
enables the decision tree construction algorithm to find the split that, at that
stage maximizes some information gain. From this point on the entropy func-
tion IE will be used.

Def. 5.3.10. GivenD = 〈C,A, T,E〉 as defined in Def. 5.3.4, let t ∈ T be any test
condition, let S ⊆ E be any training set of examples and let Π be the partition
function defined in Def. 5.3.7. Then:

Gain measures the information gained in relation to the set S from which the
splits were generated:

∆(S, t) = IE(S)−
|Π(S,t)|∑
i=1

|Sti |
|S|

IE(Sti).

where Sti ∈ Π(S, t).

Potential adjusts for the fact that, if each example gets split into a singleton
set, it maximizes the gain measure. A trivial split like that is not a very
generalizing split in nature and therefore unwanted:

P (S, t) = −
|Π(S,t)|∑
i=1

|Sti |
|S|

logb

(
|Sti |
|S|

)
.

where Sti ∈ Π(S, t).

33

GainRatio measures the information gained in relation to the set S, but also
takes into account the potential information from the partition itself:

∆r(S, t) =
∆(S, t)

P (S, t)
.

Note that logb(0) is taken to be 0, which is consistent with limx→0+ x logb x = 0.

�

5.3.6 Tree induction

Almost all of the decision tree induction algorithms follow a very similar pat-
tern. They differ mostly in the way the impurity of a set of examples is calcu-
lated, which kind of attributes are supported and how they handle overfitting.

The most well known decision tree induction algorithms are: CART, ID3
and C4.5. The most modern algorithm of those is C4.5 which is the succesor to
ID3. Both are developed by Ross Quinlan[34].

Algorithm 7 Generic tree induction[24, 41, 36]
Precondition: S, the set of examples,
Precondition: A, the set of attributes,
Precondition: k ≥ 1, the minimum amount of examples in a leaf node,
Postcondition: a decision tree modelM.

1: procedure CONSTRUCTTREE(S,A, k)
2: if IE(S) = 0 or |S| ≤ k or A = ∅ then . check stopping condition
3: create external node leaf
4: leaf.label← arg maxcj∈C fr(cj , S) . majority vote
5: return leaf
6: else
7: T ← ∅
8: for all Ak ∈ A do
9: T ← T ∪ {GENERATETESTCONDITIONS(S,Ak)}

10: t∗i ← arg maxti∈T ∆r(S, ti) . find best split condition
11: create internal node root
12: root.cond← t∗i
13: for all Sj ∈ Π(S, t∗i) do
14: childj ← CONSTRUCTTREE(Sj , A− {Ak} , k)
15: add childj as descendant of root with edge labeled as vt

∗
i
j ∈ V

t∗i
i

16: return root

5.3.7 Classification

Once a model has been constructed, or induced of you will, classifying a new
example is trivial. The example is just propagated along the correct edge, (i.e.
the edge with the correct value of the test condition). Whenever a leaf node is
reached, the example is classified as the class stored in that leaf node.

34

Algorithm 8 Classification[24, 41, 36]
Precondition: ei, a fresh unlabeled example,
Precondition: T , the decision tree root node,
Postcondition: the classification label for example ei.

1: procedure CLASSIFY(ei, T)
2: if T is a leaf node then
3: return T.label
4: else
5: Tj ← descendant of T with edge labeled as the value of T.cond(ei)
6: return CLASSIFY(ei, Tj)

5.3.8 Tree pruning

Because of the greedy nature of decision tree induction (trying to maximize
the information gain at each step in the algorithm), overfitting needs to be ac-
counted for.

An easy analogy for the phenomenon of overfitting is; telling, a little child,
who is looking at a red ball, that the object is, in fact, a ball. By which the child
now has learned that all red spherical objects are balls. Obviously the color of
an object is not relevant to classifying a spherical object as a ball.

In a more formal way, overfitting could be explained as the resulting model
being adapted too much to all the random errors or noise in the input data,
instead of the underlying relationships.

There are several methods to counter overfitting during and after model
construction. The former being; using statistics, during execution of the al-
gorithm, to decide if a split is statistically significant. The problem with this
however is, what if a future split, being a descendant of the current one, turns
out to be really good? The algorithm will never discover the relationship be-
cause it has been cut-off too early.

Because of this reason, it is often better to decide upon removal of a certain
split, after the model has been produced. Which is why the latter method is
usually prefered, where the produced model is pruned from superfluous splits.

When the number of errors made by each leaf node is assumed to follow
a binomial distribution, an upper bound to the expected training error can be
calculated[41].

Def. 5.3.11. Given the number of examples N , the error rate e and confidence
level α, then the statistical approximation of a binomial distribution with a
normal distribution could be used to derive an upper bound to the error rate e
as follows:

eupper(N, e, α) =
e+

Z2
α/2

2N + Zα/2

√
e(1−e)
N +

Z2
α/2

4N2

1 +
Z2
α/2

N

.

where Zα/2 is the quantile of the standard normal distribution.

