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Abstract

In the map generalization process the supplied data often lacks the explicit
information for a proper automated approach. This is a problem that is very
apparent when we want to generalize to a social construct, a description of
something made by a society, both for crisp entities like “a detached house”
and vernacular geographies such as “a suburban area” or “the high street”.
In this thesis we will explore a new way of data enrichment in spatial datasets
for the use of such generalization. We will model the entity that we want to
enrich the data with as an ontology using OWL, try to exploit the hierarchical
nature of these entities for modeling and find these entities with the use of
Bayesian networks that are generated from the ontology. We have created
a Protégé plug-in called BNGen as tool to convert ontologies to Bayesian
networks and a code blueprint for the enrichment process framework. We
will show that this approach works with an illustrative use case where we will
enrich a dataset with the leafy residential area concept. While the use case
is successful in showing that our approach works, it will also be shown that
OWL is not good at modelling vague relationships where a relation might
hold or only partially holds. To counter some of these problems, and the fact
that Bayesian networks are not dynamic in structure, we introduce summary
nodes in the Bayesian network and staged classification. It will also be shown
that we can exploit the enriched data to deal with the vagueness of spatial
concepts as social constructs in our approach.
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1 Introduction

In geographical information science there is a big research field on map general-
isation. Much of the research has been focused at the geometric aspects of map
generalisations and the concept of MRDB’s (MultiResolution DataBases). An as-
pect that has been studied less is the use of data enrichment for map generalisation.
If one, for example, would want to generalise a residential area consisting of multiple
residential buildings, the desired generalisation could differ depending on the type
of residential buildings. If the area mainly consists of terraced houses one might
want to generalise this differently from an area that is mainly made up of flats. If
such information is not available this can be added by a data enrichment process
that classifies the buildings with type information and adds this information to the
data. Such additional information is also useful for the construction of thematic
maps and choremes, data mining and other analysis of the data as it can improve
the results.

Usually the data enrichment process is one of manual labour where experts
have to add information of their expertise to the data. Such work can be tedious,
expensive and time consuming, making it very promising for automation. Most
efforts to automate such classifications rely on pattern recognition algorithms that
are tailor made for their specific task and input data, thus having poor re-usability
value. The poor re-usability of such data enrichment approaches warrant a look at
a more generic approach in both modelling and enriching the data.

1.1 Data enriching

Often datasets do not contain the explicit information needed for a decision making
process [34]. Generalization is a type of decision making process as it needs to be
decided how, where and when to generalize. In [32] multiple ways of generalization
are presented, Figure 1 illustrates generalization by aggregation by taking the data
on the left and returning the data on the right, which is done by a GIS (Geograph-
ical Information System(s)). The data enrichment process works in the opposite
direction as we add more detail to the data instead of aggregating it.

Figure 1: Figure adapted from [32] to show relationship between generalization and
enrichment. OS MasterMap data Ordnance Survey c©Crown Copyright

A stronger cartographic example is to enrich a detailed dataset and to generalize
the enriched data by symbolization. In the enrichment process we can add infor-
mation about groups of objects, topology, proximities and many other relationships
[34]. Usually this information is implicitly available in the data, but by making it
explicit in the data enrichment process we can make use of it in generalizations. As
a result we can create a MRDB with more pre-computed data which offers great
potential to improve computational performance of applications [5]. One could say
that we “specialize to generalize”, which can be seen in Figure 2. The original
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dataset is enriched with information about what type of areas are present in the
mapped area. After the data has been enriched the generalization process takes the
additional information into account and, in this case, generalizes this information
using symbology to add symbols of trees and factories to the generalized map.

Figure 2: Original data VS enriched data where industrial and leafy areas have
been classified. The enriched data is generalized by symbolizing to a factory or a
tree. OS MasterMap data Ordnance Survey c©Crown Copyright

1.2 Research questions and outline

Before we can classify entities (elements in the data) we first need to create a model
of what we want to classify them as. Due to our interest in GIS we will be focusing
our efforts on entities in a spatial context. Modelling entities in a spatial context is
not something new and is often not a formalized process. In efforts to formalize this
process the concept of ontologies is introduced [1, 13]. Despite the use of a more
formalized model for entities we notice that a model of a spatial entity will never be
as crisp as one would want, e.g. what would a model of vernacular geography [39]
like a business district be? As such we expect that there will be some vagueness
and uncertainty in our model and classifications, thus making Bayesian network
classifiers a likely choice as classifier as they seem to be able to cope with this
[16, 35]. They also make an interesting research subject as their application in a
geographical context is relatively new [29, 30].

This leads to the general research question of this thesis:

1. Is it possible to use a framework based on ontologies and Bayesian classifiers
for data enrichment?

To get a good look at the possibilities, strengths and weaknesses of the approach
and application to generalization we have devised three sub questions:

2. How well are ontologies usable in a spatial context?

3. Can we use ontologies for hierarchical modelling of entities?
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4. Can we use Bayesian classifiers to classify entities modelled within the onto-
logical framework?

With these three sub research questions we take a closer look at each step
in the data enrichment process. Question number three is specifically aimed at
generalization for multiple scales as these different generalizations can be stored in
a hierarchical manner in MRDB’s [3, 6]. Ontologies and Bayesian network classifiers
will be explained in separate sections (respectively section 2 and 3) that will treat
the preliminaries, give a theoretical insight in our questions and show how we might
answer them. After this we will create a prototype based on our theoretical ideas in
section 4 and put this to the test in the following use case in section 5. The thesis
will be concluded by a discussion of our findings and conclusion in sections 6 and 7.

2 Ontologies

In order to be able to classify entities we need a way to describe these things in
our world. Our world can be and contain many different things: a world that we
perceive as being around us, a world that we see if we use our computer, the world
that we can imagine when we look at data in a database, anything that we might or
might not be able to think of. All these different representations show us different
worlds in different ways. When we create a model of the world we usually want
this model to be as close to reality as possible. A problem is that we often end up
making a model that we don’t understand of a world that we don’t understand.

While we might not be able make a perfect model of reality we are often able
to agree on a proper way to reason about and model reality within a group. For
this problem of modelling and reasoning we can use ontologies, which is loosely
translated from ancient Greek as the verb ‘to be’ or as ‘being; that which is’1.
With an ontology one can describe something in a more coherent, structured and
consistent way than by “just giving a description” of the entity. One of the main
motivations for this type of approach is the re-usability of and ability to share
ontologies. Due to this more formal way of modelling, ontologies are used in the
semantic web with standards such as XML (Extensible Markup Language) and RDF
(Resource Description Framework) in the form of OWL (Web Ontology Language)
and OWL 2 [19, 21, 31]. In the next sections we will take a look at what ontologies
exactly are, how they can model spatial entities and how we can use this for data
enrichment.

2.1 GIS & Ontologies

During the past two decades ontologies have been given more and more attention in
different research fields such as Artificial Intelligence, Semantic Web, Biology and
Geo Sciences. In [1] Bateman et al. give an overview of the use of ontologies for
spatial representation and reasoning. Especially their overview on how geographical
ontologies are used in GIS gives us a good view on multiple possible approaches of
using ontologies in GIS. Other examples can be found in [28].

Fonseca et al. argue in [13] that the increasing amount of available data in the
world, and mainly the integration of this data, calls for thinking about ways to
improve the interoperation of data. In their work they address the semantic aspects
of geographic information integration: “...the meaning of the entities that compose
the ontologies representing concepts of the real world...”. By making ontologies ex-
plicit one can prevent conflicts between ontological concepts and implementations
since a lot of ontological concepts are easily understood by humans due to their

1Taken from the Wikipedia page on Ontology (5-12-2012)
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Figure 3: The five universe paradigm [13].

“common sense reasoning”, something that’s hard, if not impossible, to express
in code. In the paper they base their five universes paradigm model on the four-
universes paradigm [18, 4] and the work by Frank [14] who presents a five tiered
system: human-independent reality, observation of physical world, object with prop-
erties, spacial reality and subjective knowledge. In the five universes paradigm there
are the following five universes: the physical, the cognitive, the logical, the represen-
tation and the implementation universe. The five universes paradigm is illustrated
in Figure 3.

