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Abstract

In this thesis we will introduce and prove several inequalities on Banach function
spaces (such as C(S) or Lp-spaces), most notably the Grothendieck inequality
and the Khintchine inequality. In particular, we will study how the Khintchine
inequality can be used to extend the Grothendieck inequality to other spaces.

Using some theory on C*-algebras and von Neumann algebras, we introduce
the notion of noncommutative spaces that extend the definition of the usual
Lp-spaces and study how the Grothendieck and Khintchine inequalities can be
extended to these spaces. Finally, we will introduce arbitrary noncommutative
Banach function spaces and show that if the Khintchine inequality holds for
these spaces, then the Grothendieck inequality must also hold. We conclude
the thesis, by introducing the concepts of concave and convex Banach function
spaces and use some recent results on such spaces to state and prove a more
general Grothendieck inequality.
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Chapter 1

Introduction

Grothendieck’s theorem (GT in short), sometimes also called the Grothendieck
inequality, was first introduced by Alexander Grothendieck (in 1953) in his
résumé on tensor products [5]. Although Grothendieck is mainly known for his
contributions to algebraic geometry, he also played a role in the development of
several aspects of functional analysis, mainly in the areas of topological tensor
products and nuclear spaces. One of his most influential discoveries in this area
is now known as Grothendieck’s theorem.

One could, informally, say that Grothendieck’s theorem shows a surprising
and non-trivial relation between the Banach spaces L∞, L1 and the Hilbert space
L2. As we will see in the course of this thesis, this relation can be extended
from L∞ and L1 to more general function spaces, von Neumann algebras and
even several noncommutative function spaces.

In the second chapter of this thesis, we will explore how Grothendieck’s
theorem relates to several other well known inequalities, such as the Khintchine
inequality and the Marcinkiewicz-Zygmund inequality. We will also introduce
the notion of a Banach function space and show that Grothendieck’s theorem,
is some ways, also holds for these spaces.

In the third and fourth chapters, we will introduce von Neumann alge-
bras and noncommutative Lp-spaces and show how Grothendieck’s theorem,
the Khintchine inequality and the Marcinkiewicz-Zygmund inequality and their
mutual relations can be generalized to these “noncommutative” spaces. We will
see that the Khintchine inequality can be used to generalize Grothendieck in-
equality, if we restrict ourselves to the “right combination” of noncommutative
Lp-spaces.

Finally, in the fifth chapter, we will introduce the theory of symmetric spaces
of measurable operators in order to generalize the notion of a Banach function
space to the noncommutative setting. It is in this setting, that we shall formulate
and prove the original results of this thesis. We will show that the relations be-
tween Grothendieck’s theorem and the Khintchine and Marcinkiewicz-Zygmund
inequality also extend to these general noncommutative spaces. By proving a
slightly different form of the noncommutative Khintchine inequality, we will see
that Grothendieck’s theorem can in fact be extended to many combinations of
Lp-spaces. Finally, we shall use a recent result, due to Lust-Picard and Xu,
regarding a generalized Khintchine inequality to generalize the Grothendieck
inequality to many other Banach function spaces.
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1.1 Applications

Though thesis is mainly devoted to exploring ways in which the traditional
Grothendieck inequality can be extended, it is worth pointing out some appli-
cations of the traditional and generalized inequalities. Since its discovery, the
traditional Grothendieck inequality, has been found to be applicable in many
different mathematical contexts, ranging from the proof of Bell’s inequality in
quantum physics to methods of simplifying NP-hard problems computer science
[19].

The foremost reason though, for studying the Grothendieck inequality and
its generalizations is because of its direct applications to functional analysis.
Several versions and generalizations of the Grothendieck inequality that we
present in this thesis can be used to conclude that several classes of bounded
linear maps between Banach spaces, factor through a Hilbert space. In chapter
2, we do this explicitly for bounded linear maps u : C(S)→ C(T )∗, for compact
Hausdorff spaces S and T , but it can also be done for maps between Banach
function spaces [13] and C*-algebras [7]. This can in turn provides new and
useful information on Banach spaces constructed by considering the topological
tensor products of these spaces [7, 19].

Whether these results also hold for the generalized version of noncommuta-
tive Grothendieck inequality presented in chapter 5, falls beyond the scope of
the author’s research, but does provide an interesting ground for future research.

1.2 Preliminaries

We will first briefly recall several definitions and theorems from the theory of
bounded, and unbounded, operators on a Hilbert space H and the theory of
C*-algebras. Note that by positive, we will mean elements larger than or equal
to zero. If we wish to exclude zero, then we shall speak about strictly positive.
Furthermore, as several of the proofs have a tendency to become quite involved,
we shall occasionally precede a proof with a general outline of the proof.

1.2.1 Operators on a Hilbert space

We recall that an operator x is a (possibly unbounded) linear map x : D(x)→
H, where D(x) is a linear subspace of H. We say that x is closed, whenever its
graph is a closed subspace of H×H. We say that x is densely defined if D(x) is
a dense subspace of H. Any closed and densely defined operator has a unique
closed and densely defined adjoint x∗ : D(x∗)→ H defined by

〈xξ, η〉 = 〈ξ, x∗η〉 , ∀ξ ∈ D(x), η ∈ D(x∗).

We say that x is self-adjoint if D(x) = D(x∗) and x = x∗. A self-adjoint
operator a is positive, we write a ≥ 0, if and only if 〈aξ, ξ〉 ≥ 0 for all ξ ∈
D(a) ⊆ H. It can be shown that a ≥ 0 if and only if there exists some operator
x, such that a = x∗x.

An operator is called normal if xx∗ = x∗x and unitary if it is bounded
and x∗x = xx∗ = 1. A projection p ∈ B(H) is a bounded operator satisfying
p = p∗ = p2.
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For an operator x, we define the spectrum σ(x) of x as all λ ∈ C, for which
(x − λ1) does note have a bounded inverse. One can show that σ(x) ⊂ R
whenever x is self-adjoint.

Denote by B(R) the Borel σ-algebra on R. A spectral measure on R is
then defined as a map e : B(R) → B(H) such that e(∆) is a projection for
all ∆ ∈ B(R), e(∅) = 0, e(R) = 1 and for every countable familiy of mutually
disjoint sets ∆i ∈ B(R), we have e(∪i∆i)ξ =

∑
i e(∆i)ξ for all ξ ∈ H (i.e., the

sum converges in the strong operator topology). For all ξ, η ∈ H, e defines a
real valued measure eξ,η by eξ,η(∆) := 〈e(∆)ξ, η〉. Furthermore, we have〈(∫

R
f(λ)de(λ)

)
ξ, η

〉
=

∫
R
f(λ)deξ,η(λ),

whenever f is a Borel measurable and integrable with respect to the Lebesgue
measure.

For every self-adjoint operator a, there exists a unique spectral measure
ea : B(R)→ B(H), such that

a =

∫
R
λ dea(λ) =

∫
σ(a)

λ dea(λ).

For any Borel measurable and integrable function f : R → C, we can then
define a normal operator f(a) by

f(a) =

∫
R
f(λ)dea(λ),

furthermore, f(a) commutes with a.
In particular, if a ≥ 0 then ea is supported on [0,∞) and if f(λ) =

√
λ,

then x = a1/2 := f(a) is the unique positive square root of a, satisfying x2 = a.
When x is a closed and densely defined operator, this allows us to define the
absolute value of an operator |x| = (x∗x)1/2. Note that although this operation
is called the absolute value, it does not satisfy the triangle inequality!

A partial isometry is a bounded operator x such that x∗x and xx∗ are
both projections. Any (possibly unbounded) operator x can be written as x =
u|x|, where u is a partial isometry. This decomposition is called the polar
decomposition.

1.2.2 C*-algebras

Now we recall that a C*-algebra A is a Banach algebra equipped with an invo-
lution ∗ : x 7→ x∗ such that

∀x, y ∈ A, λ ∈ C : (x+ λy)∗ = x∗ + λy∗ and (xy)∗ = y∗x∗

and a norm satisfying ‖x∗x‖ = ‖x‖2. Due to the Gelfand-Naimark theorem,
such a space is always isometrically *-isomorphic (isomorphic in a way that
preserves the involution) to a C*-algebra consisting of bounded linear operators
on a Hilbert space H. Furthermore, any commutative unital C*-algebra is
also isometrically *-isomorphic to C(S) for some compact Hausdorff topological
space S.
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When working with a C*-algebraA, we typically writeAh for the subspace of
self-adjoint elements and A+ for the subspace of positive elements. If, x, y ∈ Ah
such that y − x ∈ A+, we write x ≤ y.

Finally, we define a state on a C*-algebra A as a norm-1 positive linear
functional φ ∈ A∗, meaning that φ(x) ≥ 0 for all x ≥ 0 and ‖φ‖ = 1. A state is
called faithful if x ≥ 0 and φ(x) = 0 imply that x = 0. We usually denote the
set of all states on a C*-algebra A by S(A).
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Chapter 2

Classical Inequalities

As our main aim is to generalize the Grothendieck inequality, it makes sense to
first state the inequality in its classical setting, namely as a bound for bounded
bilinear forms on commutative C*-algebras. As the proof given by Grothendieck
himself in [5] is somewhat technical, we will instead give the proof used by
Lindenstrauss and Pelczyński in [11]. Using this basis, we will present a number
of different forms and implications of Grothendieck’s theorem, such as the little
Grothendieck inequality, all of which can also be found in [19].

Further along in this chapter, we will give a proof of the Khintchine in-
equality. Many proofs of this inequality already exist, one of which can be
found in [6]. We will use the Khintchine inequality to establish a version of the
Marcinkiewicz-Zygmund inequality often encountered in harmonic analysis and
study how these two inequalities can be used to generalize the Grothendieck
inequality to some Lp-spaces.

We will end this chapter by introducing Banach function spaces and give
a summary of the proof presented in [13] that the Marcinkiewicz-Zygmund in-
equality can be extended to these spaces. Similar to the way in which we will
generalize Grothendieck’s theorem to Lp-spaces, we can use this to generalize
Grothendieck’s theorem to Banach function spaces.

Although the relation between the Grothendieck inequality and the Khint-
chine and Marcinkiewicz-Zygmund inequalities has already been established in
[19], the author will show in chapters 4 and 5 that this relation can in some
ways be extended to the noncommutative setting.

2.1 The Grothendieck inequality

The Grothendieck inequality itself can be brought into many forms. Most no-
tably we will use theorem 2.1.1 in order to give a self-contained proof of the
inequality. We will then consider theorem 2.1.4, which most highly resembles
the form in which we shall state the noncommutative Grothendieck inequality
for C*-algebras. Next, we consider theorem 2.1.6, which resembles the form we
will use to state several other generalizations of the Grothendieck theorem. As
an important application, we will also prove theorem 2.1.8, which states the
Grothendieck inequality as a way to factorize maps u : C(S)→ C(T )∗ through
a Hilbert space. Finally, we shall discuss a famous corollary, namely the little
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Grothendieck inequality.

2.1.1 Introduction and Preliminaries

Although throughout this thesis, we will mostly focus on other forms of the
Grothendieck inequality, we will, as an introduction, consider the Grothendieck
inequality in discrete form. This will also allow us to give a short, (relatively)
non-technical proof of the classical Grothendieck inequality. This form of the
inequality and its proof were first put forward by Lindenstrauss and Pelczyński
in [11].

Theorem 2.1.1 (GT: Discrete form). Let [aij ] ∈ Mn(K) be an n × n matrix
(K = R or C), such that for all n-tuples (α1, . . . , αn), (β1, . . . , βn) ∈ Kn∣∣∣∣ n∑

i,j=1

aijαiβj

∣∣∣∣ ≤ sup
i
|αi| sup

j
|βj |.

Then for any Hilbert space H and ξ1, . . . , ξn ∈ H and η1, . . . , ηn ∈ H we have∣∣∣∣ n∑
i,j=1

aij 〈ξi, ηj〉
∣∣∣∣ ≤ KK sup

i
‖ξi‖ sup

j
‖ηj‖,

where K ≥ 0 depends only on whether K = R or C (and not on the Hilbert
space).

Remark 2.1.2. The best possible constant KG is called the Grothendieck con-
stant and depends on whether we are in the real or complex case. Though
its exact value remains unknown, it was shown by the French mathematician
Jean-Louis Krivine [10] and the Danish mathematician Uffe Haagerup [8] that

1.66 ≤ KR
G ≤ 1.782 and 1.338 ≤ KC

G ≤ 1.4049,

respectively.

In order to prove the Grothendieck inequality, we shall need to use the
following special sequence of independent and identically distributed random
variables.

Definition 2.1.3. An i.i.d sequence of Rademacher random variables {ri}i∈N
on a probability space (Ω,F ,P) is an i.i.d. (independent and identically dis-
tributed) sequence of random variables with the property that

P(ri = 1) = P(ri = −1) =
1

2

for all i.
These functions have the property that E[ri] =

∫
Ω
ridP = 0 and

E[rj1 . . . rjn ] =

∫
Ω

rj1 . . . rjndP = 0

whenever j1 > j2 > . . . > jn.
On ([0, 1],B([0, 1]), λ) we can construct an i.i.d. sequence of Rademacher

random variables as follows: Denote for A ∈ B([0, 1]), the indicator function of
A by χA and define the functions ri : [0, 1]→ {−1, 1} by

8



r1 = χ[0, 12 ) − χ[ 12 ,1]

...

rn =
∑2n−2
k=0 (−1)kχ[2−nk,2−n(k+1)) + χ[2−n(2n−1),1].

In other words, the functions rn take alternating values in {−1, 1} on the 2n

intervals [0, 2−n), . . . , [2−n(2n − 1), 1]. This sequence is sometimes called the
sequence of Rademacher functions.

Outline. We first prove the statement in the real case, since the complex case
follows by splitting the inequality in its real and imaginary parts. We use the
fact that we only consider a finite number of elements ξi, ηi ∈ H to reduce the
problem to functions in L2 that are spanned by Rademacher functions. The
result then follows by proving that the inequality holds for truncated versions
of ξi and ηi and showing that this truncation does not alter ξi and ηi too much.

Proof of 2.1.1. As mentioned, we first consider the case where K = R. With-
out loss of generality, we may assume that ‖ξi‖ ≤ 1 and ‖ηi‖ ≤ 1, and since
we only consider a finite number of vectors (namely n), we may as well as-
sume that dimH = d = 2n < ∞. Since all Hilbert spaces of a given finite
dimension are isomorphic, we may take H ⊆ L2([0, 1]) to be the d dimensional
space spanned by the first d Rademacher functions (or equivalently, d i.i.d.
Rademacher random variables). Now we truncate these functions by defining
for any ξ ∈ L2([0, 1])

ξ̂(t) =

{
ξ(t) if |ξ(t)| ≤ 1
sgn(ξ(t)) if |ξ(t)| > 1.

Using our assumption on [aij ], and the fact that |ξ̂| ≤ 1, we then have that∣∣∣∣ n∑
i,j=1

aij

〈
ξ̂i, η̂i

〉 ∣∣∣∣ =

∣∣∣∣ n∑
i,j=1

aij

∫ 1

0

ξ̂i(t)η̂i(t)dt

∣∣∣∣ ≤
∫ 1

0

∣∣∣∣ n∑
i,j=1

aij ξ̂i(t)η̂i(t)

∣∣∣∣dt ≤ 1.

Now note that if ξ(t) 6= ξ̂(t), then |ξ(t) − ξ̂(t)| = |ξ(t)| − 1 and 1
4 (|ξ(t)| −

2)2 ≥ 0. Combining this, we find

|ξ(t)− ξ̂(t)| = |ξ(t)| − 1 ≤ 1

4
|ξ(t)|2,

which also holds if ξ(t) = ξ̂(t). Applying this, together with the orthogonality
properties of Rademacher random variables, we find that if ξ ∈ H, then we can
write

ξ(t) =

d∑
i=1

λiri(t)
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and

16

∫ 1

0

|ξ(t)− ξ̂(t)|2dt ≤
∫ 1

0

ξ(t)4dt

=

∫ 1

0

( d∑
i=1

λiri

)4

dt =

∫ 1

0

( ∑
i,j,k,l

λiλjλkλlrirjrkrl

)
dt

=
∑
i=j
k=l

λiλjλkλl +
∑
i=k
j=l

λiλjλkλl +
∑
i=l
j=k

λiλjλkλl − 2
∑

i=j=k=l

λiλjλkλl

= 3
∑
i,j

λ2
iλ

2
j − 2

∑
i

λ4
i ≤ 3

(∑
i

λ2
i

)2

= 3‖ξ‖4 ≤ 3,

hence ‖ξ − ξ̂‖ ≤
√

3
4 . If we then define for ξi, ηj ∈ H,

|||a||| := sup


∣∣∣∣∣∣
n∑

i,j=1

aij 〈ξi, ηj〉

∣∣∣∣∣∣ : ‖ξi‖, ‖ηj‖ ≤ 1

 ,

then we find that∣∣∣∣ n∑
i,j=1

aij 〈ξi, ηj〉
∣∣∣∣ ≤ ∣∣∣∣ n∑

i,j=1

aij

〈
ξ̂i, η̂j

〉 ∣∣∣∣+

∣∣∣∣ n∑
i,j=1

aij

〈
ξi − ξ̂i, η̂j

〉 ∣∣∣∣
+

∣∣∣∣ n∑
i,j=1

aij 〈ξi, ηj − η̂j〉
∣∣∣∣

≤ 1 +

√
3

4
|||a|||+

√
3

4
|||a|||,

hence |||a||| ≤ 1 +
√

3
2 |||a|||, which implies |||a||| ≤ 2

2−
√

3
. Using this, we then

find ∣∣∣∣ n∑
i,j=1

aij 〈ξi, ηj〉
∣∣∣∣ ≤ 2

2−
√

3

for all ‖ξi‖, ‖ηj‖ ≤ 1, which concludes the proof in the real case.
Suppose now that K = C, then the matrices [Re(aij)] and [Im(aij)] also

satisfy the requirement. Now note that ‖ξ‖2 = ‖Re(ξ)‖2 + ‖ Im(ξ)‖2, hence we
have by the real version of the theorem∣∣∣∣ n∑

i,j=1

Re(aij) 〈Re(ξi),Re(ηj)〉
∣∣∣∣ ≤ KR sup

i
‖Re(ξi)‖ sup

j
‖Re(ηj)‖

≤ KR sup
i
‖ξi‖ sup

j
‖ηj‖.

Doing this for all combinations of Re(aij), Re(ξi), Re(ηj) and Im(aij), Im(ξi),
Im(ηj), we then find that the theorem also holds in the complex case, with
KC ≤ 8KR.

10



2.1.2 Equivalent inequalities

Though there are many ways to represent Grothendieck’s theorem, we shall
mainly do so in the form of two (equivalent) inequalities estimating some bilinear
form on two spaces of continuous functions on some compact Hausdorff spaces.
Later on, this will also be the form that we will try to generalize to more
arbitrary Banach spaces.

Recall that a bilinear form V : X × Y → K, where X and Y are Banach
spaces, is continuous if and only if it is bounded, meaning that there exists some
C > 0, such that for all x ∈ X and y ∈ Y ,

|V (x, y)| ≤ C‖x‖‖y‖.

If this is the case, we often define ‖V ‖ as the smallest C for which this holds.
Grothendieck’s theorem, as we will most often study it gives us another

estimate for bounded bilinear forms, for several special choices of X and Y .

Theorem 2.1.4 (GT: Integral form). There exists a K ≥ 0 such that for any
two compact Hausdorff spaces S, T and for any bounded bilinear form V : C(S)×
C(T ) → K there exist regular Borel probability measures µ on S and ν on T
such that

|V (x, y)| ≤ K‖V ‖
(∫

S

|x|2dµ
)1/2(∫

T

|y|2dν
)1/2

for all x ∈ C(S), y ∈ C(T ). Furthermore, the best possible K is equal to KK
G.

Remark 2.1.5. Recall that if S is a compact Hausdorff space, then a positive
measure µ on B(S) (the Borel σ-algebra on S) is called regular if the following
hold

(i) µ(K) <∞ for all compact K ⊆ S.

(ii) For any E ∈ B(S), µ(E) = sup{µ(K) : K ⊆ E and K is compact}.

(iii) For any E ∈ B(S), µ(E) = inf{µ(U) : U ⊇ E and U is open}.

A complex measure µ on B(S) is regular if |µ| is regular. We then say that µ is
a regular Borel measure on S.

Finally, recall that the dual space C(S)∗ may be identified with the space
of all regular Borel measures on S, hence any regular Borel probability measure
can be identified with a state (a positive linear functional of norm 1) on C(S).

Theorem 2.1.6 (GT: Sequence form). There exists a K ≥ 0 such that for any
bounded bilinear form V : C(S)× C(T )→ K,∣∣∣∣ n∑

i=1

V (xi, yi)

∣∣∣∣ ≤ K‖V ‖∥∥∥∥( n∑
i=1

|xi|2
)1/2∥∥∥∥

∞

∥∥∥∥( n∑
i=1

|yi|2
)1/2∥∥∥∥

∞

for all finite sequences x1, . . . , xn ∈ C(S) and y1, . . . , xn ∈ C(T ). Again, the
best possible K is equal to KK

G.
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In order to show that their optimal constants are equal, we will need to
show that the theorems we consider are actually equivalent, meaning that each
theorem implies each other theorem with the same constant K. We shall first
show that theorem 2.1.6 and theorem 2.1.4 are equivalent, then we shall show
that theorem 2.1.6 and 2.1.1 (which we already proved) are equivalent.

Proof of 2.1.4 ⇔ 2.1.6. Note that C(S) and C(T ) are commutative C*-algebras
and that the regular Borel probability measures on S are exactly the states on
C(S) (see remark 2.1.5) and similar for T . The result then follows by the Hahn-
Banach argument presented in the appendix in the form of theorem B.2.2.

Outline. In order to show that 2.1.1 ⇒ 2.1.6 we pick for the compact Hausdorff
space S points s1, . . . , sN and a finite open cover consisting of neighbourhoods
of those points. Next, we pick a partition of unity fi of S subordinate to
the open cover and we show that we can approximate x1, . . . , xn ∈ C(S) by
x̃i =

∑
j xi(sj)fj . Likewise we pick points t1, . . . , tN ∈ T , a partition of unity

gi of T and we approximate y1, . . . , yn ∈ C(T ) by ỹi =
∑
j yi(tj)gj .

We then show that the matrix defined by [aij ] = [V (fi, gi)] satisfies the
requirement from theorem 2.1.1 and apply theorem 2.1.1 to the vectors vk =
(x1(sk), . . . , xn(sk)) and wk = (y1(tk), . . . , yn(tk)) to show that theorem 2.1.6
holds for x̃i and ỹi. We then use our approximation argument to reduce our
result back to xi and yi.

In order to prove that 2.1.6 ⇒ 2.1.1, we basically show that theorem 2.1.1
is a special case of theorem 2.1.6. If we take S = T = {1, . . . , n}, then our
assumption on [aij ] implies that the associated bounded bilinear form V satisfies
‖V ‖ ≤ 1. Choosing for vi, wi ∈ H suitablef xj , yj ∈ C(S) = C(T ) = `n2 then
yields the desired result.

Proof of 2.1.6 ⇔ 2.1.1.
2.1.1 ⇒ 2.1.6: Suppose x1, . . . , xn ∈ C(S), y1, . . . , yn ∈ C(T ) and pick

ε > 0. We can then, for every s′ ∈ S find a neighbourhood Us′ of s′ such that if
s ∈ Us′ , then |xi(s) − xi(s′)| < ε for all 1 ≤ i ≤ n. Since S is compact, we can
then pick from these Us′ a finite subcover {Usk}k≤N of S.

Now we can pick a partition of unity fk subordinate to Usk (i.e. fi ∈
C(S, [0, 1]) such that each fk is supported in Usk and

∑N
k=1 fk(s) = 1 for all

s ∈ S). If we then define x̃i =
∑N
k=1 xi(sk)fk, then

‖xi − x̃i‖∞ = max
1≤k≤N

sup
s∈Usk

|xi(s)− x̃i(s)|

= max
1≤k≤N

sup
s∈Usk

|
N∑
l=1

fl(s)(xi(s)− xi(sl))|

≤ max
1≤k≤N

‖xi(s)− xi(sl)‖∞ ≤ ε.

Also note that since 0 ≤ |fk| ≤ 1, we have ‖x̃i‖∞ ≤ maxk |xi(sk)| ≤ ‖xi‖∞.
The same can be done for yi ∈ C(T ) (where we shall use gk for the partition

of unity subordinate to the cover Utk), and by choosing our finite covers large
enough, we can assume that both covers have the same number of elements
(namely N). Now assume without loss of generality that ‖V ‖ = 1, and denote

12



x̃ =
∑N
k=1 αkfk, ỹ =

∑N
k=1 βkgk, then

|V (x̃, ỹ)| =
∣∣∣∣∑
k,l

αkβlV (fk, gl)

∣∣∣∣ ≤ ‖x̃‖∞‖ỹ‖∞ ≤ sup
k
|αk| sup

l
|αl|,

hence the N ×N -matrix [akl] = [V (fk, gl)] satisfies the requirement of theorem
2.1.1. If we then take H = Kn, and take vk = (x1(sk), . . . , xn(sk)) and likewise
wl = (y1(tl), . . . , yn(tl)), then∣∣∣∣ n∑

i=1

V (x̃i, ỹi)

∣∣∣∣ =

∣∣∣∣ n∑
i=1

n∑
k,l=1

aklxi(sk)yi(tl)

∣∣∣∣
=

∣∣∣∣ n∑
k,l=1

akl 〈vk, wl〉
∣∣∣∣ ≤ K sup

k
‖vk‖ sup

l
‖wl‖

= K sup
k

( n∑
i=1

|xi(sk)|2
)1/2

sup
l

( n∑
i=1

|yi(tl)|2
)1/2

≤ K
∥∥∥∥( n∑

i=1

|xi|2
)1/2∥∥∥∥

∞

∥∥∥∥( n∑
i=1

|yi|2
)1/2∥∥∥∥

∞
.

Furthermore, using the properties of x̃i and ỹj , we find∣∣∣∣ n∑
i=1

V (xi, yi)

∣∣∣∣ =

∣∣∣∣ n∑
i=1

V (xi − x̃i + x̃i, yi − ỹi + ỹi)

∣∣∣∣
≤
∣∣∣∣ n∑
i=1

V (x̃i, ỹi)

∣∣∣∣+ nε2 + ε

n∑
i=1

‖ỹi‖∞ + ε

n∑
i=1

‖x̃i‖∞

≤
∣∣∣∣ n∑
i=1

V (x̃i, ỹi)

∣∣∣∣+ nε2 + ε

n∑
i=1

‖yi‖∞ + ε

n∑
i=1

‖xi‖∞.

This means that by choosing ε arbitrarily small, we find that∣∣∣∣ n∑
i=1

V (xi, yi)

∣∣∣∣ ≤ K∥∥∥∥( n∑
i=1

|xi|2
)1/2∥∥∥∥

∞

∥∥∥∥( n∑
i=1

|yi|2
)1/2∥∥∥∥

∞
,

hence theorem 2.1.6 holds.
2.1.6 ⇒ 2.1.1: For the converse, we take S = T = {1, . . . , n}. The as-

sumption in theorem 2.1.1 implies that the bilinear form V associated with the
matrix [aij ] satisfies ‖V ‖ ≤ 1.

Now suppose 1, . . . , vn ∈ H and w1, . . . , wn ∈ H are given and note that
since we only consider a finite number of elements in H, we might as well assume
that dimH = d < ∞. Now let e1, . . . , ed be an orthonormal basis for H, and
define for 1 ≤ k ≤ d, xk, yk ∈ C(S) = C(T ) = `n∞ by xk(i) = 〈vi, ek〉 and
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yk(i) = 〈wi, ek〉, then applying theorem 2.1.6 yields∣∣∣∣ n∑
i,j=1

aij 〈vi, wj〉
∣∣∣∣ =

∣∣∣∣ n∑
i,j=1

d∑
k=1

aij 〈vi, ek〉 〈wj , ek〉
∣∣∣∣ =

∣∣∣∣ ∑
k=1d

V (xk, yk)

∣∣∣∣
= K sup

i∈S

( d∑
k=1

|xk(i)|2
)1/2

sup
j∈S

( d∑
k=1

|yk(j)|2
)1/2

= K sup
i∈S
‖vi‖ sup

j∈S
‖wj‖,

hence theorem 2.1.1 holds.
Finally, since both inequalities imply each other, with the same constant K,

the optimal constant must also be the same in both.

Remark 2.1.7. In the first part of the previous proof, what we actually construct
is a finite dimensional subspace of C(S) (spanned by the partition of unity),
that is isometric to `N∞ and that is “almost” isometric to a subspace containing
x1, . . . , xn. But this means that every finite dimensional subspace of C(S) will
behave, in some ways, “almost” like an L∞-space. Any other space with the
same finite dimensional structure as C(K) will behave in the same way.

This idea gives rise to the definition of an Lp,λ-space. A space is called an
Lp,λ-space if every finite dimensional subspace V is contained in another finite
dimensional subspace N , of dimension n, such that there exists an isomorphism
T : N → `np , satisfying ‖T‖‖T−1‖ ≤ λ (we say that the Banach-Mazur distance
from N to `n∞ is at most λ). It can be shown that C(S) is in fact an L∞,1+ε-
space for all ε > 0. For more on this we refer to [11]. This theory allows us, in
some ways, to lift properties from L∞ to properties of C(S).

2.1.3 Factorization

In the introduction, we informally described Grothendieck’s theorem, as a rela-
tion between the Banach spaces L∞, L1 and the Hilbert space L2. If we consider
a measure space (X,Σ, ν), then the space L∞(ν) is a commutative unital C*-
algebra. This means that there exists some compact Hausdorff space S, such
that L∞(ν) is isometrically *-isomorphic to C(S). Theorem 2.1.4 then shows
that a bounded bilinear form on L∞ × L∞ can be estimated in an L2 norm.

Now let u : C(S) → C(T )∗ be a bounded map, then there is an associated
bounded bilinear form V : (x, y) 7→ (ux)(y). If we then let µ and ν be as in
theorem 2.1.4 and note that C(T ) lies dense inside L2(T, ν), then GT tells us
that for every x, ux can be extended to a unique bounded linear functional on all
of L2(T, ν). Furthermore, by taking the completion of C(S) with respect to the
L2(S, µ)-norm, we see that u can be extended to a map ũ : L2(S, µ)→ L2(T, ν)∗.

If we let Jµ : C(S) → L2(S, µ) and Jν : C(T ) → L2(T, ν) be the canonical
(norm-1) maps (note that they are not inclusions, since they might have a non-
trivial kernel), then we can write for all x ∈ C(S), y ∈ C(T )

(ux)(y) = [ũ(Jµx)] (Jνy),

hence u = J∗ν ũJµ and ‖ũ‖ ≤ K‖u‖.
This gives us then the following equivalent theorem
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Theorem 2.1.8. For every u : C(S)→ C(T )∗, there exists regular Borel prob-
ability measure µ on S and ν on T such that u admits a factorization of the
form u = J∗ν ũJµ where ũ : L2(S, µ)→ L2(T, ν)∗ and

‖ũ‖ ≤ KK‖u‖.

Again, the best possible K is equal to KK
G.

Proof. The argument above already shows that theorem 2.1.4 implies this the-
orem, hence we only need to show that this theorem implies theorem 2.1.4. If
we construct for V the associated linear map u : C(S) → C(T )∗ (given by
x 7→ V (x, ·)), then we have that for all x ∈ C(S) and y ∈ C(T ),

|(ux)(y)| = (ũJµx)(Jνy) ≤ ‖ũ‖‖Jµx‖2‖Jνy‖2 ≤ KK‖u‖‖Jµx‖2‖Jνy‖2.

But since ‖u‖ = ‖V ‖ and (ux)(y) = V (x, y), the result follows.

As we mentioned above, L∞ is isometrically *-isomorphic to some C(S).
Furthermore, L1 can always be isometrically embedded in its bidual. We say
that a map u : X → Y factors through a Hilbert space H, if there exists
u1 : X → H and u2 : H → Y such that u = u2 ◦ u1. This then gives us the
following corollary.

Corollary 2.1.9. Any bounded linear map u : C(S)→ C(T )∗ or u : L∞ → L1

(over two arbitrary measure spaces), factors through a Hilbert space. In addition,
we have that

inf{‖u1‖‖u2‖} ≤ KG‖u‖,

where the infimum is taken over all possible decompositions of u through a
Hilbert-space.

2.1.4 The little Grothendieck inequality

A second way that Grothendieck’s theorem relates C(S) (or L∞) spaces to
Hilbert spaces is through the slightly weaker result, usually called the “little
Grothendieck inequality” (or sometimes the little Grothendieck theorem or “lit-
tle GT”). This theorem can be presented in four equivalent ways:

Theorem 2.1.10 (Little GT). Let S, T be compact Hausdorff spaces, H any
Hilbert space, and let u : C(S)→ H and v : C(T )→ H be bounded linear maps.
Then the following hold

(i) There exist regular Borel probability measures µ on S and ν on T such that

| 〈ux, vy〉 | ≤ k‖u‖‖v‖
(∫

S

|x|2dµ
)1/2(∫

T

|y|2dν
)1/2

(ii) There exists a regular Borel probability measure µ on S such that

‖ux‖ ≤
√
k‖u‖

(∫
S

|x|2dµ
)1/2
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(iii) For all finite sequences x1, . . . , xn ∈ C(S) and y1, . . . , xn ∈ C(T )∣∣∣∣ n∑
i=1

〈uxi, vyi〉
∣∣∣∣ ≤ k‖u‖‖v‖∥∥∥∥( n∑

i=1

|xi|
)1/2∥∥∥∥

∞

∥∥∥∥( n∑
i=1

|yi|
)1/2∥∥∥∥

∞

(iv) For any finite sequence x1, . . . , xn ∈ C(S)( n∑
i=1

‖uxi‖2
)1/2

≤
√
k‖u‖

∥∥∥∥( n∑
i=1

|xi|
)1/2∥∥∥∥

∞

Where in all the above, k ≤ KG is some constant that only depends on whether
the vector spaces are real or complex.

Proof. (i) and (iii) clearly follow from theorems 2.1.4 and 2.1.6, by taking
V (x, y) = 〈ux, vy〉. (i) and (iii) then imply (ii) and (iv) by taking u = v
and x = y (or xi = yi) and taking a square root. (ii) and (iv) in turn imply
(i) and (iii) by Cauchy-Schwarz, hence the four statements are equivalent and
true.

The best possible constant k is often denoted kRG in the real case and kCG in
the complex case.

Theorem 2.1.10 can in fact be proven without the Grothendieck inequality,
namely by means of a more general relation known as the Khintchine inequality.
This also provides an optimal bound for kG, namely kG ≤ ‖g‖−2

1 , where g
denotes a standard N(0, 1) real or complex Gaussian random variable. It was
already shown by Grothendieck that kG = ‖g‖−2

1 . More explicitly, we have:

kRG =
π

2
kCG =

4

π
.

2.2 The Khintchine inequality

The second type of inequality we shall study, is the so called Khintchine inequal-
ity, named after the Russian mathematician Aleksandr Khintchine. Where the
Grothendieck inequality gave us a relation between L∞ and L2, the Khintchine
inequality formulates a (somewhat different) relation between certain subspaces
of Lp (namely those spanned by Rademacher random variables) and `2 for any
0 < p < ∞. In addition, it can be used to show that all norms on those
subspaces are equivalent.