�

35

α 0.5 0.3 0.25 0.2 0.1 0.05 0.98 0.01
1− α 0.5 0.7 0.75 0.8 0.9 0.95 0.98 0.99
Zα/2 0.67 1.04 1.15 1.28 1.64 1.96 2.33 2.58

Table 2: Commonly used confidence level α to standardizedZ-value mappings

The actual implementation of algorithm 9 on page 36 is a bit different than
it is presented over here. This is because the fact that, in the actual implementa-
tion, the trees are represented with Prolog facts. It was impossible to remember
certain parts of the tree. The memory usage would explode. Instead, every split
is checked to see if it needs to be pruned. Then the tree is reconstructed, keep-
ing the order of the original splits, using only those splits (which was much,
much quicker in Prolog).

Algorithm 9 Tree pruning[24]
Precondition: T the decision tree root node,
Precondition: α the CF value for the appropriate confidence interval,
Postcondition: a new pruned decision tree rooted at T .

1: procedure PRUNETREE(T, α)
2: if T is a leaf node then
3: return eupper(T.num cases, T.num errors, α)
4: else
5: T ∗j ← arg maxdescendants Tjof T Tj .num cases

. the subtree with the highest proportion of cases
6: ET∗j ← eupper(T

∗
j .num cases, T ∗j .num errors, α)

7: EL← 0
8: for all descendants Tj of T do
9: EL← EL + PRUNETREE(Tj , α)

10: ET ← eupper(T.num cases, T.num errors, α)

11: if min
{
EL, ET , ET∗j

}
= EL then

12: replace T with newly created external node L
13: else if min

{
EL, ET , ET∗j

}
= ET∗j then

14: replace T with subtree T ∗j

5.4 Tilde

Tilde[6, 5], invented by Blockeel and de Raedt, is a specific implementation of
an ILP system, as discussed in section 4.3 on page 25. Tilde, is a top-down
decision tree induction (TDIDT) algorithm, which will be discussed in further
detail in this section.

5.4.1 Introduction

As was stated before, decision tree induction techniques are really popular,
well known and succesfully applied to a lot of problems. Decision trees employ

36

a divide-and-conquer strategy. This is in sharp constrast to its competitors, rule-
based systems, which are based on covering strategies.

Within the attribute value learning domain (such as described in section 5.3
on page 28), decision trees have been the far more popular approach however.
Yet, in inductive learning and inductive logic programming settings, they’ve
only been used in a couple of instances. The main reason for this is, that the
representation of clausal formulas used in ILP systems don’t necessarily adapt
themselves properly to the underlying structures of decision trees.

Given the power and expressiveness of a well-established programming
language like Prolog, it is easier to take those clauses and lift them into a factual
representation in that language (e.g. rules in the form of Horn clauses).

Instead of the regular propositional tests on attribute values, the power of
Prolog’s (sub)goal oriented problem solving and backtracking, can both be
used to their full potential.

Note that in the original paper, the authors propose to model an individual
example as a collection of seperate Prolog facts. In this thesis, a single example
will be modelled as a single Prolog fact. It makes coping with a large set of
examples much clearer and easier. Furthermore, it corresponds much better to
the framework that was laid out in section 5.3.3 on page 29.

The way examples will be specified instead is:

Def. 5.4.1. Given framework T as defined in Def. 5.4.4 on page 38, let ei ∈ E
be any example and let ci ∈ C be the classlabel, then example ei in Tilde will
be specified as:

ei = ex(i, Case, ci).

Where i is the identifier for lookup purposes, ci = lbl(ei) is the correspond-
ing class label for ei and Case is any (first-order logic) literal modelling this
particular example.

�

5.4.2 Logical decision trees

Def. 5.4.2. The structure of a binary decision tree (BDT) T is an extension to
Def. 5.3.3 on page 29, such that T is either:

• a leaf node contains a class label c, referenced by T.label;

• or a root node, which contains a test t, with two possible outcomes, ref-
erenced by T.test and a subtree Tj for both outcomes of t, referenced by
T.left and T.right respectively.

�

But, in order to turn a binary decision tree into a logical decision tree, some
constraints need to be enforced:

Def. 5.4.3. A logical decision tree (LDT) is a binary decision tree (BDT), such
that:

• every test t is a (first-order logic) conjunction of literals,

37

• a variable v that is introduced in a node n, cannot appear in in its right
subtree.

�

Assuming the right subtree signifies failure of the test t, the last condition
is necessary because every variable v is implicitly existentially quantified. It
wouldn’t make sense to refer to a newly introduced variable of a failed test.
In other words, suppose X was the newly introduced variable. It wouldn’t
make sense to express something like “there is no such X that...”. Variable X
doesn’t have a meaning further down the right subtree (i.e. a failed test can
never result in a valid binding of all variables).

The Tilde algorithm shares a lot of functionality with the more generic ver-
sion of decision tree induction discussion in section 5.3 on page 28. It could be
viewed as a specific instance of those generic algorithms, with some minor but
key differences.

In order to deal with those differences, the framework that was discussed
in section 5.3.3 on page 29 needs to be expanded upon like so:

Def. 5.4.4. Given D = 〈C,A, T,E〉 as defined in Def. 5.3.4, let the framework
for first order logic T = 〈C,A, T, L,E〉.

• Let L be any first order logic background theory.

where the test conditions t ∈ T are implemented as:

t(ei) = [ei ∧ L |= >].

