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Abstract

In this thesis we will study the theory of Dunkl operators and Dunkl harmonic polynomials
and have a look at some of the applications. We will also establish the existence of a certain
class of Fischer decompositions of graded vector spaces. The decomposition of L2(S, h2dω)
into Dunkl harmonics follows from a Fischer decomposition which belongs to this class.
The similarities between Dunkl operators and partial derivatives can be expressed through a
certain intertwining operator. The existence of this type of intertwining operator is explained
from a general point of view.
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Chapter 1

Introduction

In 1917, E. Fischer (see [16]) introduced the following remarkable decompositions of the space
P = P (Rm) of R-valued polynomial functions on Rm.
Let j, n ∈ N and let fi ∈ P, 1 ≤ i ≤ j, be a set of linear independent homogeneous polynomials
of degree n. Then we can decompose each polynomial p(x) of degree l > n as p(x) =
q(x) + r(x), with q contained in the ideal (f1, f2, . . . , fj) = Pf1 + · · · + Pfj generated by
f1, . . . , fj , and fi(∂x)r(x) = 0, for 1 ≤ i ≤ j. Here fi(∂x) is the element of the ring R[∂1, . . . ∂m]
which is obtained from fi(x) by replacing each instance of xj with ∂j .
A special case is the harmonic Fischer decomposition, which arises from n = 2, j = 1, f1 = |x|2.
By repeated use of this decomposition we can decompose P as

P =
⊕
l≥0

bl/2c⊕
i=0

|x|2iHl−2i,

where Hl−2i is the space of harmonic polynomials which are homogeneous of degree l − 2i.
We will now introduce the notion of Dunkl operators. These were introduced in 1989 by
Charles F. Dunkl [9] as a tool in his research on the orthogonal decomposition of P with
respect to an inner product defined in terms of a root system R in Rm. Let R be such a
root system, let R+ be a positive system and let G be Weyl group. Let k : R → R be a
G-invariant function (a so-called weight function, we assume its values to be non-negative).
For convenience we write kα = k(α). Let h : Rm → R be defined by

h(x) =
∏
α∈R+

|〈α, x〉|kα .

Let S be the unit sphere in Rm. Then the inner product on P is defined by

〈p, q〉h =

∫
S
p(x)q(x)h(x)2dω,

with dω the normalized rotation invariant measure on S. In other words, restriction to S
induces a linear injection from P onto P |S ⊂ L2(S, h2dω), and the inner product corresponds
to the restriction of the square integrable inner product.
Associated with the fixed weight function k, the Dunkl operators are defined as follows, see
[9].

Tif(x) = ∂if(x) +
∑
α∈R+

kααi
f(x)− f(rα(x))

〈x, α〉
, for f ∈ C1(Rm),
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4 CHAPTER 1. INTRODUCTION

where rα is the reflection in the hyperplane orthogonal to α.
Note that these operators are the ordinary partial derivatives if k = 0. Also note that
Tif = ∂if , if f is G-invariant.
The Dunkl operators are homogeneous of degree −1 and they commute in End(C∞(Rm)) for
a fixed root system and weight function.
In view of those two properties one expects these operators to behave similar to partial
derivatives. In fact, in [10] it was even shown that there exist an operator which intertwines
the actions of the partial derivatives and Dunkl operators. We can use this intertwining
operator to generalize many results from harmonic analysis to the setting of Dunkl operators.
In particular we have a generalized Fourier transform and generalized Fischer decompositions.
It will turn out that the generalized harmonic Fischer decomposition of P naturally induces
an orthogonal decomposition of L2(S, h2dω).
There has also been some research on the application of Dunkl operators to physical systems
(see [2], [6]) and recently the operators have been generalized to Clifford spaces (see [3],[4]).
In Chapters 2 to 3, we will look at the harmonic Fischer decomposition of P and we will give
the explicit decomposition by use of harmonic analysis and some representation theory. In
Chapter 4, we shall show the existence of Fischer decompositions in arbitrary graded vector
spaces. In Chapter 5, we will show the existence of a certain class of Fischer decompositions
of P . In Chapters 6 to 9, we will review many of the results from Dunkl’s papers including
the construction of the above mentioned intertwining operator and the construction of the so
called Dunkl transform. In Chapters 10 to 12 we will give some applications of this transform
to certain types of differential-difference equations. Finally in Chapter 13, we will look at the
existence of intertwining operators in graded vectors spaces. The results from this chapter will
imply uniqueness of the intertwining operator between the Dunkl operators and the partial
derivatives.



Chapter 2

The harmonic Fischer
decomposition

In this chapter we are going to decompose the space of R-valued polynomial functions on
Rm as a direct sum of the vector spaces |x|2iHj , i, j ∈ N, x ∈ Rm, where Hj is the space
of homogeneous harmonic polynomials of degree j on Rm. We shall do this by using some
representation theory.

Denote by P the space of R-valued polynomial functions on Rm. Let Pn be the space of
homogeneous polynomials of degree n on Rm. We have the decomposition

P =
⊕
n∈N

Pn,

as direct sum of vector spaces.
Denote by ∆ : C∞(Rm)→ C∞(Rm) the Laplacian given by

∆ =

m∑
i=1

∂2
i

and denote by E : C∞(Rm)→ C∞(Rm) the Euler operator given by

E =
m∑
i=1

xi
∂

∂xi
.

We will also use the multiplication by |x|2, which maps C∞(Rm) into C∞(Rm).
Since ∂iP ⊂ P and xiP ⊂ P , we can restrict ∆, E and |x|2 to linear operators on P . Denote
by Hn = Pn ∩ ker(∆) the subspaces of harmonic polynomials. Also note that the spaces Pn
are the eigenspaces of E and for p ∈ Pn, E(p) = np.
The main theorem of this chapter is

Theorem 2.1. The space Pn admits the decomposition

Pn = Hn ⊕ |x|2Hn−2 ⊕ |x|4Hn−4 ⊕ . . .

5



6 CHAPTER 2. THE HARMONIC FISCHER DECOMPOSITION

The decomposition in Theorem 2.1 is the harmonic Fischer decomposition and it is an example
of the Fischer decompositions described by E. Fischer in [16]. We will prove the existence of
this decomposition in a different way.
Before we can prove Theorem 2.1, we need some additional lemmas and some representation
theory.

Lemma 2.2. [4, p. 2] The linear span of the operators |x|2, ∆ and E+m/2 in End(C∞(Rm))
equipped with the commutator bracket is a Lie algebra isomorphic to sl2.

Proof. We need to check the commutation relations of these 3 operators. For ∆ and |x|2 we
find

[∆, |x|2]f = ∆|x|2f − |x|2∆f

= 2

m∑
i=1

∂i(|x|2)∂i(f) +

m∑
i=1

∂2
i (|x|2)f

=
m∑
i=1

4E(f) + 2mf

= 4(E +m/2)f.

For E +m/2 and |x|2 we find

[E +m/2, |x|2]f = (E|x|2 − |x|2E)f

=

m∑
i=1

(
|x|2xi∂i − |x|2xi∂i + ∂i(|x|2)xi

)
f

=

m∑
i=1

2x2
i f

= 2|x|2f.

For E +m/2 and ∆ we find

[E +m/2,∆, ]f = (E∆−∆E)f

=

m∑
i=1

(
xi∂

3
i − xi∂3

i − 2∂i(xi)∂
2
i

)
f

= −2
m∑
i=1

∂2
i f

= −2∆f,

so |x|2,∆ and E +m/2 span a Lie algebra isomorphic to sl2.

Note that the rescaled operators 1/2|x|2, 1/2∆ and E +m/2 form a standard sl2-triple. See
also [4, p. 2].
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Lemma 2.3. Let k 6= 0 ∈ N.The operator ∆|x|2 acts as a nonzero scalar on each of the
subspaces |x|2kHn of P . In particular, its action is invertible on |x|2kHn.

Proof. First choose hn ∈ Hn. Using the commutator relations, we see that

∆|x|2hn = |x|2∆hn + 4(E +m/2)hn = 4(n+m/2)hn.

We can compute ∆|x|2khn, by using the Leibniz rule

[Ak, E] =
k−1∑
j=1

Aj−1[A,E]Ak−j ,

with A = |x|2. This gives

∆|x|2khn = |x|2k∆hn +
k−1∑
i=0

|x|2(k−1−i)[|x|2, E]|x|2ihn

= 0 +
k−1∑
i=0

|x|2(k−1−i)4(E +m/2)|x|2ihn

=

k−1∑
i=0

|x|2(k−i−1)4(2i+ n+m/2)|x|2hn

=

k−1∑
i=0

4(2i+ n+m/2)|x|2(k−1)hn

= 4k(n+m/2 + k − 1)|x|2(k−1)hn

:= cnk|x|2(k−1)hn, (2.1)

where we have used that ∆hn = 0 to get the second equality and we have used that |x|2ihn ∈
Pn+2i to get the third equality.

The constants cnk are nonzero and they also depend on m. This dependence is omitted from
the notation, because m is fixed throughout the paper.

Corollary 2.4. For h ∈ Hn we find

∆i|x|2khn =

 k∏
j=k−i+1

4j(n+m/2 + j − 1)

 |x|2k−2ihn

= 4i(k − i+ 1)i(n+m/2 + k − i)i|x|2k−2ihn

= 4i(−k)i(−n− k −m/2 + 1)i|x|2k−2ihn

Here we have used the notation (i)j = i · (i+ 1) · · · · · (i+ j − 1).

Proof. These constants are found by applying Lemma 2.3 repeatedly.

So the eigenspace decomposition of ∆|x|2 looks a lot like the harmonic Fischer decomposition,
but we still need to show that each polynomial can be written as a sum of terms of the form
|x|2khn.
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Proof of Theorem 2.1

We will use induction on n. Since all polynomials of degree 0 and 1 are harmonic, the
decomposition is trivial for n = 0 or n = 1.
Let n ≥ 2 and assume that the decomposition of Pk holds for all k ≤ n − 2. We will show
that Pn can also be decomposed.
Take p ∈ Pn, then ∆p = q ∈ Pn−2. We can use the harmonic Fischer decomposition of Pn−2,
to get q = q1 + |x|2q2 + |x|4q3 + . . . , with qi ∈ Hn−2i. Using Lemma 2.3, we find

∆|x|2q =
∑
i

cn−2i,i|x|2i−2qi.

Define q′ by

q′ =
∑
i

(cn−2i,i)
−1|x|2i−2qi,

then ∆|x|2q′ = q.
This means that the polynomial p − |x|2q′ is harmonic and that the decomposition of p is
given by

p = (p− |x|2q′) + |x|2q′ = (p− |x|2q′) +
∑
i

1/cn−2i,i|x|2iqi,

which shows that
Pn = Hn + |x|2Hn−2 + |x|4Hn−4 + . . . .

Next we need to prove that the decomposition is a direct sum of vector spaces. For this we
need to show uniqueness of the coefficients qi.
Again we will use induction on n. Note that the coefficients are unique for n = 0 and n = 1.
Assume that the sum is direct on Pn−2. Next choose p ∈ Pn arbitrary and assume

p = a0 +
∑
|x|2iai = b0 +

∑
|x|2ibi,

with ai and bi harmonic. Applying ∆ to these equations gives

∆p =
∑

cn−2i,i|x|2i−2ai = b0 +
∑

cn−2i,i|x|2i−2bi.

Because the decomposition for ∆p is unique, we have that ai = bi for i > 0, so a0 = b0 and
the decomposition of Pn is unique.

The following corollary is a special case of [8, p. 39].

Corollary 2.5. Let S be unit sphere {x ∈ Rm : |x| = 1} and let B be the open unit ball
{x ∈ Rm : |x| < 1}. Restriction of the harmonic Fischer decomposition defined in Theorem
2.1 to S leads to the decomposition

L2(S, h2dω) =
⊕̂⊥

n∈N
Hn|S .
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Proof. Let n,m ∈ N, n 6= m. Let p ∈ Hn, q ∈ Hm. Let η be the outward normal vector on
S. We have that

0 =

∫
B̄

(∆p)q − p∆(q)dx

=

∫
S

(
dp

dη
q − pdq

dη

)
dω

=

∫
S
pq(deg(p)− deg(q))dω

= (n−m)

∫
S
pqdω,

where we have used Green’s theorem to get the second equality. Since n 6= m, it follows that∫
S pqdω = 0, so Hn|S⊥Hm|S in L2(S, dω).

Since |x|2n = 1 on the unit sphere, we have that

P |S =
∞∑
n=0

bn/2c∑
i=0

(|x|2iHn−2i)|S = P (|x|2)|S
⊗ ∞∑

n=0

Hn|S =
∞∑
n=0

Hn|S ,

where we have denoted the space of all polynomials in |x|2 by P (|x|2). Since Hn|S⊥Hm|S for
n 6= m, the sum

∑∞
n=0Hn|S is orthogonal. In particular, it is direct.

By Stone-Weierstrass the space P |S is dense C(S), so it is also dense in L2(S, dω). This gives
the decomposition

L2(S, dω) =
⊕̂⊥

n∈N
Hn|S .
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Chapter 3

Construction of a basis for Hn

In this chapter we will use the harmonic Fischer decomposition of Theorem 2.1 to construct a
basis for each of the spaces Hn(n ∈ N). This Fischer decomposition gives rise to projections
πn : Pn → Hn, which project homogeneous polynomials to their harmonic parts in a natural
way. Since Pn has a much larger dimension then Hn, the main problem is to find a set of
functions fi, such that the functions πn(fi) form a basis of Hn.
To solve this problem, we first need to determine the dimension of the space Hn. Next
we will introduce spherical coordinates in more than 3 dimensions and finally we define the
polynomials φnkl in these spherical coordinates, such that the functions πn(φnkl) form a basis
of Hn.

Lemma 3.1. Denote the dimension of Pn(Rm) by p(m,n), then dim(Hn) is given by

dim(Hn(Rm)) = p(m− 1, n) + p(m− 1, n− 1).

Proof. The dimension of Pn(Rm) is equal to (n+m− 1) choose n. To prove this we need to
solve a counting problem.
Each partition ql of a sequence of n+m elements into m parts is given by an m-dimensional
vector l. The number of possible partitions is given by (n + m − 1) choose m − 1, since we
need to choose m − 1 positions where we split the sequence, out of the m + n − 1 possible
positions. There is a one-to-one correspondence between the monomials xk = xk11 . . . xkmm of
degree |k| = n and the partitions ql, given by ki = li = 1, 1 ≤ i ≤ m, so p(m,n) is equal to
n+m− 1 choose n. Here we have used the multi-index notation xk = xk11 . . . xkmm .
From the definition of n choose k it follows that p(m,n) = p(m,n−1) +p(m−1, n) and from
the harmonic Fischer decomposition it follows that Hn ' Pn/(|x|2Pn−2), so

dim(Hn) = p(m,n)− p(m,n− 2)

= p(m− 1, n) + p(m,n− 1)− p(m,n− 2)

= p(m− 1, n) + p(m− 1, n− 1) + p(m,n− 2)− p(m,n− 2)

= p(m− 1, n) + p(m− 1, n− 1).

Definition 3.2. For m ≥ 2, let U be the open subset (0,∞)× (0, π)m−2× (0, 2π) of Rm and
denote the elements of U by (r, θ1, . . . , θm−1).

11
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Define the function ζ : Ū → Rm by

ζi(r, θ1, . . . , θm−1) = r
i−1∏
k=1

sin(θk) cos(θi) for 1 ≤ i < m, (3.1)

ζm(r, θ1, . . . , θm−1) = r

m−1∏
k=1

sin(θk). (3.2)

The numbers (r, θ1, . . . , θm−1) are called the spherical coordinates of the point ζ(r, θ1, . . . , θm−1) ∈
Rm.

Note that for m = 2, Definition 3.2 gives the usual polar coordinates on R2 and for m = 3
Definition 3.2 gives the usual spherical coordinates on R3.

Theorem 3.3. The map ζ : Ū → Rm is surjective. Let V be the open set
Rm \ {x ∈ Rm|xm = 0, xm−1 ≥ 0}. The map ζ|U : U → V is a C∞ diffeomorphism.

Proof. For x ∈ Rm, x 6= 0, write

x =
m∑
i=1

xiei,

with ei the ith standard basis vector of Rm. Define

rk =

√√√√ m∑
i=k

x2
i , and yk =

m∑
i=k+1

xiei,

so yk is the projection of x onto the last m − k coordinates and rk is the norm of yk. Also
note that yk−1 = yk + xkek, so rk − 1 ≥ rk. Also note that r1 = |x| = r and rm = |xm|.
For 1 ≤ k ≤ m−2, there is a unique θk ∈ [0, π], such that xk = rk cos(θk) and rk+1 = rk sin(θk).
This can be seen by looking at the (ek, yk)-plane and the triangle (xkek, yk−1, 0) in this plane.
There also is a unique θm−1 ∈ [0, 2π), such that xm−1 = rm−1 cos(θm−1) and xm = rm−1 sin(θm−1).
This shows that ζ : Ū → Rm is surjective.
Next assume that ζ(r, θ1, . . . , θm−1) = ζ(r′, θ′1, . . . , θ

′
m−1), for two points in Ū . Then either

r = r′ = 0 and θi 6= θ′i for some i, or θi = θ′i, for i ≤ k < m, θk = θ′k = 0 or π and θi 6= θi for
some i > k. However all those points are elements of Ū \ U so ζ|U is injective.
To show that ζ : U → V is surjective, we need to compute its image. First look at the image
of Ū \U under ζ. If u ∈ Ū \U , either r = 0, or one the angles θ is 0 or π. In those cases xm = 0
and xm−1 ≥ 0 by the positive of the sine on (0, π). So ζ(Ū \U) = {x ∈ Rm|xm = 0, xm−1 ≥ 0}.
Suppose that for some u ∈ U , ζ(u) ∈ {x ∈ Rm|xm = 0, xm−1 ≥ 0}. Then θm−1 = π by the
definition of ζm. However this means that ζm−1 < 0, which leads to a contradiction.
This shows that ζ : U → V is a bijection.
Next we need to prove that the determinant of the total derivative Dζ is nonzero on U . Here
we can even prove that det(Dζ) = rm−1 sin(θ1)m−2 sin(θ2)m−3 . . . sin(θm−3)2 sin(θm−2)1 by
induction over m and a direct computation.
We shall denote the total derivative Dζ by Jm to show the m-dependence explicitly. Note
that the superscript m is an index and not a power. Jm is a m×m-matrix.
For m = 1, we have J1 = 1, so det(J1) = 1
For m = 2, we have

J2 =

(
cos(θ1) −r sin(θ1)
sin(θ1) r cos(θ1)

)
,
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so det(J2) = r.
Now suppose that det(JM ) = rM−1 sin(θ1)M−2 sin(θ2)M−3 . . . sin(θM−3)2 sin(θM−2)1 for some
M ∈ N. We need to show that det(JM+1) = rM sin(θ1)M−1 sin(θ2)M−2 . . . sin(θM−2)2 sin(θM−1)1.
To do this we write

JM+1 =


JM11 . . . JM1m 0
...

...
JMM−1,1 . . . JMM−1,m 0

JMM,1 cos(θM ) . . . JMM,m cos(θM ) −r sin(θM )
∏M−1
i=1 cos(θM )

JMM,1 sin(θM ) . . . JMM,m sin(θM ) r cos(θM )
∏M−1
i=1 cos(θM )

 .

To compute the determinant of JM+1, we expand the matrix along the (M + 1)th column,
which gives

det(Jm+1) = det(Jm)

[
cos(θM ) · r cos(θM )

M−1∏
i=1

cos(θM )− sin(θM ) · −r sin(θM )
M−1∏
i=1

cos(θM )

]

= r det(Jm)

M−1∏
i=1

cos(θM )

= rM sin(θ1)M−1 sin(θ2)M−2 . . . sin(θM−2)2 sin(θM−1)1,

where we have used that sin2(θM ) + cos2(θM ) = 1 to get the second equation. So by the
induction hypothesis det(Dζ) = rm−1 sin(θ1)m−2 sin(θ2)m−3 . . . sin(θm−3)2 sin(θm−2)1, which
is nonzero on all of U .
So ζ : U → V is a C∞ diffeomorphism.

Lemma 3.4. Let p(x) = xk be a monomial of degree |k| = n in Cartesian coordinates on Rm,
where we have used the multi-index notation xk = xk11 . . . xkmm , for k ∈ Nm. We can rewrite
p(x) in spherical coordinates as

p ◦ ζ(r, θ1, . . . , θm−1) = ζ(r, θ1, . . . , θm−1)k =

rn
m−2∏
i=1

(sin(θi)
n−k1−···−ki cos(θi)

ki) sin(θm−1)km cos(θm−1)km−1 ∈ C∞(U). (3.3)

The function p ◦ ζ can be extended to C∞-function on Ū .

Proof. Formula (3.3) is proven by a direct computation using equations (3.1) and (3.2). We
can extend ζ to a function from Ū to Rm in a natural way. For x ∈ Rm the preimage ζ−1(x) is
the set of points u ∈ Ū , with ζ(u) = x. By a direct computation we see that p◦ζ(u) = p◦ζ(u′),
if both u, u′ ∈ ζ−1(ζ(u)). Because the sine and cosine are smooth functions the extension of
p ◦ ζ to Ū is also a smooth function.

Definition 3.5. Let n ∈ N and let I be the set {(k, l) ∈ Zm−2
+ × Z|

∑
ki + |l| = n}. Define

the functions φn,k,l by

φn,k,l =


rn
∏m−1
i=1

[
sin(θi)

n−k1···−ki−1 cos(θi)
ki
]

cos(lθm−1); l ≥ 0,

rn
∏m−1
i=1

[
sin(θi)

n−k1···−ki−1 cos(θi)
ki
]

sin(−lθm−1); l < 0.

Define the linear spaces Φn by Φn = span{φn,k,l|(k, l) ∈ I}.
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Lemma 3.6. dim(Φn) = dim(Hn) for n ∈ N.

Proof. In Lemma 3.1 it is shown that dim(Hn) = dim(Pn(Rm−1)) + dim(Pn−1(Rm−1)) which
is also equal to the dimension of Pn(Rm−1) × Pn−1(Rm−1). We shall denote this space by Z
and we write the elements of Z as (f, g) for f ∈ Pn(Rm−1), g ∈ Pn−1(Rm−1). Denote the
monomials in Pn(Rm−1) by xi and the monomials in Pn−1(Rm−1) by yj , then a basis of Z is
given by {(xi, 0), (0, yj)}, with |i| = n or |j| = n− 1.
By taking the xm−1-dependence out of the multi-index, we can write xi =

∏m−1
a=1 xiaa ≡

xkxlm−1, where k is a (m−2)-dimensional multi-index and l = im−2. We can use this to write
the basis elements of Z of the form (xi, 0) as (xkxlm−1, 0) = ek,l, which gives a one-to-one
correspondence between those basis elements and elements of the set {(k, l) ∈ I, l ≥ 0}.
We can also use relation to write the basis elements of Z of the form (0, yj) as (0, ykyl−1

m−1) =
ek,−l, l < 0, which gives a one to one correspondence between basis elements and elements of
the set {(k, l) ∈ I|l < 0}.
By combining these two results, we see that dim(Hn) = #I = dim(Φn).

Theorem 3.7. The functions φn,k,l defined in Definition 3.5 are polynomials in the coordi-
nates xi. We have the direct sum decomposition Φn ⊕ r2Pn−2 = Pn.

Proof. In the proof we will be using the trigonometric relations

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b), (3.4)

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b). (3.5)

We can use these relations to write sin(lθm−1) and cos(lθm−1) as polynomials of degree l in
sin(θm−1) and cos(θm−1), which gives

cos(lθm−1) =
l∑

i=1

ai cos(θm−1)l−i sin(θm−1)i, (3.6)

and

sin(lθm−1) =
l∑

i=1

bi cos(θm−1)l−i sin(θm−1)i. (3.7)

By using formulae (3.6) and (3.7), we can rewrite the functions φn,k,l in Lemma 3.5 as

φn,k,l =


rn
∏m−1
i=1

[
sin(θi)

n−k1···−ki−1 cos(θi)
ki
]∑l

j=1 ai cos(θm−1)l−j sin(θm−j)
i; l ≥ 0,

rn
∏m−1
i=1

[
sin(θi)

n−k1···−ki−1 cos(θi)
ki
]∑−l

j=1 bi cos(θm−1)−l−j sin(θm−1)j ; l < 0.

By comparing this with (3.3), we see that each of the terms in the sum equal to (ζ(r, θ1 . . . , θm−1)α,
for some multi-index α, so each function φn,k,l(r, θ1 . . . , θm−1) can be written as p(ζ(r, θ1 . . . , θm−1)),
for some polynomial p on Rm.
In the next step, we will use the decomposition

Pn(Rm) = ⊕ni=0Pn−i (Rm−2)⊗ Pi(R2),

naturally induces by the linear isomorphism Rm → Rm ⊕ R2 given by

(x1, . . . , xm)→ (x1, . . . xm−2)⊕ (xm−1, xm).
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Choose i ≥ 0 arbitrary. Take as basis on Pn−i(Rm−2) the usual basis of monomials. For p
such a basis element define the subspace Sp of Pn(Rm) by

Sp = pPi(R2).

Then
Pn(Rm) = ⊕i,p Sp.

By rewriting the elements of Sp in spherical coordinates, we see that this space has a basis
given by ej = q cosj(θm−1) sini−j(θm−1), for 0 ≤ j ≤ i, with

q = p×
m−2∏
j=1

sin(θj)
i = rn

m−2∏
j=1

(sin(θj)
n−k1−···−kj cos(θj)

kj ).

The values kj are fixed by the choice of p and we can see that

Φn ∩ Sp = {φn,k,±l}.

Note that for i = 0, the space Sp is 1-dimensional space with basis element q. In this formula
q contains all dependencies besides the θm−1-dependence. The elements of Sp only differ in
the θm−1-dependence.
Another basis of Sp is given by

fj =

{
q cos(jθm−1) if j is even,
q sin((j − 1)θm−1) if j is odd.

