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Abstract

Strictness analysis detects when it is safe to evaluate expressions before they actually need to be
evaluated in a lazy language. We present the development of a polyvariant strictness analysis
for Haskell. Previous developments typically used an ad hoc lambda-calculus based language
that do not always reflect Haskell’s complexity entirely, often lacking support for higher order
functions, user defined datatypes, and recursion. Others that did have more extensive language
support were mostly monovariant. Our system aims to cover both aspects: a polyvariant system
with extensive support for higher order functions and user provided strictness annotations.
This is then implemented in the Utrecht Haskell Compiler (UHC) to validate the system and
observe its real world effects.
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Chapter 1

Introduction

Lazy evaluation is an evaluation strategy with several interesting qualities. Among other things,
it allows the construction of infinite data structures and a straightforward, simple implementa-
tion will skip unnecessary computations during evaluation automatically. Those characteristics
make it desirable for the programmer, however it also has plenty of drawbacks in terms of
performance, particularly when dealing with many delayed but necessary computations. Rep-
resentations for such delayed computations, called thunks, need to be created and destroyed
in a manner that uses more memory and wastes more time with managing those thunks than
should be necessary. Detecting when it is safe to evaluate non-lazily a term that represents a
computation allows us to avoid those shortcomings.

A single argument function is said to be strict if, whenever it is given a diverging argument, it
also diverges. This property is called “strictness.” A strict function can be seen operationally
as one that evaluates its arguments before returning its result, that is, opposite to how a lazy
language works. It should be noted that every strict program that terminates should also termi-
nate if implemented lazily, but not every program that can be constructed in a lazy setting can
be fully evaluated strictly correctly. Strictness can also avoid some of the performance penal-
ties introduced by laziness. Therefore, it is beneficial to be able to have a mixed of strict and
lazy evaluation on practical, real-world implementations of lazy languages. This mix can be
either implemented by means of an explicit encoding of strictness or by automatic analysis.
The former is available in Haskell with the seq function and the bang pattern. These partially
negate the advantage of the lazy environment by giving the programmer such responsibility.
Therefore, ideally we would like to have the task of annotating the programs to be performed
automatically by the compiler.
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This project builds on top of previous work by Holdermans and Hage, and Verburg to imple-
ment strictness analysis in the Utrecht Haskell Compiler (UHC) [1], [2]. We take these authors’
results and expand to include more language constructs, remove the lambda-lifted code restric-
tion, improve higher-order function support with polyvariance, and try to discover the aspects
of this analysis that are most important for performance improvements. In the following chap-
ter we present the motivation for solving the problem of strictness through program analysis.
Chapter 3 presents a review of some of the already developed strictness analysis techniques
and how they achieve some of the aforementioned goals. Afterwards, in Chapter 4, we describe
UHC in detail and how its architecture affect implementation choices, while Chapter 5 describes
our planned approach. We then describe our type system used for the analysis in Chapter 6, our
algorithm for the analysis in Chapter 7 and how that information can be used to lead a UHC
code transformation in Chapter 8. Finally, we present the implementation results in Chapter 9
and finish with concluding remarks in Chapter 10.
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Chapter 2

Motivation

Lazy evaluation only reduces a given reduceable term as much as necessary. The necessity
is driven by the need to inspect a value, such as in a case scrutinee. This means we do not
necessarily have terms that are values at once and we might need to store partially unevaluated
expressions, called thunks, during program execution. The fact that terms are only evaluated as
much as needed allows us to define recursive structures such as infinite lists with no memory
penalty other than the description of the computation steps to calculate its as yet non-evaluated
part.

For instance, with laziness it is possible to define a list of all naturals in the following fashion:

naturals = let naturals ′ n = n : (naturals ′ (n + 1))
in naturals ′ 0

Despite being a list with all natural numbers, this list uses finite memory space. Only if we
print the value of naturals it will use infinite memory. With lazyness, we may print some of the
elements of the list, which will be calculated and with the list expanded until such element.