�

With this framework now defined, the entailment constraint defined in Def.
4.3.1 on page 25, could be made more specific and defined as:

Def. 5.4.5. Given T as defined in Def. 5.4.4 on page 38, find a hypothesis H
such that:

∀ei ∈ E : [ei ∧H ∧ L |= ci ∈ C] and [ei ∧H ∧ L 6|= ck ∈ C − {ci}]

where lbl(ei) = ci.

�

5.4.3 Refinement operator

One point where the Tilde algorithm differs from the original methods is the
computation of the tests, that are to be put in a certain node. Tilde employs a
so-called classical refinement operator ρ, under θ-subsumption.

Def. 5.4.6. Given two clauses c1 and c2, then c1 θ-subsumes c2 if and only if
there is a substitution θ such that:

c1θ ⊆ c2.

�

38

Def. 5.4.7. Given a refinement operator ρ under θ-subsumption, then it maps
clauses onto sets of clauses, such that, for all clauses c and c′, c θ-subsumes c′,
or more formally:

∀c,∀c′ ∈ ρ(c) : cθ ⊆ c′.

�

For the Tilde algorithm, a refinement operator ρ will be used that adds one
or more literals to a test t. It is important to note that ρ is an input parameter to
the algorithm. In effect the definition of the operator ρ determines the language
bias, which will be discussed in the next section.

5.4.4 Language specification

As mentioned before, the specification of the refinement operator ρ and the
language bias coincide. The language bias basically tells the Tilde algorithm
which literals can be added to expand a certain test t. The original authors
implemented mode and type specifications of which type conformity is not
strictly necessary.

Mode specifications determine the restrictions on the variables in the newly
added literal. They can be on of the following three;

• (+) or in means that the variable must be unified with an already existing
variable;

• (*) or in/out means that the variable can, but needs not be unified with an
existing variable;

• (-) or out forces a variable to be freshly introduced.

Def. 5.4.8. Given any ternary literal pi/3, let n be the maximum number of
times pi/3 can be introduced along one single path in the tree. Then the speci-
fication of pi/3 is defined as:

rmode(n : pi(+, ∗,−)).

Note that n = −1 means no limit on the maximal number of occurances of pi.
Also, this doesn’t imply that the modes for all variables need to be like in this
example. Finally, the arity of pi in this example was randomly chosen to be 3,
but it can be anything.

�

5.4.5 Discretization

As most decision tree induction algorithms, Tilde also supports continuous at-
tributes. Most of those algorithms, dynamically calculate the appropriate val-
ues for the thresholds during the execution however (as shown in Alg. 6 on
page 31). In Tilde this would imply, that for every refinement also all the ap-
propriate thresholds need to be dynamically calculated.

39

Algorithm 10 Tilde tree induction[6, 5]
Precondition: S, the set of examples,
Precondition: Q, the current conjunction of literals,
Precondition: L, the language bias,
Precondition: k ≥ 1, the minimum amount of examples in a leaf node,
Postcondition: a decision tree modelM.

1: procedure TILDE(S,Q,L, k)
2: if IE(S) = 0 or |S| ≤ k or L = ∅ then . check stopping condition
3: create external node leaf
4: leaf.label← arg maxcj∈C fr(cj , S) . majority vote
5: return leaf
6: else
7: T ← ρ(L) . generate all possible refinements from L
8: t∗i ← arg maxti∈T ∆r(S,Q ∪ {ti}) . find best split condition
9: create internal node root

10: root.cond← t∗i
11: child> ← TILDE(S>, Q ∪ {t∗i } , L− {t∗i } , k)
12: child⊥ ← TILDE(S⊥, Q, L, k)
13: add child{>,⊥} as descendants of rootwith edge labeled as vt

∗
i
j ∈ V

t∗i
i

14: return root

Obviously this would lead to a large explosion of time-consuming repeated
iteration over all the examples. In order to cut back on the branching factor of the
tree and any redudant calculations to improve the performance, the thresholds
values are pre-calculated in a single pass.

The discretization method implemented in Tilde is a simple modefication
of an algorithm proposed by Fayyad and Irani[16]. The only difference applied
in this implementation is that; the stopping criterion in their original method
is very strict. Resulting in almost no calculated threshold values. In this imple-
mentation Tilde expects the number of required threshold values as an input
value.

Def. 5.4.9. Given the specification of any literal pai with arity a, as defined in
Def. 5.4.8 on page 39, let this template indicate the need to discretize literal pai :

to be disc(n : pai).

Finally, let this template indicate which term tj needs to be discretized:

to be disc val(pai (t1, t2, . . . , ta), tj).

Where 1 ≤ j ≤ a. Note that this means that only one single term per literal can
be discretized. If more terms in literal pai would need to be discretized, they
can be split up into multiple literals.

�

5.5 Model evaluation

After a model has been constructed, it’s often desirable to evaluate its perfor-
mance with regards to the world it’s been modelled after. This is to make sure

40

that the model behaves correctly even in cases when the data fed into the model
hasn’t been observed before.

It’s also useful to compare the resulting model to another model, which
resulted from a similar but popular algorithm of which the correctness has
already been proven (empirically). That way, a nice baseline can be established
to analyze and contrast the performance of both models.

A model can be evaluated on the basis of a lot of criteria. It would take too
much time and space to discuss them all. So, instead the now following criteria
are used to evaluate the model.

5.5.1 Accuracy

The accuracy of a model expresses how well the model performs in terms of
the prediction of the class labels of certain set of examples.

