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The subject of this thesis is credit porfolio loss modelling. This was a subject that I was
working on as a Risk Researcher at the research department of Group Risk Management
within Rabobank Nederland. I have used some of the results obtained then and tried to
expand more on the theoretical parts. Credit portfolio loss modelling deals with modelling
credit risk and finding methods to accurately determine quantiles of a loss distribution for
the losses in the loan portfolio of a bank. We look only at the losses incurred by the bank
resulting from clients not repaying their loans. The underlying model we use for losses on
indivual loans is quite simple. However obtaining quantiles of portfolio losses appears not
to be very straightforward. In this thesis we discuss some methods to obtain quantiles of a
loss distribution and compare their performances on a number of portfolios.

Manicka Pijnenburg
Utrecht, August 18th 2013
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Chapter 1

Introduction

1.1 Credit risk
The main business for banks is to attract money from people and businesses and to lend
out this money to other people or businesses. In order to make money the bank charges
more interest on the loans it provides than on the money that it attracts such as savings.
The main risk for those who have deposited their money with the bank is that the bank is
unable to repay them their money. There can be a variety of reasons for the bank to be
unable to repay the deposits. It can be the case that the bank has invested its money in long
term loans that they cannot unwind at the moment the depositers want their money back.
Another possibility is that the bank simply does not have the money due to misinvestments.
It could be the case that a company that the bank has given a loan to does not repay the
money at the moment it is due. In that case the bank could also not be able to repay its
depositers. So a risk of a default on a loan given by the bank is also a risk for the depositers
(or any other creditor) of the bank.
In general the bank charges more interest on its loans it gives than on the deposits it receives.
So it can incur some losses on its loans, while still being able to repay the deposits and the
interest on it. However if the losses are more extreme the bank will not be able to repay all
of its deposits. The bank will than have to default on its obligation to repay the deposits. In
case the depositers get wind of the bank incurring large losses and as a result not being able
to repay the deposits will lead depositers to withdraw their money from the bank worsening
the position of the bank. These events might lead to a fulfledged bank-run, toppling the bank
fully. The failure of one bank may cause other banks to fail as well due to the entanglement
of the banking and financial sector.
To shield the depositers from losses even when the bank faces some adverse conditions the
banking regulators (e.g. the European Central Bank) require that banks have some buffers
to absorb the losses up to some limit. The buffer is in the form of equity. This works as
follows.
Example. Suppose the bank wants to give out 100 loans for 100 euro each (=notional
amount). So it needs 100 × 100 euro = 10000 euro. Now suppose it takes 10000 euro worth
of deposits. Now assume that the loans give a 10% interest rate and the bank pays 5%
interest rate on the deposits. If all of the loans repay the notional and the interest the bank
makes 5% (10%-5%) profit. The depositers get their promised 5% interest rate.
Case 1. Suppose now that 5 of the 100 loans repay the interest, but do not repay the
notional of a 100 euro. So the bank gets the following 95 × 100 euro = 9500 euro of
notional, 100 × 10 euro = 1000 euro of interest income. In total the bank gets 10500. The
banks has to pay its depositers an amount of 10000+500=10500. In this case the bank can
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just repay its depositers.
Case 2. Suppose now that 10 of the 100 loans repay the interest, but do not repay the
notional of a 100 euro. So the bank gets the following 90 × 100 euro = 9000 euro of notional,
100 × 10 euro = 1000 euro of interest income. In total the bank gets 10000. The banks has
to pay its depositers an amount of 10000+500=10500. In this case the bank cannot fully
repay its depositers. It is short 500 euro and would default on its obligations due to 10 loans
defaulting on their obligations to the bank.
Case 3. Now look at the case where not all the 10000 euro is funded by deposits, but also
by equity. Equity does not have a fixed interest rate like deposits but only receives that
income that is left after all of the depositers are paid what they are owed. Suppose we fund
the 10000 euro by 9000 euro of deposits and 1000 euro of equity. Also let 10 loans only
repay the interest, but not the notional. Now the bank receives 10000. The depositers are
owed 9000×1.10 = 9900. The bank has enough money to repay the depositers. However
the equity holders only receive 100 euro (=10000-9900), while they invested a 1000 euro.
So they incur a loss of 900 euro, this is a return of -90%, quite negative. The depositers
however do not incur any loss in this case.
Case 4. In case all of the notional of the loans and the interest are repaid the bank receives
11000 euro. After repaying the depositers, 1100 euro is available to the equity holders. Given
that they invested a 1000 euro they have in this case a return of 10%. This is much more
than the 5% return that the depositers receive. The equity holders get a higher expected
return as they are highly uncertain about their return. They could earn no money at all or
even worse, losing a large part of their investment.
The above examples showed that in moderate adverse conditions (case 1) the bank can still
repay its depositers. However in more extreme conditions (case 2) the bank defaults. When
the bank uses equity to fund its loans (case 3) even in more extreme adverse conditions the
bank can still repay its deposits. This means that depostors are more likelily to get their
money back and this makes them less likely to withdraw their deposits from the bank.
The regulator of the European banking sector has deemed that banks have to have some
level of equity such that its creditors (e.g. depositors, holders of bonds to the bank etc.)
have a certain probability level of losing (part of) their money within a certain time frame.
For regulatory purposes the banks need to hold equity (also called regulatory capital) at a
level such that the probability that the value of the assets within 1 year is above that of the
banks obligations to depositors (and bond holders) is not below 99.9%. In order to make
this a bit more formal we make the following definitions. Let At be the assets at time t, Et

the equity (or capital) level at time t, Bt the debt level of the bank at time t. Note that
with debt of the bank we mean the debt the bank has to other parties such as its depositors
and e.g. bond holders. The assets of a bank are e.g. the loans, mortgages it issues. Then
the regulator requires that

P(At+1 ≥ Bt+1) ≥ 99.9% (1.1)

Under the restriction that
At = Et +Bt (1.2)

Bt+1 = (1 + r)Bt (1.3)

Where r is the interest paid by the bank on its debt. In our special banking case the value of
Bt+1 is known at time t. This could be for example the value of deposits at time t plus the
interest rate on this amount. The interest rate is always known before hand so it is known
by time t. The only random variable is At+1, the assets at time t+ 1. The assets of a bank
consists of the loans and mortgages it issued, but also stocks and bonds in other companies
it holds for trading and the things it owns such as buildings, computers etc. The majority
of its assets are made up of loans it issued. So for our analysis we make the abstraction that
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the only assets a bank has are the loans it issued. These loans can be items like consumer
loans, mortgages, student loans, lines of credit, revolver loans. In our analysis we will focus
only on credit risk.
Here by credit risk we mean the risk that a client does not fully fullfill all the payments and
timings thereof of the loan that are contractually due. So this refers to both the amount
repaid and the time it is due.
Other risks such as changing interest rates we will not include.

1.2 Elements of credit risk
In this section we discuss what credit risk is and what elements play a role in it. The
definition of credit risk is the uncertainty in the payments and the timings thereof of a loan
as they are contractually due by the client taking the loan. So this could be for example not
paying the full amount due at a certain moment or making payments later than required
by the contract of the loan. When a client does not fulfill on its obligation of a loan, it is
in default. The regulators definition of a default is when a client is 90 days overdue on its
obligation or when it is unlikely to pay. In the regulators definition of default if a client pays
1 day too late it is not in default yet. However if it pays 90 days too late it is in default.
Banks in Europe are forced to follow the regulators definition, so we will also take this as
the definition of default. Admittantly, the ’unlikely to pay’ phrase is a bit vague. We believe
it to mean that if a client only has a 100 euro cash and has to pay a 1000 euro in 6 months
and if it is virtually certain that it will not get any additional cash in between the client, it
will certainly be in default in 6 months + 90 days. At this moment the client has not fallen
behind on any payments, but the bank will almost certainly not receive the full 1000 euro
payment. For our analysis the exact definition of default will not be that important.

1.3 Structuring credit risk
Now we discuss some elements in modelling credit risk. There are usually 3 elements that
are used in modelling credit risk. 1: The first elelment is the indicator of default, D. This
variable indicates whether or not a default on a loan has occured within a certain period.
This variable has value 0 if no default occured in a certain period and has value 1 if a
default did indeed occur in that period. The probability of default, abbreviated as PD, is
the probability that D = 1.
2: The second element is the loss given default (LGD). When a client defaults on a loan the
bank has two options. The first is to renegotiate the terms of the contract. As the client is
usually in financial trouble when it defaults this will be with less favorable conditions for the
bank, so it takes a loss. Another option is to get a liquidator and sell the assets of the client
in order to recoup the money the client owes the bank. In general this will also yield less
than the clients owes the bank. The bank then incurs a loss on the loan. The loss the bank
incurs after a default occurs is called, not surprisingly, the loss given default or LGD as it
is usually abbreviated. The LGD is expressed as a percentage of another variable called the
exposure at default, which we will discuss now.
3: The exposure at default (EAD) is the total amount that the bank is exposed to from
that client at the moment of default. It is the amount that the bank has outstanding with
the client, so not necessarily the amount the client failed to pay to the bank that triggered
its default. So suppose a client has to make an annual interest payment of 5% on a 1 million
euro mortgage loan. Suppose the mortgage is to be repaid in one single payment within
10 years. However suppose that this year the client failed to make the interest payment
and is therefore in default. Now it failed to pay 50000 euro (=5%), but the outstanding
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amount is 1 million euro (plus the interest owed). So the exposure at default was 1 million
euro + 50000 euro = 1050000 euro. The interest payments that are due in the remaining
9 years we will not take into account anymore. So the loss on a loan can be expressed as
D × LGD × EAD.

1.4 Modelling credit risk
In the previous section we saw the some important elements in the structure of credit risk,
i.e. the default indicator, loss given default and exposure given default. So let us take
the example of a loan in which the client has to pay the bank 1 euro after 1 year. So
the EAD = 1 and is thus fixed. If the client defaults within that year the bank receives
(1 −LGD) × 1 so it loses LGD× 1. Assume that LGD is also not random, but fixed. Then
the loss L at the end of the year for the bank has the distribution

P(L = 0) = P(D = 0) = 1 − PD, (1.4)
P(L = LGD) = P(D = 1) = PD. (1.5)

So the distribution is like a Bernouilli one except that the possible outcomes are not {0, 1}
but rather {0, LGD}. The parameter PD is contained in the interval [0, 1]. The probability
of default, PD, in this example is an externally determined parameter.

1.4.1 Merton model
A frequently used model of default is the so called Merton model. In its most basic form
it goes as follows. Assume that we are now at the beginning of a period, say t = 0. The
company whose default we want to model has some assets and a certain debt level at t = 0.
Now suppose at t = 1 the company has to repay its full debt. It must use its assets to
repay the debt. This means that if at t = 1 the asset level is at or above the debt level the
company can repay all of its debt. If the asset level is below the debt level the company
cannot repay all of its debt and is in default. To formalise this, let At be the asset level of
the company at time t, Bt the debt level at time t, Dt the default indicator at t. Then for
t = 1

A1 < B1 ⇔ D1 = 1 (1.6)
A1 ≥ B1 ⇔ D1 = 0. (1.7)

We furthermore assume that B1 is known at t = 0. The assets we model by means of a
geometric Brownian motion, comparable to the Black-Scholes option pricing model. So the
assets follow the stochastic differential equation

dAt = µAtdt+ σAtdWt. (1.8)

Where Wt is a standard Brownian motion. So the asset value at time t is

At = A0 · e(µ− 1
2 σ2)t+σWt . (1.9)

Here A0 is assumed non-random. Then we can write
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P(Dt = 1) =P(At < Bt) (1.10)

=P(A0 · e(µ− 1
2 σ2)t+σWt < Bt)

=P(log(A0) + (µ− 1
2
σ2)t+ σWt < log(Bt))

=P
(
Wt <

− log(A0) + log(Bt) − (µ− 1
2σ

2)t
σ

)
=Φ

(− log(A0) + log(Bt) − (µ− 1
2σ

2)t
σ

√
t

)
.

Where Φ is the standard normal distribution function. In the above example we had t = 1,
but we will keep t for now. So we can write

PD = Φ
(− log(A0) + log(Bt) − (µ− 1

2σ
2)t

σ
√
t

)
⇔ (1.11)

Φ−1(PD) =
− log(A0) + log(Bt) − (µ− 1

2σ
2)t

σ
√
t

(1.12)

Until now we have only looked at the default behaviour of one client or company. We could
also look at the joint default behaviour of two or more clients. The Merton model framework
also allows for this. Now let At,i be the asset value at time t for client i where i = 1, 2, ..., n,
n ∈ N and let Bt,i be the debt value at time t for client i. Furthermore let the Brownian
motions driving the asset values be dependent in the following way

dAt,i = µiAt,idt+ σiAt,i(
√
ρidWt +

√
1 − ρidεt,i). (1.13)

Where Wt is again a standard Brownian motion, εt,i, i = 1, 2, ..., n is also a Brownian motion,
independent of each other and Wt, and ρi ∈ [0, 1]. Here the parameter ρi is a client specific
parameter determing how dependent the clients assets are on the common Brownian motion
Wt. Since the Brownian motion Wt drives the asset values for all clients it is also called a
’common factor’. From the stochastic differential equation the process for the asset value
follows as

At,i = A0,i · e(µi− 1
2 σ2

i )t+σi(√
ρiWt+

√
1−ρiεt,i). (1.14)

Now we can also look at the probability that two clients default together. That is for client
i and client j, i ̸= j. First define

Xt,i := √
ρiWt +

√
1 − ρiεt,i

Xt,j := √
ρjWt +

√
1 − ρjεt,j

Φ−1(PDi) =
log(A0,i) + (µi − 1

2σ
2
i )t− log(Bt,i)

σ
√
t

Φ−1(PDj) =
log(A0,j) + (µj − 1

2σ
2
j )t− log(Bt,j)

σ
√
t

. (1.15)

(1.16)

Then we have
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P(At,i < Bt,i, At,j < Bt,j) = (1.17)

P(A0,i · e(µi− 1
2 σ2

i )t+σiXt,i < Bt,i, A0,j · e(µj− 1
2 σ2

j )t+σjXt,j < Bt,j) =

P(Xt,i <
− log(A0,i) − (µi − 1

2σ
2
i )t+ log(Bt,i)

σ
,Xt,j <

− log(A0,j) − (µj − 1
2σ

2
j )t+ log(Bt,j)

σ
) =

P(Xt,i/
√
t < Φ−1(PDi), Xt,j/

√
t < Φ−1(PDj)).