If we want to pick the 5th element of that list, and assuming previously calculated values to
be stored for later sharing, we can imagine the memory representation of the list to render
something like this:

naturals = let naturals ′ n = n : (naturals ′ (n + 1))
in 0 : 1 : 2 : 3 : 4 : naturals ′ (4 + 1)

The in memory representation of the list was expanded until the 5th element, which is the
number 4, but the rest of the list was kept in its original representation with the updated n

9



parameter. Not even the term (4 + 1) before the recursive call needs to be evaluated, since its
value is not yet needed.

Suppose now that we have a function such as f below:

f = λa b s → if s > 0 then a + b else a

In a purely lazy setting values are passed in a “call-by-need” fashion. That means that a , b, and
s will not have been necessarily reduced as much as possible before and during f ’s evaluation.
It is possible that these parameters are other functions or expressions and only once the value
of f is needed will these be calculated.

For instance, f may be called from another function such as:

f ′ = λc → f (1 + 2 + 3 + 4) 5 c

Regardless of c’s value we already know that the expression (1 + 2 + 3 + 4) has to be evaluated.
Instead of storing f or f ′ as a thunk that includes this expression in its unevaluated form we can
already perform this computation and store its result. To permit such constructions in Haskell
we have a function that is treated differently from regular ones in terms of laziness, the seq

function. By use of this function we can rewrite the original f ′ as:

f ′′ = let a = (1 + 2 + 3 + 4)
in seq a (λc → f a 5 c)

This form will force the expression (1 + 2 + 3 + 4) to be evaluated before building the inner
lambda of the let body. Naturally, if f ′′ itself is never evaluated, this change will have no effect
other than increasing our code size and this change becomes detrimental. If it is evaluated,
however, we might gain performance by avoiding the storage of the unreduced a . Ideally we
will put this transformation as high as possible in the AST where we can while still preserving
program’s semantics, hopeful that forcing the evaluation of the expression sooner will be faster
than relying on the order of evaluation set by the runtime system. For instance, in a term t1 of
the form e1 ... f ′ ... en, we might want to force the evaluation of a ′ even earlier in the program
execution by rewriting our original expression:

t′1 = let a ′ = (1 + 2 + 3 + 4)
in seq a ′ (e1 ... (λc → f a ′ 5 c) ... en)

We also have cases in which some code might be “probably” required but not “provably” re-
quired and where early evaluation might still be beneficial even if its value is never used simply
because it reduces memory use sooner. This depends on the probability of it being called. Also,
the semantics of the program should not change even in cases of evaluation when code is not
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2.1. Further examples

needed, so it should not have side effects or diverge when the program otherwise would not.
However, detecting such cases can easily become an undecidable problem.

In general, we have a compiler capable of transforming our input program into a mix of lazy
and non-lazy code. Defining the best mix for all possible settings might not be possible, but
as long as we only perform safe transformations, the output should still be correct. Through
the use of a static analysis called strictness analysis we aim to detect a large sub-set of those
optimization opportunities and use that information to improve our transformations.

2.1 Further examples

In order to make our presentation clearer, we first define a set of basic examples that can be
used to quickly verify the behaviour of our analysis in some common cases. Most papers on
previous work, shown on Chapter 3, also tend to rely on some of these examples to present
their systems. Even in cases where the features presented in the code are not fully supported, it
is still interesting for us to keep in mind these examples both to verify if the analysis still leads
to safe transformations and to see if they affect other parts of the program.

id :: a → a
id a = a

twice :: (a → a)→ a → a
twice a = a ◦ a

twiceId :: a → a
twiceId = twice id

These functions allow us to test simple functions and function composition. Also, analysing
twice shows quite early how high order functions are treated in any given system.

head :: [a ]→ a
head (x : xs) = x

length :: Num a ⇒ [b ]→ a
length (x : xs) = 1 + length xs
length [ ] = 0

Both head and length allow us to verify how pattern matches behave and also how a basic re-
cursive datatype like list is handled. Furthermore, head also gives us an example of incomplete
patterns.