Def. 5.5.1. Given a set of examples E, let nc be the number of examples that
were classified correctly by modelM and let nt be the total number of exam-
ples in E. Then the accuracy A of modelM is defined as:

AM = nc/nt.

�

To determine the confidence interval for the accuracy, a probability distri-
bution needs to be established that governs the accuracy measure. One of the
possibilities is modelling the classification task as a binomial experiment[41].

Def. 5.5.2. Given a set of examples E, a modelM and its accuracy AM, let X
be a binomially distributed stochastic variable that is the number of correctly
predicted examples byM, finally let N = |E|. Then the mean and variance of
X are defined as:

X̄ =NAM,

σ2
X =NAM(1−AM).

�

Def. 5.5.3. Given the number of examples N , a modelM and its accuracy AM
and confidence level α, the binomial distribution can be approximated by a
normal distribution when N is sufficiently large, by using:

CIAM(N,AM, α) =
2NAM + Z2

α/2 ± Zα/2
√
Z2
α/2 + 4NAM − 4NA2

M

2(N + Z2
α/2)

.

where Zα/2 is the quantile of the standard normal distribution.

�

41

5.5.2 Kappa-statistic

Cohen’s kappa-statistic[11] κ, is a coefficient to evaluate the agreement among
two raters. In this case the agreement between the predictions of two seper-
ate models or the agreement between the prediction of a model and the cor-
responding true observations. Note that the two raters are assumed to rate or
rather predict statistically independently from one another. The kappa-statistic
is supposed to correct for the hypothetical probability of agreement due to (ran-
dom) chance.

In the past, others have expressed concerns regarding this statement. In re-
ality this would suggest that if a rater isn’t completely certain, the rater would
just guess randomly. A more accurate measure should explicitly model the
raters’ decisionmaking process. In this case of comparing predictions and ob-
servations, it’s not a relevant issue though. A classifier usually doesn’t just
guess randomly, it’s guided by certain rules.

Rater 2
Γ2 = 0 Γ2 = 1 · · · Γ2 = k

Rater 1

Γ1 = 0 n00 n01 · · · n0k n0·
Γ1 = 1 n10 n11 · · · n1k n1·

...
...

...
. . .

...
...

Γ1 = k nk0 nk1 · · · nkk nk·

n·0 n·1 · · · n·k n

Table 3: Confusion matrix

Def. 5.5.4. Given table 5.5.2 on page 42, let k be the number of different classes
in C. Let nc· and n·c be the marginal frequencies for class c ∈ C, for the obser-
vations and predictions resp. Finally let nij denote the frequency of agreement
or disagreement for observation i and prediction j. The marginal frequencies
are the sum of the frequencies per row or column resp. Or more formally:

nc· =

k∑
i=0

nci,

n·c =

k∑
i=0

nic,

n=

k∑
i=0

ni· =

k∑
i=0

n·i =

k∑
i=0

k∑
j=0

nij .

�

Def. 5.5.5. Given table 5.5.2 on page 42, let p̂ij = P (Γ1 = i,Γ2 = j) be the
point-estimation of the probability of raters Γ1 and Γ2 being equal to outcome
i and j respectively.

p̂ij =
nij
n
.

42

�

Def. 5.5.6. Given table 5.5.2 on page 42, let p̂o denote the point-estimation of
the probability of the observed agreement where the classification between two
raters is equal. In the context of observations and predictions from a model,
this is also often being described as accuracy.

p̂o =

∑k
i=0 nii
n

.

�

Def. 5.5.7. Given table 5.5.2 on page 42, let p̂e denote the point-estimation of
the probability of agreement expected by chance. Which is calculated in terms
of the marginal frequencies ni· and n·i like so:

p̂e =

k∑
i=0

(ni·
n

)(n·i
n

)
=

1

n2

k∑
i=0

(ni·)(n·i).

�

Def. 5.5.8. Given p̂o and p̂e from Def. 5.5.6 and 5.5.7, the kappa coefficient is
defined as follows:

κ̂ =
p̂o − p̂e
1− p̂e

∈ [0, 1].

Note that κ̂ = 0 means no agreement and likewise κ̂ = 1 means total agree-
ment.

�

Def. 5.5.9. Given table 5.5.2 on page 42, p̂o and p̂e from Def. 5.5.6 and 5.5.7, the
standard devation of the kappa coefficient will approximate a normal distribu-
tion, according to Cohen, when n is large enough. Expressed in terms of p̂o, p̂e
and n the standard devation is given to be:

σκ =
√

var(κ) =

√
po(1− po)
n(1− pe)2

.

The corresponding confidence interval can be estimated using:

CIκ = [κ− σκZα/2, κ+ σκZα/2].

where Zα/2 is the quantile of the standard normal distribution.

�

5.5.3 Kappa-statistic interpretation

In table 5.5.3 on page 44 a classification of the κ-statistic, as proposed by Landis
and Koch[27] is shown. Note however that their classification is chosen semi-
arbitrarily.