Entities in the physical universe are interpreted by the human mind when they
perceive these entities and the entity enters the cognitive universe. Once we try
to formalize these cognitive entities we enter the logical universe and construct
ontologies. Now that we have ontologies we can make choices on how to represent
these: we enter the representation universe. As a final layer we have to construct this
representation by implementing it: we have reached the implementation universe.
This paradigm has given us an example of how ontologies can be used in GIS by
implementing an entity from the physical universe and modelling it as an ontology.

For the implementation of ODGIS (Ontology-Driven Geographic Information
Systems) Fenseca et al. [13] introduce the concept of roles: one entity can fulfil
different roles. While roles are generally used to represent changes of an entity
over time the main goal is to use roles to deal with different points of view of the
same entity. Due to a loose interpretation of roles it is possible to stick to the same
entities having different roles in different ontologies. Fonseca et al. state that “Each
community has a right to its own point of view and information must be integrated
on that basis, hence the use of a flexible specification of role”. In a discussion in [31]
it is also pointed out that the development of an ontology should be firmly driven
by the intended usage.

We illustrate this idea by taking a look at a lake. While all points of view agree
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that a lake is a water body, they might have different interpretations about the rest
of the lake. A tourist board might see a lake as a tourist and recreation hot spot, a
society of bird spotters might see it as a bird reserve and a transportation company
sees it as a node in its water transportation network.

The problem of different conceptualisations of the world also comes forth in [27]:
different classifications arise when different classification systems are used. Some-
times classifications simply don’t exist in other communities. One example that is
given is the definition of “river” in English, which overlaps with both the words
“fleuve” and “rivière” in French while not representing the exact same concept.
Other examples are the Dutch words “gezellig” (cosy, nice, good, friendly, ...) and
“strooien” (sprinkling, gritting, throwing, ...), both are only translatable to English
if one knows the context of the word while the words by themselves have proper
meaning without any context in their own language.

To overcome these problems the usage of ontologies is suggested, as Lüscher et
al. point out in their works [27, 28, 30]. Despite ontologies assuming only one reality
in the classical interpretations, and thus having only one ontology for one entity,
we can adjust an ontology to fit a particular point of view. This can, for example,
be done by creating a basic ontology of an entity, give this ontology to different
societies that each have a different point of view and let them change elements to
fit their taste. The resulting ontologies will be alike as they had the same starting
point, but the changes will be different as they don’t share the same point of view.

Taking this reasoning, together with ideas the of Fonseca et al. in [13], we can
think of an ontology as a social construct and not as the definitive truth: it is
constructed by social interaction. A social construct is a model of an entity (an
ontology) that is being approved by a society, where a society could range from an
individual or a small group of people to all the inhabitants of a country or even
all the people on Earth. The idea of social constructs is also supported by the
ideas of Janowicz in [24] where he points out that there are many misconceptions
about the construction of ontologies and argues that it is impossible to make a
global ontology with a common agreement. The social construct concept is related
to vernacular geographies which have been related to using fuzzy logic to define
ambiguous geographic data [23, 39]. In [39] Waters and Evans state that “These
[vernacular geographies] are not simply indicative - they often represent psychogeo-
graphical areas in which we constrain our activities, and they convey to members
of our socio-linguistic community that this constraint should be added to their
shared knowledge and acted upon.”. As such vernacular geographies are a subset
of our social constructs, we can both model crisp and ambiguous geographies using
ontologies.

There are many more reasons and examples to give to support the notion of
ontologies being a social construct, but the point to make here is that we can never
construct an ontology that everyone agrees upon. Ontologies are usually created
by a subset of the world’s population, thus an ontology for the same thing (e.g. a
residential area) can be created by two totally different groups of people. While
both groups might fully agree on what their own ontology for a residential area is,
work with it properly and get good results, the two ontologies might differ a lot
from each other.

2.2 Hierarchies

We are able to make a hierarchy based on every relationship that can give us
some sort of ordering. For example we could make a hierarchy on “medical service
level” where we could have a person trained in first aid at the bottom, going up
through entities such as nurse, general practitioner, small sized hospital up to a
large university hospital. In this example we have a large mix of different types
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Figure 4: Relating higher-level concepts to the data structure and fitting this into
the data enrichment process [38].

of entities, from spatial entities (hospital) to people (nurse) and many different
explanations (like size or level of training) why the entities are ordered as they are.

One of the interesting things of spatial ontologies is that they have very ap-
parent hierarchies. The most familiar to many people is the use of hierarchies as
different scales as each entity is usually represented differently on different scales.
On the smallest scale we see a lot of detail, which is usually aggregated, or displayed
differently, on higher scales. This type of hierarchy is a partonomy (“part of” re-
lationship) where aggregation is used for the generalization process and entities on
the finest scale are part of aggregated entities. Along with partonomy we have
taxonomy (“is a” relationship) [32] as another very apparent spatial hierarchy, e.g.
a house is a building. Both these hierarchies are easy to model in OWL using the
subclass properties of an entity. Interesting here is that the partonomy hierarchy
is effectively the inverse of the taxonomy hierarchy. This shows that hierarchies in
spatial data can go in different “directions”, something Thomson also pointed out
for these abstraction hierarchies [38]. The thing to realize here is that a hierarchy
is a relationship that orders entities.

If we want to be able to construct ontologies and take advantage of the hier-
archies we have to take into account what sort of entities we put in our ontology.
Once this has been done we can construct an ontology by combining multiple sub
ontologies to form the final ontology. Figure 4 illustrates the ontological hierarchies
and how they could be used in a data enrichment process. These sub ontologies
start at primitives (see [24]) and build up to bigger and more elaborate ontologies.
For example an ontology of a house could contain the ontologies of building and
residents. By changing the sub ontologies of an ontology we can adjust it to another
social definition for the same entity while not having to rebuild the total ontology.
We could also go into depth on one aspect in an ontology if, for example, there is
a lot of data present on a particular aspect of the ontology or we have a question
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that we want to answer that only focuses on a specific part of the ontology. If
we had a full fledged ontology of a business district and we are interested in the
transportation in this district we could take this part for the ontology and use this
to answer our question. This gives us a structured way to create ontologies and an
easy way to make small changes to particular details of the ontology, thus increasing
the re-usability of the ontology.

3 Bayesian classifiers

Once we have made an ontological model of the entity with which we wish to enrich
our data we need to create a way to find these entities. We can do this with
classification: classify each entity in our data as being part of the class of entities
that match the ontological model or as part of the class of entities that don’t. In our
use case, for example, we are classifying buildings into specific classes like terraced
house and enrich our dataset with this classification data.

3.1 Preliminaries

While there are many different classifiers available we have chosen one of the most
effective approaches: Bayesian network classifiers [16]. These classifiers are based on
Bayesian networks [16, 35] and will give us the probability, or belief, that a certain
entity belongs to a class.

An important issue that we have to note here is the difference between vagueness
and uncertainty, two terms that are often misused [26, 11]. An example to show
the difference, inspired by [11], is that of the classification of a greenish house. A
greenish house is a house that has trees and foliage in the garden and is most likely
to be found in a leafy residential area, see section 5 for the full definition. If we are
uncertain and say “this is a greenish house” with 0.5 certainty we know that there is
a 50% chance that it is a greenish house. But if we have to deal with vagueness and
pose the same statement, “this is a greenish house” with a degree of truthfulness
of 0.5, it might have 50% of the features and aspects of a greenish houses. In the
former something is true or not (a boolean value) while in the latter there is room
for different interpretations, a degree of correctness.

Both vagueness and uncertainty are present in our ontology and classification
work flow. The hierarchical structure causes the existence of uncertainty or vague-
ness: something at the lowest level might be classified as belonging to a certain
class, but this is most likely done with a certain belief. And as our model is a social
construct there is no absolute truth about the entity that we want to enrich our
data with either. For example we would have uncertainty in a dataset containing
information about which houses have a shed in the garden if we know that 9 out of
10 values are correct. But if we interpret the same data knowing that it has 90%
truthfulness we know that all the houses with a shed have something that is a lot
like a shed and that the houses that don’t have a shed have don’t have a shed at
all.