letY1 :: Num a ⇒ a → a
letY1 y = let f x = x + y
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2.1. Further examples

in f y

letY2 :: Num a ⇒ a → a
letY2 y = let f x = x + y

in f ‘seq ‘ 3

In letY1 we have a let binding that makes use of the function in a fully saturated way, whereas
in letY2 it is not saturated, even if relevant. These two examples help us verify how information
brought in by uses of these functions affect the strictness of the inner let expressions, if at all.

data MyEither a b = MyLeft ! a | MyRight b
fromMyLeft :: MyEither a b → a
fromMyLeft (MyLeft a) = a

fromMyRight :: MyEither a b → b
fromMyRight (MyRight b) = b

km x y z = if z ≡ 1
then x − y
else km y x (z − 1)

Through the MyEither datatype and its accompanying functions fromMyLeft and fromMyRight

we can verify how our system supports user defined datatypes and how it handles strictness
annotations on those. The function km tests basic use of recursion with complex flow of annota-
tion information due to the switch of variable order in the recursive call. Both the datatype and
the km examples were inspired by Glynn, Stuckey, and Sulzmann [3], although MyEither was
called Maybe by those authors and had no forced strictness. That paper also contains a bench-
mark of their own code against regular compilation with the well established GHC compiler.
This set of programs is in the nofib suite and we might also use it in order to validate our own
system. It is available in the Git repository http://darcs.haskell.org/nofib.git/.
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Chapter 3

Strictness Analysis

Before implementing any sort of transformation from lazy to strict code, we should define
which analysis techniques will be used. Here we present a brief review of the main techniques,
including the one already partially implemented inside UHC by Verburg [2]. We hope that do-
ing so will help contextualize some of the analysis design choices and possible difficulties in
supporting more advanced language features, such as higher order functions, data structures
and recursion.

3.1 Abstract interpretation

Abstract interpretation is the representation of programs’ semantics in an approximate way. We
select a problem-specific domain D] in which we can more easily verify or prove the safety,
correctness, or other relevant characteristic for our program analysis. Through the use of some
abstract semantic S] ∈ L → D] for our language L, we transform programs to the domain we
have selected and in which we can more easily verify our properties [4].

Mycroft’s paper on transforming functions from a call-by-need call convention to call-by-value
used an implementation of abstract interpretation [5]. In it, the author describes two different
interpretations, I] and Ib that are used to study cases in which the call convention transforma-
tion may be safely applied. I] maps all terminating terms to 1 and some non-terminating terms
to 0, whereas Ib maps all non-terminating terms to 0. Ultimately we only need to consider one
interpretation to the domain D] = {0, 1}, where values are mapped to 0 when non-terminating
and to 1 on all cases.
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3.1. Abstract interpretation

In this case, interpretation works by converting our input into formulas that allow us to check
which arguments cause a function to diverge. We convert our functions to their abstract ver-
sions through S] and then iteratively check strictness on each of its arguments by setting the
current argument to 0 and all others to 1.

For instance, we can pick the addition function, which is strict in both arguments. Indeed, we
obtain the following interpretation and its evaluated parameter values:

plus x y = x + y

plus] x y = x ∧ y

plus] 0 1 = 0 ∧ 1 = 0

plus] 1 0 = 1 ∧ 0 = 0

The last two lines indicate that plus is strict in both arguments.

We can also analyse control structures, like in the function if ′ below:

if ′ p x y = if p then x else y

if ′] p x y = p ∧ (x ∨ y)

if ′] 0 1 1 = 0 ∧ (1 ∨ 1) = 0

if ′] 1 0 1 = 1 ∧ (0 ∨ 1) = 1

if ′] 1 1 0 = 1 ∧ (1 ∨ 0) = 1

The last three lines tell us that if ′ is only strict in its first argument. While we know it will
require one of x or y , we cannot give guarantees about the actual evaluation of either.