Now we look at P(Xt,i/
√
t < Φ−1(PDi), Xt,j/

√
t < Φ−1(PDj)). It is easy to see that

(Xt,i/
√
t,Xt,j/

√
t) is bivariate normal, since they are both linear functions of normally

distributed random variables, with

(
Xt,i/

√
t

Xt,j/
√
t

)
∼ N

((
0
0

)
,

(
1 √

ρiρj√
ρiρj 1

))
. (1.18)

Another useful random variable is the conditional PD, where we condition on Wt/
√
t. Then

P(Xt,i/
√
t < Φ−1(PDi)|Wt/

√
t) =

P((√ρiWt +
√

1 − ρiεt,i)/
√
t < Φ−1(PDi)|Wt/

√
t) =

P

(
εt,i/

√
t <

Φ−1(PDi) − √
ρiWt/

√
t

√
1 − ρi

∣∣∣∣Wt√
t

)
. (1.19)

11



Chapter 2

Credit portfolio loss modelling

In this chapter we set up a model for the credit losses of a portfolio of loans. By credit losses
we mean the loss that is incurred due to clients not fulfilling their entire loan obligations.
Consider a bank whose assets consist only of loans. We have seen in the previous chapter
that for the bank to have a certain rating it needs to have a certain level of equity. The exact
level of equity depends on the distribution of the assets of the bank, the loans in our case. To
be more exact we would like to know certain quantiles of the distribution of the asset value.
Given a certain reference point this is equivalent to finding the quantiles of the loss the bank
incurs on the loans, via the relation loss on loan = reference point - value of the loan. The
reference point in our set up is EAD. In case there is no default the value of the loan is just
EAD and thus the loss is EAD − EAD = 0. In case there is a default then the value of
the loan is (1 − LGD) · EAD. The loss in case of a default is EAD − (1 − LGD) · EAD =
LGD · EAD. Here the loss and value of the loans is at some future time and we assume
that any interest payments due are included in the value of the EAD. In many cases this
future time is 1 year after the current time. The loss on the loan portfolio is the sum of
the losses on the individual loans. So if Li is the loss on loan i and the portfolio consists
of n loans so i = 1, 2, ..., n then the total portfolio loss is Lp =

∑n
i=1 Li. Our problem is

finding the quantile of a sum of random variables Li, which in general are dependent. This
dependency rules out the use of standard methods such as the central limit theorem and the
strong law of large numbers. However we will model the Li such that they are conditionally
independent and we will see the strong law of large number and the central limit theorem
being used in certain cases.

2.1 A simple model for credit portfolio loss
We will start with a very simple model for our credit portfolio loss. Suppose our portfolio
consist of n bullet loans. A bullet loan is a loan in which a client has to pay interest on the
loan and a single repayment of the loan at the end of some period. We will even assume that
the loans have to be repaid within 1 year and that the interest is 0 for now. We will also
let the loss given default be fixed for every loan, but not necessarily the same. The same
hold for the exposure at default. Suppose we start from t = 0 and the end of the period is
t = 1, where time is measured in years. Now let Di be the default indicator for loan i, where
default is measured at t = 1. Let LGDi and EADi be the loss given default and exposure
at default for loan i. The loss for loan i at the end of the period is

Li =
{
LGDi · EADi if Di = 1,

0 if Di = 0. (2.1)
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The default indicator is modelled using the Merton model of the previous chapter. Since
the end of the period is t = 1 this simplifies the formulas. Let Y be the common factor
for all loans and εi the loan specific factor. Let Y be standard normally distributed and
independent of all εi, i = 1, 2, ..., n. Also εi is standard normally distributed and εi is
independent of εj for all j = 1, 2, . . . , n and j ̸= i. Let pi and ρi be a loan specific parameters
with pi ∈ [0, 1] and ρi ∈ [0, 1]. Then we have that

Di =
{

1 if √
ρiY +

√
1 − ρiεi < Φ−1(pi),

0 if √
ρiY +

√
1 − ρiεi ≥ Φ−1(pi).

(2.2)

It is easy to see that pi = P(Di = 1). This is why we call pi the unconditional probability of
default. We will assume that the parameters pi and ρi are given. Define the portfolio loss
Lp as

Lp :=
n∑

i=1
Li. (2.3)

Given our model above we can write the portfolio loss as a function of Y and εi, i = 1, . . . , n.
Let I{·} be the indicator function. Using that Li := I{√

ρiY +
√

1−ρiεi<Φ−1(pi)} ·LGDi ·EADi

we get

Lp :=
n∑

i=1
I{√

ρiY +
√

1−ρiεi<Φ−1(pi)} · LGDi · EADi. (2.4)

We see from the definition of the Li that they are dependent on each other via Y . However
if we condition on Y we see that the Li in our model are independent of each other, since
the only randomness is by the εi’s and these are mutually independent.

2.2 Finding a quantile of sums of dependent random
variables

In the previous section we modelled the random behaviour of our credit portfolio loss. It is
still a rather simple model, but we will stick to it for now. In general finding the quantile of
a sum of random variables can be quite hard, even when we assume them to be independent.
In our case we have a sum of dependent discrete random variables making our case even
harder. The q level quantile of Lp, αq(Lp), is defined as

αq(Lp) := inf
{
y|
∫ y

−∞
dFLp(y) ≥ q

}
. (2.5)

Where FLp is the distribution of Lp. We will discuss in this thesis a number of methods that
approximate the quantile. The methods that we will investigate are the Saddlepoint method,
De Hoog’s algorithm, a wavelet based method, recursive algorithm and Monte Carlo simu-
lation. The first 3 methods are based on inverting the Laplace transform of the distribution
of the portfolio loss Lp via the Bromwich integral. The Monte Carlo simulation is a brute
force simulation method simply generating a lot of losses to determine the distribution. The
methods will be discussed in the next chapter.
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Chapter 3

Methods based on Laplace
transform inversion

In this chapter we will discuss some methods which are based the inversion of the Laplace
transform of the distribution of the portfolio loss. First we define the Laplace transform for
the loss on an individual loan. We use the model as presented in the previous chapter. So
we have n loans, Li := Di · LGDi · EADi and P(Di = 1) = pi, P(Di = 0) = 1 − pi. Then
the Laplace transform Mi of Li is

Mi(t) := E(etLi). (3.1)

Where t ∈ C such that the above expectation is well defined, which is the case if E(eRe(t)Li)
exists. Then we have that

Mi(t) = (1 − pi) + pie
t·LGDi·EADi . (3.2)

Another useful variable is the conditional probability of default, where we condition on Y .
Recall that Y is standard normally distributed. So P(Di = 1|Y ) = ci(Y ), P(Di = 0|Y ) =
1 − ci(Y ) where

ci(Y ) := Φ
(

Φ−1(pi) − √
ρiY√

1 − ρi

)
. (3.3)

This can be derived as follows.

P(Di = 1|Y ) = P(√ρiY +
√

1 − ρiεi < Φ−1(pi)|Y )

= P
(
εi <

Φ−1(pi) − √
ρiY√

1 − ρi

∣∣∣∣Y )

= Φ
(Φ−1(pi) − √

ρiY√
1 − ρi

)
. (3.4)

Then the conditional Laplace transform, conditional on Y , is defined as

Mi(t, Y ) := E(etLi |Y ). (3.5)

Then using ci we get that

Mi(t, Y ) = (1 − ci(Y )) + ci(Y )et·LGDi·EADi . (3.6)

14



The Laplace transform for Lp is a bit more subtle. The Laplace transform has the prop-
erty that for two independent random variables U, V with Laplace transforms MU ,MV the
Laplace transform for the sum U + V , MU+V , satisfies MU+V = MUMV . Now we do not
have that the Li’s are independent, however conditional on Y they are independent. So we
have that

MLp(t) : = E(etLp

)

= E(et
∑n

i=1
Li)

= E
(
E(et

∑n

i=1
Li |Y )

)
= E

(
E(

n∏
i=1

etLi |Y )

)

= E

(
n∏

i=1
E(etLi |Y )

)

= E

(
n∏

i=1
Mi(t, Y )

)

=
∫ ∞

−∞

(
n∏

i=1
Mi(t, u)

)
fY (u)du. (3.7)

Where fY is the density of Y , which was a standard normal one. We used conditional
independence in the fifth equality.

3.1 Saddlepoint approximation
This section describes the saddlepoint methodology. It is mainly based on [3]. We will first
describe the method and then later fit our simple credit portfolio model to it. We start with
the mean X̃ of n independent random variables X1, . . . , Xn. Then

X̃ = 1
n

n∑
i=1

Xi. (3.8)

Where all the Xi’s admit the same density g. Let the Laplace transform M for Xi be

MXi
(T ) =

∫ ∞

−∞
eT xf(x)dx. (3.9)

Define

KXi(T ) := log(MXi(T )). (3.10)

For ease of notation we will leave out the subscript Xi for K and M . Let fn be the density
of X̃. The Bromwich integral gives the inversion formula for the density

fn(x̃) = n

2πi

∫ τ+i∞

τ−i∞
en(K(T )−T x̃)dT. (3.11)

Where the integral runs over a vertical line in the complex plane which crosses the real line
at τ . This relation holds for any τ ∈ R. Define the saddlepoint T0 by
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K ′(T0) = x̃. (3.12)
Here K ′(T ) := dK/dT . Now we take the contour in the complex plane to integrate over to
be γ(t) = T0 + it with γ′(t) = i and let t go from −∞ to ∞. Then we have that

fn(x̃) = n

2πi

∫ T0+i∞

T0−i∞
en(K(T )−T x̃)dT

= n

2πi

∫ ∞

−∞
en(K(γ(t))−γ(t)x̃)γ′(t)dt

= n

2π

∫ ∞

−∞
en(K(γ(t))−γ(t)x̃)dt. (3.13)

We have that K and thus K − T x̃ is analytic on the complex plane, at least for the subset
on which M is defined. Then the Taylor series expansion of K − T x̃ around T0 exists and
we obtain

K(T ) − T x̃ =K(T0) − T0x̃+ (K ′(T0) − x̃)(T − T0) + 1
2
K ′′(T0)(T − T0)2

+ 1
6
K ′′′(T0)(T − T0)3 + 1

24
K(4)(T0)(T − T0)4 + · · · .

(3.14)

Where K(r) is the rth derivative of K (also denoted with r primes for r < 4). Now fill in
the contour γ(t) = T0 + it and use the fact that K ′(T0) = x̃ to get

K(T0 + it) − (T0 + it)x̃ =K(T0) − T0x̃+ 0 + 1
2
K ′′(T0)(it)2

+ 1
6
K ′′′(T0)(it)3 + 1

24
K(4)(T0)(it)4 + · · ·

=K(T0) − T0x̃− 1
2
K ′′(T0)t2

+ 1
6
K ′′′(T0)it3 + 1

24
K(4)(T0)t4 + · · · .

(3.15)

Then the integral becomes

n

2π

∫ ∞

−∞
en(K(γ(t))−γx̃dt =

n

2π
eK(T0)−T0x̃

∫ ∞

−∞
e− 1

2 nK′′(T0)t2
en(− 1

6 K′′′(T0)it3+ 1
24 K(4)(T0)t4+··· )dt.

(3.16)

We expand the last exponent as

en(− 1
6 K′′′(T0)it3+ 1

24 K(4)(T0)t4+··· ) =

1+[n(−1
6
K ′′′(T0)it3+ 1

24
K(4)(T0)t4+· · · )]+1

2
[−n(1

6
K ′′′(T0)it3+ 1

24
K(4)(T0)t4+· · · )]2+· · · .

(3.17)
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Where we used the expansion for the exponential function. Now in order to use 3.15 we must
do some bookkeeping.We have the term e− 1

2 nK′′(T0)t2 which we would later on replace by
e− 1

2 v2 so that we will apply the substitution t = v/
√
nK ′′(T0). We would like the integrand

of 3.17 to be of order O(n−2). So for n( 1
6K

′′′(T0)it3 + 1
24K

(4)(T0)t4 + · · · ) we only need
to write up to the 6th power. So we use n( 1

6K
′′′(T0)it3 + 1

24K
(4)(T0)t4 + 1

120K
(5)(T0)t5 +

1
720K

(6)(T0)t6 + · · · ). For [n( 1
6K

′′′(T0)it3 + 1
24K

(4)(T0)t4 + · · · )]2 we need only up to third
power. For [n( 1

6K
′′′(T0)it3 + 1

24K
(4)(T0)t4 + · · · )]3 we do not use any terms as well as for

higher order terms. Then

en(− 1
6 K′′′(T0)it3+ 1

24 K(4)(T0)t4+··· ) ≈ (3.18)

1 − 1
6
nK ′′′(T0)it3 + 1

24
nK(4)(T0)t4 − 1

2
1
36
n2K ′′′(T0)t6. (3.19)

Then we get

fn(x̃) = n

2π
eK(T0)−T0x̃

×
∫ ∞

−∞
e− 1

2 nK′′(T0)t2

×
{

1 − 1
6
nK ′′′(T0)it3 + 1

24
nK(4)(T0)t4 − 1

2
1
36
n2K ′′′(T0)t6+

1
120

nK(5)(T0)it5 − 1
720

nK(6)(T0)t6 + · · ·
}
dt.

(3.20)

Now apply the substitution t = v/
√
nK ′′(T0) to obtain that

fn(x̃) = 1
2π

√
n√

K ′′(T0)
eK(T0)−T0x̃

×
∫ ∞

−∞
e− 1

2 v2

×
{

1 − 1
6

K ′′′(T0)iv3
√
n(K ′′(T0))3/2 + 1

n

(
1
24
K(4)(T0)v4

K ′′(T0))2 − 1
72
K ′′′(T0)2v6

K ′′(T0))3

)
+ 1
n3/2

1
120

K(5)(T0)iv5

K ′′(T0))5/2 − 1
n2

1
720

K(6)(T0)v6

K ′′(T0))3 + · · ·
}
dv.

(3.21)

The odd powers intergrate to 0 giving

fn(x̃) =
√
n√

2πK ′′(T0)
eK(T0)−T0x̃

×
{

1 + 1
n

(
3
24

K(4)(T0)
K ′′(T0))2 − 15

72
K ′′′(T0)2

K ′′(T0))3

)
− 1
n2

5
720

K(6)(T0)
K ′′(T0))3 + · · ·

}
.