(3.8)

As before 0 ≤ j ≤ i. By using the indices n, l = n− i and the indices kj from the definition
of p, we see that fj = φn,k,l for even j, and fj = φn,k,−l for odd j. The other elements are
clearly in r2Pn−2(Rm), which shows that Sp can be decomposed as

Sp = (Sp ∩ r2Pn−2)⊕ (Sp ∩ Φn). (3.9)

For i = 0, the space Sp is one-dimensional and has f0 = q as only basis element. The basis
element q = φn,k,0 for the n, k associated with p.
The elements fj defined in (3.8) depend on the choice of the basis element p. The set of all
elements fj(p) is a basis for all of Pn(Rm), because

Pn(Rm) = ⊕p,iSp.

Together with (3.9), this shows that we have the decomposition

Pn(Rm) = X ⊕ Φn,

where X = r2Pn−2 ∩ span(fj(p)). Because of Lemma 3.6 the space X = Pn/Φn is a linear
space of the same dimension as r2Pn−2, which shows that X = r2Pn−2 and

Pn(Rm) = r2Pn−2 ⊕ Φn.
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Now we have enough tools to construct a basis of Hn.
Consider the two direct sum decompositions of Pn, given by

Pn = Hn ⊕ r2Pn−2 and Pn = Φn ⊕ r2Pn−2.

The associated inclusion maps are given by f1 : Hn → Pn and f2 : Φn → Pn. The associated
projections are given by π1 : Pn → Hn and π2 : Pn → Φn.
The map π1 ◦ f2 is a bijective linear map from Φn into Hn, with inverse π2 ◦ f1, since the
equivalence classes of Pn with respect to π1 and π2 are the same. This means in particular,
that a basis of Φn is sent to a basis of Hn, so one basis of Hn is given by

ψn,k,l = π2 ◦ i1(φn,k,l) = π2(φn,k,l),

where the elements φn,k,l were defined in Definition 3.5.
Let f be an element of Pn. By Theorem 2.1, we can write f =

∑
|x|2jfn−2j , where each

fn−2j ∈ Hn−2j and each fn−2j is unique. We want to find linear maps πnj : Pn → Hn−2j such
that πnjf = fn−2j . For this we need that

|x|2i∆if =
∑

λij |x|2jfn−2j , (0 ≤ i ≤ n/2),

where the constants λij can be found from Corollary 2.4. This gives us a linear system of
1 + bn/2c equations, in the 1 + bn/2c unknowns fm−2j . We will look again at the constants
λij in Theorem 6.26 on page 38, and we will solve this system of equations in Corollary 6.30.
The linear function πn0 : Pn → Hn is equal to the projection π2, which was used to construct
the basis of Hn.



Chapter 4

A more general description of
Fischer decompositions

We can look at the Fischer decomposition in a more abstract way, which will give us an easier
way to prove existence of such decompositions.

Definition 4.1. Let V be a vector space, with inner product 〈·, ·〉. Let A,B be linear maps
from V to V . Then A,B are formal adjoints if and only if 〈Af, g〉 = 〈f,Bg〉, for all f, g ∈ V .

Lemma 4.2. If B is a formal adjoint of A : V →W then B is unique.

Proof. Suppose B̃ is another formal adjoint of A. Then for all f ∈ V and all g ∈W we have
that 〈f,Bg〉 = 〈Af, g〉 = 〈f, B̃g〉, so Bg = B̃g for all g ∈W .

Lemma 4.3. Let V be a graded vector space V = ⊕n∈ZVn, with dimVn < ∞ ∀n ∈ Z and
inner product 〈·, ·〉, such that Vn⊥Vm if n 6= m. If the map A : V → V has degree k with
respect to this grading, which means that A(Vn) ⊂ Vn+k, then A has a formal adjoint.

Proof. Write An for the map A|Vn : Vn → Vn+k. The spaces Vn and Vn+k are finite dimen-
sional, so for w ∈ Vn+k, we can define the vector A∗n(w) ∈ Vn by 〈A∗n(w), ·〉 = 〈w,A(·)〉 for
all v ∈ Vn. The functionals 〈A∗n(w), ·〉 and 〈w,A(·)〉 are elements of V ∗n , the dual space of
Vn. The map A∗n : Vn+k → Vn is the adjoint of An. Let B = ⊕n∈ZA∗n, then B is the formal
adjoint of A.

Remark 4.4. In literature the adjoint of the operator A is often denoted by A∗.

Lemma 4.5. Let V = ⊕n∈ZVn be a graded vector space with inner product 〈·, ·〉, such that
Vn⊥Vm if n 6= m, Vn = 0 if n < 0 and Vn is finite dimensional for all n ∈ Z.
Let A be a linear map from V to V of degree −k, so A(Vn) ⊆ Vn−k. Let B be the formal
adjoint of A. Then the map B is a linear map of degree k.

Proof. Let v ∈ Vs and w ∈ Vt. Then 〈Bv,w〉 = 〈v,Aw〉 = 0 if s 6= t− k.
So for all t 6= s+ k and for all w ∈ Vt, 〈b(v), w〉 = 0, which implies that b(v) ∈ Vs+k.

Lemma 4.6. Let V,W be finite dimensional linear spaces with positive definite inner product,
A : V → W and B : W → V linear maps and let A be the adjoint of B. Then we have that
V = im(B)⊕ ker(A). We also have that W = im(A)⊕ ker(B).

17
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Proof. For the first part need to show that ker(A) and im(B) are orthogonal, that their
intersection is 0. We also need to show that no nonzero element of V is orthogonal to both
ker(A) and im(B). Let x ∈ ker(A). Then 〈Ax, y〉 = 0 for all y ∈ W . From this follows that
〈x,By〉 = 0, ∀y ∈W and x⊥im(B).
Let x ∈ im(B). Then x = Bz for some z ∈ W . From this follows that 〈x,Bz〉 = 〈Ax, z〉 6= 0
by the positive definiteness of the inner product, so x 6∈ ker(A).
Let x ∈ im(B) and y ∈ ker(A). Then 〈x, y〉 = 〈Bz, y〉 = 〈z,Ay〉 = 0, so x⊥ ker(A).
Let x⊥im(B) and x⊥ ker(A). Then 〈Ax, y〉 = 〈x,By〉 = 0, ∀y ∈W, which implies x ∈ ker(A),
so x = 0.
This means we can write V = ker(A) ⊕ im(B), because ker(A)⊥im(B), ker(A) ∩ im(B) = 0
and no nonzero element of V is orthogonal to both ker(A) and im(B).
The second part follows by interchanging the roles of A and B.

Corollary 4.7. Let V,W be finite dimensional linear spaces with positive definite inner prod-
uct, A : V → W and B : W → V linear maps and let A be the adjoint of B. Then A is
surjective if and only if B is injective.

Proof. If A is surjective, we have that W = im(A), so by Lemma 4.6 the Kernel of B is 0 and
B is injective.
If B is injective, it follows from Lemma 4.6 that W = im(A), so A is surjective.

Theorem 4.8. Let V = ⊕n∈ZVn be a graded vector space with inner product 〈·, ·〉, such that
Vn⊥Vm if n 6= m, Vn = 0 if n < 0 and Vn is finite dimensional for all n ∈ Z.
Let A be a surjective linear map from V to V of degree −k with formal adjoint B. Define
Hn = Vn ∩ ker(A). Then the spaces Vn can be decomposed as

Vn =

bn/kc⊕
i=0

Bi(Hn−ki).

This decomposition is a Fischer decomposition.

Proof. By Lemma 4.5 the space B(Vn−k) ⊆ Vn, ∀n ∈ Z. By the surjectivity of A, we have
that A(Vn) = Vn−k. By Corollary 4.7 it follows that B|Vn−k is injective for all n ∈ Z.
By Lemma 4.6 we have the decomposition

Vn = B(Vn−k)⊕ Vn ∩ ker(A) = B(Vn−k)⊕Hn.

By repeating this argument we find that

Vn = B(B(Vn−2k)⊕Hn−k)⊕Hn = B2(Vn−2k)⊕B(Hn−k)⊕Hn,

where we the injectivity of B is needed to show that sum on the right hand side is a direct
sum. Since Vi = 0 for i < 0, we only have to repeat these steps a finite number of times,
which leads to

Vn =

bn/kc⊕
i

Bi(Hn−ki).



Chapter 5

Fischer decompositions of P (Rm)

Let P = P (Rm) and let Pn be the space of homogeneous polynomials of degree n. Let
p ∈ Pk, q ∈ Pn. It was shown by E. Fischer in [16] that q = ap + b, with a ∈ Pn−k and
b ∈ Pn ∩ ker(p(∂)). Here p(∂) is the element of the ring R[∂1, . . . ∂m], which is obtained from
p(x) by replacing each instance of xj with ∂j . This will be made more precise in Definition
5.1. Repeated use of the mentioned result leads to the Fischer decomposition

P =
∞⊕
n=0

bn/kc⊕
i=0

pi (Pn−ki ∩ ker(p(∂)).

In this chapter we will use the results from Chapter 4 to show the existence of this Fischer
decomposition in another way.
Before we do this, we need to construct an appropriate inner product on P . A special case of
this is the harmonic Fischer decomposition, which was used in Section 2. However, the proof
with the sl2-representation does not work in the general case.

Definition 5.1. Let p be a formal power series in m variables, x1, . . . , xm.
Define by p(∂) the formal power series, which is obtained by replacing the variable xi with
the partial derivative ∂/∂xi in the expression of p(x).
We will sometimes use the notation p(∂x) to emphasize that we take partial derivatives with
respect to the variables x1, . . . , xm.

The operator p(∂) is an element of the ring R = R[[∂1, . . . , ∂m]]. We have the natural action
of R on P (Rm) given by

(r, p) 7→ r(∂)p(x), r ∈ R, p ∈ P.
By using multi-index notation, we can write

r =
∞∑
n=0

∑
|α|=n

cα∂
α, with cα ∈ R.

Let p be a polynomial of degree at most k, then

r(∂)p =
∞∑
n=0

∑
|α|=n

cα∂
αp =

k∑
n=0

∑
|α|=n

cα∂
αp,

which is a finite sum, so the action is well-defined for each element of R.
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Definition 5.2. For p, q ∈ P = P (Rm), define the bilinear form [·, ·] : P × P → R by

[p, q] = p(∂)q(x)|x=0.

Lemma 5.3. The form [·, ·] defines an inner product on P . On the monomials this form is
given by [xk, xl] = δklk!, where we have used the multi-index notation.

Proof. This form is clearly bilinear, so we can use its definition on the monomials to prove that
it is an inner product. Note that in the one dimensional case, without using the multi-index
notation, we have

〈xk, xl〉 =
∂k

∂xk
xl|x=0 = δklk!

Since the partial derivatives commute, we find in the multidimensional case that

〈xk, xl〉 =

m∏
i=1

(
∂ki

∂xki1

xlii

)
x=0

=

m∏
i=1

(δkiliki!)

= δklk!,

where we have used multi-index notation.
Choose p, q ∈ P arbitrary. We can write these polynomials as sums of monomials, which
leads to

[p, q] =
∑
k,l

pkql[x
k, xl] =

∑
k

k!pkqk.

From this formula we also see that the product is symmetric and that [p, p] = 0 implies that
p = 0, so [·, ·] is an inner product on P .

Definition 5.4. The reproducing kernel K̂ : Rn × Rn → R is defined by

K̂(x, y) = exp〈x, y〉.

We also define K̂n(x, y) : Rn × Rn → R by K̂n(x, y) = 〈x, y〉n/n!.

Note that each K̂n is a homogeneous polynomial of degree n in the variables xi, with the
variables yi viewed as parameters. Each K̂n is also a homogeneous polynomial of degree n
in the variables yi, with the variables xi viewed as parameters. We also have that K̂(x, y) =∑∞

n=0 K̂n(x, y).

By using Definition 5.1 twice, we can view K̂(∂x, ∂y) as an element of the polynomial ring
R × R, where the first component contains the ∂x-terms and the second component the ∂y-
terms.

Lemma 5.5. Let p be a polynomial in m variables. By Definition 5.1, we can view K̂(∂x, y)
as an element of R, with the yi as parameters. Then we have

K̂(∂x, y)p(x) = p(y).

By using the natural action of R×R on P × P it follows that

K̂(∂x, ∂y)p(x)q(y)|y=0 = [p, q].
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Proof. In the following we will use the multi-index notation. Since K̂(x, y) has a convergent
series expansion, we can write

K̂(x, y) =
∞∑
n=0

∑
|α|=n

cαx
αyα,

and by using Definition 5.1, we get

K̂(∂x, y) =
∑
α

cα∂
α
x y

α,

with constants cα ∈ R. Here we have an infinite sum over all possible values of α, but only a
finite number of terms is nonzero, so the sum is well-defined.
Because of linearity, we only have to check the lemma for monomials.

K̂(∂x, y)xβ =
∑
α

cα∂
α
x y

αxβ

=
∑
α

cαy
α[xα, xβ]

=
∑
α,β

cαα!δαβy
α

= β! cβy
β, (5.1)

where we have used the inner product defined in Lemma 5.3.
The constant cβ is the coefficient of xβyβ in K̂(x, y). Assume |β| = k. We only have to

expand K̂k(x, y) to find the coefficient cβ.
For this we need the multinomial coefficients given by

1

k!
(x1 + · · ·+ xm)k =

∑
α=|k|

1

α!
xα. (5.2)

For m = 2 this formula gives the binomial coefficients

1

k!
(x1 + x2) =

k∑
j=0

1

j!

1

(k − j)!
xj1x

k−j
2 .

The general case can be proven by induction over m, so suppose the formula is correct for
m = l, then by using the binomial coefficients

1

k!
((x1 + · · ·+ xl) + xl+1)k =

k∑
j=0

1

j!

1

k − j
(x1 + xl)

jxk−jl+1

=

k∑
j=0

 1

(k − j)!
xk−jl+1

∑
α=|j|

1

α!
xα


=

∑
β=|k|

1

β!
xβ,
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where α is a multi-index over Nl and β is a multi-index over Nl+1.
Since Kk(x, y) = (x1y1 + · · ·+xmym)k/k!, by equation (5.2) the coefficients in equation (5.1),
are given by cβ = 1/β! and so

K̂(∂x, y)xβ = yβ,

and by linearity
K̂(∂x, y)p(x) = p(y).

By the same argument, we see that

K̂(∂x, ∂y)p(x) = p(∂y)

and
K̂(∂x, ∂y)p(x)q(y)|y=0 = p(∂y)q(y)|y=0 = [p, q].

The first formula in Lemma 5.5 is the reason why K̂ is called a reproducing kernel.
For the operator K̂n we have the following property

Lemma 5.6. Define by πn the projection from P onto Pn. Then

Kn(∂x, y)p(x)|x=0 = πnp(y).

Proof. Take p ∈ Pk. Assume k > n, then Kn(∂x, y)p(x) is a homogeneous polynomial of
degree k − n in the variables x. Since k − n > 0 we have that

Kn(∂x, y)p(x)|x=0 = 0 = πnp(y),

because Pk ∩ Pn = 0, for n 6= k.
Next assume k < n. Then Kn(∂x, y)p(x) = 0, since we are differentiating a polynomial of
degree k, more than k times, which gives 0. So again

Kn(∂x, y)p(x)|x=0 = 0 = πnp(y).

For n = k, we have by Lemma 5.5 and the previous two statements

p(y) = K̂(∂x, y)p(x)
∞∑
n=0

K̂n(∂x, y)p(x) = K̂k(∂x, y)p(x) = πkp(x).

The kernel K̂ extended to a complex differentiable map C×C→ C is also used to define the
Fourier transformation, which is given by

F (f)(y) =
1

(2π)m/2

∫
Rm

f(x)K̂(x,−iy)dx =
1

(2π)m/2

∫
Rm

f(x) exp(−i〈x, y〉)dx,

for f ∈ L2(Rm).

Theorem 5.7. Let p =
∑
|α|=k aαx

α, (aα ∈ R) be an arbitrary homogeneous polynomial
of degree k and let D be the associated differential operator p(∂/∂x). Define the subspaces
Hn = Pn ∩ ker(D). Then Pn admits the Fischer decomposition

Pn =
⊕
i

piHn−ki.
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Proof. Take the vector space V = P , with the inner product defined in Lemma 5.3. The space
P has a natural grading given by Vn = Pn. By a direct computation we see that pVn ⊂ Vn+k

and DVn ⊂ Vk−n.
We also have that

[pf, g] =
∑
|α|=k

aα(∂)αf(∂)g

=
∑
α

aαf(∂)(∂)αg

= [f,Dg],

so p and D are formal adjoints.
Since p : Pl → Pk+l, l ∈ N is injective, it follows by Corollary 4.7 that D : Pk+l → Pl is
surjective, from which it follows that D : P → P is surjective.
Now we can apply Theorem 4.8 and we obtain the Fischer decomposition.
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Chapter 6

Dunkl operators

The Dunkl operator Tu, (u ∈ Rm) is a generalization of the partial derivative ∂u, which is
still homogeneous of degree −1. In the following chapters we will define this operator, and
show that there are related decompositions similar to the Fischer decompositions in Theorem
2.1 and Theorem 5.7. We will also show that there is an equivalent of the Fourier transform
for the Dunkl operators and use this transform to solve certain types of differential-difference
equations.

We start from the space Rm, with the usual inner product. For α ∈ Rm \ {0} the reflection
rα is defined by

rα(x) = x− 2〈α, x〉
〈α, α〉

α, (x ∈ Rm).

Definition 6.1. A root system in Rm is a finite subset R of Rm \ {0}, such that rα(R) = R,
for all α ∈ R.
A root system is called reduced if R ∩ Rα = ±α, ∀α ∈ R.

From now on, we assume that R is reduced. The root system can be written as a disjoint
union R = R+ ∪ −(R+), where the two sets are separated by a hyperplane through 0. We
can renormalize all the roots such that 〈α, α〉 = 2.

Definition 6.2. The Weyl group of R is the finite group G which is generated by the reflec-
tions rα, for α ∈ R. The Weyl group has a natural action on R, which is given by (w,α) 7→ wα,
for w ∈ G,α ∈ R. A weight function on R is a G-invariant function k : R→ R.

It is convenient to use the notation k(α) = kα, α ∈ R. In the following chapter, we will assume
that kα is positive.
We will shortly discuss negative weight functions in Section 7.3.

Definition 6.3. [9, Def. 1.3, 1.4] For a given root system R with weight function k, the
k-gradient, or Dunkl gradient, ∇k : C1(Rm)→ C(Rm)⊗ Rm is the operator defined by

∇kf(x) = ∇f(x) +
∑
α∈R+

αkα
f(x)− f(rαx)

〈α, x〉
= ∇f(x) +

1

2

∑
α∈R

αkα
f(x)− f(rαx)

〈α, x〉
.

For a nonzero vector u ∈ Rm, the associated Dunkl operator Tu : C1(Rm) → C(Rm), is
defined by

(Tuf)(x) = 〈∇kf(x), u〉.
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To simplify the notation we define the difference operator sα : C1(Rm)→ C0(Rm) by

sαf =
f(x)− f(rαx)

〈α, x〉
,

so the Dunkl gradient can be written as

∇kf = ∇f +
∑
α∈R+

αkαsαf.

Note that ∇k(f) is not well-defined at the points x ∈ Rm, with 〈x, α〉 = 0 for some α ∈ R,
because sαf(x) = (f(x) − f(x))/0 = 0/0 at these points. However, if f ∈ C1(Rm), we can
use the identity

f(x)− f(rαx) = 〈x, α〉
∫ 1

0
∂αf(tx+ (1− t)rαx)dt, (6.1)

to define the Dunkl operators for all x ∈ Rm, because the directional derivative is continuous
(See [14, p. 3]).
This identity is proven by noting that

d

dt
f(tx+ (1− t)rαx) =

n∑
i=1

∂

∂xi
(f(tx+ (1− t)rαx)αi) 〈x, α〉 = ∂αf(tx+ (1− t)rαx)〈x, α〉.

By using (6.1) we see that

sαf(x) =

∫ 1

0
∂αf(tx+ (1− t)rαx)dt for 〈x, α〉 6= 0.

Thus, if f ∈ C1(Rm), it follows that sαf uniquely extends to a continuous function on Rm. By
using this, the functions Tuf , f ∈ C1(Rm) given in Definition 6.3 are extended to continuous
functions on all of Rm.

Lemma 6.4. The Dunkl operators send homogeneous polynomials of degree n to homogeneous
polynomials of degree n− 1.

Proof. It is clear that the partial derivative sends homogeneous polynomials of degree n
to homogeneous polynomials of degree n − 1, so we only need to show that the operators
sα, α ∈ R+, have this property as well. It suffices to show this for a monomial p(x) = xβ of
degree n. This gives

sαp(x) =
p(x)− p(x− 〈x, α〉α)

〈x, α〉

=
xβ − (x− 〈x, α〉α)β

〈x, α〉

=
(xβ − xβ + 〈x, α〉pβ(x))

〈x, α〉
= pβ(x),

where pβ is a homogeneous polynomial of degree n− 1 for each β.
So Tupn is also a homogeneous polynomial of degree n− 1.



27

Lemma 6.5. [14, Thm 2.4, Cor 2.5] For f, g ∈ C1(Rm), the Leibniz rule can be generalized
to

Tu(fg)(x) = (Tuf(x))g(x) + f(x)Tug(x)−
∑
α∈R+

kα
〈α, u〉
〈α, x〉

(f(x)− f(rα(x))(g(x)− g(rα(x)).

If f or g is G-invariant this simplifies to

Tu(fg) = Tu(f)g + fTug.

Proof. A direct computation shows that

Tu(fg)(x) = (∂uf)(x)g(x) + f(x)(∂ug)(x) +
∑
α∈R+

kα
〈α, u〉
〈α, x〉

(f(x)g(x)− f(rα(x))g(rα(x))

= (∂uf)(x)g(x) + f(x)(∂ug)(x) +
∑
α∈R+

kα
〈α, u〉
〈α, x〉

[f(x)g(x)− f(rα(x))g(rα(x))

+ f(x)g(rα(x))− f(x)g(rα(x)) + f(rαx)g(x)− f(rα(x))g(x) + f(x)g(x)− f(x)g(x)]

= Tuf(x)g(x) + f(x)Tug(x)−
∑
α∈R+

kα
〈α, u〉
〈α, x〉

(f(x)− f(rα(x))(g(x)− g(rα(x)).

In the last step was used that first and fourth term sum to the difference part of Tuf(g) and
that the sixth and the seventh term sum to the difference part of fTu(g).
If f is G-invariant, f(x) = f(rα(x))∀α, so the third term is zero. Also, if g is G-invariant,
g(x) = g(rα(x))∀α, so the third term is again zero.

The left regular action of G on the space C(Rm) is given by L(w)f(x) = f(w−1x), for w ∈ G
and f ∈ R.

Lemma 6.6. [9, p. 169] For f ∈ C1(Rm), w ∈ G, we have the relation

(∇kL(w−1)f)(x) = w∇kf(wx).

Proof. For g ∈ C1(Rm) we have that

∇k(L(w−1)f)(x) =
m∑

i=1,j=1

ei

(
∂

∂xi
f

)
(wx)wij +

m∑
i=1

∑
α∈R+

kααi
f(wx)− f(rαwx)

〈wx, α〉

= w(∇f)(wx) +

m∑
i=1

∑
α∈R+

kααi
f(wx)− f(rαwx)

〈wx, α〉

If wrβ = rαw, we have that kα = kβ and wrβw
−1α = rαα = −α, so rβw

−1α = −w−1α, which
shows that β = w−1α. Applying this to the equation gives

∇k(L(w−1)f)(x) = w(∇f)(wx) +

m∑
i=1

∑
α∈R+

kw−1α(ww−1α)i
f(wx)− f(wrw−1αx)

〈x,w−1α〉

= w(∇f)(wx) + w
∑
α∈R+

kαα
f(wx)− f(wrαx)

〈x, α〉

= w∇kf(wx),

where we have changed the summation index to w−1α in the second step.
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To get an idea of the effect of the Dunkl operators, we look at effect of Dunkl operators on
polynomials for some of the smaller root systems.

Example 6.7. Consider the root system A1, with as only positive root α =
√

2 and set
kα = k. Then

T1x
n = nxn−1 +

√
2k
xn − (−1)nxn√

2x
,

which gives

T1x
n =

{
(n+ 2k)xn−1 for n is odd,

nxn−1 for n is even.

This shows that Tif = ∂if if the function is invariant under the reflection in rα.

Example 6.8. Consider the root system B2, with weight function k, which has the positive
roots (

√
2, 0), (0,

√
2), (−1, 1) and (1, 1). By the G-invariance of k we must have that k(

√
2,0) =

k(−
√

2,0) = l1 and k(−1,1) = k(1,1) = l2.

Denote by ρ(n), n ∈ N, the function which gives 0 if n is even and 1 if n is odd.
We use (x, y) as basis on R2. From the previous example we see that

s(
√

2,0)x
ayb =

√
2ρ(a)xa−1yb

and
s(0,
√

2)x
ayb =

√
2ρ(b)xayb−1.

For a > b, we have that

s(−1,1)x
ayb =

xayb − xbya

x− y
=

a−b−1∑
i=0

xa−iyb+i − xa−1−iyb+1+i

x− y
=

a−b−1∑
i=0

xa−i−1yb+i,

and in a similar way that

s(1,1)x
ayb =

xayb − (−1)a+bxbya

x+ y
=

a−b−1∑
i=0

xa−iyb+i + xa−1−iyb+1+i

(−1)i(x+ y)
=

a−b−1∑
i=0

(−1)ixa−i−1yb+i.

For a < b we find these results with x and y interchanged and of course for a = b both results
are 0. If we look at the the case where a > b, we see that

Tx(xayb) = (a− 2l1)ρ(a)xa−1yb +−2l2

a−b−1∑
i=0

ρ(i)xa−i−1yb+i,

and

Ty(x
ayb) = (b− 2l1)ρ(b)xayb−1 + 2l2

a−b−1∑
i=0

ρ(i+ 1)xa−i−1yb+i.