Remark 2.2.1. Although the following can be done in terms of the Rademacher
functions on L1([0, 1]), we choose to do so in the setting of i.i.d Rademacher
random variables. We could, in fact, replace ri by any orthonormal sequence
of random variables, such as sequences of Gaussian or Steinhaus random vari-
ables. Historically, however, the Khintchine inequality has almost always been
formulated in terms of Rademacher random variables.

We shall first briefly recap the following consequences of Hölder’s inequality
on a probability space (Ω,F ,P).

Lemma 2.2.2. In the following let (Ω,F ,P) be a probability measure space and
let f be F-measurable. Then the following hold.

16



(i) Let 0 < α ≤ ∞, 1 ≤ p ≤ ∞, then ‖f‖α ≤ ‖f‖αp.

(ii) Let 0 < α ≤ β ≤ ∞, then ‖f‖α ≤ ‖f‖β.

(iii) Let λ1, λ ∈ (0, 1) with λ1 + λ2 = 1 and let 0 < α1, α2 ≤ ∞, then

‖f‖λ1α1+λ2α2

λ1α1+λ2α2
≤ ‖f‖λ1α1

α1
‖f‖λ2α2

α2
.

Proof. (i) Let q be conjugate to p (meaning that 1
p + 1

q = 1), then by Hölder’s
inequality, we have for α, p <∞

‖f‖αα = ‖|f |α‖1 ≤ ‖|f |α‖p‖1‖q =

(∫
|f |αpdP

)1/p

,

hence ‖f‖α ≤
(∫
|f |αpdP

)1/αp
= ‖f‖αp. The case where α or p = ∞,

follows similarly.

(ii) This follows directly from (i) by taking β = αp.

(iii) Write p = 1/λ1 and q = 1/λ2, then clearly p and q are conjugate and

‖f‖λ1α1+λ2α2

λ1α1+λ2α2
=

∫
|f |λ1α1 |f |λ2α2dP ≤ ‖|f |λ1α1‖p‖|f |λ2α2‖q

=

(∫
|f |α1dP

)λ1
(∫
|f |α2dP

)λ2

= ‖f‖λ1α1
α1
‖f‖λ2α2

α2
.

Theorem 2.2.3 (The Khintchine inequality). Let ri be an i.i.d. sequence of
Rademacher random variables on a probability space (Ω,F ,P) and let p ∈ (0,∞),
then there exist constants 0 < Ap ≤ Bp such that

Ap

( n∑
j=1

|αj |2
)1/2

≤
∥∥∥∥ n∑
j=1

αjrj

∥∥∥∥
p

≤ Bp
( n∑
j=1

|αj |2
)1/2

,

for all finite sequences c1, . . . , cn ∈ K. Here Ap and Bp depend only on p, not
on the probability space (Ω,F ,P).

Outline. The proof consists of four parts, all of which rely on the orthogonality
relations of the Rademacher random variables or the consequences of Hölder’s
inequality presented above. We subsequently prove the inequality for p = 2,
then p > 2 in the real case followed by p > 2 in the complex case and finally we
prove the inequality for 0 < p < 2.

Proof. Case 1: p = 2 with αj ∈ K. Using the orthogonality properties of the ri,
we find that∥∥∥∥ n∑

j=1

αjrj

∥∥∥∥2

2

=

∫ ( n∑
j=1

αjrj

)( n∑
j=1

αjrj

)
dP

=

n∑
j=1

|αj |2
∫
r2
jdP +

n∑
i 6=j≤n

αiαj

∫
rirjdP =

n∑
j=1

|αj |2.

From this we can conclude that the statement holds, with A2 = B2 = 1.
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Case 2: p > 2 with αj ∈ R. Supposem ∈ N such that p ≤ 2m, then using multi-
index notation for λ = (λ1, . . . , λn) together with the properties of the ri,
we find that,∫ ( n∑

j=1

αjrj

)2m

dP =

∫ ∑
|λ|=2m

(
2m

λ

)
αλrλdP

=
∑
|λ|=2m

(
2m

λ

)
αλ
∫
rλ1
1 . . . rλnn dP.

This integral is only nonzero if all λi are even, in which case the integral
is equal to one. If we then write (λ1, . . . , λn) = (2η1, . . . , 2ηn), then the
integral becomes∫ ( n∑

j=1

αjrj

)2m

=
∑
|η|=m

(
2m

2η

)
(α2)η

≤ (2m)!
∑
|η|=m

(
m

η

)
(α2)η = (2m)!

( n∑
j=1

α2
i

)m
.

Thus we can conclude that ‖
∑n
j=1 αjrj‖2m ≤ ((2m)!)1/2m‖α‖2. Using

lemma 2.2.2 (ii), we then find

‖α‖2 =

∥∥∥∥ n∑
j=1

αjrj

∥∥∥∥
2

≤
∥∥∥∥ n∑
j=1

αjrj

∥∥∥∥
p

≤
∥∥∥∥ n∑
j=1

αjrj

∥∥∥∥
2m

≤ ((2m)!)1/2m‖α‖2

hence the statement holds, with Ap = 1 and BR
p ≤ B2m ≤ ((2m)!)1/2m.

Case 3: p > 2 with αj ∈ C. Simply write αj = βj + iγj then we have

‖α‖2 =

∥∥∥∥ n∑
j=1

αjrj

∥∥∥∥
2

≤
∥∥∥∥ n∑
j=1

αjrj

∥∥∥∥
p

≤
∥∥∥∥ n∑
j=1

βjrj

∥∥∥∥
p

+

∥∥∥∥ n∑
j=1

γjrj

∥∥∥∥
p

≤ BR
p (‖β‖2 + ‖γ‖2) ≤

√
2BR(‖β‖22 + ‖b‖22)1/2 =

√
2BR

p ‖α‖2,

hence for p > 2 and αj ∈ K the statement holds, with Ap ≤ 1 and
Bp ≤

√
2BR

p ≤
√

2((2m)!)1/2m.

Case 4: 0 < p < 2 . We can pick λ1, λ2 ∈ (0, 1) such that λ1 + λ2 = 1 and
pλ1 + 4λ2 = 2. We can then apply lemma 2.2.2 (iii) to find that

‖α‖pt12 ‖α‖
4t2
2 = ‖α‖22 =

∥∥∥∥ n∑
j=1

αjrj

∥∥∥∥2

2

=

∥∥∥∥ n∑
j=1

αjrj

∥∥∥∥pt1
p

∥∥∥∥ n∑
j=1

αjrj

∥∥∥∥4t2

4

≤
∥∥∥∥ n∑
j=1

αjrj

∥∥∥∥pt1
p

(B4‖α‖2)4t2

Dividing this by ‖α‖4t22 and taking an appropriate power then yields

B
pt1/4t2
4 ‖α‖2 ≤

∥∥∥∥ n∑
j=1

αjrj

∥∥∥∥
p

≤
∥∥∥∥ n∑
j=1

αjrj

∥∥∥∥
2

= ‖α‖2,
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hence the statement holds with Ap ≤ Bpt1/4t24 and Bp = 1.

Remark 2.2.4. The best possible constants in the Khintchine inequality are
known and it is worth noting that for 0 < p ≤ 2, Bp = 1 and likewise, for p ≥ 2,
Ap = 1. The other constants are also know (though not so easily computed),
for more details we refer the reader to [6].

The Khintchine inequality can also be used to estimate sequences of Lp
functions, instead of just scalars. This form of the inequality we will later
encounter in a more general form.

Corollary 2.2.5. Let 0 < p <∞ and let (X,Σ, µ) be any measure space, then

App

∥∥∥∥( n∑
j=1

|xj |2
)1/2∥∥∥∥p

p

≤
∫ ∥∥∥∥ n∑

j=1

xjrj(ω)

∥∥∥∥p
p

dP(ω) ≤ Bpp
∥∥∥∥( n∑

j=1

|xj |2
)1/2∥∥∥∥p

p

for any finite sequence x1, . . . , xn ∈ Lp(µ).

Proof. We can simply apply Fubini’s theorem to the middle term, to switch
the order of integration with respect to dP and dµ. The rest then follows by
applying theorem 2.2.3 point-wise and using the fact that |f | ≤ |g| implies∫
|f |pdP ≤

∫
|g|pdP.

2.3 Marcinkiewicz-Zygmund Style Inequalities

The main way in which the Grothendieck inequality and Khintchine inequality
come together, is through a result known as the Marcinkiewicz-Zygmund (MZ)
inequality and was first proven in [17]. The form of the MZ inequality which we
will focus on, is mostly encountered within the context of harmonic analysis. In
this form, it follows directly from the Khintchine inequality. Through a duality
argument the MZ inequality can be used to extend the Grothendieck inequality,
as we shall see in theorem 2.3.7.

2.3.1 The Marcinkiewicz-Zygmund Inequality

In order to state the Marcinkiewicz-Zygmund inequality in its most efficient
form, we shall need to introduce a norm on finite sequences in Lp-spaces. This
norm also allows us extend the Grothendieck inequality by means of the duality
encountered in lemma 2.3.3. The more general versions of this norm and the
corresponding duality, that we will encounter in chapters 4 and 5, will play a
large role in our generalizations of the Grothendieck inequality.

Definition 2.3.1. Let x1, . . . , xn ∈ Lp(µ), then we will often write (xn) =
(x1, . . . , xn). Furthermore, we define

‖(xn)‖p :=

∥∥∥∥( n∑
j=1

|xj |2
)1/2∥∥∥∥

p

.

Finally, the space Lp(µ, `
n
2 ) is the Banach space of all finite sequences of length

n in Lp(µ) with this norm.
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If x1, . . . , xn ∈ C(S) for some compact Hausdorff topological space S, then
we also denote

‖(xn)‖∞ :=

∥∥∥∥( n∑
j=1

|xj |2
)1/2∥∥∥∥

∞
.

Using this, the MZ inequality can be states as follows

Theorem 2.3.2 (Marcinkiewicz-Zygmund). Let 1 ≤ p < ∞, then there is
a constant Kp ≥ 0, only dependent on p, such that for any measure spaces
(X,Σ, µ) and (X ′,Σ′, µ′) and any bounded linear map u : Lp(µ) → Lp(µ

′) we
have

‖(uxn)‖p ≤ Kp‖u‖‖(xn)‖p,

for any finite sequence x1, . . . , xn ∈ Lp(µ).

Proof. Suppose 1 ≤ p <∞, then we can apply corollary 2.2.5 to find that

App‖(uxn)‖pp ≤
∫ ∥∥∥∥ n∑

j=1

uxjrj(ω)

∥∥∥∥p
p

dP(ω) =

∫ ∥∥∥∥u n∑
j=1

xjrj(ω)

∥∥∥∥p
p

dP(ω)

≤ ‖u‖p
∫ ∥∥∥∥ n∑

j=1

xjrj(ω)

∥∥∥∥p
p

dP(ω) ≤ Bpp‖u‖p‖(xn)‖pp,

which conludes the proof with Kp ≤ Bp/Ap.

2.3.2 Other MZ style inequalities

As it turns out, many of the previously studied inequalities can be rewritten in
a way resembling the MZ inequality. In order to do this, we shall repeatedly
need the following result.

Lemma 2.3.3. Let 1 ≤ p < ∞, and let 1 < q ≤ ∞ be its conjugate number.
Then Lp(µ, `

n
2 )∗ = Lq(µ, `

n
2 ), where the duality for (xn) ∈ Lp(µ, `n2 ) and (yn) ∈

Lq(µ, `
n
2 ) is given by

〈(xn), (yn)〉 =

∫ n∑
j=1

xjyjdµ.

Proof. Let e1, . . . , en ∈ Kn be the standard basis for Kn, then we can write∑n
j=1 xjej = (xn) ∈ Lp(µ, `n2 ).
Now suppose φ ∈ Lp(µ, `

n
2 )∗ and x ∈ Lp(µ). Then |φ(xej)| ≤ ‖φ‖‖x‖p,

hence there exists a yj ∈ Lp(µ)∗ = Lq(µ) such that∫
yjxjdµ = φ(xej).

We then have that

φ

( n∑
j=1

xjej

)
=

n∑
j=1

∫
xjyjdµ =

∫ n∑
j=1

xjyjdµ.
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Using this, we can identify φ and (yn) and, since (yn) ∈ Lq(µ, `n2 ), we only need
to show that the norms on Lp(µ, `

n
2 )∗ and Lq(µ, `

n
2 ) are in fact equal. Now note

that by applying Cauchy-Schwarz point-wise and Hölder’s inequality, we have∣∣∣∣φ( n∑
j=1

xjej

)∣∣∣∣ =

∣∣∣∣ n∑
j=1

∫
xjyjdµ

∣∣∣∣ ≤ ∫ ( n∑
j=1

|xj |2
)1/2( n∑

j=1

|yj |2
)1/2

dµ

≤
∥∥∥∥( n∑

j=1

|xj |2
)1/2∥∥∥∥

p

∥∥∥∥( n∑
j=1

|yj |2
)1/2∥∥∥∥

q

= ‖(xn)‖p‖(yn)‖q

From this we can conclude that ‖φ‖ ≤ ‖(yn)‖q. Note that for every α ∈ Kn,
there exists a β ∈ Kb such that∑

j

αjβj = (
∑
j

|α|2)1/2 and
∑
j

|β|2 = 1.

This means that we can choose for every ξ ∈ X, a vector v(ξ) ∈ Kn such that( n∑
j=1

|vj(ξ)x(ξ)|2
)1/2

= |x(ξ)|
( n∑
j=1

|vj(ξ)|2
)1/2

= |x(ξ)|

and

n∑
j=1

vj(ξ)x(ξ)yj(ξ) = x

n∑
j=1

vj(ξ)yj(ξ) = x

( n∑
j=1

|yj |2
)1/2

.

Applying this to the fact that Lp(µ)∗ = Lq(µ), we have∥∥∥∥( n∑
j=1

|yj |2
)1/2∥∥∥∥

p

= sup

{∣∣∣∣ ∫ x

( n∑
j=1

|yj |2
)1/2

dµ

∣∣∣∣ : x ∈ Lp(µ), ‖x‖p ≤ 1

}

= sup

{∣∣∣∣ ∫ n∑
j=1

vjxyjdµ

∣∣∣∣ : x ∈ Lp(µ), ‖x‖p ≤ 1

}

≤ sup

{∣∣∣∣∫ n∑
j=1

xjyjdµ

∣∣∣∣ : x1, . . . , xn ∈ Lp(µ), ‖(xn)‖p ≤ 1

}

≤ sup

{∣∣∣∣φ( n∑
j=1

xjej

)∣∣∣∣ : x1, . . . , xn ∈ Lp(µ), ‖(xn)‖p ≤ 1

}
= ‖φ‖,

hence the result follows.

Remark 2.3.4. We shall mostly use the preceding lemma in the form of the
following equality,

‖(xn)‖p = sup

{∣∣∣∣ ∫ n∑
j=1

xjyjdµ

∣∣∣∣ : (yn) ∈ Lq(µ, `n2 ), ‖(yn)‖q ≤ 1

}
.
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The first inequality that can be rewritten in the style of the MZ inequality
is the Grothendieck inequality. Furthermore, we can show that Grothendieck’s
theorem presented in this form is actually equivalent to GT in general.

Theorem 2.3.5 (GT: Marcinkiewicz-Zygmund form). Let S be a compact
Hausdorff space and (X,Σ, µ) be a measure space. Then for any bounded linear
map u : C(S)→ L1(X,µ) we have

‖(uxn)‖1 ≤ K‖u‖‖(xn)‖∞,

for any finite sequence x1, . . . , xn ∈ C(S). Again, the best possible K is equal
to KK

G.

Outline. We will show that this theorem is equivalent to GT, by showing that
2.1.6 implies 2.3.5 and showing that 2.3.5 implies 2.1.1. At the core of the
argument lie the facts that to every bounded bilinear form V : X × Y → K we
can associate a unique bounded linear map u : X → Y ∗ by (ux)(y) = V (x, y)
and vice versa. The equivalence in inequalities then follows by using lemma
2.3.3 to estimate the norm of elements in Lp(µ, `

n
2 ).

Proof. 2.1.6 ⇒ 2.3.5: Note that L1(µ) ⊂ L∞(µ)∗, hence we can define a
bounded bilinear map V : C(S)× L∞(µ)→ K by

V (x, y) =

∫
X

(ux)y dµ.

Using lemma 2.3.3, we have that L∞(µ, `n2 ) = L1(µ, `n2 )∗, hence

‖(uxn)‖1 = sup

{∣∣∣∣ ∫ n∑
j=1

(uxj)yjdµ

∣∣∣∣ : (yn) ∈ L∞(µ, `n2 ), ‖(yn)‖∞ ≤ 1

}

= sup

{∣∣∣∣ n∑
j=1

V (xj , yj)

∣∣∣∣ : (yn) ∈ L∞(µ, `n2 ), ‖(yn)‖∞ ≤ 1

}
.

Applying Grothendieck’s inequality to the right-hand side and taking the supre-
mum yields

‖(uxn)‖1 ≤ K‖V ‖‖(xn)‖∞.

The fact that ‖V ‖ = ‖u‖ completes the proof.
2.3.5 ⇒ 2.1.1: In order to show this, it suffices to show that 2.3.5 implies

2.1.6, with S = X = {1, . . . , n} and µ equal to the counting measure, since in
that case

L∞(µ) = C(S) = `n∞.

and we can simply use the proof of 2.1.6⇒2.1.1. Note also that since L∞(µ) is
finite-dimensional, L∞(µ)∗ = L1(X,µ).

Now suppose V : C(S) × L∞(µ) → K is given, then we can construct u :
L∞(µ) → L1(X,µ) by u(x) : y 7→ V (x, y), then again by lemma 2.3.3, we have
for ‖(yn)‖∞ ≤ 1∣∣∣∣ n∑

j=1

V (xj , yj)

∣∣∣∣ =

∣∣∣∣ ∫ n∑
j=1

(uxj)yjdµ

∣∣∣∣ ≤ ‖(uxn)‖1‖(yn)‖∞

= ‖(uxn)‖1 ≤ K‖u‖‖(xn)‖∞,
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where we used 2.3.5 in the last inequality. But then 2.1.6 follows, with X =
S = {1, . . . , n} and µ equal to the counting measure.

As it turns out, the Little Grothendieck inequality can also be brought into
this form, and in this way nicely complements the normal MZ inequality.

Theorem 2.3.6. For any bounded linear map u : C(S) → C(T ) (or u :
L∞(µ)→ L∞(X ′, µ′)) we have

‖(uxn)‖∞ ≤ K‖u‖‖(xn)‖∞

for any finite sequence x1, . . . , xn ∈ L∞(µ).

Proof. Let ν be a regular Borel probability measure on S, then we have the
canonical map Jν : C(S) → L2(S, ν). If we then apply 2.1.10 to Jνu, and note
that ‖Jνu‖ ≤ ‖u‖, then∣∣∣∣ n∑

i=1

‖Jνuxi‖2
∣∣∣∣1/2 ≤ √k‖u‖∥∥∥∥( n∑

i=1

|xi|
)1/2∥∥∥∥

∞
.

Now note that∣∣∣∣ n∑
i=1

‖Jνuxi‖2
∣∣∣∣1/2 =

∣∣∣∣ n∑
i=1

∫
|uxi|2dν

∣∣∣∣1/2 =

∣∣∣∣ ∫ n∑
i=1

|uxi|2dν
∣∣∣∣1/2.

Taking the supremum over all possible regular Borel probability measures then
yields

sup
ν

∣∣∣∣ n∑
i=1

‖Jνuxi‖2
∣∣∣∣1/2 =

∥∥∥∥ n∑
j=1

|uxj |2
∥∥∥∥1/2

∞
=

∥∥∥∥( n∑
j=1

|uxj |2
)1/2∥∥∥∥

∞
,

hence the result follows. (The case for L∞ again follows by regarding L∞ as a
commutative unital C*-algebra).

Since Grothendieck’s inequality can be brought in a form resembling the
MZ inequality, we can wonder if the MZ inequality can also be rewritten in an
equivalent way that resembles Grothendieck’s theorem. The answer is yes, in the
case where 1 ≤ p <∞. Since the little Grothendieck inequality can be written
like the MZ inequality for the case p =∞, we can immediately incorporate the
case p =∞ to also obtain a GT like inequality for little GT.

Note that this proof follows, at its core, the same arguments as the proof of
theorem 2.3.5.

Theorem 2.3.7 (MZ & little GT: Grothendieck form). Let 1 ≤ p ≤ ∞ and
1 ≤ q ≤ ∞ be conjugate numbers, then there exists a Kp ≥ 0 depending only on
p such that for any measure spaces (X,Σ, µ) and (X ′,Σ′, µ′) and any bounded
bilinear form V : Lp(µ)× Lq(µ′)→ K,∣∣∣∣ n∑

i=1

V (xi, yi)

∣∣∣∣ ≤ Kp‖V ‖‖(xn)‖p‖(yn)‖q

for all finite sequences x1, . . . , xn ∈ Lp(µ) and y1, . . . , xn ∈ Lq(X ′, µ′).
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Proof. 2.3.2 ⇒ 2.3.7: Suppose that V : Lp(µ) × Lq(µ
′) → K is given and

suppose without loss of generality that q 6= ∞, then we can construct u :
Lp(µ)→ Lq(µ

′)∗ = Lp(µ
′) by ux : y 7→ V (x, y) or equivalently

V (x, y) =

∫
(ux)y dµ′.

Now we use again lemma 2.3.3 so that for ‖(yn)‖q ≤ 1, we have∣∣∣∣ n∑
j=1

V (xj , yj)

∣∣∣∣ =

∣∣∣∣ ∫ n∑
j=1

(uxj)yjdµ

∣∣∣∣ ≤ ‖(uxn)‖p ≤ K‖u‖‖(xn)‖p,

where we applied MZ in the last inequality . The proof for p =∞ follows almost
identically if we apply 2.3.6 instead of MZ. The only difference is that we use
lemma 2.3.3 slightly differently, namely we use

‖(uxn)‖∞ = sup

{∣∣∣∣ ∫ n∑
j=1

(uxj)yjdµ

∣∣∣∣ : (yn) ∈ L1(µ′, `n2 ), ‖(yn)‖1 ≤ 1

}
Applying then little GT and taking the supremum then yields the desired result.

2.3.7⇒2.3.2: This proof is identical to the proof of 2.1.6⇒2.3.5.

Remark 2.3.8. Since we used the Khintchine inequality to prove the MZ in-
equality, the above basically follows from the Khintchine inequality.

2.4 Inequalities on Banach function spaces

In this section, we will introduce the notion of a Banach function space. These
function spaces form a large class of Banach spaces, generalizing the notion of
Lp-spaces. As we shall see, the MZ inequality can be generalized to hold for
maps between arbitrary Banach function spaces, a result that can be found in
[13]. Using this, together with the concept of Köthe duality, we can extend the
Grothendieck inequality to some Banach function spaces, resulting in theorem
2.4.12.

One of the main results of this thesis, presented in chapter 5, is the gen-
eralization of the techniques discussed in this section to the noncommutative
setting, resulting even in a noncommutative analogue of theorem 2.4.12, namely
corollary 5.4.12.

2.4.1 Introduction to Banach function spaces

In order to generalize the concept of Lp-space, we will introduce the theory of
Banach function spaces, starting with several notions related to measure theory.

Definition 2.4.1. A measure space (X,Σ, ν) is called a Maharam measure
space, if the following hold:

(i) For every A ∈ Σ, with ν(A) > 0, there exists B ∈ Σ such that B ⊆ A and
0 < ν(B) <∞. (i.e., (X,Σ, ν) has the finite subset property)
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(ii) For every E ⊆ Σ, there exists H ∈ Σ such that ν(E \H) = 0 for all E ∈ E
and if G ∈ Σ such that ν(E \G) = 0 for all E ∈ E , then also ν(H \G) = 0.
(i.e., (X,Σ, ν) is localizable).

Note that if (X,Σ, ν) is σ-finite, then clearly (i) holds. It can be shown
that in this case (ii) also holds (a proof can be found in [4]), hence any σ-finite
measure space is a Maharam measure space.

For the remainder of this section, we assume that (X,Σ, ν) is a Maharam
measure space. Furthermore, we will mostly restrict ourselves to special sub-
spaces of the following spaces.

Definition 2.4.2. We denote the space of all Σ-measurable real-valued func-
tions on X by L0(ν), where we identify, just as in the usual Lp-spaces, the
functions that are ν-a.e. equal. Then we define

S(ν) : {f ∈ L0(ν) : f is bounded, except on a set of finite measure}.

Definition 2.4.3. A linear subspace E ⊆ S(ν) together with a norm ‖.‖E is
called a Banach function space if and only if all of the following hold.

(i) f ∈ S(ν), g ∈ E and |f | ≤ |g| a.e., imply f ∈ E. (In the context of Banach
function spaces, such a subspace is also called an ideal in S(ν).)

(ii) (E, ‖.‖E) is a Banach-space.

(iii) f, g ∈ E, then f ∧ g = min(f, g) ,f ∨ g = max(f, g) ∈ E. (i.e., E is a vector
lattice, with respect to natural partial ordering of real valued functions)

(iv) |f | ≤ |g|, implies ‖f‖E ≤ ‖g‖E (i.e., ‖.‖E is a lattice norm).

(Any space satisfying (ii)-(iv) is also called a Banach lattice).

Classical examples of Banach function spaces are the usual Lp-spaces (in-
cluding L∞) and Orlicz spaces (for a definition, see [13]). Note that C(X) is
in general not a Banach function space, since (i) in 2.4.3 does not hold for
C(X). However, the techniques discussed in remark 2.1.7 allow us to prove
some properties of C(X), by studying the properties of L∞.

Since we wish to deal with elements of the form x = (
∑
j |xj |2)1/2, we would

like to verify that x ∈ E if x1, . . . , xn ∈ E. Note that for 1 ≤ p <∞, n∑
j=1

|xj |p
1/p

≤ max{|x1|, . . . , |xn|}

holds point-wise, hence
(∑

j |xj |p
)1/p

∈ E by definition 2.4.3 (i) and (iii).

This observation then allows us to make the following generalization of def-
inition 2.3.1.

Definition 2.4.4. Let E be a Banach function space and let x1, . . . , xn ∈ E,
then we write (xn) = (x1, . . . , xn). Furthermore, we define

‖(xn)‖E :=

∥∥∥∥( n∑
j=1

|xj |2
)1/2∥∥∥∥

E

.

Finally, the space E(`n2 ) is the Banach space of all finite sequences of length n
in E with this norm.
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2.4.2 GT on Banach function spaces

We can now use this theory to actually state a more general version of theorem
2.3.5, which, as it turns out, is even equivalent to GT.

Theorem 2.4.5. Let E and F be two Banach function spaces (on possibly
different Maharam measure spaces) and let u : E → F be a bounded linear map,
then we have

‖(uxn)‖F ≤ KG‖u‖‖(xn)‖E ,

for any finite sequence x1, . . . , xn ∈ E.

Remark 2.4.6. Actually, this theorem can be extended to a more general class of
Banach spaces, namely Banach lattices. The proof requires two representation
theorems for Banach lattices, due to Kakutani. As a proper treatment of these
representation theorems would distract us too much our main subject, we shall
simply use them without proving them. The proper statement and proof of
these theorems can be found in [13].

Proof. Note that since L∞ and L1 are both Banach function spaces, this theorem
already implies theorem 2.3.5.

Now let x1, . . . , xn ∈ E be a finite sequence, and define x0 = (
∑
j |xj |2)1/2

and y0 = (
∑
j |uxj |2)1/2. Now consider the vector space defined by

I(x0) = span{x ∈ E : |x| ≤ x0}

(we say that I(x0) is the function space ideal in E generated by x0.) If we equip
this with the norm defined by

‖x‖∞ := inf

{
λ ≥ 0 : |x| ≤ λ x0

‖x0‖E

}
,

then it can be shown, using a representation theorem ([13] 1.b.6), that there
exists some compact Hausdorff space S, such that the completion of the normed
vector space (I(x0), ‖·‖∞) is isometrically isomorphic to the Banach space C(S).

Now choose 0 ≤ φ ∈ F ∗, a positive linear functional, such that ‖φ‖ = 1
and φ(y0) = ‖y0‖. Then we can consider F0, the Banach space obtained by the
completion of F endowed with the norm ‖y‖1 := φ(|y|), modulo all elements
z ∈ Y , such that ‖z‖1 = 0. Then by using another representation theorem ([13]
1.b.2), there exists some measure space (X ′,Σ′, µ′) such that F0 = L1(µ′). But
then the restriction of u to C(S) puts us in the situation of 2.3.5, hence we find∥∥∥∥( n∑

j=1

|uxj |2
)1/2∥∥∥∥

F

≤ KG‖u‖
∥∥∥∥( n∑

j=1

|xj |2
)1/2∥∥∥∥

E

,

hence the theorem is equivalent to GT and KG is the best possible constant.

2.4.3 Köthe duality

As we have seen, for some choices of E and F , theorem 2.4.5 can be rewritten
in a way similar to 2.1.6. Using lemma 2.3.3, this can easily be done in the case
where E is an arbitrary Banach funcion space and F is an Lp-space. In order
to do this for more general F , we shall need to use the theory of Köthe duality.
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Definition 2.4.7. The Köthe dual space E× of a Banach function space E on
the Maharam measure space (X,Σ, ν) is defined by

E× =

{
y ∈ S(ν) :

∫
X

|xy|dν <∞∀x ∈ E
}
.

By defining for y ∈ E×, φ : x 7→
∫
X
|xy|dν < ∞, we see that every y in the

Köthe dual can be identified with a bounded linear functional φy on E. This
means that we can identify E× with a subspace of E∗, hence E× ⊆ E∗, where
the duality is given by

〈x, y〉 =

∫
X

xy dν.

The following properties of the Köthe dual can be found in [13].

Theorem 2.4.8. The space E×, together with the norm

‖y‖E× = sup

{∫
X

|xy|dν : ‖x‖E ≤ 1

}
,

is a Banach function space.

Theorem 2.4.9. Let E be a Banach function space and let E× be the corre-
sponding Köthe dual. Then the following are equivalent

(i) E∗ = E×.

(ii) We have ‖xα‖E ↓ 0 for every downward directed net {xα}α∈A ∈ E such
that xα ↓ 0.

Definition 2.4.10. A Banach function space (or a Banach lattice) satisfying
(ii) of theorem 2.4.9 is called order continuous.

Note that in general Lp, when 1 ≤ p <∞ is order continuous, however L∞ is
not. (There are exceptions to this, for instance when L∞ is finite dimensional.)
Furthermore, it can be shown that if E is reflexive, then E is order continuous.

Now we can restate lemma 2.3.3 for order continuous Banach function spaces
in the following way.

Lemma 2.4.11. Let E be a order continuous Banach function space, then
E(`n2 )∗ = E×(`n2 ) = E∗(`n2 ), where the duality is given by

〈(xn), (yn)〉 =

∫ n∑
j=1

xjyjdν.

Proof. The is identical to the proof of 2.3.3 for 1 ≤ p < ∞, where we replace
Lp with E and Lq with E× = E∗.

2.4.4 Extension of classical GT

Using the theory in the previous part, we can now finally extend theorem 2.1.6
in the following way.
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Theorem 2.4.12. Let E and F be Banach function spaces and let F be order
continuous. There exists a K ≥ 0 such that for any bounded bilinear form
V : E × F → K, ∣∣∣∣ n∑

i=1

V (xi, yi)

∣∣∣∣ ≤ KG‖V ‖‖(xn)‖E‖(yn)‖E

for all finite sequences x1, . . . , xn ∈ E and y1, . . . , xn ∈ F .

Outline. The proof follows the same pattern as the proofs of theorems 2.3.5 and
2.3.7.

Proof. We will show that this theorem is equivalent with GT, by showing that
this theorem follows from theorem 2.4.5, and implies theorem 2.1.1.

2.4.5 ⇒ 2.4.12: Suppose 2.4.5 holds and let F be order continuous. Now
consider a bounded bilinear form V : E × F → K, then clearly, V defines a
bounded linear map u : E → F ∗ = F× by ux : y 7→ V (x, y), hence∫

(ux)y dν = V (x, y).

Now note that since F× is also a Banach function space, we can apply theo-
rem 2.4.5 to u in order to conclude that finite sequences x1, . . . , xn ∈ E and
y1, . . . , yn ∈ F∣∣∣∣ n∑
j=1

V (xj , yj)

∣∣∣∣ =

∣∣∣∣ ∫ n∑
j=1

(uxj)yjdν

∣∣∣∣ ≤ ‖(uxn)‖F×‖(yn)‖F ≤ K‖(xn)‖E‖(yn)‖F

2.4.12 ⇒ 2.1.1: Note that if X = {1, . . . , n} and µ the counting measure,
then L∞(X,µ) is finite dimensional and order continuous. Therefore the re-
mainder of this proof is identical to 2.1.6⇒2.1.1.
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Chapter 3

Von Neumann algebras and
noncommutative Lp-spaces

In chapter 2 we studied the Grothendieck inequality for bounded linear forms
on C(S) × C(T ) and explored several extensions of this inequality to bilinear
forms on more general commutative function spaces, such as Lp(µ) and Banach
function spaces. A different way we can extend this theorem is by regarding
C(S) and C(T ) as C*-algebras (instead of function spaces) and asking whether
such an inequality can be generalized to arbitrary C*-algebras and other non-
commutative spaces such as noncommutative Lp-spaces. In this chapter, we will
give an introduction into the theory of von Neumann algebras and noncommu-
tative Lp spaces and present several related tools, such as tensor products and
sequence spaces, that we will use in the coming chapters.

Since the purpose of this chapter is to provide a compact background in the
theory necessary for the coming chapters, we shall in most cases only state the
theorems without proving them, or only give sketches of the proofs involved. All
of the theory regarding von Neumann algebras can be found in [21], while the
details regarding the generalized singular value function and noncommutative
Lp-spaces can be found in [3] and [20] respectively. Finally, for more on the
theory of sequence spaces and non-atomic von Neumann algebras and their
importance, we refer the reader to [2].

In chapter 4, we will use the background presented in this chapter to gen-
eralize the theory presented in sections 2.1 through 2.3 to the noncommutative
setting. In chapter 5, we will use the theory on the generalized singular value
function to introduce noncommutative Banach function spaces and generalize
several other concepts from section 2.4.

3.1 Introduction

An easy way to introduce the notion of a noncommutative Lp space, is by the
following classical example.

Example 3.1.1. If we look at the space of bounded operators on a Hilbert space
H with orthonormal basis {ei}i∈I , then we can define the trace of an operator
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x ∈ B(H)+ by

Tr(x) =
∑
i∈I
〈xei, ei〉 .