(3.22)

For evaluating the even powers we used the fact that for even j and j > 0, it holds that for
the moments of the standard normal density
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∫ ∞

−∞

1√
2π
e− 1

2 v2
vjdv =

j/2∏
m=1

(2m− 1). (3.23)

If j = 0 the moment is 1 and for odd j the moment is 0. Using the definition λr(T0) :=
K(r)/(K ′′(T0))r/2 we can simplify 3.22 to

fn(x̃) =
√
n√

2πK ′′(T0)
eK(T0)−T0x̃

×
{

1 + 1
n

(
1
8
λ4(T0) − 5

24
λ2

3(T0)
)

+ O(n−2)
}
.

(3.24)

3.2 Approximating a tail probability

For the tail probability Qn(x̃) := P(X̃ ≥ x̃) it holds that

Qn(x̃) = 1
2πi

∫ c+i∞

c−i∞
en(K(T )−T x̃) dT

T
, c > 0. (3.25)

This can be derived from 3.11 in the following way. Again let c > 0

Qn(x̃) =
∫ ∞

x̃

fn(y)dy

=
∫ ∞

x̃

n

2πi

∫ c+i∞

c−i∞
en(K(T )−T y)dTdy

=
∫ c+i∞

c−i∞

∫ ∞

x̃

n

2πi
en(K(T )−T y)dydT

=
∫ c+i∞

c−i∞

[
n

2πi
1

(−nT )
en(K(T )−T y)

]∞

x̃

dT

=
∫ c+i∞

c−i∞

1
2πi

en(K(T )−T x̃)

T
dT .

(3.26)

3.2.1 Approximation method 1

There two methods of getting an approximating formula for the above probability. The first
method goes as follows. First get a Taylor expansion for en(K(T )−T x̃) similar to the one used
in the previous section. Then we get (with c > 0 right of the singularity at 0)

18



Qn(x̃) = 1
2πi

en(K(T0)−T0x̃) (3.27)

×
∫ c+i∞

c−i∞
e− 1

2 nK′′(T0)(T −T0)2

×
{

1 + n

6
K

(3)
0 (T − T0)3 + n

24
K

(4)
0 (T − T0)4 + n

120
K

(5)
0 (T − T0)5+

n2

72
(K(3)

0 )2(T − T0)6 + · · ·
}
dT

T
.

Where K(i)
0 := K(T0)(i). The terms of the expansion can be found in the following way.

Define

Ir := 1
2πi

∫ c+i∞

c−i∞
e

1
2 z2−z0z(z − z0)r dz

z
. (3.28)

Where Re(z0) > 0. Then Ir satisfies the recurrence relations

I2m = −z0I2m−1

I2m+1 = (−1)mamϕ(z0) − z0I2m.

Where I0 = 1 − Φ(z0), a0 = 1, am = 1 × 3 × 5 × . . .× (2m− 1), ϕ,Φ are the standard normal
density and distribution. The recurrence relations can be seen by

Ir+1 := 1
2πi

∫ c+i∞

c−i∞
e

1
2 z2−z0z(z − z0)r+1 dz

z

= 1
2πi

∫ c+i∞

c−i∞
e

1
2 z2−z0z(z − z0)r(z − z0)dz

z

= − z0Ir + 1
2πi

∫ c+i∞

c−i∞
e

1
2 z2−z0z(z − z0)rdz

= − z0Ir + e
1
2 z2

0
1

2πi

∫ c+i∞

c−i∞
e

1
2 (z−z0)2

(z − z0)rdz

= − z0Ir + e
1
2 z2

0
1

2πi

∫ z0+i∞

z0−i∞
e

1
2 (z−z0)2

(z − z0)rdz

= − z0Ir + e
1
2 z2

0
1

2π

∫ ∞

−∞
e

1
2 (it)2

(it)rdt

= − z0Ir + e
1
2 z2

0
1

2π

∫ ∞

−∞
e− 1

2 t2
trirdt.

We shifted the contour of integration from c to z0. This is allowed as e 1
2 (z−z0)2(z − z0)r

tends to zero for z = c+ it and t tends to ±∞. If r is even, say r = 2m, then

Ir+1 = − z0Ir + e
1
2 z2

0
1

2π

∫ ∞

−∞
e− 1

2 t2
t2m(−1)mdt

= − z0Ir + ϕ(z0)am(−1)m.

19



Where

am =
∫ ∞

−∞
ϕ(t)t2mdt = 1 × 3 × . . .×m.

(3.29)

When r is odd then by symmetry

∫ ∞

−∞
e− 1

2 t2
trirdt = 0.

(3.30)

And Ir+1 = −z0Ir. Combining all this gives the explicit formula

Ir = (−z0)r(1 − Φ(z0)) + (−1)r−1ϕ(z0)
[ 1

2 (r−1)]∑
m=0

(−1)mamz
r−2m−1
0 . (3.31)

Writing out the formulas for r = 1, 2, . . . , 6

I1 = ϕ(z0) − z0 (1 − Φ(z0))
I2 = −z0ϕ(z0) + z2

0 (1 − Φ(z0))
I3 = (z2

0 − 1)ϕ(z0) − z3
0 (1 − Φ(z0))

I4 = −(z3
0 − z0)ϕ(z0) + z4

0 (1 − Φ(z0))
I5 = (z4

0 − z2
0 + 3)ϕ(z0) − z5

0 (1 − Φ(z0))
I6 = (z5

0 − z3
0 + 3z0)ϕ(z0) + z6

0 (1 − Φ(z0)) .
(3.32)

For r = 0 we can see that I0 is just the Bromwich integral as in 3.25 with n = 1 and
K(T ) = 1

2T
2. The cumulant K(T ) = 1

2T
2 belongs to the standard normal distribution.

Since the tail probability for a standard normal distribtion is 1−Φ we get that I0 = 1−Φ(z0).
In our case z0 can be taken to be real, otherwise Φ has to be analytically continued over the
complex plane. Now use the substition T = z/

√
nK ′′(T0) and T0 = z0/

√
nK ′′(T0). Then

substituting this in 3.27 we get

Qn(x̃) = en(K(T0)−T0x̃)e
1
2 z2

0

×
(
I0 + 1

n1/2
1
6

K
(3)
0

(K ′′
0 )3/2 I3 + 1

n

1
24

K
(4)
0

(K ′′
0 )2 I4+

1
n3/2

1
120

K
(5)
0

(K ′′
0 )5/2 I5 + 1

n

1
72

(K(3)
0 )2

(K ′′
0 )3 I6 + · · ·

)
. (3.33)

Where
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I0 + 1
n1/2

1
6

K
(3)
0

(K ′′
0 )3/2 I3 + 1

n

1
24

K
(4)
0

(K ′′
0 )2 I4 + 1

n3/2
1

120
K

(5)
0

(K ′′
0 )5/2 I5 + 1

n

1
72

(K(3)
0 )2

(K ′′
0 )3 I6 + · · · =

(1 − Φ(z0)) + (1 − Φ(z0)) 1
n

{
1
24

K
(4)
0

(K ′′
0 )2 z

4
0 + 1

72
(K(3)

0 )2

(K ′′
0 )3 z

6
0

}

− ϕ(z0) 1
n

{
1
24

K
(4)
0

(K ′′
0 )2 (z3

0 − z0) + 1
72

(K(3)
0 )2

(K ′′
0 )3 (z5

0 − z3
0 + 3z0)

}

+ ϕ(z0) 1
n1/2

{
1
6

K
(3)
0

(K ′′
0 )3/2 (z2

0 − 1)

}
− (1 − Φ(z0)) 1

n1/2

{
1
6

K
(3)
0

(K ′′
0 )3/2 (z3

0)

}
+ O(n−3/2).

(3.34)

The right hand side of the last equation equals

(1 − Φ(z0))

[
1 − z3

0
6n1/2

K
(3)
0

(K ′′
0 )3/2 + 1

n

{
z4

0
24

K
(4)
0

(K ′′
0 )2 + z6

0
72

(K(3)
0 )2

(K ′′
0 )3

}]

+ ϕ(z0)

[
1

n1/2

{
1
6

K
(3)
0

(K ′′
0 )3/2 (z2

0 − 1)

}

− 1
n

{
1
24

K
(4)
0

(K ′′
0 )2 (z3

0 − z0) + 1
72

(K(3)
0 )2

(K ′′
0 )3 (z5

0 − z3
0 + 3z0)

}]
+ O(n−3/2). (3.35)

Then for Qn(x̃) we have the approximation

Qn(x̃) = en(K(T0)−T0x̃)+ 1
2 z2

0

×

(
(1 − Φ(z0))

[
1 − z3

0
6n1/2

K
(3)
0

(K ′′
0 )3/2 + 1

n

{
z4

0
24

K
(4)
0

(K ′′
0 )2 + z6

0
72

(K(3)
0 )2

(K ′′
0 )3

}]

+ ϕ(z0)

[
1

n1/2

{
1
6

K
(3)
0

(K ′′
0 )3/2 (z2

0 − 1)

}

− 1
n

{
1
24

K
(4)
0

(K ′′
0 )2 (z3

0 − z0) + 1
72

(K(3)
0 )2

(K ′′
0 )3 (z5

0 − z3
0 + 3z0)

}])
× (1 + O(n−3/2)).

(3.36)

This formula is valid if x̃ > E(X). In case that x̃ < E(X) and thus T0 < 0 then we get that

Qn(x̃) = 1 + 1
2πi

∫ T0+i∞

T0−i∞
en(K(T )−T x̃) dT

T
, T0 > 0. (3.37)

Where the 1 comes from pulling the contour from the positive part of the real line over the
origin, but not crossing the pole at 0 leaving a cirle around T = 0 (also two line segments
connecting the circle with the new contour, but these cancel). Then from complex analysis
we know that for γ(t) = e2πit, t ∈ [0, 1) the integral

1
2πi

∫
γ

en(K(T )−T x̃) dT

T
= en(K(0)−0x̃) = 1. (3.38)
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For x̃ = E(X) we have

Qn(x̃) = 1
2

1 + 1
2πi

∫ T0+i∞

T0−i∞
en(K(T )−T x̃) dt

T
. (3.39)

Also for Ir a similar thing holds. When z0 < 0 and with the same definition for Ir namely

Ir := 1
2πi

∫ z0+i∞

z0−i∞
e

1
2 z2−z0z(z − z0)r dz

z
.

The recursion in 3.29 still holds. The only thing that is different is I0. To get I0 we notice
that for c < 0

I0 := 1
2πi

∫ c+i∞

c−i∞
e

1
2 z2−z0z dz

z

= −H(γ) + 1
2πi

∫ γ+i∞

γ−i∞
e

1
2 z2−z0z dz

z
.

(3.40)

Where H(x) = 1

H(x) =

 1 x > 0
1
2 x = 0
0 x < 0

(3.41)

When the contour is pulled over the singularity at z = 0 (γ > 0) we add −1 since we incure
a loop around z = 0, e−2πit, t ∈ [0, 2π], but it is clockwise so its value is −e0 = −1. When
γ = 0 we incur a semi-circle e−2πit, t ∈ [π/2, 3π/2], clockwise around z = 0 and the integral
over this semi-circle is −1/2. Then the general formula for I0 becomes

I0 = 1
2πi

∫ c+i∞

c−i∞
e

1
2 z2−z0z dz

z
=

 −Φ(z0) c < 0
1/2 − Φ(z0) c = 0

1 − Φ(z0) c > 0
If we set c = T0 and z0 = T0, so at the saddlepoint, we get as a general formula for Ir

Ir = (−z0)r(H(z0) − Φ(z0)) + (−1)r−1ϕ(z0)
[ 1

2 (r−1)]∑
m=0

(−1)mamz
r−2m−1
0 . (3.42)

This all together gives the general saddlepoint formula for any T0

Qn(x̃) = H(−T0) + en(K(T0)−T0x̃)+ 1
2 z2

0

×
(

(H(T0) − Φ(z0))

[
1 − z3

0
6n1/2

K
(3)
0

(K ′′
0 )3/2 + 1

n

{
z4

0
24

K
(4)
0

(K ′′
0 )2 + z6

0
72

(K(3)
0 )2

(K ′′
0 )3

}]

+ ϕ(z0)

[
1

n1/2

{
1
6

K
(3)
0

(K ′′
0 )3/2 (z2

0 − 1)

}

− 1
n

{
1
24

K
(4)
0

(K ′′
0 )2 (z3

0 − z0) + 1
72

(K(3)
0 )2

(K ′′
0 )3 (z5

0 − z3
0 + 3z0)

}])
× (1 + O(n−3/2)).

(3.43)
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3.2.2 Approximation method 2
The second method is also called the Lugannani-Rice formula. The method described is
due to Bleistein (1966) or uses an idea by him. The basic idea is to find a transformation
which describes the local behaviour of the function K(T )−T x̃ over a region containing both
T = T̂ and T = 0 when T̂ is small. Such a tranformation is given by

1
2

(W − Ŵ )2 = K(T ) − T x̃−K(T̂ ) + T̂ x̃. (3.44)

Where Ŵ is chosen such that K(T̂ ) − Ŵ x̃ = − 1
2Ŵ

2. So we get that

1
2
W 2 − ŴW = K(T ) − TK ′(T̂ ). (3.45)

The local behaviour of K(T )−TK ′(T̂ ) which is zero at T = 0, since K(0) = 0, and has zero
derivative at T̂ is reproduced by a quadratic in W with similar behaviour at Ŵ and W = 0.
It is easy to see that 1

2W
2 − ŴW is zero for W = 0 and the derivative W − Ŵ is zero at

Ŵ . The inversion formula 3.25 transforms into

Qn(x̃) = 1
2πi

∫ c+i∞

c−i∞
en( 1

2 W 2−Ŵ W )
(

1
T

dT

dW

)
dW , c > 0. (3.46)

When T is small then W ∼ AT , since T is small also W is small and neither the derivative
of K(T ) − TK ′(T̂ ) nor that of 1

2W
2 − ŴW is zero at T = 0 and W = 0 respectively. Then

by using the implicit function theorem we get

A = −
d(K(T )−T K′(T̂ )−( 1

2 W 2−Ŵ W ))
dT

∣∣∣
T =0

d(K(T )−T K′(T̂ )−( 1
2 W 2−Ŵ W ))

dW

∣∣∣
W =0

= K ′(T̂ ) −K ′(0)
Ŵ

= x̃− E(X)
Ŵ

. (3.47)

When x̃ ̸= E(X) and A = (K ′′(0))1/2 (Daniels has A = (K ′′(0))−1/2) when x̃ = E(X). The
last part can be seen by letting T̂ → 0. Then

lim
T̂ →0

A = lim
T̂ →0

K ′(T̂ ) −K ′(0)
Ŵ

= lim
T̂ →0

K ′′(T̂ )
dŴ/dT̂

. (3.48)

The limit of the derivative dŴ/dT̂ can be determined as follows.

dŴ

dT̂
= 2T̂K ′′(T̂ )

2
√

2(T̂K ′′(T̂ ) −K(T̂ ))

= T̂K ′′(T̂ )√
2(K ′(0)T̂ +K ′′(0)T̂ 2 + O(T̂ 3)) − 2(K(0) +K ′(0)T̂ + 1

2K
′′(0)T̂ 2 + O(T̂ 3))

= K ′′(T̂ )√
K ′′(0) + O(T̂ )

.