As such we have to take all of this into account in our classification. The
problems of vagueness and uncertainty concerning data is not something new, the
research fields of biology, semantic web, economics and artificial intelligence [35, 12]
have coped with this problem for a long time. While uncertainty and vagueness
are two different things and it is important that we understand that there is a
difference, we are actually interested in the belief we have that something belongs
to a certain class. So for this thesis we will work with belief, while it could be
vagueness, uncertainty or a combination of both.
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A Bayesian network describes a joint probability distribution over a set of vari-
ables. In its associated DAG (directed acyclic graph) each node represents a variable
that we want to use and edges represent the conditional dependencies between these
variables: associated with each node is a set of conditional probability distributions
that together uniquely define the joint distribution [16, 35]. The probabilistic cal-
culations in Bayesian networks are based on Bayes’ Theorem:

Pr(h|e) =
Pr(e|h)Pr(h)

Pr(e)

where h is a hypothesis, e is evidence and Pr(h|e) is the probability that hypothesis
h holds given the evidence e. Of course this result can only be significant if h is
actually dependent on e, or put differently, influenced by e: Pr(h|e) 6= Pr(h). This
way Bayesian networks offer us a mathematically elegant and sound way to handle
uncertainty [7], and more importantly, belief.

An often used example for Bayesian classifiers is the diagnosis of a patient by
a doctor. Given the symptoms of a patient (evidence) an attending physician has
to make a diagnosis (hypothesis). If there is enough evidence for a hypothesis the
physician can start treatment, otherwise the gathering of more evidence is required.
While this is usually a process in the human mind, this process has been modelled
by Bayesian networks for classification purposes since the early 1990’s [17]. In the
same manner we can model a spatial entity from an ontology and use the ontological
model to formulate the conditional dependencies between the hypothesis and the
evidence.

A good observation in the light of uncertainty and vagueness is that our initial
input might contain uncertainty and vagueness, but as soon as we start combining
evidence for a hypothesis we will always introduce vagueness or uncertainty in the
classification. This is due to the fact that the classifying node classifies something
given its priors, which might not all be true or only hold a certain belief. So
something can be classified as belonging to a class A while it doesn’t fully fit the
definition of the class.

3.2 Advancements

The idea of using Bayesian networks and ontologies together is not new and has
been used by many, we refer to [2, 7, 12, 22, 25, 29, 33, 36] to name a few. While
some of these approaches try to see how much different ontologies are alike [36] or
incorporate uncertainty in their model [7], we want to combine them for classifi-
cation. What is certainly striking is the structural similarity between a DAG of a
Bayesian network and the RDF of an ontology [9]. This suggests that we might be
able to use this similarity in the construction of the Bayesian networks that we are
using for classification. If we use the ontology as starting point for our Bayesian
network we can simplify the Bayesian network construction by using the relation-
ships that are present in the ontology. The Bayesian network for the classifier would
always have the same type of structure because the entity that we want to classify
will be the sink of the network and every other node an ancestor of this sink, giving
us a directed graph. Any other node is able to have multiple children and parents
in the network if this entity has multiple relationships in the ontology as well.

Because we will be working in a spatial context there is an other issue that we
have to take care of as well: dynamic relationships. Standard Bayesian networks
are static in structure while entities in a spatial context might have one-to-many re-
lationships. A building might, for example, be adjacent to multiple other buildings.
Unfortunately we do not know how many other buildings it will be adjacent to. In
our Bayesian classifiers we counter this problem by introducing summary nodes to
our network. These nodes will represent if the entity that we are classifying satisfies
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the constraint that has been related to this relationship, e.g. “is this entity adjacent
to 2 or more other buildings?”.

The static nature of Bayesian networks prevents us from creating one big Bayesian
network for the classifier if the related entity is not explicitly available in the data.
If we want to know if something is adjacent to 2 or more houses then we first have
to classify entities as houses before they are explicitly available in our data. As
such we might have a staged classification that makes a new type of belief explicit
in the data during each stage. To create these sub Bayesian classifiers we can use
the sub ontologies that make up the main ontology of the final entity that we want
to classify.

4 Prototype implementation

In [30] Lüscher et al. describe the following approach for the use of ontologies in
pattern recognition and data enrichment:

[...]we pursued a top-down approach to cartographic pattern recogni-
tion of urban structures. The individual steps of this ontology-driven
approach are illustrated in Figure 5: Based on textual descriptions of
urban spaces extracted from the literature, we identify specific urban
patterns (step 1); we then formalise these patterns, their context and
hierarchical composition based on ontological descriptions (step 2). The
ontological definitions of patterns are then used to deductively trigger
appropriate low level pattern recognition algorithms (step 3) in order to
detect them in spatial databases (step 4).

 

Figure 5: Steps in the processing chain of ontology-driven pattern recognition [30].

In this approach we see the basic steps towards both the creation of an ontology
(step 1 and 2) and the use of the ontology (3 and 4) which we can interpret as
two separate pieces of the puzzle. Fonseca et al. used a structure in the JAVA
programming language for ODGIS [13] where they used classes for entities, which
matches well since instantiated classes are objects in the world of programming.
Most relationships can be given by operations on the object and subclasses can
represent a specialisation of an entity. Both these works give us a good idea how to
use ontologies in our prototype, but before we start constructing our prototype we
look at what is currently available and if we can use this. After this we will discuss
our own implementation for the enrichment process and use this for the use case in
section 5.

4.1 Comparison of current implementations

With the development of OWL and the semantic web as a whole there have been
many different types of attempts to combine Bayesian networks with ontologies and
some prototype implementations. We will briefly discuss the largest categories of
implementation to show the current state of the art and see how they might be
relevant to data enrichment.
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4.1.1 Annotation

Proposals in this category consist of taking an original OWL ontology and adding
probabilistic information, like conditional probabilities, for the construction of Bayesian
networks by annotating this information with additional markups. Examples of this
type of work are, among others, OntoBayes [40], the work by Z. Ding et al. [9] and
BayesOWL [10].

To construct a Bayesian network rules need to be created in a parser that takes
the ontology and the additional markup and gives us the Bayesian network in the
desired format. This is a simple and straightforward way of working that does its job
well for basic networks, but lacks greater expressive power to work with first-order
logic [7].

4.1.2 PR-OWL

In the motivation of PR-OWL, Costa et al. [7] try to overcome the lack of this
greater expressive power. In basic annotated adaptations one can only express
attribute knowledge and not relational knowledge. An example of relational knowl-
edge would be to modify the probability of classification of all entities that adhere
to a certain relationship, e.g. “All trucks that are within 100 kilometres of the
distribution point are more suited for delivery x”.

PR-OWL uses MEBN (Multi Entity Bayesian Network) as its first-order logical
basis, the goal achieved here is found in the following quote taken from [7]:

A major concept behind PR-OWL is that of probabilistic ontologies.
Probabilistic ontologies go beyond simply annotating standard ontolo-
gies with probabilities, providing a logically sound formalism to express
all relevant uncertainties about the entities and relationships that exist
in a domain.

All the details can be found in the definition of the probabilistic ontology, but
effectively they require “a proper representation of the statistical regularities and
the uncertain evidence about entities in a domain of application”. For this it is
required that the semantics and abstract syntax of OWL is extended, a step further
than adding annotation.

4.1.3 BNTab

BNTab2 (Bayesian Network Tab) is a Protégé3 plugin that translates an OWL
ontology into a Bayesian network that can be used in Norsys Netica4, a program
to work with Bayesian networks. BNTab is a result of the practical need of Stefan
Fenz to be able to model ontologies and convert them into Bayesian networks [12].