The results for a ≤ b are found in a similar way.
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The main results of this chapter are Theorem 6.11 and Theorem 6.13. Theorem 6.11 states
that

TuTv = TvTu, ∀u, v ∈ Rm.

Theorem 6.13 states that for each orthonormal basis of Rm the Dunkl Laplacian, which will
be defined in Definition 6.12, can be written as

∆kf =
m∑
i=1

T 2
i f = ∆f + 2k(α)

∑
α∈R+

(
〈∇f, α〉
〈x, α〉

− f(x)− f(rαx)

〈α, x〉2

)
,

for f ∈ C2(Rm).
To be able to prove these two theorems, we need some additional results.
The first result is

sαsβf =
f(x)

〈x, α〉〈x, β〉
− f(rαx)

〈x, α〉〈x, β〉
−

f(rβx)

〈x, α〉〈x, rαβ〉
+

f(rαrβx)

〈x, α〉〈x, rαβ〉
, (f ∈ C(Rn)) (6.2)

which follows from a straight-forward computation. [9, Eqn. 1.5]
The second result is the equation [9, Eqn. 1.6]

〈∇sαf, u〉 − sα〈∇f, u〉 =
〈∇f, u〉
〈x, α〉

− 〈∇(f)(rαx), u〉
〈x, α〉

−〈∇f, u〉
〈x, α〉

+
〈∇(f)(rαx), u〉
〈x, α〉

−〈u, α〉f − f(rαx)

〈x, α〉2
+
〈∇f(rαx), α〉〈u, α〉

〈x, α〉

=
〈u, α〉
〈x, α〉

(sαf + 〈∇(f)(rαx), α〉) , (6.3)

for u ∈ Rm, f ∈ C1(Rm).

Lemma 6.9. [9, Prop. 1.7] Let B(x, y) be a bilinear form on Rm, such that B(rαx, rαy) =
B(y, x), when α ∈ span(x, y). Let w ∈ G be a plane rotation, which is a nontrivial product of
two reflections. Then

(i)
∑

rα,rβ∈R+
rαrβ=w

k(α)k(β)
B(α, β)

〈x, α〉〈x, β〉
= 0,

when both sides are viewed as rational functions in x. Furthermore

(ii)
∑

rα,rβ∈R+
rαrβ=w

k(α)k(β)(sβsαB)(α, β) = 0,

when both sides are viewed as functions C2(Rm)→ C0(Rm).

Proof. Let E be the plane of w, which means that E is the plane orthogonal to the fixed point
set of the action of w. If rαrβ = w, then α, β ∈ E. Let G1 be the subgroup of G generated
by {rα|α ∈ E}. Let m1 be the cardinality of the set of reflections in G1. We also have that
rαwrα = w−1, if rα ∈ G1.
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Denote the sum in (i) by t(x). We first want to show that t(x) = G1-invariant.
For this, we fix a reflection σγ in G1 and define the functions ε(α) : R → R and π(α) : R →
{−1, 1} by rαrγrα = rε(α) and rγα = ε(α)π(α). So ε(α) = ±1 and ε(π(α)) = ε(α). Then

t(rγx) =
∑

rα,rβ∈R+
rαrβ=w

k(α)k(β)
B(α, β)

〈rγx, α〉〈rγx, β〉

=
∑

rα,rβ∈R+
rπ(α)rπ(β)=w

k(π(α))k(π(β))
B(π(α), π(β))

〈x, rγπ(α)〉〈x, rγπ(β)〉

=
∑

rα,rβ∈R+
rγrαrβrγ=w

k(α)k(β)
B(ε(α)rγα, ε(β)rγβ)

〈rγx, α〉〈rγx, β〉ε(α)ε(β)

=
∑

rα,rβ∈R+
rαrβ=rγwrγ

k(α)k(β)
B(α, β)

〈rγx, α〉〈rγx, β〉
. (6.4)

Because G1 acts on a plane, we have that σασβ = σγwσγ = w−1, if and only if σβσα = w, so
the last sum is equal to t(x).
Next note that

t(x)
∏
α∈E
〈α, x〉

is a polynomial of degree m1 − 2, which is alternating for G1, hence it must be 0 and so
t(x) = 0.
To prove part (ii), we start with equation (6.2) and look at the terms of f(x), f(rγx) and
f(wx). The coefficient of f(x) is t(x), so it is 0. For a fixed γ ∈ E, the coefficient of f(rγx) is

kαkγB(α, γ)

〈x, α〉〈x, γ〉
+

kβkγB(γ, β)

〈x, γ〉〈x, rγβ〉
,

where rγrβ = w = rβrγ . By defining the functions ε and π as before, we have β = π(α) and
the second term can be rewritten as

kπ(α)kγB(γ, ε(α)rγα)

ε(α)〈x, γ〉〈x, α〉
=
kαkγB(α, rγγ)

〈x, γ〉〈x, α〉
.

So the coefficient is zero since rγγ = −γ.
The coefficient of f(xw) is ∑

rαrβ=w

kαkβB(α, β)

〈x, α〉〈x, β〉
.

For a fixed α ∈ E, there is a unique β ∈ E, such that rαrβ = w. Let rδ = rαrβrα, which
means that δ = ε(β)rα(β). Then the (α, β)-term equals

kαkβB(rαβ, rαα)

〈x, α〉〈x, ε(β)δ〉
=
−kαkδB(δ, α)

〈x, δ〉〈x, α〉
.

Since rδrα = w, the sum equals −t(x), so all the coefficients are zero and we have proven
both parts of the lemma.
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Corollary 6.10. [9, Cor. 1.8] Let B(x, y) be a bilinear form on Rm, such that B(rαx, rαy) =
B(y, x), when α ∈ span(x, y). Then∑

α,β∈R+

k(α)k(β)(sβsαB)(α, β) = 0.

Proof. The terms with α = β are 0, since s2
α = 0. The other terms can be grouped by the

value of rαrβ, which is a plane rotation. Each of these groups of terms, sums to zero, because
of part (ii) of Lemma 6.9.

Finally we can prove the main results of this chapter.

Theorem 6.11. [9, Thm. 1.9] Let u, v be two vectors in Rm. Then TuTv = TvTu, when
viewed as operators on C2(Rm).

Proof. Expand (TuTv − TvTu)f = E1 + E2 + E3, with

E1 = 〈∇〈u,∇f(x)〉, v〉 − 〈∇〈u,∇f(x)〉, v〉 = 0,

E2 =
∑
α∈R+

kα〈v, α〉(〈∇sαf(x), u〉−sα〈∇f(x), u〉)−
∑
α∈R+

kα〈u, α〉(〈∇sαf(x), v〉−sα〈∇f(x), v〉)

and
E3 =

∑
α,β∈R+

kαkβsβsαB(α, β)f(x),

with
B(x, y) = 〈u, x〉〈v, y〉 − 〈u, y〉〈v, x〉.

The operators in E1 are the usual partial derivatives which commute.
Since B(x, y) satisfies the hypothesis of Corollary 6.10, E3 is zero.
By using Equation (6.3), we see that

E2 =
∑
α

kα(〈v, α〉〈u, α〉 − 〈u, α〉〈v, α〉)× (2〈α,∇f(rαx)− sαf(x))/〈x, α〉 = 0,

so Tu and Tv commute.

Definition 6.12. [9, Thm. 1.10] For a given root system R+ with weight function k, and
an orthonormal basis ei, 1 ≤ i ≤ m of Rm, we define the Dunkl Laplacian ∆k : C2(Rm) →
C0(Rm) by

∆kf =

m∑
i=1

T 2
i f.

For k = 0, the operator ∆k coincides with the ordinary Laplacian in m variables.

Theorem 6.13. [9, Thm. 1.10] For any orthonormal basis of Rm the Dunkl Laplacian is
given by

∆kf = ∆f + 2
∑
α

kα

(
〈∇f, α〉
〈x, α〉

− f(x)− f(rαx)

〈α, x〉2

)
.

In particular ∆k is independent of this basis.
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Proof. By using Definition 6.3 we find

T 2
u = 〈∇〈∇f(x), u〉, u〉+ 2

∑
α

kα〈u, α〉〈u,∇f(x)〉/〈x, α〉

−
∑
α

kα〈u, α〉2(f(x)− f(rα(x)))/〈x, α〉2

−
∑
α

kα〈u, α〉(2〈u,∇f(rα(x))〉 − 〈u, α〉〈α,∇f(rαx)〉)/〈x, α〉

+
∑
α,β

kαkβ〈u, α〉〈u, β〉(sαsβf)(x).

We use Definition 6.12 and Parsevals identity
∑m

i=1〈ei, u〉〈ei, v〉 = 〈u, v〉, where ei, 1 ≤ i ≤ m
is an orthonormal basis on Rm, to find

∆k(f) =
m∑
i=1

T 2
ei = ∆f(x) + 2

∑
α

kα〈α,∇f(x)〉/〈x, α〉

−
∑
α

kα2(f(x)− f(rα(x)))/〈x, α〉2

−
∑
α

kα(2〈α,∇f(rα(x))〉 − 2〈α,∇f(rαx)〉)/〈x, α〉

+
∑
α,β

kαkβ〈α, β〉(sαsβf)(x)

= ∆f + 2
∑
α

kα

(
〈∇f, α〉
〈x, α〉

− f(x)− f(rαx)

〈α, x〉2

)
because the last sum is zero by applying Corollary 6.10 to the form B(x, y) = 〈x, y〉.

6.1 The Dunkl harmonic Fischer decomposition

Since we have defined the Dunkl Laplacian ∆k, we can generalize the harmonic Fischer
decomposition to the setting of Dunkl operators. First define γ =

∑
α∈r+ kα and define the

Dunkl dimension by mk = m+ 2γ. Also recall that E =
∑m

i=1 xi∂/∂xi is the Euler operator
as given in Chapter 2.

Lemma 6.14. [18, Thm. 3.3] The linear span of the operators |x|2, ∆k and E in End(C∞(Rm)),
equipped with the commutator bracket is a Lie algebra isomorphic to sl2.

Proof. For ∆k and |x|2 we find

[∆k, |x|2]f = ∆k(|x|2f)− |x|2∆kf

= ∆(|x|2f)− |x|2∆(f) + 2
∑
α

kα
〈∇(|x|2f)− |x|2∇(f), α〉

〈x, α〉

−
∑
α

kα
|x|2f(x)− rα(|x|)2f(rαx)− |x|2f(x) + |x|2f(rα(x))

〈x, α〉2

= 4(E +m/2) + 2
∑
α

kα
〈xf, α〉
〈x, α〉

− 0

= 4(E +m/2 + γ) = 4(E +mk/2),
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where we have used that rα|x|2 = |x|2 and that [∆, |x|2] = 4(E +m/2).
For E +mk/2 and |x|2 we find

[E +mk/2, |x|2]f = (E|x|2 − |x|2E)f

=
m∑
i=1

(
|x|2xi∂i − |x|2xi∂i + ∂i(|x|2)xi

)
f

=
m∑
i=1

2x2
i f

= 2|x|2f.

To compute the commutator of E +mk/2 and ∆k, we need the following results.

[
E, 〈x, α〉−1∇α

]
f =

m∑
i=1

xi∂i
〈∇f, α〉
〈x, α〉

−
m∑
i=1

〈∇(xi∂if), α〉
〈x, α〉

=

m∑
i,j=1

αj〈x, α〉xi∂i∂jf − αiαjxi∂jf
〈x, α〉2

−
m∑

i,j=1

αj∂j(xi)∂if + αjxi∂i∂jf

〈x, α〉

=
E〈∇f, α〉 − 〈∇f, α〉 − 〈∇f, α〉 − E〈∇f, α〉

〈x, α〉

= −2
〈∇f, α〉
〈x, α〉

,

where we have used the quotient rule for derivations.
Also note that[

E, 〈x, α〉−1sα
]
f = E

f(x)− f(rαx)

〈x, α〉2
− (Ef)(x)− (Ef)(rαx)

〈x, α〉2

=
〈x, α〉2((Ef)(x)− (Ef)(rαx))− 2〈x, α〉2(f(x)− f(rαx))

〈x, α〉4

− (Ef)(x)− (Ef)(rαx)

〈x, α〉2

= −2
f(x)− f(rαx)

〈x, α〉2

= −2〈x, α〉−1sα,

where we have used the quotient rule again.
By the previous equations and the result that [E,∆] = −2∆, we find that

[E,∆k] = [E,∆] +
∑
α∈R+

kα
(
[E, 〈x, α〉−1∇α]− [E, 〈x, α〉−1sα]

)
= −2∆− 2

∑
α∈R+

kα〈x, α〉−1 (∇α − sα)

= −2∆k
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Lemma 6.15. [8, Lemma 1.9] Let l 6= 0 ∈ N. The operator ∆k|x|2 acts as a nonzero scalar
on the spaces |x|2lHk,n. In particular, its action is invertible.

Proof. This proof is based on Leibniz rule

[Al, E] =
l−1∑
j=1

Aj−1[A,E]Al−j .

Let hn ∈ Hk,n. When we apply the Leibniz rule with A = |x|2 we get

∆|x|2lhn = |x|2l∆hn +
l−1∑
i=0

|x|2(l−1−i)[|x|2, E]|x|2ihn

= |x|2l∆hn +
l−1∑
i=0

|x|2(l−1−i)4(E +mk/2)|x|2(i)hn

=

l−1∑
i=0

|x|2(l−i−1)4(2i+ n+mk/2)|x|2(i)hn

=

l−1∑
i=0

4(2i+ n+mk/2)|x|2(l−1)hn

= 4(l)(n+mk/2 + l − 1)|x|2(l−1)hn

:= ck,nl|x|2(l−1)hn, (6.5)

because kα is positive the constants ck,nl are nonzero.

Theorem 6.16. [8, Thm. 1.7] Let R be a root system in Rm with weight function k. Assume
that k is positive. Denote by Hk,n the spaces of homogeneous k-harmonic functions of degree
n. Then Pn(Rm) can be decomposed as

Pn = ⊕i≤n/2 |x|2iHk,n−2i.

We call this decomposition the Dunkl harmonic Fischer decomposition.

Proof. We can modify the proof of Theorem 2.1. When we use this proof with the constants
ck,nl instead of the constants cnl, this proof leads to the Dunkl harmonic Fischer decomposi-
tion.

Remark 6.17. We can construct a basis of Hk,n by using the Dunkl harmonic Fischer decom-
position. This is basically done by applying the steps given in Section 3.

6.2 The decomposition of L2(S, h2dω)

In this section we will restrict the Dunkl harmonic Fischer decomposition from Theorem 6.16
to the sphere S, and show that this gives an orthogonal decomposition of L2(S, h2dω). For
this we use results from Dunkl, which were given in [8, Ch.1]. In particular we need a gener-
alization of Green’s theorem, to prove an orthogonality result on the k-harmonic polynomials.

First we need some additional definitions.
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Definition 6.18. Define as before the function h : Rm → R by

h(x) =
∏
α∈R+

|〈α, x〉|kα .

Define γ = deg(h) and define the Dunkl dimension mk by mk = m+ 2 deg h.

The function h(x) is G-invariant, since each element of G interchanges the roots and kα = kβ,
if α and β are conjugate. As we shall see, the Dunkl dimension occurs instead of the dimen-
sion m in generalizations of the harmonic analysis. This can already be seen by comparing
the constants in equations (2.1) and (6.5).

Definition 6.19. Define by dω the normalized rotation invariant surface measure on the
sphere S = {x ∈ Rm : |x| = 1} and by dx the Lebesgue measure on Rm. We shall use the
measure h2dω on the unit sphere, the measure h2dx on Rm and the Gaussian measure

h2dµ = h2(x)(2π)−m/2e−|x|
2/2dx

on Rm.
We define the normalization constants cm and c′m by cm = (

∫
Rm h

2dµ)−1 and c′m = (
∫
Sm−1 h

2dω)−1.

If f is a continuous function of polynomial growth on Rn, then by using polar coordinates,∫
Rn
fdµ =

(
21−m/2/Γ

(m
2

))∫ ∞
0

∫
S
rm−1e−r

2/2f(rx)dω(x)dr.

If f is positively homogeneous of degree 2k, then∫
Rn
fh2dµ = 2γ+k

(
Γ
(m

2
+ k + γ

)
/Γ
(m

2

))∫
S
fh2dω.

By combining these results with the normalization constants we find ([11, p. 1215])

c′m = 2γ
(

Γ
(m

2
+ γ
)
/Γ
(m

2

))
cm. (6.6)

We can split the Laplacian ∆k : C2(Rm)→ C0(Rm), which was given in 6.12, as ∆k = Lk−Dk,
were Lk is the differential part

Lkf = ∆f +
∑
α∈R+

2kα
〈α,∇f〉
〈x, α〉

,

and Dk is the difference part

Dk =
∑
α∈R+

2kα
f(x)− f(rα(x))

〈x, α〉2
.

Note that Lk can be written as Lk = (∆(fh)− f∆h)/h (see [8, Propositions 1.1,1.3]).

Lemma 6.20. [8, Prop. 1.2] The operator Dk|S is symmetric on L2(S, h2dω).
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Proof. For each kα > 1, (α ∈ R+) and for each f, g ∈ L2(S, h2dω), the function fgh2〈x, α〉−2

is integrable. Also note that the reflection rα sends α to −α and interchanges the other
positive roots. This gives∫

S
Dk(f)gh2dω =

∑
α∈R+

2kα

(∫
S

f(x)g(x)

〈x, α〉2
h(x)2dω −

∫
S

f(rαx)g(x)

〈x, α〉2
h(x)2dω

)

=
∑
α∈R+

2kα

(∫
S

f(x)g(x)

〈x, α〉

2

h(x)2dω −
∫
S

f(x)g(rαx)

〈x, α〉

2

h(x)2dω

)

=

∫
S
fDk(g)h2dω,

where we have changed the integration variable to rαx in the second sum. This is valid, since
h, the measure dω and the space S are G-invariant.

Remark 6.21. Let B = {x ∈ Rm|x < 1} be the open ball, with closure B̄ = B ∩ S. Note
that B̄ is invariant under reflections and the function fgh2〈x, α〉−2 is integrable on B̄, for
f, g ∈ C2(B̄). The operator Dk|B̄ is symmetric on L2(B̄, h2dx), by an argument similar to
proof of Lemma 6.20.

Theorem 6.22. [8, Prop. 1.4] Let B = {x ∈ Rm : |x| < 1} be the open ball, with measure
h2dx, and let f, g be C2 functions on its closure B̄ = B ∪ S. Let S have the surface measure
h2dω. Denote by η the outward normal vector on S and denote by c the normalization constant
(Γ(m/2)(2π)m/2)−1. Then

c

∫
S

∂f

∂η
gh2dω =

∫
B

(gLk(f)− 〈∇f,∇g〉)h2dx.

Proof. Green’s identity gives

c

∫
S

∂f1

∂η
f2dω =

∫
B
f2∆f1 + 〈∇f1,∇f2〉dx,

for f1, f2 ∈ C2(B̄). If we apply this to f1 = fh and f2 = gh, we find

c

∫
S

(
∂f

∂η
gh2 +

∂h

∂η
fgh

)
dω =

∫
B

(gh∆(fh) + 〈∇(fh),∇(gh)〉) dx.

Applying Green’s identity to f1 = h and f2 = fgh gives

c

∫
S

∂h

∂η
fghdω =

∫
B

(fgh∆(h) + 〈∇(fgh),∇(h)〉) dx.

Now we can substract these two equations from each other and find, using the product rule
〈∇(fg),∇(h)〉 = f〈∇g,∇h〉+ g〈∇f,∇h〉 , that

c

∫
S

∂f

∂η
gh2dω =

∫
B

(gh∆(fh)− gh(f∆h) + 〈∇(fh),∇(gh)〉 − 〈∇(fgh),∇h〉) dx

=

∫
B

(
gLk(f) + h2〈∇f,∇g〉

)
dx



6.2. THE DECOMPOSITION OF L2(S, h2dω) 37

Lemma 6.23. [8, Theorem 1.6] Let f and g be homogeneous k-harmonic polynomials of
different degree, then ∫

S
fgh2dω = 0.

Proof. Using polar coordinates we have for f ∈ Pn(Rm)

Cn

∫
B
f(x)dx =

∫ 1

0
rn−1dr

∫
S
f(x)dω(x) = 1/deg(f)

∫
S
f(x)dω(x),

so

(deg(f)− deg(g))

∫
S
fgh2dω =

∫
S

(∂f/∂η)gh2dω −
∫
S
f(∂g/∂η)h2dω

=

∫
B̄

(gLkf − fLkg)h2dx

=

∫
B̄

(g(Lk −Dk)f − f(Lk −Dk)g)h2dx

= 0,

where we have used that Dk is symmetric on L2(B̄, h2dx) by Remark 6.21. So for deg(f) 6=
deg(g) we see that

∫
fgh2dω = 0.

Corollary 6.24. [8, p. 39] Restriction of the Dunkl harmonic Fischer decomposition, which
was defined in Theorem 6.16, leads to the decomposition

L2(Sm, h2dω) =
⊕̂∞

n=0
Hk,n|S .

Proof. In Theorem 6.22 is shown that Hk,n|S⊥Hk,l|S for n 6= l. Since |x|2n = 1 on the unit
sphere, we have that

P |S =

∞∑
n=0

bn/2c∑
i=0

(|x|2iHk,n−2i)|S = P (|x|2)|S
⊗ ∞∑

n=0

Hk,n|S =

∞∑
n=0

Hk,n|S ,

where we have denoted the space of all polynomials in |x|2 by P (|x|2). Since Hk,n|S⊥Hk,l|S
for n 6= l, the sum

∑∞
n=0Hk,n is orthogonal. In particular, it is direct.

By Stone-Weierstrass the space P |S is dense C(S), so it is also dense in L2(Sm, h2dω). This
gives the decomposition

L2(Sm, h2dω) = ⊕̂∞n=0Hk,n|S .

Theorem 6.25. [8, Thm. 1.6] Let p be an element of Pn. Then∫
pqh2dω = 0, for all q ∈

n−1∑
i=1

Pi,

if and only if ∆kp = 0.
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Proof. Let p be an element of Pn and write p as

p =
∑
j

pn−2j |x|2j ,

with pn−2j ∈ Hn−2j . Now suppose that p is not k-harmonic, so there is some j 6= 0 such that
pn−2j 6= 0. Then for q = pn−2j the integral

∫
pqh2dω =

∫
p2
n−2jh

2dω 6= 0, because of positivity
of the inner product. So if p is not k-harmonic there is some polynomial of lower degree such
that

∫
S pqh

2dw 6= 0. If p is harmonic, choose q ∈ Pi, i < n arbitrary. By restricting q to S,

we see that q ∈
∑i

l=0Hl, so by Theorem 6.22, we have that∫
pqh2dw = 0.

Theorem 6.26. [8, p. 38] Let j, l, n ∈ N. The operator |x|2l∆l
k acts on the space |x|2jHk,n

by the scalar
λlnj = 4l(−j)l(−n−mk/2− j + 1)l.

Here (j)l is the Pochhammer symbol, given by (j)l = j(j + 1)(j + 2) . . . (j + l − 1).

Proof. By (6.5), we have for hn ∈ Hk,n that

∆k|x|2jhn(x) = 4(j)(n+mk/2 + j − 1)|x|2(j−1)hn(x). (6.7)

By repeating this process we find

|x|2l∆l
k|x|2jhn(x) =

l∏
i=1

4(k − i+ 1)(n+mk/2 + k − i)|x|2jhn(x)

= 4l(−j)l(−n−mk − k + 1)l|x|2jhn(x)

.

Note that |x|2l∆l
kr

2jhn = 0 for l > j, because (−j)l = 0 for l > j.
We can use the constants above, to give an the Dunkl harmonic Fischer decomposition in an
explicit way. This was already done in slightly different ways in [8, Thm. 1.11] and [20, Cor.
4.1].

Definition 6.27. Define the operators Qn,l : P → P by

Qn,l = 1− |x|
2∆k

λ1
n−2l,l

,

The operators Qn,l have the same eigenspace decomposition as |x|2∆k but they have different

eigenvalues. In particular for h2n−l ∈ Hk,2n−l we find Qn,l|x|2lh2n−l = 1− 4l(n−l+mk/2−1
4l(n−l+mk/2−1) = 0.

Theorem 6.28. Let f ∈ Pn. Let f =
∑bn/2c

j=1 |x|2jfj with fj ∈ Hn−2j according to the Fischer
decomposition. Then fj is given by

|x|2jfj =

 bn/2c∏
l=j+1

Qn,l

 |x|2j∆j
k

λ
f,



6.2. THE DECOMPOSITION OF L2(S, h2dω) 39

with

λ =

bn/2c∏
l=j+1

λ1
n−2l,l − λ1

n−2j,j

λ1
n−2l,l

λin−2j,j .

Proof. Note that x2j∆jx
2ifi = 0 for i < j and x2j∆jx

2ifi = λin−2i,ix
2ifi by Theorem 6.26.

By Theorem 6.27, we have Qn,i|x|2ifi = 0 and Qn,i|x|2lfl = c|x|2lfl, with c some real constant
depending on l,i and n. By putting these results together, we find that bn/2c∏

l=j+1

Qn,l

 |x|2j∆j
kf = λ|x|2jfj ,

where λ is some real constant which needs to be computed. A simple computation shows that bn/2c∏
l=j+1

Qn,l

 |x|2j∆j
k|x|

2jfj =

bn/2c∏
l=j+1

λ1
n−2l,l − λ1

n−2j,j

λ1
n−2l,l

λin−2j,jfj

So

λ =

bn/2c∏
l=j+1

λ1
n−2l,l − λ1

n−2j,j

λ1
n−2l,l

λin−2j,j .