(3.49)

Now let if we let T̂ → 0 the derivative becomes
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lim
T̂ →0

dŴ

dT̂
= lim

T̂ →0

K ′′(T̂ )√
K ′′(0) + O(T̂ )

=
√
K ′′(0). (3.50)

Then T−1dT/dW ∼ W−1 as T−1dT/dW = (A/W )A−1 = 1/W for small W . Since dT/dW
is analytic in a neightbourhood ofW = 0 due toK(T ) being analytic, so is T−1dT/dW−W−1

and 3.51 can be written as

Qn(x̃) = 1
2πi

∫ c+i∞

c−i∞
en( 1

2 W 2−Ŵ W ) dW

W
+e−n 1

2 Ŵ 2 1
2πi

∫ c+i∞

c−i∞
en 1

2 (W −Ŵ )2
(

1
T

dT

dW
− 1
W

)
dW.

(3.51)
The singularity has been isolated into the first term, which has the value 1 − Φ( ˆWn1/2). In
the second term T−1dTdW −W−1 is expanded about Ŵ . We will define

G1 : = e−n 1
2 Ŵ 2 1

2πi

∫ c+i∞

c−i∞
en 1

2 (W −Ŵ )2 1
T

dT

dW
dW

G2 : = e−n 1
2 Ŵ 2 1

2πi

∫ c+i∞

c−i∞
en 1

2 (W −Ŵ )2 dW

W
.

We start by analysing G1 first. By reverting back to using T we get that

1
2πi

∫ c+i∞

c−i∞
en( 1

2 W 2−Ŵ W ) 1
T

dT

dW
dW =

1
2πi

∫ c+i∞

c−i∞
en(K(T )−T x̃) dT

T
.

Here we can use the expansion of en(K(T )−T x̃) and 1/T . From the density we saw that
en(K(T )−T x̃) could be expanded around T̂ when c = T̂ . Define

g(t) := en(K(T̂ )−T̂ x̃)e− 1
2 nK′′(T̂ )t2

. (3.52)

Then we get

g(t)en(− 1
6 K′′′(T̂ )it3+ 1

24 K(4)(T̂ )t4+··· ) =

g(t)
{

1 + n

[
−1

6
K ′′′(T̂ )it3 + 1

24
K(4)(T̂ )t4 + · · ·

]
+ 1

2
n2
[
−1

6
K ′′′(T̂ )it3 + 1

24
K(4)(T̂ )t4 + · · ·

]2

+ · · ·
}
. (3.53)

Now we also expand 1/T around T̂

1
T̂ + it

= 1
T̂

− it

T̂ 2
+ (it)2

T̂ 3
− (it)3

T̂ 4
+ · · · = 1

T̂
− it

T̂ 2
− t22
T̂ 3

+ it3

T̂ 4
+ · · · . (3.54)

Then we get
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g(t)
{

1 + n

[
−1

6
K ′′′(T̂ )it3 + 1

24
K(4)(T̂ )t4 + · · ·

]
+ 1

2
n2
[
−1

6
K ′′′(T̂ )it3 + 1

24
K(4)(T̂ )t4 + · · ·

]2

+ · · ·
}

×
{

1
T̂

− it

T̂ 2
− t22
T̂ 3

+ it3

T̂ 4
+ · · ·

}
=

g(t)
{

1
T̂

(
1 + n

24
K(4)(T̂ )t4 − 1

2
n2

36

(
K(3)(T̂ )

)2
t6
)

− 1
T̂ 2

(n
6
K(3)(T̂ )t4

)
− t2

T̂ 3
+ P (t) + O(n−2)

}
. (3.55)

Where P is a polynomial in which every part has odd degree. Upon integration this will
yield zero, i.e.

∫ ∞

−∞
g(t)P (t)dt = 0. (3.56)

Now use the substitution

t = v√
nK ′′(T̂ )

. (3.57)

This gives

g(t)
{

1
T̂

(
1 + n

24
K(4)(T̂ )t4 − 1

2
n2

36

(
K(3)(T̂ )

)2
t6
)

− 1
T̂ 2

(n
6
K(3)(T̂ )t4

)
− t2

T̂ 3
+ P (t) + O(n−2)

}
=

en(K(T̂ )−T̂ x̃)e− 1
2 v2√

nK ′′(T̂ )

 1
T̂

1 + 1
24n

K(4)(T̂ )
K ′′(T̂ )2

v4 − 1
72n

(
K(3)(T̂ )

)2

K ′′(T̂ )3
v6


− 1
T̂ 2

(
1

6n
K(3)(T̂ )
K ′′(T̂ )2

v4

)
− v2

nK ′′(T̂ )T̂ 3
+ O(n−2)

}
.

Now we take the integral (ignoring the term 1/(2π) still)
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en(K(T̂ )−T̂ x̃)

T̂

√
nK ′′(T̂ )

∫ ∞

−∞
e− 1

2 v2

1 + 1
n

 1
24
K(4)(T̂ )
K ′′(T̂ )2

v4 − 1
72

(
K(3)(T̂ )

)2

K ′′(T̂ )3
v6

− 1
T̂

1
6
K(3)(T̂ )
K ′′(T̂ )2

v4 − v2

K ′′(T̂ )T̂ 2

)
+ O(n−2)

}
dv =

en(K(T̂ )−T̂ x̃)

T̂

√
nK ′′(T̂ )

√
2π

1 + 1
n

 3
24
K(4)(T̂ )
K ′′(T̂ )2

− 15
72

(
K(3)(T̂ )

)2

K ′′(T̂ )3

− 3
6T̂

K(3)(T̂ )
K ′′(T̂ )2

− 1
K ′′(T̂ )T̂ 2

)
+ O(n−2)

}
=

en(K(T̂ )−T̂ x̃)√2π

T̂

√
nK ′′(T̂ )

{
1 + 1

n

(
1
8
λ4 − 5

24
λ2

3 − 1
2T̂

λ3

K ′′(T̂ )1/2
− 1
K ′′(T̂ )T̂ 2

)
+ O(n−2)

}
. (3.58)

Now we can define G1

G1 = 1
2π

en(K(T̂ )−T̂ x̃)√2π

T̂

√
nK ′′(T̂ )

{
1 + 1

n

(
1
8
λ4 − 5

24
λ2

3 − 1
2T̂

λ3

K ′′(T̂ )1/2
− 1
K ′′(T̂ )T̂ 2

)
+ O(n−2)

}
(3.59)

= en(K(T̂ )−T̂ x̃)

T̂

√
2πnK ′′(T̂ )

{
1 + 1

n

(
1
8
λ4 − 5

24
λ2

3 − 1
2T̂

λ3

K ′′(T̂ )1/2
− 1
K ′′(T̂ )T̂ 2

)
+ O(n−2)

}
.

(3.60)

Now we expand the integrand of G2 around Ŵ

1
W

= 1
Ŵ

− W − Ŵ

Ŵ 2
+ (W − Ŵ )2

Ŵ 2
+ · · · . (3.61)

Then we get

G2 = 1
2πi

e− 1
2 nŴ 2

∫ c+i∞

c−i∞
e− 1

2 n(W −Ŵ )2

{
1
Ŵ

− W − Ŵ

Ŵ 2
+ (W − Ŵ )2

Ŵ 2
+ · · ·

}
dW. (3.62)

Using the substitution z =
√

(n)(W − Ŵ ) we get

∫ c+i∞

c−i∞
e− 1

2 n(W −Ŵ 2)2
(W − Ŵ )k+1 dW

W − Ŵ
= 1
n(k+1)/2

∫ c+Ŵ +i∞

c+Ŵ −i∞
e

1
2 z2

zk+1 dz

z
. (3.63)

Define

Ik+1 :=
∫ c+Ŵ +i∞

c+Ŵ −i∞
e

1
2 z2

zk+1 dz

z
. (3.64)
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Applying 3.28 where we let ẑ → 0 and take Re(c + Ŵ ) > 0. The Ik+1 = 0 if k is odd. So
the powers with k + 1 is odd vanish. For k even, with k = 2m, we get that

Ik+1 = (−1)mamϕ(0). (3.65)

Where am = 1 × 3 × . . .× (2m− 1). This gives

e− 1
2 nŴ 2

∫ c+i∞

c−i∞
e

1
2 n(W −Ŵ 2)2

{
1
Ŵ

− W − Ŵ

Ŵ 2
+ (W − Ŵ )2

Ŵ 2
+ · · ·

}
dW =

e− 1
2 nŴ 2

{
a0ϕ(0)
n1/2Ŵ

− a1ϕ(0)
n3/2Ŵ 3

+ a2ϕ(0)
n5/2Ŵ 5

− a3ϕ(0)
n7/2Ŵ 7

+ · · ·
}

=

e− 1
2 nŴ 2

ϕ(0)
{

1
n1/2Ŵ

− 1
n3/2Ŵ 3

+ 1 × 3
n5/2Ŵ 5

− 1 × 3 × 5
n7/2Ŵ 7

+ · · ·
}

=

e− 1
2 nŴ 2 1√

2π

{
1

n1/2Ŵ
− 1
n3/2Ŵ 3

+ 1 × 3
n5/2Ŵ 5

− 1 × 3 × 5
n7/2Ŵ 7

+ · · ·
}

=

ϕ(
√
nŴ )

{
1

n1/2Ŵ
− 1
n3/2Ŵ 3

+ 1 × 3
n5/2Ŵ 5

− 1 × 3 × 5
n7/2Ŵ 7

+ · · ·
}
.

(3.66)

When we combine G1 and G2 we get

G1 −G2 = en(K(T̂ )−T̂ x̃)

T̂

√
2πnK ′′(T̂ )

{
1 + 1

n

(
1
8
λ4 − 5

24
λ2

3 − 1
2T̂

λ3

K ′′(T̂ )1/2
− 1
K ′′(T̂ )T̂ 2

)
+ O(n−2)

}

− ϕ(
√
nŴ )

{
1

n1/2Ŵ
− 1
n3/2Ŵ 3

+ O(n−5/2)
}

= ϕ(
√
nŴ

T̂

√
K ′′(T̂ )

1√
n

{
1 + 1

n

(
1
8
λ4 − 5

24
λ2

3 − 1
2T̂

λ3

K ′′(T̂ )1/2
− 1
K ′′(T̂ )T̂ 2

)
+ O(n−2)

}

− ϕ(
√
nŴ )

{
1

n1/2Ŵ
− 1
n3/2Ŵ 3

+ O(n−5/2)
}
.

(3.67)

Now define Û := T̂

√
K ′′(T̂ ) then we get

G1 −G2 =ϕ(
√
nŴ )

{
1√
n

(
1
Û

− 1
Ŵ

)
+ 1
n3/2

(
1
Û

(
1
8
λ4 − 5

24
λ2

3 − 1
2T̂

λ3

K ′′(T̂ )1/2
− 1
K ′′(T̂ )T̂ 2

)
+ 1
Ŵ 3

)
+ O(n−5/2)

}
=ϕ(

√
nŴ )

{
1√
n

(
1
Û

− 1
Ŵ

)
+ 1
n3/2

(
1
Û

(
1
8
λ4 − 5

24
λ2

3

)
− λ3

2Û2
− 1
Û3

+ 1
Ŵ 3

)
+ O(n−5/2)

}
.

(3.68)

Combining all these results we get
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Qn(x̃) =1 − Φ(n1/2(̂W ))

+ ϕ(
√
nŴ )

{
1√
n

(
1
Û

− 1
Ŵ

)
+ 1
n3/2

(
1
Û

(
1
8
λ4 − 5

24
λ2

3

)
− λ3

2Û2
− 1
Û3

+ 1
Ŵ 3

)
+O(n−5/2)

}
(3.69)

=1 − Φ(n1/2(̂W )) + ϕ(
√
nŴ )

{
b0

n1/2 + b1

n3/2 + · · · + bk

nk+1/2 + O(n−k−1−1/2)
}
.

(3.70)

Where

b0 = 1
Û

− 1
Ŵ

, b1 = 1
Û

(
1
8
λ4 − 5

24
λ2

3

)
− λ3

2Û2
− 1
Û3

+ 1
Ŵ 3

. (3.71)

When Û , and hence Ŵ , is small the terms that make up b0, b1, . . . look like they become
infinitely large. However by writing Ŵ as an expansion in powers of Û we see that the b0, b1
are in fact bounded around T̂ = 0. First write

Ŵ = Û − 1
6
λ3Û

2 + 1
24

(λ4 − 1
3
λ2

3)Û3 − 1
24

(
1
5
λ5 − 1

6
λ3λ4 + 1

18
λ2

3

)
Û4 + · · · . (3.72)

We can write

b0 = 1
Û

− 1
Ŵ

= Ŵ − Û

Ŵ Û
. (3.73)

Then Ŵ − Û = − 1
6λ3Û

2 + O(Û3) and Ŵ Û = Û2 + O(Û3). This means that around Û = 0
b0 is bounded. Doing the same for b1 we get that

b1 =
Û2Ŵ 3 ( 1

8λ4 − 5
24λ

2
3
)

− λ3
2 ÛŴ

3 − Ŵ 3 + Û3

Ŵ 3Û3
. (3.74)

Where

(
1
8
λ4 − 5

24
λ2

3

)
Û2Ŵ 3 =

(
1
8
λ4 − 5

24
λ2

3

)
Û5 + O(Û6)

−1
2
λ3ÛŴ

3 = −1
2
λ3(Û4 − 3

6
λ3Û

4) + O(Û6)

−Ŵ 3 = −
(
Û3 − 1

2
λ3Û

4 + 1
12
λ2

3Û
5 + 3

24
(λ4 − 1

3
λ2

3)Û5
)

+ O(Û6)

Û3 = Û3.