The approach Fenz takes is close to what we need but its overly complicated
interface and lack of a relational structure in the interface make it hard to use. Also
is Netica a commercial package which requires a full license if we want to create
large networks or use all of its features, which limits the power of BNTab. Both
these factors make us prefer constructing Bayesian networks manually with freely
available software packages without the limitations that Netica has. Yet the idea
of a plugin-in for Protégé to construct a Bayesian network from an ontology is very
appealing.

2BNTab plug-in website: http://protegewiki.stanford.edu/wiki/Bayesian_Network_Tab_

(BNTab)
3OWL editing tool, Protégé website: http://protege.stanford.edu/
4Norsys Netica: http://www.norsys.com/netica

http://protegewiki.stanford.edu/wiki/Bayesian_Network_Tab_(BNTab)
http://protegewiki.stanford.edu/wiki/Bayesian_Network_Tab_(BNTab)
http://protege.stanford.edu/
http://www.norsys.com/netica
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Figure 6: The work flow of the implementation, squares are processes and parallel-
ograms are data.

4.2 Implementation overview

Now that we have described the theoretical background and looked at the current
available solutions it is time to translate this into an actual prototype. A work
flow diagram of the implemented prototype can be found in Figure 6. If we would
compare Figure 6 with Figure 5 we could say that steps 1 and 2 are portrayed on
the left of 6 while steps 3 and 4 are portrayed on the right. For our implementation
we choose to use OWL to represent our ontology as it is the current standard for
storing ontologies. The OWL Working Group states the following5:

The OWL Web Ontology Language is designed for use by applications
that need to process the content of information instead of just presenting
information to humans. OWL facilitates greater machine interpretabil-
ity of Web content than that supported by XML, RDF, and RDF Schema
(RDF-S) by providing additional expressive power along with a formal
semantics.

With Protégé we can parse, edit and store ontologies from different types of OWL
files and other ontology formats. Protégé also offers the option to add our own
plug-in written in JAVA to Protégé. Our Protégé plug-in BNGen (Bayesian Network
Generator) enables us to click a Bayesian network together and save it as a Bayesian
network xdsl file using jSMILE6.

Our classifier is also written in JAVA and supports shapefile datasets, using
the GeoTools JAVA GIS toolkit7, and the xdsl Bayesian networks as input. The
classifier takes care of the connection with the Bayesian networks and deals with
the shapefiles: the user has to specify how and which data is fed to the Bayesian
networks. The output is freely specifiable by the user, but the use of shapefiles or
other standards that are supported by GeoTools are the most straightforward to
use.

5OWL Working Group website: http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
6SMILE JAVA API: http://genie.sis.pitt.edu/wiki/JSMILE_and_Smile.NET
7http://www.geotools.org/

http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
http://genie.sis.pitt.edu/wiki/JSMILE_and_Smile.NET
http://www.geotools.org/
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4.3 Protégé plug-in: BNGen

The BNGen Protégé plug-in is partly inspired by BNTab [12], but only on the visual
aspects of the plug-in. Where BNTab uses Netica as Bayesian modeller we have
chosen to use jSMILE, the JAVA API of SMILE. SMILE is a free C++ framework
and supports multiple types of Bayesian networks, multiple file formats (including
the Netica file format) and has a stand alone GUI (Genie8).

Once the user has selected an entity he/she wants to classify BNGen helps
the user by only showing relevant parts of the ontology to the user based on the
entity hierarchy (taxonomy) and object properties (including partonomy), as seen in
Figure 7 on the left. Compared to BNTab we limit the amount of information that
is provided to the user by not showing irrelevant information. When a variable and
a dependency are selected in the interface the user can add the relationship to the
Bayesian network by pressing the “add relationship” button, BNGen will add the
relationship to the selected entities list on the right where the variables and their
relationships for the Bayesian network are displayed. The plug-in also provides the
option to create reachable by parts in the Bayesian network. These provide a way to
link two entities together using an object property of the classifying node. Finally
BNGen provides the option to select a state space for the added nodes. If no state
space is selected the node will have two default states that SMILE initially provides
for each node.

Once the user has created the Bayesian network it can be saved to the file system
and viewed or edited by the user using editors like Genie. Currently BNGen lacks
support for data properties9 and the option to set the probability of the selected
states. As such they have to be set in a Bayesian network editor after generating
the Bayesian network.

Figure 7: A screen shot of BNGen using the ontology from Figure 8.

8Genie website: http://genie.sis.pitt.edu/
9A way to assign data values to entities in Protégé.

http://genie.sis.pitt.edu/
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4.4 Classifier

The classifier is the working horse of our implementation as it does, once fully
implemented by the user, the following things:

• Connect with the Bayesian networks using jSMILE.

• Convert the data to a preferred data structure for the classification process.

• Classify entities in the dataset.

• Return enriched data in desired output.

In the current setup the classifier is compatible with all GeoTools features when
working in Eclipse with Maven10. The initial classifier provides a code blueprint
for the user to read shapefile data, create cases for the data enrichment process,
execute the actual data enrichment and return this data as shapefile. This does
require that the user knows JAVA but offers the most flexibility in return.

5 Use case: the leafy residential area

In order to put our framework into a geographic context and to see how well it
works with real applications we have created a use case. When looking at available
data from OS (Ordinance Survey) MasterMap11 we notice there is explicit data
available on small areas like buildings and roads. For map generalization purposes
one might want to use such information, as shown in Figure 2 as a possible example.
We have chosen to enrich the data with information about leafy residential areas,
but one could also think of entities such as “the high street”, “industrial areas” or
“the business district”. The real challenge here is to classify a leafy residential area
with the limited data that is available in OS MasterMap. We also face a difference
in scale: the OS MasterMap data has high scale information like exact geometric
details on the footprint of each building while the leafy residential area concept
works on a lower scale.

This use case suits our research questions well as we have to work with various
hierarchies and try to model an entity that is not explicitly represented on the map
in any way. What is also important is that while leafy residential areas are not
explicitly mentioned on a map, humans are able, with some work, to Figure out
where they are. With the use of ontologies and Bayesian networks our classifier
should be able to do the same job, if not better. We have to stress that while this
use case will try to classify leafy residential areas and return an enriched dataset,
using our best understanding of the concept leafy residential area without extra
verification by experts, it is an illustrative example to show how we can apply the
described approach in this thesis.

5.1 Definition

We need to properly define leafy residential area, a term that is mainly used in com-
mon day speech, before we can create an ontology. If we look for a formal definition
from the Oxford British & World English dictionary12 we find the following:

Leafy adjective (leafier, leafiest) having many leaves or much foliage:

10Apache Maven is a software project management and comprehension tool, website: http:

//maven.apache.org/
11See section 5.2 for more information, website: http://www.ordnancesurvey.co.uk/products/

os-mastermap/index.html
12http://oxforddictionaries.com

http://maven.apache.org/
http://maven.apache.org/
http://www.ordnancesurvey.co.uk/products/os-mastermap/index.html
http://www.ordnancesurvey.co.uk/products/os-mastermap/index.html
http://oxforddictionaries.com
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a leafy glade

leafy bushes

the leafy suburbs

Residential adjective designed for people to live in:

private residential and nursing homes

providing accommodation in addition to other services:
a residential sixth-form college

occupied by private houses:
quieter traffic in residential areas

concerning or relating to residence:
land has been diverted from residential use

Area noun a region or part of a town, a country, or the world:

rural areas of Britain

people living in the area are at risk

[with modifier] a space allocated for a specific use:
the dining area

a part of an object or surface:
areas of the body

If we combine these definitions we can describe a leafy residential area as “a
part of the world designed for people to live in with much foliage”.

A search on the web for “leafy residential areas” confirms this idea: the main
results are sites that sell homes in or holidays to regions that are being described
as being “a leafy residential area” while the corresponding pictures show residences
that are being surrounded by foliage and trees.

But what is an area exactly? In [20], area is mostly translated as region or place:
“In a generic sense, a place is a geographical locale of any size or configuration,
comparable to equally generic meanings of area, region or location.”. As such we
find for region [20]:

region Most commonly used to designate: (a) an area or zone of in-
determinate size on the surface of the Earth, whose diverse elements
form a functional association; (b) one such region as part of a system of
regions covering the globe; or (c) a portion of one feature of the Earth,
as in a particular climate region or economic region.