43

κ agreement
(0.00;0.20] slight
(0.20;0.40] fair
(0.40;0.60] moderate
(0.60;0.80] substantial
(0.80;1.00] (almost) perfect

Table 4: Unofficial kappa-statistic classification by Landis and Koch

5.5.4 K-fold cross-validation

Cross-validation[23] is most commonly used as a method to assess the general-
ization capabilities of a particular model with regards to an independent data
set. In a setting where the goal is to predict, cross-validation can be used to
estimate how accurately a predictive model will perform in practice.

Cross-validation essentially partitions the data set into multiple comple-
mentary subsets, doing the model construction on all but one of the subsets
(training-set) and the evaluation on the remaining last subset (test-set). To re-
duce the variance, this process is repeated multiple times (called the folds)
using different subsets, where the individual evaluation results per fold are
averaged or otherwise combined.

Algorithm 11 k-fold cross-validation[41, 36]
Precondition: E, set of examples
Precondition: k ≥ 1, the number of folds,
Postcondition: the average accuracy over all folds.

1: procedure KFOLDCROSSVALIDATION(E, k)
2: P ← random permutation of set E . shuffles examples
3: divide P in k parts Pi as uniformly as possible
4: A← ∅
5: for i← 0 to k do
6: M ← CONSTRUCTMODEL(P − Pi) . black box
7: Acci ← EVALUATEMODEL(M,Pi)
8: A← A ∪ {Acci}
9: return (

∑
A)/k . average accuracy over all the folds

Commonly used types of cross-validation are:

k-fold cross-validation: Partitions the dataset into k subsets. Using k− 1 sub-
sets as training-set and the last remaining subset as the test-set for valida-
tion/evaluation purposes. This process is then repeated k times. The ad-
vantage of this method is that each example is used for both training and
validation. Each example is used for validation exactly once. The eval-
uation results are usually averaged, although can they can be combined
otherwise. See algorithm 11 on page 44 for the actual implementation.

2-fold cross-validation: In this case each example is used once for train-
ing and once for validation. The training-set and test-set are about

44

equal size.

10-fold cross-validation: The most common value for k is 10. This repre-
sents a good trade-off between bias, variance, training-set size (90%)
and test-set size (10%).

n-fold cross-validation: Otherwise called leave-one-out cross-validation.
Here k is equal to n, the number of examples in the dataset. The
size of the test-set is always 1, using the rest of the examples as a
training-set (hence the name). Obviously, this is really expensive
because of the large number of folds. Even more so when the model
construction algorithm is really expensive to execute.

stratified k-fold cross-validation: Only different in the sense that the training-
and test-set both contain an approximately equal proportion of all class
labels.

repeated random sub-sampling validation: Instead of splitting the examples
into a training- and test-set according to some value k, they are split ran-
domly. Essentially removing the dependence for the proportions on the
value of k. The disadvantage though, is that there is no guarantee that
each example is used once during the validation. Some examples may
even be used more than once.

Other uses of cross-validation besides model evaluation, are:

model selection: Selection of a model with the most optimal evaluation score.
Note that no assumptions are mode about the origins of a model.

feature selection: Starting with all attributes or none at all, respectively. Then,
in recursion removing or introducing attributes as long as the perfor-
mance of the resulting model goes up. Usually this is called backward
or forward feature selection, respectively.

5.6 Practical problems

During the implementation of the whole project, I ran into so many issues.
Many of them unforseen. In this section I will try to explain all the difficulties
I had to face.

The first problem was (and still is) getting a top notch quality poker data
set. Preferably one with data collected from a real money tournament. When
a large amount of money is at stake, players tend to play more seriously and
therefore will the data of the players be much more reliable (i.e. no constant
blind all-ins).

Two major problems will present itself when looking for a poker dataset:

1. A good quality poker dataset costs quite a lot of money;

2. Almost all of them have missing values, these often stem from not having
recorded players folding their cards, which makes it nearly impossible to
create a reliable model. These examples cannot be trown away however,
as doing so will introduce a major bias in the data. Remember that often
only good hands reach the showdown phase. A sophisticated algorithm
would need to be designed to fill in those missing values according to

45

some model (which I didn’t have time for, it requires a lot of computa-
tional power and time as well).

On pokerftp.com, people offered a large amount of poker data, which was
purposefully scrambled to prevent player modelling and identification, the one
thing a lot of poker researchers are trying to achieve.

In order to get the pokerdata, a lot of personal data had to be submitted
to them in order for them to verify that the poker data would only be used
for scientific ends. Soon after discovering this website, I found out that those
people completely stopped maintaining this dataset and their corresponding
website, leaving me with nothing.

Through several contacts, we were able to recover the dataset, but at this
point in time it was too late to do anything meaningful with the data. It was
also stored in a custom fileformat, which needed a library to open and read.
This library was also hosted on pokerftp.com which was already taken down by
that time.

The second big issue was that, the software I was going to use (Poker
Academy Pro), which our university has a valid license for, stopped working.
It seemed their license validation server was taken down. After inspection I
found out that the website of Poker Academy Pro was completely taken down
as well. Leaving me with nothing again.

At the start of my thesis project everything seemed to be working and in
order. I didn’t assume that everything I would need in the near future would
be completely taken down behind my back. This was all a very frustrating
experience.

Finally, I had decided to use JIProlog as the prolog engine to implement the
Tilde algorithm. The big issue during the implementation of the Tilde algo-
rithm in JIProlog was, that a lot of necessary features had to be implemented
by myself.