These constants can also be found in a slightly different way. We can view the polynomials
x2l∆l

kf as the solution of a system of equations in the unknowns |x|2jfj . We can write this
in matrixform as

Γjl|x|2jfj = x2l∆l
kf,

for 0 ≤ j, l ≤ bn/2c with Γjl = λln−2j,j . Since the matrix Γ is upper triangular with non-zero
diagonal entries, we can solve it by Gaussian elimination.

Lemma 6.29. Let x, y ∈ Rn and let V be an uppertriangular n × n matrix, with nonzero
diagonal entries. Then we can solve the system V ·x = y by Gaussian elimination in particular
we have

viixi = yi +
n∑

a=i+1

n∑
b=a

−vib
vbb

(
n∏

c=b+1

−vc−1,c

vc,c

)
yb.

Proof. To find the value of xi we need to add multiples of the other equations to the ith

equation, till we only have the xi term left on the left hand side.
To do this we first make the coefficient of ain zero by subtracting vin/vnnyn. Next we
make the coefficient of ai,n−1 zero by subtracting vi,n−1/vn−1,n−1yn−1 and we need to add
(vi,n−1/vn−1,n−1)(vn−1,n/vnn)yn to make the coefficient of ain zero again. Continuing this
process will lead to the formula in the lemma.

Corollary 6.30. Applying Lemma 6.29 to the system

Γjl|x|2jfj = x2l∆l
kf,

with Γjl = λln−2j,j , 0 ≤ j ≤ bn/2c, gives

|x|2jfj =
1

λjn−2j,j

x2j∆j
kf +

bn/2c∑
a=j+1

bn/2c∑
b=a

−
λbn−2j,j

λbn−2b,b

(
n∏

c=b+1

−
λcn+2−2c,c−1

λcn−2c,c

)
x2b∆b

kf

 .
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6.3 The adjoint of Tu

In this section, we will compute the adjoint of Tu, u ∈ Rm, on the space Hk(Rm) of all k-
harmonic polynomials on Rm with the inner product 〈f, g〉h =

∫
S fgh

2dω. We will also look
at the operator

∑m
i=1 T

∗
i Ti.

Lemma 6.31. [9, Thm 2.4] Let f ∈ Pn arbitrary. Then∫
S

∂f

∂xi
dω = (n+m− 1)

∫
S
xif(x)dω

Proof. Using polar coordinates, we see that∫
|x|≤1

g(x)dx = cm

∫ 1

0

∫
S
rm−1g(rx)drdω(x), (6.8)

for some constant cm independent of g and each continuous function g on the closed unit ball.

Set g = ∂f/∂xi(1 − |x|2). Since ∂f/∂xi is homogeneous of degree n − 1, we can put the
r-dependence in (6.8) in a different integral which leads to∫

S

∂f(x)

∂xi
dω = A1

∫
|x|≤1

∂f/∂xi(1− |x|2)dx

= −A1

∫
|x|≤1

f(x)(∂/∂x)(1− |x|2)dx

= 2A1

∫
|x|≤1

xif(x)dx

= 2(A1/A2)

∫
S
xif(x)dω,

where

A1 =

(
cm

∫ 1

0
rm+n−1(1− r2)dr

)−1

and

A2 =

(
cm

∫ 1

0
rm+n−1dr

)−1

,

so (2A1/A2) = m+ k − 1.

Lemma 6.32. [9, Prop. 2.2] For f ∈ C2(Rm) we have that

∆k(xif(x)) = (xi∆k + 2Ti)f(x). (6.9)
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Proof.

∆k(xif(x)) = xi∆f(x) + 2
∂f

∂xi
+ 2

∑
α∈R+

kα

[
xi〈α,∇f〉
〈α, x〉

+
f(x)αi
〈α, x〉

− xif(x)− (rα(x))if(rα(x))

〈α, x〉2

]
= xi∆f(x) + 2

∂f

∂xi

+2
∑
α∈R+

kα

[
xi〈α,∇f〉
〈α, x〉

+
f(x)αi
〈α, x〉

− xi(f(x)− f(rαx)) + (xi − (rα(x))i)f(rα(x))

〈α, x〉2

]
= xi∆f(x) + 2

∂f

∂xi

+2
∑
α∈R+

kα

[
xi〈α,∇f〉
〈α, x〉

+
f(x)αi
〈α, x〉

− xi(f(x)− f(rαx))

〈α, x〉2
− 〈x, α〉αif(rαx)

〈α, x〉2

]
= xi∆k + 2Tif(x)

where we have used the product rules and have added and subtracted (xif(rαx)) in the last
fraction of the second term.

Lemma 6.33. [9, Prop 2.3] For f ∈ Hk,n, we have

xif − (N + 2n+ 2γ − 2)−1|x|2Tif ∈ Hk,n+1.

Proof. We have for f ∈ Hk,n and c ∈ R that

∆k(xif − c|x|2Tif) = xi∆kf + (2− 4(n+ γ − 1 +m/2)c)Tif + |x|2∆hTif,

by (6.5) and (6.9).
Since Ti and ∆k commute, this expression equals 0 for c = (N + 2n+ 2γ− 2)−1. In particular

xif − (N + 2n+ 2γ − 2)−1|x|2Tif ∈ Hk,n+1

Let 〈·, ·〉h be the inner product of L2(S, h2dω). Let Hk(Rm) be the space of all harmonic
polynomials. Note that each element of Hk(Rm) is uniquely determined by its restriction to
S, see Corollary 6.24.

Theorem 6.34. [9, Thm 2.1] The adjoint of Ti, as operator on Hk(Rm) with the inner product
inherited from 〈·, ·〉h, is given by

T ∗i p(x) = (m+ 2n+ 2γ)(xip(x)− (m+ 2n+ 2γ − 2)−1|x|2Tip(x)),

for p ∈ Hk,n. Here γ = deg(h) as in the previous section.

Proof. Let f ∈ Hk,n+1 and g ∈ Hk,n. Then∫
S

(fTig + gTif)h2dω =

∫
S
f∂ig + g∂if + 2

∑
α∈R+

kααi
f(x)g(x)

〈α, x〉
h(x)2dω(x)

−
∫
S

∑
α∈R+

kααi
f(rαx)g(x) + f(x)g(rαx)

〈α, x〉
h(x)2dω(x).
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The first integral is equal to ∫
S
∂i(f(x)g(x)h(x)2)dω,

because

∂ih
2(x) = ∂i

 ∏
α∈R+

|〈x, α〉|2kα
 = 2

∑
α∈R+

kα
αi
〈x, α〉

h(x)2.

The second integral is equal to 0, since∫
S

f(rαx)g(x)

〈x, α〉
h2(x)dω(x) =

∫
S

f(x)g(rαx)

〈rαx, α〉
h2(rαx)dω(x)

= −
∫
S

f(x)g(rαx)

〈x, α〉
h2(x)dω(x),

because h(x) is G-invariant and rα(α) = −α.
So ∫

S
∂i(f(x)g(x)h2(x))dω(x) =

∫
S

(f(x)Tig(x) + g(x)Tif(x))h2(x)dω(x).

By Lemma 6.31 we have∫
S
∂i(f(x)g(x)h2(x))dω(x) = (2γ + 2n+m)

∫
S
xif(x)g(x)h2(x)dω(x),

and together these identities lead to∫
S
Ti(f)gh2dω =

∫
S
f((2n+ 2γ +m)xig)h2dω −

∫
S
Ti(g)fh2dω.

The integral
∫
S Ti(g)fh2dω equals 0, because Tig ∈ Hk,n−1, f ∈ Hk,n+1 and Hk,n−1⊥Hk,n+1.

Finally, by Lemma 6.33 the function

gi(x) = (m+ 2n+ 2γ)(xig(x)− (m+ 2n+ 2γ)−1(Tig)(x))

is an element of Hk,n+1 that satisfies∫
S
fgih

2dω =

∫
S
Ti(f)gh2dω,

so we have found the adjoint of Ti on Hk(Rm), with the inner product 〈·, ·〉h.

Lemma 6.35. [9, Prop. 2.5] Let f ∈ Hk,n. The selfadjoint operator
∑m

i=1 T
∗
i Ti : Hk,n → Pn

satisfies
m∑
i=1

T ∗i Tif = (2n+ 2γ − 2)

m∑
i=1

xiTif.

Also
m∑
i=1

xiTif = nf +
∑
α∈R+

kα(f(x)− f(rαx)). (6.10)
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Proof.

m∑
i=1

T ∗i Tif =
m∑
i=1

(m+ 2n+ 2γ − 2)(xiTif(x)− (m+ 2n+ 2γ − 2)−1|x|2T 2
i f(x))

=
m∑
i=1

(m+ 2n+ 2γ − 2)xiTif(x),

because f(x) is k-harmonic.
The second statement follows from the definition of the Dunkl operator as given in Definition
6.3.

The operators
∑m

i=1 T
∗
i Ti and

∑m
i=1 xiTi are homogeneous of degree 0. Their eigenvalues and

eigenfunctions contain a lot of information about Dunkl operators. As we will show in 7.3, if∑m
i=1 T

∗
i Ti has a zero eigenvalue, either (m+ 2n+ 2γ − 2) = 0 or an eigenvalue of

∑m
i=1 xiTi

equals 0. In the first case the Fischer decomposition in Theorem 6.16 breaks down. In the
other case the future construction of intertwining operator in Theorem 7.14 breaks down. In
the next section we will show that all eigenvalues of

∑m
i=1 xiTi are positive for k > 0, so the

eigenvalues of
∑m

i=1 T
∗
i Ti are also positive for k > 0.

6.4 The group algebra

In this section we will have a look of the C-valued group algebra CG, which is related to
the Weyl group G. We will construct the Fourier transform associated with the conjugation
invariant functions G→ C. We will use the group algebra to find the eigenvalues of operator∑m

i=1 xiTi : P → P.

Definition 6.36. For a finite group G and a field K, the group algebra KG is a K-linear
space with basis G. The multiplication on KG is the bilinear map KG×KG→ KG given by
g · h = gh for all g, h ∈ G. Thus ∑

g∈G
cgg ·

∑
h∈G

dhh =
∑
j∈G

ejj,

with
ek =

∑
g,h∈G
gh=k

cgdh.

The group algebra is characterized up to isomorphisms by the following universal property.
For any map φ : G → A into an associative K-algebra, such that φ(gh) = φ(g)φ(h), there is
a unique algebra homomorphism φ̄ : KG→ A such that φ = φ̄ ◦ i, where is the inclusion of G
into KG.
The left regular representation of G on P (Rm), defined by

L(w)f(x) = f(w−1x),

for w ∈ G and f ∈ P (Rm), can be extended to a representation of the group algebra CG, by

L

(∑
w∈G

cww

)
f(x) =

∑
w∈G

cwf(w−1x).
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Note that L(c)Pn ⊂ Pn for all c ∈ CG,n ∈ N. The representation L|Pn is finite dimen-
sional and can be decomposed into irreducible components and so the representation L can
be decomposed into irreducible homogeneous components. Each irreducible component is an
irreducible CG-module.

Definition 6.37. [9, p.176] Define φ ∈ CG by

φ =
∑
α∈R+

kα(1− rα).

By using the left regular representation of CG on C1(Rm), we find

L(φ)(f) =
∑
α∈R+

kα (f(x)− f(rαx)) =

m∑
i=1

(xiTi − xi∂i)f,

for f ∈ C1(Rm).

Lemma 6.38. [9, p.176] The element φ is a central element of the group algebra of G.

Proof. We can write φ = 1
2

∑
α∈R kα(1− rα). Then for all g ∈ G we have

gφg−1 =
1

2

∑
α∈R

kα(1− rg·α)

=
1

2

∑
α∈R

kg−1α(1− rα)

=
1

2

∑
α∈R

kα(1− rα)

= φ,

because kα is G-invariant.

Definition 6.39. Let V be an l-dimensional irreducible component of CG, with associated
representation ρ. Denote by χ the character of ρ, which is given by χ(w) = tr(ρ(w)).
Denote the set of all characters of G by Ĝ,

Note that the trace of ρ is well-defined, because ρ is finite-dimensional linear map between
vector spaces.

Definition 6.40. For c ∈ CG define the map Mc : CG→ CG by Mc(d) = cd.

Lemma 6.41. [10, p. 109] The eigenvalues of Mφ on the group algebra are given by

λ(χ) =
∑
α∈R+

kα(1− χ(rα)/χ(1)), (6.11)

for χ ∈ Ĝ. Let V be an irreducible component of CG, with character χV . Then f ∈ V is an
eigenfunction of φ, with eigenvalue λ(χV ).
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Proof. Let V be an irreducible component of CG, with character χV . By Schur’s lemma the
element φ acts as a multiple of the identity on V , so Mφ|V = λI. Hence

λχV (1) = λ dim(V )

= tr(Mφ|V )

= tr

 ∑
α∈R+

kα(IV −Mrα |V )


=

∑
α∈R+

kα dim(V )−
∑
α∈R+

kαtr(Mrα |V )

=
∑
α∈R+

kα (χV (1)− χV (rα)) ,

which implies that

λ =
∑
α∈R+

kα(1− χV (rα)/χV (1)).

This shows that the eigenvalues of φ are given by

λ(χ) =
∑
α∈R+

kα(1− χ(rα)/χ(1),

for χ ∈ Ĝ.

Also the identity Mφ|V = λI, shows that f ∈ V is an eigenfunction of φ and the eigenvalue
was computed to be λ(χV ).

Corollary 6.42. Let c =
∑

w∈G cw ∈ ZCG. Then the eigenvalues of Mc on the group algebra
are given by

λc(χ) =
∑
w∈G

cwχ(w)/χ(1), (6.12)

for χ ∈ Ĝ. Let V be an irreducible component of CG, with character χV . Then f ∈ V is an
eigenfunction of c, with eigenvalue λc(χV ).

Proof. We can prove this by replacing φ with c in the proof of Lemma 6.41.

Corollary 6.43. Consider the representation of CG on P (Rm). Let V be a irreducible com-
ponent of dimension l, contained in Pn(Rm), for some n. Let χ be the associated character.
Then

∑m
i=1 xiTi acts as a scalar on V . This scalar is given by∑

α∈R+

kα(1− χ(rα)/χ(1)) + n

Proof. This follows from equations (6.10) and (6.11).

Suppose the group G has j conjugacy classes of reflections, each of which we can write as
{αi,j , . . . , αi,mi}, for 1 ≤ i ≤ j and mi ∈ N. If ki is the common value of kα on the ith

conjugacy class, the eigenvalues of φ are given by

λ(χ) =

l∑
i=1

miki(1− χ(αi,1)/χ(1)),
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for any irreducible character χ of G (see [10]).
For an irreducible character χ ∈ Ĝ, and for 1 ≤ i ≤ l, the number mi χ(αi,1)/χ(1) ∈ Z (see
[10, p.110]).

Lemma 6.44. [10, Cor. 2.2] For an irreducible character χ ∈ Ĝ, we have that λ(χ) =∑l
i=1 kini, with ni ∈ Z and 0 ≤ ni ≤ 2mi. For the trivial character we find ni = 0. Let

ρ : G → {−1, 1} be the unique representation of G, with rα = −1, for all α ∈ R. For the
character χρ we find ni = 2.

Proof. Because mi χ(αi,1)/χ(1) ∈ Z and mi ∈ Z, we have that ni = mi(χ(1)−χ(αi,1))/χ(1) ∈
Z. The inequality 0 ≤ ni ≤ mi follows from the inequality |χ(w)| ≤ χ(1), w ∈ G.
For the trivial character, we have that χ(rα) = 1, so ni = 0, for all i.
For the character χρ, we have that χ(rα) = −1, so ni = 2, for all i.

Let C(G, class) be the space of conjugation invariant functions G → C. We have the inner
product 〈·, ·〉G : C(G, class)× C(G, class)→ R, given by

〈f, g〉G = 1/|G|
∑
w∈G

f(w)g(w).

The set Ĝ of all character on G is an orthonormal basis of C(G, class).
Let

∑
w∈G cww ∈ ZCG, then f : w → cw is a class function. Conversely, if f ∈ C(G, class),

then c =
∑

w∈G f(w)w ∈ ZCG. Thus ZCG ' C(G, class).

The Fourier transform is a linear map C(G, class)→ C(Ĝ), defined by

f̂(χ) = 〈f, χ〉 =
1

|G|
∑
w∈G

f(w)χ(w).

The Fourier transform of c ∈ ZCG is defined by

ĉ(χ) =
1

|G|
∑
w∈G

cwχ(w).

The Fourier inverse transform is the map F−1 : C(Ĝ)→ C(G, class) defined by

F−1(F ) =
∑
χ∈Ĝ

F (χ)χ.

The Fourier inversion formula is given by f =
∑

w∈Ĝ f̂(χ)χ. For c ∈ ZCG this means

cw =
∑
χ∈Ĝ

ĉ(χ)χ(w).

For χ ∈ Ĝ, define the map ψχ : ZCG→ C(Ĝ) by

ψχ(c) =
∑
w∈G

cwχ(w)/χ(1).
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Denote by χ̌(w) = χ(w−1) the character of the dual representation. Since {χ̌}
χ∈Ĝ is an

orthonormal basis of ZCG ' C(G, class), we find

cw =
∑
χ∈Ĝ

〈c, χ̌〉χ̌(w)

=
∑
χ∈Ĝ

∑
z∈G

czχ(z−1)χ(w−1)

=
∑
χ∈Ĝ

∑
z∈G

χ(1)

|G|
ψχ(c)χ(w),

for
∑

w∈G cww ∈ ZCG. Note that ψχ(c) is closely related to the fourier transform, because

ψχ(c) =
1

χ(1)

∑
w∈G

cwχ(w−1) =
1

χ̌(1)

∑
w∈G

cwχ̌(w) =
|G|
χ̂(1)

ĉ(χ̌).

Let c, d ∈ ZCG. By (6.12) the eigenvalues of multiplication by c are given by ψχ(c), χ ∈ Ĝ
and the eigenvalues of multiplication by d are given by ψχ(d), χ ∈ Ĝ.
Let V be an irreducible component of the left regular representation of CG. Let χ be the
associated character. We have that L(c)L(d)f = L(cd)f for f ∈ V , because L is a represen-
tation. By Corollary 6.43, we have that L(c)L(d)f = ψχ(c)ψχ(d)f and L(cd)f = ψχ(cd)f for
f ∈ V .
By combining this, we see that ψχ(c)ψχ(d) = ψχ(cd), for all χ ∈ Ĝ and for all c, d ∈ ZCG, so
φχ is a algebra homomorphism ZCG→ C.
Next let c = exp((log t)φ) = exp((log t)

∑
α∈R+

kα(1− rα)), where φ was defined in Definition
6.37 and the exponent of φ is evaluated as a power series in CG. The element c is central in
CG, because φ is a central element of CG. Applying the transform ψχ to c yields

ψχ(c) = exp((log t)
∑
α∈R+

kα(ψχ(1)− ψχ(rα)))

= exp((log t)
∑
α∈R+

kα(1− χ(rα)/χ(1)))

= tλ(χ),

where it is used that ψχ is a homomorphism. The constants λ(χ) are defined in (6.11).

Definition 6.45. [10, p.111] Let R be a root system with Weyl group G and weight function
k. Let φ as in Definition 6.37. The element φ is an element of CG, so we can use it to define
coefficients pw(t) by

exp

(log t)
∑
α∈R+

kα(1− rα)

 =
1

|G|
∑
w∈G

pw(t)w ∈ CG,

for 0 ≤ t ≤ 1, where the exponent is evaluated as a power series in CG.
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By the Fourier inversion formula on ZCG, we have that

pw(t) =
∑
χ∈Ĝ

χ(1)χ̄(w)tλ(χ). (6.13)

For Coxeter groups we have a stronger statement.

Theorem 6.46. [10, Thm 3.1] For any Coxeter group G, and w ∈ G, the coefficients of tλ(χ)

in pw(t) are integers. Also χ(w) = χ(w).

Proof. See [10, p. 112] for a proof by checking the theorem in character tables.



Chapter 7

The intertwining operator

In this chapter we will construct the operator which intertwines the actions of the partial
differential operators and the Dunkl operators.
The main result of this chapter is Theorem 7.14, which is stated as

Main Theorem. Let P = P (Rm). There exists a unique linear operator V : P → P , such
that V (1) = 1, V Pn ⊂ Pn and TiV f = V (∂if), 1 ≤ i ≤ m. The operators Ti were defined in
Definition 6.3. The operator V is invertible.

This operator is called an intertwining operator, since it intertwines the action of the Dunkl
operators with the action of the partial derivatives. See (7.8) for the precise form of V .
A proof of this theorem was given by Dunkl in [10, p. 111-116]. In this chapter we will
give some motivation for this proof and we will look at some properties of the intertwining
operator.
In Section 7.3 we shall have a short look at negative weight functions and show that the
intertwining operator might not exist for certain negative weight functions.

First consider that we have found the intertwining operator V . Then it is useful to have a
look at the image of the monomials under V .
Let xα be a monomial then ∂ix

α = αix
α−ei = α!

(α−ei)!x
α−ei , where we have used multi-index

notation and view α as a vector. This can be generalized to ∂αxβ = α!
(α−β)!x

α−β, for α ≤ β

and ∂αxβ = 0, for α > β. Here < denotes the partial order defined by α < β if αi ≤ βi for
1 ≤ i ≤ m and αi < βi for at least one i.
The monomials do not behave in this way under the action of Dunkl operators. However, the
relations above yield the idea of trying to create Dunkl monomials yα ∈ P in an inductive
way, such that y0 = 1 and

Tαyβ =
α!

(β − α)!
yβ−α.

Then the intertwining operator should act by V xα = yα, since then V ∂βx
α = V (α− β)!xα−β =

(α− β)!yα−β = T βyα = T βV xα. Note that the Dunkl-monomials do not obey rules like
yαyβ = yα+β.

Definition 7.1. Let f1, . . . fm be an m-tuple of C1-functions Rm → R. The m-tuple is called
exact if ∂ifj = ∂jfi, for all i, j. The m-tuple is called k-exact if Tifj = Tjfi, for all i, j.
Denote the space of all k-exact tuples by Ωk and denote the space of all exact tuples by Ω.

49
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Also denote the space of all k-exact tuples which are homogeneous polynomials of degree n
by Ωk

n and denote the space of exact tuples which are homogeneous polynomials of degree n
by Ωn.

We can view ∇ as operator from C2(Rm) to Ω and we can view the operator ∇|Pn as operator
from Pn to Ωn−1.

Definition 7.2. Define W : Ω→ C2(Rm) by

(Wf)(x) =

∫ 1

0
〈x, f(tx)〉dt.

Lemma 7.3. Let f ∈ Ω. Then ∂iWf = fi.

Proof. Let f = (f1, . . . fm) ∈ Ω arbitrary, then

∂(Wf)

∂xi
(x) =

∫ 1

0

fi(tx) +
m∑
j=1

txj
∂fj(tx)

∂xi

 dt

=

∫ 1

0

fi(tx) +

m∑
j=1

txj
∂fi(tx)

∂xj

 dt

=

∫ 1

0

(
fi(tx) + t

d

dt
fi(tx)

)
dt

=

∫ 1

0

d

dt
(tfi(tx)) dt

= fi(x),

which proves the lemma.

Corollary 7.4. The operator W : Ωn → Pn+1, can be seen as the two sided inverse of ∇
restricted to Pn+1. Also the operator W : Ω→ C2(Rm), can be seen as the two sided inverse
of ∇ restricted to C2(Rm).

Proof. By Lemma 7.3, ∇(Wf)(x) = f(x), for f ∈ Ωn. Let F ∈ Pn+1. Then ∇F is a exact
m-tuple. By Lemma 7.3 ∇(W (∇F )) = ∇F , so W (∇F )(x) − F (x) = F (0). Since F is a
homogeneous polynomial and W∇F is a homogeneous polynomial F = W∇F .
The second statement follows in a trivial way, since in this case ∇F is differentiable, which
shows that F ∈ C2(Rm).

By the intertwining property, the operator V must map exact m-tuples of functions into k-
exact m-tuples of functions. Our goal is to generalize Lemma 7.3 in the right way to find an
inverse Wk : Ωk → C2(Rm) of ∇k : C2(Rm) → Ωk. This gives the relation V F = WkV∇F,
for all F ∈ C(Rm).
Consider F ∈ Pn, then V F ∈ Pn. Since Ωk

k,n ⊂ Pmn , we have that (V∇F )i ∈ Pn−1, 1 ≤ i ≤ m.
Because V 1 = 1, we can use these relations to define the intertwining operator in an inductive
manner on P (Rm) by Vn+1 = WkVn∇F , where Vn = V |Pn .
Of course we want to extend this inductive definition of V to all of C1(Rm), but so far this
has only be done for the root system A1 (see [11, Thm 5.1]).
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We try the Ansatz

(Wkf)(x) =
1

|G|
∑
w∈G

∫ 1

0
qw(t)〈wx, f(twx)〉dt,

where qw : (0, 1] → R are differentiable, as generalization of Lemma 7.3. In the following
section, we will show that the correct generalization is indeed of this form and we shall
compute the functions qw(t).

7.1 Construction of the functions qw(t)

We start by looking at the effect of ∇k on 〈x, f(tx)〉 for a k-exact m-tuple f . Note that
f ∈ Ωk can be seen as a vector f =

∑m
i=1 fiei, where ei is the ith basis vector, so for w ∈ G,

we have wf(x) =
∑m

i,j=1wijejfi, where wij is the matrix of the rotation.

Lemma 7.5. [10, Lemma 3.6] Let f be a k-exact m-tuple of C1-functions. Then

∇k(〈x, f(tx)〉) = f(tx) + t
∂

∂t
f(tx) +

∑
α∈R+

kα(f(tx)− rα(f(t rαx))),

for 0 < t < 1.