If we sum the left hand side and the right hand side we get that

Û2Ŵ 3
(

1
8
λ4 − 5

24
λ2

3

)
− λ3

2
ÛŴ 3 − Ŵ 3 + Û3 = O(Û6). (3.75)

Together with Ŵ 3Û3 = Û6 + O(Û7) we get that b1 is also bounded around T̂ = 0.
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3.2.3 Using the saddlepoint approximation
We now have two formulas for the approximation of the excess probability. The first one is

Qn(x̃) = H(−T0) + en(K(T0)−T0x̃)+ 1
2 z2

0

×

(
(H(T0) − Φ(z0))

[
1 − z3

0
6n1/2

K
(3)
0

(K ′′
0 )3/2 + 1

n

{
z4

0
24

K
(4)
0

(K ′′
0 )2 + z6

0
72

(K(3)
0 )2

(K ′′
0 )3

}]

+ ϕ(z0)

[
1

n1/2

{
1
6

K
(3)
0

(K ′′
0 )3/2 (z2

0 − 1)

}

− 1
n

{
1
24

K
(4)
0

(K ′′
0 )2 (z3

0 − z0) + 1
72

(K(3)
0 )2

(K ′′
0 )3 (z5

0 − z3
0 + 3z0)

}])
× (1 + O(n−3/2)).

(3.76)

The second one is

Qn(x̃) =1 − Φ(n1/2(̂W ))

+ ϕ(
√
nŴ )

{
1√
n

(
1
Û

− 1
Ŵ

)
+ 1
n3/2

(
1
Û

(
1
8
λ4 − 5

24
λ2

3

)
− λ3

2Û2
− 1
Û3

+ 1
Ŵ 3

)
+O(n−5/2)

}
(3.77)

=1 − Φ(n1/2(̂W )) + ϕ(
√
nŴ )

{
b0

n1/2 + b1

n3/2 + · · · + bk

nk+1/2 + O(n−k−1−1/2)
}
.

(3.78)

These approximate the probability P(X̃ ≥ x̃). These approximations are suited to when x̃
is located in the tail region. The approximation refers to a sample mean when the sample
is an i.i.d. sample. In our case of a credit portfolio we have neither independence nor an
identical distribution for all off the loan losses. We can condition on the common factor.
Then all the loan losses are independent. By taking the formulas and insert n = 1 and letting
M(T ) =

∏n
i=1 Mi(T, Y ), where Mi(T, Y ) is the conditional moment generating function for

loan loss i and n is the original value (not 1). We can use the saddlepoint approximations
with K(T ) := log(M(T )). In using the distribution given the common factor we have to use
the conditional PD ci(Y ) where

ci(Y ) := Φ
(

Φ−1(pi) + √
ρiY√

1 − ρi

)
. (3.79)

Then the probability P(Lp > u) can be calculated by

P(Lp > u) = E (P (Lp > u|Y )) =
∫ ∞

−∞
P (Lp > u| y) f(y)dy. (3.80)

Where f is the density of the common factor Y . Here P (Lp > u| y) can be approximated
by Qn=1(u), where we use M(T ) =

∏n
i=1 Mi(T, Y ). Then we get that

P(Lp > u) ≈
∫ ∞

−∞
Qn=1(u)f(y)dy. (3.81)

Where the dependence of Qn=1(u) on Y is implicit via the conditional Laplace transform.
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3.2.4 Calculating cumulants
The saddlepoint approximation formulas depend on derivatives of cumulant K. Since the
cumulant K is the sum of the cumulants Ki of the individual cumulants of the loan losses,
i.e. K(T ) =

∑n
i=1 Ki(T ). Where Ki(T ) is the cumulant of loan loss Li conditional on the

common factor Y . Then

Ki(T, Y ) = log (Mi(T, Y )) . (3.82)

We define for the ease of notation

∂rKi(T, Y )
∂T r

:= K
(r)
i (T, Y ) (3.83)

∂rMi(T, Y )
∂T r

:= M
(r)
i (T, Y ) (3.84)

Then we have

K
(1)
i (T, Y ) =M

(1)
i (T, Y )
Mi(T, Y )

K
(2)
i (T, Y ) =M

(2)
i (T, Y )
Mi(T, Y )

−
(
K

(1)
i (T, Y )

)2

K
(3)
i (T, Y ) =M

(3)
i (T, Y )
Mi(T, Y )

− 3K(1)
i (T, Y )K(2)

i (T, Y ) −
(
K

(1)
i (T, Y )

)3

K
(4)
i (T, Y ) =M

(4)
i (T, Y )
Mi(T, Y )

−
(

4K(1)
i (T, Y )K(3)

i (T, Y ) + 3K(2)
i (T, Y )K(2)

i (T, Y )

+6K(2)
i (T, Y )

(
K

(1)
i (T, Y )

)2
+
(
K

(1)
i (T, Y )

)4
)

(3.85)

If we use our Merton model with only two possible states (default or non-default) we have
that

Mi(T, Y ) = 1 − ci(Y ) + ci(Y )eLGDi·EADi . (3.86)

The partial derivatives of Mi(T, Y ) with respect to T are then for r = 1, 2, . . .

M
(r)
i (T, Y ) = (LGDi · EADi)rci(Y )eT LGDi·EADi , (3.87)

3.3 Saddlepoint contour
Suppose we have a function of the form ef(z) that we want to integrate over some contour and
use the real part of the integral. We also use an approximation of f that works well around a
neighbourhood of some point w. For our approximating to give a good approximation of the
integral we would like to have that the real part of f on the contour has a maximum at w and
decreases rapidly away from w at either direction. Define z = x+ iy and u(x, y) = Re(f(z))
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and v(x, y) = Im(f(z)). If we are at point z = x+ iy the direction in which u decreases or
increases the most is [∂u(x, y)/∂x, ∂u(x, y)/∂y]. If we have a path h(t) + ig(t), t ∈ R and
at t we have that dh(t)/dt∂u(x, y)/∂x and dg(t)/dt = ∂u(x, y)/∂y then with z = h(t)+ ig(t)

dv(h(t), g(t)
dt

= ∂v(h(t), g(t)
∂x

dh(t)
dt

+ ∂v(h(t), g(t)
∂y

dg(t)
dt

= ∂v(h(t), g(t)
∂x

∂u(x, y)
dx

+ ∂v(h(t), g(t)
∂y

∂u(x, y)
dy

= 0. (3.88)

Where the last equality is due to the Cauchy-Riemann equations. This means that the
imaginary part of f must be zero on the contour where the real parts decreases or increases
the fastest. Take the case f(z) := n(K(z) − z(̃x)). For our case we know that if z is on the
real axis then f must be real as well. We also know for that f ′′ > 0 as K ′′(z) > 0 for any real
z. Although the imaginary part of f is zero and therefor constant on the real axis it is not a
good contour as we have a minimum here. If we have a contour h(t) + ig(t) that crosses the
real axis at w0, but f ′(w0) ̸= 0, then we do not have that v is constant along that contour.
This is becaus the only direction in which v is constant is that on the real axis. In case
that f ′(w) = 0 then there could be other paths running through w for which v is constant
along the path. If we move along the direction [∂u(x, y)/∂x, ∂u(x, y)/∂y] we want the have
that u is decreasing away from a point w at which u should have a maximum. We also
know that ∂2u(x, y)/∂x2 > 0 for y = 0. Then by an application of the Cauchy-Riemann
equations we know that ∂2u(x, y)/∂x2 + ∂2u(x, y)/∂y2 = 0 giving ∂2u(x, y)/∂y2 < 0 on
y = 0. We have the original contour w0 + it, t ∈ (−∞,∞). We can deform this contour
such that it the function f has the right properties of quick decrease after a maximum on
this deformed contour. So we apply the following strategy for our new contour γ. For some
ε > 0, where ε is small, we take that γ0(t) = w0 + it for t ∈ [−ε, ε]. Here w0 is any of
the real valued solutions to w0 := {z|K ′(z) − x̃ = 0}. Then from the points w0 + iε and
w0 − iε we continue on a contour for which the imaginary part of f is constant, call this
contours γ1 and γ2. Then we have that Im(f(γ1(t))) = Im(f(w0 + iε)), t ∈ (ε, t1] and
Im(f(γ2(t))) = Im(f(w0 − iε)), t ∈ [−t2,−ε) for some 0 < t1, t2 < ∞. After γ1 we take
a contour, γ3(t), t ∈ (t1, t3], back to the original contour and after γ2 we take a contour,
γ4(t), t ∈ (−t4,−t2] back to the original contour. For γ1 and γ2 we want to have that at
the ends of the contours, i.e. at γ1(t3) and γ2(t4), that the the real part of f is small. We
also let ε → 0. Then Im(f(w0 + iε)) → Im(f(w0)). Also we have that along our new contour
u is decreasing at least before entering contours γ3 or γ4. This can be seen as follows. Along
the contour γ0 we have that u is downward sloping except at γ0 = w0. In order for u to be
upward sloping again on γ1 or γ2 we need to have crossed a stationary point where f ′ = 0.
In our case there is only one stationary point w0 and we have that u is decreasing on some
contour γ where u(γ(t)) < u(w0) it cannot come to a point w0 such that u(γ(t)) = u(w0).
We also have to choose t1, t2 such that after these points u is negligible.

31



3.4 Wavelets
This section is due to [7]. They employ wavelets to numerically invert the Laplace transform.
We will use the Merton default model described in the previous chapter. Also in this case
the LGD and EAD are taken to be fixed and there is one common risk factor. Again let Li

be the loss on loan i, Lp the credit portfolio loss with Lp =
∑

i Li. First some definitions. let
F be the cumulative distribution function of Lp (we also denote it just as L). Now assume
without loss of generality that

∑n
i=1 EADi = 1. Suppose

F =
{
F̄ (x), if 0 ≤ x ≤ 1,

1, if x > 1, (3.89)

For some F̄ defined on [0, 1].

3.4.1 The Haar basis wavelets system
Consider the space of measurable functions defined on R called L2(R) defined as L2(R) :=
{f :

∫∞
−∞ |f(x)|2dx < ∞}. A general structure for wavelets in L2(R) is called a Multi-

resolution Analysis (MRA). We start with a family of closed nested subspaces

. . . ⊂ V−2 ⊂ V−1 ⊂ V−0 ⊂ V1 ⊂ V2. (3.90)

in L2(R) where

∩
j∈Z

Vj = 0,
∪
j∈Z

Vj = L2(R). (3.91)

This means that the intersection of all the subspaces is the zero function and the closure of
their union is the space L2(R). Also

f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1. (3.92)

If these conditions are met, then there exists a function ϕ ∈ V0 such that {ϕj,k}k∈Z is an
orthonormal basis of Vj , where

ϕj,k(x) = 2j/2ϕ(2jx− k). (3.93)

This means that, the function ϕ, called the father function, will generate an orthonormal
basis for each subspace Vj . Then we define Wj such that Vj+1 = Vj ⊕Wj . This says that Wj

is the space of functions that is in Vj+1, but not in Vj . Then L2(R) =
∑

j ⊕Wj . Then there
exists a function ψ ∈ W0 such that {ψj,k}k∈Z is an orthonormal basis of Wj and {ψj,k}k∈Z
is a wavelet basis of L2(R), where

ψj,k(x) = 2j/2ψ(2jx− k),∫ ∞

−∞
ψ(x)dx = 0. (3.94)

The function ψ is called the mother function and the {ψj,k}k∈Z are the wavelet functions.
For any function f ∈ L2(R) a projection map of L2(R) onto Vm
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Pm : L2(R) → Vm. (3.95)

is defined by

Pmf(x) =
m−1∑

j=−∞

k=+∞∑
k=−∞

dj,kψj,k(x) =
∑
k∈Z

cm,kϕm,k(x) (3.96)

Where dj,k =
∫ +∞

−∞ f(x)ψj,k(x)dx are the wavelet coefficients and cm,k =
∫ +∞

−∞ f(x)ϕm,k(x)dx
are the scaling coefficients. Considering higher values of m, using more terms, the truncation
becomes a better approximation of f . For the analysis we will use Haar wavelets. For these
wavelets the space Vj are all functions that are constant on a interval of the form

[
k
2j ,

k+1
2j

)
for all integers k. Then

ϕ(x)
{

1, if 0 ≤ x < 1,
0, otherwise. (3.97)

and

ψ(x)

 1, if 0 ≤ x < 1
2 ,

−1, if 1
2 ≤ x < 1,

0, otherwise.
(3.98)

3.4.2 Haar wavelets approximation
Since the CDF F̄ defined above is in our case a discontinuous step function the Haar wavelets
are a very suitable wavelet to approximate this function.

Laplace transform inversion

Since F̄ ∈ L2([0, 1]) and using the theory of MRA we can approximate F̄ on [0, 1] by sum
of scaling functions

F̄ (x) ≈
2m−1∑
k=0

cm,kϕm,k(x), (3.99)

and

F̄ (x) = lim
m→+∞

2m−1∑
k=0

cm,kϕm,k(x), (3.100)

For the unconditional Laplace transform ML we have that

ML(s) := E
(
e−sL

)
=
∫ +∞

0
e−sxdF (x), (3.101)
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Where the last integral is with respect to the counting measure on the set x1, . . . , xN , which
is the set of all possible values of L. Also for Re(s) > 0 and x ≥ 0 we have that

e−sx =
∫ ∞

x

se−stdt, (3.102)

Then with µ the counting measure on x1, . . . , xN and dF = f(x)µ(dx)

∫ ∞

0
e−sxdF (x) =

∫ ∞

0

∫ ∞

x

se−stdtdF (x)

=
∫ ∞

0

∫ ∞

x

se−stf(x)dtµ(dx)

=
∫ ∞

0
se−st

∫ t

0
f(x)µ(dx)dt

=
∫ ∞

0
se−stF (t)dt

=
∫ 1

0
se−stF̄ (t)dt+

∫ ∞

1
se−stdt

=
∫ 1

0
se−stF̄ (t)dt+ e−s.

(3.103)

Where we used the fact that for 0 ≤ x ≤ 1 F (x) = F̄ (x) and for x > 1 F (x) = 1. If we then
approximate the last part by inserting the expansion of F̄ into scaling functions we get that

ML(s) ≈ e−s +
∫ 1

0
se−st

2m−1∑
k=0

cm,kϕm,k(t)dt

= e−s + 2 m
2 s

2m−1∑
k=0

cm,kϕ̃m,k(s).