After doing some custom tests, near the end of the implementation in JIPro-
log, it turned out, that JIProlog just couldn’t handle the massive amount of
input data.

During execution, it started allocating and leaking huge amounts of mem-
ory. Eventually crashing by raising an out-of-memory exception. This forced
me to translate the complete implementation to SWI-Prolog, which luckely
turned out to be much more efficient and much faster.

6 Results

6.1 Dataset

6.1.1 Introduction

The Iris flower data set or Fisher’s Iris data set is a multivariate data set intro-
duced by Sir Ronald Aylmer Fisher[17]. This data set became really popular
testing case for classification algorithms in machine learning.

The dataset contains 150 examples of 3 different species of the Iris flow-
ers. Each of those 3 different species contains 50 examples, so every species is
equally well represented. The task is to discriminate between the 3 species on

46

the bases of 4 attributes namely; petal length, petal width, sepal length and sepal
width. All of those are expressed in centimeters.

Figure 5: Iris-setosa, Iris-versicolor and Iris-virginica

6.1.2 Statistical analysis

In this section the statistical analysis of the Iris dataset will be presented. The
scatter plots show all the 3 species plotted against each combination of 2 at-
tributes. Notice the very high class correlation of petal length and width indi-
cating a high predictability.

species num
Iris Setosa 50
Iris Versicolour 50
Iris Virginica 50
total 150

Table 5: Iris class distribution

(in cm) min max mean std.dev. class correlation
sepal length 4.3 7.9 5.84 0.83 0.7826
sepal width 2.0 4.4 3.05 0.43 -0.4194
petal length 1.0 6.9 3.76 1.76 0.9490
petal width 0.1 2.5 1.20 0.76 0.9565

Table 6: Iris data statistics

6.2 Evaluation

Te results of running the Tilde algorithm will be compared against the C4.5[34]
implementation in Weka[48] called J48. The same settings were used for both
algorithms. The minimum amount of examples in a leaf was set to 4. The
confidence interval for tree pruning was set to 0.25, which is the default value.

Both algorithms ran with 10-fold cross-validation enabled. The best model
from any of the 10 folds was selected and was applied to the whole dataset.

From the results it’s easy to see that this dataset is not one of the “hardest”
around. But it does prove that both algorithms perform about equally well.

47

Figure 6: Iris data scatterplots

From the resulting decision trees, it’s easy to see that both algorithms almost
picked the same set of splits and thresholds.

The scatterplots confirm that the Setosa species is linearly seperable from
the other two species. Only the Virginica and Versicolor species show overlap-
ping features. Therefore those two are the hardest to discriminate and every
model will make some prediction errors because of that.

petal_length > 2.6: Iris-setosa
petal_length <= 2.6
| petal_width > 1.75
| | petal_length > 4.9: Iris-virginica
| | petal_length <= 4.9: Iris-versicolor
| petal_width <= 1.75
| | petal_length > 4.9: Iris-virginica
| | petal_length <= 4.9: Iris-versicolor

Verbatim 1: Best model from running Tilde

petal_width <= 0.6: Iris-setosa
petal_width > 0.6
| petal_width <= 1.7
| | petal_length <= 4.9: Iris-versicolor
| | petal_length > 4.9: Iris-virginica
| petal_width > 1.7: Iris-virginica

Verbatim 2: Best model from running J48

7 Conclusion

In this thesis a view was presented on opponent modelling using inductive
logic programming and decision trees in the form of the Tilde algorithm, im-

48

num percent
correctly predicted 144 96.32%
incorrectly predicted 6 3.68%
accuracy 0.9632 -
accuracy CI (95%) [0.9197;0.9836] -
kappa 0.9448 -
kappa std.dev. 0.0230 -
kappa CI (95%) [0.918;1.008] -

Table 7: Statistics for the resulting model from J48

Prediction
Γ2 = a Γ2 = b Γ2 = c

Observation
Γ1 = a 49 1 0 50
Γ1 = b 0 47 3 50
Γ1 = c 0 2 48 50

49 50 51 150

Table 8: Confusion matrix for the resulting model from J48

num percent
correctly predicted 146 97.3%
incorrectly predicted 4 2.7%
accuracy 0.973 -
accuracy CI (95%) [0.9334;0.9896] -
kappa 0.96 -
kappa std.dev. 0.0197 -
kappa CI (95%) [0.921; 0.999] -

Table 9: Statistics for the resulting model from Tilde

Prediction
Γ2 = a Γ2 = b Γ2 = c

Observation
Γ1 = a 50 0 0 50
Γ1 = b 0 49 1 50
Γ1 = c 0 3 47 50

50 52 48 150

Table 10: Confusion matrix for the resulting model from Tilde

plemented using the prolog programming language. A lot is still open to im-
provement.

During the implementation of this project I stumbled upon so many prob-
lems which prevented my progress or my ability to present or generate the
results I was hoping to be able to present. Because of that reason I (sadly)

49

didn’t succeed in reaching my goals that I set in section 3.2 on page 21.
However, I still strongly feel that the approach taken by Ponsen et al. is a

very elegant one and definately seems promising! Research still has to show
how “viable” the approach would be in a No-limit poker setting with multi-
ple players, though. Nevertheless, in my opinion, this approach definately is
worth looking into more.