Proof. We will prove this component wise. Choose l, with 1 ≤ l ≤ m. Then

Tl〈x, f(tx)〉 = fl(tx) +

m∑
i=1

xit
∂fi
∂xl

(tx)

+
∑
α∈R+

kα

(
m∑
i=1

xifi(tx)−
m∑
i=1

(rαx)ifi(t rαx)

)
αl/〈x, α〉

= fl(tx) +
m∑
i=1

xit
∂fi
∂xl

(tx)

+
∑
α∈R+

kα

(
m∑
i=1

xifi(tx)−
m∑
i=1

(x− 〈α, x〉α)ifi(t rαx)

)
αl/〈x, α〉

= fl(tx) +
∑
α∈R+

kα〈f(t rαx), α〉αl

+

m∑
i=1

xit

∂fi
∂xl

(tx) +
∑
α∈R+

kα(fi(tx)− fi(t rαx))αl/〈tx, α〉

 , (7.1)

where we have used that rα(x) = x − 〈x, α〉α in the second step. Note that 〈f(trαx), α〉α =
f(trαx)− rα(f(trαx)). Also note that the coefficient of xit in (7.1) is equal to Tlfi, which is
equal to Tifl by the k-exactness of f . Applying these results to (7.1) gives
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Tl(〈x, f(tx)〉) =

fl(tx) +
m∑
i=1

xit
∂

∂xi
fl(tx) +

∑
α∈R+

kα(fl(t rαx)− rαf(t rα(x))l)

+
∑
α∈R+

m∑
i=1

αixitkα(fl(tx)− fl(t rαx))/〈tx, α〉

= fl(tx) + t
∂

∂t
fl(tx) +

∑
α∈R+

kα(fl(tx)− rα(f(t rαx))l),

which is the lth component of the identity in the lemma.

Corollary 7.6. [10, Cor. 3.7] For w ∈ G,

∇k(〈wx, f(twx)〉) = wf(txw) + t
∂

∂t
wf(twx) +

∑
α∈R+

kα(wf(twx)− wrαf(trαwx)).

Proof. Recall from Lemma 6.6 the relation

(∇kL(w−1)g)(x) = w∇kg(wx).

We can apply this result to g(x) = 〈x, f(x)〉 and use Lemma 7.5 to prove the corollary.

By using Corollary 7.6, we can compute the Dunkl gradient of the Ansatz, which gives

(∇kWf)(x) =
1

|G|

∫ 1

0

∑
w∈G

qw(t)∇k〈wx, f(twx)〉dt (7.2)

=
1

|G|
∑
w∈G

∫ 1

0

(
qw(t)wf(txw) + qw(t)t

∂

∂t
(wf(twx))

+qw(t)
∑
α∈R+

kα(wf(twx)− wrαf(trαwx))

 dt,

=
1

|G|
∑
w∈G

∫ 1

0

(qw(t) + qw(t)t
∂

∂t
+
∑
α∈R+

kα[qw(t)− qrαw(t)]

wf(twx)dt,

where we have changed the summation index in the last term.

Lemma 7.7. For qw(t) : (0, 1]→ R differentiable for all w ∈ G, we have

1

|G|
∑
w∈G

(
d

dt
tqw(t)wf(wxt)

)
=

1

|G|
∑
w∈G

(
qw(t) + qw(t)t

∂

∂t
+ tq′w(t)

)
wf(wxt). (7.3)

We also find that

1

|G|

∫ 1

0

∑
w∈G

(
d

dt
tqw(t)wf(wxt)

)
dt =

1

|G|
∑
w∈G

qw(1)f(wx). (7.4)
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Proof. The first statement follows by a direct computation using the product rule. The second
statement follows from the fundamental theory of calculus.

Lemma 7.8. For f ∈ Ωk, we have the Ansatz

(Wkf)(x) =
1

|G|
∑
w∈G

∫ 1

0
qw(t)〈wx, f(twx)〉dt.

If (∇kWkf)(x) = f(x), then the functions qw(t) are the unique solution of linear system of
differential equation given by

tq′w(t)wf(twx) =
∑
α∈R+

kα [qw(t)− qrαw(t)]wf(twx), (7.5)

for w ∈ G, with boundary conditions q1(1) = |G| and qw(1) = 0 for w 6= 1.

Proof. To prove this, we want to rewrite ∇kWk(f) in the form of the left hand side of (7.4),
so we can compute the integral. To do this we need to integrate (7.4) in the variable t over
the interval [0, 1] and set this equal to (7.2). This gives

(∇kWf)(x) =
1

|G|
∑
w∈G

∫ 1

0

(
d

dt
tqw(t)wf(wxt)

)
dt,

so

1

|G|
∑
w∈G

(
qw(t) + qw(t)t

∂

∂t
+ tq′w(t)

)
wf(wxt)

=
1

|G|
∑
w∈G

∫ 1

0

(qw(t) + qw(t)t
∂

∂t
+
∑
α∈R+

kα[qw(t)− qrαw(t)]

wf(twx)dt,

and the functions qw(t) must satisfy the differential equation∑
w∈G

tq′w(t)wf(twx) =
∑
w∈G

∑
α∈R+

kα [qw(t)− qrαw(t)]wf(twx).

Since this must be valid for all f ∈ Ωk, the m-tuples f(twx) are linear independent and this
gives the system in the Lemma.
From (7.4) follows that

(∇kWkf)(x)
1

|G|

∫ 1

0

∑
w∈G

(
d

dt
tqw(t)wf(wxt)

)
dt = f,

if and only if q1(1) = |G| and qw(1) = 0 for w 6= 1, which gives the boundary condition.

Lemma 7.9. The unique solution qw(t), w ∈ G, 0 < t ≤ 1 of (7.5), with boundary conditions
q1(1) = |G| and qw(1) = 0 for w 6= 1, is given by

∑
w∈G

qw(t)w = |G| exp

(log t)
∑
α∈R+

kα(1− rα)

 .

Here both sides are viewed as elements of the group algebra CG. The exponent on the right
hand side can be computed by the usual power series and this power series converges in CG.
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Proof. For solving (7.5), we try a solution of the form

∑
w∈G

qw(t)w = c exp

(
log(t)

∑
z∈G

azz

)
, (7.6)

with az ∈ R and c ∈ R, as a solution of (7.5). This gives

∑
w∈G

t
d

dt
qw(t)w = c exp

(
log(t)

∑
z∈G

azz

)(∑
w∈G

aww

)
,

which shows that
tq′w(t)w = c

∑
z∈G

qz−1w(t)azw.

By plugging this into (7.5), we get∑
z∈G

qwz−1(t)az =
∑
α∈R+

kα(qw(t)− qrαw(t)),

so a1 = γk, arα = kα and az = 0 for all other z ∈ G, where we have used that rαw = wrβ for
some conjugate root β ∈ R+, so kα = kβ. To compute the constant c, note that

∑
w∈G

qw(1)w = c exp

(
log(1)

∑
z∈G

azz

)
= c · 1 (∈ CG),

so (7.6) solves (7.5) if c = |G|. Next note that limt→0 exp
(

(log t)
∑

α∈R+
kα(1− rα)

)
= 0, so

qw(t) is continuous at 0.

Note that the functions qw(t) in Lemma 7.9 are equal to the functions pw(t) defined in
Definition 6.45.

7.2 The construction of V

In the previous section we have found the operator Wk : Ω → C2(Rm), which is the inverse
of ∇k. We can use this operator to compute the intertwining operator V . We will also have
a look at some properties of the functions pw(t) : (0, 1]→ R.

Lemma 7.10. [10, Lemma 3.5] The functions pw(t), w ∈ G satisfy the following:

tp′w(t) =
∑
α∈R+

kα(pw(t)− pwrα(t)). (7.7)

p1(1) = G, pw(1) = 0 for w 6= 1, and
∑

w∈G pw(t) = |G|, 0 < t ≤ 1. Also pw(t) ≥ 0 for
0 < t ≤ 1.

Proof. By applying t ddt to the formula in Definition 6.45, we find
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t
d

dt

∑
w∈G

pw(t)w = t|G| exp

(log t)
∑
α∈R+

kα(1− rα)

 ∑
α∈R+

kα(1− rα)

 /t

= t
∑
α∈R+

kα
∑
w∈G

pw(t)t−1(w − wrα)

=
∑
w∈G

∑
α∈R+

kα(pw(t)− pwrα(t))w,

which implies (7.7).
Next, note that 1/|G|

∑
w∈G pw(1)w = exp(0) = 1 ∈ CG, so p1(1) = 1 and pw(1) = 0 if w 6= 1.

Let χ be the trivial character 1. Then

ψ1

(∑
w∈G

pw(t)w

)
=
∑
w∈G

pw(t) = |G| exp((log t)
∑
α∈R+

kα(1− 1)) = |G|.

Finally, we find from Definition 6.45 that∑
w∈G

pw(t)w = |G|((t
∑
α∈R+

kα)1)(exp((− log t)
∑
α∈R+

kαrα)).

Since the argument of the exponential function is positive for 0 < t ≤ 1, we see that pw(t) ≥ 0
for each w ∈ G for 0 ≤ t ≤ 1.

Theorem 7.11. [10, Thm. 3.8] Let f be a k-exact m-tuple of C1-functions on {x ∈ Rm :
|x| < r} for some r > 0. Define F ∈ C2(Rm) by

F (x) =
1

|G|

∫ 1

0

∑
w∈G

pw(t)〈wx, f(wxt)〉dt,

then ∇kF = f for |x| < r and F (0) = 0.

Proof. By applying ∇k to F , interchanging ∇k with the integral and using Corollary 7.6, we
find

∇kF (x)

=
1

|G|
∑
w∈G

∫ 1

0
pw(t)[wf(twx) + wt

∂

∂t
f(twx) +

∑
α∈R+

kα(wf(twx)− rαwf(twrαx))]dt

=
1

|G|
∑
w∈G

∫ 1

0
w[pw(t)f(twx) + t

∂

∂t
f(twx)

∑
α∈R+

kα(pw(t)− pwrαx(t))f(twx)]dt,

where we have rewritten the term
∑

w pw(t)rαw
−1f(twrαx) as

∑
w pwrα(t)w−1f(twx) by

changing the summation variable.
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By Lemma 7.10 the sum over α ∈ R+ is equal to tp′w(t)wf(twx), which leads to

∇kF (x) = 1/|G|
∑
w∈G

∫ 1

0
w[pw(t)(f(twx) + t

∂

∂t
f(twx)) + tp′w(t)f(twx)]dt

= 1/|G|
∑
w∈G

∫ 1

0

∂

∂t
(tpw(t)wf(txw))dt

= 1/|G|
∑
w∈G

pw(1)wf(xw) = f(x),

where we have used that p1(1) = |G| and pw(1) = 0 for w 6= 1.

Corollary 7.12. [10, Cor. 3.9] Suppose f and g are k-exact 1-forms, such that 〈x, f(x)〉 =
〈x, g(x)〉 for |x| < r, then f = g.

Proof. Applying Theorem 7.11 to the function f − g gives

F (x) = 1/|G|
∑
w∈G

∫ 1

0
pw(t)〈wx, (f − g)(wxt)〉dt = 0.

Then (f − g)(x) = ∇kF = 0, so f = g.

Theorem 7.13. [10, Thm. 3.10] Suppose F is a C2-function on {x ∈ Rm : |x| < r}, for
some r > 0. Then

F (x)− F (0) = 1/|G|
∑
w∈G

∫ 1

0
pw(t)〈wx, (∇kF )(wxt)〉dt,

for |x| < r.

Proof. Evaluating
∑m

i=1 xiTiF (x) at twx and dividing by t gives

m∑
i=1

(wx)iTiF (twx) =
∂

∂t
F (twx) + t−1

∑
α∈R+

kα(F (twx)− F (twrαx)),

for |x| < r and w ∈ G. By using this identity in the integral we find∑
w∈G

∫ 1

0
pw(t)〈(wx,∇kF )(twx)〉dt

=
∑
w∈G

∫ 1

0
pw(t)

 ∂
∂t
F (twx) + t−1

∑
α∈R+

kα(F (twx)− F (twrαx))

 dt
=

∑
w∈G

∫ 1

0
[pw(t)

∂

∂t
F (twx) + t−1

∑
α∈R+

kαF (twx)(pw(t)− pwrα(t))]dt

=
∑
w∈G

(pw(1)F (xw)− pw(0)F (0))

= |G|(F (x)− F (0)),

where (7.7) and the properties p1(1) = |G|, pw(1) = 0, for w 6= 1 and
∑

w∈G pw(t) = |G|,
which were stated in Lemma 7.10.



7.2. THE CONSTRUCTION OF V 57

Since we have finally found the correct generalization of Lemma 7.3 we can define the inter-
twining operator V in an inductive way on P .

Theorem 7.14. [10, Thm. 3.11] There exists a unique linear map V : P → P , V (1) = 1,
TiV f(x) = V (∂if)(x) and V Pn ⊂ Pn. The map V is invertible.

Proof. We will define operators Vn : Pn → Pn by recursion over n.
First V0 = I|P0 . Assume Vn : Pn → Pn has been defined, then define Vn+1 : Pn+1 → Pn+1 by

Vn+1f(x) =
1

|G|
∑
w∈G

∫ 1

0
pw(t)

m∑
i=1

(wx)i(Vn
∂

∂xi
f)(twx)dt, (7.8)

for f ∈ Pn+1. We can rewrite (7.8) as

Vn+1f(x) =
1

|G|
∑
w∈G

m∑
i=1

(wx)i(Vn
∂

∂xi
f)(wx)

∫ 1

0
tnpw(t)dt,

and from this it can be seen that Vn+1f ∈ Pn+1, since each integral gives a constant and all
terms in the sum are polynomials of degree n+ 1.
By induction we will show that Ti ◦ Vn = Vn−1∂i on Pn. This statement is true for n = 0, if
we put V−1 = 0.
Assume the statement has been established for n ≥ 0. Let p ∈ Pn+1. Then Vn(∂if) is k-exact,
because TjVn(∂if) = Vn−1(∂j∂if) = Vn−1(∂i∂jf) = TiVn(∂jf). Since Vn(∂if) is k-exact, we
can apply Theorem 7.11 to the right hand side of (7.8) and conclude that ∇kV (f) = V∇f ,
so TiV (f) = V ∂if .
Next we will prove the uniqueness of V by induction on n.
Suppose both V and V ′ have the properties mentioned in Theorem (7.14). Denote V |Pn by
Vn and V ′|Pn by V ′n.
For n = 0, we have that V0(1) = 1 = V ′0(1), so V0 = V ′0 .
Let n > 1. Assume Vn = V ′n. Since TiVn+1f(x) = Vn(∂if)(x) and TiV

′
n+1f(x) = Vn(∂if)(x)

for all f ∈ Pn+1, we have that

Ti(Vn+1 − V ′n+1)f(x) = (Vn − Vn)(∂if)(x) = 0,

for all f ∈ Pn+1 and all 1 ≤ i ≤ m. So (Vn+1 − V ′n+1)f(x) ∈ ∩mi=1 kerTi = P0, because k is
nondegenerate. Because Vn+1 and V ′n+1is homogeneous of degree 0, this means that f ∈ P0,
but P0 ∩ Pn+1 = 0, so f = 0 and Vn+1 = V ′n+1.
So because V0 is unique, we find by induction that V is unique.
To show that V is invertible, we need to show that V is bijective. We will use induction over
n. First note that V0 is the identity map, so it is bijective.
Next let n > 1 and assume that Vn and Vn−1 is invertible. We denote by V−1 the restriction
of V to 0, given by V (0) = 0.
For f ∈ Pn+1, the m-tuple Tif is k-exact. Since Vn is invertible, we can write Tif = Vngi,
for a unique gi ∈ Pn. At least one of the gi is nonzero, because k is nondegenerate. Then
V −1
n−1TjTif = TjVngi = V −1

n−1Vn−1∂idj = ∂jgi, because Ti and Tj commute. So gi is an exact
m-tuple. This means that there is some g ∈ Pn+1, such that ∂ig = gi and Vn+1g = f , so V is
surjective.
The map Vn+1 : Pn+1 → Pn+1 is a surjective linear map. Since dim(ker(Vn+1) = dim(Pn+1)−
dim(Pn+1) = 0, we see that Vn+1 is injective.
So Vn+1 is bijective and V is invertible.
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Finally we will mention some results of Dunkl (see [11]), which show that the intertwining
operator V , given by (7.8) has an extension to the space A, which is a subset of the space of
formal power series. We shall define A in Definition 7.17.

Definition 7.15. [11, Def. 2.4] We define the following three norms || · ||∞, || · ||T and || · ||∂
on the space Pn = Pn(Rm). Let ||c||T = ||c||∂ = |c|, for c ∈ P0. For p ∈ Pn, let

||p||T =
1

n!
sup

|u1|=···=|un|=1
||

(
n∏
i=1

Tui

)
p||T ,

||p||∂ =
1

n!
sup

|u1|=···=|un|=1
||

(
n∏
i=1

∂ui

)
p||∂ ,

and
||p||∞ = sup

|x|≤1
|p(x)|.

In [11] is shown that ||f ||δ = ||f ||∞ ≤ ||f ||T , for f ∈ Pn.

Lemma 7.16. [11, Prop. 2.5] For p ∈ Pn, ||V p||T = ||p||δ,

Proof. By repeated use of the rule V ∂i = Ti∂V , we find for all ui ∈ S, 1 ≤ i ≤ n that∣∣∣∣∣
∣∣∣∣∣
(

n∏
i=1

Tui

)
V p

∣∣∣∣∣
∣∣∣∣∣
T

=

∣∣∣∣∣
∣∣∣∣∣V
(

n∏
i=1

∂ui

)
p

∣∣∣∣∣
∣∣∣∣∣
∂

.

The supremum over ui ∈ S, 1 ≤ i ≤ n of the left hand side is equal to the supremum over
ui ∈ S, 1 ≤ i ≤ n of the right hand side, because both sides are elements of R, for fixed
ui ∈ S, 1 ≤ i ≤ n.

Definition 7.17. [11, p. 1217] Let f =
∑∞

n=0 fn, be a formal sum with fn ∈ Pn. Define the
norm of the formal sum by

||f ||A =

∞∑
n=0

||fn||∞.

Let A be the space

{f =
∞∑
n=0

fn : fn ∈ Pn, ||f ||A <∞}.

Theorem 7.18. [11, Thm 2.6] The operator V extends to a bounded operator on A, where
V f =

∑∞
n=0 V fn, for f =

∑∞
n=0 fn ∈ A, ||V f ||A ≤ ||f ||A and |V f(x)| ≤

∑∞
n=0 |x|n||fn||∞ ≤

||f ||A, (|x| ≤ 1).

See [11] for a proof of this theorem.
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7.3 Degenerate values of kα

In this section we will shortly look at the possible values of kα, such that kα is nondegenerate.
We will consider the Dunkl operators restricted to the space of polynomials in m-variables.

Definition 7.19. For a root system R, the weight function kα is degenerate if

∩u∈Rm kerTu ) P0.

Lemma 7.20. Let R be a root, with weight function kα, and associated Dunkl operators Ti
and associated intertwining operator V . Then k is degenerate if and only if V is not injective.

Proof. Let kα be degenerate. Then ∩u∈Rm kerTu ) P0, so there is a polynomial p of degree at
least one, such that Tu(p) = 0, for all u ∈ Rm. Then V Tu(p) = 0,∀u, so ∂uV (p) = 0, ∀u, which
shows that V (p) = c ∈ P (0). This shows that V is not injective, because V (p(x)) = V (c) and
p(x) 6= c.
For the converse, assume that V is not injective. Let N0 be the set of n ∈ N, such that
Vn = VPn is not injective. Note that 0 6∈ N0, because V (1) = 1 and V is linear.
Let n be smallest element of N0, then there are some polynomials p, q ∈ Pn, such that
V (p) = V (q) and p 6= q.
Then ∂uV (p− q) = 0, so V Tu(p− q) = 0. However Vn−1 is injective, because n is the smallest
element of N0. So V Tu(p− q) = implies that Tu(p− q) = 0, and p− q ∈ (∩u∈Rm kerTu) \ P0,
so k is degenerate.

For an example of a degenerate weight function, we can look back at Example 6.7. For the
root system A1, we find Te1x

2n+1 = (2n + 1 + 2k)x2n, which shows that k is degenerate if
k√2 = −i− 1/2, i ∈ N.

The inverse of the intertwining operator can be defined by V −1p = WV −1∇kp, which gives
zero for F = x2i+1, which means that V q 6∈ P2i+1 for some q ∈ P2i+1.
To get some more information we can have another look at the coefficients pw(t). Recall from
Equation (6.13) that

pw(t) =
∑
χ∈Ĝ

χ(1)χ̄(w)tλ(χ).

Inserting this in the formula for the intertwining operator gives

Vn+1f(x) =
1

|G|
∑
χ∈Ĝ

∑
w∈G

m∑
i=1

(wx)i(Vn
∂

∂xi
f)(wx)

∫ 1

0
tnχ(1)χ̄(w)tλ(χ)dt

=
1

|G|
∑
w∈G
〈wx, Vn∇f(wx)〉

∑
χ∈Ĝ

χ(1)χ̄(w)

λ(χ) + n+ 1

for a polynomial f of degree n, so we see that the construction of the intertwining operator
might break down if for some character χ, the eigenvalue λ(χ) is a negative integer. As an
example consider the one dimensional representation ρ defined by ρ(1) = 1 and ρ(rα) = −1,
with character χρ. By equation (6.11)

λ(χρ) = 2
∑
α∈R+

kα = 2γk,
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so we see that the construction of the intertwining operator might break down if 2γk =
−1,−2, . . . .

Lemma 7.21. [12, p. 126] Let R be a rootsystem and let k be a weight function on R. Recall
from Lemma 6.15 on page 34, that

∆k|x|2lhn = ck,nl|x|2(l−1)hn,

with ck,nl = 4(l)(n+mk/2 + l − 1), for l 6= 0 ∈ N and n ∈ N. If one of these constants equals
0, the weight function k is degenerate.

Proof. First assume that for the weight functions k, all the constants ck,nl are nonzero and

V is injective. Define Ak,nj = ⊕j−1
i=0 |x|2iHk,n−2i and Bk,nj = ⊕bn/2ci=j |x|2iHk,n−2i. Note that

Pn = Ak,nj ⊕Bk,nj , for all 0 ≤ j ≤ bn/2c.
We also define the harmonic analogues Anj = ⊕j−1

i=0 |x|2iHn−2i and Bnj = ⊕bn/2ci=j |x|2iHn−2i.

Since ∇jkAk,nj = 0, we have that V (Ak,nj) ⊂ Anj . By the injectivity of V, we find that
V (Ak,nj) ⊂ Anj .
Next assume that for the weight functions k, the constant ck,n0l0 = 0 for some l0 and n0.
Then ck,n1 = 0, for n = n0 + l0 − 1. From this it follows that ∇kAn1 = 0, so V (An1 ⊂ An0.
We assumed that V was injective, so we must have that V (An1) = An1. This leads to
contradiction, because An1 isn’t a subset of An0. It follows that V cannot be injective and
by Lemma 7.20 it follows that k is degenerate if ck,nl = 0 for some n, l.

From the previous lemma it follows that k is degerenerate if ck,nl = 4l(n+γk+m/2+l−1) = 0,
for some l ≥ 1, n ≥ 0 ∈ N. from (6.5). Tt follows that mk/2 = γk +m/2 6∈ −N.
However, finding the specific set of degenerate values requires, more information about the
characters of G and a complete treatment of this problem was given in [13].



Chapter 8

The Fischer decomposition with
respect to p(T) and p(x)

In this chapter we want to prove that the Fischer decomposition with respect to p(T ) and p(x)
exist. Here p(x) is an arbitrary homogeneous polynomial in the variables x1, . . . , xm and
p(T ) is the operator formed by replacing xi with Ti in p(x). We will prove the existence of this
Fischer decomposition by constructing an appropriate inner product and applying Theorem
4.8. To do this we need an inner product similar to the one used in Chapter 5, which can be
found using the intertwining operator V defined in equation (7.8).

Definition 8.1. Let q be a polynomial in m variables, x1, . . . , xm. Define by q(T ) the
power series, which is obtained by replacing the variable xi by the Dunkl operator Ti. When
necessary, we will use the notation q(Tx) to emphasize that we use the Dunkl operators in
the variables x1, . . . , xm.

Since the Dunkl operators commute, we can view the polynomial q(T ) as an element of the
polynomial ring R = P (T1, . . . , Tm). We have the natural action of R on P = P (Rm), given
by

(r, q)→ r(Tx)q(x).

By using multi-index notation we can write

r =

l∑
n=0

∑
|α|=n

cαT
α (cα ∈ R),

where l is the degree of r.

Definition 8.2. [11, Def 3.1] For x, y ∈ Rm, define K(x, y) = Vx(exp(〈x, y〉)). Here the
subscript x indicates the variable with respect to which the operator is applied. The operator
V was defined in (7.8). Also define Kn(x, y) = Vx(〈x, y〉n/n!).

Lemma 8.3. [11, Prop 3.2] For n ∈ N, x, y ∈ Rm, some useful properties of the kernel are
given by

1. Kn+1(x, y) = 1
|G|
∑

w∈G〈wx, y〉K(wx, y)
∫ 1

0 pw(t)tndt, for n ≥ 1 and K0(x, y) = 1,

61
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2. |Kn(x, y)| ≤ maxw∈G |〈wx, y〉|n/n!,

3. Kn(wx,wy) = Kn(x, y);w ∈ G,

4. Kn(x, y) = Kn(y, x),

5. (Ti)xKn(x, y) = Kn−1(x, y)yi.

Proof. We shall use the relation in part 1, to prove the other results.
Take f(x) = 〈x, y〉n+1/(n+ 1)!. Then ∂if = yi〈x, y〉n/(n)!, so Vx(∂if) = yiKn(x, y). Now we
can use (7.8) and we see that

Vx(f(x)) =
1

|G|
∑
w∈G

∫ 1

0
pw(t)

m∑
i=1

(wx)i(Vx∂if)(wxt)dt,

=
1

|G|
∑
w∈G

∫ 1

0
pw(t)

m∑
i=1

(wx)iyiKn(wx, y)tndt,

=
1

|G|
∑
w∈G
〈wx, y〉Kn(wx, y)

∫ 1

0
pw(t)tndt.