Where

ϕ̃m,k(s) = 1
s
e−s k

2m

(
1 − e−s 1

2m

)
. (3.104)

is the Laplace transform of the basis function ϕm,k. We observe that ϕ̃m,k(s) = ϕ̃m,0(s)e−s k
2m

and making the change of variable z = e−s 1
2m we get that

Q(z) :=
2m−1∑
k=0

cm,kz
k ≈ ML(−2m log(z)) − z2m

2 m
2 (1 − z)

. (3.105)

Where we used that ϕ̃m,0(s) = (1 − z)/s. For |z| < 1 Q is analytic on this area. Also the
singularity at z = 0 is removable since if we let the real part of s tend to infinity Ml(s)
will always converge to the same value, regardless how the real part converges to infinity or
what the value of the imaginary part of s is. Then given Q we can obtain the value for cm,k

using the Cauchy integral formula. Then
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cm,k = 1
2πi

∫
γ

Q(z)
zk+1 dz, k = 0, 1, . . . , 2m − 1. (3.106)

Where γ is a circle around the origin with radius r, 0 < r < 1. If we make the change of
variable z = reiu, 0 < r < 1 then

cm,k = 1
2πrk

∫ 2π

0

Q(reiu)
eiku

du

= 1
2πrk

∫ 2π

0

[
Re(Q(reiu)) cos(ku) + Im(Q(reiu))sin(ku)

]
du

= 2
πrk

∫ π

0
Re(Q(reiu)) cos(ku)du

(3.107)

Where for second equality we use the fact that cm,k must be real valued. For the third
equality that

∫ 2π

0 cos(ku) cos(mu)du =
∫ 2π

0 sin(ku) sin(mu)du and
∫ π

0 cos(ku) cos(mu)du =∫ 2π

π
cos(ku) cos(mu)du for 0 ≤ m ≤ k.

Value-at-Risk computation

It is easy to see that

0 ≤ cm,k ≤ 2− m
2 , k = 0, 1, . . . , 2m − 1 (3.108)

as

cm,k =
∫ +∞

−∞
F̄ (x)ϕm,k(x)dx ≤

∫ 2−m

0
2m/2dx = 2−m/2 (3.109)

We also have that

0 ≤ cm,0 ≤ cm,1 ≤ . . . ≤ cm,2m−1 (3.110)

This is due to the fact that ϕm,k shifts to the right as k increases and F̄ (x) increases as x
increases up to x = 1. We can approximate F̄ by

F̄ ≈
2m−1∑
k=0

cm,kϕm,k =
2m−1∑
k=0

2 m
2 cm,kI[ k

2m , k+1
2m )(x) (3.111)

Where IA is the indicator function on the interval A. Calculating the q quantile lq is easy now
as we need to choose the smallest k such that cm,k ≥ α and then lq ∈

[
k

2m ,
k+1
2m

)
. Call this

value k∗. Our desired quantile (or Value-at-Risk) will be k∗/2m. We can search for k∗ using
a bisection algorithm so that we do not have to caculate all cm,k for all k = 0, 1, . . . , 2m − 1.
By using a bi-section algorithm only for those k for x ∈

[
k

2m ,
k+1
2m

)
for the x value that is

used in the bi-section algorithm needs to be calculated. We can determine the accuracy of
lq up to 2−m.
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Alternative method for determining the scaling coefficients

The scaling coefficients have been determined in the previous section by means of Cauchy’s
integral formula. We have that we need to determine cm,k for

Q(z) :=
2m−1∑
k=0

cm,kz
k ≈ ML(−2m log(z)) − z2m

2 m
2 (1 − z)

(3.112)

Define

H(z) = ML(−2m log(z)) − z2m

2 m
2 (1 − z)

(3.113)

If we wish to approximate H by a polynomial then the coefficients of this polynomial can
also be determined by solving a linear system. We would like to have that Q(z) ≈ H(z).
This holds for every z ∈ D where D is some subset of C. If we could calculate for some 2m

different values of z then using linear algebra to can obtain the cm,k. The values of z can
be chosen real. Now take some set z0, z1, . . . , zN−1, where N = 2m. Define a vector N × 1
y by yj = H(zj), a vector b by bj = cm,j and a N ×N matrix X by Xs,t = zt

s

b = X−1y (3.114)

Here H(z) has to be calculated for many z values just like in the numerical Cauchy integral
formula. With the cost of calculating the invese of X we get all cm,k for k = 0, 1, . . . , 2m −1.
The matrix X (or X⊤) is a so called Vandermonde matrix. There exist several algorithms
to obtain the matrix inverse tailored to the case of a Vandermonde matrix.
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3.5 De Hoog’s method for numerical Laplace inversion
This part is based on [8]. In their article they address both the single common factor
case as well as the multivariate common factor case. We shall address only the single
common factor case. Let us start with some notation. Let X be the common factor. Again
we use the Merton model for the default process. Let ML be the Laplace transform of
the portfolio loss and ML(X) the conditional Laplace trasnform of the portfolio loss, with
ML(s) = E(ML(s,X)). Let FL be the portfolio distribution function define on [0, 1] by
normalising the EADs such that

∑n
j=1 EADj = 1 where n is the total number of loans in

the portfolio. Then by the Bromwich inversion formula we have that for γ > 0

FL(x) = 1
2πi

∫ γ+i∞

γ−i∞

esx

s
ML(s)ds

= 1
2πi

∫ γ+i∞

γ−i∞

esx

s
E(ML(s,X))ds.

The key idea of De Hoog’s algorithm is to divide the above interval of integration into
small subintervals and evaluate the integral using the trapzoidal rule and obtain an infinite
polynomial whose coefficients can be calculated. Then using a Padé approximation for this
polynomial only relatively small number of the coefficients of the polynomial have to be
calculated to get a fast convergence. If we divide the contour of the above integral into
small intervals with width h. So the contour γ+ it with t ranging from −∞ to ∞ is divided
into small subcontours [γ+ihk, γ+ih(k+1)) with k ∈ Z. Then we get for the approximation
Fh

L of FL

Fh
L(x) := h

2π

∞∑
k=−∞

exp{(γ + ikh)x}ML(γ + ikh)
γ + ikh

= h

π
exp(γx)

[
ML(γ)

2γ
+

∞∑
k=1

Re

{
exp(ikhx)ML(γ + ikh)

γ + ikh

}]

= h

π
exp(γx)Re

( ∞∑
k=0

skz
k
x

)
. (3.115)

Where

s0 := ML(γ)
2γ

, sk := ML(γ + ikh)
γ + ikh

, k = 1, 2, . . .

zx := exp(ihx).

If we truncate the infinite sum to a finite one we get

FL(x) ≈ Fh,Nt

L (x) := h

π
exp(γx)Re

(
Nt∑

k=0

skz
k
x

)
. (3.116)

Where Nt is the truncation parameter. The convergence of Fh,Nt

L is very slow if FL is
discontinuous as Fh,Nt

L can be written as a triginometric series
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Fh,Nt

L (x) := h

π
exp(γx)

Nt∑
k=0

{ak cos(khx) + bk sin(khx)}. (3.117)

Where ak − ibk := sk. Then for any discontinuity there have to be a lot of cosine and sine
functions summed to get a good approximation, so Nt has to be large. A faster convergence
is obtained by using a Padé approximation for

∑∞
k=0 skz

k
x. This is the subject of the next

section.

3.5.1 Continued fraction expansion
A continued fraction is a quantity of the form

b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · ·

. (3.118)

These are also denoted as

b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · · an

bn

= b0 +
[
ak

bk

]n

k=1
. (3.119)

Where
[

ak

bk

]n

k=1
is assumed to be 0 if n ≤ 0.

Definition 1. For all i ≥ 0 and k ≥ 0,

∣∣∣H(i)
k

∣∣∣ ̸= 0, (3.120)

where H(i)
k is a Hankel matrix

H
(i)
k =


si si+1 · · · si+k−1
si+1 si+2 · · · si+k

...
...

. . .
...

si+k−1 si+k · · · si+2k−2

 , (3.121)

and
∣∣∣H(i)

k

∣∣∣ is its determinant with
∣∣∣H(i)

0

∣∣∣ = 0

Now we can give a continued fraction expansion given the following three lemmas. Proofs
are given in the appendix.

Lemma 1. Let S(z) be a power series whose coefficients are given by si, namely

S(z) =
∞∑

k=0

skz
k, (3.122)
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and a sequence ck by

c0 = s0, c2k−1 = −
|H(0)

k−1||H(1)
k |

|H(0)
k ||H(1)

k−1|
, c2k = −

|H(0)
k+1||H(1)

k−1|
|H(0)

k ||H(1)
k |

, k = 1, 2, . . . (3.123)

Then a continued fraction

Cn(z) := c0/
(

1 +
[ckz

1

]n

k=1

)
, (3.124)

is the [⌊n/2⌋ / ⌊(n+ 1)/2⌋] Padé approximation to S(z). Or equivalently, Cn(z) is a rational
function whose numerator and denominator are polynomials of degree ⌊n/2⌋ and ⌊(n+ 1)/2⌋
repectively and satisfies

S(z) − Cn(z) = O(zn+1) (3.125)

Here ⌊·⌋ is the rounding down to the nearest integer and the definition of the Padé approxi-
mation will be given in the appendix. This lemma allows us to find the Padé approximation
from the determinants of the Hankel matrices. However determining the determinants di-
rectly takes a lot time. The following lemma give an efficients method of obtaining the
determinants.

Lemma 2. QD algorithm Let e(i)
k and d(i)

k be the sequences defined by

e
(i)
0 = 0, q

(i)
1 = si+1/si, i = 0, 1, 2, . . .

e
(i)
k = e

(i+1)
k−1 + q

(i+1)
k − q

(i)
k , i = 0, 1, 2, . . . ; k = 1, 2, . . .

q
(i)
k+1 = q

(i+1)
k e

(i+1)
k /e

(i)
k , i = 0, 1, 2, . . . ; k = 1, 2, . . .

Then they satisfy

e
(i)
k =

|H(i)
k+1||H(i+1)

k−1 |
|H(i)

k ||H(i+1)
k |

, q
(i)
k =

|H(i)
k−1||H(i+1)

k |
|H(i)

k ||H(i+1)
k−1 |

, i = 0, 1, 2, . . . ; k = 1, 2, . . .

(3.126)

The next lemma show how to quickly calculate the continued fraction

Lemma 3. Let An(z) and Bn(z) be the sequences of polynomials defined by

A−1(z) = 0, A0(z) = c0, B−1(z) = 1, B0(z) = 1,
An+2(z) = An+1(z) + cn+2An(z), n = −1, 0, 1, 2, . . .
Bn+2(z) = Bn+1(z) + cn+2Bn(z)

(3.127)

Then An(z) and Bn(z) are polynomials of degree ⌊n/2⌋ and ⌊(n+ 1)/2⌋ with Bn(0) = 1 and
satisfy

Cn(z) = An(z)
Bn(z)

(3.128)

Where Cn(z) is defined by 3.124
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Now we want to approximate
∑∞

k=0 skz
k
x by a Padé approximation for say degree Nt. Then

we determine sk for k = 0, 1, . . . , 2Nt. Then with the help of lemma 2 we can determine
the relevant determinants of the Hankel matrices to get c0, c1, . . . , c2Nt . With lemma 3
we get the polynomials A2Nt and B2Nt and thus Cn(z). This is then the approximation
to
∑∞

k=0 skz
k
x. Using this approximation we can calculate an approximation to Fh

L(x) by
setting z = eihx in Cn(z). Call this approximation as before Fh,Nt

L . Where

Fh,Nt

L (x) := h

π
eγxRe

(
C2Nt(eihx)

)
(3.129)

It is easy to calculate this approximation for different values of x. Since we have that∑n
j=1 EADj = 1 it follows that 0 ≤ x ≤ 1. Then a simple search algorithm would give us

the smallest x-value such that Fh,Nt

L (x) ≥ q for some q, say q = 99.99%. This x-value is
then the quantile we are looking for.
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3.6 Gordy-Vasicek method
In this section we will discuss the method developed by Gordy to obtain an analytic formula
for the quantile of the credit portfolio loss. See [5] for a formal treatment. The method is
applicable to portfolios which can be considered well-diversified. This means that all loans
are small compared to the total portfolio. Also it works only if the losses are correlated
through one single factor and independent conditional on this single common factor. The
key idea of the method is that if we condition on the single common factor the independence
allows us to use the strong law of large numbers. This means that the loss (conditional
on the common factor) converges to its conditional mean. This mean only depends on the
common factor and the portfolio loss becomes a function of the common factor. If this
function satisfies some conditions, e.g. monotonicity, then the quantile of the portfolio loss
is simply the function evaluated at the quantile of the common factor. The quantile of
the common factor is usually easily determined as its distribution is usually modeled as a
standard distribution such as the normal distribution. The monotonicity assumption is just
an example, some other conditions also lead to the same conclusion. Let us set-up the model
again in the setting of the Merton model. Assume we have a portfolio with n loans. Let
LGDi and EADi, i = 1, 2, . . . , n be non-random, but do not need to be same for all loan.
Also the PDs PDi, i = 1, 2, . . . , n may differ across loans and the same holds for the asset
correlation ρi. The conditional PD on the common factor X is

PDi(X) = Φ
(Φ−1(PDi) + √

ρiX√
1 − ρi

.