Also, it seems there is a conflict of interests in the poker playing community
and the poker researching community. Poker players, playing for real money in
tournaments or casinos want to keep their money making secrets, for obvious
reasons. Whereas poker research would benefit so much from professionals
acting as domain experts, providing crucial knowledge about the (meta)game.
Poker players hate to be idea of being analysed through collected data, while
in fact the poker research community really needs the data. It is sad to see that
websites providing such data or analysis tools are taken down left and right.

From the results it is clear that there are a lot of possibilities still left to be
explored. And from other results it shows that the Tilde algorithm could be a
viable approach to modelling opponents in any imperfect information game.

Poker is an amazing game and it provides such a rich universe of possibili-
ties to playing it. It is a great testing environment for artificial intelligence and
therefore I sincerely hope that somebody takes this as an inspiration to further
improve the state of computer poker and don’t let themselves be discouraged
by the enormous complexity of the game.

8 Future work

Research on Poker data is far from done. There is so much left to explore (and
exploit). I think that the most important thing for the evolution of opponent
modelling in poker is having a top quality poker data set (with no missing val-
ues) open to public use. So many machine learning algorithms are dependent
on having existing data to learn from.

The MCTS algorithm is essentially guided by a very generic principle, which
balances between exploration and exploitation in a certain way. Even though
many more action selection functions exist, it would be interesting to see if do-
main knowledge could be added into the equation. It would also be interest-
ing to see if that results in a more broad or more focused game tree expansion.
Also, there’s been research done on UCT combined with progressive bias[9].
Which adds domain knowledge into UCT.

Instead of creating one single model for a generic poker player, clustering[42]
could be applied to the poker data to discover meaningful clusters of poker
playing strategies. Then those could be used as prior distributions to adapt to
new players, prividing the new player can easily be classified as belonging to
one of those clusters. It would be interesting to see if the initial clustering does
make a significant difference in learning and or prediction.

The Tilde algorithm relies on a user supplied language bias (i.e. the defini-
tion of the refinement operator). Maybe the language bias could be automat-
ically generated based on further analysis of the input data. Additionally, the
Tilde algorithm could be adjusted to handle missing values as the C4.5 algo-
rithm already does. Weighted examples could also be introduced to create an
explicit bias in the input data.

50

9 Bibliography
[1] MCTS Java Implementation, 2012. http://mcts.ai/?q=code/

simple_java.

[2] Darse Billings. Computer poker. Artificial Intelligence, 134:2002, 1995.

[3] Darse Billings and Darse Billings. Algorithms and assessment in com-
puter poker. Technical report, 2006.

[4] Darse Billings, Denis Papp, Jonathan Schaeffer, and Duane Szafron. Op-
ponent modeling in poker. In Proceedings of the fifteenth national/tenth con-
ference on Artificial intelligence/Innovative applications of artificial intelligence,
AAAI ’98/IAAI ’98, pages 493–499, Menlo Park, CA, USA, 1998. Ameri-
can Association for Artificial Intelligence.

[5] Hendrik Blockeel and Luc De Raedt. Top-down induction of first-order
logical decision trees. Artificial Intelligence, 101(1-2):285–297, 1998.

[6] Hendrik Blockeel and Luc De Raedt. Top-down induction of logical deci-
sion trees. In Artificial Intelligence, 1997.

[7] Cameron Browne, Edward J. Powley, Daniel Whitehouse, Simon M. Lu-
cas, Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez,
Spyridon Samothrakis, and Simon Colton. A Survey of Monte Carlo Tree
Search Methods. IEEE Trans. Comput. Intellig. and AI in Games, 4(1):1–43,
2012.

[8] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck.
Monte-carlo tree search: A new framework for game ai. In AIIDE, 2008.

[9] Guillaume M. J-B. Chaslot, Mark H. M. Winands, H. Jaap Van Den
Herik, Jos W. H. M. Uiterwijk, and Bruno Bouzy. Progressive strategies
for monte-carlo tree search. New Mathematics and Natural Computation
(NMNC), 4(03):343–357, 2008.

[10] Ugo Chirico. JIProlog v3.0.3-1 SP1, 2007. http://www.ugosweb.com/
jiprolog.

[11] J Cohen. A coefficient of agreement for nominal scales. Educational and
Psychological Measurement, 20(1):37–46, 1960.

[12] Mehdi Dastani. 2apl: a practical agent programming language. Au-
tonomous Agents and Multi-Agent Systems, 16(3):214–248, 2008.

[13] Aaron Davidson. Using artificial neural networks to model opponents in
texas hold’em. 1999.

[14] Aaron Davidson, Darse Billings, Jonathan Schaeffer, and Duane Szafron.
Improved opponent modeling in poker. pages 493–499. AAAI Press, 2000.

[15] J.A. Davidson and University of Alberta. Dept. of Computing Science. Op-
ponent modeling in poker: learning and acting in a hostile and uncertain envi-
ronment. University of Alberta, 2002.

51

[16] Usama M. Fayyad and Keki B. Irani. Multi-interval discretization of
continuous-valued attributes for classification learning. In IJCAI, pages
1022–1029, 1993.

[17] R. A. Fisher. The use of multiple measurements in taxonomic problems.
Annals of Eugenics, 7(7):179–188, 1936.