For part 2, we will use induction. The estimate is clearly true for K0(x, y). Assume that
|Kn(x, y)| ≤ maxw∈G |〈x, y〉|n/n! for some n ∈ N, then |Kn(wx, y)| ≤ maxw∈G〈x, y〉n/n!. We
can use part 1 to write

|Kn+1(x, y)| ≤ 1

|G|
∑
w∈G
|〈wx, y〉||K(wx, y)|

∫ 1

0
|pw(t)|tndt,

=

(
max
w∈G
|〈wx, y〉|n+1/n!

)(∑
w∈G

∫ 1

0
|pw(t)|tndt

)
,

= max
w∈G
|〈x, y〉|n + 1/(n+ 1)!,

where was used that the functions pw(t) > 0, for 0 ≤ t ≤ 1 and
∑

w∈G pw(t) = G (see Lemma
7.10).
For part 3,

Kn(wx,wy) = L(w−1)Kn(x,wy) = VxL(w−1)〈x,wy〉n/n!

= Vx〈wx,wy〉n/n! = Vx〈x, y〉n/n! = Kn(x, y).

For part 4, we apply induction with respect to n. The identity is clear for n = 0. Assume
Kn(x, y) = Kn(y, x).
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Kn+1(y, x) =
1

|G|
∑
w∈G
〈wy, x〉Kn(wy, x)

∫ 1

0
pw(t)tndt,

=
1

|G|
∑
w∈G
〈x,wy〉Kn(x,wy)

∫ 1

0
pw(t)tndt,

=
1

|G|
∑
w∈G
〈w−1x, y〉Kn(w−1x, y)

∫ 1

0
pw(t)tndt,

=
1

|G|
∑
w∈G
〈wx, y〉Kn(wx, y)

∫ 1

0
pw(t)tndt,

= Kn+1(x, y).

In the first step we have used the symmetry of Kn and the symmetry of the inner product.
Next we have used the invariance of the inner product and Kn under the Weyl group. Finally
we have changed the summation variable from w to w−1 and we have used that pw−1(t) =
pw(t), since w and w−1 are conjugate. (See [10, p.112])
For part 5,

(Ti)xKn(x, y) = (Ti)xVx〈x, y〉n/n! = Vx(∂i)x〈x, y〉n/n!

= Vxyi〈x, y〉n−1/(n− 1)! = yiKn−1(x, y).

Corollary 8.4. [12, p. 127] We can estimate the norm of K(x, y) =
∑∞

n=0Kn(x, y) by

|K(x, y)| ≤ e|x||y|,

for kα > 0. If kα is nondegenerate but negative for some α ∈ R, instead we have the estimate

|K(x, y)| ≤ eB|x||y|,

for some B > 0, depending on |G| and kα.

Proof. If kα > 0, we can use the estimate |〈wx, y〉| ≤ |x||y|, to write part 2 of Lemma 8.3 as
|Kn(x, y)| ≤ |x|n|yn|/n!. By using the Taylor series of the exponent, this leads to

K(x, y) ≤ e|x|n|y|n .

The other part is show in [12, p.127].

Corollary 8.5. [11, Cor 3.3] For p ∈ Pn, we have that Kn(x, Ty)p(y) = p(x).

Proof. Recall from Definition 5.4 that K̂n(x, y) = 〈x, y〉n.
Let q ∈ Pn. By Lemma 5.5, we have q(x) = K̂n(x, y)q(y). By applying Vx to both sides, it
follows that

Vxq(x) = VxKn(x, ∂y)q(y).

By applying Vy to both sides and noting that the left hand side is constant in y, we find

Vxq(x) = VxKn(x, Ty)Vyq(y),
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because TyVy = Vy∂y. So we have proven the corollary for each polynomial of the form
p(x) = Vxq(x). Because V : Pn → Pn is bijective, we have proven the corollary for each
p ∈ Pn.

Theorem 8.6. [11, Thm. 3.5] Let R be a root system on Rm, with weight function k. We
assume that k is nondegenerate. Then the form [·, ·]k : P (Rm)× P (Rm)→ R defined by

[p, q]k = (p(T )q)(x)|x=0

defines an inner product on P (Rn).
It has the useful property that [xip, q]k = [p, Tiq]k.

Proof. Choose p, q ∈ P (Rn) arbitrary. The form is clearly bilinear, so we can assume that p
and q are homogeneous polynomials.
We can see that [p, q]k = 0, if p and q are homogeneous polynomials and deg p 6= deg(q). We
can also see that p(Tx)q(x), is a scalar if p and q are homogeneous of the same degree, so we
can write [p, q]k = p(T )q)(x), where we identify P (0) with R.
We need to prove the symmetry of the form. If p and q are homogeneous of different degree,
we have [p, q]k = [q, p]k = 0, so in this case the form is symmetric.
Let p, q be homogeneous polynomials of degree n.
By using the generating kernel K(x, y), we can see that

[p, q]k = p(Tx)q(x) = Kn(Tx, Ty)p(y)q(x) = Kn(Ty, Tx)q(x)p(y).

because Tx and Ty commute and because Kn is symmetric, which was shown in Lemma 8.3
part 4. On the other hand

[q, p]k = q(Ty)p(y) = Kn(Ty, Tx)q(x)p(y),

so we have that [p, q]k = [q, p]k, if p, q are homogeneous of degree n.
As last step in the proof, we need to prove the positivity of the form. For this we need another
lemma.

Lemma 8.7. [11, Thm 3.6] Let p, q ∈ Pn and decompose them as

p =
∑
j≤n/2

|x|2jpn−2j ,

q =
∑
j≤n/2

|x|2jqn−2j ,

with pn−2j , qn−2j ∈ Hk,n−2j .
Then

[p, q]k =
∑
j≤n/2

4jj!(n− 2j − γ +m/2)j [pn−2j , qn−2j ].

Here we have used the notation (k)j =
∏j−1
i=0 (k + i), where (k)j is a so-called Pochhammer

symbol.
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Proof. The existence of these decompositions of p and q is given in Theorem 6.16. Using
∆k =

∑m
i=1 T

2
i , we find

[p, q]k =
∑
j≤n/2

∑
l≤n/2

∆l
kpn−2l(T )(|x|2jqn−2j(x))|x=0.

Using the commutation relations given in (6.5), we see that

∆k|x|2jfn(x) = 4j(n+ j + γ − 1 +m/2)|x|2j−2fn(x) + |x|2j∆kfn(x),

and be repeated use of this formula we find

∆l
k|x|2jqn−2j(x) = 4l(−j)l(−n+ j − γ + 1−m/2)l|x|2j−2lqn−2j(x).

This expression is zero for l > j, since it would equal ∆l−jCqn−2j = 0, where C is a some
constant. By the same argument this expression is also zero for l < j, because the form is
symmetric.
So we are left with the l = j terms and this gives

[p, q]k =
∑
j≤n/2

4jj!(n− 2j + γ −m/2)jpn−2j(T )qn−2j(x)|x=0.

Now we can continue with the proof of Theorem 8.6. We can see that, as long as γ is positive,
the constants are all positive, which shows that [p, p]k > 0 for all nonzero polynomials.
Finally the property [xip, q]k = [p, Tiq]k follows from the definition in a trivial way.

Theorem 8.8. Let p(x) be an arbitrary homogeneous polynomial of degree l. Define p(T ), as
the differential difference operator of degree l, which is obtained by evaluating p in the point
(T1, . . . , Tm). Define the spaces of (p,k)-harmonics by Hp

k,n = Pn ∩ ker(p(T )). Then we have
the decomposition

Pn = ⊕i p(x)iHp
k,n−li.

Proof. The space P = ⊕∞n=0Pn is a graded vector space and [·, ·]k is an inner product on
this space and Pn⊥Pm for n 6= m. The operators multiplication by p(x) : P → P and
p(T ) : P → P are formal adjoints with respect to this inner product [·, ·]k. So the operators
satisfy the conditions of Theorem 4.8 and so the space Pn can be decomposed as

Pn = ⊕i p(x)iHp
k,n−li.

This is a also a Fischer decomposition. A special case of this decomposition is given by
p(x) = |x|2 and p(T ) = ∆k.
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Chapter 9

The Dunkl transform

The Fourier transform is defined by

f̂(x) =
1

(2π)m/2

∫
R
K̂(−ix, y)f(y)dy =

1

(2π)m/2

∫
R

exp(〈−ix, y〉)f(y)dy,

for f ∈ S(Rm). Here S(Rm) is the Schwartz-space defined by

S(Rm) = {f ∈ C∞(Rm) : |∂α|x|βf(x)| <∞, for all multi-indices α, β}.

We can define a similar transformation by using the kernel K(x, y) = Vx(exp(〈x, y〉). This
transformation is called the Dunkl transform. Before we can use it, we first need to determine
the domain and range of the transform. We will also use the Laquerre polynomials to construct
a set of eigenfunctions of the Dunkl transform. In this chapter we will follow [11] and [12].
Define the function h : Rm → R by

h(x) =
∏
α∈R+

|〈α, x〉|kα ,

and define the constants γ = deg(h) and mk = m + 2γ. These definitions were given before
in Definition 6.18.
We also need the measure h2dω on the unit sphere S = {x ∈ Rm : |x| = 1}, the measure
h2dx on Rm and the Gaussian measure

h2dµ = h2(x)(2π)−m/2e−|x|
2/2dx

on Rm. Here dω is the normalized rotation invariant surface measure on the sphere and dx
is the Lebesque measure on Rm.
We will also use the normalization constants cm = (

∫
Rm h

2dµ)−1 and c′m = (
∫
Sm−1 h

2dω)−1.
These measures and normalization constants were defined in Definition 6.19.

Definition 9.1. [12, p. 128] Let

E(Rm) = {f ∈ C∞(Rm) :

∫
Rm
|p( d

dx1
, . . . ,

d

dxn
)f(x)|eB|x|dx <∞, }

for all p ∈ P and B <∞.
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In Corollary 8.4 we have shown that K(x, y) < exp(B|x||y|), for some constant B > 0. In
[5, Thm.3.1] it was shown that this estimate holds for complex x, so for f ∈ E the integral∫
Rm f(x)K(−ix, y)|h(x)|2dx exists and so the Dunkl transform is well-defined on E. It was

even shown in [22, Prop 2.36] that |K(−ix, y)| ≤ 1, for kα ≥ 0, which shows that the transform
can be defined for f ∈ L1(Rm, dx). However, the set of eigenfunctions of Dk which we are
going to construct, consists of elements which are in E and which are rapidly decreasing at
∞, so the proofs do not change. Also note that the functions p(x)e−|x|

2/2, p ∈ P belong to
E.

Definition 9.2. [12, Def. 2.2] For f ∈ E(Rn) and y ∈ Rn define the Dunkl transform by

(Dkf)(y) = (2π)m/2cm

∫
Rm

f(x)K(x,−iy)|h(x)|2dx.

The function (Dkf)(y) is continuous by the dominated convergence theorem.

Definition 9.3. [23, p.100] The Laquerre polynomials are defined by

LAn (t) =
(A+ 1)n

n!

n∑
j=0

(−n)j
(A+ 1)j

tj

j!
,

where we have used the notation (n)j = n · (n+ 1) · · · · · (n+ j − 1).

The Laquerre polynomials satisfy the orthogonality relations

Γ(A+ 1)−1

∫ ∞
0

LAk (t)LAl (t)tAe−tdt = (A+ 1)kδkl/(n!). (9.1)

Definition 9.4. [12, Def. 2.3] For j, n ∈ N and p ∈ Hk,n define

φj(p;x) = p(x)L
n+γ+m/2−1
j (|x|2)e−|x|

2/2 (x ∈ Rm) .

We are going to show that the functions φj(p;x) are eigenvectors of the Dunkl transform (see
Theorem 9.12). Also, if the polynomials pn,k,i, 1 ≤ i ≤ dim(Hk,n) form a basis of Hk,n, the
functions φj(pn,k,i;x), (j ∈ N) are orthogonal (see Lemma 9.10) and span a dense subset of
L2(Rm, |h|2dx) (See Theorem 9.11). To prove all this, we need some calculations.

Lemma 9.5. [11, Thm. 3.8] Let [·, ·]k be the inner product defined in Theorem 8.6. Let
p, q ∈ Hk,n, then

[p, q]k = cm

∫
Rm

pqh2dµ = c′m2n
(
N

2
− γ
)
n

∫
S
pqh2dω.

Proof. We have that cm
∫
Rm |h|

2dµ = 1, by the definition of cm.
Since p(Tx)(q(x)) is a constant, we can put in inside this integral, which leads to

[p, q]h = cm

∫
Rm

(p(Tx)q(x))(1)h2dµ

= cm

∫
Rm

q(x)p(Tx)∗(1)h2dµ

= cm

∫
Rm

q(x)(p(x) + p0(x))h2dµ
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Repeated use of (Ti)
∗g = xig(x) − Tig(x) and noting that deg(Tig) < deg g, shows that

the terms of highest degree in p(T )∗1 are precisely p(x). By Theorem 6.25 the integral∫
Rm qp0h

2dµ = 0, so we are left with

[p, q]k = cm

∫
Rm

pqh2dµ = c′m2n
(
N

2
− γ
)
n

∫
S
pqh2dω,

where the last equality follows from (6.6).

Lemma 9.6. [11, Prop. 3.9] Let j, n ∈ N and f ∈ Hk,n, then

exp(−∆k/2)|x|2jf(x) = (−1)jj!2jL
m+γ+N/2−1
j (|x|2/2)f(x).

Here exp(−∆k/2)|x|2jf(x) =
∑bj+n/2c

i=1 (−∆k/2)i|x|2jf(x).

Proof. By Theorem 6.26 it follows that

exp(−∆k/2)|x|2jf(x) =

j∑
l=0

∆l
k

(−2)ll!
|x|2jf(x)

=

j∑
l=0

(−2)l

l!
(−l)j(−m− j − γ −N/2 + 1)j |x|2j−2lf(x)

=
(−1)jj!

(−1)jj!

j∑
l=0

(−l)j(−j − (m+ γ +N/2− 1))l
l!

(−2)l2j−l(|x|2/2)j−lf(x)

= (−1)jj!2jL
m+γ+N/2−1
j (|x|2/2)f(x),

where we have used the reversed form of the Langrange polynomials

LAj (t) =
(−1)j

j!

j∑
l=0

(−1)l
(−j)l(−j −A)l

l!
tl−j .

Theorem 9.7. [11, Thm. 3.10] For p, q polynomials,

[p, q]k = cm

∫
Rm

(exp(∆k/2)p)(exp(∆k/2)qh2dµ.

Proof. Let p ∈ Hk,a and q ∈ Hk,b. Set A = a + γ + m/2 − 1 and B = b + γ + m/2 − 1 and
have a look at the integral

I(p, q)

∫
Rm

LAa (|x|2/2)LBb (|x|2/2)p(x)q(x)h2(x)dµ, for j, l ∈ N.

Since the polynomials p, q and h2 are homogeneous in |x|, we can use polar coordinates to get

I(p, q) =

∫
Rm

LAj (|x|2/2)LBl (|x|2/2)p(x)q(x)h2(x)dµ

=
21−m/2

Γ(m/2)

∫ ∞
0
|x|a+b+2γLAj (|x|2/2)LBl (|x|2/2) exp(−|x|2/2)|x|m−1d|x|

∫
S
p(x)q(x)h2dω.
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By 6.25 the second integral is 0 if a 6= b. Next we use a coordinate transformation t = |x|2/2
to find

I(p, q) =

∫
Rm

LAj (|x|2/2)LAl (|x|2/2)δabp(x)q(x)h2(x)dµ

= δab
21−m/2

Γ(m/2)

∫ ∞
0
|x|a+b+2γLAj (|x|2/2)LAl (|x|2/2) exp(−|x|2/2)|x|m−1d|x|

∫
S
p(x)q(x)h2dω

= δab
21−m/2

Γ(m/2)

∫ ∞
0
|2|a+γ+m/2−1/2ta+γ+m/2−1/2LAj (t)LAl (t) exp(−t)t−1/2dt

∫
S
p(x)q(x)h2dω

= δab
2a+γ

Γ(m/2)

∫ ∞
0

tALAj (t)LAl (t) exp(−t)dt
∫
S
p(x)q(x)h2dω

= δabδjl
2a+γ

j!

(A+ 1)jΓ(A+ 1)

Γ(m/2)

∫
S
p(x)q(x)h2dω

= δabδjl
2a+γ

j!

Γ(a+ γ +m/2 + k)

Γ(m/2)

∫
S
p(x)q(x)h2dω.

We only need to check the lemma for pairs of monomials |x|2jp and |x|2lq, with p ∈ Hk,a and
q ∈ Hk,b. By Lemma 9.6 we can see that

cm

∫
Rm

(exp(∆k/2)p)(exp(∆k/2)q)h2dµ

= cm(−2)jj!(−2)ll!I(p, q)

= cm(j!)2δabδjl
22j+a+γ

j!

Γ(a+ γ +m/2 + k)

Γ(m/2)

∫
S
p(x)q(x)h2dω,

= δabδjl2
a+2j Γ(a+ γ +m/2 + k)

Γ(m/2 + γ)
j!c′m

∫
S
p(x)q(x)h2dω,

= δabδjl4
jj! (a+ γ +m/2)j 2a (γ +m/2)a c

′
m

∫
S
p(x)q(x)h2dω,

= δjl4
jj! (a+ γ +m/2)j [p, q]k,

= [|x|2jp, |x|2lq]k,

where we also have used equation (6.6), Theorem 8.6 and equation (9.1).

A simple calculation using Theorem 6.26 shows that

∆L
n+m/2+γ−1
j p(x) = (n+m/2 + γ + k − 1)L

n+m/2+γ−1
j−1 p(x),

for j ∈ N and p ∈ Hk,n.
From now on we will follow [12].
For y ∈ Cm define ν(y) =

∑m
i=1 y

2
i (∈ C).

Lemma 9.8. [12, Prop 2.1] Let p ∈ P and let y ∈ Cm, then

cm

∫
Rm

(e∆k/2p(x))K(x, y)h(x)2dµ(x) = eν(y)/2p(y)
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Proof. Let l be an integer larger than the degree of p, fix y ∈ Cm and let

qm(x) =
l∑

j=0

Kj(x, y),

then [ql, p]k = p(y), which can be seen by breaking p into homogeneous components. This is
a polynomial identity which remains valid for a complex y. By Theorem 9.7

[qm, p]k =

∫
Rm

(e−∆k/2p)(e−∆k/2qm)h2dµ.

But ∆x
kKn(x, y) = ν(y)Kn−2(x, y) and so

e−∆k/2ql(x) =
l∑

j=0

∑
r≤j/2

((−ν(y)/2)r/r!)Kj−2r(x, y)

=
∑
r≤l/2

((−ν(y)/2)r/r!)
l−2r∑
s=0

Ks(x, y).

By taking the limit l → ∞, the sum converges to e−ν(y)/2K(x, y), since it is dominated
termwise by

∞∑
j=0

(|y|2/l!2l)
∞∑
s=0

(|x|2|y|2/s!) = e|y|
2/2+|x||y|,

which is integrable with respect to dµ. So by the dominated convergence theorem

p(y) = e−ν(y)/2cm

∫
Rm

(e−∆k/2p(x))K(x, y)h2(x)dµ(x).

Lemma 9.9. [12, Thm. 3.2] For y, z ∈ Cm, we have

cm

∫
Rm

K(x, z)K(x, y)h(x)2dµ(x) = e(ν(y)+ν(z))/2K(y, z).

Proof. In Lemma 9.8, we have established

eν(y)/2p(y) = cm

∫
Rm

(e−∆k/2p(x))K(x, y)h2(x)dµ(x),

for polynomials. Fix z ∈ Cm. Define pj(x) =
∑j

i=1Kj(x, z). Then pj(y) → K(y, z) and
e∆k/2pj(x)→ e−ν(z)/2K(x, z) as j →∞. The result follows by dominated convergence.

Lemma 9.10. [12, Prop. 2.4] For For j, l, n1, n2 ∈ N, p ∈ Hk,1 and q ∈ Hk,n2, we have

cm

∫
Rm

φj(p;x)φl(q;x)h2dx = δjlδn1n22−γ−m/2(2π)m/2
(m/2 + γ)j+n

j
c′m

∫
pqh2dω.
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Proof. By using spherical coordinates the first integral is equal to

cm
2m/2−1

Γ(m/2)

∫ ∞
0

L
n1+γ+m/2−1
j (|x|2)L

n2+γ+m/2−1
l (|x|2)e−|x|

2 |x|n1+n2+2γ+m−1d|x|
∫
S
pqh2dω

Again the inner integral is zero unless n1 = n2. Assuming n1 = n2, we can substitute t = |x|2
in the outer integral. By the orthogonality realition (9.1), we find for the outer integral∫ ∞

0
L
n1+γ+m/2−1
j (t)L

n1+γ+m/2−1
l (t)e−ttn1+γ+m/2−11/2dt = 1/2δjl

Γ(n1 + γ +m/2 + j)

j!

and by combining the two integrals and using equation (6.6) we find the result of the Lemma.

Theorem 9.11. [12, Thm. 2.5] The linear span of {φj(p) : j, n ∈ N, p ∈ Hk,n} is dense in
L2(Rm, h2dµ).

Proof. See [12, p.129] for a proof by using Hamburger’s Theorem.

Theorem 9.12. [12, Thm 2.6] For j, n ∈ N, p ∈ Hk,n, y ∈ Rm, φm(p)̂ (y) = (−1)n+2jφ(p; y)

Proof. Denote A = m/2 + n+ γ − 1, then by Lemma 9.6 and Lemma 9.8 we can write

(2π)−m/2cm

∫
Rm

LAj (|x|2/2)p(x)K(x, y)h(x)2e−|x|
2/2dx = (−1)j(j!2j)−1eν(y)/2ν(y)jp(y).

By using the identity

LAl (t) =
l∑

j=0

2j
(A+ 1)l
(A+ 1)j

(−1)l−j

(l − j)!
LAj (t/2),

which is a special case of [23, problem 67, p.385], we can rewrite the equation above as

eν(y)/2p(y)(−1)l
(A+ 1)l

l!

l∑
j=0

(−l)j
(A+ 1)j

(−ν(y))j

j!
.

Replace y by −iy (y ∈ Rn), then ν(y) becomes −|y|2 and p(y) becomes (−i)np(y) and the
sums yields a Laguerre polynomial.
The integral becomes equal to

(−1)m(−i)np(y)LAm(|y|2)e−|y|
2/2

Corollary 9.13. [12, Cor 2.7] The Dunkl transform has period 4 and extends to an isometry
from L2(Rm, h2dx) onto itself. The square of the transform is the central involution, that is,
if (Dkf)(x) = g(x), then (Dkg)(x) = f(−x) almost everywhere.

Lemma 9.14. [12, Lemma 2.9] Let f ∈ E(Rm) and let g ∈ C∞(Rm) such that g and all its
partial derivatives are O(exp(B|x|) for some B <∞. This includes g(x) = K(x, y) for fixed
y. Then ∫

Rm
(Tjf)gh2dx = −

∫
Rm

(fTj)gh
2dx.
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Proof. To prove this, we need to use integration by parts. This is possible since f and g
decrease rapidly at infinity. At first we require k(α) > 1 (α ∈ R), so 1/〈x, α〉 is integrable for
h2dx. After the result is established, we can drop this restriction (back at k(α) > 0 (α ∈ R))
by analytic continuation. Now

∫
Rm

(Tjf)gh2dx =

−
∫
Rm

f(x)
∂

∂xj
(g(x)h2(x))dx

+
∑
α∈R+

kααj

∫
Rm

f(x)− f(rα(x))

〈x, α〉
g(x)h2(x)dx

= −
∫
Rm

f(x)
∂

∂xj
(g(x) + 2f(x)

∑
α∈R+

kα
αj
〈x, α〉

g(x)

h2(x)dx

+
∑
α∈R+

kααj

∫
Rm

f(x)
g(x) + g(rα(x))

〈x, α〉
h2(x)dx

= −
∫
Rm

f(Tj(g))h2dx,

where the substitution x→ rαx, for which 〈x, α〉 becomes 〈rαx, α〉 = 〈x, rαα〉 = −〈x, α〉, was
used to show that∫

Rm

f(rα(x))g(x)

〈x, α〉
h2(x)dx = −

∫
Rm

f(x)g(rα(x))

〈x, α〉
h2(x)dx.

Theorem 9.15. [12, Thm 2.10] For f ∈ E(Rm), we have that (Tjf) (̂y) = iyj(Dkf)(y) The
operator −iTj is densely defined on L2(Rm, h2dx) and is self-adjoint.

Proof. For fixed y ∈ Rm, put g(x) = K(x,−iy) in Lemma 9.14. Then Tjg(x) = −iyjK(x,−iy)
and Dk(Tjf)(y) = (−1)(−iyj)(Dkf)(y). The multiplication operator defined by Mjf(y) =
yjf(y) is densely defined and self-adjoint on L2(Rm, h2dx). Further −iTj is the inverse image
of Mj under the Dunkl transform, an isometric isomorphism.

Corollary 9.16. [12, Cor. 2.11] For f ∈ E(Rm), define gj = xjf (1 ≤ j ≤ m). The Dunkl
transform of gj is given by

Dk(gj)(y) = iTj(Dkf)(y), (y ∈ Rm).
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Chapter 10

Use of the Dunkl transformation in
differential-difference equations

The Dunkl operators are generalizations of the partial derivatives. It makes sense to use
them to generalize differential equations. In this chapter we shall look at the generalized heat
equation. To do this we shall generalize Section 4.3.1 of [15] to the setting of Dunkl operators.

Definition 10.1. The Fourier transform of a function f ∈ S(Rm) is given by

f̂(y) =
1

(2π)m/2

∫
Rm

f(x)e−i〈x,y〉dx (∈ S(Rm)).