And in the light of our goal to create an ontology the following from [20] is
particularly interesting:

The region has been subject to much examination as to its epistemo-
logical and ontological status (see epistemology ; ontology). How are
regions to be known and represented? Do regions exist in actuality? It
is probably safe to say that most geographers who have dealt with these
questions agree that regions are based on socially constructed general-
izations about the world, that their delimitation and representation are
artefactual but not purely fictions.

[...]

Grigg took these criticisms to mean that the region, especially its use by
geography, needs always to be understood as a means to an end and not
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an end in itself (cf. Hartshorne, 1939). The point of ‘doing’ the region
is not ultimately to divide the world into regions and rest content. It is
rather, if one wishes, to engage in classifying and modelling geograph-
ical phenomena so as to generate questions about their variability and
functioning with respect to other phenomena.

As such we can generalize one part of the world as an area and define it as a
region between certain points or coordinates in the world. Both residential and
leafy are modifiers of what type the area is. If an area is classified as a certain type
it satisfies certain constraints, in this case on the type of buildings and the amount
of foliage. (Un)fortunately there are many ways to describe these constraints, some
of these ways are:

• Minimum amount of leafy residential entities in the area.

• Maximal distance between leafy residential entities in the area.

• Minimum ratio of leafy residential entities compared to all the other entities
in the area.

Where leafy residential entities are entities that have a positive influence to an area
being a leafy residential area. One has to choose a type of constraint depending
on what one wants to define, but this could also depend upon aspects such as
available data or possible models. As such we will have to make this choice during
the implementation process.

5.2 Data

The data that we will be using for this use case is from the OS Mastermap (Mas-
terMap is the academic and commercial digital portal of the OS to access their
data via the internet) Topography Layer. This dataset contains all of the United
Kingdom in vector format with some basic attribute information. Of each entity
(called feature in OS MasterMap) we are given, among others, a theme attribute,
a description group attribute and the geometry in WKT (Well-known text). The
themes that we are interested in are the themes “buildings”, “land” and “road or
pathway” which tell us what a feature is. The dataset contains 3 different scales:
1:1250 for urban, 1:2500 for rural and 1:10000 for mountains and moorland, all with
a 99% accuracy confidence. Our selected dataset contains about 300.000 features
in the urban part of Edinburgh as this is the most practical for our fieldwork later
on, as such our scale will be at least 1:2500. The data is regularly updated and the
most recent publication of new data was in April 2013. More information can be
found in the OS Mastermap Topographic Layer manual13.

5.3 Ontology

We have modelled the leafy residential area ontology in Protégé while taking the
available data (if a feature is a building, land or road) into account as this defines
our initial building blocks for the ontology. As such, buildings are our starting
point in the model which we can extend into residential, commercial and industrial
buildings with our model. Next we extend residential into houses and other types
of residential buildings and extend houses into different types of houses such as
terraced houses. This gives us, amongst others, the following hierarchy: terraced
house IsA house IsA residential building IsA building. In the same manner a leafy
residential area extends a residential area which extends area in turn.

13OS Mastermap Topographic Layer manual: http://www.ordnancesurvey.co.uk/oswebsite/

docs/user-guides/os-mastermap-topography-layer-user-guide.pdf

http://www.ordnancesurvey.co.uk/oswebsite/docs/user-guides/os-mastermap-topography-layer-user-guide.pdf
http://www.ordnancesurvey.co.uk/oswebsite/docs/user-guides/os-mastermap-topography-layer-user-guide.pdf
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Figure 8: A graphical representation of the ontology.

A graphical model of the ontology can be seen in Figure 8. The solid arrows
represent IsA relationships while the dotted lines represent relationships (object
properties) with other entities denoted by the text near them. Some information
that is in the ontology is not visible in the model in Figure 8 to improve the compre-
hensibility. One of these is the disjoint property: is an entity disjoint with another
entity or could it be multiple entities at the same time? E.g. a pizza could be both
a spicy pizza and a meaty pizza, but not a vegetarian pizza and a meaty pizza.

To find a leafy residential area we need to be able to classify the elements that
give us an indication of where such an area is. In section 5.1 we called these elements
leafy residential entities and will now model greenish houses as a leafy residential
area. We have chosen to only classify greenish houses to focus on a single type of
entity and because this (a type of house) seems to have good distinctive power for
our use case. While we have multiple options on how to model a greenish house in
the ontology we are limited by the available data and don’t want to make a very
complex model for the ease of analysis of our approach. We define a greenish house
as:

• It is most likely a house.

• It is most likely not a terraced house.

• It most likely has a private garden.

• It is most likely not close to the road.

Where a terraced house is defined as a house adjacent to exactly 2 other houses, a
private garden is defined as a garden adjacent to exactly 1 building and “not close”
is a distance defined by a parameter set by the user. The use of most likely shows
one of the interesting bits of geographical entities and reasoning with it. There are
examples of terraced houses that are very leafy, but generally they aren’t. The same
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goes for all the other criteria, there are no clear cut boundaries on when a building
is or isn’t a greenish house.

Another choice that we made is not to force as much as possible into the at-
tributes of the greenish house. Thus we have created a private garden house and a
far away house, where the former indicates if a building is a house and has a private
garden and the latter indicates if it’s a house that is far away from the road. This
enables us to have a better insight in the classification process later on as we can
clearly see the in-between results of the classifications. We also notice that there is
no hierarchical relationship between a greenish house and the other types of houses
because they are all a type of house.

While it was a choice for the private garden and far away houses we are forced
to do the same thing for terraced houses. A row of terraced houses is made up of
terraced houses and two end terraced houses which mark the endpoints of a row
of houses. End terraced houses are defined as being a house and being adjacent
to exactly 1 terraced house. To be able to do this we first need to classify all
the terraced houses before we can classify the end terraced houses. This order of
classification is depicted by the ontological object properties such as adjacentTo.

5.4 Bayesian networks

Now that our ontology is created we can create the Bayesian network with the help
of the BNGen plugin in Protégé. With the plugin we select the needed entities
shown in Figure 8 and use the relationships depicted by the arrows connecting
them. The Bayesian network for a terraced house (on the right in Figure 9) has
one node as classifier, terraced house, and two nodes that influence the probability
of this node: house and adjacentTo. House represents the belief that our entity
is a house, which is calculated with the Bayesian network on the left in Figure 9,
and adjacentTo, a summary node, the belief that it is adjacent to two houses. The
belief of adjacentTo is constructed by checking if our current entity is adjacent to
two other entities that have been classified as house with a belief of more than 50%.
If this is the case the node gets the value true by assigning a 100% probability to
the state that represents true.

The two Bayesian networks in Figure 9 could have been one network if isAdja-
centTo did not need to know if entities, that are adjacent to the entity that we are
classifying, are houses. This forces us to use the staged classification as discussed
in the theory: first classify each entity with a house Bayesian network and then
use this information for further classification in the next stage. The dashed line
indicates the belief that an entity is a house being propagated from the first stage
(house classification) to the next stage (terraced house classification). It also illus-
trates the need for the summary nodes: without this we would need to construct a
Bayesian network in which each of the adjacent entities is represented by at least
one node. As the number of adjacent entities is unknown in advance we would have
to construct new Bayesian networks on the fly for each single case.

Figure 9: Two Bayesian networks, House(l) and TerracedHouse(r) where the belief
of a house classification is propagated to the TerracedHouse network for the next
stage of classification.
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We have the same type of approach for all our other types of house, except for the
greenish house. The greenish house doesn’t have any relationships with the other
types of house other than that they aren’t disjoint. As mentioned before it could
be one, or more, of the other types of house next to being a greenish house. But
we don’t know if it is, and if so, how much we actually believe it’s one of the other
types. This makes it impossible for us to create the Bayesian network for a greenish
house with BNGen since we can’t select relationships, including the taxonomy and
partonomy, that are not explicitly modelled in the ontology as BNGen only shows
relationships that are modelled in the ontology. Thus we have hand crafted this
network ourselves in Genie so that we can still use it in our classifier as seen in
Figure 10.