It can be shown that if Tr(x) <∞, then x must in fact be a compact operator
and therefore has at most countably many eigenvalues. Furthermore, it can be
shown that the trace is independent of the chosen basis and that for compact
x,

Tr(x) =
∑
n≥0

λn(x),

where λ0(x) ≥ λ1(x) ≥ . . . is the decreasing sequence of eigenvalues of x, re-
peated according to multiplicity. (If x ≥ 0, then λn(x) is a positive bounded
sequence, hence we can rearrange λn(x) to be a decreasing sequence.) Recall
now that the absolute value of an operator x ∈ B(H) is given by |x| = (x∗x)1/2

and if x is compact, then the decreasing sequence of singular values of x is given
by µn(x) = λn(|x|). Using this we can construct a Banach space by considering
all compact operators x ∈ B(H) for which

Tr(|x|p) =
∑
n≥0

λn(|x|p) =
∑
n≥0

µn(x)p <∞,

together with a norm ‖ · ‖p given by ‖x‖p = Tr(|x|p)1/p. Note that this space
consists of all x ∈ B(H) for which the sequence of singular values µ0(x) ≥
µ1(x) ≥ . . . is in `p. This space (usually called the space of the pth Schatten-
class operators) is an example of a noncommutative Lp-space. Note that if p = 2,
then this space is actually the Hilbert space of Hilbert-Schmidt operators. Many
of the properties established for the usual Lp-spaces, such as Hölder’s inequality
and the Riesz-Thorin interpolation theorem also hold for these noncommutative
Lp-spaces.

This construction can in fact be made for a large class of C*-algebras, instead
of just B(H), however, for this we will first need to introduce some theory on
von Neumann algebras and traces. After doing so, we will present several tools
in the theory of von Neumann algebras and Lp-spaces, such as the generalized
singular value function, tensor products and spaces of finite sequences.

3.2 Von Neumann algebras

Von Neumann algebras were first studied by John von Neumann in the 1920’s
and 1930’s, who called them rings of operators. Though the formal theory of von
Neumann algebras is quite extensive, we will give a brief glossary of important
concepts and facts. A comprehensive treatise of the theory can be found in
“The theory of Operator Algebras” by M. Takesaki [21].

In order to give a proper definition of a von Neumann algebra, we will first
need to introduce the following topological and algebraic notions.

Definition 3.2.1. Let H be a Hilbert space, then we define the following two
topologies on B(H).
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(i) The weak operator topology (WOT) on B(H) is defined as the weakest vector
space topology such that the map x 7→ 〈xξ, η〉 is continuous for all ξ, η ∈
H.

(ii) The strong operator topology (SOT) on B(H) is defined as the weakest
vector space topology such that the map x 7→ ‖xξ‖H is continuous for all
ξ ∈ H.

Definition 3.2.2. Let A be an algebra and S ⊂ A be a subset. Then we define
the commutant, S′, of S as

S′ = {x ∈ A : sx = xs,∀s ∈ S}.

We define the double commutant of S by S′′ = (S′)′.

Example 3.2.3. The commutant of B(H) in B(H) is given by B(H)′ = C · 1.

Note that a commutant is always equal to its double commutant: S′ = S′′′.
One of the most central theorems in the theory of von Neumann algebras is

known as von Neumann’s double commutant theorem, which also gives us the
definition of a von Neumann algebra.

Theorem 3.2.4. Let H be a Hilbert space andM⊆ B(H) a unital *-subalgebra
(i.e., a subalgebra, closed under the *-operation). Then the following are equiv-
alent.

(i) M′′ =M.

(ii) M is closed in the weak operator topology.

(iii) M is closed in the strong operator topology.

Definition 3.2.5. A *-subalgebra of B(H) that satisfies theorem 3.2.4 is called
a von Neumann algebra.

Since the weak and strong operator topologies are weaker then the norm
topology, a von Neumann algebra is also a unital C*-algebra. Note that since
S′′′′ = S′′, we always have that S′′ is a von Neumann algebra if S is a *-
subalgebra of B(H). We then say that S generates the von Neumann algebra
S′′.

A deep theorem due to Sakai gives us the following characterization of von
Neumann algebras.

Theorem 3.2.6. A C*-algebra M is isometrically *-isomorphic (as a C*-
algebra) to a von Neumann algebra, if and only if there exists a Banach space
X such that M is isometrically isomorphic (as a Banach space) to X∗. We call
X the predual of M.

Example 3.2.7. The following spaces are all von Neumann algebras:

(i) C, the complex numbers, acting by multiplication on themselves is a von
Neumann algebra.

(ii) B(H), the space of bounded operators on a Hilbert space H, is a von
Neumann algebra.
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(iii) If (X,Σ, µ) is a Maharam measure space, then L∞(µ) acting by point-wise
multiplication on the Hilbert space L2(µ) is a commutative von Neumann
algebra.

Analogous to the commutative Gelfand-Naimark theorem, it can be shown that
in fact all commutative von Neumann algebras are isometrically *-isomorphic
to L∞(µ), for some Maharam measure space (X,Σ, µ).

One consequence of this definition, that we will use in our theory of traces
later on, is that if {xa} is a bounded increasing net inM+, then also supα xα ∈
M+.

Projections play a large role in the theory of von Neumann algebras and in
some ways von Neumann algebras can be viewed as C*-algebras that contain
“many projections”.

Definition 3.2.8. Let M be a von Neumann algebra on a Hilbert space H.
Then the lattice of projections P(M) of a von Neumann algebra M is defined
by

P(M) := {p ∈M : p = p∗ = p2}.

If p, q ∈ P(M), then p ≤ q if and only if pq = qp = p. With regard to this order
on P(M), p ∧ q is defined as the orthogonal projection on pH ∩ qH and p ∨ q
as the orthogonal projection on pH + qH.

Theorem 3.2.9. The lattice of projections has the following properties

(i) The partial order presented in definition 3.2.8 actually turns P(M) into a
complete lattice, meaning that every family of projections pα, the infimum
∧αpα and the supremum ∨αpα exist and lie also in P(M).

(ii) The infimum of a family of projections, {pα} is given by the orthogonal
projection on ∩αpαH.

(iii) The supremum of a family of projections, {pα} is given by the orthogonal
projection on spanα{pαH}.

Example 3.2.10. Suppose (X,Σ, ν) is a Maharam measure space, and consider
the associated commutative von Neumann algebra L∞(ν). An element p ∈
L∞(ν) is a projection if and only if p2 = p, hence p can only take values
in {0, 1}. But this means that the projections in L∞(ν) consist of indicator
functions of measurable sets.

Let a ∈Mh and denote by ea the unique spectral measure of a, then it can
be shown that for all ∆ ∈ B(R), we also have that the projection ea(∆) ∈Mh.
This in turn implies that f(a) ∈M for all bounded Borel measurable functions
f . Furthermore, we have that for every von Neumann algebra

(P(M))′′ =M.

In other words, P(M) generates the von Neumann algebra M.
One specific fact that we wish to use in our treatment of C*-algebras, is the

existence of the universal enveloping von Neumann algebra.

Theorem 3.2.11. Let A be a C*-algebra on a Hilbert space H, then there exists
a von Neumann algebra M on a possibly different Hilbert space H ′ such that A
is isometrically *-isomorphic to a *-subalgebra of M and M can be identified
with the double dual A∗∗ of A, as a Banach space.
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3.3 Traces on von Neumann algebras

An important tool in the study of von Neumann algebras is the notion of a trace.
As we will see, a trace on a von Neumann algebra shares many similarities with
integration on a measure space. This is what allows us to use the trace to define
the noncommutative Lp-spaces and other noncommutative function spaces.

Definition 3.3.1. A trace is a map τ : M+ → [0,∞], such that τ(x∗x) =
τ(xx∗) and τ(x+ λy) = τ(x) + λτ(y) for all x, y ∈M+ and λ ∈ [0,∞).

Example 3.3.2.

(i) If H is a Hilbert space andM = B(H) then the usual Tr : B(H)+ → [0,∞]
is a trace.

(ii) If (X,Σ, µ) is a Maharam measure space and M = L∞(µ), then the map
τ : f 7→

∫
f dµ defines a trace.

Traces interact nicely with the lattice of projections, since if p ≤ q, then also
τ(p) ≤ τ(q). A trace may have the following properties

Definition 3.3.3.

(i) A trace is said to be faithful if τ(x) = 0 for x ∈M+ implies that x = 0.

(ii) A trace is said to be normal if supα τ(xα) = τ(supα xα) for every bounded
increasing net {xα} in M+.

(iii) A trace is said to be finite if τ(1) < ∞. If τ(1) = 1, then (M, τ) is called
a noncommutative probability space.

(iv) A trace is said to be semi-finite if for every nonzero x ∈ M+, there exists
some nonzero y ∈M+ such that 0 ≤ y ≤ x and 0 < τ(y) <∞.

We will usually assume that the traces that we are working with ar faithful,
normal and semi-finite.

Remark 3.3.4. When τ is a finite trace, τ can immediately be extended to the
entire von Neumann algebraM. In this situation it can be shown that the trace
has the additional property that τ(xy) = τ(yx) for all x, y ∈M.

3.4 Noncommutative Lp-spaces

Using our theory of traces and von Neumann algebras, we can now give a brief
introduction in the theory of noncommutative Lp-spaces. While the results
of this generally look pleasantly like the results in the case of commutative
Lp-spaces, their proofs often are far more technical. The main culprit in this
complication is the fact it is not necessarily true that |x + y| ≤ |x| + |y| for
operators x, y ∈ B(H). For a comprehensive treatise of the theory, we refer the
reader to [20].

Definition 3.4.1. Let M be a von Neumann algebra and τ a faithful semi-
finite normal trace. For x ∈ M, we define suppx as the smallest projection p,
such that px = xp = x (see theorem 3.2.9). We then define

S+ : = {x ∈M+ : τ(suppx) <∞} and

S : = span S+
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Note that if x ∈ S is self-adjoint and e = suppx, then ef(x) = f(x)e = f(x)
for all Borel-measurable functions f , therefore we also have that |x| ∈ S+ and
|x|p ∈ S+. Using this, we can make the following definition.

Definition 3.4.2. Let 1 ≤ p < ∞ and x ∈ S, then we define the p-norm of x
by

‖x‖p = τ(|x|p)1/p

It can be shown that this actually defines a norm on S. This allows us to
define the noncommutative Lp-space as follows

Definition 3.4.3. Let M be a von Neumann algebra, τ a faithful semi-finite
normal trace and let 1 ≤ p < ∞. Then we define Lp(τ) as the Banach space
obtained by the completion of S with respect to the p-norm.

If p =∞, we define Lp(τ) :=M and write ‖ · ‖∞ = ‖ · ‖M.

It can be shown that the p-norm satisfies the following properties.

Theorem 3.4.4.

(i) Let x ∈ Lp(τ), then ‖x‖p = ‖|x|‖p = ‖x∗‖p.

(ii) The trace τ can be extended to a linear functional on all of L1(τ) such that

|τ(x)| ≤ τ(|x|) = ‖x‖1,

for all x ∈ L1(τ). In this situation, τ(x∗) = τ(x).

(iii) Let 1 ≤ p, q, r ≤ ∞ such that 1
r = 1

p + 1
q , then xy ∈ Lr(τ) for all x ∈ Lp(τ)

and y ∈ Lq(τ) and

‖xy‖r ≤ ‖x‖p‖y‖q.

In particular, when r = 1, then p and q are conjugate numbers and

|τ(xy)| ≤ τ(|xy|) ≤ ‖x‖p‖y‖q.

(This is the noncommutative version of Hölder’s inequality.)

(iv) Let 1 ≤ p < ∞ and let q be its conjugate number, then Lp(τ)∗ = Lq(τ),
where the duality is given by

〈x, y〉 = τ(y∗x).

In particular, we have that

‖x‖p = sup{|τ(xy)| : y ∈ Lq(τ), ‖y‖q ≤ 1}.

Remark 3.4.5. Since we constructed the noncommutative Lp-spaces as the com-
pletion of a normed vector space, it can be quite difficult to show seemingly
simple things like x∗ ∈ Lp(τ) whenever x ∈ Lp(τ) or the fact that xy in (iii)
is well defined. Because of this, this theory is nowadays usually introduced by
considering the elements in Lp(τ) as unbounded operators on H. We will give
more on this in the next section.
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Remark 3.4.6. If (X,Σ, ν) is a Maharam measure space and we take M =
L∞(ν) and τ(f) =

∫
X
fdν, then this construction completely coincides with the

usual construction of the commutative Lp-spaces, hence Lp(ν) = Lp(τ) for all
1 ≤ p ≤ ∞.

Remark 3.4.7. The construction of L1(τ) actually gives us the predual ofM =
L∞(τ) that was mentioned in theorem 3.2.6.

3.5 Measurable operators

There is an alternative way to construct the noncommutative Lp spaces, namely
by means of operators affiliated with M and the generalized singular value
function. Unless otherwise mentioned, we will assume that there exists a faithful
semi-finite normal trace on M, which we will denote by τ .

Recall that for a (possibly unbounded) closed and densely defined self-adjoint
operator a : D(a) → H, there exists a spectral measure ea such that a =∫
R λde

a(λ).

Definition 3.5.1. LetM be a von Neumann algebra on a Hilbert space H. A
closed and densely defined operator x : D(x)→ H is called affiliated withM if
ux = xu for all unitary u ∈M. If this is the case, then we write xηM.

It can be shown that the operators affiliated with a von Neumann algebra
can be characterized as follows.

Theorem 3.5.2. Let M be a von Neumann algebra on a Hilbert space H, let
x be a closed and densely defined operator x : D(x)→ H and let x = v|x| be its
polar decomposition.

Then xηM if and only if v ∈M and e|x|(∆) ∈M for all ∆ ∈ B(R).

Using this concept, we can now extend the concept of the space of measurable
functions S(ν) (see also definition 2.4.2) to the noncommutative setting

Definition 3.5.3. Suppose xηM, then we say that x is τ -measurable if and
only if there exists a λ ≥ 0 such that τ(e|x|(λ,∞)) < ∞. We denote the set of
all τ -measurable operators by S(τ).

Remark 3.5.4. If (X,Σ, ν) is a Maharam measure space and τ : x 7→
∫
xdν is

the associated trace then it can be shown that x ∈ S(ν) if and only if x ∈ S(τ).
Hence we indeed have that S(τ) = S(ν) extends the definition of S(ν) (as
defined in 2.4.2).

Remark 3.5.5. Unfortunately, when x, y ∈ S(τ) then it is not necessarily true
that x+ y ∈ S(τ) and likewise for xy. This is because, even though x and y are
closed, x+ y and xy may fail to be closed. It can however be shown that they
are closable operators (meaning that D(x+ y) and D(xy) can be extended in a
way such that the graphs of x+ y and xy are closed). We can then define x+̂y
(the strong sum of x and y) as the closure of x+ y, and x̂·y (the strong product
of x and y) as the closure of xy.

If we use the strong sum and product, instead of the usual sum and product
for unbounded operators, then we actually have that S(τ) is a complex *-algebra
and M is a *-subalgebra of S(τ).

We will from now on just denote x+ y for x+̂y and likewise xy for x̂·y.
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For measurable operators, we can now generalize the concept of the sequence
of singular values, by defining the following function.

Definition 3.5.6. Let x ∈ S(τ), then we define the generalized singular value
function µ(x) : [0,∞)→ [0,∞] of x by

µ(x; t) := inf{λ ≥ 0 : τ(e|x|(λ,∞)) ≤ t}

The name “generalized singular value function”, can easily be explained by
the following example.

Example 3.5.7. If M = B(H), the space of bounded operators on a Hilbert
space, then for n ≤ t < n+ 1 we indeed have that µ(x; t) = µn(x) = λn(|x|) for
all compact x ∈ S(Tr).

Example 3.5.8. The generalized singular value function is closely related to the
decreasing rearrangement of a function. If (X,Σ, ν) is a Maharam measure
space and M = L∞(ν), then we can define the trace τ : f 7→

∫
X
|f |dν. Then

for f ∈ S(τ) = S(ν), the generalized singular value function is also called the
decreasing rearrangement of |f | and we have

µ(f ; t) = inf{λ ≥ 0 : ν({s ∈ X : |f(s)| ≥ λ}) ≤ t}.

If f is already a decreasing positive function on (0,∞), then we have µ(f) = f
almost everywhere.

We will now list a few of the important properties of the generalized singular
value function. A thorough description of the theory of generalized singular
value functions can be found in [3].

Theorem 3.5.9. Let x, y, z ∈ S(τ), then the following hold.

(i) µ(x) is non-increasing and continuous from the right.

(ii) limt↓0 µ(x; t) = ‖x‖ ∈ [0,∞], where we define ‖x‖ =∞ if x is unbounded.

(iii) µ(x; t) = µ(x∗; t) = µ(|x|; t) and µ(αx; t) = |α|µ(x; t) for all α ∈ C.

(iv) µ(x; t) ≤ µ(y; t) whenever 0 ≤ x ≤ y.

(v) µ(f(|x|); t) = f(µ(x; t)) for all continuous increasing functions f on [0,∞),
with f(0) ≥ 0.

(vi) µ(xyz; t) ≤ ‖x‖‖z‖µ(y; t), where possibly ‖x‖ =∞ or ‖y‖ =∞.

(vii) τ(x) =
∫∞

0
µ(x; t)dt for all x ∈M+.

(viii) τ(xy) = τ(yx), whenever both τ(|xy|) and τ(|yx|) <∞ are finite.

Remark 3.5.10. Using the generalized singular value function, the space S(τ),
can actually be turned into a Hausdorff topological vector space, when we endow
S(τ) with the measure topology. This topology is defined by the neighbourhood
basis given by sets of the form {x ∈ S(τ) : µ(x; δ) ≤ ε}, for ε, δ > 0.

Denote by Lp(0,∞) the usual Lp space on (0,∞), then the generalized singu-
lar value function gives us the following characterization of the noncommutative
Lp-spaces.
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Theorem 3.5.11. We can identify Lp(τ) with the space of all x ∈ S(τ) such
that µ(x) ∈ Lp(0,∞). In addition, we have

‖x‖pp = τ(|x|p) =

∫ ∞
0

µ(x; t)pdt.

Because of this identification, we will from now on consider all elements of
Lp(τ) to be operators in S(τ).

Remark 3.5.12. Using the generalized singular value function, we can also define
the notion of a noncommutative function space. For special types of Banach
function spaces E on (0,∞) we will define E(τ) by considering all x ∈ S(τ)
such that µ(x) ∈ E.

Finally, we will introduce the notion of the submajorization, which will play
an important role in the proof the the noncommutative Khintchine inequality.

Definition 3.5.13. Let λ be the Lebesgue measure and consider the measure
space ([0,∞),B([0,∞)), λ). If f, g ∈ S(λ), then we say that g submajorizes f if
and only if ∫ t

0

µ(f ; s)ds ≤
∫ t

0

µ(g; s)ds

for all t > 0. In this case we write f ≺≺ g.
Suppose x, y ∈ S(τ), then we say that y submajorizes x if and only if

µ(x)≺≺µ(y) as measurable functions on [0,∞). In this case, we also write
x≺≺ y and we have ∫ t

0

µ(x; s)ds ≤
∫ t

0

µ(y; s)ds.

It can be shown that the submajorization has the following properties.

Theorem 3.5.14. Let x, y ∈ S(τ), then the following hold.

(i) µ(x+ y)≺≺µ(x) + µ(y).

(ii) µ(x)− µ(y)≺≺µ(x− y).

(iii) µ(xy)≺≺µ(x)µ(y).

(iv) If y ∈ Lp(τ), x ∈ S(τ) and x≺≺ y, then we also have x ∈ Lp(τ) and
‖x‖p ≤ ‖y‖p.

Remark 3.5.15. There are even more ways to construct the noncommutative
Lp-spaces. One often encountered method is by applying complex interpolation
theory to M and its predual M∗. In this way, one can obtain spaces that lie
in some sense between M = L∞(τ) and M∗ = L1(τ). This construction has
the added advantage that this also works for von Neumann algebras without a
semi-finite trace.
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3.6 Tensor products of von Neumann algebras

An important tool in the construction of von Neumann algebras, is the fact that
the tensor product of two von Neumann algebras can be made into a new von
Neumann algebra. After giving a brief glossary of the theory, we consider two
important examples, namely M⊗Mn(C) and M⊗L∞([0, 1]).

In order to make these constructions, we will first introduce the notion of
the tensor product of two Hilbert spaces.

Definition 3.6.1. Let H1 and H2 be two Hilbert spaces and let V be the
algebraic tensor product of H1 and H2,

V :=

{ n∑
j=1

ξj ⊗ ηj : ξj ∈ H1, ηj ∈ H2, n ∈ N
}
.

We can then define an inner product on V , 〈·, ·〉 by

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = 〈ξ1, ξ2〉H1
〈η1, η2〉H2

and extending by linearity. The tensor product of H1 and H2 is then defined
as the completion of V with respect to this inner product and is denoted by
H1 ⊗H2.

If H1 or H2 is finite dimensional, then the space V in the definition above
is already complete. This means that if H is a Hilbert space (over K), then we
can identify Hn = H ⊕ . . .⊕H = H ⊗Kn.

Now note that if x ∈ B(H1) and y ∈ B(H2), then we can define a linear
map x⊗ y : H1 ⊗H2 → H1 ⊗H2 by

(x⊗ y)(ξ ⊗ η) = (xξ)⊗ (yη).

It can then be shown that x⊗y is in fact a bounded linear operator on H1⊗H2

and

(λx1 + x2)⊗ y = λ(x1 ⊗ y) + x2 ⊗ y
x⊗ (λy1 + y2) = λ(x⊗ y1) + x⊗ y2

(x1 ⊗ y1)(x2 ⊗ y2) = (x1x2)⊗ (y1y2)

(x⊗ y)∗ = x∗ ⊗ y∗

‖x⊗ y‖ = ‖x‖‖y‖.

Using this, we see that ifM1 andM2 are von Neumann algebras of bounded
operators on H1 and H2 respectively, then the algebraic tensor product of M1

and M2,

M1 ⊗M2 := span{x⊗ y : x ∈M1, y ∈M2}

is a *-subalgebra of B(H1⊗H2). Note that while B(H1)⊗B(H2) ⊆ B(H1⊗H2),
the two are not necessarily equal. Similarly, the algebraic tensor product of two
von Neumann algebras is not necessarily a von Neumann algebra. We can
however make the following construction.
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Definition 3.6.2. Let M1 and M2 be von Neumann algebras of bounded
operators on H1 and H2 respectively, then we defineM1⊗M2 := (M1⊗M2)′′.
M1⊗M2 is a von Neumann algebra of bounded operators on H1 ⊗H2, and is
called the tensor product of M1 and M2.

A pleasant fact about the tensor product, is that all information regarding
M1 and M2 is preserved.

Lemma 3.6.3. The tensor product, M1⊗M2 contains M1 and M2 isometri-
cally.

Proof. Clealry the space {x⊗1 : x ∈M1} lies insideM1⊗M2 and ‖x⊗1‖ = ‖x‖
and similar for M2.

We shall now focus on two specific cases of tensor products, namely the
spaces M⊗Mn(C) and M⊗L∞([0, 1]).

3.6.1 The tensor product M⊗Mn(C)
Example 3.6.4. The first case we shall study is M ⊗ Mn(C), where M is a
von Neumann algebra of bounded operators on H, and Mn(C) is the space of
complex n× n-matrices. As we shall see, this space has the nice property that
M⊗Mn(C) =M⊗Mn(C). We shall mostly use this space, in order to simplify
expressions when working with spaces of finite sequences in a von Neumann
algebra.

First note that Mn(C) = B(Cn), hence Mn(C) is a von Neumann algebra of
bounded operators on Cn. We will however use the notation Mn(C), since we
wish to emphasize the matrix structure of this space. We shall first make the
following observations regarding elements in B(H)⊗Mn(C) = B(H)⊗Mn(C).

Denote by {Eij}1≤i,j≤n the standard basis of matrices in Mn(C) (also called
the matrix units in Mn(C)), then for any matrix A = [aij ] ∈ Mn(C) and x ∈
B(H) we have

x⊗A =

n∑
i,j=1

aijx⊗ Eij .

Furthermore, if xij , yij ∈ B(H), then we can calculate the product of elements
in B(H)⊗Mn(C) as( n∑

i,j=1

xij ⊗ Eij
)( n∑

i,j=1

yij ⊗ Eij
)

=
∑
ij

( n∑
k=1

xikyki

)
⊗ Eij .

Combining this, we see that we can identify B(H) ⊗Mn(C) with B(H ⊗ Cn),
by considering them as n× n-matrices, whose entries lie in B(H). Likewise, we
can identifyM⊗Mn(C) with the space n×n-matrices, whose entries lie inM.

Now note that if y ⊗ B ∈ (M⊗Mn(C))′, then we must have (x ⊗ A)(y ⊗
B) = (y ⊗ B)(x ⊗ A) for all x ∈ M, A ∈ Mn(C), hence xy ⊗ AB = yx ⊗ BA.
But by choosing x = 1, we see that B must commute with every A ∈ Mn(C),
hence B = λI, hence B ∈ Mn(C)′. Likewise, we see that y ∈ M′, hence
(M⊗Mn(C))′ =M′ ⊗ CI.
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In a similar way, we see that

(M′ ⊗ CI)′ =M′′ ⊗ (CI)′ =M⊗Mn(C),

hence by the double commutant theorem 3.2.4, M⊗Mn(C) = M⊗Mn(C) is
indeed a von Neumann algebra.

The space Mn(C) comes equipped with a faithful normal semi-finite trace,
Tr. IfM also has a faithful normal semi-finite trace τ , we can endowM⊗Mn(C)
with such a trace, by defining

τ ⊗ Tr : (M⊗Mn(C))+ → [0,∞]

by (τ ⊗ Tr)(x⊗A) = τ(x) Tr(A). This map then clearly satisfies

τ ⊗ Tr :

n∑
i,j=1

xij ⊗ Eij 7→
n∑
j=1

τ(xjj).

Lemma 3.6.5. Let τ be a faithful normal semi-finite trace on M, then τ ⊗Tr
is a faithful normal semi-finite trace on M⊗Mn(C).

Proof. Note that if x̃ =
∑
ij xij ⊗ Eij ∈ (M⊗Mn(C)), then

x̃∗x̃ =

n∑
i,j=1

( n∑
k=1

x∗kixkj

)
⊗ Eij .

Recall now that if ỹ ∈ M⊗Mn(C) and ỹ ≥ 0, then there exists an x̃ ∈ M⊗
Mn(C) such that ỹ = x̃∗x̃. Hence we see that if ỹ ≥ 0, then the elements on the
diagonal of ỹ, are also positive, hence τ ⊗Tr maps positive elements to positive
numbers. Furthermore, we have that

(τ ⊗ Tr)(x̃∗x̃) =

n∑
j=1

n∑
k=1

τ

(
x∗kjxkj

)
=

n∑
j=1

n∑
k=1

τ

(
xkjx

∗
kj

)
= (τ ⊗ Tr)(x̃x̃∗),

hence we see that τ ⊗ Tr is indeed a trace.
Now suppose ỹ ≥ 0 and (τ ⊗Tr)(ỹ) =

∑
j τ(yjj) = 0, then there exists some

x̃ such that x̃∗x̃ = ỹ. But then we clearly have that τ(x∗ijxij) = 0, hence xij = 0
for all i, j. But this means that ỹ = 0, hence τ ⊗ Tr is faithful.

Next suppose x̃ ≤ ỹ, then the diagonal of ỹ − x̃ must contain positive el-
ements, hence in particular, if x̃α is an increasing net, then the diagonal el-
ements (xjj)α must also form increasing nets. Hence we clearly have that
supα(τ ⊗ Tr)(x̃α) = (τ ⊗ Tr)(supα x̃α), since τ is normal. Therefore τ ⊗ Tr
must also be normal.

Unfortunately, showing that τ⊗Tr is semi-finite is somewhat more involved,
as it requires several deeper theorems regarding central projections on von Neu-
mann algebras. For a detailed proof, we refer the reader to [21] I.V.2.

3.6.2 The tensor product M⊗L∞(P)
Example 3.6.6. The second case we shall study is the space M⊗L∞(P), for
some probability space (Ω,F ,P). This space will play a large role in the proof
of the noncommutative Khintchine inequality.
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Clearly, the space L∞(P), regarded as multiplication operators on the Hilbert
space L2(P), is a von Neumann algebra, hence by our previous construction,
the space M⊗L∞(P) is well-defined. Furthermore, we can define a trace τ̂ on
M⊗L∞(P), by

τ̂ : x⊗ f 7→ τ(x)

∫
f(ω)dω.

Remark 3.6.7. It can actually be shown that the spaceM⊗L∞(P) can be iden-
tified with the space of all weakly measurable functions f : Ω → M. (See
appendix A.)

Lemma 3.6.8. τ̂ defines a faithful normal semi-finite trace on M⊗L∞(P).

Proof. We shall show that this holds for τ restricted toM⊗L∞(P). It can then
be shown that these properties then extend to all of M⊗L∞(P) by continuity.
To show how this extension can be made rigorously, we again refer the reader
to [21] I.V.2.

Note that we can view any element in the algebraic tensor product

x̂ =

n∑
j=1

xj ⊗ fj ∈M⊗ L∞(P)

as a function x̂ : Ω→M. Furthermore, we have for such x̂, that

τ̂(x̂) =

n∑
j=1

τ(xj)

∫
fj(ω)dP(ω) =

∫ n∑
j=1

τ(fj(ω)xj)dP(ω) =

∫
τ(x̂(ω))dP(ω).

Using this, we see that if x̂ ≥ 0, then 0 ≤ x̂(ω) ∈M a.e., hence we may assume
that fj ≥ 0 a.e., and xj ≥ 0 for all j.

Now note that if x̂ ≥ 0, then τ̂(x̂) ≥ 0, hence τ̂ is positive. Furthermore,
we see that if x̂ ≥ 0 and τ̂(x̂) = 0, then x̂(ω) = 0 a.e., hence x̂ = 0, hence τ̂
is faithful. Moreover, since f 7→

∫
fdP(ω) defines a normal trace, we have for

every bounded increasing net x̂α in M⊗ L∞(P),

sup
α

∫
τ(x̂α(ω))dP(ω) =

∫
sup
α
τ(x̂α(ω))dP(ω) =

∫
τ(sup

α
x̂α(ω))dP(ω),

hence τ̂ is normal. Finally, we can find for all xj some 0 ≤ yj ≤ xj such that
0 < τ(yj) <∞, then for the associated ŷ =

∑
j yj ⊗ fj , we have 0 < τ̂(ŷ) <∞,

hence τ̂ is positive.
Like in lemma 3.6.5, the difficult part is proving the semi-finite property. A

detailed proof of this can be found in [21] I.V.2.

Remark 3.6.9. In the context of noncommutative Lp-spaces, we will often denote
L∞(τ ⊗ P) := M⊗L∞(P) and write τ ⊗ P := τ̂ . Since we have, on this von
Neumann algebra, a normal faithful semi-finite trace, we can construct the
noncommutative Lp-spaces, which we will then denote by Lp(τ ⊗ P). The Lp-
norm in this situation then becomes

‖F‖pp = τ̂(|F |p) =

∫
Ω

τ(|F (ω)|p)dP(ω).
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As we mentioned before, we have that M is contained isometrically in
M⊗L∞(P), by the isometric *-isomorphism

π : x 7→ x⊗ 1.

We can, however, extend this map uniquely to a *-isomorphism π̂ : S(τ)→ S(τ̂),
given by x 7→ x⊗1. Furthermore, this map actually preserves the singular value
function. In order to see this, we note that if a ∈ S(τ) is self-adjoint and ea is
the unique spectral measure associated with a, then ea⊗1 is a spectral measure
on B(H ⊗ L2(P)) and ∫

λdea(λ)⊗ 1 =

∫
λd(ea ⊗ 1)(λ)

hence ea ⊗ 1 = ea⊗1. But this means that for all B ∈ B(R), we have

τ̂(ea⊗1(B)) = τ̂(ea(B)⊗ 1) = τ(ea(B)),

hence µ(a⊗ 1) = µ(a). Hence, we can view any element in M as an element in
M⊗L∞(P), with the same generalized singular value function.

3.7 Column and row spaces

Recall that in chapter 2, we introduced for finite sequences x1, . . . , xn in a
commutative Lp space, a norm of the form

‖(xn)‖p =

∥∥∥∥( n∑
j=1

|xj |2
)1/2∥∥∥∥

p

.

We used this norm in order simplify inequalities like the one in corollary 2.2.5.
The problem is, that in the commutative case, we have that |x|2 = x∗x = xx∗,
which is only true for normal elements in the noncommutative case. This means
that in general we will have to make a distinction between ‖(

∑
j x
∗
jxj)

1/2‖p and

‖(
∑
j xjx

∗
j )

1/2‖p.
In order negate this problem, we will introduce the Banach space CRnp (τ),

which combines these two norms in such a way that many of the duality prop-
erties that we had in the commutative case are preserved. In order to construct
these spaces, we will first need to introduce two different Banach spaces, namely
the column and row spaces.

Definition 3.7.1. Let x1, . . . , xn ∈ Lp(τ), then we write (xn) = (x1, . . . , xn).
Furthermore, we define

‖(xn)‖p,c :=

∥∥∥∥( n∑
j=1

|xj |2
)1/2∥∥∥∥

p

=

∥∥∥∥( n∑
j=1

x∗jxj

)1/2∥∥∥∥
p

‖(xn)‖p,r :=

∥∥∥∥( n∑
j=1

|x∗j |2
)1/2∥∥∥∥

p

=

∥∥∥∥( n∑
j=1

xjx
∗
j

)1/2∥∥∥∥
p

.

Finally, the spaces Lp(τ, `
n,c
2 ) and Lp(τ, `

n,r
2 ) are the Banach spaces of all finite

sequences of length n in Lp(τ) with the ‖ · ‖p,c and ‖ · ‖p,r norm respectively.
We call these kind of spaces column and row spaces.
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Remark 3.7.2. If A is C*-algebra, we can also define the norms ‖(xn)‖∞,r and
‖(xn)‖∞,c for xj ∈ A, by taking ‖ · ‖∞ equal to the norm of A.

Remark 3.7.3. It can easily be seen that when p 6= 2, these norms are in fact
different (though they are equivalent). Take for instance M = Mn(C), and
xj = Ej1. Then it can be shown that ‖(xn)‖p,c = n1/2 and ‖(xn)‖p,r = n1/p.

We use the terms column and row spaces, because these spaces can be viewed
as subspaces ofM⊗Mn(C). SinceM⊗Mn(C) is a von Neumann algebra and
τ ⊗ Tr is a faithful normal semi-finite trace, we can consider the associated
noncommutative Lp-space, Lp(τ ⊗Tr). As we noted, elements inM⊗Mn(C) =
L∞(τ ⊗Tr) can be viewed as n× n-matrices whose entries are in M = L∞(τ).
Likewise, we can now regard elements of Lp(τ ⊗ Tr) as n × n-matrices, whose
entries lie in Lp(τ).

Suppose now, that x1, . . . , xn ∈ Lp(τ), then we can define

x̃ =

n∑
j=1

xj ⊗ Ej1 ∈ Lp(τ ⊗ Tr).

We then have that

|x̃| =

( n∑
j=1

xj ⊗ Ej1
)∗( n∑

j=1

xj ⊗ Ej1
)1/2

=

( n∑
j=1

x∗jxj ⊗ E11

)1/2

=

( n∑
j=1

x∗jxj

)1/2

⊗ E11

and

‖x̃‖pp = (τ ⊗ Tr)

(∣∣∣∣ n∑
j=1

xj ⊗ Ej1
∣∣∣∣p)=τ

(( n∑
j=1

x∗jxj

)p/2)
= ‖(xn)‖pp,c.