[18] BioTools Inc. Meerkat API, 2003. http://www.poker-academy.com/
community.php.

[19] BioTools Inc. Poker Academy Pro v2.5, 2003. http://www.
poker-academy.com.

[20] ISO. ISO/IEC 13211-1:1995: Information technology — Programming lan-
guages — Prolog — Part 1: General core. International Organization for
Standardization, Geneva, Switzerland, 1995.

[21] ISO. ISO/IEC 13211-2:2000: Information technology — Programming lan-
guages — Prolog — Part 2: Modules. International Organization for Stan-
dardization, Geneva, Switzerland, 2000.

[22] Levente Kocsis and Csaba Szepesvri. Bandit based monte-carlo planning.
In In: ECML-06. Number 4212 in LNCS, pages 282–293. Springer, 2006.

[23] Ron Kohavi. A study of cross-validation and bootstrap for accuracy esti-
mation and model selection. pages 1137–1143. Morgan Kaufmann, 1995.

[24] Ron Kohavi and Ross Quinlan. Decision tree discovery. In IN HAND-
BOOK OF DATA MINING AND KNOWLEDGE DISCOVERY, pages 267–
276. University Press, 1999.

[25] Kevin B. Korb, Ann E. Nicholson, and Nathalie Jitnah. Bayesian poker. In
UAI, pages 343–350, 1999.

[26] J. Ladyman. Understanding philosophy of science. Routledge, 2002.

[27] J R Landis and G G Koch. The measurement of observer agreement for
categorical data. Biometrics, 33(1):159–174, 1977.

[28] Tom M. Mitchell. Machine learning. McGraw Hill series in computer sci-
ence. McGraw-Hill, 1997.

[29] Stephen Muggleton and Luc De Raedt. Inductive logic programming:
Theory and methods. J. Log. Program., 19/20:629–679, 1994.

[30] J.F. Nash. Non-cooperative games. Annals of Mathematics, 54(2):286–295,
1951.

[31] John F. Nash. Equilibrium points in n-person games. Proc. of the National
Academy of Sciences, 36:48–49, 1950.

[32] D.R. Papp and University of Alberta. Dept. of Computing Science. Dealing
with imperfect information in poker. University of Alberta, 1998.

52

[33] Marc Ponsen, Geert Gerritsen, and Guillaume Chaslot. Integrating op-
ponent models with monte-carlo tree search in poker. In Proceedings of
Interactive Decision Theory and Game Theory Workshop at the Twenty-Fourth
Conference on Artificial Intelligence (AAAI-10). AAAI press, 2010.

[34] Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, San Mateo, CA, 1993.

[35] Luc De Raedt, editor. Inductive Logic Programming, 19th International Con-
ference, ILP 2009, Leuven, Belgium, July 02-04, 2009. Revised Papers, volume
5989 of Lecture Notes in Computer Science. Springer, 2010.

[36] Stuart J. Russell and Peter Norvig. Artificial intelligence - a modern approach:
the intelligent agent book. Prentice Hall series in artificial intelligence. Pren-
tice Hall, 1995.

[37] T.C. Schauenberg and University of Alberta. Dept. of Computing Science.
Opponent modelling and search in poker. University of Alberta, 2006.

[38] John R. Searle. Minds, brains, and programs. Behavioral and Brain Sciences,
3:417–424, 1980.

[39] Finnegan Southey, Michael Bowling, Bryce Larson, Carmelo Piccione,
Neil Burch, Darse Billings, and Chris Rayner. Bayes bluff: Opponent mod-
elling in poker. In In Proceedings of the 21st Annual Conference on Uncertainty
in Artificial Intelligence (UAI, pages 550–558, 2005.

[40] J.A. Stankiewicz and M.P.D. Schadd. Opponent modelling in stratego.
Technical report, Department of Knowledge Engineering, Maastricht Uni-
versity, 2009.

[41] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data
Mining. Addison-Wesley, 2005.

[42] A.A.J. van der Kleij. Monte-carlo tree search and opponent modeling
through player clustering in no-limit texas hold’em poker. 2010.

[43] Jan Wielemaker. SWI-Prolog v5.11.x, 1990. http://www.swi-prolog.
org.

[44] Jan Wielemaker. An overview of the SWI-Prolog programming environ-
ment. In Fred Mesnard and Alexander Serebenik, editors, Proceedings of
the 13th International Workshop on Logic Programming Environments, pages
1–16, Heverlee, Belgium, december 2003. Katholieke Universiteit Leuven.
CW 371.

[45] Jan Wielemaker. Logic programming for knowledge-intensive interactive appli-
cations. PhD thesis, University of Amsterdam, 2009.

[46] Wikipedia. Game theory — wikipedia, the free encyclopedia, 2012. http:
//en.wikipedia.org/w/index.php?title=Game_theory.

[47] Wikipedia. Poker — wikipedia, the free encyclopedia, 2012. http://en.
wikipedia.org/w/index.php?title=Poker.

53

[48] Ian H. Witten, Eibe Frank, Len Trigg, Mark Hall, Geoffrey Holmes, and
Sally Jo Cunningham. Weka: Practical machine learning tools and tech-
niques with java implementations, 1999.

[49] Michael J. Wooldridge. An Introduction to MultiAgent Systems (2. ed.). Wi-
ley, 2009.

54