Figure 10: Screen shot from Genie showing the greenish house Bayesian network.

As BNGen doesn’t provide us with a way to set probabilities yet we have to
do so with SMILE or Genie manually. SMILE both offers the options for learning
algorithms to learn the probabilities from sample data and for the user to set the
probabilities manually. We’ve chosen for the latter because we want to have a clear
view on the effects of the probabilities on the resulting output. In the final versions
of the Bayesian networks we have chosen probabilities for the enrichment process
that reflect our best understanding of the entities, but we stress that they are not
chosen by experts in the field of residential entities.

5.5 Classifier

Our classifier has certain expectations of and assumptions on our dataset. As build-
ings can not intersect other buildings the dataset can be represented as a single
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planar graph, e.g. there are no edges that cross each other. If this constraint holds
the creation of a topological data structure becomes a lot easier, saving us a lot of
time and effort. We expect the constraint to hold because our data is cartographic
in nature and has to be printed on a two-dimensional plane without creating over-
lapping features. Unfortunately the dataset supplied by the OS doesn’t satisfy this
constraint due to small geometric errors causing the need to clean the dataset first.
We load the data into ESRI’s ArcGIS14 and remove all the features in the data that
overlap with other features in the data. An advantage is that Arc map is able to
store the resulting dataset as shapefile, the format the classifier prefers and saving
us an extra data conversion.

Removing parts of our dataset affects our final result as we can’t return these in
our enriched dataset or take them into account during the classification. Fortunately
the removed features are relatively unimportant to our use case: roughly 2% of the
features are removed and most of these are natural features that are ignored in the
enrichment process like stretches of grass between a road and the pavement.

5.5.1 Classification

Once we have loaded the cleaned shapefile into the classifier we need to create a data
structure with topological information next to the geometrical information that is
available in the shapefile. We have chosen to create a DCEL (doubly connected edge
list) data structure [8] of the dataset using a sweepline algorithm [8]. Because we
have the guarantee that our input is a planar graph we don’t have to deal with cases
where edges would intersect each other, which would be the most complex cases for
the algorithm to deal with. A DCEL gives us access to all the m neighbours of a
feature in O(m) time which is as good as it’s going to get. Notice that we create
a DCEL specifically for this use case and is not part of our general approach, but
the creation of a topological data structure will most likely be required for most
applications that work with our approach if such data is not readily supplied.

For each classification step we create cases that we let the Bayesian network
classify, where every individual entity (called feature in OS MasterMap) in the
dataset is a case. If, for example, we would want to classify a feature as terraced
house we need to know how much belief we have that this feature is a house and if it
is adjacent to two other houses. In the current implementation this last constraint
is a hard constraint: if it is adjacent to two entities of which we have more than
50% belief that they are a house we have 100% belief that the adjacency constraint
is fulfilled. When all the cases are created we give them to the Bayesian network
and add the classifications returned by the Bayesian network to the dataset for
further use. These classification are the belief that we have that something is a
certain entity between 1 (100%) and 0 (0%), so an entity could have a classification
Private garden (0.000024). An example of the difference between the initial
data and the enriched data can be seen in Figure 11.

5.5.2 Area creation

When the classification process is finished and we know for each feature how strong
our belief is that it is a greenish house we start with the construction of the leafy
residential area. We do this with a buffer algorithm and “grow” our leafy residen-
tial area: we pick a random element that satisfies a minimum belief constraint in
our dataset, find all elements within a buffer created around this element that also
satisfy the minimum belief constraint, create a buffer around the newly found ele-
ments and search for more elements that satisfy the constraint and repeat this for

14A GIS for working with maps and geographic information. Website: http://www.esri.com/

software/arcgis/

http://www.esri.com/software/arcgis/
http://www.esri.com/software/arcgis/
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Toid 123456
Theme Buildings
DescGroup Building
Make Manmade

...
...

→

Toid 123456
Theme Buildings, House (0.875),

Terraced House (0.765)
DescGroup Building
Make Manmade

...
...

Figure 11: Example of initial data and resulting enriched data where the belief has
a value between 1 and 0.

all the newly found elements. Once we can’t find any more new elements that sat-
isfy the minimum belief constraint we put all the found elements in a single set and
remove them from the initial dataset. We continue this process until there are no
more elements left in the initial dataset that satisfy the minimum belief constraint.
Our result will be a set L of n sets consisting of greenish houses that are clustered
together. The algorithm is illustrated by the pseudo code in figure 12.

areagrower(S, t)
Input: A set of features S that have been classified and a threshold t.
Output: A set of features L that represent the leafy residential areas.
G = the set of features in S of which we have more than t belief that they are
greenish houses.
L = new arrayList[FeatureSet] . L is an arraylist of FeatureSets
FQ = new FeatureQueue() . Implemented as FIFO queue
while G.isEmpty() != True do

LRA = new FeatureSet()
cf = G.pop() . A random element from G as current feature
LRA.add(cf)
cfb = cf .buffer()
for All elements tf in G that intersect cfb do

FQ.push(tf)
G.remove(tf)

end for
while FQ.isEmpty() != True do

pf = FQ.pop() . Element to search around
LRA.add(pf)
pfb = tf .buffer()
for All elements tf in G that intersect pfb do

FQ.push(tf) . Indirectly add element to this area and make sure we
search around this one as well

G.remove(tf)
end for

end while
L.add(LRA)

end while
Return L

Figure 12: The growing algorithm for an area in pseudo code

A set Li where 0 < i ≤ n represents a leafy residential area which can be
visualized by computing the buffer of all the elements in a set Li, creating the
union of all these buffers and creating a new feature (in this case a leafy residential
area) that uses the result of the union as its geometry. If we do this for all n sets in L
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we will have n features representing all the leafy residential areas in our data which
can be visualized by tools such as ArcGIS. In Figure 13 we see hatched regions in
the area of Morningside in Edinburgh which are leafy residential area features with
a raster backdrop of the initial dataset.

We do all the geometric calculations (unions and buffers) with the use of stan-
dard functions of JTS15, an API of 2D spatial predicates and functions that is
included with GeoTools, and have chosen the parameters of the geometric buffers
such that residential areas get grouped together and isolated entities stay isolated.

5.6 Results & discussion

Figure 13: Part of the Morningside area in Edinburgh depicting leafy residential
areas (hatched). The picture of Figure 14 is taken at the ×.OS MasterMap data
Ordnance Survey c©Crown Copyright

In Figure 13 we can see a result of the classifier. The larger hatched areas
depicted in the map mark a clear area that is supposedly a leafy residential area,
but is this truly the case? When we look at the borders between areas that are
leafy residential and that aren’t we see difference such as in Figure 14 depicting a
clear difference between classified areas and non-classified areas. In Figure 15 we
see two examples of areas that are not classified as leafy residential areas and two
examples of areas that are.

In Figures 16 and 17 we have the results of the classification of a larger part
of Edinburgh. In Figure 16 we see all the areas that have been classified as leafy
residential with more than 70% confidence while we see the subset with only large
areas in Figure 17. In both Figures we see that the city centre has a very low
number of leafy residential like spots. If we only look at the set of areas that are
larger than 70.000m2 we see one clear pocket just south of the city centre. We also
see some areas that meet the size constraint but are very much stretched in length
while others are more compact.