Note that the elements in the first column of x̃ consists exactly of x1, . . . , xn,
hence we see that Lp(τ, `

n,c
2 ) can be identified with the subspace of matrices in

Lp(τ ⊗ Tr) whose only nonzero entries lie in the first column.
Similarily, we can define for y1, . . . , yn ∈ Lp(τ), ỹ =

∑n
j=1 yj ⊗ E1j then we

find that

|ỹ∗| =
( n∑
j=1

yjy
∗
j

)1/2

⊗ E11,

which in turn implies that

‖ỹ‖pp = ‖ỹ∗‖pp = ‖(yn)‖pp,r.

Therefore we likewise have that Lp(τ, `
n,r
2 ) can be identified with the subspace

of matrices in Lp(τ ⊗ Tr) whose only nonzero entries lie in the first row.
This way of viewing the column and row spaces, as closed subspaces of a

more general Lp-space, will allow us to simplify many expressions in which these
kind of norms appear. One important way in which we will use this theory, is
by giving a noncommutative version of lemma 2.3.3.
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Lemma 3.7.4. Let 1 ≤ p < ∞, and let 1 < q ≤ ∞ be its conjugate number.
Then Lp(τ, `

n,c
2 )∗ = Lq(τ, `

n,r
2 ) and Lp(τ, `

n,r
2 )∗ = Lq(τ, `

n,c
2 ), where the duality

is given by

〈(xn), (yn)〉 =

n∑
j=1

τ(yjxj)

Proof. Consider first the space Lp(τ, `
n,c
2 ) and denote for convenience τ⊗Tr = τ̃ .

By applying Hölder’s inequality to Lp(τ̃), we have that

n∑
j=1

τ(yjxj) = τ̃

(( n∑
j=1

yj ⊗ E1j

)( n∑
j=1

xj ⊗ Ej1
))

≤
∥∥∥∥ n∑
j=1

yj ⊗ E1j

∥∥∥∥
q

∥∥∥∥ n∑
j=1

xj ⊗ Ej1
∥∥∥∥
p

= ‖(yn)‖q,r‖(xn)‖p,c.

Let φ be a bounded linear functional on Lp(τ, `
n,c
2 ), then clearly the restriction

to the subspace x ⊗ Ej1, for fixed j, defines a bounded linear functional on
Lp(τ), hence there exists (yn) ∈ Lq(τ, `n,r2 ) such that

φ(x⊗ Eji) = τ(yjx).

Using this, we see that for every (xn) ∈ Lp(τ, `n,c2 ),

φ

( n∑
j=1

xj ⊗ Eji
)

=

n∑
j=1

τ(yjxj).

Now suppose x̃ =
∑
ij xij ⊗ Eij ∈ Lp(τ̃), then we have that

τ̃

(( n∑
j=1

yj ⊗ E1j

)
x̃

)
= τ̃

(∑
j,k,l

yjxkl ⊗ δkjEl1
)

=
∑
k

τ(ykxk1).

Hence this expression only depends on the first column of x̃. Now note that the
map P : x̃ 7→ x(1⊗E11) =

∑
j xj1⊗Ej1, is clearly a contractive projection onto

Lp(τ, `
n,c
2 ), hence, using the fact that Lp(τ̃)∗ = Lq(τ̃), we have

‖(yn)‖q,r =

∥∥∥∥ n∑
j=1

yj ⊗ E1j

∥∥∥∥
q

= sup

{∣∣∣∣τ̃(( n∑
j=1

yj ⊗ E1j

)
x̃

)∣∣∣∣ : x̃ ∈ Lp(τ̃), ‖x̃‖p ≤ 1

}

≤ sup

{∣∣∣∣ n∑
j=1

τ(yjxj1)

∣∣∣∣ : ‖P (x̃)‖p = ‖(xn1)‖p,c ≤ 1

}
.

Combining this, with Hölder’s inequality above, then yields ‖(yn)‖q,r = ‖φ‖,
hence Lp(τ, `

n,c
2 )∗ = Lq(τ, `

n,r
2 ) isometrically. The result for Lp(τ, `

n,r
2 ) then

follows analogously.
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Although the spaces Lp(τ, `
n,c
2 ) and Lp(τ, `

n,r
2 ), share many properties with

the commutative spaces Lp(ν, `
n
2 ), these spaces are unfortunately not the right

spaces in which to consider the Khintchine and other related inequalities. As we
mentioned in earlier, the right space in which to do this, is one that incorporates
both the norms on these spaces.

Definition 3.7.5. Let M be a von Neumann algebra, with a faithful normal
semi-finite trace τ and let 1 ≤ p ≤ ∞. We then define the space CRnp (τ) by

CRnp (τ) := Lp(τ, `
n,c
2 ) = Lp(τ, `

n,r
2 ),

as a set, together with the norm ||| · |||p depending on p as follows.

(i) If 2 < p ≤ ∞, then we define ||| · |||p as the intersection-norm

|||(xn)|||p : = max{‖(xn)‖p,c, ‖(xn)‖p,r}

= max

{∥∥∥∥( n∑
j=1

|xj |2
)1/2∥∥∥∥

p

,

∥∥∥∥( n∑
j=1

|x∗j |2
)1/2∥∥∥∥

p

}
.

(ii) If 1 ≤ p ≤ 2, then we define ||| · |||p as the sum-norm

|||(xn)|||p : = inf{‖(x′n)‖p,c + ‖(x′′n)‖p,r}

= inf

{∥∥∥∥( n∑
j=1

|x′j |2
)1/2∥∥∥∥

p

+

∥∥∥∥( n∑
j=1

|(x′′j )∗|2
)1/2∥∥∥∥

p

}
,

where the infimum runs over all possible decompositions xi = x′i + x′′i ,
with x′i, x

′′
i ∈ Lp(τ).

It can be shown that these spaces are Banach spaces that are naturally in
duality with each other.

Lemma 3.7.6. Let 1 ≤ p ≤ ∞, then CRnp (τ) is a Banach space. If 1 ≤ p <∞,
then CRnp (τ)∗ = CRnq (τ), where p and q are conjugate numbers and the duality
is given by

〈(xn), (yn)〉 =

n∑
j=1

τ(yjxj).

Proof. This follows directly from a result, usually presented in the context of
interpolation theory, that states that if X and Y are Banach-spaces, such that
X and Y are continuously embedded in the same Hausdorff topological vector
space, then X ∩ Y and X + Y with the intersection and sum-norm are Banach
spaces. If, in addition, X∩Y lies densely in X and Y , then (X+Y )∗ = X∗∩Y ∗.

Clearly this holds in the case where X = Lp(τ, `
n,r
p ) and Y = Lp(τ, `

n,c
p ),

where they are embedded in the space of finite sequences in S(τ), the space of
measurable operators. (See remark 3.5.10.)

For a detailed proof of the general statement, we refer the reader to [12].

Remark 3.7.7. Note that similar to remark 3.7.2, we can also define |||(xn)|||∞
for xj in a C*-algebra A.
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3.8 Non-atomic von Neumann algebras

In this part, we will consider the probability measure space ([0, 1],B([0, 1)], λ),
where λ denotes the usual Lebesgue measure. As we have seen in example 3.6.6,
we can construct a new von Neumann algebra M⊗L∞([0, 1]). One important
property of this specific von Neumann algebra, is that it does not have any
minimal projections.

Definition 3.8.1. A projection p ∈ P(M) is called minimal if and only if
q ∈ P(M) and q ≤ p implies that either q = 0 or q = p. Von Neumann algebras
that do not contain any minimal projections are called non-atomic.

Example 3.8.2. Note that if B ∈ B([0, 1]) and λ(B) 6= 0, then χB ∈ L∞([0, 1])
is nonzero. Furthermore we can find some B′ ⊂ B, such that 0 < µ(B′) <
µ(B) ≤ 1. In particular, this means that if f ∈ L∞([0, 1]) is a projection (see
example 3.2.10), then there exists some projection g ∈ L∞([0, 1]), such that
fg = gf = g, hence g ≤ f . From this we can conclude that the space L∞([0, 1])
is non-atomic.

More generally, it can be shown that this holds for all L∞(ν), where (X,Σ, ν)
is a non-atomic Maharam measure space (meaning that there does not exists
an S ∈ Σ, with ν(S) > 0 such that for every measurable S′ ⊂ S, ν(S) > ν(S′)
implies ν(S′) = 0.)

Remark 3.8.3. Note that if (Ω,F ,P) is a probability measure space, then L∞(P)
is not necessarily non-atomic.

Lemma 3.8.4. Let M be a von Neumann algebra, then M⊗L∞([0, 1]) is non-
atomic.

Proof. Note that if f ∈ L∞([0, 1]) is a projection, then 1⊗f is also a projection
and 1⊗ f commutes with all elements in M⊗L∞([0, 1]).

Suppose now that 0 6= p ∈ P(M⊗L∞([0, 1])), then we wish to construct a
nonzero q 6= p, such that q ≤ p. Since p ≤ 1⊗ 1, the set

S = {f ∈ P(L∞([0, 1]) : p ≤ 1⊗ f}.

is non-empty, hence we can define e = inf S = ∧f∈Sf .
Though this requires slightly more theory on the topological aspects of the

tensor product, it can be shown that

p ≤
∧
f∈S

(1⊗ f) = 1⊗ e,

hence in particular e 6= 0. But since e ∈ L∞([0, 1]), we can find some nonzero
f 6= e, such that f ≤ e. We then define q ∈ P(M⊗L∞([0, 1])) by

q := (1⊗ f)p = p(1⊗ f).

We then in particular have that q ≤ p and since e 6= f , q 6= p. Furthermore,
q = 0 would imply that p ≤ (1 ⊗ f)⊥ = 1 ⊗ f⊥, where f⊥ = (1 − f). But this
would mean by definition that e ≤ f⊥. But since f ≤ e, this would mean that
f = 0, which is a contradiction. Hence q 6= 0.
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Non-atomic von Neumann algebras can intuitively be viewed as von Neu-
mann algebras, in which there lies a continuum of projections between any two
comparable projections. In the case of L∞([0, 1]), we have that χA ≤ χB , when-
ever A ⊆ B, hence χA ≤ χC ≤ χB , whenever A ⊆ C ⊆ B. Something similar
can be shown, though we shall not prove it here, for general non-atomic von
Neumann algebras.

Theorem 3.8.5. Let M be non-atomic and p, q ∈ P(M) such that p ≤ q. If
θ ∈ R such that τ(p) ≤ θ ≤ τ(q), then there exists a projection e ∈ P(M) such
that p ≤ e ≤ q and τ(e) = θ.

For a proof, we refer the reader to [2].
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Chapter 4

Noncommutative
inequalities

Using the material from the previous chapter, we are finally ready to generalize
the results of sections 2.1 through 2.3 to a noncommutative setting. In particu-
lar, we will show that Grothendieck’s theorem not only holds for C(S), but for
arbitrary C*-algebras, albeit with a slightly larger constant. Furthermore, we
will extend the Khintchine inequality, as given in corollary 2.2.5, to arbitrary
(possibly noncommutative) Lp-spaces.

In the last part, we will use the noncommutative Khintchine inequality to
generalize the Marcinkiewicz-Zygmund inequality to noncommutative Lp spaces,
and analogous to our constructions in 2.3, the author will use this inequality to
prove a noncommutative analogue of theorem 2.3.7.

4.1 Preliminaries

In the proofs of both the noncommutative Khintchine and Grothendieck in-
equality, we shall make use of the following lemma.

Lemma 4.1.1. Let A be a unital C∗-algebra and let rj be an i.i.d. sequence of
Rademacher random variables. Then∥∥∥∥∫ ( n∑

k=1

rk(ω)xk

)4

dP(ω)

∥∥∥∥ ≤ 3

∥∥∥∥ n∑
k=1

x2
k

∥∥∥∥2

,

for any finite sequence of self-adjoint x1, . . . , xn ∈ Ah.

Outline. The proof combines the orthogonality properties of the Rademacher
random variables, with several facts regarding positive elements of C*-algebras.
In particular, we use that if x, y ∈ Ah, then (i(xy − yx)) ∈ Ah and therefore
(i(xy − yx))2 ≥ 0. Furthermore we use that if y ∈ Ah, then y ≤ ‖y‖ = 1‖y‖.
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Proof. First we note that( n∑
j=1

rj(ω)xj

)2

=

n∑
j=1

x2
j +

n∑
i,j=1
i6=j

ri(ω)rj(ω)xixj

=

n∑
j=1

x2
j +

∑
1≤i<j≤n

ri(ω)rj(ω)(xixj + xjxi).

Since the ri(ω) are orthonormal, we have that if i < j and k < l, then∫
rirjrkrldP 6= 0 if and only if i = k and j = l. Hence∫ ( n∑

j=1

ri(ω)xj

)4

dP(ω) =

( n∑
j=1

x2
j

)2

+
∑

1≤i<j≤n

(xixj + xjxi)
2

Clearly, this means that
∫

(
∑
j rj(ω)xj)

4dP(ω) ≥ 0. Now note that if x, y ∈ Ah,

then (i(xy − yx)) ∈ Ah, hence (i(xy − yx))2 ≥ 0. By expanding this, we find
that (xy + yx)2 ≤ 2(xy2x+ yx2y), hence∑
1≤i<j≤n

(xixj + xjxi)
2 ≤ 2

∑
1≤i<j≤n

(xi(xj)
2xi + xj(xi)

2xj)

= 2

( n∑
j=1

xi +

( ∑
1≤i<j≤n

x2
j

)
xi +

n∑
j=1

xj

( ∑
1≤i<j≤n

x2
i

)
xj

)

= 2
∑
i

xi

( n∑
i,j=1
i 6=j

x2
j

)
xi ≤ 2

∑
i

xi

(∑
j

x2
j

)
xi.

Finally note that since y ≤ ‖y‖, we have xyx ≤ x‖y‖x = ‖y‖x2, hence∫ ( n∑
j=1

rj(ω)xj

)4

dP(ω) ≤
( n∑
j=1

x2
j

)2

+ 2

n∑
i=1

xi

( n∑
j=1

x2
j

)
xi

≤
( n∑
i=1

x2
i

)2

+ 2

∥∥∥∥ n∑
j=1

x2
j

∥∥∥∥ n∑
i=1

x2
i .

If 0 ≤ a and a ≤ b, then ‖a‖ ≤ ‖b‖, hence taking norms on both sides and
applying the triangle inequality we find∥∥∥∥∫ ( n∑

j=1

rj(ω)xj

)4

dP(ω)

∥∥∥∥ ≤ ∥∥∥∥( n∑
j=1

x2
j

)2

+ 2

(∥∥∥∥ n∑
j=1

x2
j

∥∥∥∥) n∑
i=1

x2
i

∥∥∥∥
≤ 3

∥∥∥∥∑
i

x2
i

∥∥∥∥2

,

which completes the proof.

4.2 The Grothendieck Inequality

In his résumé, Grothendieck already conjectured a noncommutative version of
theorem 2.1.4. After some work, by Pisier in [18], this was finally proven, in its
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optimal form, by Haagerup in [7]. Recall from our preliminaries in section 1.2
that if A is a C*-algebra, then we denote by S(A) the set of states on A. The
noncommutative version of Grothendieck’s theorem claims that if V : A×B → C
is a bounded bilinear form on C*-algebras A and B, then there exist states
φ1, φ2 ∈ S(A) and ψ1, ψ2 ∈ S(B) such that,

|V (x, y)| ≤ K(φ1(x∗x) + φ2(xx∗))1/2(ψ1(y∗y) + ψ2(yy∗))1/2, (4.1)

for all x ∈ A and y ∈ B.
The proof by Haagerup, which we will mimic here, consists of two parts.

In the first part, we will show that Grothendieck’s theorem holds for arbitrary
C*-algebras with K = 5

2 . In the second part, we will refine the constant to show
that K = 1 suffices. If A and B are commutative C*-algebras, then (4.1) simply
reduces to the statement made in theorem 2.1.4 with KG = 2.

After proving the noncommutative Grothendieck inequality we will consider
several alternative formulations as well as a noncommutative version of the little
Grothendieck inequality.

4.2.1 First inequality

In order to show that (4.1) holds, we will first show that it holds for unital
C*-algebras, under the additional assumptions that ‖V ‖ = V (1, 1) = 1 and
with K = 5

2 . Under this assumpiton, we first estimate the real part of V (a, b)
for self-adjoint a and b in lemma 4.2.2, by means of a Taylor expansion. Next
we estimate the imaginary part of V (p, q) for projections p and q in 4.2.3 and
use this, together with some spectral integration theory from appendix A, to
estimate the imaginary part of V (a, b) for self-adjoint a and b. Finally, we will
generalize our estimates by making, among other things, use of the theory of
ultraproducts resulting in lemma 4.2.7.

Our initial “guesses” for what the states in (4.1) will be, can be easily ob-
tained from V .

Lemma 4.2.1. Let A and B be unital C*-algebras and V : A × B → C a
bounded bilinear form such that ‖V ‖ = V (1, 1) = 1. If we define φ : A → C and
ψ : B → C such that

φ(x) = V (x, 1) ψ(y) = V (1, y),

then φ and ψ are states.

Proof. We clearly have φ(1) = ‖φ‖ = 1. Now suppose x ≥ 0 and ‖x‖ ≤ 1, then
‖1− x‖ ≤ 1 hence φ(1− x) ≤ 1. But then 1 = φ(1) ≤ 1 + φ(x), hence φ(x) ≥ 0.
But this means that φ is a positive linear functional of norm 1. The proof for
ψ is identical.

Lemma 4.2.2. Let A, B, V , φ and ψ be as in lemma 4.2.1, then

|ReV (a, b)| ≤ φ(a2)1/2ψ(b2)1/2,

for all a ∈ Ah and b ∈ Bh.
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Outline. The most important step in the proof, consists of calculating the Taylor
expansion of V (eita, eitb). Together with the fact that |V (eita, eitb)| ≤ 1 (since
‖V ‖ = 1 and for a ∈ Ah and b ∈ B we have ‖eita‖, ‖eitb‖ ≤ 1), this step yields
an estimate of V (a, b) in terms of V (a2, 1) = φ(a2) and V (1, b2) = ψ(b2). The
remainder of the proof then consists of manipulating this estimate in order to
obtain the desired result.

Proof. Suppose a ∈ A and b ∈ B are self-adjoint, then by the continuous func-
tional calculus, we can define u(t) = eita and v(t) = eitb. But by using the
Taylor-expansion, we see that

ReV (u(t), v(t)) = ReV (1 + ita− 1

2
t2a2, 1 + itb− 1

2
t2b2) +O(t3)

= 1− 1

2
t2φ(a2)− 1

2
t2ψ(b2)− t2 ReV (a, b) +O(t3).

Now since |eitα| = 1 for all α ∈ R, we have ‖u(t)‖ = ‖v(t)‖ = 1, hence
ReV (u(t), v(t)) ≤ ‖V ‖ ≤ 1. But this means that

1− 1

2
t2φ(a2)− 1

2
t2ψ(b2)− t2 ReV (a, b) +O(t3) ≤ 1

1

t2
O(t3)− ReV (a, b) ≤ 1

2
φ(a2) +

1

2
ψ(b2)

lim
t→0

1

t2
O(t3)− ReV (a, b) = −ReV (a, b) ≤ 1

2
φ(a2) +

1

2
ψ(b2)

−ReV (a, b) ≤ 1

2
φ(a2) +

1

2
ψ(b2).

If we then substitute a → −a, we also find that ReV (a, b) ≤ 1
2φ(a2) + 1

2ψ(b2),
hence

|ReV (a, b)| ≤ 1

2
φ(a2) +

1

2
ψ(b2).

Since V is bilinear, we find that the following must also hold for all λ > 0,

|ReV (a, b)| = |ReV (λa, λ−1b)| ≤ λ2

2
φ(a2) +

1

2λ2
ψ(b2).

But as a function of λ, the right hand side attains its minimum in λ0 = ψ(b2)1/4

φ(a2)1/4
,

hence we can conclude that

|ReV (a, b)| ≤ λ2
0

2
φ(a2) +

1

2λ2
0

ψ(b2) = φ(a2)1/2ψ(b2)1/2.

In order to estimate the imaginary part of V (a, b) for self-adjoint a and b, we
will first estimate it in terms of projections. Some spectral integration theory
from appendix A, together with lemma 4.1.1 will then yield the desired result.

Lemma 4.2.3. Let A, B, V , φ and ψ be as in lemma 4.2.1, then

| ImV (p, q)|2 ≤ φ(p)(1− φ(p))ψ(q)(1− ψ(q)),

for all projections p ∈ A and q ∈ Bh.
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Outline. We start the proof by making several observations regarding ImV
which rely on the fact that V (p, 1), V (1, q), V (1, 1) ∈ R. We then construct x
from p and y from q, both of which contain parameters α, β ∈ [0, 2π]. In order
to simplify many of the expressions, we introduce the notation ε := 4V (p, q),
γ := 2φ(p)− 1 = 2V (p, 1)− 1 and δ := 2ψ(q)− 1 = 2V (1, q)− 1.

We then separately consider the cases where 0 < φ(p), ψ(q) < 1 and the cases
where φ(p) ∈ {0, 1} or ψ(q) ∈ {0, 1}. After applying some complex analysis and
picking in each of these cases α and β in the right way, we are able to estimate
ε = 4V (p, q) in terms of γ = 2φ(p)− 1 and δ = 2ψ(q)− 1.

Proof. Note that since φ and ψ are states, V (p, 1), V (1, q) ≥ 0, hence the fol-
lowing identities hold

ImV (1− p, q) = Im(p, 1− q) = − ImV (p, q)

ImV (1− p, 1− q) = ImV (p, q)

V (p, q)− V (1− p, 1− q) = ψ(q) + φ(p)− 1

V (1− p, q)− V (p, 1− q) = ψ(q)− φ(p).

Now suppose α, β ∈ [0, 2π] and define

x : = eiαp+ eiβ(1− p) y : = q + e−i(α+β)(1− q),

then we have x∗x = y∗y = 1, hence ‖x‖ = ‖y‖ = 1. Furthermore, we have

V (x, y) = eiαV (p, q) + e−iαV (1− p, 1− q) + e−iβV (p, 1− q) + eiβV (1− p, q).

Now note that for α ∈ [0, 2π] and z ∈ C, Im(eiαz) = Im((cos(α) + i sin(α))z),
hence

ImV (x, y) = Im(eiαV (p, q)) + Im(e−iαV (1− p, 1− q))
+ Im(e−iβV (p, 1− q)) + Im(eiβV (1− p, q))

= Re(V (p, q)− V (1− p, 1− q)) sinα

+ Re(V (1− p, q)− V (p, 1− q)) sinβ

+ Im(V (p, q) + V (1− p, 1− q)) cosα

+ Im(V (p, 1− q) + ImV (1− p, q)) cosβ

= (ψ(q) + φ(p)− 1) sinα

+ (ψ(q)− φ(p)) sinβ + 2 ImV (p, q)(cosα− cosβ).

If we denote γ = 2φ(p)− 1 and δ = 2ψ(q)− 1, and ε = 4 ImV (p, q), then we get

2 ImV (x, y) = (γ + δ) sinα+ (δ − γ) sinβ + ε(cosα− cosβ). (4.2)

Now note that (
(1− γ2)1/2(1− δ2)1/2

1± γδ

)2

+

(
δ ± γ
1± γδ

)2

= 1,

hence if we assume 0 < φ(p) < 1 and 0 < ψ(q) < 1 (and hence −1 < γ, δ < 1),
we can pick α and β such that

cos(α) =
(1− γ2)1/2(1− δ2)1/2

1 + γδ
sin(α) =

δ + γ

1 + γδ

cos(β) = − (1− γ2)1/2(1− δ2)1/2

1− γδ
sin(β) =

δ − γ
1− γδ

.
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Together with the fact that ImV (x, y) ≤ |V (x, y)| ≤ 1, we find that

2 ≥ (γ + δ)2

1 + γδ
+

(δ − γ)2

1− γδ
+ 2ε(1− γ2)1/2(1− δ2)1/2 1

1− γ2δ2

Multiplying both sides with (1− γ2δ2) and noting that

2(1− γ2δ2)− (γ + δ)2(1− γδ)− (δ − γ)2(1 + γδ) = 2(1− γ2)(1− δ2),

then allows us to reduce this inequality to

ε ≤ (1− γ2)1/2(1− δ2)1/2.

We can of course still use these arguments if we change the signs of α, and β,
in which case we find

−ε ≤ (1− γ2)1/2(1− δ2)1/2,

hence we can conclude that |ε| ≤ (1− γ2)1/2(1− δ2)1/2. Substituting φ(p) and
ψ(b) back into this inequality then yields

| ImV (p, q)| = 1

16
|ε| ≤ 1

16
(1− γ2)1/2(1− δ2)1/2 = φ(p)φ(1− p)ψ(q)ψ(1− q).

Now suppose φ(p) = 1, then γ = 1, hence if we pick α = π/2 and β = 3π/2, the
right-hand side of (4.2) reduces to

(γ + δ) sinα+ (δ − γ) sinβ + ε(cosα− cosβ) = 2.

But this means that the left-hand side is maximal at (π/2, 3π/3), hence the
partial derivatives with respect to α and β are zero at (π/2, 3π/3), which means
that

(γ + δ) cosα+ (δ − γ) cosβ − ε(sinα− sinβ) = −2ε = 0.

Using this, we can conclude that 4 ImV (p, q) = ε = 0, so since φ(p), φ(1−p), ψ(q)
and ψ(1 − q) are all positive, the inequality is true. The case where φ(p) = 0,
follows analogously by considering the projection p′ = 1−p and the cases where
ψ(q) = 0 and ψ(q) = 1 follow analogously to these two.

Lemma 4.2.4. Let A, B, V , φ and ψ be as in lemma 4.2.1, then

| ImV (a, b)| ≤ φ(a4)1/4ψ(b4)1/4,

for all a ∈ Ah and b ∈ Bh.

Outline. In this proof, we wish to apply our previous lemma in order to obtain
an estimate of ImV (a, b) for all self-adjoint a and b. We do this, by expressing
a and b in terms of projections, by means of some spectral integration theory.
This also gives us the first difficulty, since we do not necessarily have that the
spectral projections of a and b, ea and eb are contained in A. This then means
that V (ea(∆), eb(∆′)) is not necessarily defined for all ∆,∆′ ⊆ R.

To circumvent this problem, we pass from A to the universal enveloping von
Neumann algebra of A. Since A lies densely in A∗∗, and likewise for B, we can

53



extend V continuously to Ṽ on A∗∗×B∗∗. Furthermore, since A∗∗ and B∗∗ are
von Neumann algebras, we then have that Ṽ (ea(∆), eb(∆′)) is well defined for
all ∆,∆′ ⊆ R. Analogous to how we defined φ and ψ, we can then also define
φ̃ on A∗∗ and ψ̃ on B∗∗.

Using some partial integration theory from appendix A, we can then find
projection valued functions e+ : R→ A∗∗ and f+ : R→ A such that

ImV (a, b) =

∫ ∞
−∞

∫ ∞
−∞

Ṽ (e+(t1), f+(t2))dt1dt2.

By applying our previous lemma to the integrand, we then find an estimate of
V (a, b) in terms of two integrals containing φ(e+(t)) and ψ(f+(t)) respectively.
By then estimating the integrands pointwise using a parameter δ, and making a
smart choice for δ, we can estimate these integrals in terms of φ(a4) and ψ(b4).

Proof. By the spectral theorem for self-adjoint operators, there exist unique
spectral measures ea on σ(a) and eb on σ(b), such that

a =

∫
R
λdea(λ) b =

∫
R
λdeb(λ)

Now recall that the universal enveloping von Neumann algebra of A, can be
identified with the A∗∗ as a Banach space. Furthermore, we can write a = a+−
a−, b = b+ − b−, where a+, a− ∈ W ∗(a) ⊂ A∗∗ (where W ∗(a) denotes the von
Neumann algebra generated by a), b+, b− ∈ W ∗(b) ⊂ B∗∗. Using lemma A.2.1,
we can then write

a+ =

∫
R+

λdea(λ) =

∫ ∞
0

e+(t)dt a− =

∫
R−

(−λ)dea(λ) =

∫ 0

−∞
e−(t)dt

b+ =

∫
R+

λdeb(λ) =

∫ ∞
0

f+(t)dt b− =

∫
R−

(−λ)deb(λ) =

∫ 0

−∞
f−(t)dt,

where e+(t) = ea[t,∞), f+(t) = eb[t,∞), e−(t) = 1 − e+(t) and f−(t) = 1 −
f+(t).

Furthermore, we can extend V : A × B → C to a bounded bilinear form
Ṽ : A∗∗ ×B∗∗ → C, with ‖V ‖ = ‖Ṽ ‖. Using this, we can define extensions of φ
and ψ by φ̃(x) = Ṽ (x, 1) and ψ̃(y) = Ṽ (1, y).

Now note that for every a ∈ A∗∗ and b ∈ B∗∗, the bounded linear functionals
x 7→ Ṽ (x, b) and y 7→ Ṽ (a, y) are continuous in the weak*-topology on A∗∗ (i.e.,
they are σ-weakly continuous).

Furthermore, we have that since x 7→ V (x, 1) if a positive linear functional
and since A and A∗∗ have the same unit, x 7→ Ṽ (x, 1) must also be a positive
linear functional, hence Ṽ (x, 1) ∈ R for all x ∈ A∗∗h and likewise, Ṽ (1, y) ∈ R
for all y ∈ B∗∗h . If we apply this to e+, e−, f+ and f−, we find that for all
self-adjoint x ∈ A∗∗h and y ∈ B∗∗h ,

Im Ṽ (e+(t), y) = Im Ṽ (1− e−(t), y)

= − Im Ṽ (e−(t), y) = − Im Ṽ (1− e+(t), y)

Im Ṽ (x, f+(t)) = Im Ṽ (x, 1− f−(t))

= − Im Ṽ (x, f−(t)) = − Im Ṽ (x, 1− f+(t)).
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Using the above integral representations of a and b and the fact that V is
separately σ-weakly continuous, we find that

| Im Ṽ (a, b)| =
∣∣∣∣Im Ṽ

(∫ ∞
0

e+(t1)dt1, b

)
− Im Ṽ

(∫ 0

−∞
e−(t1)dt1, b

)∣∣∣∣
=

∣∣∣∣∫ ∞
0

Im Ṽ
(
e+(t1), b

)
dt1 −

∫ 0

−∞
Im Ṽ

(
e−(t1), b

)
dt1

∣∣∣∣
=

∣∣∣∣∫ ∞
−∞

Im Ṽ
(
e+(t1), b

)
dt1

∣∣∣∣ ≤ ∫ ∞
−∞

∣∣∣Im Ṽ
(
e+(t1), b

)∣∣∣ dt1.
Applying the same to b, we find that

| Im Ṽ (a, b)| ≤
∫ ∞
−∞

∫ ∞
−∞

∣∣∣Im Ṽ
(
e+(t1), f+(t2)

)∣∣∣ dt2dt1
Now since e+(t) and f+(t) are projections, we can apply lemma 4.2.3 to Ṽ , to
find that

| ImṼ (a, b)| ≤
∫ ∞
−∞

∫ ∞
−∞

(
φ̃(e+(t1))φ̃(e−(t1))ψ̃(f+(t2))ψ̃(f−(t2))

)1/2

dt2dt1

=

(∫ ∞
−∞
φ̃(e+(t1))1/2φ̃(e−(t1))1/2dt1

)(∫ ∞
−∞
ψ̃(f+(t2))1/2ψ̃(f−(t2))1/2dt2

)
.

It now remains to show that∫ ∞
−∞

φ̃(e+(t))1/2φ̃(e−(t))1/2dt ≤
√

2φ̃(a4)1/4∫ ∞
−∞

ψ̃(f+(t))1/2ψ̃(f−(t))1/2dt ≤
√

2ψ̃(b4)1/4.

In order to prove the first of these equations, we define ζ(t) = φ̃(e−(t)). Because
φ̃ is σ-weakly continuous, it is WOT-continuous on the unit-sphere, hence we
have that ζ is right continuous. Furthermore, ζ is increasing and 0 ≤ ζ(t) ≤ 1
for all t. Using this, we have that∫ ∞

−∞
φ̃(e+(t))1/2φ̃(e−(t))1/2dt =

∫ ∞
−∞

(1− ζ(t))1/2ζ(t)1/2dt.

However, since for all α ∈ [0, 1], we have α(1 − α) ≤ 1
4 , α(1 − α) ≤ α and

α(1− α) ≤ (1− α), we have for every δ > 0,

ζ(t)(1− ζ(t)) ≤

 ζ(t), t < −δ
1
4 , −δ ≤ t ≤ δ
1− ζ(t), t > δ.
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Using the Cauchy-Schwarz inequality, we find that∫ ∞
0

(1− ζ(t))1/2ζ(t)1/2dt ≤
∫ δ

0

1

2
dt+

∫ ∞
δ

(1− ζ(t))1/2dt

=
δ

2
+

∫ ∞
δ

(t−3)1/2(t3(1− ζ(t)))1/2dt

≤ δ

2
+

(∫ ∞
δ

t−3dt

)1/2(∫ ∞
δ

t3(1− ζ(t))dt

)1/2

≤ δ

2
+

(
1

2δ2

∫ ∞
0

t3(1− ζ(t))dt

)1/2

and likewise∫ 0

−∞
(1− ζ(t))1/2ζ(t)1/2 ≤ δ

2
+

(
1

2δ2

∫ 0

−∞
(−t)3ζ(t)dt

)1/2

.

Now note that α1/2 + β1/2 ≤ (2(α + β))1/2 (this follows from the inequality of
the arithmetic and geometric mean). Applying this to the sum of the previous
two inequalities, we find∫ ∞
−∞

(1− ζ(t))1/2ζ(t)1/2dt

≤ δ +

(
1

2δ2

∫ 0

−∞
(−t)3ζ(t)dt

)1/2

+

(
1

2δ2

∫ ∞
0

t3(1− ζ(t))dt

)1/2

≤ δ +
1

δ

(∫ 0

−∞
(−t)3ζ(t)dt+

∫ ∞
0

t3(1− ζ(t))dt

)1/2

Furthermore, since ζ is right continuous, ζ(t) = 1 for t > ‖a‖ and ζ(t) = 0 for
t < −‖a‖, we can again apply lemma A.2.1 to find∫ 0

−∞
(−t)3ζ(t)dt = φ̃

(∫ 0

−∞
(−t)3e−(t)dt

)
=

1

4
φ̃

(∫
R−

λ4dea(λ)

)
∫ ∞

0

t3(1− ζ(t))dt = φ̃

(∫ ∞
0

t3e+(t)dt

)
=

1

4
φ̃

(∫
R+

λ4dea(λ)

)
.

Using this, we find that for all δ > 0,∫ ∞
−∞

(1− ζ(t))1/2ζ(t)1/2dt ≤ δ +
1

4δ

(
φ̃

(∫
R−
z4dea(λ)

)
+ φ̃

(∫
R+

z4dea(λ)

))1/2

≤ δ +
1

2δ
φ̃

(∫
R
z4dea(λ)

)1/2

= δ +
1

2δ
φ̃(a4)1/2.

The right hand side assumes its minimum when δ = φ(a4)1/42−1/2, in which
case we find∫ ∞

−∞
φ̃(e+(t))1/2φ̃(e−(t))1/2dt =

∫ ∞
−∞

(1− ζ(t))1/2ζ(t)1/2dt ≤
√

2φ̃(a4)1/4
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Identically, we can show that∫ ∞
−∞

ψ̃(f+(t))1/2ψ̃(f−(t))1/2dt ≤
√

2ψ̃(b4)1/4.