The inverse Fourier transform of a function f ∈ S(Rm) is given by

f̌(y) =
1

(2π)m/2

∫
Rm

f(x)ei〈x,y〉dx (∈ S(Rm)).

Here S(Rm) is the Schwartz-space, defined by

{f ∈ C∞(Rm : |∂αxβf | <∞, for all multi− indices α, β}.

Since the Fourier transform is an isometric isomorphism on S(Rm) and S(Rm) is dense in
L2(Rm), the Fourier transform and its inverse can be extended to all of L2(Rm) in the following
way; for f ∈ L2(Rm) take a sequence (fn)n∈N ∈ S(Rm) converging to f . Then the sequence
f̂n converges to an element g ∈ L2(Rm). Note that g only depends on the choice of f and not
the choice of the converging sequence. We define g = f̂ .
In the following we will also use the Dunkl transform, which was defined in Definition 9.2 as

(Dkf)(y) = (2π)m/2cm

∫
Rm

f(x)K(x,−iy)|h(x)|2dx,

with inverse given by

(D−1
k f)(y) = (2π)m/2cm

∫
Rm

f(x)K(x, iy)|h(x)|2dx,

for (f ∈ E(Rm). We have the relation Dkf(−y) = D−1
k f(y). By Corollary 9.13 the Dunkl

transform extends to a transform on L2(Rm, h2dx). This extension is defined in the following
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way; for f ∈ L2(Rm, h2dx) take a sequence (fn)n∈N) ∈ E(Rm) converging to f . Then the
sequence f̂n converges to an element g ∈ L2(Rm, h2dx). Note that g only depends on the
choice of f and not the choice of the converging sequence. We define g = Dk(f).

Recall that c−1
k is given by

∫
Rm(2π)−m/2|h(x)|2e−|x|2 . To simplify the notation it is useful to

define

ζm = (2π)−m/2cm =

(∫
Rm
|h(x)|2e−|x|2

)−1

.

The Fourier transform can be used to simplify certain types of differential equations. Consider
as example the Cauchy problem defined by{

p
(
∂
∂x

)
u0 − ∂

∂tu0 = 0 on Rm × (0,∞),
u0 = f on Rm × (t = 0).

(10.1)

Here we assume that f(x) ∈ C(Rm)0, the space of continuous functions with compact support,
and we search for a solution u(·, t) ∈ L2(Rm), for all t > 0. Also p(∂/∂x) is obtained by
replacing xi with ∂i in the expression of p(x), as was defined in Definition 5.1.

Lemma 10.2. The solution for the Cauchy problem in equation (10.1) is given by the double
integral

u0(x, t) =
1

(2π)m

∫
Rm

[∫
Rm

exp(p(iξ)t) exp 〈i(x− y), ξ〉dξ
]
f(y)dy,

which should be interpreted in the sense of distribution theory.

Proof. To solve this problem, we apply the steps in [15, p, 188]. First, we apply the Fourier
transform to the Cauchy problem and obtain the resulting system

∂û0

∂t
= p(ix)û0, û0(x, 0) = f̂(x),

which has the solution û0 = f̂ exp(p(ix)t). Applying the inverse Fourier transform to this
result gives the solution

u0(x, t) =
exp(p(ix)t)̌ ∗ f(x)

(2π)m/2
,

which is equal to the double integral

u0(x, t) =
1

(2π)m

∫
Rm

[∫
Rm

exp(p(iξ)t) exp 〈i(x− y), ξ〉dξ
]
f(y)dy.

By taking the derivatives into the integral we see that u0(x, t) is indeed a solution and by
setting t = 0, we are left with

u0(x, t) =
1

(2π)m/2

∫
Rm

[∫
Rm

exp 〈i(x− y), ξ〉dξ
]
f(y)dy =

∫
Rm

δ(x− y)f(y)d(y) = f(x),

so u0(x, t) satisfies the initial condition.

Next we can replace the partial derivatives with Dunkl operators to get the system{
P (T x)uk − ∂

∂tuk = 0 on Rm × (0,∞),
uk = f on Rm × (t = 0),

(10.2)

again for uk(·, t) ∈ L2(Rm), ∀t > 0 and f ∈ C(R)0.
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Lemma 10.3. The solution for the Cauchy problem in equation (10.2) is given by the double
integral

uk(x, t) = ζm

∫
Rm

∫
Rm

exp(P (iξ)t)f(y)K(ix, ξ)K(−iy, ξ)|h(ξ)|2|h(y)|2dξdy.

Proof. This Cauchy problem was solved in [21, Ch. 4] for P = |x|2. In this proof we shall
generalize the method of [21] to an arbitrary polynomial.
Since T xi K(x, y) = yiK(x, y) we can simplify this system by applying the Dunkl transform.
This gives the system

P (ix)Dk(uk) =
∂

∂t
Dk(uk), Dkuk(x, 0) = Dk(f)(x),

with the solution
Dk(uk) = Dk(f) exp(P (ix)t).

The solution of the original system can be found by applying the inverse Dunkl transform to
both sides. But in this general situation it is not known whether there exists a reasonable
convolution structure on Rm matching the action of the Dunkl transform Dk.
However, we can find a solution by using the generalized translation [21, Eqn. (4.2)], which
is defined by

Lykf(x) = ζm

∫
Rm

(Dkf)(ξ)K(ix, ξ)K(iy, ξ)|h(ξ)|2dξ.

Note that Lykf(x) = Lxkf(y), L0
kf(x) = f(x) and Ly0f(x) = f(x+ y).

Define F ∈ L2(Rm, h2dx) by

(DkF )(x) = (exp(P (ix)t)).

By using the generalized translation as convolution structure, we find the solution

uk(x, t) =

∫
Rm

L−yk F (x)f(y)|h(y)|2dy,

which is equal to the double integral

ζm

∫
Rm

∫
Rm

exp(P (iξ)t)f(y)K(ix, ξ)K(−iy, ξ)|h(ξ)|2|h(y)|2dξdy.

By taking the Dunkl operators into the integral, which is justified because the integrands
decreases rapidly to 0 at infinity, we see that(

P (T )− ∂

∂t

)
ζm

∫
Rm

∫
Rm

exp(P (iξ)t)f(y)K(ix, ξ)K(−iy, ξ)|h(ξ)|2|h(y)|2dy,

= ζm

∫
Rm

∫
Rm

(P (iξ)− P (iξ)) exp(P (−ix)t)f(y)K(ix, ξ)K(−iy, ξ)|h(ξ)|2|h(y)|2dy,

= 0,

which shows that uk(t, x) is the solution we were looking for.



78 CHAPTER 10. USE OF THE DUNKL TRANSFORMATION IN . . .

We can also look at the Cauchy problem, which is obtained by applying the intertwining
operator V x

k to equation (10.1). Since the intertwining operator leaves the t-variable invariant
we get {

P (T x)Vku0 − ∂
∂tVku0 = 0 on Rm × (0,∞),

Vku0 = Vkf on Rm × (t = 0),
(10.3)

This is precisely the Cauchy problem in Equation 10.2 with initial condition uk(x, 0) = Vk(f).
We can also solve this problem by applying V x

k to the solution of the Cauchy problem in
equation (10.1) with initial value u0(x, 0) = f(x). To compare the two solutions we need to
consider equation (10.2) with initial condition Vk(uk(x, 0)) = f(x) = VkV

−1
k f(x). This gives

u′k(x, t) =
1

(2π)m
V x
k

(∫
Rm

[∫
Rm

exp(P (iξ)t) exp 〈i(x− y), ξ〉dξ
]

(V y
k )−1f(y)dy

)
,

=
1

(2π)m

∫
Rm

[∫
Rm

exp(P (iξ)t)K(ix, ξ) exp 〈−iy), ξ〉dξ
]

(V y
k )−1f(y)dy.

This u′k(x, t) must be equal to the uk(x, t) in Lemma 10.3 since both functions solve the
Cauchy problem (10.2) for the same initial value. This gives the equation

ζm

∫
Rm

∫
Rm

exp(P (iξ)t)K(ix, ξ)K(−iy, ξ)|h(ξ)|2dξf(y)|h(y)|2dy

=
1

(2π)m

∫
Rm

[∫
Rm

exp(P (iξ)t)K(ix, ξ) exp 〈−iy, ξ〉dξ
]

(V y
k )−1f(y)dy.

This gives some information about the intertwining operator. This is not enough to define the
intertwining operator in a closed form, since the Dunkl transform contains the intertwining
operator acting on exp〈−ix, y〉.

As an example we can apply this method to the Dunkl heat equation, where P (T ) = ∆k and
the Cauchy problem is given by{

∆kuk − ∂
∂tu = 0 on Rm × (0,∞),

uk = f on Rm × (t = 0),
(10.4)

Lemma 10.4. [21, Thm. 4.11] The solution of the Cauchy problem (10.4) is given by

uk(x, t) =

∫
Rm

1

(4t)γ+m/2
e−(|x|2+|y|2)/4tK

(
x√
2t
,
y√
2t

)
|h(y)|2f(y)dy.

Proof. First of all we need to apply the inverse Dunkl transform to the function e−|ξ|
2t.

For this, we use Definition 9.4, to write φ0(1;x) = 1 · Lγ+m/2−1
0 (|x|2)e|x|

2/2 = e−|x|
2/2 and

apply Theorem 9.12, to get Dke
−|x|2/2 = e−|x|

2/2.
By setting x =

√
2tξ, we can see that∫

e−t|x|
2 |h(x)|2K(−ix, y)dx =

∫
e−|ξ|

2/2h2(ξ/
√

2t)K(−iξ/
√

2t, y)d(ξ/
√

2t),

=

∫
e−|ξ|

2/2|h(x)|2d(ξ)K(−iξ, y/
√

2t)(
√

2t)−m−2γ ,

= e−|y|
2/(4t)(

√
4t)−m−2γ .
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So

e−|ξ|
2t = Dk

(
1

(4t)γ+m/2
exp

(
−|ξ|

2

4t

))
.

By applying the previous method we find as solution

uk(x, t) = ζm

∫
Rm

∫
Rm

exp(−|ξ|2t)f(y)K(ix, ξ)K(−iy, ξ)|h(ξ)|2|h(y)|2dξdy.

By Lemma (9.9) on page 71 we have

ζm

∫
Rm

K(y, x)K(z, x)|h(x)|2e−|x|2/2dx = eν(x)+ν(y)/2K(y, z),

which can be used to solve the dξ integral.
By using the substitution

√
2tξ = η, we get

ζm

∫
Rm

e−|ξ|
2tK(ix, ξ)K(−iy, ξ)|h(ξ)|2dξ

= ζm

∫
Rm

e−|η|
2/2K

(
ix,

η√
2t

)
K

(
−iy, η√

2t

) ∣∣∣∣h( η√
2t

)∣∣∣∣2 dm( η√
2t

)
,

=
ζm

(4t)γ+m/2

∫
Rm

e−|η|
2/2K

(
ix√
2t
, η

)
K

(
−iy√

2t
, η

)
|h (η)|2 dη,

=
1

4t)γ+m/2
e−(|x|2+|y|2)/4tK

(
ix√
2t
,
−iy√

2t

)
,

=
1

(4t)γ+m/2
e−(|x|2+|y|2)/4tK

(
x√
2t
,
y√
2t

)
,

which gives the solution

uk(x, t) =

∫
Rm

1

(4t)γ+m/2
e−(|x|2+|y|2)/4tK

(
x√
2t
,
y√
2t

)
|h(y)|2f(y)dy.

Denote the space Rm × (0, t) by U. Then, according to [21, p. 536-540], this is the unique
solution within the class of function C2(U) ∩ C(Ū), which satisfy the following exponential
growth condition: There exist positive constants C, λ and r, such that

|uk(x, t)| ≤ C · e−λ|x|
2
, for all (x, t) ∈ U with |x| > r.

Definition 10.5. [21, Def. 4.6] The generalized heat kernel Γk(x, y, t) : Rm ×Rm ×R+ → R
is given by

Γk(x, y, t) =
1

(4t)γ+m/2
exp

(
−|x|

2 + |y|2

4t

)
K

(
x√
2t
,
y√
2t

)
.

We can use this to write the solution of the Dunkl heat equation as

u(x, t) =

∫
Rm

Γk(x, y, t)f(y)|h2(y)|dy.

As before, we can find another way to write this solution by applying Vk to the solution of
the Cauchy problem of the ordinary heat equation.
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The solution for the Cauchy problem of the heat equation is given by

u0(x, t) =
1

(4πt)m/2

∫
Rm

exp

(
−|x− y|2

4t

)
f(y)dy,

and the solution of equation (10.4) with initial condition u0(x, 0) = V −1
k f(x) is given by

uk(x, t) = V x
k

(
1

(4πt)m/2

∫
Rm

exp

(
−|x− y|2

4t

)
(V −1
k f)(y)dy

)
,

=
1

(4πt)m/2

∫
Rm

V x
k

(
exp

(
−|x− y|2

4t

))
(V −1
k f)(y)dy,

=
1

(4πt)m/2

∫
Rm

V x
k

(
exp

(
−|x|

2 + |y|2

4t

)
exp

〈
x√
2t
,
y√
2t

〉)
(V −1
k f)(y)dy,

which again might contain useful information to determine the closed form of the intertwining
operator.
For the root system Am−1, we can simplify the solution of equation (10.4) given in Lemma
10.4.
Denote by θm(x) the m-dimensional Vandermonde determinant. Then by [1, p.24] the value
of cm is given by

c−1
m =

∫
Rm
|h(x)|2ke−|x|2dx

= 2−km(m+1)/22−γ−m/2
∫
Rm

e−|x|
2/2|θm(x)|2kdx

= 2−2γ(π)m/2
m∏
j=1

Γ(1 + jk)

Γ(1 + j)
,

which leads to

V x
k

(
e−(|x|2+|y|2)/4te〈x,y〉/2t

)
= 4γ

m∏
j=1

Γ(1 + jk)

Γ(1 + j)

∣∣∣∣θm( y√
2t

)∣∣∣∣2 e−(|x|2+|y|2)/4tV x
k e
〈x,y〉/2t, (10.5)

and setting k = 0, which means γ = 0 and h = 1 gives

V x
0

(
e−(|x|2+|y|2)/4te〈x,y〉/2t

)
= e−(|x|2+|y|2)/4tV x

0 e
〈x,y〉/2t,

as expected, since V0 is the identity.



Chapter 11

Application of Dunkl operators in
physics

The Dunkl operators occur in a natural way in the study of certain types Calogero-Moser-
Sutherland models or CMS models. Basically a CMS model is a quantum mechanical model
of m particles moving on a line or circle, under influence of some two body interactions and
an external potential.
For some theory about this type of models we will follow [19], to construct a set of coupled
momentum operators πi. These operators are a gauge-transformed form of the Dunkl oper-
ators Ti of type An. By a result in [19], this physical system is integrable and its solution is
related to the Dunkl heat equation.
In the following all indices i, j, l will run from 1 to m. Also when i is not an index, it will be
used as the complex unit element with i2 = −1.
We will only look at a quantum mechanical model of m particles moving on the real line, with
positions given by xi (1 ≤ i ≤ m) and momenta given by pi (1 ≤ i ≤ m). The coordinates
are canonical so [xi, pj ] = δij .
For an arbitrary potential V (x) : R→ C, we define the coupled momentum operators by

πi = pi + i
∑
i 6=j

MijVij ,

where Vij = V (xi − xj) and Mij is the particles permutation operator, which obeys

M2
ij = 1, Mij = Mji = M †ij ,

and
MijBj = BiMij, MijBk = BkMij , k 6= i, k 6= j,

where Bi can be any operator carrying an particle index. Here M †ij denotes the hermitian
adjoint of Mij . By looking at the root system R = Am−1 we can rewrite the momenta as

πi = pi + i
∑
α∈R+

rαVα,

with Vα = V (〈x, α〉). We consider the Hamiltonian which takes a free form in terms of πi,
given by

H =
1

2

m∑
i=1

π2
i .

81
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We want to impose the Hermiteness condition πi = π†i to make sure the momenta are real.
Then

pi + i
∑
i 6=j

VijMij = p†i − i
m∑
i 6=j

V †ijM
†
ij ,

∑
i 6=j

VijMij = −
m∑
i 6=j

V †ijMij ,

V (xi − xj) = −V (xj − xi),
V (x)† = −V (−x),

where f̄ is the complex conjugate of f and is used that V (x) = V (x)†, because V : R→ C.
To simplify the notation we write Vijl = VijVil + VjlVil + VijVjl and denote the generator of
cyclic permutations in three indices by Mijl = MilMjl. Note that∑
i 6=j

∑
l 6=s

MijMlsVijVjk =
∑
i,j,l,s

different

MijMlsVij(Vls + Vsl) +
∑

i 6=j 6=l 6=i
MijMjlVijVjl +

∑
i 6=j

M2
ijV

2
ij

=
1

2

∑
i,j,l,s

different

MijMlsVijVls +
1

3

∑
i 6=j 6=l 6=i

MijlVijl +
∑
i 6=j

V 2
ij

=
1

3

∑
i 6=j 6=l 6=i

MijlVijl +
∑
i 6=j

V 2
ij

We can use this to rewrite this Hamiltonian in the coordinates xi and pi, which gives

H =
1

2

m∑
i=1

π2
i =

1

2

m∑
i=1

p2
i +

1

2

∑
i 6=j

[iVij(pi + pj)Mij + V ′ijMij + V 2
ij ]−

1

6

∑
i 6=j 6=l 6=i

VijlMijl,

by a straightforward calculation.
By looking at the root system An−1, we can rewrite this as

H =
1

2

m∑
i=1

π2
i =

1

2

m∑
i=1

p2
i +

1

2

∑
α∈R+

[iVα(pi + pj)rα + V ′αrα + V 2
α ]− 1

2

∑
α,β∈R+
α 6=β

VαVβrαrβ. (11.1)

We would like the Hamiltonian to contain a sum of kinetic and potential terms. This is
achieved if V (−x) = −V (x), since the terms linear in pi drop out. Also, we would like the
Hamiltonian only to contain 2-body potentials. This gives the restriction

V (x)V (y) + V (y)V (z) + V (z)V (x) = W (x) +W (y) +W (z),

for x+y+z=0, where W(x) is a new symmetric function. After these restriction we can write

H =
1

2

m∑
i=1

p2
i +

∑
i<j

V 2
ij + V ′ijMij +Wij

∑
i 6=k

Mijk

 ,
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and we have the commutator relation

[πi, πj ] =
∑
k 6=i,j

Vijk[Mijk −Mjik]. (11.2)

Consider V (x) = k/x, k ∈ R. Since 1
xixj

+ 1
xixl

+ 1
xjxl

= 0, for xi + xj + xl = 0, we find

W (x) = 0. This gives the Hamiltonian

H =
1

2

m∑
i=1

π2
i =

1

2

m∑
i=1

p2
i +

1

2

∑
i 6=j
−[

ksij
(xi − xj)2

+
k2

(xi − xj)2
] = Hcms,

with the associated momentum operators

πi = iT̃i = i
∂

∂xi
+ i

m∑
i=1,i 6=j

k
Mij

xj − xi
.

From equation (11.2) it can be seen that these momenta commute. This means that the
operators In =

∑
i π

n
i , 1 ≤ n ≤ m are m commuting conserved quantities, which shows that

this system is integrable (see [19]).
The operators πi are not well-behaving around 0 for functions in L2(Rm, dx), but the operators
are well-behaving in the normed space L2(Rm, |h(x)|2dx) (see [22, Ch.3.1]). We can modify
the system by using the transform f → |h(x)|f , which leads to the transformed hamiltonian

H̄ = |h(x)|Hcms|h(x)|−1 = |h(x)|

−1

2
∆ +

1

2

∑
i 6=j
− ksij

(xi − xj)2
+

k2

(xi − xj)2
]

 |h(x)|−1,

and by a direct computation it can be seen that H̄ = −∆k, which shows that the Dunkl
operators occur in a natural way in some physical systems. The Schrödinger equation for this
Hamiltonian can be solved by replacing t with it in the solution for the Dunkl heat equation.
Finally note that the right hand side of equation (11.1) is valid for any root system, although
it is harder to find a physical meaning for these Hamiltonians.
See for example [6] and [22] for more results about the CMS-models in context of Dunkl
operators.
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Chapter 12

Dunkl processes

In this chapter we are going to have a look at certain stochastic processes involving Dunkl
operators. We can use these processes to describe the action of the intertwining operator on
symmetric polynomials. This involves some theory about Jack polynomials and hypergeo-
metric functions, which will be explained along the way.

The ordinary heat equation is the Kolgomorov Backward Equation (KBE) of the Brownian
motion, which is an example of a Markov process. We want to define Dunkl process, as the
Markov process which has the Dunkl Heat Equation as its KBE (see [1, p. 3]).
First we need some definitions and the starting point of this problem.
Consider a stochastic process of m particles moving on a line. Denote their initial positions
by x ∈ Rm. The chance that the particles are at the positions y ∈ Rm at time t, (0 ≤ t <∞),
is given by the transition probability density (TPD) p(t, y|x). We denote the trajectory of
the particles by x(t), 0 ≤ t ≤ ∞. Then

P [x(t) = y|x(0) = x] = p(t, y|x).

Since p(t, y|x) is a probability density we must have that∫
Rm

p(t, y|x)dy = 1, ∀t, x.

A process is a Markov process if

P [x(t2) = y2|x(t1) = y1, x(t0) = y0] = P [x(t2) = y2|x(t1) = y1] ,

for t0 < t1 < t2 and y0, y1, y2 ∈ Rm, so the probability is independent of older states, but only
depends on the most recent state. Each process described by a TPD is a Markov procress
because

P [x(t2) = y2|x(t1) = y1, x(t0) = y0] =
P [x(t2) = y2, x(t1) = y1, x(t0) = y0]

P [x(t1) = y1, x(t0) = y0]

=
p(t2 − t1, y2|y1)p(t1, y1|y0)

p(t1, y1|y0)

= p(t2 − t1, y2|y1)

= P [x(t2) = y2|x(t1) = y1].

85



86 CHAPTER 12. DUNKL PROCESSES

Next we can consider some differential equation on Rm × R+ given by

∂

∂t
f(x, t)− q

(
∂

∂x

)
f(x, t) = 0,

for q ∈ P (Rm). If we can find a solution f(x, t) that is normalized such that
∫
Rm f(x, t)dx = 1,

then this solution is the TPD of the Markov process with this differential equation as its
KBE.
The m-dimensional Brownian motion has the heat equation as its Kolmogorov backward
equation [1, p. 3]. The Green function of the Heat equation is also the TPD of the m-
dimensional Brownian motion, with the initial condition p(x|y, 0) = δ(x− y).
The normalized solution for the Dunkl heat equation is given by

∫
Rm Γ(x, y, t)h2(y)dy = 1, it

has the required normalization and so pk(t, x|y) = Γk(x, y, t)|h(y)|2 is the TPD of the Markov
process with the Dunkl heat equation as its KBE. We call the associated process a Dunkl
process of type R, with parameter k(α). Again we are in particular interested in the Dunkl
process of type Am−1, with parameter k.
Finally we consider Dyson’s model of brownian motion, which is the Markov process with

∂

∂t
−

m∑
i=1

∂2

∂x2
i

+
β

2

m∑
i=1

m∑
j=1,j 6=i

1

xi − xj
∂

∂xi
, (12.1)

as KBE.

Next we look at the Dunkl process with a symmetric initial condition. By using the symmetric
distribution µzx =

∑
w∈Sn δ(z − wx), we write

psk(t, y|x) =

∫
Rm

∑
w∈Sm

psk(t, y|x)µxzdz =
∑
w∈Sm

psk(t, y|wx),

where pk(t, y|x) is the TPD of the Dunkl process of type Am.
For w ∈ Sm we have that

∂

∂t
pk(t, y|wx) =

1

2

m∑
i=1

∂2

∂x2
i

pk(t, y|wx) +
n∑
i=1

n∑
j=1;j 6=i

k

xi − xj
∂

∂xi
pk(t, y|wx)

− k

2

n∑
i=1

n∑
j=1;j 6=i

pk(t, y|wx)− pk(t, y|σijwx)

(xi − xj)2
, (12.2)

and by setting z = wx, we get

∂

∂t
pk(t, y|z) =

1

2

m∑
i=1

∂2

∂z2
w(i)

pk(t, y|z) +

n∑
i=1

n∑
j=1;j 6=i

k

zw(i) − zw(j)

∂

∂zw(i)
pk(t, y|z)

− k

2

n∑
i=1

n∑
j=1;j 6=i

pk(t, y|z)− pk(t, y|σw(i)w(j)z)

(zw(i) − zw(j))2
,

∂

∂t
pk(t, y|z) =

1

2

m∑
i=1

∂2

∂z2
i

pk(t, y|z) +

n∑
i=1

n∑
j=1;j 6=i

k

zi − zj
∂

∂zi
pk(t, y|z)

− k

2

n∑
i=1

n∑
j=1;j 6=i

pk(t, y|z)− pk(t, y|σi)jz)
(zi − zj)2

,
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where we have changed the summation indices to w(i) and w(j), which only rearranges the
terms in the sum. This shows that pk(t, y|wx) is another way to write the TPD of the Dunkl
heat equation and psk(t, y|x) = m!pk(t, y|x).
Comparing equation (12.1) with the definition of ∆k and the Dunkl heat equation of type An,
we can see that the TPD of a symmetric Dunkl process of parameter k, solves the Kolmogorov
backward equation of Dysons model with parameter β = 2k, since the f(x)−f(σijx) = 0, ∀i, j
if f is symmetric. For two ordered vectors, such that xi < xj and yi < yj for i < j the TPD
of Dysons model with parameter β, is given by

Pβ(t, y|x) =
m!e−(x2+y2)/2t

(2πt)m/2

m∏
j=1

[
Γ(1 + β/2)

Γ(1 + jβ/2)

] ∣∣∣∣θm( y√
t

)∣∣∣∣β 0F (2/β)
0

(
x√
t
,
y√
t

)
, (12.3)

where Γ(x) is the gamma function, θm(y) =
∏

1≤i<j≤m(yi−yj) is the Vandermonde-determinant

and 0F (2/β)
0 is the generalized hypergeometric function. (see [1, p.5].)