We have visited a number of points in our dataset to see how well our classifica-
tions fit, if we make errors and if so, what kind of errors these are. The areas that

15Website: http://www.vividsolutions.com/jts/JTSHome.htm

http://www.vividsolutions.com/jts/JTSHome.htm
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Figure 14: On the left we see houses that are in a leafy residential area while the
houses on the right aren’t. This picture is taken at the cross in Figure 13 facing
south and shows a border between a leafy residential area and an area that isn’t.
Streetview image from Google Maps.

we would classify as real leafy residential areas during a visit had a real natural
atmosphere with, being there during the summer, birds singing and the smell of
grass and plants in the air. What was very apparent during the trip is that there
are a lot of classified areas “quite like a” or “a potential” leafy residential area, or
stated differently: “it is a leafy residential area with 70% truthfulness”. We say
this because these areas have the potential, which is partially being utilized, to be
a real leafy residential area. The potential is in the fact that the houses have the
space to plant trees and bushes in their gardens instead of the current stone walls,
concrete ornaments, grass or car parks. Examples of this can be seen in the pictures
in Figure 18 where the house on the left isn’t very leafy but could be made like the
house on right by planting more leafy elements in the garden.

We have also seen that the location and shape of the area is important as some
areas are stretched along main access roads. Due to their proximity to such roads
the houses have a big front garden with lots of trees and foliage but one would
never classify these as (being in) a leafy residential area as they are next to a busy
road. Another important and summarized effect is that of property value. In areas
where the property value would appear to be lower16 we noticed that there is less
attention to foliage and trees while there is the same, or even more, space available
than in areas where property values appears to be higher. Currently we see no
clear relationship between the expected property value and the classified areas in
our results.

The numerical results from the trip can be found in Figure 19. While we can
count the areas that we have classified as being leafy residential areas (see Figure
17) we can’t count the areas that we haven’t classified. As such we have manually
defined residential areas that are devoid of greenish houses as non-leafy residential
areas. We have to stress that the selection of these areas are educated guesses
looking at the density of greenish houses in an area given the classified data. The
numbers indicate that we have about 56% accuracy, where accuracy indicates how
many classifications are correct, if we only take the completely correct classifications
into account and about 90% accuracy if we mark the potential leafy residential areas
as correct as well. This last step is reasonable since we returned all areas of which

16Which can be found on websites such as Zoopla: http://www.zoopla.co.uk/heatmaps/

http://www.zoopla.co.uk/heatmaps/
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Figure 15: On the left we see two pictures of areas that the are not classified as
leafy residential areas and on the right two that are.

we had 70% or more belief in, so some might only fit the ideal picture for 70%.
When we compared our results with the real world we found that the real world is
even more continuous than we expected. If we try to understand this further we
have to look at vernacular geographies and fiat boundaries. Vernacular geographies
argue that entities like a leafy residential area don’t have hard boundaries [39] and
that their “presence” gradually changes. These vague boundaries are also called
fiat boundaries [37]: boundaries between entities that are not clearly definable. For
example, where would the boundary between the English Channel and the North
Sea be? While it is defined as “a line joining the Walde Lighthouse (France, 1◦55’E)
and Leathercoat Point (England, 51◦10’N)”17 this is an “arbitrary choice which part
of all the water on the earth’s surface we mark off and elect to call the “North Sea”
” [15]. So unlike its boundaries with land, which are clearly demarcated by beaches
and shores (also called bona fide boundaries), it is not clear where the North Sea
abuts the English Channel [37]. So instead of having a hard constraint with hard
boundaries to show areas that are classified with a certain amount of belief, it
would also be interesting to create a heat map showing how much belief we have at
a certain point. With such a heat map we could display the vague(fiat) boundaries
and continuity of the areas in a more natural way.

To test our beliefs we have created a heat map, as seen in Figure 20, by giving
each entity with more than 20% belief a colour that depends on its belief. The red
buildings have the least belief, yellow average, green the most and the entities with
less than 20% belief are removed to reduce clutter from entities such as roads. If
we compare this with Figure 13 we see that the entities in the leafy residential area
are indeed green and those that aren’t in the leafy residential area are red while
yellow is in between those two different groups. Next we have created an outer glow
effect in an image editing program18 for each entity such that areas with one colour

17http://en.wikipedia.org/wiki/North_Sea#Extent
18Adobe Photoshop

http://en.wikipedia.org/wiki/North_Sea#Extent
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Figure 16: Map of Edinburgh where a large part has been classified. Hatched areas
are classified as leafy residential. OS MasterMap data Ordnance Survey c©Crown
Copyright

started to appear as the entities started to melt together. The effects were also
configured to fade over into each other if they would overlap, creating most of the
yellow areas between the red and the green areas. This fading effect is exactly what
one would expect to see with fiat boundaries, vernacular geographies and entities
that partly belong to a class. It also delivers the information in a clear and easy to
interpret way for the human mind.

We have also found more things that could improve our classification after look-
ing at the results and comparing these with the real world:

• Add address data for buildings: buildings with more than two addresses are
most likely not a greenish house as they are apartment buildings or alike.
These types of residence don’t have a private garden as the garden is being
shared by multiple dwellings in a single building. But due to the lack of such
information they are wrongly classified as private garden houses.

• Add property value information to the dataset, buildings with a higher value
are more likely to be in a leafy residential area. We expect this to be due to
factors like:

– Properties in a leafy residential area have a higher value because they
are in a leafy residential area.

– People living in higher valued properties are generally part of a social
class that tends to care more about the leafiness of the surroundings in
which they live.

There are many more indirect relationships to point out, but properly speci-
fying all of these would warrant another thesis.

• Take the proximity to the city center into account. Leafy residential areas
that are currently classified that are in the city and not in the rural areas are
more likely to be a real leafy residential area.
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Figure 17: The areas from Figure 16 that are larger than 70.000m2. OS MasterMap
data Ordnance Survey c©Crown Copyright

Figure 18: A potential greenish house and a greenish house.

• The greenish house density also tells us how likely something is a leafy res-
idential area. If there are a lot of greenish houses in a small area they are
packed together and leave less room for gardens or other leafy elements in the
area and make it less leafy.

• Take the geometry of the area into account. If it is a long stretch of houses
it’s along a single road and likely to not be a leafy residential area.

• Make use of remote sensing to get information like building height or the
composition of foliage in an area.

• Add more detailed theme information to our initial dataset. This would make
our basic building blocks less uncertain and vague. For example information
if something is a house or not could be added removing the need to add this
by classification.

All these improvements could be added to the classifier and be incorporated
by extending the ontology and Bayesian networks. With these improvements the
classifier would potentially be more accurate both in belief and how correct this
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Reality
clear LRA potential LRA non-LRA

LRA in output 13 11 1
non-LRA in output 0 2 5

Figure 19: Comparing the output of our classification with the real world situation
where LRA stands for Leafy Residential Area.

Figure 20: Heat map of the same area as in Figure 13 using real belief values.

belief would be. However, one drawback of these improvements is that they require
more (manual) work and thus reducing the amount of profit that we have from the
automation. It will be important to find a good balance between improvement and
the required effort to do this improvement.

5.7 Conclusion

Even without the proposed improvements we are able to point out certain areas
in the city that contain leafy residential areas using only basic spatial data and a
flexible ontological model. The numbers show that our framework is fairly accurate
with the data that we have at our disposal. Also has our heat map shown that
we can get useful results without exactly knowing where the boundaries are by
showing transitions between areas. The biggest drawback of the approach that one
could point out is the fact that we have been forced to create one Bayesian network
manually.

Nevertheless this use case has taken a real geographic and spatial data enrich-
ment problem and managed to enrich our data in a useful way, thus showing that
our approach works. Given the framework and the tools (BNGen and the classifier
code blueprint) we have spent most of our efforts and time in creating the ontol-
ogy and extending the classifier for our use case. Especially the creation of the
DCEL took a lot of time since there were no algorithms that we could use readily
available. As such we are currently looking into making our implementation for the
construction of a DCEL from a planar graph available via GeoTools.
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6 Discussion

In section 1.2 we have formulated the following general question:

1. Is it possible to use a framework based on ontologies and Bayesian classifiers
for data enrichment?

With the following sub questions:

2. How well are ontologies usable in a spatial context?

3. Can we use ontologies for hierarchical modelling of entities?

4. Can we use Bayesian classifiers to classify entities modelled within the onto-
logical framework?

In our use case we have shown that we can use ontologies and Bayesian networks
for data enrichment. To take a better look at the whole process we will discuss the
three sub questions here.