In conclusion, we now have that for all a ∈ A∗∗h and b ∈ B∗∗h ,

| Im Ṽ (a, b)| ≤
(√

2φ̃(a4)1/4
)(√

2ψ̃(b4)1/4
)

= 2φ̃(a4)1/4ψ̃(b4)1/4

The restriction of Ṽ , φ̃ and ψ̃ to A and B, then yields

| ImV (a, b)| ≤ 2φ(a4)1/4ψ(b4)1/4

For all a ∈ Ah and b ∈ Bh.

Lemma 4.2.5. Let A, B and V be as in lemma 4.2.1, then there exist states
φ′ ∈ S(A), ψ′ ∈ S(B) such that,

| ImV (a, b)| ≤ 4φ′(a2)1/2ψ′(b2)1/2,

for all a ∈ Ah and b ∈ Bh.

Outline. The way to find the states φ′ and ψ′ from the lemma, is by applying
theorem B.2.1 in the appendix. In order to do this, we shall first need to
find a way to estimate |

∑n
j=1 ImV (aj , bj)|. We do this by using the fact that∫ ∑

i,j rirjV (ai, bj)dP =
∑
j V (aj , bj) and then applying our previous lemma

pointwise to the integrand on the left hand side. We then apply ‖φ‖ = ‖ψ‖ = 1
and lemma 4.1.1, in order to obtain an estimate to which we can apply theorem
B.2.1.

Proof. Let n ∈ N, a1, . . . , an ∈ Ah and b1, . . . , bn. Since the ri are orthonormal,
we have that∫

V

( n∑
i=1

ri(ω)ai,
n∑
j=1

rj(ω)bj

)
dP(ω) =

n∑
i=1

V (ai, bi).

Now define φ ∈ S(A) and ψ ∈ S(B) as in lemma 4.2.1, then by applying lemma
4.2.4 and the Cauchy-Schwarz inequality, we find∣∣∣∣ n∑
i=1

ImV (ai, bi)

∣∣∣∣2 ≤
∫ ∣∣∣∣ ImV

( n∑
i=1

ri(ω)ai,

n∑
j=1

rj(ω)bj

)∣∣∣∣2dP(ω)

≤ 4

∫
φ

(( n∑
i=1

ri(ω)ai

)4)1/2

ψ

(( n∑
j=1

rj(ω)bj

)4)1/2

dP(ω)

≤ 4

(∫
φ

(( n∑
i=1

ri(ω)ai

)4)
dP(ω)

)1/2(∫
ψ

(( n∑
i=1

ri(ω)bi

)4)
dP(ω)

)1/2

.

Note that |
∑
i ri(ω)ai| is a simple function and that ‖

∑
i ri(ω)ai‖ ≤

∑
i ‖ai‖.

Hence
∑n
i=1 ri(ω)ai is Bochner integrable and we can pull φ and ψ outside of
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the integral. This then leads to∣∣∣∣ n∑
i=1

ImV (ai, bi)

∣∣∣∣2
≤ 4

(∫
φ

(( n∑
i=1

ri(ω)ai

)4)
dP(ω)

)1/2(∫
ψ

(( n∑
i=1

ri(ω)bi

)4)
dP(ω)

)1/2

≤ 4‖φ‖‖ψ‖
∥∥∥∥
∫ ( n∑

i=1

ri(ω)ai

)4

dP(ω)

∥∥∥∥1/2∥∥∥∥
∫ ( n∑

i=1

ri(ω)bi

)4

dP(ω)

∥∥∥∥1/2

≤ 12

∥∥∥∥ n∑
k=1

b2k

∥∥∥∥∥∥∥∥ n∑
k=1

b2k

∥∥∥∥,
where we applied lemma 4.1.1 and the fact that ‖φ‖ = ‖ψ‖ = 1. But this means
we can apply lemma B.2.1, with K =

√
12 to the bilinear form given by ImV .

Hence we find that there exist φ′ ∈ S(A) and ψ′ ∈ S(B) such that for all a ∈ Ah
and b ∈ Bh

| ImV (a, b)| ≤
√

12φ′(a2)1/2ψ′(b2)1/2 ≤ 4φ′(a2)1/2ψ′(b2)1/2,

since
√

12 < 4.

Using the estimates on the real and imaginary parts of V (a, b) for self-adjoint
a and b, we can now prove our first version of (4.1).

Lemma 4.2.6. Let A, B and V be as in lemma 4.2.1, then there exist states
φ1, φ2 ∈ S(A) and ψ1, ψ2 ∈ S(B) such that,

|V (x, y)| ≤ 5

2
(φ1(x∗x) + φ2(xx∗))1/2(ψ1(y∗y) + ψ2(yy∗))1/2,

for all x ∈ A and y ∈ B.

Outline. We start the proof by constructing bounded bilinear forms V1 and V2

such that V (x, y) = V1(x, y) + iV2(x, y) for all x, y. We then estimate |V1(x, y)|
for arbitrary x ∈ A and y ∈ B in terms of ReV (a1, b1) and ReV (a2, b2) for
some self-adjoint elements a1, a2, b1, b2 and apply lemma 4.2.2.

Likewise, we can estimate |V2(x, y)| in terms of ImV (a1, b2) and ImV (a2, b1),
to which we can apply 4.2.5. Using the fact that S(A) and S(B) are convex
sets, we then construct φ1, φ2, ψ1 and ψ2 from φ, φ′, ψ and ψ′.

Proof. We define

V1(x, y) =
1

2
(V (x, y) + V (x∗, y∗) and V2(x, y) =

1

2i
(V (x, y)− V (x∗, y∗).

Then V1 and V2 are again bilinear forms with the additional property that
V = Vi + iV2 and that for all a ∈ Ah and b ∈ Bh,

V1(a, b) = ReV (a, b) V2(a, b) = ImV (a, b).
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Now write x = a1 + ia2 and y = b1 + ib2, where a1, a2 ∈ Ah and b1, b2 ∈ Bh
and take φ and ψ as in lemma 4.2.1 and φ′ and ψ′ as in lemma 4.2.5. Now note
that for αi, βi > 0,√

α1β1α2β2 ≤
1

2
(α1β2 + α2β1) =⇒

√
α1β1 +

√
α2β2 ≤

√
α1 + α2

√
β1 + β2.

Applying lemma 4.2.2 and using the above then yields

|ReV1(x, y)| = |V1(a1, b1)− V1(a2, b2)| = |ReV (a1, b1)− ReV (a2, b2)|
≤ |ReV (a1, b1)|+ |ReV (a2, b2)|
≤ φ(a2

1)1/2ψ(b21)1/2 + φ(a2
2)1/2ψ(b22)1/2

≤ φ(a2
1 + a2

2)1/2ψ(b21 + b22)1/2

= φ

(
x∗x+ xx∗

2

)1/2

ψ

(
y∗y + yy∗

2

)1/2

.

Now note that if we replace x with eiθx, then the right-hand side does not
change and for a suitable θ ∈ [0, 2π], ReV1(x, y) = V1(x, y), hence we get

|V1(x, y)| ≤ φ
(
x∗x+ xx∗

2

)1/2

ψ

(
y∗y + yy∗

2

)1/2

.

Almost identically, we can apply lemma 4.2.5, to find that

|V2(x, y)| ≤ 4φ′
(
x∗x+ xx∗

2

)1/2

ψ′
(
y∗y + yy∗

2

)1/2

.

If we then define φ1, φ2 ∈ S(A) and ψ1, ψ2 ∈ S(B) by

φ1 = φ2 =
1

5
φ+

4

5
φ′ and ψ1 = ψ2 =

1

5
ψ +

4

5
ψ′,

then we find

|V (x, y)| ≤ 5(φ1(
1

2
x∗x) + φ2(

1

2
xx∗))1/2(ψ1(

1

2
y∗y) + φ2(

1

2
yy∗))1/2

=
5

2
‖V ‖(φ1(x∗x) + φ2(xx∗))1/2(ψ1(y∗y) + ψ2(yy∗))1/2.

In order to generalize lemma 4.2.6 to arbitrary C*-algebras and arbitrary
bounded bilinear forms, we will need several facts from the theory of ultraprod-
ucts, or more specifically ultrapowers.

For readers unfamiliar with ultraproducts it is sufficient to know the follow-
ing. We can use an object, called a free ultrafilter U in order to obtain a new
type of limit, the ultralimit. (For readers familiar with ultrafilters: an ultrafilter
is free if it does not contain a least element. The collection of all subsets of some
set X that contain a fixed element x, is a classical example of an ultrafilter, but
it is not free. It is not trivial that free ultrafilter exists, though it can be shown
using Zorn’s lemma.) The ultralimit limU has the property that if limn→∞ ‖xn‖
exists, then limU ‖xn‖ also exists and the limits are equal. Furthermore, the
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ultralimit is unique and if (xn) is bounded, then it can be shown that limU ‖xn‖
always exists.

An extensive treaty on the applications of ultrafilters and ultraproducts on
Banach spaces can be found in [9].

Lemma 4.2.7. Let A, B be arbitrary C*-algebras, and let V : A×B → C be a
bounded linear form. Then there exist states φ1, φ2 ∈ S(A) and ψ1, ψ2 ∈ S(B)
such that,

|V (a, b)| ≤ 5

2
‖V ‖(φ1(x∗x) + φ2(xx∗))1/2(ψ1(y∗y) + ψ2(yy∗))1/2,

for all x ∈ A and y ∈ B.

Outline. The case where A or B is not unital can be proven by extending V
to the universal enveloping von Neumann algebras (which do have a unit). We
save this part for the final paragraph of the proof.

The difficult part, namely removing our assumption that V (1, 1) = 1, re-
quires the ultralimit and ultraproduct we mentioned above. We do this, by first
showing that the inequality holds in the case where we have that V (u, v) = 1,
for unitary elements u, v. We then show that in the general case, we can find
sequences of unitary elements un, vn, such that V (un, vn)→ 1.

This is where the theory of ultraproducts starts to play a role. We use
this theory to construct two new C*-algebras, AU and BU that contain A
and B respectively. The sequences (un) and (vn) are then elements of these
new C*-algebras and in fact represent unitary elements. We can then con-
struct a bounded bilinear form W : AU × BU → C such that W ((un), (vn)) =
limU V (un, vn) = 1. This then puts is back in the above situation. By then
restricting W to A and B, we finally obtain the desired result.

Proof. By scaling, we can without loss of generality assume that ‖V ‖ = 1. Now
suppose A and B are unital and there exist unitary operators u ∈ A and v ∈ B
such that V (u, v) = 1. Then we can define a map W : A × B → C such that
W (x, y) = V (ux, vy). Furthermore, we clearly have ‖W‖ = W (1, 1) = 1, hence
we find states φ1, φ2 ∈ S(A) and ψ1, ψ2 ∈ S(B) such that

|W (x, y)| ≤ 5

2
(φ1(x∗x) + φ2(xx∗))1/2(ψ1(y∗y) + ψ2(yy∗))1/2.

But this means that if we define φ′2 : x 7→ φ2(u∗xu) and ψ′2 : y 7→ ψ2(v∗yv),
then φ′2 and ψ′2 are states and

|V (x, y)| = |W (u∗x, v∗y)|

≤ 5

2
(φ1(x∗x) + φ2(u∗(xx∗)u))1/2(ψ1(y∗y) + ψ2(v∗(yy∗)v))1/2

=
5

2
(φ1(x∗x) + φ′2(xx∗))1/2(ψ1(y∗y) + ψ2(yy∗))1/2.

Now suppose such unitary elements do not exist. By the Russo-Dye theorem,
the closed unit spheres in A and B respectively are given by the closed convex
hull of the unitary elements in A and B respectively. As a consequence, we have
that we can write

1 = ‖V ‖ = sup{|V (u, v)| : u ∈ A, v ∈ B, u∗u = 1, v∗v = 1},
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hence we can find sequences of unitary elements un ∈ A, vn ∈ B such that
V (un, vn) → 1. Now fix a free ultrafilter U on N, and denote by `∞(N,A) the
space of all bounded sequences in A. We can then define

IU = {(xn) ∈ `∞(N,A) : lim
U
‖xn‖ = 0}

JU = {(yn) ∈ `∞(N,B) : lim
U
‖yn‖ = 0}

AU = `∞(N, A)/IU

BU = `∞(N, B)/JU ,

then it is true that AU and BU (also called the ultrapowers of A and B) are again
C*-algebras. Furthermore, we have that A ⊆ AU and B ⊆ BU isometrically (by
simply considering constant sequences of elements in A and B respectively). The
elements represented by the sequences (un) and (vn) are again unitary in AU
and BU respectively and the bilinear map W : AU×BU given by W ((xn), (yn)) =
limU V (xn, yn) has the property that ‖W‖ = W ((un), (vn)) = 1. Hence by the
previous part, there exist states φ1, φ2 ∈ S(AU ) and ψ1, ψ2 ∈ S(BU ) such that

|W ((xn), (yn))| ≤ K(φ1((xn)∗(xn)) + φ2((xn)(xn)∗))1/2

× (ψ1((yn)∗(yn)) + ψ2((yn)(yn)∗))1/2.

But then the restriction of these functionals to A and B gives us positive linear
functionals of norm at most one (but possibly less) on A and B, hence by
rescaling these we find states φ′1, φ

′
2 ∈ S(A) and ψ′1, ψ

′
2 ∈ S(B) such that the

lemma holds.
Finally, suppose A and B are not unital, then we can isometrically embed

A ⊆ A∗∗ and B ⊆ B∗∗. Now note that A∗∗ and B∗∗ can be identified with the
universal enveloping von Neumann algebras of A and B and are therefore unital
C∗-algebras, furthermore we can extend V to a bilinear map W : A∗∗×B∗∗ → C,
such that ‖V ‖ = ‖W‖. Now we can apply our theorem in the unital case to
find states φ1, φ2 ∈ S(A∗∗) and ψ1, ψ2 ∈ S(B∗∗) such that for all x ∈ A∗∗ and
y ∈ B∗∗,

|W (x, y)| ≤ K‖V ‖(φ1(x∗x) + φ2(xx∗))1/2(ψ1(y∗y) + ψ2(yy∗))1/2.

But the restriction of ψi and φi to A and B gives us positive linear functionals
of norm at most one (but possibly less) on A and B, hence by rescaling these
we find states φ′1, φ

′
2 ∈ S(A) and ψ′1, ψ

′
2 ∈ S(B) such that the lemma holds.

4.2.2 Refining the constant

Using some extra theory, we can actually refine the constant in (4.1) to K = 1.
We do not do this by modifying the proofs we obtained in the previous part,
but rather we will show that if (4.1) holds for some constant K > 1, then it
also holds for

√
K. A simple limiting argument then immediately yields the

fact that K = 1 also suffices. Though we will not do this here, it was shown by
Pisier in [18] that the constant K = 1 is in fact optimal.

In order to state our proof, we will first need some extra lemmas and notions.

Definition 4.2.8. An i.i.d sequence of Steinhaus random variables on a prob-
ability space (Ω,F ,P) is an i.i.d. (independent and identically distributed)
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sequence, {sj}j∈N, of random variables with a uniform distribution on T, the
complex unit circle.

Note that just like with the Rademacher random variables,
∫
sj(ω)dP(ω) = 0

and in addition, we have that
∫
sj(ω)sk(ω)dP(ω) = δj,k.

Lemma 4.2.9. Let A be a C∗-algebra, x1, . . . , xn ∈ A. If we define the map
X : Ω→ A by

X(ω) =

n∑
j=1

sj(ω)xj ,

then this map satisfies∥∥∥∥ ∫ (X(ω)∗X(ω))2dP(ω)

∥∥∥∥+

∥∥∥∥∫ (X(ω)X(ω)∗)2dP(ω)

∥∥∥∥
≤
(∥∥∥∥ n∑

i=1

x∗i xi

∥∥∥∥+

∥∥∥∥ n∑
j=1

xjx
∗
j

∥∥∥∥)2

.

Outline. Note that the Steinhaus random variables have orthogonality relations
very similar to those of the Rademacher random variables. Using this, the proof
follows analogously to the proof of lemma 4.1.1.

Proof. Note that the sj are measurable and that ‖X(ω)‖ ≤
∑
i ‖xi‖, hence the

integrands above are indeed Bochner integrable and therefore the integrals are
well-defined. Now note that∫

(X(ω)∗X(ω))2dP(ω) =

n∑
i,j,k,l=1

x∗i xjx
∗
kxl

∫
sisjsksldP(ω)

=

n∑
i=1

x∗i xix
∗
i xi +

n∑
i,j=1
i 6=j

x∗i xix
∗
jxj +

n∑
i,j=1
i 6=j

x∗i xjx
∗
jxi.

By positivity of the summands, we then have∫
(X(ω)∗X(ω))2dP(ω) ≤ 2

n∑
i=1

x∗i xix
∗
i xi +

n∑
i,j=1
i 6=j

x∗i xix
∗
jxj +

n∑
i,j=1
i 6=j

x∗i xjx
∗
jxi

=

n∑
i,j=1

x∗i xix
∗
jxj +

n∑
i,j=1

x∗i xjx
∗
jxi

=

( n∑
i=1

x∗i xi

)2

+

n∑
i=1

x∗i

(∑
j

xjx
∗
j

)
xi

By the same arguments as in lemma 4.1.1, we then have∫
(X(ω)∗X(ω))2dP(ω) ≤

( n∑
i=1

x∗i xi

)2

+

∥∥∥∥ n∑
j=1

xjx
∗
j

∥∥∥∥ n∑
i=1

x∗i xi,
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hence ∥∥∥∥∫ (X(ω)∗X(ω))2dP(ω)

∥∥∥∥ ≤ ∥∥∥∥ n∑
i=1

x∗i xi

∥∥∥∥2

+

∥∥∥∥ n∑
i=1

xix
∗
i

∥∥∥∥∥∥∥∥ n∑
i=1

x∗i xi

∥∥∥∥.
Adding the same inequality with xk replaced by x∗k then yields the desired
result.

Lemma 4.2.10. Let A be a C∗ algebra and x ∈ A and let x = u|x| be the polar
decomposition of x in A∗∗ (the universal enveloping von Neumann algebra).
Furthermore let H = {α ∈ C : Re(α) > 0} be the complex right half-plane.

If we define f : H → A∗∗ by f(α) = u|x|α, then f is analytic on H and
takes its values in A.

Proof. Note that σ(|x|) ⊆ [0, ‖x‖] and that for α ∈ H, the map φ(t) = tα, with
t ∈ [0, ‖x‖] is continuous and φ(0) = 0, hence we can extend φ to an antisymmet-
ric function on [−‖x‖, ‖x‖]. By the Weierstrass approximation theorem we can
approximate this function uniformly by odd polynomials, Pn. Now note that
u|x|2n−1 = x(x∗x)n−1 ∈ A, hence uPn(|x|) ∈ A. But since Pn → f uniformly,
we have that uPn(|x|) converges in A, which means that f(α) ∈ A.

If |x| is invertible, then 0 /∈ σ(|x|), hence log |x| is well-defined and α 7→
eα log |x| = f(α) is analytic. If |x| is not invertible, then we can define the
projections pn = e|x|[ 1

n ,∞). Now note that |x|pn is invertible in pnA∗∗pn hence
we can define analytic maps fn : H 7→ A∗∗ by

fn(α) = eα log(|x|pn) = u(|x|pn)α = u|x|αpn.

Since we have that fn → f uniformly on compact subspaces of H, we can now
conclude that f is indeed analytic on H.

We can now use the above lemmas, together with lemma 4.2.7, to finally
state and prove the noncommutative Grothendieck inequality.

Theorem 4.2.11 (Noncommutative GT with states). Let A, B be arbitrary
C*-algebras, and let V : A×B → C be a bounded linear form. Then there exist
states φ1, φ2 ∈ S(A) and ψ1, ψ2 ∈ S(B) such that,

|V (x, y)| ≤ ‖V ‖(φ1(x∗x) + φ2(xx∗))1/2(ψ1(y∗y) + ψ2(yy∗))1/2,

for all x ∈ A and y ∈ B.

Outline. In the proof, we define for every bounded bilinear form a scalar, C(V ),
as the infimum of all constants C such that there exists states for which (4.3)
below holds. It is then our aim to show that we in fact have that C(V ) ≤
C(V )1/2‖V ‖1/2, which would imply that C(V ) ≤ ‖V ‖.

The main argument follows by Hadamard’s so called “three-lines theorem”.
This theorem states that if a function h is analytic on the interior of the complex
strip {α+ iβ : ε ≤ α ≤ δ} and continuous on the whole strip, then the function
M(α) := supλ |h(α+ iλ)| satisfies

M(tε+ (1− t)δ) ≤M(ε)tM(δ)1−t.

for all 0 ≤ t ≤ 1.
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We then use the previous lemma to construct the analytic function h(α) =
V (f(α), g(α)) and apply the three-lines theorem to this function on the strip
ε ≤ α ≤ 2, where ε > 0. If, in the resulting inequality, we take the limit ε→ 0,
then we find a result similar to lemma 4.2.4, namely (4.4). The remainder of
the proof is then analogous to the proof of lemma 4.2.5 in the way that we use
lemma 4.2.9 and theorem B.2.2 (instead of lemma 4.1.1 and theorem B.2.1) to
obtain the desired result.

Proof. First note that similar to the proof of lemma 4.2.7, it suffices to show
this in the case where A and B are unital C∗-algebras. Now let V : A×B → C
be a bounded bilinear form, then we can define C(V ) as the infimum of all C,
for which there exist states φ1, φ2 ∈ S(A) and ψ1, ψ2 ∈ S(B) such that for all
x ∈ A and y ∈ B,

|V (x, y)| ≤ C(φ1(x∗x) + φ2(xx∗))1/2(ψ1(y∗y) + ψ2(yy∗))1/2. (4.3)

Note that by lemma 4.2.7 we have already shown that C(V ) ≤ 5
2‖V ‖. Since

A and B are assumed to be unital, S(A) and S(B) are weak*-compact and
we can pick φ1, φ2, ψ1 and ψ2 such that (4.3) holds with C = C(V ). (Simply
pick for every k states such that (4.3) holds with C = C(V ) + 1/k, then this
sequence contains a subsequence converging to states such that (4.3) holds with
C = C(V ).)

Now pick x ∈ A and y ∈ B and let x = u|x| and v|y| be the polar decomposi-
tions of x ∈ A∗∗ and y ∈ B∗∗. As in lemma 4.2.10, we can then define functions
f : H → A∗∗ and g : H → B∗∗ by

f(α) := u|x|α and g(α) := v|y|α.

By lemma 4.2.10, we have f(α) ∈ A and g(α) ∈ B for all α ∈ H, moreover,
since V is bilinear, the map h : H → C given by

h(α) = V (f(α), g(α))

is analytic on H, and h is bounded on every strip of the form 0 < Re a < σ.
Now note that since x = u|x| = |x∗|u and y = v|y| = |y∗|v we have

f(α)∗f(α) = |x|α+α = (x∗x)Reα

f(α)f(α)∗ = |x∗|α+α = (xx∗)Reα

g(α)∗g(α) = |y|α+α = (y∗y)Reα

g(α)g(α)∗ = |y∗|α+α = (yy∗)Reα,

hence for t ∈ R, we have

|h(2 + it)| = |V (f(2 + it), g(2 + it))|

≤ C(V )
(
φ1((x∗x)2) + φ2((xx∗)2)

)1/2 (
ψ1((y∗y)2) + ψ2((yy∗)2)

)1/2
.

Furthermore, since V is bounded, we have for 0 < ε < 1,

|h(ε+ it)| = |V (f(ε+ it), g(ε+ it))| ≤ ‖V ‖‖f(ε+ it)‖‖g(ε+ it)‖
= ‖V ‖‖x‖ε‖y‖ε.
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For ε ≤ α ≤ 2 we can then define M(α) = supλ∈R |h(α+ iλ)|. By the Hadamard
three-lines theorem, we then have that

|V (x, y)| = |h(1)| ≤M(1) ≤M(ε)1/(2−ε)M(2)(1−ε)/(2−ε).

Now note that

lim
ε→0

M(ε)1/(2−ε) ≤ lim
ε→0

(‖V ‖‖x‖ε‖y‖ε)1/(2−ε)
= ‖V ‖1/2

lim
ε→0

M(2)(1−ε)/(2−ε) = M(2)1/2

≤
(
C(V )

(
φ1((x∗x)2) + φ2((xx∗)2)

)1/2 (
ψ1((y∗y)2) + ψ2((yy∗)2)

)1/2)1/2

.

Using this, we find that

|V (x, y)| ≤ C(V )1/2‖V ‖1/2
(
φ1((x∗x)2) + φ2((xx∗)2)

)1/4
×
(
ψ1((y∗y)2) + ψ2((yy∗)2)

)1/4
.

(4.4)

Now pick x1, . . . , xn ∈ A and y1, . . . , yn ∈ B, let (sn)n∈N be an i.i.d. sequence
of Steinhaus random variables and define

X(ω) =

n∑
j=1

sj(ω)xj and Y (ω) =

n∑
j=1

sj(ω)yi.

By the orthonormality of the si, we then have

n∑
j=1

V (xj , yj) =

∫
V (X(ω), Y (ω))dP(ω).

If we combine this with (4.4) and Hölder’s inequality, we find that∣∣∣∣ n∑
i=1

V (xi, yi)

∣∣∣∣ =

∣∣∣∣ ∫ V (X,Y )dP
∣∣∣∣

≤ C(V )1/2‖V ‖1/2
(∫ (

φ1((X∗X)2) + φ2((XX∗)2)

)1/2

dP
)1/2

×
(∫ (

ψ1((Y ∗Y )2) + ψ2((Y Y ∗)2)

)1/2

dP
)1/2

≤ C(V )1/2‖V ‖1/2
(
φ1

(∫
(X∗X)2dP

)
+ φ2

(∫
(XX∗)2dP

))1/4

×
(
ψ1

(∫
(Y ∗Y )2dP

)
+ ψ2

(∫
(Y Y ∗)2dP

))1/4

≤ C(V )1/2‖V ‖1/2
(∥∥∥∥∫ (X∗X)2dP

∥∥∥∥+

∥∥∥∥∫ (XX∗)2dP
∥∥∥∥)1/4

×
(∥∥∥∥∫ (Y ∗Y )2dP

∥∥∥∥+

∥∥∥∥∫ (Y Y ∗)2dP
∥∥∥∥)1/4
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Now we can apply lemma 4.2.9 to conclude∣∣∣∣ n∑
i=1

V (xi, yi)

∣∣∣∣ ≤ C(V )1/2‖V ‖1/2
(∥∥∥∥ n∑

i=1

x∗i xi

∥∥∥∥+

∥∥∥∥ n∑
i=1

xix
∗
i

∥∥∥∥)1/2

×
(∥∥∥∥ n∑

i=1

y∗i yi

∥∥∥∥+

∥∥∥∥ n∑
i=1

yiy
∗
i

∥∥∥∥)1/2

.

But then by theorem B.2.2 we can conclude that there exist states φ′1, φ
′
2 ∈ S(A)

and ψ′1, ψ
′
2 ∈ S(B) such that

|V (x, y)| ≤ C(V )1/2‖V ‖1/2 (φ′1(x∗x) + φ′2(xx∗))
1/2

(ψ′1(y∗y) + ψ′2(yy∗))
1/2

.

From this we can then conclude that C(V ) ≤ C(V )1/2‖V ‖1/2. This then implies
that C(V ) ≤ ‖V ‖, which concludes the proof.

4.2.3 Alternative formulations and little GT

Similar to the commutative Grothendieck inequality, there exist many equiva-
lent formulations of the noncommutative Grothendieck inequality. We have in
fact, in our proof of 4.2.11, already given a noncommutative analogue of 2.1.6.
Furthermore, note that by theorem B.2.2, this analogue is equivalent to 4.2.11.

Theorem 4.2.12 (Noncommutative GT with sequences). Let A, B be arbitrary
C*-algebras, and let V : A × B → C be a bounded linear form. Then we have
that∣∣∣∣ n∑
i=1

V (xi, yi)

∣∣∣∣ ≤ ‖V ‖(∥∥∥∥ n∑
i=1

x∗i xi

∥∥∥∥+

∥∥∥∥ n∑
i=1

xix
∗
i

∥∥∥∥)1
2
(∥∥∥∥ n∑

i=1

y∗i yi

∥∥∥∥+

∥∥∥∥ n∑
i=1

yiy
∗
i

∥∥∥∥)1
2

,

for all finite sequences x1, . . . , xn ∈ A, y1, . . . , yn ∈ B.

Using remarks 3.7.2 and 3.7.7 and the observation that for 0 ≤ x ∈ A,
‖x1/2‖ = ‖x‖1/2, we immediately get the following corollary.

Corollary 4.2.13. Let V : A×B → C be a bounded linear form. Then we have
that ∣∣∣∣ n∑

i=1

V (xi, yi)

∣∣∣∣ ≤ 2|||(xn)|||∞|||(yn)|||∞

for all finite sequences x1, . . . , xn ∈ A, y1, . . . , yn ∈ B.

Similar to theorem 2.1.10, we can also formulate a noncommutative little
Grothendieck inequality, in four different ways.

Theorem 4.2.14 (Little noncommutative GT). Let A, B be arbitrary C*-
algebras, H any Hilbert space, and let u : A → H and v : B → H be bounded
linear maps. Then the following hold

(i) There exist states φ1, φ2 ∈ S(A) and ψ1, ψ2 ∈ S(B) such that,

| 〈ux, vy〉 | ≤ ‖u‖‖v‖(φ1(x∗x) + φ2(xx∗))1/2(ψ1(y∗y) + ψ2(yy∗))1/2.
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(ii) There exist states φ1, φ2 ∈ S(A) such that

‖ux‖ ≤ ‖u‖(φ1(x∗x) + φ2(xx∗))1/2.

(iii) For all finite sequences x1, . . . , xn ∈ C(S) and y1, . . . , xn ∈ C(T )∣∣∣∣ n∑
i=1

〈uxi, vyi〉
∣∣∣∣ ≤ ‖u‖‖v‖(∥∥∥∥ n∑

i=1

x∗i xi

∥∥∥∥+

∥∥∥∥ n∑
i=1

xix
∗
i

∥∥∥∥)1
2
(∥∥∥∥ n∑

i=1

y∗i yi

∥∥∥∥+

∥∥∥∥ n∑
i=1

yiy
∗
i

∥∥∥∥)1
2

≤ 2‖u‖‖v‖|||(xn)|||∞|||(yn)|||∞.

(iv) For any finite sequence x1, . . . , xn ∈ C(S)( n∑
i=1

‖uxi‖2
)1/2

≤ ‖u‖
(∥∥∥∥ n∑

i=1

x∗i xi

∥∥∥∥+

∥∥∥∥ n∑
i=1

xix
∗
i

∥∥∥∥) 1
2

≤
√

2‖u‖|||(xn)|||∞.

Proof. Identical to the proof of theorem 2.1.10, this follows directly by applying
theorems 4.2.11 and 4.2.12.

4.3 The Khintchine inequality

A noncommutative version of the Khintchine inequality, was first proven by
Lust-Picard in 1986 in [14], in the case of the Schatten-class operators (see
example 3.1.1). Five years later, in a joint paper with Pisier [15], this result
was generalized to more arbitrary spaces, such as arbitrary noncommutative
Lp-spaces.

The proof that we shall present is an extension of the proof for the Schatten-
class operators given in [14], by means of the generalized singular value function.

In the following, letM be a von Neumann algebra on a Hilbert space H, let
τ be a faithful normal semi-finite trace onM and let (Ω,F ,P) be a probability
measure space. Furthermore, we let {ri}i∈N be an i.i.d. sequence of Rademacher
random variables (see definition 2.1.3).

We shall, in this section devote ourselves to proving the following theorem

Theorem 4.3.1 (Noncommutative Khintchine inequality). Let 1 ≤ p <∞ and
{ri}i∈N be an i.i.d. sequence of Rademacher random variables. Then there exist
constants bp, cp > 0, depending only on p, such that

bp|||(xn)|||p ≤
(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)1/p

≤ cp|||(xn)|||p,

for any finite sequence x1, . . . , xn ∈ Lp(τ). Moreover, if 1 ≤ p ≤ 2, then cp = 1
and if 2 ≤ p <∞, then bp = 1.

The proof of this theorem can be broken down into five parts. First we shall
prove the lower bound in the case where 2 ≤ p <∞ and the upper bound when
1 ≤ p ≤ 2. Then we give a lower bound in the case where p = 1. Finally,
we consider the upper bound in the case where 2 ≤ p < ∞, which, by using a
duality argument, gives us the lower bound when 1 < p ≤ 2. The rest of this
section is devoted to working out all the details of this proof.

67



4.3.1 The lower bound for 2 ≤ p ≤ ∞ and the upper bound
for 1 ≤ p ≤ 2

(This part of the proof mostly mimics the proof given in [15].) In order to
establish the lower bound for 2 ≤ p ≤ ∞, we will first give a general estimate of
‖(xn)‖p,c in terms of ‖xj‖p. We use this estimate to establish an upper bound
for integrals of the form

∫
F (ω)∗F (ω)dP(ω), where we take F : Ω → Lp(τ) to

lie inside Lp(τ) ⊗ L2(P). This upper bound, when applied to functions of the
from

∑
j rjxj , with xj ∈ Lp(τ) then gives us the Khintchine lower bound.

The upper bound is established in a similar way. By using a duality argu-
ment, we get a reversed estimate of ‖(xn)‖p,r in terms of ‖xj‖p. Using the same
line of arguments (though with the inequalities reversed), will yield the upper
bound for 1 ≤ p ≤ 2.

In order to establish the the estimate of ‖(xn)‖p,c, we shall first study the
finite direct sum of noncommutative Lp-spaces. We denote the space ⊕n2Lp(τ) as
the Banach space obtained by taking the n-times direct sum of Lp(τ), together
with the norm

‖(x1, . . . , xn)‖⊕n2Lp(τ) =

( n∑
j=1

‖xj‖2p
)1/2

.

It is known that if 1 ≤ p < ∞ and 1 < q ≤ ∞ is its conjugate number, then
(⊕n2Lp(τ))∗ = ⊕n2Lp(τ)∗ = ⊕n2Lq(τ). (For more details, see [1] III.4 and III.5.)

Using this duality, we can now give the following estimates of the Lp(τ, `
n,c
2 )

and Lp(τ, `
n,r
2 ) norms.

Lemma 4.3.2. Let 1 ≤ p ≤ ∞ and x1, . . . , xn ∈ Lp(τ).

(i) If 2 ≤ p ≤ ∞, then

‖(xn)‖p,c ≤
( n∑
j=1

‖xj‖2p
)2

.

(ii) If 1 ≤ p ≤ 2, then ( n∑
j=1

‖xj‖2p
)2

≤ ‖(xn)‖p,r

Proof. First note that if 2 ≤ p ≤ ∞, then

‖(xn)‖2p,c =

∥∥∥∥( n∑
j=1

x∗jxj

)1/2∥∥∥∥2

p

=

∥∥∥∥ n∑
j=1

x∗jxj

∥∥∥∥
p/2

≤
n∑
j=1

‖x∗jxj‖p/2 =

n∑
j=1

‖xj‖2p.