)
(3.130)

Where Φ is the standard normal distribution and Φ−1 is the inverse function of Φ. Define

wi,n := LGDi · EADi∑n
j=1 LGDj · EADj

, Li,n = Di · wi,n. (3.131)

where Di is the default indicator for loan i and Li the relative loss on loan i. Then under
the condition that

lim
n→∞

n∑
i=1

w2
i,n = 0. (3.132)

We have that conditional on X and using the strong law of large numbers

n∑
j=1

Li →
n∑

j=1
wi,nPDi(X) (3.133)

This function is monotonically increasing in X since Φ is monotonically increasing. Then
we have that the portfolio loss Ln, Ln :=

∑n
j=1 Li converges to a function H with H(x) :=

limn→∞
∑n

j=1 wi,nPDi(x). The quantile of Ln converges to the quantile of H(X). The
quantile of H(X) , due to monotonicity, is just H(αq(X)), where αq(X) is the quantile of
X of level q.
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3.7 Monte Carlo Simulation
In this section we describe the method of Monte Carlo simulation to obtain estimates for
quantiles. Suppose we have clients 1, 2, . . . , n with specific default indicator, PD, LGD and
EAD and asset correlation. Call these Di, PDi, LGDi, EADi, ρi, i = 1, . . . , n. Define the
loss for client i, Li, as Li := Di · LGDi · EADi. Now define the portfolio loss LP again as
before

LP =
n∑

i=1
Li. (3.134)

The model for generating defaults is the Merton model from the previous chapters. So a
default occurs if a clients asset return it too low. Now we simulate the losses by simulating
the asset return for every individual. Let ri be the asset return for client i. This return
is composed of a common part, call this Y , and a idiosynctric part εi. Here we have that
ri = √

ρiY +
√

1 − ρiεi. We also have that the random variables X and εi, i = 1, . . . , n
are independent of each other and standard normally distributed. So the common factor is
independent of the idiosyncratic variables and they are independent from each other. Default
for client i occurs if ri < Φ−1(PDi). Where Φ−1 is inverse standard normal distribution
function. Then

Di =
{

1 ri < Φ−1(PDi)
0 ri ≥ Φ−1(PDi)

(3.135)

Now we draw S times a (n+1)×1 vector (Y (s), ε
(s)
1 , . . . , ε

(s)
1 ))⊤. Here the superscipt s denotes

the variable in simulation run s with s = 1, 2, . . . , S. Over the simulation run all variables are
independent as well of course. So after simulating the vector (Y (s), ε

(s)
1 , . . . , ε

(s)
1 ))⊤ we can

calculate all D(s)
i and hence the L(s)

i and L(s),P . Then we have a set of simulated portfolio
loss L(s),P , s = 1, . . . , S. We use this set to create an empirical distribution function.
From this empirical distribution function we can get an estimate for a quantile at level q. If
q is close to 1 then in order toe get a stable and accurate estimate the number of simulations
S needs to be high. The Monte Carlo simulation itself is easy to implement on a computer.
However there are some drawbacks, such as a large number of simulations are needed and
we may not know how close our estimate of the quantile is to the actual value. Because we
are working with very small probabilities a small deviation in an estimated probability may
cause huge deviations in the quantile.

3.8 Recursive method
In case the losses on loans are discrete values and independent then one can recursively build
up the portfolio loss. Now in our Merton model the losses are independent conditional on the
common factor Y . We then use the conditional PD(Y ) for the conditional distribution of
the losses. Then we build up the conditional distribution of the portfolio loss LP . The idea
is an application of the convolution of two independent discrete random variables. Suppose
we have two independent random variables X and Y that take values in Z. Then for k ∈ Z

P(X + Y = k) =
∑
j∈Z

P(X = k − j) (3.136)
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In our case the random variables take only two possible values. Define

ci(Y ) := Φ
(Φ−1(pi) − √

ρiY√
1 − ρi

)
. (3.137)

Where pi = PDi. Define LP
k :=

∑k
j=1 Li, where L0 = 0 a.s.. Then LP

k+1 = LP
k + Lk+1.

Suppose Li ∈ {ai, bi} with ai, bi ∈ Z, ai ≤ bi and P(Li = ai|Y ) = 1 − ci(Y ), P(Li =
bi|Y ) = ci(Y ) then for m ∈ Z ∩ [min{0,

∑n
i=1 ai},

∑n
i=1 bi]

P(LP
k+1 = m|Y ) = P(LP

k = m− ak+1|Y )(1 − ck+1(Y )) + P(LP
k = m− bk+1|Y )ck+1(Y ).

(3.138)

So we iterate over k until k + 1 = n. Then we have the conditional distribtion of LP
n for

which LP
n = LP . We have that

P(LP = m) =
∫ ∞

−∞
P(LP = m|y)f(y)dy. (3.139)

Where f is the density of the common factor which is standard normal. We can do a
numeric integration by calculating P(LP

k+1 = m|y) for y ∈ {y0, y2, . . . , yS}. Here we choose
y1, y2, . . . , yS such that they form a relevant partition of the real line. We could choose
y0 = −5, yS = 5 and ys = −5 + 10s/S. Then

P(LP = m) ≈
S−1∑
s=1

1
2
[
P(LP = m|ys)f(ys) + P(LP = m|ys+1)f(ys+1)

]
(ys+1 − ys)

(3.140)

In case the ys are equally space the above formula simplifies to the standard trapezium rule.
This should give an accurate unconditional distribution of LP . The quantiles then follow
easily as we have the full distribution over all m with

∑n
i=1 ai ≤ m ≤

∑n
i=1 bi. For our case

we have that ai = 0 and bi = LGDi for i = 1, . . . , n.
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Chapter 4

Adjustments

In this chapter we discuss some adjustments to some of the methods described in the previous
chapter.

4.1 Smoothing
The first adjustment is that of smoothing. The losses of indivual loans are either 0 or
LGD · EAD. In case the portfolio consists of many small loans and one very large loan we
would see that the distribution has a small hump at the tail where the large1 loan defaults.
Between the lower part of the distribution, where the large loan is not in default, and
the tail the distribution function is almost flat. For flat parts the methods using Laplace
inversion would be expected not to work well as they are a sum of periodic functions. One
way of mitigating the flatness of the distribution is by making the loss on individual loans,
particularly the large ones, more smooth. We do this by creating some fuzziness around the
points 0 and LGD · EAD. So adjust the distribution of the loss on loan i, Li, as follows

P(Li ≤ b) = (1 − PDi)Φ
(
b

σi

)
+ PDiΦ

(
b− LGDi · EADi

σi

)
. (4.1)

Where Φ is the standard normal distribution function. Here σi is a loan specific smoothing
parameter. The larger σi is the more smooth the loss will be. Also σi will likely depend
on LGDi · EADi to get a smoothing that can deal with large loans. Whether a loan is
considered to be large depends on its weight, wi, in the portfolio measured by

wi = LGDi · EADi∑n
j=1 LGDj · EADj

(4.2)

The Laplace transform of the loss of loan i under this new probability distribution is

MLi(t) := E(eLit) = (1 − PDi)e
1
2 σ2

i t2
+ PDie

(LGDi·EADi)t+ 1
2 σ2

i t2
(4.3)

The difficulty in this method is finding an optimal value for σi if there exists any. We would
to be able to determine this optimal value based on parameters like PD, LGD, EAD, asset
correlation, number of loans in the portfolio and quantile level. We would expect that σi

has a positive relation with wi, most likely a linear one.
1By ’large’ we mean large relative to the total portfolio. In many banks a loan that is 2% of the portfolio

would be considered large.
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4.2 Contour of integration
Another way of obtaining a better approximation is to change the contour in the Bromwich
integral. It our methods it is a vertical line in the complex plane. In [10] a deformation of
the contour is discussed to obtain a better numerical approximation of the contour integral.
Some conditions on the Laplace transform, F , do apply such that |F (z)| → 0 as |z| → ∞
for Rez ≤ σ0. Here σ0 is such that all singularities of F lie to the left of σ0. We apply the
deformation of the contour to the De Hoog method. We would like the discretization of the
contour to integral to remain such that it can be easily written as a (infinite) polynomial. I
f we take a contour γ(t) = x(t) + iy(t) then we have that using the trapezium rule

1
2πi

∫ γ+i∞

γ−i∞

esx

s
ML(s)ds = 1

2πi

∫ ∞

−∞

eγ(t)x

γ(t)
ML(γ(t))γ′(t)dt

≈
k=∞∑

k=−∞

eγ(tk)x

γ(tk)
ML(γ(tk))γ′(tk)1

2
(tk+1 − tk−1).

Here . . . < t−1 < t0 < t1 < t2 < . . . form a partition of (−∞,∞). One way to proceed from
here is to define

ak := eγ(tk)x

γ(tk)
ML(γ(tk))γ′(tk)1

2
(tk+1 − tk−1). (4.4)

Furthermore define S(z) as

S(z) :=
k=∞∑

k=−∞

akz
k.

If we have that
∑k=∞

k=−∞ |ak| ≤ ∞ then S(z) converges for |z| ≤ 1. For |z| > 1 it might
still converge depending on how fast the ak’s tend to zero. Then we can approximate S by
means of Padé approximation and evaluate this approximation at z = 1. In this case we are
not restricted in the contour γ(t) other than that modulus of the integrand, ezx

z ML(z) on
the contour must converge to 0. In case that for some k that ak = 0 we introduce two new
polynomials S1 and S2 defined by

S1(z) :=
k=∞∑

k=−∞

bkz
k,

S1(z) :=
k=∞∑

k=−∞

ckz
k.

Where

bk =
{ 1

2ak ak ̸= 0
2−k ak = 0

ck =
{ 1

2ak ak ̸= 0
−2−k ak = 0 .
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Then S = S1 +S2 and S1 and S2 can be approximated individually using the Padé approx-
imation. The reason that in case that ak = 0 for k’s requires new polynomials is that in
the algorithm for the Padé approximation we have the quotient ak+1/ak which would not
be defined for ak = 0.
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Chapter 5

Simulation of results

In this chapter we investigate the performs of the methods by some numerical calculations.
The methods we investigate are the recursive method, Moody-Vasicek method, Monte Carlo
method, saddlepoint Lugannani-Rice (see 3.78),saddlepoint Lugannani-Rice smooth, saddle-
point (see 3.76), saddlepoint smooth, De Hoog algorithm, De Hoog algorithm smooth and
wavelet method.

5.1 Parameters

For the Monte Carlo method we do 1 million simulations. For the recursive saddlepoint,
wavelet, De Hoog algorithm we have 1001 points for the numeric integration. These are
ys = −5+10s/1000, s = 0, 1, . . . , 1000. TThe range [−5, 5] was chosen as outside these values
the standard normal density is very small. For the De Hoog algorithm we also use h = 1/(8 ·
Lmax), Nt = 1600 and γ = − log(10−14)/Lmax). Here Lmax = max{EADi/

∑n
j=1 EADj , i =

1, 2, . . . , n}. For the smoothing the parameter was σ = 0.1.

5.2 Test portfolios

We have tested six portfolio with various level of PDs, EADs and asset correlations. The
LGD have been kept at 1 as these are fixed and can be incorporated in the EAD without
loss of generality. The portfolios are build up in the following way.

Portfolio 1. Parameters:

n = 1000
PDi = 0.003, i = 1, . . . , n

EADi = 1, i = 1, . . . , n
ρi = 0.2, i = 1, . . . , n
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Portfolio 2. Parameters:

n = 1000
PDi = 0.01, i = 1, . . . , n

EADi = C/i, i = 1, . . . , n
ρi = 0.2, i = 1, . . . , n

C =

(
n∑

i=1

1
i

)−1

Portfolio 3. Parameters:

n = 1000
PDi = 0.001, i = 1, . . . , n

EADi = C/i, i = 1, . . . , n
ρi = 0.2, i = 1, . . . , n

C =

(
n∑

i=1

1
i

)−1

Portfolio 4. Parameters:

n = 1001
PDi = 0.001, i = 1, . . . , n

EADi = 1, i = 1, . . . , n− 1
EADi = 500, i = n

ρi = 0.2, i = 1, . . . , n

Portfolio 5. Parameters:

n = 1001
PDi = 0.01, i = 1, . . . , n− 1
PDi = 0.0001, i = n

EADi = 1, i = 1, . . . , n− 1
EADn = 500, i = n

ρi = 0.2, i = 1, . . . , n

Portfolio 5. Parameters:

n = 1001
PDi = 0.01, i = 1, . . . , n− 1
PDi = 0.0001, i = n

EADi = 1, i = 1, . . . , n− 1
EADn = 500, i = n

ρi = 0.05, i = 1, . . . , n

We compute quantiles at the level of 99.9% and 99.88%. The first level is the level as used
in the Basel 2 regulation for regulatory capital and the second number is the internally used
number for economic capital for Rabobank.

48



5.3 Results
The results of our calculations are summarized in the following tables. The smoothing for
the wavelet method yielded such bad results that we did not included them. Also for the
method of obtaining the wavelet scaling coefficients using matrix inversion yielded very bad
results and are also not included. The contour deformation was not investigated in the
numerics. For portfolio 2 and 3 the Recursive method could not be used as the exposures
were not discrete and scaling led to a too large a grid to compute.
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Figure 5.1: Overview of portfolio 1.

Figure 5.2: Overview of portfolio 2.

Figure 5.3: Overview of portfolio 3.

Figure 5.4: Overview of portfolio 4.
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Figure 5.5: Overview of portfolio 5.

Figure 5.6: Overview of portfolio 6.
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5.4 Conclusion
We see that for the uniform portfolio 1 that all methods perform reasonably if we take
the Recursive method results as our benchmark. The Saddlepoint methods perform a bit
better for the 99.99% level. For portfolio 2 with more diverse exposure levels the De Hoog
algorithm and the Vasicek method are much less accurate, if we take the Monte Carlo
simulation method as our benchmark. The other methods are in line with the Monte Carlo
benchmark. The same can be said for portfolio 3. For portfolio 4 most methods perform
reasonably well taking the Recursive method as a benchmark. The Wavelet method and the
De Hoog algorithm are a bit off and the Vasicek method is again well off the mark. The same
holds for portfolio 5. For portfolio 6 we see that the saddlepoint methods are far off the mark
for both quantile levels. Also the Wavelet method does not do well. The De Hoog algorithm
does quite well for this portfolio and somewhat surpisingly so does the Vasicek method for
this portfolio with some concentration. We also see that smoothing does not improve the
accuracy of a method in most cases. There is no method that consistently dominates the
other methods, but the saddlepoint methods seem to be performing on average the best for a
reasonably diversified portfolio. Given that the saddlepoint methods are also reasonably fast
they seem like appropriate methods to use. In our analysis we have taken quite basic model

assumptions, one period default model, one common factor and non-random LGD. Things
becomes a bit more difficult when we expand on some of model assumptions, especially
when going to multifactor. The purpose of this thesis was to investigate the basics of
certain approximation methods and investigate their relative performance. As of currently
we know of no method that is superior to all other method for all possible types of credit
portfolios.
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Appendix A

Padé approximation

In a Padé approximation a function is approximated by a rational function. It usually gives
better results than a Taylor approximation. Consider the function S that admits a power
series expansion as

S(z) =
∞∑

k=0

skz
k (A.1)

and suppose that two polynomials

PM (z) :=
M∑

k=0

pkz
k, QN (z) := 1 +

N∑
k=1

pkz
k, (A.2)

are given. Then a rational function PM (z)/QN (z) is said to be the [M/N ] Padé approxima-
tion to S(z) if it satisfies

S(z) − PM (z)
QN (z)

= O(zM+N+1) (A.3)

Now write A.3 more explicitly in terms of sk, pk and qk, for two cases N = M and N =
M = 1. Since A.3 is equivalent to

S(z)QN (z) − PM (z) = O(zM+N+1), (A.4)

since QN (z)O(zM+N+1) = O(zM+N+1). Then we have that

sk +
k∑

l=1

sk−lql − pk = 0, k = 0, 1, . . . ,M,

sk +
M∑

l=1

sk−lql = 0, k = M + 1,M + 2, . . . , 2M,

for M = N and

53



sk +
k∑

l=1

sk−lql − pk = 0, k = 0, 1, . . . ,M,

sk +
M+1∑
l=1

sk−lql = 0, k = M + 1,M + 2, . . . , 2M + 1,

for N = M + 1. Solving these equations we get that

pk =

∣∣∣∣∣∣∣∣∣
H

(1)
M

sM+1
...

s2M

sk−M · · · sk−1 sk

∣∣∣∣∣∣∣∣∣∣∣∣H(1)
M

∣∣∣ k = 0, 1, . . . ,M,

qk =

(
C

(1)
M+1

)
M+1,M−k+1∣∣∣H(1)

M

∣∣∣ k = 1, 2, . . . ,M. (A.5)

Where | · | is the determinant, (C(u)
n )i,j denotes the (i, j)-cofactor 1 of H(u)

n . This can be
seen as follows. The qk’s satisfy the equations


s1 s2 · · · sM

s2 s3 · · · sM+1
...