Before we can continue with the definition of the Jack polynomials and the generalized hyper-
geometric function, we need some theory about partitions and symmetric polynomials. For
this we will use results from Chapters 4 and B of [1] and [7].

Definition 12.1. [7] A permutation τ is an integer valued vector (τ1, τ2 . . . , τs), τi ∈ Z+, such
that τi ≥ τi+1. Define |τ | =

∑s
i=1 τi, τ ! =

∏m
i=1 τi! and l(τ) = s. We also use the notation

τ a n for |τ | = n.

For a partition τ , we say that (i, j) ∈ τ if τi ≥ j, for i, j ∈ Z+. We define the conjugate
partition τ∗ as the partition such that (j, i) ∈ τ∗ if and only if (i, j) ∈ τ . Finally we define
two constants given by

ητ =
∏

(i,j)∈λ

((1/k)(λi − j) + λ∗j − i+ 1)

and
η′τ =

∏
(i,j)∈λ

((1/k)(λi − j + 1) + λ∗j − i).

We can use the multi-index notation with respect to τ, l(τ) ≤ m which gives xτ =
∏l(τ)
i=1 x

τi
i .

If l(τ) < m, we get a vector τ ′ of length m by writing τ1 = τ ′1, . . . , τl(τ) = τ ′l(τ) and τ ′l(τ)+1 =

· · · = τ ′m = 0. Note that xτ = xτ
′
. For a permutation σ ∈ Sm define σ(τ) = (τ ′σ(1), . . . , τ

′
σ(m).

Define by M(τ,m) the number of distincts permutations of τ ′. To find this number, look at
τ ′ as m-dimensional vector. Assume τ ′ has ρ distinct values including 0, with multiplicity
lτi , 1 ≤ i ≤ ρ, then

M(τ,m) =
m!

lτ1 ! . . . lτρ !
. (12.4)

Definition 12.2. [7, Rem. 2.8] Let τ be a partition with l(τ) ≤ m. The monomial symmetric
function is defined by

mτ =
∑
σ∈Sm

σ(τ) distinct

xσ(τ ′),
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and is also given by

mτ =
∑
σ∈Sm

xσ(τ ′)

lτ1 ! . . . lτρ !
.

We can write

exp(x1 + · · ·+ xm) =
∞∑
n=0

1

n!
(x1 + · · ·+ xm)n =

∞∑
n=0

1

n!

∑
τan

l(τ)≤m

n!

τ !lτ1 ! . . . lτρ !
mτ .

Definition 12.3. [7, Def. 2.5] For two partitions µ, ν with the same norm and t = max(l(µ), l(ν),
we say that µ � ν if

j∑
i=1

µi ≤
j∑
i=1

νi, ∀j < t

and
t∑
i=1

µi =
t∑
i=1

νi.

If any of the inequalities is strict, we say that µ ≺ ν. Note that this only a partial ordering.

For any real-valued matrix Aµ,ν , such that Aµ,ν 6= 0 if and only if µ � ν, we can define a set
of symmetric polynomials defined by mτ,A =

∑
τ Aτ,νmν . The Jack polynomials are a special

type of these symmetric polynomials. (See [7, Def 2.9].)

Definition 12.4. [7, Eqn. (4)] The generalized shifted factorial, for a parameter α ∈ R and
a partition τ , is denoted by

(a)ατ =

l(τ)∏
i=1

Γ(a− (i− 1)/α+ τi)

Γ(a− (i− 1)/α)
.

Definition 12.5. [7, Def 2.10] The C-normalized Jack polynomial Cατ is defined as the only
polynomial homogeneous eigenfunction of the operator

D∗ =

m∑
i=1

x2
i

d2

dx2
i

+
2

α

∑
1≤i 6=j≤m

x2
i

xi − xj
d

dxi
,

with eigenvalue
∑m

i=1 τi(τi − 1− 2
α(i− 1)) + n(m− 1) having leading term corresponding to

mτ . In addition the functions are normalized by∑
τ`n,l(τ)≤m

Cατ (x1, . . . , xm) = (x1 + · · ·+ xm)l.

Definition 12.6. [1, Eqn. B.9] The P-normalized Jack polynomials Pαλ are the Jack functions
which are normalized such that coefficient in front of the leading term is 1. They are defined
by

Pατ =

 ∏
(i,j)∈τ

α(τi − 1 + j) + τ∗j − i

 1

α|τ ||τ |!
Cατ .
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Definition 12.7. We can define the uτλ(α), where τ and λ run over the partition indices, as
the matrix such that

Pατ (x) =
∑
λ�τ
|λ|=|τ |

uτλ(α)mλ(x).

Definition 12.8. [7, Def 2.22] The formal definition of the generalized hypergeometric func-
tion with the parameters a1, . . . , ap and b1, . . . , bq on the variables x1, . . . , xm is given by

pFαq (a1, . . . , ap; b1, . . . , bq;x1, . . . , xm) =
∞∑
n=0

∑
τan

(a1)τ . . . (ap)τ
n!(b1)τ . . . (bq)τ

Cατ (x1, . . . , xm).

This definition of a hypergeometric function assumes an argument (x1, . . . xm) ∈ Rm. We can
extend the definition to hypergeometric functions of arguments in (x1, . . . , xm; y1, . . . , ym; . . . ) ∈
Rm × Rm × . . . by inserting an additional Cαλ (y1, . . . ym)/Cαλ (1, . . . , 1) for each extra vector
in Rm. This gives

0F (1/k)
0 (x, y) =

∞∑
n=0

∑
λan

C(1/k)
λ (x)C(1/k)

λ (y)

k!C(1/k)
λ (1)

. (12.5)

We want to rewrite (12.5) in terms of the P-normalized Jack functions. This gives ([1, Eqn.
B.10]

0F (1/k)
0 (x, y) =

∞∑
n=0

∑
λan

ητP(1/k)
λ (x)P(1/k)

λ (y)

η′τ (km)
(1/k)
τ

. (12.6)

Theorem 12.9. [1, Thm. 2] The effect of the intertwining operator Vk of type Am−1 on a
monomial symmetric function mλ(x) in m variables is given by∑

λ

(u−1)λτ (1/k)

λ!M(λ,m)
Vkmλ(x) =

ητ (1/k)P(1/k)
τ (x)

η′τ (1/k)(km)
(1/k)
τ

.

Proof. By rescaling equation (10.5) and combining this with equations (12.3) and (12.6) we
find ∑

w∈sn
K(wx, y) = m! 0F1/k

0 (x, y),

= m!
∞∑
n=0

∑
λan

ητP(1/k)
λ (x)P(1/k)

λ (y)

η′τ (km)
(1/k)
τ

. (12.7)

We continue by expanding the symmetric exponential into the monomial symmetric functions
which gives ∑

w∈Sm

exp(〈wx, y〉) =
∑
w∈Sm

∞∑
n=0

∑
λan

l(λ)≤m

1

λ!

∑
τ∈Sm

m∏
j=1

(xw(j)yj)
λτ(j) ,

=
∑

l(λ)≤m

1

λ!

∑
τ∈Sm

 ∑
w∈Sm

m∏
j=1

x
λτ(j)
w(j)


m∏
j=1

y
λτ(j)
j ,

=
∑

l(λ)≤m

1

λ!

 ∑
w′∈Sm

m∏
j′=1

x
λw′(j′)
j′

 ∑
τ∈Sm

m∏
j=1

y
λτ(j)
j .
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By definition the term on the right is equal to mλ(y) and the term inside braces is equal to
mλ(x) multiplied by the number of non-distinct permutations of λ. Using equation (12.4),
we can write ∑

w∈Sm

exp(〈wx, y〉) =
∑
λ

m!mλ(x)mλ(y)

λ!M(λ,m)
.

By inserting the inverse of Definition 12.7 after applying Vk, we get∑
w∈Sm

K(wx, y) = V x
k

∑
λ

m!mλ(x)

λ!M(λ,m)

∑
ν

(u−1)λν(1/k)P(1/k)
ν (y).

By using this, equation (12.6) and equation (12.7) we find

V x
k

∑
λ

m!mλ(x)

λ!M(λ,m)

∑
ν

(u−1)λν(1/k)P(1/k)
ν (y) =

∑
τ

ητ (1/k)P(1/k)
τ (x)P(1/k)

τ (y)

η′τ (1/k)(km)
(1/k)
τ

,

and by using the orthogonality relations of the Jack polynomials and the linearity of Vk, we
equate the coefficients of the same Jack polynomials in y, which gives

∑
λ

(u−1)λτ (1/k)

λ!M(λ,m)
Vkmλ(x) =

ητ (1/k)P(1/k)
τ (x)

η′τ (1/k)(km)
(1/k)
τ

,

which proves the theorem.



Chapter 13

Arbitrary linear operators of degree
−1

In the previous chapters we have found that we can generalize almost every aspect of harmonic
analysis on polynomials to Dunkl harmonic analysis. Basically this is done by applying the
intertwining operator at the appropriate place, using the generalized measures |h|2dµ instead
of dµ and the Dunkl dimension (m+ 2γ) instead of m.
In this chapter we will investigate which results can be generalized to arbitrary operators of
degree ±1 and we will eventually see, that Dunkl operators are kind of unique.

Let V,W be finite dimensional linear spaces. Let A : V → W and B : W → V be linear
maps. We want to find conditions on A,B such that there exists an inner product 〈·, ·〉V on
V , an inner product 〈·, ·〉W on W and 〈Av,w〉W = 〈v,Bw〉V , for all v ∈ V , w ∈ W . For this
we need a few lemmas.
First recall Lemma 4.6 on page 17, which is restated in the next lemma.

Lemma 13.1. Let V,W be finite dimensional linear spaces with positive definite inner prod-
uct, A : V → W and B : W → V linear maps and let A be the adjoint of B. Then we have
that V = im(B)⊕ ker(A). We also have that W = im(A)⊕ ker(B).

This lemma was already proven on page 17.

Let V and W be finite dimensional linear spaces. Let A : V → W and B : W → V be linear
operators. Let V have an inner product 〈·, ·〉V . We want to find conditions on A and B, such
that there is an inner product 〈·, ·〉W on W , with 〈Ax, y〉 = 〈x,By〉, for all x ∈ V, y ∈W , so
A and B are adjoints with respect to these two inner products.

Lemma 13.2. Let V and W be finite dimensional linear spaces. Let A : V → W be a
linear operator and let B : W → V be a linear operator, such that V = ker(A) ⊕ im(B) and
W = ker(B)⊕ im(A).
Then the operator AB is a bijection from im(A) to im(A)

Proof. By the condition W = ker(B)⊕ im(A), we see that B|im(A) is injective and it follows
that B : im(A) → im(B) is bijective. In the same way we see that A : im(B) → im(A) is
bijective.
By combining these two results we see that AB : im(A)→ im(A) is a bijection.

91



92 CHAPTER 13. ARBITRARY LINEAR OPERATORS OF DEGREE −1

Lemma 13.3. Let V,W be finite dimensional vector spaces. Let A : V →W and B : W → V
be linear maps. Then the following two statements are equivalent:

(i) There exists an inner product 〈·, ·〉V on V and there exists an inner product 〈·, ·〉W on
W , such that 〈Av,w〉W = 〈v,Bw〉V , for all v ∈ V , w ∈W .

(ii) The spaces V and W decompose as V = ker(A)⊕ im(B) and W = ker(B)⊕ im(A) and
the map A ◦B is diagonalizable with eigenvalues ≥ 0.

Proof. First we show that (i) implies (ii).
From Lemma 13.1 it follows that statement (i) implies the decompositions V = ker(A)⊕im(B)
and W = ker(B)⊕ im(A). Also if A and B are adjoints, then AB = AA∗ which is symmetric
and semi-positive definite, so it is diagonalizable and has eigenvalues ≥ 0. Next we show that
(ii) implies (i).
From Lemma 13.2 it follows that AB : im(A) → im(A) is a bijection, so all eigenvalues
of A ◦ B|im(A) are non-zero, hence strictly positive. The image of A has dimension k. Let
{ei}1≤i≤k be a basis of eigenvectors of AB|im(A). Let 〈·, ·〉im(A) be the inner product such that
{ei} is an orthonormal basis, so

〈ei, ej〉im(A) = δij , for 1 ≤ i, j ≤ k.

We have the relation A◦Bei = λiei. By multiplying both sides with B, this gives B◦A◦Bei =
λiBei. Denote fi = Bei. The elements {fi}1≤i≤k form a basis of im(B).
Let 〈·, ·〉im(B) be the inner product such that 〈fi, fj〉im(B) = µiδij , for µi ∈ R. We want to
choose the constants µi such that 〈Aei, fj〉im(B) = 〈ei, Bfj〉im(A). For this note that

〈Aei, fj〉im(B) = 〈fi, fj〉im(B) = µiδij

and
〈ei, Bfi〉im(A) = 〈ei, BAej〉im(A) = λiδij ,

so it follows that µi = λi.
Next choose an inner product 〈·, ·〉ker(A) on ker(A) and choose an inner product 〈·, ·〉ker(B) on
ker(B). Define the inner product 〈·, ·〉V by 〈·, ·〉ker(A)⊕〈·, ·〉im(B) and the inner product 〈·, ·〉W
by 〈·, ·〉ker(A)⊕〈·, ·〉im(B). Then A and B are adjoints with respect to these inner products.

Definition 13.4. [17, Thm. 2.53] We denote by C∞(Rm) ⊗ Λ(Rm) the graded algebra of
smooth complex valued forms on Rm.
The exterior derivative d : C∞(Rm)⊗Λ(Rm)→ C∞(Rm)⊗Λ(Rm) is defined to be the unique
operator satisfying

1. linearity, d(aα+ bβ) = adα+ bdβ, for a, b ∈ R, α, β ∈ C∞(Rm)⊗ Λ(Rm)

2. for a 0-form f ∈ C∞(Rm)⊗ Λ0(Rm) ' C∞(Rm), df is the usual differential.

3. for an j-form α and a l-form β, d(α ∧ β) = d(α) ∧ β + (−1)jα ∧ dβ

4. d(dα) = 0 for all forms.
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From this definition it follows that d is of degree 1. In particular we find for 0-forms that
d : C∞(Rm)→ C∞(Rm)⊗ Λ1(Rm) is given by

df =
m∑
j=1

∂ife
i,

and for 1-forms that d : C∞(Rm)⊗ Λ1(Rm)→ C∞(Rm)⊗ Λ2(Rm) is given by

d

 m∑
j=1

fje
j

 =
m∑
j=1

∑
i<j

(∂ifj − ∂jfi) ei ∧ ej .

Definition 13.5. Let P be the space of polynomials on Rm and let Pn be the space of
homogeneous polynomials of degree n. Let Ai be a set of commuting operators of degree −1.
Define, analogous to Definition 13.4, the A-exterior derivative dAn,0 : Pn → Pn−1⊗Λ1(Rm) by

dAn,0(p) =
m∑
j=1

Aje
j ,

and the A-exterior derivative dAn−1,1 : Pn−1 ⊗ Λ1(Rm)→ Pn−2 ⊗ Λ2(Rm) by

dAn−1,1(
m∑
j=1

pje
j) =

m∑
j=1

∑
i<j

(Aipj −Ajpi) ei ∧ ej .

In particular, it follows that dn−1,1dn,0p =
∑m

j=1

∑
i<j [(AiAj −AjAi)p] ei ∧ ej = 0, since the

operators Ai are commuting.

Lemma 13.6. Let P be the space of polynomials on Rm and let Pn be the subspace of ho-
mogeneous polynomials of degree n. Let Ai : P → P, 1 ≤ i ≤ m be a set of commuting
operators of degree −1, such that ∩ ker(Ai) = P0. Then there exists a unique linear operator
V : P → P , such that

(i) V (1) = 1,

(ii) V (Pn) ⊂ Pn for all n,

(iii) ∂i ◦ V = V ◦Ai for all i.

The operator V is invertible.

Proof. By induction we will define linear maps Vn : Pn → Pn, such that V0 = IP0 and
∂i ◦ Vn = Vn−1 ◦Ai on Pn.
Assume that V0, . . . , Vn−1 have already been defined. These operators induce the maps

Vn−1 ⊗ I : Pn−1 ⊗ Λ1(Rm) 	

and
Vn−2 ⊗ I : Pn−2 ⊗ Λ2(Rm) 	,

and the following diagram commutes:
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Pn−1 ⊗ Λ1(Rm)
dAn−1,1−→ Pn−2 ⊗ Λ2(Rm)−→ Vn−1 ⊗ I

−→ Vn−2 ⊗ I

Pn−1 ⊗ Λ1(Rm)
dn−1,1−→ Pn−2 ⊗ Λ2(Rm)

We want of find an operator Vn such that the following diagram commutes:

Pn
dAn,0−→ Pn−1 ⊗ Λ1(Rm)

dAn−1,1−→ Pn−2 ⊗ Λ2(Rm)99K Vn

−→ Vn−1 ⊗ I 	
−→ Vn−2 ⊗ I

Pn
dn,0−→ Pn−1 ⊗ Λ1(Rm)

dn−1,1−→ Pn−2 ⊗ Λ2(Rm)

Take p ∈ Pn. Then dAn,0(p) ∈ ker(dAn−1,1), so

d((Vn−1 ⊗ I)dA(p)) = (Vn−2 ⊗ I)(dAdAp) = 0.

Since each closed k − form on Rm is exact, we have that ker(dn−2,1) = im(dn−1,0). This
means there exists a q ∈ Pn, such that dn,0(q) = (Vn−1 ⊗ I)dAn,0(p). This q is unique modulo
ker(dn,0) = Pn ∩ P0 = 0, so q is unique. This means we can define the map Vn : Pn → Pn by
Vn(p) = q. Vn is clearly linear. We also have that dn,0(Vn(p)) = dn,0(q) = (Vn−1 ⊗ I)dAn,0(p),
which shows that ∂j ◦ Vn = Vn−1 ◦Aj on Pn.
Next suppose that there are p and p′, such that Vn(p) = Vn(p′) = q.
Then dn,0(q) = (Vn−1⊗I)dAn,0(p) and dn,0(q) = (Vn−1⊗I)dAn,0(p′), so Vn−1⊗I)dAn,0(p−p′) = 0

so p − p′ ∈ (ker(dA) ∩ Pn) = (∩mj=1(kerAi)) ∩ Pn = 0, so p = p′ and Vn is injective. Since
Vn ∈ End(Pn) this means that Vn is invertible.
So by induction the maps Vn : Pn → Pn, such that V0 = IP0 and ∂i ◦ Vn = Vn−1 ◦ Ai on Pn.
Furthermore the maps Vn are invertible and unique.

Define V : P → P , by V (p) = V
(∑deg(p)

i=0 pi

)
=
∑deg(p)

i=0 Vi(pi), with pi ∈ Pi. The map V is

invertible and unique and has properties (i)-(iii) stated in the lemma, because V |Pn = Vn, n ∈
N is invertible and unique and has properties (i)-(iii) stated in the lemma.

We call the map V from the previous lemma the (∂,A)-intertwining operator, or in short the
A-intertwining operator. In the following we shall denote this map by VA or V∂,A.

Corollary 13.7. Let P be the space of polynomials on Rm and let Pn be the subspace of
homogeneous polynomials of degree n. Let Ai : P → P, 1 ≤ i ≤ m be a set of commuting
operators of degree −1, such that ∩ ker(Ai) = P0. Let Bi : P → P, 1 ≤ i ≤ m be another set of
commuting operators of degree −1, such that ∩ ker(Bi) = P0. Then the map VA,B = VA,∂V

−1
B,∂

is the unique A,B-intertwining operator, which means that

(i) VA,B(1) = 1,

(ii) VA,B(Pn) ⊂ Pn for all n,

(iii) Ai ◦ VA,B = VA,B ◦Bi for all i.

Its inverse is given by VB,A = VB,∂V
−1
A,∂.
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Proof. By Lemma 13.6 the maps VA,∂ and VB,∂ exists and are invertible. Properties (i) and
(ii) and follow in a trivial way. The operator VA,B is invertible because VA,∂ and V −1

B,∂ are
invertible.
For (iii) note that

Ai ◦ VA,B = VA,∂ ◦ ∂i ◦ V −1
B,∂ = VA,B ◦Bi.

Let R ⊂ Rm be a root system with a weight function k. Let ei, 1 ≤ i ≤ m be an orthonormal
basis of Rm. Then the Dunkl operators Ti : P → P, 1 ≤ i ≤ m are a commuting set
of operators of degree −1 (see Definition 6.3 and Theorem 6.11). If k is nondegenerate
(Definition 7.19), there exist a unique (T, ∂)-intertwining operator VT,∂ on P , by 13.6. The
operator VT,∂ is equal to the operator V in (7.8).
A special case of Lemma 13.6, is given by Ai = Ti, where VA is the inverse of the operator V
given in (7.8).

Definition 13.8. Let the operators Ai be a set of commuting operators as in Lemma 13.6,
with the associated intertwining operator VA. We can define the set of A-monomials by
zα(x) = VAx

α, for xα ∈ P (Rm) and x ∈ Rm. We can also define the kernel KA(x, y), x, y ∈
Rm by

KA(x, y) ≡
∞∑
n=0

KA,n(x, y) =
∞∑
n=0

∑
α=|n|

1/n!V x
A (〈x, y〉n) =

∞∑
n=0

∑
α=|n|

zα(x)yα

α!
.

Although we can always work with the function KA,n, the kernel KA only makes sense, if the
sum converges. If this is the case, we also have that KA(x, y) = V x

A exp(〈x, y〉).

Lemma 13.9. Let p ∈ Pn. Then KA,n(x,Ay)p(y) = p(x). This means that KA,n is a
reproducing kernel.

Proof. Let q ∈ Pn, then 1/n!〈x, ∂y〉nq(y) = q(x). By applying V y
A to both sides we find

〈x,Ay〉n

n!
V y
Aq(y) = q(x),

since the right hand side is constant in y. By applying V x
A to both sides we find

KA,n(x,Ay)V y
Aq(y) = V x

Aq(x),

and by using that VA is one to one on Pn, we can write each p ∈ Pn as VAq, for some q ∈ Pn
which shows that

KA,n(x,Ay)p(y) = p(x),

for all p ∈ Pn.

Lemma 13.10. Assume that KA(x, y) exists, and that KA(x, y) = KA(y, x). Then for p, q ∈
Pn, we have a pairing on the polynomials given by

[p, q]A = p(Ax)q(x) = KA,n(Ax, Ay)p(x)q(y).

We can extend this pairing to all of P by defining [p, q]A = 0 if p ∈ Pn and q ∈ Pm.
If this pairing is positive definite for all polynomials, it defines an inner product on P (Rm
and Ai and xi are adjoints with respect to this pairing.
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Proof. First of all, note that the pairing is linear. Next we need to show that the pairing is
symmetric. Let p, q ∈ Pn, then

p(Ay)q(y) = KA,n(Ay, Ax)p(x)q(y) = KA,n(Ax, Ay)p(x)q(y) = q(Ax)p(x),

where we have used Lemma 13.9 and the symmetry of KA,n.
Since positive definiteness was assumed in the lemma, the pairing defines an inner product
on P.
Finally note that [xα, Aix

β]A = xα+ei(Ax)xβ = [xix
α, xβ]A, so xi and Ai are adjoints with

respect to this inner product.

Example 13.11. Let m = 1. Let c(0) = 0 and let c(n) ∈ R+ for n ∈ N+. Consider the linear
function A : P → P given by Axn = c(n)xn−1.
The intertwining operator VA,∂ : P → P has the properties VA,∂1 = 1 and VA,∂∂ = AVA,∂ .
We have VA,∂∂

nxn = VA,∂n! = n!. On the other hand Anxn =
∏n
i=1 c(i), so

VA,∂x
n =

n!∏n
i=1 c(i)

xn.

Next let d(0) = 0, let d(n) ∈ R+ for n ∈ N+ and consider the linear function B : P → P
given by Bxn = d(n)xn−1, then the intertwining operator VA,B is given by

VA,Bx
n = VA,∂V∂,Bx

n =

∏n
i=1 d(i)∏n
i=1 c(i)

xn.

The function A has associated kernels KA,n(x, y), x, y ∈ Rm and it depends on the choice of
c if the sum

∑∞
n=0KA,n(x, y) converges.

Note that this example can be generalized to m variables. For this we shall use the multi-
index notation.
For 1 ≤ i ≤ m, let ci(0) = 0 and let ci(n) ∈ R+ for n ∈ N+. Define the operators Ai : P → P
by Aix

α = ci(αi)x
α−ei . These operators commute because if i 6= j then

AiAjx
α = ci(αi)cj(αj)x

α−ei−ej = AjAix
α.

The intertwining operator VA,∂ can be found in a similar way and is given by

VA,∂x
α =

α!∏m
i=1

∏αi
j=1 ci(j)

xα.

Recap of this chapter

In this chapter it has been shown that the existence of a intertwining operator V : P → P
between partial derivatives and a set of operators Ai : P → P, 1 ≤ i ≤ m only depends on
the following three properties:

• The operators Ai are homogeneous of degree -1,

• The operators Ai, 1 ≤ i ≤ m commute in End(P ),

• The intersection of their kernels P ∩ (
⋂m
i=1 ker(Ai)) = P0.
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The intertwining operators between the Dunkl operators and partial derivatives are examples
of this type of intertwining operators.
The intertwining operators described in Lemma 13.6 might be usable to simplify calculations
involving Dunkl operators and might also have applications in other mathematical fields.
As a continuation, we might try to generalize steps from Chapter 9 to construct a Fourier-like
transform FA : L2(Rm)→ L2(Rm), which has the property FA(Aif)(y) = yiFA(f). However
to be able make this generalization, we probably need to put a lot of additional constraints
on the operators Ai.
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