But this means that the identity map I : ⊕n2Lp(τ) → Lp(τ, `
n,c
2 ) is bounded

with ‖I‖ ≤ 1.
Now suppose p <∞, then we have that if 1 < q ≤ 2 is conjugate to p, then

(⊕n2Lp(τ))∗ = ⊕n2Lq(τ) and (Lp(τ, `
n,c
2 ))∗ = Lq(τ, `

n,r
2 ), hence the adjoint map

I∗ : Lq(τ, `
n,r
2 )→ ⊕n2Lq(τ) is also bounded with ‖I∗‖ ≤ 1. But this means that( n∑

j=1

‖xj‖2q
)1/2

≤ ‖(xn)‖q,r. (4.5)
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Since ⊕n2L1(τ) ⊂ (⊕n2L∞(τ))∗ and L1(τ, `n,c2 ) ⊂ (L∞(τ, `n,c2 ))∗ isometrically,
(4.5) must also hold if q = 1.

In the following, it will be convenient to regard the algebraic tensor product
Lp(τ)⊗ L2(P) as the space of all functions F : Ω→ Lp(τ) of the form

F (ω) =

n∑
j=1

fj(ω)xj

where fi ∈ L2(P) and xj ∈ Lp(τ).

Lemma 4.3.3. Let 1 ≤ p ≤ ∞ and F ∈ Lp(τ)⊗ L2(P).

(i) If 2 ≤ p ≤ ∞, then∥∥∥∥(∫ F (ω)∗F (ω)dP(ω)

)1/2∥∥∥∥
p

≤
(∫

‖F (ω)‖2pdP(ω)

)1/2

.

(ii) If 1 ≤ p ≤ 2, then(∫
‖F (ω)‖2pdP(ω)

)1/2

≤
∥∥∥∥(∫ F (ω)∗F (ω)dP(ω)

)1/2∥∥∥∥
p

.

Proof. First note that by the definitions and results in appendix A, all integrals
are well defined.

Now suppose f1, . . . , fn are simple functions and x1, . . . , xn ∈ Lp(τ), then
we can find disjoint sets S1, . . . , SN ∈ F such that

F (ω) =

n∑
j=1

fj(ω)xj =

N∑
j=1

χSj (ω)yj ,

where yj ∈ span{x1, . . . , xn} ⊆ Lp(τ) for all 1 ≤ j ≤ N . But then we have that

F (ω)∗F (ω) =
∑N
j=1 χSj (ω)y∗j yj , hence

∫
F (ω)∗F (ω)dP(ω) =

N∑
j=1

y∗i yjP(Sj) and

∫
‖F (ω)‖2pdP(ω) =

N∑
i=1

‖yj‖2pP(Sj).

Applying lemma 4.3.2 to P(S1)1/2y1, . . . ,P(SN )1/2yN then yields the desired
result.

The general case then follows by approximating arbitrary f1, . . . , fn ∈ L2(P)
with simple functions. The fact that the limit can also be taken inside the
integral follows from the fact that τ is normal.

Theorem 4.3.4 (Lower bound for 2 ≤ p <∞). Let 2 ≤ p <∞ then we have

|||(xn)|||p ≤
(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)1/p

,

for any finite sequence x1, . . . , xn ∈ Lp(τ).
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Proof. Note that since the ri are orthogonal, we have that∫ ∣∣∣∣ n∑
j=1

rj(ω)xj

∣∣∣∣2dP(ω) =

∫
n∑

j,k=1

rj(ω)rk(ω)x∗jxkdP(ω) =

n∑
j=1

x∗jxj ,

hence we can apply lemma 4.3.3 (i) to conclude that∥∥∥∥ n∑
j=1

x∗jxj

∥∥∥∥
p

=

∥∥∥∥
∫ ∣∣∣∣ n∑

j=1

rj(ω)xj

∣∣∣∣2dP(ω)

∥∥∥∥
p

≤
(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥2

p

dP(ω)

)1/2

.

But by the monotonicity of the Lp norm on propability spaces, we have that
‖f‖2 ≤ ‖f‖p, whenever 2 ≤ p ≤ ∞, whenever f is F-measurable, hence we have
that

‖(xn)‖p,c ≤
(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥2

p

dP(ω)

)1/2

≤
(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)1/p

.

But since ‖(xn)‖p,r = ‖(x∗n)‖p,c and ‖xi‖p = ‖x∗i ‖p, the same must also hold for
‖(xn)‖p,r and hence for |||(xn)|||p = max{‖(xn)‖p,c, ‖(xn)‖p,r}.

Remark 4.3.5. Note that we in fact proved a slightly tighter bound, namely

|||(xn)|||p ≤
(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥2

p

dP(ω)

)1/2

,

for 2 ≤ p <∞.

Theorem 4.3.6 (Upper bound for 1 ≤ p ≤ 2). Let 1 ≤ p ≤ 2 then we have(∫ ∥∥∥∥ n∑
j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)1/p

≤ |||(xn)|||p,

for any finite sequence x1, . . . , xn ∈ Lp(τ).

Proof. By using 4.3.3 (ii) instead of (i) in the proof of 4.3.4, we find that for
1 ≤ p ≤ 2,(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥2

p

dP(ω)

)1/2

≤ min{‖(xn)‖p,c, ‖(xn)‖p,r}.

By again using the monotonicity of the Lp-norm, we find that∥∥∥∥ n∑
j=1

rj(ω)xj

∥∥∥∥
Lp(τ⊗P)

=

(∥∥∥∥ n∑
j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)1/p

≤ min{‖(xn)‖p,c, ‖(xn)‖p,r}.

If we then write xj = yj+zj , with yj , zj ∈ Lp(τ), then by the triangle inequality
in Lp(τ ⊗ P),∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥
Lp(τ⊗P)

≤
∥∥∥∥ n∑
j=1

rj(ω)zj

∥∥∥∥
Lp(τ⊗P)

+

∥∥∥∥ n∑
j=1

rj(ω)yj

∥∥∥∥
Lp(τ⊗P)

≤ ‖(yn)‖p,c + ‖(zn)‖p,r.

Taking the infimum over all such decompositions yields the desired result.
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Remark 4.3.7. Note that in 4.3.6 we again proved a slightly tighter bound,
namely (∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥2

p

dP(ω)

)1/2

≤ |||(xn)|||p,

for 1 ≤ p ≤ 2.

Furthermore, analogous to these proofs, we also find a lower bound p =∞.

Corollary 4.3.8 (Lower bound for p =∞). We have that

|||(xn)|||∞ ≤
(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥2

∞
dP(ω)

)1/2

≤
∥∥∥∥ n∑
j=1

rjxj

∥∥∥∥
L∞(τ⊗P)

for any finite sequence x1, . . . , xn ∈ L∞(τ).

4.3.2 The lower bound for p = 1

(Like the previous part, this part of the proof also mimics the proof given in
[15].) By making use of duality arguments, we can also prove the lower bound
for p = 1, though this will require us to be a little more precise. In the following,
it will be convenient to denote by V np ⊆ Lp(P), the finite dimensional subspace,
spanned by the first n Rademacher random variables.

Consider the subspace L1(τ) ⊗ V n1 ⊆ L1(τ ⊗ P), then by the definition of
the annihilator and the trace on L∞(τ ⊗P) we have that F ∈ (L1(τ)⊗ V n1 )⊥ ⊆
L∞(τ ⊗ P) if and only if∫

rj(ω)τ(F (ω)∗xj)dP(ω) = 0 (4.6)

for all x1, . . . , xn ∈ L1(τ) and 1 ≤ j ≤ n. Furthermore, we have that L∞(τ ⊗
P)/(L1(τ) ⊗ V n1 )⊥ can be identified with (L1(τ) ⊗ V n1 )∗, hence if we have
y1, . . . , yn ∈ L∞(τ), then we can define

[(yn)] := inf

{∥∥∥∥ n∑
j=1

rjyj + F

∥∥∥∥
L∞(τ⊗P)

: F ∈ (L1(τ)⊗ V n1 )⊥
}
.

Note that since [(yn)] is exactly the quotient norm of the equivalence class of∑n
j=1 rjyj in L∞(τ ⊗P)/(L1(τ)⊗V n1 )⊥, we also have that [(yn)] is equal to the

norm of the linear functional that
∑n
j=1 rjyj defines on L1(τ)⊗ V n1 .

We can apply this specific duality to establish the lower bound in the case
where p = 1, if we have a proper estimate in the case where p =∞. In order to
give this estimate, we shall need the following result.

Lemma 4.3.9. Let xn, . . . , xn ∈ L∞(τ). Then there exist x̂1, . . . , x̂n ∈ L∞(τ)
and F ∈ (L1(τ)⊗ V n1 )⊥ such that

|||(xn − x̂n)|||∞ ≤
1

2
|||(xn)|||∞ and

∥∥∥∥ n∑
j=1

rj x̂j + F

∥∥∥∥
L∞(τ⊗P)

≤ c

2
|||(xn)|||∞,

where c ≤ 2
√

3 is a constant independent of τ or (xn).
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Outline. The proof consists of two distinct parts. In the first part, we construct
the x̂j from the spectral measure of S(ω) =

∑n
j=1 rj(ω)xj . We apply lemma

4.1.1 in order to show that these x̂j indeed have the desired properties.
In the second part, we use a trick to generalize this to the arbitrary elements

in Lp(τ). We do this by constructing for x ∈ L∞(τ), a matrix

(
0 x∗

x 0

)
which we

can view as a self-adjoint element of the von Neumann algebra L∞(τ)⊗M2(C).
We then show that the construction we made in the self-adjoint case, when
applied to these matrices indeed yields the desired result.

Proof. First we will show that the proof holds in the self-adjoint case. Suppose
x1, . . . , xn are self adjoint and define S :=

∑n
j=1 rjxj . Then for each ω ∈ Ω and

t > 0 we can define

St(ω) := S(ω)e|S(ω)|[0, t].

Note that for all ω ∈ Ω, we have that σ(|St(ω)|) ⊆ [0, t], hence ‖St(ω)‖∞ ≤ t,
hence we also have that ‖St‖L∞(τ⊗P) ≤ t.

Since the rj are measurable, St is weakly measurable and since S (as a
function of ω) can only take on finitely many values, the same is true for St. This
means that St is almost separably valued and hence strongly measurable (see
appendix A). Furthermore ‖St(ω)‖ is bounded, hence St is Bochner integrable.
(Note that the same is true for S, F and all powers of St, S and F , hence all
integrals we use below are well defined).

This allows us to define

x̂j =

∫
rj(ω)St(ω)dP(ω).

Using formula (4.6) it is easily seen that if we define F := St−
∑n
j=1 rj x̂j , then

F ∈ (L1(τ)⊗ V n1 )⊥.
Now note that we have∫

S(ω)2e|S(ω)|(t,∞)dP(ω) =

∫
S(ω)2(1− e|S(ω)|[0, t])2dP(ω)

=

∫
(S(ω)− St(ω))2dP(ω)

=

∫ ( n∑
j=1

rj(ω)(xj − x̂j)− F (ω)

)2

dP(ω)

=

n∑
j=1

(xj − x̂j) +

∫
F (ω)2dP(ω),

where used the fact that
∫
F (ω)rj(ω)dP(ω) = 0 and

∫
(
∑n
j=1 rj(ω)yj)

2dP(ω) =∑n
j=1 y

2
j , by the orthogonality of the rj .

But note that as functions on R, x2χ(t,∞)(|x|) ≤ t−2x4, using this, together

with the fact that by the functional calculus χ(t,∞)(|S(ω)|) = e|S(ω)|(t,∞), we
see that

n∑
j=1

(xj − x̂j)2 ≤
∫
S(ω)2e|S(ω)|(t,∞)dP(ω) ≤ 1

t2

∫
S(ω)4dP(ω).
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This allows us to apply lemma 4.1.1, in order to conclude that∥∥∥∥ n∑
j=1

(xj − x̂j)2

∥∥∥∥1/2

∞
≤ 1

t

∥∥∥∥∫ S(ω)4dP(ω)

∥∥∥∥1/2

∞
≤
√

3

t
|||(xn)|||2∞

Furthermore, as we noted∥∥∥∥ n∑
j=1

rjxj + F

∥∥∥∥
L∞(τ⊗P)

= ‖St‖L∞(τ⊗P) ≤ t,

hence taking t = 2
√

3|||(xn)||| then yields the desired result, with c = 2
√

3.

Now suppose Xj =

(
0 x∗j
xj 0

)
, then we can make the above construction on

M⊗M2(C) instead. We thus see that the corresponding S satisfies

S(ω) =

n∑
j=1

(
0 rjx

∗
j

rjxj 0

)
=

(
0 S2(ω)

S1(ω) 0

)
for some elements S1, S2 ∈ L∞(τ ⊗ P). Using this, we see that we can write in
each case

|S(ω)| =
(
|S1(ω)| 0

0 |S2(ω)|

)
St =

(
0 S2(ω)e|S2(ω)|[0, t]

S1(ω)e|S1(ω)|[0, t] 0

)
X̂j =

(
0 x̂∗j
x̂j 0

)
F =

(
0 F2

F1 0

)

But since for sequences of the form Yj =

(
0 y∗j
yj 0

)
, we have that

|||(yn)|||2∞ = max

{∥∥∥∥ n∑
j=1

y∗j yj

∥∥∥∥
∞
,

∥∥∥∥ n∑
j=1

yjy
∗
j

∥∥∥∥
∞

}

=

∥∥∥∥(∑n
j=1 y

∗
j yj 0

0
∑n
j=1 yjy

∗
j

)∥∥∥∥
∞

= |||(Yn)|||2∞,

hence |||(Xn)|||∞ = |||(xn)|||∞ and |||(Xn− X̂n)|||∞ = |||(xn− x̂n)|||∞. Finally note
that also ∥∥∥∥ n∑

j=1

rj x̂j + F1

∥∥∥∥
L∞((τ⊗Tr)⊗P)

≤
∥∥∥∥ n∑
j=1

rjX̂j + F

∥∥∥∥
L∞(τ⊗P)

,

hence the result in the non-self-adjoint case follows.

Using this, we can now prove the following Khintchine-like upper bound in
the case where p =∞ (see also corollary 4.3.8).

Lemma 4.3.10 (Upper bound for p =∞). There exists a constant c > 0 such
that

[(xn)] ≤ c|||(xn)|||∞

for any finite sequence x1, . . . , xn ∈ L∞(τ).
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Outline. We recursively apply the previous lemma in order to find for k ≥ 0
elements (xkn) ∈ CR∞(τ) and functions F k ∈ (L1(τ) ⊗ V n1 )⊥ such that we can
write xj =

∑n
k=0 x̂

k
j . (Here x̂kj and F k correspond to xj in the way of the

previous lemma). Furthermore, we can define F̃ =
∑n
k=0 F

k.

We then show that F̃ ∈ (L1(τ)⊗V n1 )⊥ and that ‖
∑n
j=1 rjxj + F̃‖L∞(τ⊗P) ≤

c|||(xn)|||∞, which by definition of [(xn)] directly implies the desired result.

Proof. Recall from lemma 4.3.9 that

|||(xn − x̂n)|||∞ ≤
1

2
|||(xn)|||∞ and

∥∥∥∥ n∑
j=1

rj x̂j + F

∥∥∥∥
L∞(τ⊗P)

≤ c

2
|||(xn)|||∞.

Define now (x0
n) := (xn) and define x̂0

n and F 0 as in lemma 4.3.9. Then we can
recursively define (xkn) = (xk−1

n − x̂k−1
n ) and the corresponding (x̂kn) and F k.

This then has the property that

|||(xkn)|||∞ = |||(xk−1
n − x̂k−1

n )|||∞ ≤
1

2
|||(xk−1

n )|||∞ =
1

2
|||(xk−2

n − x̂k−2
n )|||∞

≤ 1

4
|||(xk−2

n )|||∞ ≤ . . . ≤
1

2k
|||(x0

n)||| = 1

2k
|||(xn)|||∞.

In addition, we have that

xm = x0
m = x1

m + x̂0
m = x2

m + x̂0
m + x̂1

m = xk+1
m +

k∑
j=0

x̂jm.

Combining this, we see that as k → ∞, |||(xkn)|||∞ → 0, hence (xmn ) → 0 and

xm = xk+1
m +

∑k
j=0 x̂

j
m →

∑∞
j=1 x̂

j
m. Furthermore, we have that∥∥∥∥ n∑

j=1

rj x̂
k
j + F k

∥∥∥∥
L∞(τ⊗P)

≤ c

2
|||(xkn)|||∞,

hence we find that∥∥∥∥ ∞∑
k=0

( n∑
j=1

rj x̂
k
j + F k

)∥∥∥∥
L∞(τ⊗P)

≤
∞∑
k=0

∥∥∥∥ n∑
j=1

rj x̂
k
j + F k

∥∥∥∥
L∞(τ⊗P)

≤
∞∑
k=0

c

2
|||(xkn)|||∞ ≤

∞∑
k=0

c

2

1

2k
|||(xn)|||∞

≤ c|||(xn)|||∞.

But since these sums all converge absolutely, we in fact have that∥∥∥∥ ∞∑
k=0

( n∑
j=1

rj x̂
k
j + F k

)∥∥∥∥
L∞(τ⊗P)

=

∥∥∥∥ n∑
j=1

∞∑
k=0

rj x̂
k
j +

∞∑
k=0

F k
∥∥∥∥
L∞(τ⊗P)

=

∥∥∥∥ n∑
j=1

rjxj + F̃

∥∥∥∥
L∞(τ⊗P)

≤ c|||(xn)|||∞,
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where we have that F̃ =
∑∞
k=0 F

k ∈ (L1(τ) ⊗ V n1 )⊥. But by definition, this
means that

[(xn)] = inf

{∥∥∥∥ n∑
j=1

rjyj + F

∥∥∥∥
L∞(τ⊗P)

: F ∈ (L1(τ)⊗ V n1 )⊥
}

≤
∥∥∥∥ n∑
j=1

rjxj + F̃

∥∥∥∥
L∞(τ⊗P)

≤ c|||(xn)|||∞

and F̃ ∈ (L1(τ)⊗ V n1 )⊥, the statement follows.

Theorem 4.3.11 (Lower bound for p = 1). There exists a constant b1 > 0 such
that

b1|||(xn)|||1 ≤
∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥
1

dP(ω),

for any finite sequence x1, . . . , xn ∈ L1(τ).

Proof. By lemma 4.3.10, we have that the map

T : CRn∞(τ)→ L∞(τ ⊗ P)/(L1(τ)⊗ V n1 )⊥ = (L1(τ)⊗ V n1 )∗

given by

T : (yn) 7→
n∑
j=1

rjyj

is bounded, with ‖T‖ ≤ c. This means that the adjoint map

T ∗ : (L1(τ)⊗ V n1 )∗∗ → CRn∞(τ)∗

satisfies

T ∗ :

n∑
j=1

rjxj 7→ (xn),

for all x1, . . . , xn ∈ L1(τ) and ‖T ∗‖ = ‖T‖ ≤ c. But then the restriction of T ∗

to L1(τ) ⊗ V n1 maps elements to CRn1 (τ) and also satisfies ‖T ∗|L1(τ)⊗V n1 ‖ ≤ c.
Hence we can conclude that that

|||(yn)|||1 ≤ c
∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥
1

dP(ω),

hence the result follows with b1 = 1
c .

4.3.3 The upper bound for 2 ≤ p <∞
(This part of the proof is an adaptation of Lust-Piquard’s proof for the Schatten
classes, presented in [14]. This adaptation can also be found in [2].)
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In order to give the upper bound for 2 ≤ p < ∞ we shall make use of an
induction argument by using the Khintchine inequality for 2n ≤ p < 2n+1 to
prove the inequality for 2n+1 ≤ p < 2n+2.

For this construction, we shall first need two intermediate results, namely
corollary 4.3.14 and lemma 4.3.15. Corollary 4.3.14 is a surprisingly deep state-
ment that requires the use of several facts regarding non-atomic von Neumann
algebras and submajorizations involving the generalized singular value function.

In order to prove our corollary, we shall first need to find, for a given positive
element x ∈ S(τ) and every t in a well chosen interval a projection such that
fits “nicely” in between ex(µ(x; t),∞) ≤ e ≤ ex[µ(x; t),∞). As this argument
relies on theorem 3.8.5, we shall need to restrict ourselves to non-atomic von
Neumann algebras.

Lemma 4.3.12. Let M be a non-atomic von Neumann algebra with a faith-
ful normal semi-finite trace τ . Furthermore, let 0 ≤ x ∈ S(τ) be such that
limt→∞ µ(x; t) = 0, let t ∈ (0,∞) be such that t ≤ τ(1) and set s = µ(x; t).
Then there exists a projection e ∈ P(M) such that

(i) ex(s,∞) ≤ e ≤ ex[s,∞),

(ii) τ(e) = t and

(iii) µ(xe) = µ(x)χ[0,t).

Outline. The fact that τ is normal, gives us a form of continuity to work with.
This allows us to use theorem 3.8.5 in order to establish (i) and (ii). We then
use the fact that the projection e commutes with the spectral projections of x
to establish (iii).

Proof. First note that the map λ 7→ τ(ex(λ,∞)) is right-continuous. Next note
that we have by definition that

s = inf{λ ≥ 0 : τ(ex(λ,∞))},

hence we have τ(ex(s,∞)) ≤ t.
Now suppose s = 0, then

τ(ex(s,∞)) ≤ t ≤ τ(1) = τ(ex[0,∞)),

Furthermore, we trivially have that ex(0,∞) ≤ ex[0,∞) = 1, hence by theorem
3.8.5 (i) and (ii) follow.

Now suppose s > 0, then since limt→∞ µ(x; t) = 0, we can pick a strictly
increasing sequence sj ∈ (0, s), such that τ(ex(λj ,∞)) < ∞ and sj ↑ s. We
then have that since ∪n(s1, sn] = (s1, s), that again by the normality of τ ,

inf
n
τ(ex(sn,∞)) = inf

n
(τ(ex(s1,∞))− τ(ex(s1, sn]))

= τ(ex(s1,∞))− sup
n
τ(ex(s1, sn])

= τ(ex(s1,∞))− τ(ex(s1, s)) = τ(ex[s,∞))

Note that since τ(ex(λj ,∞)) < ∞ all terms in the above are finite. But this
means that

τ(ex(s,∞)) ≤ t ≤ lim
λ↑s

τ(ex(sn∞)) = τ(ex[s,∞)),
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hence again by theorem 3.8.5 (i) and (ii) follow.
Now let e be as in (i) and (ii), then clearly e commutes with ex(λ,∞) for all

λ. But this means that e also commutes with ex(B) for all Borel-sets B ⊂ R,
hence we also have ex = xe. Now note that eex = exe is also a spectral measure
and ∫

λd(eex)(λ) = e

∫
λdex(λ) = ex,

hence the spectral measure of ex is given by eex = eex. But now note that if
0 ≤ λ < s, then

eex(λ,∞) = e,

and if λ ≥ s, then since ex(λ,∞) ≤ ex[s,∞),

eex(λ,∞) = ex(λ,∞)

hence in particular

τ(eex(λ,∞)) =

{
τ(e) if 0 ≤ λ < s,
τ(ex(λ,∞)) if λ ≥ s.

But this means that τ(eex(λ,∞)) = min(τ(e), τ(ex(λ,∞))), hence by the defi-
nition of µ, we can deduce µ(ex) = µ(x)χ[0,τ(e)) and (iii) follows.

Lemma 4.3.13. Let x1, . . . , xn ∈ S(τ) be self-adjoint and let 0 ≤ y ∈ S(τ)
such that limt→∞ µ(y; t) = 0. Then

µ

( n∑
k=1

xkyxk

)
≺≺µ(y)µ

( n∑
k=1

x2
k

)
.

Outline. The first two paragraphs of the proof are devoted to showing the fact
that if we pick e as in our previous lemma and define e⊥ = 1 − e, then we in
fact have that y ≤ ye + se⊥. If our von Neumann algebra M is just L∞[a, b],
then this resembles showing that 0 ≤ y ≤ max{y, s} holds almost everywhere.
We then show that the left hand side of the desired submajorization above can
be estimated by

∑
k xk(ye− se)xk and s

∑
k x

2
k.

The major difficulty then lies in estimating
∑
k xk(ye − se)xk. This re-

quires the subsequent use of several previously established facts regarding the
generalized singular value function and the submajorization as well as some ma-
nipulation of the spectral measure in order to conclude that the above indeed
holds.

Proof. Note that without loss of generality, we may assume that M is non-
atomic. If it is not, then we can simply prove the statement for M⊗L∞([0, 1]).
(See also section 3.8.)

Fix t > 0 and s = µ(y; t) and denote es = ey(s,∞) and e⊥s = 1−es = ey[0, s].
Now note that ye⊥s = e⊥s y hence e⊥s D(y) ⊆ D(y). Next note that if ξ ∈ e⊥s D(y),
then we can define a positive measure by

eyξ,ξ(∆) := 〈ey(∆)ξ, ξ〉 = 〈ey(∆ ∩ [0, s])ξ, ξ〉 ,
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where we used that ey(∆1)ey(∆2) = ey(∆1 ∩∆2). But this means that

〈yξ, ξ〉 =

∫
R
λdeyξ,ξ(λ) =

∫
[0,s]

λdeyξ,ξ(λ) ≤ seyξ,ξ[0, s] =
〈
se⊥s ξ, ξ

〉
Using this, we see that for all ξ ∈ D(y),〈

ye⊥s ξ, ξ
〉

=
〈
ye⊥s ξ, e

⊥
s ξ
〉
≤
〈
se⊥s ξ, e

⊥
s ξ
〉
,

hence we have that se⊥s − ye⊥s ≥ 0.
By lemma 4.3.12 we can now find e ∈ P(M) such that τ(e) = t, µ(ye) =

µ(y)χ[0,t) and

ey(s,∞) ≤ e ≤ ey[s,∞).

Since 0 ≤ es ≤ e, we then also have that se⊥ − ye⊥ ≥ 0 and therefore 0 ≤ y ≤
ye+ se⊥. We now apply this to conclude that

n∑
k=1

xkyxk ≤
n∑
k=1

xk(ye+ s(1− e))xk =

n∑
k=1

xk(ye− se)xk + s

n∑
k=1

x2
k.

Now note that∫ t

0

µ

( n∑
k=1

xk(ye− se)xk; r

)
dr ≤

∫ ∞
0

µ

( n∑
k=1

xk(ye− se)xk; r

)
dr

= τ

( n∑
k=1

xk(ye− se)xk
)

= τ

(
(ye− se)

n∑
k=1

x2
k

)

≤
∫ ∞

0

µ(ye− se; r)µ
( n∑
k=1

x2
k; r

)
dr,

where we used the fact that µ(xy)≺≺µ(x)µ(y).
Further, we note that ye = eye ≥ 0, hence if we denote f(λ) = max{0, λ−s},

then f is a continuous increasing function and f(ye) = ye− se and µ(f(ye)) =
f(µ(ye)). Now we have that µ(ye; r)− s ≤ 0 if and only if r ≥ t, hence

µ(ye− se) = µ(f(ye)) = f(µ(ye)) = (µ(ye)− s)χ[0,t) = µ(y)χ[0,t) − sχ[0,t).

But applying this to our previous inequality then yields∫ t

0

µ

( n∑
k=1

xk(ye− se)xk; r

)
dr ≤

∫ t

0

(µ(y; r)− s)µ
( n∑
k=1

x2
k; r

)
dr

=

∫ t

0

µ(y; r)µ

( n∑
k=1

x2
k; r

)
dr − s

∫ t

0

µ

( n∑
k=1

x2
k; r

)
dr.
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If we then use the fact that µ(x+ y)≺≺µ(x) + µ(y), then we then find that

µ

( n∑
k=1

xkyxk

)
≺≺µ

( n∑
k=1

xk(ye− se)xk
)

+ sµ

( n∑
k=1

x2
k

)

≺≺µ(y)µ

( n∑
k=1

x2
k

)
− sµ

( n∑
k=1

x2
k

)
+ sµ

( n∑
k=1

x2
k

)

≺≺µ(y)µ

( n∑
k=1

x2
k

)
,

hence the statement holds.

Corollary 4.3.14. Let x1, . . . , xn ∈ S(τ) be self-adjoint, let 1 ≤ p <∞ and let
0 ≤ y ∈ S(τ) such that limt→∞ µ(y; t) = 0. Then∥∥∥∥ n∑

j=1

xkyxk

∥∥∥∥
p

≤ ‖y‖2p
∥∥∥∥ n∑
j=1

x2
k

∥∥∥∥
2p

Proof. Note that if p ≥ 1 and if f, g are measurable functions, then |f | ≺≺ |g|
implies that |f |p≺≺ |g|p. Using this we see that∥∥∥∥ n∑
j=1

xkyxk

∥∥∥∥p
p

=

∫
µ

( n∑
j=1

xkyxk; t

)p
dt ≤

∫
µ(y; t)pµ

( n∑
j=1

x2
k; t

)p
dt

≤
(∫

µ(y; t)2p

)1/2(∫
µ

( n∑
j=1

x2
k; t

)2p

dt

)1/2

= ‖y‖p2p

∥∥∥∥ n∑
j=1

x2
k

∥∥∥∥p
2p

,

where we applied the Cauchy-Schwarz inequality on L2([0,∞)).

As mentioned, we shall need a second intermediate result in order to establish
the upper bound for 2 ≤ p <∞. This result is often known in harmonic analysis
as a decoupling lemma.

Lemma 4.3.15. Let (Ω,F ,P) be a probability space, let ri and r′i be mutually
i.i.d. sequences of Rademacher random variables on (Ω,F ,P) and let [xij ] be an
n×n-matrix with elements in some Banach space X, then for every 1 ≤ p <∞,∫ ∥∥∥∥ n∑

i,j=1

ri(ω)r′j(ω)xij

∥∥∥∥p
X

dP(ω)dP(ω′) ≥ 4−p
∫ ∥∥∥∥ n∑

i,j=1
i 6=j

ri(ω)rj(ω)xij

∥∥∥∥p
X

dP(ω).

Proof. Denote by (δj)j∈N another i.i.d. sequence of random variables such that
P(δj = 0) = P(δj = 1) = 1

2 and note that Eδi(1 − δj) = 1
4 for all i 6= j and

Eδi(1− δi) = 0 for all i. Furthermore, note that the map

α 7→
∫ ∥∥∥∥∑

i,j

αrirj(ω)xij

∥∥∥∥p
X

dP(ω)
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is convex on R. This then yields

E : =

∫ ∥∥∥∥ n∑
i,j=1
i 6=j

ri(ω)rj(ω)xij

∥∥∥∥p
X

dP(ω)

= 4p
∫ ∥∥∥∥ n∑

i,j=1

(∫
δi(ω

′)(1− δj(ω′))dP(ω′)

)
ri(ω)rj(ω)xij

∥∥∥∥p
X

dP(ω)

≤ 4p
∫ ∫ ∥∥∥∥ n∑

i,j=1

δi(ω
′)(1− δj(ω′))ri(ω)rj(ω)xij

∥∥∥∥p
X

dP(ω)dP(ω′),

where we applied Jensen’s inequality in the last line. If we now denote σω′ :=
{i : i ≤ n, δi(ω′) = 1}, then this becomes

E ≤ 4p
∫ ∫ ∥∥∥∥ n∑

i,j=1

δi(ω
′)(1− δj(ω′))ri(ω)rj(ω)xij

∥∥∥∥p
X

dP(ω)dP(ω′)

≤ 4p
∫ ∫ ∥∥∥∥ ∑

i∈σω′

∑
j /∈σs

ri(ω)rj(ω)xij

∥∥∥∥p
X

dP(ω)dP(ω′).

Now note that if f is a positive function such that c ≤
∫

Ω
f(ω′)dP(ω′), then we

must have c ≤ f(ω′0) for some ω′0 ∈ Ω. Likewise, we find that there must exist
some ω′0 ∈ Ω, such that

E ≤ 4p
∫ ∥∥∥∥ ∑

i∈σω′0

∑
j /∈σω′0

ri(ω)rj(ω)xij

∥∥∥∥p
X

dP(ω).

Furthermore, for fixed ω′0 ∈ Ω, we have that (ri)i∈σω′0
and (ri)i/∈σω′0

must be

independent, hence we can replace (ri)i/∈σω′0
by (r′i)i/∈σω′0

to find that

E ≤ 4p
∫
‖
∑
i∈σω′0

∑
j /∈σω′0

ri(ω)r′j(ω)xij‖pXdP(ω).

Finally note that since Eri = Er′j = 0, we have that

E ≤ 4p
∫ ∥∥∥∥ ∑

i∈σω′0

∑
j /∈σω′0

ri(ω)r′j(ω)xij

∥∥∥∥p
X

dP(ω)

= 4p
∫ ∥∥∥∥ ∑

i∈σω′0

( ∑
j /∈σω′0

ri(ω)r′j(ω)xij +
∑
j∈σω′0

ri(ω)
(
Er′j
)
xij

)

+
∑
i/∈σω′0

(Eri)
n∑
j=1

r′j(ω)xij

∥∥∥∥p
X

dP(ω)

≤ 4p
∫ ∫ ∥∥∥∥ ∑

i∈σω′0

( ∑
j /∈σω′0

ri(ω)r′j(ω)xij +
∑
j∈σω′0

ri(ω)r′j(ω
′)xij

)

80



+
∑
i/∈σω′0

ri(ω
′)

n∑
j=1

r′j(ω)xij

∥∥∥∥p
X

dP(ω)dP(ω′)

≤ 4p
∫ ∥∥∥∥ n∑

i=1

n∑
j=1

ri(ω)r′j(ω)xij

∥∥∥∥p
X

dP(ω),

where we again applied Jensen’s inequality and the independence of ri and r′j
in the last two inequalities.

In order to properly make our induction argument, we shall need to use the
fact that when proving the Khintchine inequality, it suffices to show that the
inequality holds for finite sequences of self-adjoint elements. This we prove in
the following lemma.

Lemma 4.3.16. Let 2 ≤ p <∞ and suppose that the inequality(∫ ∥∥∥∥ n∑
j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)1/p

≤ c|||(xn)|||p,

holds for all self-adjoint x1, . . . , xn ∈ Lp(τ), then the inequality(∫ ∥∥∥∥ n∑
j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)1/p

≤
√

8c|||(xn)|||p,

holds for all x1, . . . , xn ∈ Lp(τ).

Proof. Suppose x1, . . . , xn ∈ Lp(τ), then there exist self-adjoint yj , zj ∈ Lp(τ)
such that xj = yj + izj . Now note that we have that

xjx
∗
j + x∗jxj = 2y2

j + 2z2
j ,

hence

0 ≤
∑
j

y2
j ≤

1

2

∑
j

xjx
∗
j +

1

2

∑
j

x∗jxj

and likewise for zj . If we then apply the triangle inequality in Lp(τ ⊗P), we see
that(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)1/p

≤
(∫ ∥∥∥∥ n∑

j=1

rj(ω)yj

∥∥∥∥p
p

dP(ω)

)1/p

+

(∫ ∥∥∥∥ n∑
j=1

rj(ω)zj

∥∥∥∥p
p

dP(ω)

)1/p

≤ c
∥∥∥∥( n∑

j=1

y2
j

)1/2∥∥∥∥
p

+ c

∥∥∥∥( n∑
j=1

z2
j

)1/2∥∥∥∥
p

= c

∥∥∥∥ n∑
j=1

y2
j

∥∥∥∥1/2

p/2

+ c

∥∥∥∥ n∑
j=1

z2
j

∥∥∥∥1/2

p/2

≤
√

2c

∥∥∥∥ n∑
j=1

xjx
∗
j +

n∑
j=1

x∗jxj

∥∥∥∥1/2

p/2

≤
√

2c

(∥∥∥∥ n∑
j=1

xjx
∗
j

∥∥∥∥1/2

p/2

+

∥∥∥∥ n∑
j=1

x∗jxj

∥∥∥∥1/2

p/2

)

≤
√

2c

(∥∥∥∥( n∑
j=1

xjx
∗
j

)1/2∥∥∥∥
p

+

∥∥∥∥( n∑
j=1

x∗jxj

)1/2∥∥∥∥
p

)
≤ 2
√

2c|||(xn)|||p,

hence the statement holds.