...
. . .

...
sM sM+1 · · · s2M−1



qM

qM−1
...
q1

 = −


sM+1
sM+2

...
s2M

 . (A.6)

Notice that the vector of qks has as it’s first element qM . Now define

bM :=


sM+1
sM+2

...
s2M

 (A.7)

Also define H
(1),j
M as the matrix H

(1)
M with the j-th column replaced by −bM . Then by

Cramer’s rule we have that

qk =

∣∣∣H(1),M−k+1
M

∣∣∣∣∣∣H(1)
M

∣∣∣ (A.8)

The determinant
∣∣∣H(1),M−k+1

M

∣∣∣ is the (M +1,M −k+1) cofactor of the matrix H(1)
M+1. This

can be seen as follows. The matrix H(1),M−k+1
M has −bM as it’s M − k+ 1 column. Now we

1The (i, j)-cofactor of a matrix is the determinant of that matrix with the ith row and jth column
removed multiplied by (−1)i+j
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want to move the column with bM to the last position. We do this by multiple switching
with the column to the right. Everytime we switch we have to multiply the determinant
with −1. So if we start at position M − k+ 1 and we need to move to the last column with
number M we need to do k− 1 switches. Also we want to habe bM as the last column. The
we have to again multiply the determinant with −1. This gives (−1)k−1+1. Note also that
(−1)k−1+1 = (−1)−k+2(M+1). Then we have that

∣∣∣H(1),M−k+1
M

∣∣∣ (−1)k−1+1 =
∣∣∣H(1)

M

∣∣∣ ⇒ (A.9)∣∣∣H(1),M−k+1
M

∣∣∣ = (−1)k−1+1
∣∣∣H(1)

M

∣∣∣ ⇒ (A.10)∣∣∣H(1),M−k+1
M

∣∣∣ = (−1)−k+2(M+1)
∣∣∣H(1)

M

∣∣∣ =
(
C

(1)
M+1

)
M+1,M−k+1

. (A.11)

Now for pk this can be seen as follows. Define

AM :=

 H
(1)
M

sM+1
...

s2M

 (A.12)

Also define Aj
M is AM with column j removed. Then |Aj

M | = |H(1),j
M | for j = 1, . . . ,M and

|AM
M | = (−1)M−j |H(1)

M |. Also qk = (−1)k−1|AM−k+1
M |/|H(1)

M |

pk =

∣∣∣∣∣∣∣∣∣
H

(1)
M

sM+1
...

s2M

sk−M · · · sk−1 sk

∣∣∣∣∣∣∣∣∣
|H(1)

M |
= (A.13)

M∑
j=0

sk−j(−1)j |AM−j+1
M |
|H(1)

M |
= sk +

M∑
j=1

sk−jqj (A.14)

For N = M + 1 we have that

pk =

∣∣∣∣∣∣∣∣∣
H

(0)
M+1

sM+1
...

s2M+1
sk−M−1 · · · sk−1 sk

∣∣∣∣∣∣∣∣∣∣∣∣H(1)
M

∣∣∣ k = 0, 1, . . . ,M,

qk =

(
C

(0)
M+2

)
M+2,M−k+2∣∣∣H(0)
M+1

∣∣∣ k = 1, 2, . . . ,M + 1. (A.15)

From the above we can explicitly compute the coefficient of the first order term in A.4 as

s2M+1 +
M∑

k=1

s2M+1−kqk =
|H(1)

M+1|
|H(1)

M |
, (N = M), s2M+2 +

M+1∑
k=1

s2M+2−kqk =
|H(0)

M+2|
|H(0)

M+1|
, (N = M + 1),

(A.16)
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For the case N = M this can be seen by the definition of the determinant |H(1)
M+1|

|H(1)
M+1| =

M∑
k=0

sM−k+1

(
C

(1)
M+1

)
M+1,M−k+1

⇒

|H(1)
M+1|

|H(1)
M |

=
M∑

k=0

sM−k+1

(
C

(1)
M+1

)
M+1,M−k+1

|H(1)
M |

= s2M+1 +
M∑

k=1

sM−k+1qk

From this we obtain

S(z)QN (z) − PM (z) =
|H(1)

M+1|
|H(1)

M |
z2M+1 + O(z2M+2), (N = M)

S(z)QN (z) − PM (z) =
|H(0)

M+2|
|H(0)

M+1|
z2M+2 + O(z2M+3), (N = M + 1).

A.1 Proof of lemma 3
We will prove that

Cn(z) = An(z)
Bn(z)

, (A.17)

where Cn is as in lemma 1. For n = 1 it is easy to see that this is true as C1(z) = c0/(1+c1z)
and A1(z) = c0, B1(z) = 1 + c1z. We proceed with a proof by induction. Assume the
assertion holds for n = k, k ≥ 1. Since Ck+1(z) is obtained from Ck(z) by replacing ck with
ck/(1 + ck+1) we get that

Ck+1 = A′
k(z)

B′
k(z)

(A.18)

Where by using the recursion relation for A and B

A′
k(z) := Ak−1(z) + ckz

1 + ck+1
Ak−2(z),

B′
k(z) := Bk−1(z) + ckz

1 + ck+1
Bk−2(z),

Then we obtain for k + 1

Ck+1(z) = (1 + ck+1)Ak−1(z) + ckzAk−2(z)
(1 + ck+1)Bk−1(z) + ckzBk−2(z)

= Ak−1(z) + ckzAk−2(z) + ck+1Ak−1(z)
Bk−1(z) + ckzBk−2(z) + ck+1Bk−1(z)

= Ak(z) + ck+1Ak−1(z)
Bk(z) + ck+1Bk−1(z)

= Ak+1(z)
Bk+1(z)

This proves the lemma.
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A.2 Proof of lemma 1
From lemma 3 An(z) and Bn(z) are polynomials of degree ⌊n/2⌊ and ⌊(n+ 1)/2⌊ respec-
tively. and satisfy

Cn(z) = An(z)
Bn(z)

, n = 0, 1, 2, . . .

Bn(z) = 1. (A.19)

So we would expect that Cn(z) would give the [⌊n/2⌊ / ⌊(n+ 1)/2⌊] Padé approximation if
the coefficients ck are chosen correctly. This is true for the cases n = 0 and n = 1 if we
choose

c0 = s0, c1 = −s1

s0
= −|H(0)

0 ||H(1)
1 |

|H(0)
1 ||H(1)

0 |
, (A.20)

which follows from |H(0)
0 | = 1, |H(1)

0 | = 1 and the solution for q1 in the Padé approximation
in the previous section. Now we assume that for and integer k ≥ 0, C2k(z) and C2k+1(z) are
respectively the [k/k] and [k/k + 1] Padé approximations to S(z). Then we get from A.17
that

S(z)B2k(z) −A2k(z) =
|H(1)

k+1|
|H(1)

k |
z2k+1 + O(z2k+2),

S(z)B2k+1(z) −A2k+1(z) =
|H(0)

k+2|
|H(0)

k+1|
z2k+2 + O(z2k+3).

This gives using the recursion relation for A,B

S(z)B2k+2(z) −A2k+2(z) = S(z) (B2k+1(z) + c2k+2zB2k) − (A2k+1(z) + c2k+2zA2k)
= S(z)B2k+1(z) −A2k+1(z) + c2k+2z (S(z)B2k −A2k)

=

(
|H(0)

k+2|
|H(0)

k+1|
+

|H(1)
k+1|

|H(1)
k |

c2k+2

)
z2k+2 + O(z2k+3)

= O(z2k+3). (A.21)

Since by the definition of c2k+2

|H(0)
k+2|

|H(0)
k+1|

+
|H(1)

k+1|
|H(1)

k |
c2k+2 =

|H(0)
k+2|

|H(0)
k+1|

−
|H(1)

k+1|
|H(1)

k |
|H(0)

k+1+1||H(1)
k+1−1|

|H(0)
k+1||H(1)

k+1|
= 0 (A.22)

Then C2k+2(z) = A2k+2(z)/B2k+2(z) is the [k + 1/k + 1] Padé aprroximation. In a similar
manner we can verify that C2k+3(z) is the [k+1/k+2] Padé approximation to S(z) if C2k+1
and C2k+2 are respectively the [k/k+ 1] and [k+ 1/k+ 1] Padé approximations to S(z) for
an integer k ≥ 0.
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A.3 Proof of lemma 2
This lemma can be proven by induction. For k = 1 we can show

q
(i)
1 = si+1

si
= |H(i)

0 ||H(i+1)
1 |

|H(i)
1 ||H(i+1)

0 |
,

e
(i)
1 = e

(i+1)
0 + q

(i+1)
1 − q

(i)
1 = si+2

si+1
− si+1

si
=
sisi+2 − s2

i+1
sisi+1

. (A.23)

Now assume that 3.126 holds for all k ≤ l for some integer l ≥ 1. The by the second equation
of 3.126 for k = l + 1 we get that

q
(i)
l+1 = q

(i+1)
l e

(i+1)
l /e

(i)
l

=
|H(i+1)

l−1 ||H(i+2)
l |

|H(i+1)
l ||H(i+2)

l−1 |
·

|H(i+1)
l+1 ||H(i+2)

l−1 |
|H(i+1)

l ||H(i+2)
l |

/
|H(i)

l+1||H(i+1)
l−1 |

|H(i)
l ||H(i)

l |
=

|H(i)
l ||H(i+1)

l+1 |
|H(i)

l+1||H(i+1)
l |

The second equation in 3.126 is more difficult to prove for k = l + 1. Again note that

C2k+1(z) = c0/

(
1 +

[cmz

1

]2k+1

m=1

)
(A.24)

is the [k/k + 1] Padé approximation to Si+1 =
∑∞

k=0 si+1+kz
k if k ≤ l and

c0 = si+1, c1 = −q(i+1)
1 ,

c2k = −e(i+1)
k , c2k+1 = −q(i+1)

k+1 , k = 1, 2, . . . , l

Then if we write the polynomial B2k+1(z), k ≤ l, as

B2k+1(z) = 1 +
k+1∑
m=1

qmz
m, (A.25)

its coefficients must satisfy

qm =
(C(i+1)

k+2 )k+2,k−m+2

|H(i+1)
k+1 |

, (A.26)

from the solution of the Padé approximation equations for qm for the case N = M + 1. Now
if we compare terms of z on the left and right hand side of the following equation we get by
applying the recursion for B

B2l+1(z) = B2l(z) + c2l+1zB2l−1(z)
= B2l−1(z) + c2lzB2l−2(z) + c2l+1zB2l−1(z). (A.27)

we get with m = 1
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(C(i+1)
l+2 )l+2,l−1+2

|H(i+1)
l+1 |

=
(C(i+1)

l+1 )l+1,l

|H(i+1)
l |

+ c2l + c2l+1 (A.28)

Then with −c2l = e
(i+1)
l and −c2l+1 = q

(i+1)
l+1 we get

e
(i+1)
l + q

(i+1)
l+1 =

(C(i+1)
l+1 )l+1,l

|H(i+1)
l |

−
(C(i+1)

l+2 )l+2,l−1+2

|H(i+1)
l+1 |

(A.29)

Now if we redefine the ck by

c0 = si, c1 = −q(i)
1 ,

c2k = −e(i)
k , c2k+1 = −q(i)

k+1, k = 1, 2, . . . , l

c2l+2 = −
|H(i)

l+2||H(i+1)
l |

|H(i)
l+1||H(i+1)

l+1 |
.

Then the continued fraction belonging to this set

C2k+2(z) = c0/

(
1 +

[cmz

1

]2k+2

m=1

)
, (A.30)

with k ≤ l is the [k+ 1/k+ 1] Padé approximation to Si(z) =
∑∞

k=0 si+kz
k by lemma 1. In

a similar manner the coefficients of

B2k+2(z) = 1 +
k+1∑
m=1

qmz
m, (A.31)

satisfy

qm =
(C(i+1)

k+2 )k+2,k−m+2

|H(i+1)
k+1 |

, (A.32)

as the solution for the Padé approximation for the case N = M . If we again compare the
coefficients for the term z in

B2l+2(z) = B2l+1(z) + c2l+2zB2l(z)
= B2l(z) + c2l+1zB2l−1(z) + c2l+2zB2l(z). (A.33)

then we get that

(C(i+1)
l+2 )l+2,l+1

|H(i+1)
l+1 |

=
(C(i+1)

l+1 )l+1,l

|H(i+1)
l |

+ c2l+1 + c2l+2. (A.34)
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Then, using the special definition for c2l+2 and that c2l+2 = −e(i)
l+1

q
(i)
l+1 +

|H(i)
l+2||H(i+1)

l |
|H(i)

l+1||H(i+1)
l+1 |

=
(C(i+1)

l+1 )l+1,l

|H(i+1)
l |

−
(C(i+1)

l+2 )l+2,l+1

|H(i+1)
l+1 |

(A.35)

Now subtract A.35 from A.29 to get

e
(i)
l = e

(i+1)
l + q

(i+1)
l+1 − q

(i)
l+1

=
|H(i)

l+2||H(i+1)
l |

|H(i)
l+1||H(i+1)

l+1 |
(A.36)
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