Spatial entities can be modelled by adhering to the structure of an ontology:
typical spatial things such as geometry, topology and location can be added as
attributes of the entity and its relationships with other entities can be depicted by
object properties. While ontologies offer us a structured way to model entities and
to reason with them they also offer a lot of flexibility. This flexibility enables us
to create a model that fits a particular point of view and can be easily changed
to a different one by changing its sub ontologies. In light of the social constructs,
vernacular geographies and fiat boundaries this is a good thing and helps us with
the problems associated with these types of entities. But this freedom also offers
the option to create horrific ontological models of poor quality with ease.

To counter this potential pitfall we can use two types of hierarchies which are
very strong in spatial entities: partonomy and taxonomy. These relationships are
crisp and usually well defined, both by scientists and non-scientists, and guide us
in the creation of a good ontology. But while these hierarchies help creating an
ontology they also limit us in the application as we have seen in the use case. We
have made the Protégé plug-in BNGen to create Bayesian networks for classification
in a semi-automated way using the modelled hierarchies as this is a more intuitive
and structured way. In most cases this works very well when the entities that we
want to classify adhere to the hierarchies, but once we want to classify something
by using other entities that are on the same hierarchical level BNGen isn’t able to
help us with this because there are no explicit relationships modelled between them
for BNGen to use. In the use case this can be seen with the greenish house that
could be both a greenish house and a house of a different type at the same time.
BNGen could be extended so the user could add relationships between entities that
are on the same hierarchical level, but this will most likely make it less intuitive.

Another aspect of the creation of the Bayesian networks is that we might have to
resort to staged classification and classify entities with a sub ontology first. This is
caused by the incompatibility of Bayesian networks with dynamic situations where
we don’t know the exact type or size of the input beforehand. To solve this we
have introduced summary nodes and propagate classifications from sub ontologies
to higher level ontologies. This approach gives us satisfactory results, but the
important thing is to find a good way to implement such summary nodes as how
they should work totally depends on their context. The difference could range
from simple minimum or maximum constraints to specific domain knowledge with
complicated formulas from that domain.

Once we have implemented the full classification process and have classified our
data we have a classified dataset in which we know the belief of every entity in the
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data being the entity described in the ontology. This belief indicates how certain
we are that it is such entity or how truthful our classification is. Especially with
vernacular geographies we see the emergence of fiat boundaries and other effects
that would make one say that a classification is “pretty good” or “almost correct”.
How good or correct is expressed in the belief that we have in the classification,
which is visually communicated to the user with a heat map.

In our use case we have only modelled one specific spatial entity, or put more
precisely, we have only modelled an area consisting of one type of entity: the greenish
house. But how does our approach fare with other types of spatial entities that are
not an area? For our use case we initially planned to find railway stations on maps
as they are usually only indicated by a name or symbol and do not tell you what
the extent of the station is. This type of entity would have been a set of different
features that together make up a train station, like the railway and platforms.
Unfortunately the data in the available dataset was so contradictory that we were
unable to create an ontology that built upon the basic entities. But if the available
data would have been of a higher quality and fidelity we would most likely have
been able to classify these types of entities. So the approach would work for more
precise entities such as railway stations and harbours or more vague entities such
as wilderness or mountainous area, as long as our data gives us the possibility to
create an ontology using its basic buildings blocks. But we have to keep in mind
that there is a trade off between the effort required for high quality data capture
and the capacity to infer higher level entities from data. For an optimal result one
should have data that is good enough for the data enrichment process to produce
satisfactory results, which differs for each and every problem or question.

7 Conclusion

In this thesis we have shown that it is possible to enrich a dataset using a framework
of ontologies and Bayesian networks for classification. In this classification process
we have exploited the hierarchical nature of spatial concepts for the creation of
Bayesian networks by basing our Protégé plug-in BNGen on this and used staged
classification in our classifier to deal with the static structure of Bayesian networks.
However, in the use case we saw that not every relationship is hierarchical or clear
in nature. As such we had to manually create a Bayesian network for these rela-
tionships after we could use this Bayesian network with our classifier along with
Bayesian networks that we made with BNGen. Despite this drawback the approach
seems to be promising, especially with our interpretation of an entity as a social
construct. For vernacular geographies this could be useful as we can show how
strong the belief is that something is the entity that we want to find according to
some social group of people that made the ontology. With the use of heat maps one
can show the vagueness of the vernacular geographies with fiat boundaries in our
resulting dataset. This type of information will give the users also more insight in
the concept they have created as they can see how much something matches instead
of just knowing if it does or doesn’t.

While we have mainly focussed on geographic entities in this thesis the approach
would work in any area that works with entities, both crisp and vague, that need
classification. Hierarchies are not required, but have to be clearly defined if we want
to use them in BNGen. BNGen can also be extended for further work to include the
option to set probabilities along with the state space of the vertices in the network.
The code blueprint of the classifier also supplies a great extensibility as it can be
adapted to any domain by the user.



REFERENCES 31

References

[1] J. Bateman and S. Farrar. Spatial ontology baseline. Collaborative Research
Center for Spatial Cognition. I1-[OntoSpace] D, 1, 2004.

[2] G. Bucci, V. Sandrucci, and E. Vicario. Ontologies and Bayesian Networks in
Medical Diagnosis. In System Sciences (HICSS), 2011 44th Hawaii Interna-
tional Conference on, pages 1–8, 2011.

[3] B. Buttenfield and E. Wolf. “The Road and the River Should Cross at the
Bridge” Problem: Establishing Internal and Relative Topology in an MRDB. In
10th ICA Workshop on Generalisation and Multiple Representation, Moscow,
2007.
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in Ontology-Driven Geographic Information Systems. Annals of Mathematics
and Artificial Intelligence, 36:121–151, 2002.

[14] A. Frank. Tiers of ontology and consistency constraints in geographical infor-
mation systems. International Journal of Geographical Information Science,
15(7):667–678, 2001.



REFERENCES 32

[15] G. Frege. Die Grundlagen der Arithmetik. Translated to English by JL Austin
as The Foundations of Arithmetic, Oxford, 1959, 1884.

[16] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian Network Classifiers.
Machine Learning, 29(2-3):131–163, 1997.

[17] L. Van Der Gaag and M. Wessels. Selective evidence gathering for diagnostic
belief networks. AISB Quarterly, 86:23–34, 1993.

[18] M. F. Goodchild. Geographical data modeling. Computers & Geosciences,
18(4):401 – 408, 1992.

[19] B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler.
OWL 2: The next step for OWL. Web Semantics: Science, Services and Agents
on the World Wide Web, 6(4):309 – 322, 2008.

[20] D. Gregory, R. Johnston, G. Pratt, M. Watts, and S. Whatmore. The dictio-
nary of human geography. Wiley-Blackwell, 2009.

[21] W3C OWL Working Group. Owl 2 web ontology language document overview
(second edition).

[22] E. M. Helsper and L. C. van der Gaag. A Case Study in Ontologies for Proba-
bilistic Networks. In Research and Development in Intelligent Systems XVIII:
Proceedings of ES2001, the Twenty-first SGES International Conference on
Knowledge Based Systems and Applied Artificial Intelligence, Cambridge, De-
cember 2001, page 229. Springer, 2002.

[23] G. M. Jacquez, S. Maruca, and M-J. Fortin. From fields to objects: a review of
geographic boundary analysis. Journal of Geographical Systems, 2(3):221–241,
2000.

[24] K. Janowicz. Observation-Driven Geo-Ontology Engineering. Transactions in
GIS, 16(3):351–374, 2012.

[25] A.S. Larik and S. Haider. Efforts to blend ontology with Bayesian networks:
An overview. In Advanced Computer Theory and Engineering (ICACTE), 2010
3rd International Conference on, volume 2, pages V2–598–V2–602, 2010.

[26] T. Lukasiewicz and U. Straccia. Managing uncertainty and vagueness in de-
scription logics for the semantic web. Web Semantics: Science, Services and
Agents on the World Wide Web, 6(4):291 – 308, 2008.
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University, 2011.
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