81



We now we finally have all the tools necessary to establish the upper bound
for 2 ≤ p <∞.

Theorem 4.3.17 (Upper bound for 2 ≤ p < ∞). Let 2 ≤ p < ∞ then there
exist a constants cp > 0, depending only on p, such that(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)1/p

≤ cp|||(xn)|||p,

for any finite sequence x1, . . . , xn ∈ Lp(τ).

Outline. As mentioned before, the proof follows by an induction argument. We
first the previous lemma in order to reduce the problem to the self adjoint case.
Next we use the decoupling lemma to establish in (4.7) the fact that(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)2/p

≤ |||(xn)|||2p + 4

(∫∫ ∥∥∥∥ n∑
j,k=1

rj(ω)r′k(ω′)xjxk

∥∥∥∥p/2
p/2

dP(ω)dP(ω′)

)2/p

.

If we now assume that 2 < p ≤ 4, then 1 < p/2 ≤ 2, hence we can apply
theorem 4.3.6 the second term in the right hand side. Combining this with
Hölder’s inequality, we can reduce the inequality to(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)2/p

≤ |||(xn)|||2p + 4|||(xn)|||p
(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)1/p

.

Solving this for (
∫
‖
∑
j nrj(ω)xj‖ppdP(ω))2/p then in fact gives us the desired

result and the start of our induction.
If we then take 2k < p ≤ 2k+1, with k > 2, then instead of applying theorem

4.3.6, we can apply the induction step. Furthermore, since p > 4, we can no
longer use Hölder’s inequality in the way that we did. Instead, we shall now need
to use corollary 4.3.14. The remainder of the proof though, remains roughly the
same.

Proof. Note that if p = 2, then the inequality already follows by 4.3.6. By lemma
4.3.16, it suffices to show that the inequality holds for self-adjoint elements,
hence we may assume that xi = x∗i . Now let 2 ≤ p < ∞ and note that if
a ∈ Lp(τ) with a ≥ 0, then

‖a‖pp = τ(ap) = τ((a2)p/2) = ‖a2‖p/2p/2 <∞,

hence a2 ∈ Lp/2(τ). But this means that by applying the triangle inequality to
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Lp/2(τ ⊗ P), we have(∫ ∥∥∥∥ n∑
j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)2/p

=

(∫ ∥∥∥∥( n∑
j=1

rj(ω)xj

)2∥∥∥∥p/2
p/2

dP(ω)

)2/p

=

(∫ ∥∥∥∥ n∑
j=1

x2
j +

n∑
i,j=1
i 6=j

rj(ω)rk(ω)xjxk

∥∥∥∥p/2
p/2

dP(ω)

)2/p

≤
∥∥∥∥ n∑
j=1

x2
j

∥∥∥∥
p/2

+

(∫ ∥∥∥∥ n∑
j,k=1
i 6=j

rj(ω)rk(ω)xjxk

∥∥∥∥p/2
p/2

dP(ω)

)2/p

≤
∥∥∥∥ n∑
j=1

x2
j

∥∥∥∥
p/2

+

(
4p/2

∫ ∥∥∥∥ n∑
j,k=1

rj(ω)r′k(ω)xjxk

∥∥∥∥p/2
p/2

dP(ω)

)2/p

=

∥∥∥∥( n∑
j=1

x2
j

)1/2∥∥∥∥2

p

+ 4

(∫∫ ∥∥∥∥ n∑
j,k=1

rj(ω)r′k(ω′)xjxk

∥∥∥∥p/2
p/2

dP(ω)dP(ω′)

)2/p

,

(4.7)

where we applied the decoupling lemma 4.3.15 in the last inequality and used
the independence of rj and r′k in the last equality. Now suppose that 2 < p ≤ 4
and denote z(ω′) =

∑n
j=1 r

′
j(ω
′)xj , then for fixed ω′ ∈ Ω, we have that z(ω′) ∈

Lp(τ), hence we also have that xjz(ω
′) ∈ Lp/2(τ) by theorem 3.4.4. But since

1 < p/2 ≤ 2, we can then apply theorem 4.3.6 to find that∫ ∥∥∥∥ n∑
j=1

rj(ω)xjz(ω
′)

∥∥∥∥p/2
p/2

dP(ω) ≤|||(z(ω′)xn)|||p/2p/2 ≤ ‖(z(ω
′)xn)‖p,c.

But this means that the last term in (4.7) becomes∫∫ ∥∥∥∥ n∑
j,k=1

rj(ω)r′k(ω′)xjxk

∥∥∥∥p/2
p/2

dP(ω)dP(ω′)

=

∫ (∫ ∥∥∥∥ n∑
j=1

rj(ω)xjz(ω
′)

∥∥∥∥p/2
p/2

dP(ω)

)
dP(ω′)

≤
∫ ∥∥∥∥( n∑

j=1

|xjz(ω′)|2
)1/2∥∥∥∥p/2

p/2

dP(ω′)

≤
∫ ∥∥∥∥( n∑

j=1

z(ω′)x2
jz(ω

′)

)1/2∥∥∥∥p/2
p/2

dP(ω′)

=

∫ ∥∥∥∥z(ω′)( n∑
j=1

x2
j

)
z(ω′)

∥∥∥∥p/4
p/4

dP(ω′)

(4.8)

Now note that 4
p = 1

p + 1
p + 2

p , hence by Hölder’s inequality we have

‖zxz‖p/4p/4 ≤ ‖z‖
p/4
p ‖x‖

p/4
p/2‖z‖

p/4
p = ‖z‖p/2p ‖x1/2‖p/2p .
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Applying this to (4.8), we find that∫∫ ∥∥∥∥ n∑
j,k=1

rj(ω)r′k(ω′)xjxk

∥∥∥∥p/2
p/2

dP(ω)dP(ω′)

=

∫
‖z(ω′)‖p/2p

∥∥∥∥( n∑
j=1

x2
j

)1/2∥∥∥∥p/2
p

dP(ω′)

≤
∥∥∥∥( n∑

j=1

x2
j

)1/2∥∥∥∥p/2
p

(∫
‖z(ω′)‖ppdP(ω′)

)1/2

.

(4.9)

By combining (4.7) with (4.9) we then find that(∫ ∥∥∥∥ n∑
j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)2/p

≤ |||(xn)|||2p + 4|||(xn)|||p
(∫

‖z(ω′)‖ppdP(ω′)

)1/p

= |||(xn)|||2p + 4|||(xn)|||p
(∫ ∥∥∥∥ n∑

j=1

r′j(ω
′)xj

∥∥∥∥p
p

dP(ω′)

)1/p

= |||(xn)|||2p + 4|||(xn)|||p
(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)1/p

where we used the fact that for p ≥ 2 and self-adjoint x1, . . . , xn, we have
|||(xn)|||p = ‖(

∑n
j=1 x

2
j )

1/2‖p and the fact that the ri and r′j are independent. If
we then write

λ = |||(xn)|||−1

(∫ ∥∥∥∥ n∑
j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)1/p

(4.10)

then this inequality reduces to λ2 ≤ 1+4λ, which can only hold if λ ≤ 2+
√

5 < 5,
hence we must have that(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)1/p

≤ 5|||(xn)|||.

By lemma 4.3.16, the inequality then also holds for arbitrary xj ∈ Lp(τ).
The rest of the proof now follows by induction. Suppose that the theorem

holds for 2n < p ≤ 2n+1, then we wish to show that it holds for 2n+1 < p ≤ 2n+2.
Of course (4.7) still holds, but since 2 < p/2 we can no longer use theorem 4.3.6.
Instead we will use the induction step, together with the fact that

|||(xn)|||p/s ≤ max{‖(xn)‖p/2,c, ‖(xn)‖p/2,r} ≤ ‖(xn)‖p/2,c + ‖(xn)‖p/2,r,

to find the following∫∫ ∥∥∥∥ n∑
j,k=1

rj(ω)r′k(ω′)xjxk

∥∥∥∥p/2
p/2

dP(ω)dP(ω′) ≤
∫

c
p/2
p/2|||(xnz(ω

′))|||p/2p/2dP(ω′)

≤ cp/2p/2

∫ (
‖(xnz(ω′))‖p/2,c + ‖(xnz(ω′))‖p/2,r

)p/2
dP(ω′)
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Now note that in (4.8) and (4.9) we basically found that

‖(xnz(ω′))‖p/2,c =

∥∥∥∥( n∑
j=1

z(ω′)xjz(ω
′)

)1/2∥∥∥∥
p/2

≤ ‖z(ω′)‖p
∥∥∥∥( n∑

j=1

x2
j

)1/2∥∥∥∥
p

= ‖z(ω′)‖p|||(xn)|||p.

Furthermore since p/4 ≥ 1, we can apply corollary 4.3.14 to find

‖(xnz(ω′))‖p/2,r =

∥∥∥∥( n∑
j=1

xjz(ω
′)xj

)1/2∥∥∥∥
p/2

=

∥∥∥∥ n∑
j=1

xjz(ω
′)2xj

∥∥∥∥1/2

p/4

≤ ‖z(ω′)2‖1/2p/2

∥∥∥∥ n∑
j=1

x2
j

∥∥∥∥1/2

p/2

≤ ‖z(ω′)‖p
∥∥∥∥( n∑

j=1

x2
j

)∥∥∥∥
p

= ‖z(ω′)‖p|||(xn)|||p.

Combining this, we find that (4.9) then becomes∫∫ ∥∥∥∥ n∑
j,k=1

rj(ω)r′k(ω′)xjxk

∥∥∥∥p/2
p/2

dP(ω)dP(ω′)

≤ cp/2p/2

∫ (
‖(xnz(ω′))‖p/2,c + ‖(xnz(ω′))‖p/2,r

)p/2
dP(ω′)

≤ cp/2p/2

∫ (
2‖z(ω′)‖p|||(xn)|||p

)p/2
dP(ω′)

≤ 2p/2c
p/2
p/2|||(xn)|||p/2p

(∫
‖z(ω′)‖pdP(ω′)

)p/2
.

(4.11)

If we then combine this with (4.7), then we can conlude that(∫ ∥∥∥∥ n∑
j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)2/p

= |||(xn)|||2p+ 8cp/2|||(xn)|||p
(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)1/p

.

If we then again define λ as we did in (4.10), then we find that this inequality
reduces to λ2 ≤ 1 + 8cp/2λ. From this we can deduce that λ ≤ 8cp/2 + 1.
Combining this with lemma 4.3.16, we find that the theorem holds for 2n+1p ≤
2n+2.

4.3.4 The lower bound for 1 < p ≤ 2

The argument we use now is quite standard and can be found in both [14] and
[15].

By using a duality argument, we can establish the lower bound for 1 < p ≤ 2,
thus completing our proof of the noncommutative Khintchine inequality.
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Theorem 4.3.18 (Lower bound for 1 < p ≤ 2). Let 1 < p ≤ 2 then there exists
a constant bp > 0, depending only on p, such that

bp|||(xn)|||p ≤
(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)1/p

,

for any finite sequence x1, . . . , xn ∈ Lp(τ).

Proof. Let 2 ≤ q < ∞ be conjugate to p, then by theorem 4.3.17 the map
T : CRnq (τ)→ Lq(τ ⊗ P) given by

T : (yn) 7→
n∑
j=1

rjyj

is bounded, with ‖T‖ ≤ cq. But since the adjoint map T ∗Lp(τ ⊗ P)→ CRnp (τ)
satisfies

T ∗ :

n∑
j=1

rjxj 7→ (xn)

and ‖T ∗‖ = ‖T‖ ≤ cq, the result follows with bp ≤ 1
cq

.

4.4 Marcinkiewicz-Zygmund type inequalities

In order mimic our results from section 2.3 in our new, noncommutative setting,
we shall need to use a noncommutative version of the Marcinkiewicz-Zygmund
inequality. Analogous to what we did in section 2.3, we can derive the noncom-
mutative Marcinkiewicz-Zygmund inequality from the noncommutative Khint-
chine inequality. Furthermore, we can also use the little Grothendieck inequality
to further generalize the MZ inequality, and hence also Grothendieck’s theorem.

While a noncommutative version of the MZ inequality was already mentioned
and proven in [19], the subsequent generalization of the Grothendieck inequality
given in theorem 4.4.4 is an original result.

Theorem 4.4.1 (Noncommutative Marcinkiewicz-Zygmund). Let 1 ≤ p <∞,
then there is a constant Kp ≥ 0, only dependent on p, such that for any noncom-
mutative Lp-spaces Lp(τ1), Lp(τ2) and any bounded linear map u : Lp(τ1) →
Lp(τ2) we have

|||(uxn)|||p ≤ Kp‖u‖|||(xn)|||p,

for any finite sequence x1, . . . , xn ∈ Lp(τ1).

Proof. Suppose 1 ≤ p <∞, then we can apply theorem 4.3.1 to find that

bpp|||(uxn)|||pp ≤
∫ ∥∥∥∥ n∑

j=1

uxjrj(ω)

∥∥∥∥p
p

dP(ω) =

∫ ∥∥∥∥u n∑
j=1

xjrj(ω)

∥∥∥∥p
p

dP(ω)

≤ ‖u‖p
∫ ∥∥∥∥ n∑

j=1

xjrj(ω)

∥∥∥∥p
p

dP(ω) ≤ cpp‖u‖p|||(xn)|||pp,

which concludes the proof with Kp ≤ cp/bp.
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Analogous to theorem 2.3.5, we can show that theorem 4.2.12 in fact also
implies a MZ-like inequality.

Theorem 4.4.2 (Noncommutative GT: MZ-form). Let A be a von Neumann
algebra and M be a von Neumann algebra with a faithful normal semi-finite
trace τ . Then for any bounded linear map u : A → L1(τ), we have

|||(uxn)|||1 ≤ 2‖u‖|||(xn)|||∞,

for any finite sequence x1, . . . , xn ∈ A.

Proof. Since L1(τ) ⊆M∗, we can define a bounded bilinear form V : A×M→
C by

V (x, y) = τ((ux)y).

Now note that by lemma 3.7.6 and the fact that |||(y∗n)|||∞ = |||(yn)|||∞, we have

|||(uxn)|||1 = sup

{∣∣∣∣ n∑
j=1

τ(yj(uxj))

∣∣∣∣ : y1, . . . , yn ∈M, |||(yn)|||∞ ≤ 1

}

= sup

{∣∣∣∣ n∑
j=1

V (xj , yj)

∣∣∣∣ : y1, . . . , yn ∈M, |||(yn)|||∞ ≤ 1

}
.

Applying corollary 4.2.13 to the right-hand side and taking the supremum then
yields

|||(uxn)|||1 ≤ 2‖V ‖max

{∥∥∥∥( n∑
j=1

x∗jxj

)1/2∥∥∥∥,∥∥∥∥( n∑
j=1

xjx
∗
j

)1/2∥∥∥∥},
which concludes the proof.

Although the little Grothendieck inequality was initially used to estimate
bounded maps to Hilbert spaces, we can also use the little Grothendieck in-
equality to show that the MZ inequality also holds for arbitrary C*-algebras.
In particular, this means that the MZ inequality also holds for von Neumann
algebras (i.e. noncommutative L∞-spaces).

Theorem 4.4.3 (Noncommutative little GT: MZ-form). Let A, B be arbitrary
C*-algebras and let u : A → B be a bounded linear map. Then

|||(uxn)|||∞ ≤
√

2‖u‖|||(xn)|||∞,

for any finite sequence x1, . . . , xn ∈ A.

Proof. Let φ be any state on B. By the Gelfand-Naimark-Segal construction, we
can then construct a Hilbert space L2(φ) from B with an inner product defined
by

〈x, y〉 = φ(y∗x).
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This construction then gives us a canonical map Jφ : B → L2(φ). If we apply
theorem 4.2.14 to the composition Jφu, we find( n∑

j=1

φ((uxj)
∗(uxj))

)1/2

≤
√

2‖Jφ‖‖u‖|||(xn)|||∞.

Now note that ‖Jφ‖ ≤ 1, hence if we take the supremum over all states φ ∈ S(B),
we find that

‖(uxn)‖∞,c =

∥∥∥∥( n∑
j=1

(uxj)
∗(uxj)

)1/2∥∥∥∥
∞
≤
√

2‖u‖|||(xn)|||∞.

By taking 〈x, y〉 = φ(x∗y), we similarily find that

‖(uxn)‖∞,r ≤
√

2‖u‖|||(xn)|||∞,

hence the result follows.

Note that if we are given two C*-algebras A,B and a bounded bilinear map
V : A× B → C, then we can construct a bounded linear map u : A → B∗ by

ux : y 7→ V (x, y).

Furthermore B∗ is, as a Banach space, the pre-dual of B∗∗, which can be iden-
tified with the universal enveloping von Neumann algebra of B. If there exists
a faithful normal semi-finite trace τ on B∗∗, then we can identify L1(τ) and B∗,
which we can in turn use to show that theorem 4.4.2 implies the Grothendieck
inequality for A and B, since if |||(yn)||| = 1, then (by lemma 3.7.6)∣∣∣∣ n∑

j=1

V (xj , yj)

∣∣∣∣ =

∣∣∣∣ n∑
j=1

τ(yj(uxj))

∣∣∣∣ ≤ |||(uxn)|||1 ≤ 2‖u‖‖(xn)‖∞.

Unfortunately, such a trace does not necessarily exist, hence we cannot con-
clude from this argument that theorem 4.4.2 and the Grothendieck inequality
are equivalent. We can, however conclude this for those C*-algebras whose uni-
versal enveloping von Neumann algebra can be equipped with a faithful normal
semi-finite trace.

Nonetheless, we can give a full noncommutative analogue of theorem 2.3.7.

Theorem 4.4.4 (Noncommutative MZ & little GT: Grothendieck form). Let
1 ≤ p, q ≤ ∞ be conjugate numbers. Then there exists a K ≥ 0 depending
only on p such that for any noncommutative Lp-spaces Lp(τ1), Lq(τ2) and any
bounded bilinear form V : Lp(τ1)× Lq(τ2)→ C,∣∣∣∣ n∑

i=1

V (xi, yi)

∣∣∣∣ ≤ Kp‖V ‖|||(xn)|||p|||(yn)|||q,

for all finite sequences x1, . . . , xn ∈ Lp(τ1) and y1, . . . , xn ∈ Lq(τ2).
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Proof. Without loss of generality, we may assume that q 6= ∞. Now suppose
that V : Lp(τ1) × Lq(τ2) → C, then we can construct u : Lp(τ1) → Lq(τ2)∗ =
Lp(τ2) by ux : y 7→ V (x, y), meaning that

V (x, y) = τ((ux)y).

But this means that for all y1, . . . , yn ∈ Lq(τ2), we have using using lemma 3.7.6
that ∣∣∣∣ n∑

j=1

V (xj , yj)

∣∣∣∣ =

∣∣∣∣ n∑
j=1

τ((uxj)yj)

∣∣∣∣
≤ |||(uxn)|||p|||(yn)|||q ≤ K‖u‖|||(xn)|||p|||(yn)|||q,

where we applied theorem 4.4.1 (or 4.4.3 if p =∞) in the last inequality.

Since we essentially derived the noncommutative MZ inequality from the
noncommutative Khintchine inequality, we see that it is the Khintchine inequal-
ity that implies the Grothendieck-like inequality presented above. If we want
to further generalize this, to the extent of theorem 2.4.12, we will need some
additional theory.
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Chapter 5

Noncommutative function
spaces

In chapter 2 we introduced the Grothendieck inequality and showed how, using
the Khintchine inequality, we could generalize GT to Lp-spaces. We ended
the chapter by showing in which cases the Grothendieck inequality could be
generalized to general Banach function spaces, resulting in theorems 2.4.5 and
2.4.12.

In the previous chapter, we started something similar in the noncommutative
case. We introduced the noncommutative Grothendieck inequality and gener-
alized it to noncommutative Lp-spaces using the noncommutative Khintchine
inequality. This then begs the question if we can define a “noncommutative Ba-
nach function space” and generalize the Grothendieck inequality to also hold on
these spaces. As it turns out we can generalize the notion of a Banach function
space to the noncommutative setting, if we restrict ourselves to the so called
symmetric Banach function spaces.

This new setting will allow us, in section 5.3, to formulate the main original
result of this thesis, namely the relations between the Grothendieck, Khintchine
and Marcinkiewicz-Zygmund inequalities on such spaces. This theory will allow
us to use the noncommutative Khintchine inequality from the previous chapter
to prove a Grothendieck inequality on Lp × Lr, for many 1 ≤ p, r ≤ ∞, as
we shall see in corollary 5.3.5. We will take this one step further and apply
this theory to a recent result by Lust-Piquard and Xu for [16], in order to give
a noncommutative analogue of 2.4.5 and 2.4.12, namely corollaries 5.4.11 and
5.4.12.

5.1 Noncommutative Banach function spaces

In the following, we again let (X,Σ, ν) be a Maharam measure space and let
M be a von Neumann algebra on a Hilbert space H, with a faithful normal
semi-finite trace τ .

Recall from example 3.5.8, that for a function f ∈ S(ν), the decreasing
rearrangement of |f | is defined by

µ(f ; t) = inf{λ ≥ 0 : ν({s ∈ X : |f(s)| ≥ λ}) ≤ t}.
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Using this,we can define the notion of a rearrangement invariant Banach function
space.

Definition 5.1.1. A Banach function space E ⊆ S(ν) is called rearrangement
invariant (r.i. for short) if f ∈ E, g ∈ S(ν) and µ(f) = µ(g) imply that g ∈ E
and ‖g‖E = ‖f‖E .

If E,F ⊂ L0(ν) are linear subspaces, we can consider the intersection of
these spaces and the sum of these two spaces (i.e. the set of all x + y, where
x ∈ E and y ∈ Y ). Similar to our definition of the space CRnp (τ) (see definition
3.7.5), we can, when given two Banach function spaces, define the intersection
and sum Banach spaces.

Definition 5.1.2. Let E,F ⊂ L0(ν) be Banach function spaces, then we can
define two new Banach function spaces by (E∩F, ‖.‖E∩F ) and (E+F, ‖.‖E+F ),
where we define

‖f‖E∩F = max{‖f‖E , ‖f‖F }
‖f‖E+F = inf{‖f1‖E + ‖f2‖F : f = f1 + f2, f1 ∈ E, f2 ∈ F}.

Combining the above notions, we can now introduce the concept of a sym-
metric Banach function space.

Definition 5.1.3. A Banach function space, E ⊂ S(ν) is called symmetric if
it satisfies

(i) E is rearrangement invariant.

(ii) L1(ν) ∩ L∞(ν) ⊂ E ⊂ L1(ν) + L∞(ν), with continuous embeddings with
respect to the ‖ · ‖L1(ν)∩L∞(ν) and ‖ · ‖L1(ν)+L∞(ν) norms.

(iii) If f, g ∈ E and f ≺≺ g, then ‖f‖E ≤ ‖g‖E .

We say that E is fully symmetric, if in addition f ∈ S(ν), g ∈ E and f ≺≺ g
imply that f ∈ E.

Example 5.1.4. It can be shown that the usual commutative Lp spaces, as well as
Orlicz spaces and Lorenz spaces are rearrangement invariant. (For a definition
of the latter two spaces, we refer the reader to [13].)

Using this, we can now introduce the concept of a noncommutative Banach
function space (see also definition 3.5.3 and theorem 3.5.11).

Definition 5.1.5. Let E be a symmetric Banach function space on (0,∞) (with
respect to the Lebesgue measure) and denote by µ(x) the generalized singular
value function of x. Then we define

E(τ) : = {x ∈ S(τ) : µ(x) ∈ E}

and for all x ∈ E(τ),

‖x‖E(τ) : = ‖µ(x)‖E .

We say that E(τ) is the noncommutative Banach function space, corresponding
to E and associated with (M, τ).
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For such spaces, the following can be shown.

Theorem 5.1.6. Let E(τ) be the noncommutative Banach function space, cor-
responding to E and associated with (M, τ). Then the following are true.

(i) E(τ) is a linear subspace of S(τ).

(ii) (E(τ), ‖ · ‖E(τ)) is a Banach space.

(iii) We have x ∈ E(τ) if and only if x∗ ∈ E(τ) if and only if |x| ∈ E(τ).

(iv) x ∈ E(τ), y ∈ S(τ) and y≺≺x implies y ∈ E(τ) and ‖y‖E(τ) ≤ ‖x‖E(τ).
(i.e., E(τ) is symmetric.)

(v) E(τ)h, the subspace of self-adjoint elements and E(τ)+, the subspace of
positive elements, are closed subspaces of E(τ).

(vi) L1(τ) ∩ L∞(τ) ⊆ E(τ) ⊆ L1(τ) + L∞(τ).

With regard to these concepts we can for a noncommutative Banach function
space define the the Köhte dual, similar to how we defined it in the commutative
case (definition 2.4.7).

Definition 5.1.7. The Köthe dual space E(τ)× of a noncommutative Banach
function space E(τ) is defined as

E(τ)× := {y ∈ S(τ) : xy ∈ L1(τ),∀x ∈ E(τ)}.

By defining for y ∈ E(τ)×, the map φy : E(τ) → C by φy : x 7→ τ(xy), we
see that every y ∈ E(τ)× in fact defines a bounded linear functional on E(τ).
This means that we can identify E(τ)× with a subspace of E(τ)∗,where the
duality is given by

〈x, y〉 = τ(xy).

Eequipping then E(τ)× with the norm on E(τ)∗, E(τ)× becomes a normed
vector space. It can be shown that the Köthe dual of E(τ) can if fact be related
to the Köhte dual of E in the following ways.

Theorem 5.1.8. Let E be a symmetric Banach function space on (0,∞) (with
respect to the Lebesgue measure). Then the following holds.

(i) E× is a fully symmetric Banach function space. (Note that this means that
E×(τ) is well defined.)

(ii) E×(τ) = E(τ)×, with equality of norms.

(iii) If E is order continuous, then E∗(τ) = E×(τ) = E(τ)× = E(τ)∗.

5.2 Column and row spaces

Regardless of whether the Banach function spaces involved, we still wish to work
with elements of the form (

∑n
j=1 x

∗
jxj)

1/2. In particular, we need the following
lemma.
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Lemma 5.2.1. Let E be a symmetric Banach function space. Then( n∑
j=1

x∗jxj

)1/2

∈ E(τ),

for every finite sequence x1, . . . , xn ∈ E(τ).

Proof. We shall show that this holds for n = 2, since the arguments for larger
n is identical.

Consider the von Neumann algebraM⊗M2(C) of operators acting on H ⊗
C2, together with the faithful normal semi-finite trace τ ⊗ Tr. If x, y ∈ E(τ),
then we can define operators X,Y on H ⊗ C2, by the matrices

X =

(
x 0
0 0

)
Y =

(
0 0
y 0

)
.

Furthermore, these operators satisfy

|X| =
(
|x| 0
0 0

)
|Y | =

(
|y| 0
0 0

)
e|X|(∆) =

(
e|x|(∆) 0

0 0

)
e|Y |(∆) =

(
e|y|(∆) 0

0 0

)
,

for any Borel set ∆ ∈ B(R). But this means that µ(X) = µ(x) and likewise
µ(Y ) = µ(y). This then implies that X,Y ∈ E(τ ⊗ Tr), whenever x, y ∈ E(τ).

However, since X,Y ∈ E(τ⊗Tr), we must also have that |X+Y | ∈ E(τ⊗Tr),
hence

|X + Y | =
∣∣∣∣(x 0
y 0

)∣∣∣∣ =

(
(x∗x+ y∗y)1/2 0

0 0

)
∈ E(τ ⊗ Tr).

But since |X + Y | ∈ E(τ ⊗ Tr), we must have that µ(|X + Y |) ∈ E and since
µ(|X + Y |) = µ((|x|2 + |y|2)1/2), we see that (|x|2 + |y|2)1/2 ∈ E(τ), hence the
result follows.

Using this, we now give the following generalization of the column and row
norms for finite sequences in E(τ).

Definition 5.2.2. Let E be a symmetric Banach function space on (0,∞) and
let x1,. . .,xn ∈ E(τ), then we write (xn) = (x1, . . . , xn). Furthermore, we define

‖(xn)‖E,c :=

∥∥∥∥( n∑
j=1

|xj |2
)1/2∥∥∥∥

E(τ)

=

∥∥∥∥( n∑
j=1

x∗jxj

)1/2∥∥∥∥
E(τ)

‖(xn)‖E,r :=

∥∥∥∥( n∑
j=1

|x∗j |2
)1/2∥∥∥∥

E(τ)

=

∥∥∥∥( n∑
j=1

xjx
∗
j

)1/2∥∥∥∥
E(τ)

.

Finally, the spaces E(τ, `n,c2 ) and E(τ, `n,r2 ) are the Banach spaces of all finite
sequences of length n in E(τ) with the ‖ · ‖E,c and ‖ · ‖E,r norm respectively.

The next result follows in a way analogous to lemmas 2.4.11 and 3.7.4
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Lemma 5.2.3. Let E be a order continuous Banach function space on (0,∞).
Then

E(τ, `n,c2 )∗ = E×(τ, `n,r2 ) = E∗(τ, `n,r2 )

E(τ, `n,r2 )∗ = E×(τ, `n,c2 ) = E∗(τ, `n,c2 ),

where the duality is given by

〈(xn), (yn)〉 =

n∑
j=1

τ(yjxj)

Proof. The proof itself is identical to that of 3.7.4.

Unfortunately it is not immediately obvious in which case we need to look
at the intersection norm of these spaces, and in which case we need to look at
the sum norm of these space (see definition 3.7.5). We can, however, just apply
these on a case by case basis.

Definition 5.2.4. We denote the sum norm on the Banach space

E(τ, `n,c2 ) + E(τ, `n,r2 ), by

||| · |||E,+ = inf{‖(x′n)‖E,c + ‖(x′′n)‖E,r},

where the infimum runs over all possible decompositions xi = x′i + x′′i , with
x′i, x

′′
i ∈ E(τ). Furthermore, we denote the intersection norm on the Banach

space

E(τ, `n,c2 ) ∩ E(τ, `n,r2 ), by

||| · |||E,∩ = max{‖(xn)‖E,c, ‖(xn)‖E,r}.

Lemma 5.2.5. We have that(
E(τ, `n,c2 ) + E(τ, `n,r2 )

)∗
= E(τ, `n,c2 )∗ ∩ E(τ, `n,r2 )∗(

E(τ, `n,c2 ) ∩ E(τ, `n,r2 )
)∗

= E(τ, `n,c2 )∗ + E(τ, `n,r2 )∗,

where again the duality is given by

〈(xn), (yn)〉 =

n∑
j=1

τ(yjxj)

Proof. The proof is identical that of 3.7.6.

5.3 Equivalent Inequalities

Several proofs of noncommutative Khintchine inequalities have been given in the
past, most notably in [15] and [16]. We will now consider how these Khintchine
inequalities in general relate to noncommutative versions of Grothendieck’s the-
orem.

We let E,F be symmetric Banach function spaces on (0,∞), and let E(τ1),
F (τ2) be the corresponding noncommutative Banach function spaces associated
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with (M1, τ1) and (M2, τ2) respectively. In their sequential form, we now have
three important inequalities.

c|||(xn)|||E ≤
(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥2

E(τ)

dP(ω)

)1/2

≤ C|||(xn)|||E , (K)

∣∣∣∣ n∑
j=1

V (xj , yj)

∣∣∣∣ ≤ K|||(xn)|||E |||(yn)|||F , (GT)

|||(uxn)|||F ≤ k‖u‖|||(xn)|||E , (MZ)

where |||·|||E denotes some norm on the space of finite sequences in E(τ). (Mostly,
we will take ||| · |||E to be either the intersection or the sum-norm.) Note that
the constants depend only on the spaces E(τ1) and F (τ2) and on whether the
norms involved are the intersection or sum-norms.

The last two inequalities are clearly the general noncommutative versions of
the Grothendieck inequality and the Marcinkiewicz-Zygmund inequality. The
first inequality though, is a slightly different version of the Khintchine inequality,
since we now use a “2”, where we first used “p”.

Theorem 5.3.1. Let 1 ≤ p <∞, take E = Lp(τ) and ||| · |||E = ||| · |||p, then (K)
holds for all finite sequences x1, . . . , xn ∈ Lp(τ).

Proof. Note that by the monotonicity of the Lp-norm, it follows immediately
from theorem 4.3.1 that if 1 ≤ p ≤ 2,

bp|||(xn)|||p ≤
(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)1/p

≤
(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥2

p

dP(ω)

)1/2

and if 2 ≤ p <∞,(∫ ∥∥∥∥ n∑
j=1

rj(ω)xj

∥∥∥∥2

p

dP(ω)

)1/2

≤
(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥p
p

dP(ω)

)1/p

≤ cp|||(xn)|||p.

Our observations from remarks 4.3.5 and 4.3.7 then complete the proof.

The version of the Khintchine inequality presented in (K), gives us a rather
more general version of the Marcinkiewicz-Zygmund inequality.

Theorem 5.3.2. Suppose (K) holds for E(τ1) and F (τ2), then (MZ) holds for
all bounded linear maps u : E(τ1)→ F (τ2).

Proof. Denote the constants in K for E(τ1) by c, C and for F (τ2) by c′, C ′. Then
we clearly have that for x1, . . . , xn ∈ E(τ1),

|||(uxn)|||F ≤
1

c

(∫ ∥∥∥∥ n∑
j=1

rj(ω)uxj

∥∥∥∥2

F (τ2)

dP(ω)

)1/2

≤ 1

c

(∫
‖u‖2

∥∥∥∥ n∑
j=1

rj(ω)xj

∥∥∥∥2

E(τ1)

dP(ω)

)1/2

=
1

c
‖u‖
(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥2

E(τ1)

dP(ω)

)1/2

≤ C ′

c
‖u‖|||(xn)|||E ,

hence (MZ) holds with k ≤ C′

c .
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As we have done before, in sections 2.3 and 4.4, we can show that this is
equivalent to (GT), although for slightly different spaces.

Theorem 5.3.3. Let E, F be symmetric Banach function spaces such that F
is order continuous and (MZ) holds for all bounded u : E(τ1) → F×(τ2) with
the intersection (or sum) norm on F×(τ2). Then (GT) holds for all bounded
V : E(τ1)× F (τ2), with the sum (or intersection) norm on F (τ2).

Proof. Note that since F is order continuous, we have F (τ2)∗ = F×(τ2). Now
let V : E(τ1)×F (τ2)→ C be given, then we can define a linear map u : E(τ1)→
F×(τ2) by ux : y 7→ V (x, y). This map then has the property that

V (x, y) = τ((ux)y).

Note that if we consider the intersection norm on F (τ2), then in order to apply
the duality mentioned in 5.2.5, we need to use the sum norm on F×(τ2) and
vice versa.

Now note that if y1, . . . , yn ∈ F (τ), then we can apply lemma 5.2.5 to find∣∣∣∣ n∑
j=1

V (xj , yj)

∣∣∣∣ =

∣∣∣∣ n∑
j=1

τ((uxj)yj)

∣∣∣∣ ≤ |||(uxn)|||F× |||(y∗n)|||F

≤ k‖u‖|||(xn)|||E |||(yn)|||F = k‖V ‖|||(xn)|||E |||(yn)|||F ,

hence the result follows with K = k.

The converse statement is made as follows.

Theorem 5.3.4. Let E, F be symmetric Banach function spaces such that F
is order continuous and (GT) holds for all bounded V : E(τ1) × F×(τ2) with
the intersection (or sum) norm on F×(τ2). Then (MZ) holds for all bounded
u : E(τ1)→ F (τ2), with the sum (or intersection) norm on F (τ2).

Proof. Let u : E(τ1) → F (τ2) be given, then we can define a bounded bilinear
form V : E(τ1)× F×(τ2)→ C by V (x, y) : τ(y(ux)).

Again note that if we consider the intersection norm on F (τ2), then in order
to apply the duality mentioned in 5.2.5, we need to use the sum norm on F×(τ2)
and vice versa.

Now we can apply lemma 5.2.5 to find

|||(uxn)|||F = sup

{∣∣∣∣ n∑
j=1

τ(yj(uxj))

∣∣∣∣, y1, . . . , yn ∈ F×(τ2), |||(yn)|||F× ≤ 1

}

= sup

{∣∣∣∣ n∑
j=1

V (xj , yj)

∣∣∣∣, y1, . . . , yn ∈ F×(τ2), |||(yn)|||F× ≤ 1

}
Applying then (GT) and taking the supremum yields that

|||(uxn)|||F ≤ K‖V ‖|||(xn)|||E ,

hence the result follows with k = K.

We can now apply these results to theorem 5.3.1, to conclude that the Khint-
chine inequality actually gives us a Grothendieck inequality for bounded bilinear
forms V : Lp(τ1)× Lr(τ2)→ C, for many possible 1 ≤ p, r <∞.
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Corollary 5.3.5. Let 1 ≤ r, p <∞ and not both equal to 1. Then there exists a
constant K ≥ 0 depending only on p and r such that for any noncommutative Lp-
spaces Lp(τ1), Lr(τ2) and any bounded bilinear form V : Lp(τ1)× Lr(τ2)→ C,∣∣∣∣ n∑

i=1

V (xi, yi)

∣∣∣∣ ≤ Kp‖V ‖|||(xn)|||p|||(yn)|||r,

for all finite sequences x1, . . . , xn ∈ Lp(τ1) and y1, . . . , xn ∈ Lr(τ2).

Proof. Without loss of generality let p 6= 1 and let q 6=∞ be conjugate to p.
By theorem 5.3.1, (K) holds for all 1 ≤ r, q < ∞. But by theorem 5.3.2

this means that (MZ) holds for all bounded linear maps u : Lr(τ1)→ Lq(τ2) =
L×p (τ). Furthermore, since p 6=∞, Lp is order continuous, we have by theorem
5.3.3 that (GT) must hold.

5.4 The Khintchine inequality on Convex and
Concave spaces

We shall conclude this thesis, by looking at one of the most recent discoveries in
the area of Grothendieck and Khintchine inequalities, due to Lust-Piquard and
Xu in [16]. Here they prove a generalized little Grothendieck inequality and use
this to establish a generalized Khintchine inequality in the same form as (K),
for a special class of Banach function spaces.

In order to properly introduce these spaces, we need some theory on concave
and convex Banach function spaces. While detailed descriptions can be found
in [13], we will nonetheless give a short overview of some of the definitions and
theorems involved.

Definition 5.4.1. Let 1 ≤ p, q ≤ ∞ and let E be a symmetric Banach function
space. Then we say that E is p-convex if there is a constant 0 < M <∞, such
that for all finite sequences f1, . . . , fn ∈ E,∥∥∥∥∥∥

(
n∑
i=1

|fi|p
)1/p

∥∥∥∥∥∥ ≤M
(

n∑
i=1

‖fi‖p
)1/p

.

The smallest possible constant is denoted by M (p)(E).
Likewise, we say that E is q-concave if there is a constant 0 < M <∞ such

that ∥∥∥∥∥∥
(

n∑
i=1

|fi|q
)1/q

∥∥∥∥∥∥ ≥Mq

(
n∑
i=1

‖fi‖q
)1/q

.

The smallest possible constant is denoted by M(p)(E).

If a Banach function space is both convex and concave, it can be shown that
the constants might be taken equal to one.

Theorem 5.4.2. Suppose 1 ≤ p ≤ q ≤ ∞ and suppose a Banach function
space E is both p-convex and q-concave, then E can be re-normed, such that E
is still a symmetric Banach function space that is p-convex and q-concave with
constants equal to one.
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Example 5.4.3. Let (X,Σ, ν) be a Maharam measure space, then for any finite
sequence f1, . . . , fn ∈ Lp(ν) it can be shown that∥∥∥∥( n∑

j=1

|fj |p
)1/p∥∥∥∥

p

=

( n∑
j=1

‖f‖pp
)1/p

.

This then implies that the commutative Lp-spaces are always both p-convex and
p-concave with constants equal to one.

In the context on Lp spaces, we were also able to consider elements of the
form |x|r, whenever x ∈ Lp(ν) with r ≤ p, since this implies that |x|r ∈ Lp/r(ν)
and p/r ≥ 1. Something similar can be done in the context of p-convex or
p-concave Banach function spaces with constants equal to one.

Suppose E is p-convex with 1 ≤ p < ∞ and M (p)(E) = 1, then we can
define E(p) := {f ∈ L0(ν) : |f |1/p ∈ E}. Note that in particular, f ∈ E implies

|f |p ∈ E(p). Furthermore, we can define for f ∈ E(p), |||f ||| = ‖(|f |1/p)‖pE . Since
E is p-convex, this then means that if f, g ∈ E(p), then

|||f |||+ |||g||| = ‖(|f |1/p)‖pE + ‖(|g|1/p)‖pE ≥ ‖(|f |+ |g|)
1/p‖pE ≥ |||f + g|||,

hence ||| · ||| is a norm on E(p). Furthermore, the normed space (E(p), ||| · |||) is
complete. This gives rise to de following notions.

Theorem 5.4.4. Let E be a Banach function space.

(i) If E is p-convex with constant equal to one and 1 ≤ p <∞, then

E(p) := {f ∈ L0(ν) : |f |1/p ∈ E}

with the norm ‖ · ‖E(p)
= ‖| · |1/p‖p is a p-concave Banach space.

(ii) If E is q-concave with constant equal to one and 1 ≤ q <∞, then

E(q) := {f ∈ L0(ν) : |f |q ∈ E}

with the norm ‖ · ‖E(q) = ‖| · |q‖1/q is a q-convex Banach space.

Definition 5.4.5. Let E be a Banach function space.

(i) Suppose E is p-convex with constant equal to one and 1 ≤ p <∞, then E(p)

is called the p-concavification of E.

(ii) Suppose E is q-concave with constant equal to one and 1 ≤ q < ∞, then
E(q) is called the q-convexification of E.

The following fact is easily checked using the definitions

Theorem 5.4.6. If E is a p-convex (or q-concave) symmetric Banach function
space and p ≥ r (or r > 1), then E(r) is a p/r-convex (or E(r) is a pr-concave)
symmetric Banach function space.

One final fact is of importance.

Theorem 5.4.7. Let 1 ≤ p, q ≤ ∞ be conjugate numbers. A Banach function
space E is p-concave (convex) if and only if E∗ is q-convex (concave).
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Using the definitions and statements in the previous sections, we can try to
see how these properties influence the corresponding noncommutative function
spaces. As before, let E be a symmetric Banach function space on (0,∞) and
letM be a von Neumann algebra on the Hilbert space H, with a normal faithful
semi-finite trace τ .

Let E be p-convex for p > 1 with constant equal to one and consider the
p-concavification E(p). Since E(p) is also a symmetric Banach function space,
we can again define the corresponding noncommutative Banach function space
E(p)(τ). Now note that for x ∈ S(τ), we have x ∈ E(τ) if and only if µ(x) ∈ E,
hence (using theorem 3.5.9) we have that µ(|x|p) = µ(|x|)p = µ(x)p ∈ E(p). But
this means that if x ∈ E(τ) then also |x|p ∈ E(p)(τ). In particular, this means
that

{|x|p : x ∈ E(τ)} ⊆ E(p)(τ).

Now suppose suppose x1, . . . , xn ∈ E(τ), then |x1|p, . . . , |xn|p ∈ E(p)(τ), hence∑n
j=1 |xj |p ∈ E(p)(τ). But this then means that µ(

∑n
j=1 |xj |p) ∈ E(p), hence

µ

( n∑
j=1

|xj |p
)1/p

= µ

(( n∑
j=1

|xj |p
)1/p)

∈ E,

which implies that (
∑n
j=1 |xj |p)1/p ∈ E(τ). Furthermore, by the triangle in-

equality in E(p)(τ), we have∥∥∥∥( n∑
j=1

|xj |p
)1/p∥∥∥∥

E(τ)

=

∥∥∥∥ n∑
j=1

|xj |p
∥∥∥∥1/p

E(p)(τ)

≤
( n∑
j=1

‖|xj |p‖E(p)(τ)

)1/p

=

( n∑
j=1

‖xj‖pE(τ)

)1/p

.

Something similar can be shown for ‖(
∑n
j=1 |x∗j |p)1/p‖E(τ). From this we can

conclude that if E is p-convex, then in a way, so is E(τ).
Now let E be q-concave, then similarly we find that

{|x|1/p : x ∈ E(τ)} ⊆ E(p)(τ).

Using this, it can be shown that in fact( n∑
j=1

|xj |1/p
)p
∈ E(τ)

and by the triangle inequality in E(p)(τ)∥∥∥∥( n∑
j=1

|xj |1/p
)p∥∥∥∥

E(τ)

=

∥∥∥∥ n∑
j=1

|xj |1/p
∥∥∥∥p
E(p)(τ)

≤
( n∑
j=1

‖|xj |1/p‖E(p)(τ)

)p
=

( n∑
j=1

‖xj‖1/pE(τ)

)p
.

Theorem 5.4.8. Let E be a symmetric Banach function space on (0,∞).
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(i) If E is p-convex with constant equal to one, then (
∑n
j=1 |xj |p)1/p ∈ E(τ)

whenever x1, . . . , xn ∈ E(τ) and

max

{∥∥∥∥( n∑
j=1

|xj |p
)1/p∥∥∥∥

E(τ)

,

∥∥∥∥( n∑
j=1

|x∗j |p
)1/p∥∥∥∥

E(τ)

}
≤
( n∑
j=1

‖xj‖pE(τ)

)1/p

(ii) If E is q-concave with constant equal to one, then (
∑n
j=1 |xj |1/p)p ∈ E(τ)

whenever x1, . . . , xn ∈ E(τ) and

max

{∥∥∥∥( n∑
j=1

|xj |1/p
)p∥∥∥∥

E(τ)

,

∥∥∥∥( n∑
j=1

|x∗j |1/p
)p∥∥∥∥

E(τ)

}
≤
( n∑
j=1

‖xj‖1/pE(τ)

)p

Using this, we will now state, without proving, the Khintchine inequality
presented in [16].

Theorem 5.4.9. There exist constants K and Kq, q < ∞, such that for any
fully symmetric Banach function space E the following hold.

(i) If E is 2-concave with constant equal to one, then

K|||(xn)|||E,+ ≤
(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥2

E(τ)

dP(ω)

)1/2

≤ |||(xn)|||E,+,

for all finite sequences x1, . . . , xn ∈ E(τ). Here K does not depend on
anything.

(ii) If E is 2-convex and q concave with constants equal to one, for some q <∞,
then

|||(xn)|||E,∩ ≤
(∫ ∥∥∥∥ n∑

j=1

rj(ω)xj

∥∥∥∥2

E(τ)

dP(ω)

)1/2

≤ Kq|||(xn)|||E,∩,

for all finite sequences x1, . . . , xn ∈ E(τ), wher Kq depends only on q.

Using this we now restrict ourselves to the following definition.

Definition 5.4.10. Let E be a fully symmetric Banach function space.
If E is 2-convex and q-concave for some q <∞, with constants equal to one,

then we take

||| · |||E := ||| · |||E,∩.

If E is 2-concave with constant equal to one, then we take

||| · |||E := ||| · |||E,+.

Using theorem 5.3.2 and the notation above, this immediately reveals a
noncommutative analogue of theorem 2.4.5.
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Corollary 5.4.11. Let E and F be fully symmetric Banach function spaces,
each of which is either 2-concave with constant equal to one, or 2-convex and
q-concave for some q <∞, with constants equal to one. Then for every bounded
linear map u : E(τ1)→ F (τ2), we have

|||(uxn)|||F ≤ KE‖u‖|||(xn)|||E ,

for any finite sequence x1, . . . , xn ∈ E(τ1), where KE depends only on E and
F .

Finally, by again restricting ourselves to an order continuous Banach function
space, we can use theorem 5.3.3 give the following noncommutative analogue of
theorem 2.4.12

Corollary 5.4.12. Let E be a fully symmetric Banach function space. If F
is an order continuous symmetric Banach function space and 2-convex, or 2-
concave and q-convex for some 1 < q, then for any bounded bilinear form V :
E(τ1)× F (τ2)→ C, we have∣∣∣∣ n∑

i=1

V (xi, yi)

∣∣∣∣ ≤ K‖V ‖|||(xn)|||E |||(yn)|||F ,

for all finite sequences x1, . . . , xn ∈ Lp(τ1) and y1, . . . , xn ∈ Lq(τ2), where K
depends only of E and F .

Proof. Note that since F is order continuous, F× = F ∗ is a fully symmetric
Banach function space (see theorem 5.1.8) and we have that F× is either 2-
concave (if F is 2-convex) or 2-convex and p-concave for some p < ∞ (if 2-
concave and q-convex for 1 < q). Hence (MZ) holds for all u : E(τ1)→ F×(τ2),
by corollary 5.4.11, hence by theorem 5.3.3, (GT) holds for all bounded bilinear
forms V : E(τ1)× F (τ2)→ C.
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Appendix A

Bochner integration

A.1 Integration of vector valued functions

In several places throughout this thesis, we will need to integrate functions that
take their values in Banach spaces, most notably in our proofs of the noncom-
mutative Khintchine and Grothendieck inequalities. We will, for the sake of
completion, give a short glossary of important concepts from this theory. Al-
though we will state all definitions and theorem in the case of probability mea-
sure spaces, these concepts extend to arbitrary finite measure spaces (X,Σ, ν)
by incorporating a factor ν(X).

Definition A.1.1. LetX be a Banach space and (Ω,Σ, ν) a probability measure
space.

(i) A function s : Ω→ X is called simple if it has the form

s(ω) =

n∑
j=1

χSi(ω)xi,

where each Si is measurable and xi ∈ X.

(ii) A function F : Ω → X is called strongly measurable if there exist simple
functions sk : Ω→ X such that

sk(ω)→ F (ω), a.e.

(iii) A function F : Ω → X is called weakly measurable if for all φ ∈ X∗, the
map ω 7→ φ(F (ω)) is F-measurable.

(iv) A functions F : Ω → X is called almost separably valued if there exists a
subset N ⊂ Ω, such that P(N) = 0, such that F (Ω \N) is separable.

(v) A strongly measurable function F : Ω → X is called Bochner integrable if
there exist simple functions sk such that

lim
k→∞

∫
Ω

‖sk(ω)− F (ω)‖dP(ω) = 0.
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While it is usually rather difficult to check whether a function is strongly
measurable, it is easy to check if a function is weakly measurable. A deep
theorem due to Pettis, allows us to characterize the weakly measurable functions
that are also strongly measurable.

Theorem A.1.2. A function F : Ω → X is strongly measurable if and only if
it is weakly measurable and almost separably valued.

A proof can be found in [23] V.4. The notion of Bochner integrability then
allows us to define the Bochner integral as follows.

Definition A.1.3. (i) Let s : Ω → X be a simple function given by s(ω) =∑n
j=1 χSi(ω)xi,, then we define∫

Ω

s(ω)dP(ω) =

n∑
j=1

xjP(Sj)

(ii) Let F : Ω → X be Bochner integrable, and let sk be the corresponding
simple functions approximating F . Then we define∫

Ω

F (ω)dP(ω) = lim
k→∞

∫
Ω

sk(ω)dP(ω).

We denote the set of all Bochnerintegrable functions F : Ω → C by
L1(P, X).

The following theorem allow us to characterize the Bochner integrable func-
tions

Theorem A.1.4.

(i) A strongly measurable function F : Ω→ X is Bochner integrable if and only
if
∫

Ω
‖F (ω)‖dP(ω) <∞, in which case∥∥∥∥∫

Ω

F (ω)dP(ω)

∥∥∥∥ ≤ ∫
Ω

‖F (ω)‖dP(ω)

(ii) If u : X → Y is a bounded linear map, then u ◦ F ∈ L1(P, Y ) whenever
F ∈ L1(P, X). Furthermore.

u

∫
Ω

F (ω)dP(ω) =

∫
Ω

uF (ω)dP(ω).

Example A.1.5. Note that when f ∈ L1(P), then there exist simple functions
sk : Ω → C such that limk→∞

∫
Ω
|sk(ω) − f(ω)|dP(ω) = 0. This means that if

x ∈ X, then

lim
k→∞

∫
Ω

‖sk(ω)x− f(ω)x‖dP(ω) = lim
k→∞

‖x‖
∫

Ω

|sk(ω)− f(ω)|dP(ω) = 0,

hence the map ω 7→ f(ω)x is Bochner integrable. It is easily seen that this also
holds for finite sums of the form F =

∑n
j=1 fixi, where fi ∈ L1(P) and x ∈ X.
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A.2 Integration by parts

When considering bounded operators on a Hilbert space H, there is another way
to create vector valued integrals, namely by spectral integration. Recall that to
every self-adjoint operator a on a Hilbert space H, we can associate a spectral
measure ea. In the proof of the noncommutative Grothendieck inequality, we
shall need the following relation between Bochner integration and the spectral
measure ea.

Lemma A.2.1. Let H be a Hilbert-space, let a ∈ B(H) and let f : R → R be
continuously differentiable with f(0) = 0. Finally, define the maps e+, e− : R→
B(H) by

e−(t) : = ea(−∞, t]
e+(t) : = ea(t,∞) = 1− e−(t).

Then the integrals
∫∞

0
f ′(t)e+(t)dt and

∫ 0

−∞ f ′(t)e−(t)dt are well defined and∫ ∞
0

f ′(t)e+(t)dt =

∫
(0,∞)

f(λ)dea(λ)∫ 0

−∞
f ′(t)e−(t)dt =

∫
(−∞,0]

(−f(λ))dea(λ).

Outline. We start the proof by showing that the maps e±u : R → H defined by
t 7→ e±(t)u are Bochner-integrable and use this to define the integrals above
pointwise as linear maps on H.

We then, for u, v ∈ H define the real valued measure eau,v by eau,v(∆) =
〈ea(∆)u, v〉 and real valued functions e±u,v by e±u,v(t) = 〈e±(t)u, v〉. Now note
that e−u,v is the cumulative distribution function of eau,v and use this to apply
integration by parts. Some manipulation of the integrals then yields the desired
result.

Proof. Note that e+ is right continuous with respect to the strong operator
topology on B(H). If we then define for every u ∈ H, the map e+

u : R → H
by e+

u (t) := e+(t)u, then e+
u is right continuous, hence for every t ∈ R, we can

approximate e+
u (t) by e+

u (tn), where tn ∈ Q is a decreasing sequence. Therefore
we can conclude that e+

u is separably valued. Furthermore, for every v ∈ H, the
map t 7→ 〈v, e+

u (t)〉 is measurable, hence by the Pettis measurability theorem,
eu(t) is Bochner-measurable.

But this means that for every u ∈ H the map u 7→
∫

(0,∞)
f ′(t)e+

u (t) is well-

defined and is clearly linear and bounded by supt∈σ(a) |f ′(t)|‖u‖, hence this map

is an element of B(H), which we will denote by
∫∞

0
f ′(t)e+(t)dt.

Now note that ‖e+
u (t)‖ ≤ ‖u‖ for all t ∈ R and ‖e+

u (t)‖ = 0 for |t| > ‖a‖,
hence ‖e+

u (t)‖ is integrable on R, and e+
u (t) is Bochner-integrable on R. Recall

now that for every u, v ∈ H, the eau,v, defined by eau,v(∆) := 〈ea(∆)u, v〉 defines
a regular measure with bounded variation on R. Hence for every u, v ∈ H, we
have 〈(∫

(0,∞)

f(λ)dea(λ)

)
u, v

〉
=

∫
(0,∞)

f(λ)deau,v(λ).
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Likewise, we can define e±u,v(t) = 〈e±(t)u, v〉.
Note that e−u,v is a right continuous bounded function. Furthermore, e−u,v

is the cumulative distribution function associated with the measure eau,v, since
eau,v(a, b] = e−u,v(b) − e−u,v(a). But this means that we can use integration by
parts (in the sense of Lebesgue-Stieltjes) to find∫

(0,‖a‖]
f(λ)deau,v(λ) = f(‖a‖)e−u,v(‖a‖)− f(0)e−u,v(0)−

∫
(0,‖a‖]

f ′(t)e−u,v(t)dt

= f(‖a‖) 〈u, v〉 −
∫

(0,‖a‖]
f ′(t)e−u,v(t)dt

=

∫
(0,‖a‖]

〈u, v〉 f ′(t)dt−
∫

(0,‖a‖]
f ′(t)e−u,v(t)dt.

Here we used explicitly that f(0) = 0 and that since σ(a) ⊆ (−∞, ‖a‖], we have
e−(‖a‖) = 1 and therefore e−u,v(‖a‖) = 〈u, v〉.

Simplifying this expression then yields〈(∫
(0,‖a‖]

f(λ)dea(λ)

)
u, v

〉
=

∫
(0,‖a‖]

f(λ)deau,v(λ)

=

∫
(0,‖a‖]

f ′(t)(〈u, v〉 − e−u,v(t))dt

=

〈(∫
(0,‖a‖]

f ′(t)(1− e−(t))dt

)
u, v

〉
.

Combining this with the fact that e+(t) = 0 for t > ‖a‖, we have∫
(0,‖a‖]

f(λ)dea(λ) =

∫
(0,‖a‖]

f ′(t)(1− e−(t))dt

=

∫
(0,‖a‖]

f ′(t)e+(t)dt =

∫
(0,∞]

f ′(t)e+(t)dt.

For the second equation, suppose λ0 > ‖a‖. Then we find that integration by
parts yields∫

(−λ0,0]

f(λ)deau,v(λ) = f(0)e−u,v(0)− f(−λ0)e−u,v(−λ0)−
∫

(−λ0,0]

f ′(t)e−u,v(t)dt

= −
∫

(−λ0,0]

f ′(t)e−u,v(t)dt,

where we used that f(0) = 0 and since (−∞, λ0) ∩ σ(a) = ∅, we have that
e−(−λ0) = 0 and therefore e−u,v(−λ0) = 0. The result then follows analogous to
the first equation.
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Appendix B

A Hahn-Banach argument

In order to switch between inequalities stated in terms of finite sequences, and
inequalities stated in terms of positive linear functionals, we shall often need to
use an argument that has its roots in the Hahn-Banach theorem. Grothendieck
himself, already needed this result in his résumé, but unfortunately his method
introduced a factor 2 in the equivalence. Since then, this argument has been
refined and has become quite standard among mathematicians working with
these types of inequalities.

B.1 The min-max theorem

The equivalence between the two formulations is based on a min-max theo-
rem for continuous real-valued affine functions. This min-max theorem B.1.5
is in turn based on the following two versions of the Hahn-Banach separation
theorem.

Theorem B.1.1. Let X be topological vector space and let S, T ⊂ X be non-
empty convex subsets. Furthermore, let int(S) 6= 0 and int(S) ∩ T = ∅, then
there exist 0 6= φ ∈ X∗ and α ∈ R, such that

φ(x) ≤ α ≤ φ(y)

for all x ∈ S and y ∈ T .

Theorem B.1.2. Let X be a locally convex space and let S, T ⊂ X be non-
empty convex subsets. Furthermore, let S be closed, T compact and S ∩ T = ∅,
then there exist φ ∈ X∗ and α ∈ R such that

φ(x) < α < φ(y)

for all x ∈ S and y ∈ T .

Note that since T is compact, this immediately implies that

sup
x∈S

φ(x) ≤ α < inf
y∈T

φ(y).

Let E be a Hausdorff topological vector space and K ⊂ E a compact, convex
subset. We then define `∞(K) as the Banach space of all bounded functions
f : K → R, equipped with the usual sup norm ‖ · ‖∞. Using this definition and
B.1.1, we can then show the following min-max lemma.
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Lemma B.1.3. Suppose F ⊆ `∞(K) is a non-empty and convex subset such
that

sup
s∈K

f(s) ≥ 0

for all f ∈ F , then there exists some 0 ≤ φ ∈ `∞(K)∗ such that φ(1) = 1 and
φ(f) ≥ 0 for all f ∈ F .

Proof. We first define C as the set of bounded negative functions on K. Then
we clearly have that

C = {f ∈ `∞(K) : f(s) ≤ 0,∀s ∈ K}.

Now note that C is a closed convex cone inside `∞(K) whose interior is given
by

int(C) = {f ∈ `∞(K) : sup
s∈K

f(s) < 0}.

But this means that F ∩ int(C) = ∅, hence by theorem B.1.1 we can conclude
that there exist 0 6= φ ∈ `∞(K)∗ and α ∈ R such that

φ(f) ≤ α ≤ φ(g),∀f ∈ C, g ∈ F .

Now note that since 0 ∈ C, clearly α ≥ 0, hence 0 ≤ α ≤ φ(f), for all f ∈ F .
Furthermore, if f ∈ C and t > 0, then also tf ∈ C, hence we have

tφ(f) = φ(tf) ≤ α

for all t > 0, hence we must have that φ(f) ≤ 0 for all f ∈ C. But since f ≥ 0
implies that −f ∈ C, this means that φ(f) ≥ 0 for all f ≥ 0, hence φ ≥ 0.

Finally, note that since φ 6= 0, we must have that φ(1) 6= 0, hence we can
replace φ by φ/φ(1) in order to give us the desired result.

We define for s ∈ K, the map δs : `∞(K) → R by δs(f) = f(s). We now
wish to replace the bounded linear map φ in the lemma above, with a map of
this form. In order to do this, we introduce the space

P (K) := {φ ∈ `∞(K)∗ : φ ≥ 0, φ(1) = 1}

and the convex hull of all functions δs,

Pδ(K) : = co{δs : s ∈ K}.

Note that P (K) and Pδ(K) are both convex and Pδ(K) ⊆ P (K). Further-
more P (K) is closed in the weak*-topology (and by Banach-Alaoglu, it is even

weak*-compact), hence we also have Pδ(K)
wk*
⊆ P (K). This statement can be

strengthened in the following way

Lemma B.1.4. With the above notation, we have

P (K) = Pδ(K)
wk*

.
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Proof. For convinience, denote P = P (K), Pδ = Pδ(K) and let all closures be
with respect to the weak*-topology. The proof follows by contradiction.

As stated above, Pδ ⊆ P is evident. Now recall that the dual of the locally
convex space (`∞(K),wk*), can be identified with `∞(K) (i.e. (`∞(K),wk*)∗ =
`∞(K)).

Suppose P 6= Pδ and pick φ0 ∈ P \Pδ. Since Pδ is convex, so is Pδ, hence we
can apply theorem B.1.2 to the sets Pδ and {φ0}, to find f0 ∈ (`∞(K),wk*)∗ =
`∞(K) such that

sup
φ∈Pδ

φ(f0) ≤ φ0(f0).

Since δs ∈ Pδ for all s ∈ K, this then implies that

c := sup
s∈K

f0(s) ≤ sup
φ∈Pδ

φ(f0) < φ0(f0).

But since we have that for all s ∈ K, f0(s) ≤ c and φ0 ∈ P , we have that

0 ≤ φ0(c− f0) = c− φ0(f0),

hence we also have φ0(f0) ≤ c, which is a contradiction.

We now define A(K) ⊆ C(K;R) ⊂ `∞(K;R) as the space of all continuous
affine real functions on K.

Theorem B.1.5. Let K be a compact convex subset of a Hausdorff topological
vector space E and let F ⊆ A(K) be a non-empty convex subset such that

sup
s∈K

f(s) ≥ 0

for all f ∈ F , then there exists some s0 ∈ K such that f(s0) ≥ 0 for all f ∈ F .

Proof. By lemma B.1.3, there exists a φ ∈ P (K) such that φ(f) ≥ 0 for all
f ∈ F . By lemma B.1.4, there exists a net {φα}α∈I in Pδ(K), such that
φα(g) → φ(g) for all g ∈ `∞(K). Now note that by the definition of Pδ, we
have that for every α ∈ I there exists a finite set Sα ⊆ K and λαs ∈ (0, 1) with
s ∈ Sα, such that

∑
s∈Sα λ

α
s = 1 and

φα =
∑
s∈Sα

λαs δs.

Now define sα by

sα =
∑
s∈Sα

λαs s,

then sα ∈ K, since K is convex, and we have for all f ∈ A(K)

f(sα) =
∑
s∈Sα

λαs f(s) =
∑
s∈Sα

λαs δs(f) = φα(f).

Now note that since K is compact, there exists a subnet {sα(β)}β∈J such that
sα(β) → s0, for some s0 ∈ K. But since f ∈ F is continuous, it follows that

f(s0) = lim
β
f(sα(β)) = lim

β
φα(β)(f) = φ(f) ≥ 0

for all f ∈ F .
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B.2 The Hahn-Banach argument

We can apply the min-max theorem, as presented above in the following ways

Theorem B.2.1. Let A and B be C*-algebras, E ⊆ Ah and F ⊆ Bh linear
subspaces, V : E × F → C be a bounded bilinear form and K ≥ 0 a constant,
then the following are equivalent

(i) For all finite sequences a1, . . . an ∈ E ⊆ Ah, b1, . . . , bn ∈ F ⊆ Bh we have∣∣∣∣ n∑
i=1

V (ai, bi)

∣∣∣∣ ≤ K‖V ‖∥∥∥∥ n∑
i=1

a2
i

∥∥∥∥1/2∥∥∥∥ n∑
i=1

b2i

∥∥∥∥1/2

.

(ii) There exist states φ ∈ S(A), ψ ∈ S(B) such that for all a ∈ E ⊆ Ah,
b ∈ F ⊆ Bh,

|V (a, b)| ≤ K‖V ‖φ(a2)1/2ψ1(b2)1/2.

Proof. Note that without loss of generality, we can assume that ‖V ‖ = 1.
Suppose (i) holds, then we have by the inequality of the arithmetic and

geometric mean that (αβ)
1
2 ≤ 1

2 (α+ β), hence we have∣∣∣∣ n∑
i=1

V (ai, bi)

∣∣∣∣ ≤ K

2

(∥∥∥∥ n∑
i=1

a2
i

∥∥∥∥+

∥∥∥∥ n∑
i=1

b2i

∥∥∥∥
)
. (B.1)

Next we can define the set S = S(A)× S(B). Using this, we can define for
all (xn) = (x1, . . . , xn) ∈ An and (yn) = (y1, . . . , yn) ∈ An, F(xn),(yn) : S → R
by

F(xn),(yn)(φ, ψ) =

n∑
i=1

(
φ(x∗i xi) + ψ(y∗i yi)−

2

K
|V (xi, yi)|

)
.

Note now that S is (weak-*) compact, since the unit ball of the dual is weak*
compact by Banach-Alaoglu. Furthermore, we have that each F(xn),(yn) is affine
and continuous, hence

F := {F(an),(bn) : a1, . . . , an ∈ Enh , b1, . . . , bn ∈ Fnh , n ∈ N} ⊆ A(S(A)).

Now note that replacing ai with ζiai, for some ζi ∈ C with |ζi| = 1 does not
change F(an),(bn), hence by choosing proper ζi we can ensure that |V (ai, bi)| =
V (ai, bi), which allows us to write for all a1, . . . , an ∈ Ah and b1, . . . , bn ∈ Bh

F(an),(bn)(φ, ψ) = φ(x) + ψ(y)− 2

K

∣∣∣∣ n∑
i=1

V (ai, bi)

∣∣∣∣
where x =

∑
i a

2
i ∈ Ah and y =

∑
i b

2
i ∈ Bh.

Finally, since we can choose for all positive x ∈ A+ a φ ∈ S(A) such that
φ(x) = ‖x‖, we can apply (B.1) to find that

sup
(φ,ψ)∈S

F(an),(bn)(φ, ψ) ≥ 0.

109



But then by theorem B.1.5, we have that there exists a fixed (φ0, ψ0) ∈ S such
that for all a ∈ Eh, b ∈ Fh, we have that F(a),(b)(φ0, ψ0) ≥ 0 and therefore

|V (a, b)| ≤ K

2

(
φ0(a2) + ψ0(b2)

)
.

If we then replace a and b by at and b
t , for t > 0 and apply that

inf
t>0

1

2
(αt+

β

t
) = (αβ)

1
2 ,

then (ii) follows.
The converse follows directly by again picking ai such that V (ai, bi) ≥ 0 and

applying linearity together with the boundedness of φ and ψ.

We can also prove an analogous equivalence for arbitrary linear subspaces
E ⊆ A and F ⊆ B, instead of just subspaces of Ah and Bh.

Theorem B.2.2. Let A and B be C*-algebras, E ⊆ A and F ⊆ B linear
subspaces, V : E × F → C be a bounded bilinear form and K ≥ 0 a constant,
then the following are equivalent

(i) For all finite sequences x1, . . . xn ∈ E, y1, . . . , yn ∈ F we have

∣∣∣∣ n∑
i=1

V (xi, yi)

∣∣∣∣≤K‖V ‖
(∥∥∥∥ n∑

i=1

x∗i xi

∥∥∥∥+

∥∥∥∥ n∑
i=1

xix
∗
i

∥∥∥∥
)1

2
(∥∥∥∥ n∑

i=1

y∗i yi

∥∥∥∥+

∥∥∥∥ n∑
i=1

yiy
∗
i

∥∥∥∥
)1

2

(ii) There exists states φ1, φ2 ∈ S(A), ψ1, ψ2 ∈ S(B) such that for all x ∈ E,
Y ∈ F ,

|V (x, y)| ≤ K‖V ‖ (φ1(x∗x) + φ2(xx∗))
1
2 (ψ1(y∗y) + ψ2(yy∗))

1
2

Proof. The proof is almost identical to that of theorem B.2.1, however, we now
define S := S(A) × S(A) × S(B) × S(B) and let F(xn),(yn) : S → K be defined
by

F(xn),(yn)(φ1, φ2, ψ1, ψ2)

=

n∑
i=1

(
φ1(x∗i xi) + φ2(xix

∗
i ) + ψ1(y∗i yi) + ψ2(yiy

∗
i )− 2

K
|V (xi, yi)|

)
.
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