If our function contains further function calls, we can replace those with their abstract versions.
That might not terminate, for instance, if we have recursive function definitions. It is possible
to simply play it safe and consider the worst case, but we can also use some more elaborate
strategies to generate more precise results.

For example, if we take the following function and its abstract interpretation:

f x y z = if x ≡ 0 then y ∗ x else f (x − 1) z y

f ] x y z = x ∧ ((y ∧ x ) ∨ (f ] (x ∧ 1) z y))

We can calculate f 0 1 1 directly and verify that f is strict in x . However, defining any of y

or z to 0 when x = 1 will lead to an equation that depends on the result of f ] itself. To solve
this we can just approximate the value to 1, which should always be safe, but is not satisfactory.
Alternatively, we can use a transformation T of values in the abstract interpretation to calculate
the result of recursive calls in a fixed point manner. That is, we define such T to be our abstract

14 Chapter 3. Strictness Analysis



3.1. Abstract interpretation

interpretation with 0 in its first iteration and with the result of the last previous iteration in the
subsequent ones. We can then write our fixpoint iteration in the following manner:

T0 f = 0
T1 f = x ∧ ((y ∧ x ) ∨ (T0 f )) = x ∧ ((y ∧ x ) ∨ 0) = x ∧ y
T2 f = x ∧ ((y ∧ x ) ∨ (T1 f )) = x ∧ ((y ∧ x ) ∨ (x ∧ y)) = x ∧ y

We have that T1 f ≡ T2 f , which is our fixed point. From that we can conclude that f is strict
in y but not in z :

f 1 0 1 = (1 ∧ 0) = 0
f 1 1 0 = (1 ∧ 1) = 1

An actual implementation of the algorithm above has exponential complexity due to the for-
mula comparison, which makes the fixpoint calculation expensive.

Further developments also added support for higher-order functions and lists to the abstract
interpretation technique. For instance, Burn, Hankin, and Abramsky already described how
one can lift our abstract domain to create a domain for higher-order functions [6]. In that lifted
domain we create new bottom and top elements which we use instead of 0 and 1, respectively,
as parameters in our abstract interpretation. And support for lists in abstract interpretation
was described by Wadler through the use of a more complex abstract domain [7]. This domain
includes not only bottom and top but also infinite lists and lists in which only some of its el-
ements are bottom. By verifying both lists constructors, nil and cons, as functions against all
possible cases we can perform the analysis. The author hints at the generality of this technique
to other datatypes, such as trees or composed lists. However, no mechanism to automatically
populate the abstract domain from datatype definitions has been formally presented, so user
defined datatypes are not supported.

3.1.1 Abstract reduction

Despite its advantages, abstract interpretation can get complex quite quickly. Fixpoint analysis
is computationally expensive and domains with finite size do not easily support extending
language with new data-types. With that in mind, but still keeping some of its advantages and
methods, Nöcker developed an analysis system called abstract reduction [8]. For it, we use an
infinite domain that can accommodate new data-types easily and that can represent various
forms of non-termination.

Similar to how the interpretation works, we also need an abstract domain for abstract reduction.
We first define a set S of the abstract representation of all function and constructors in our

15 Chapter 3. Strictness Analysis



3.1. Abstract interpretation

language and add a bottom (Bot), a top (Top), and a special union value. Bottom represents all
non-terminating values, top represents all values, and union represents a set of several possible
reductions, used when running the algorithm. From that large set we can define our domain
as graphs over S that represent the possible reduction paths from the abstract representation of
our program.

Once we have a representation of our program we can process the analysis by feeding bottom
and top values per argument and observe the result, like we did in abstract interpretation.
However, instead of merely evaluating the abstract functions, we use an algorithm to identify
on which alternative patterns, or execution paths, of a function we should verify the variable.
This algorithm analyzes the input program on these alternatives using bottom and top values.
If one or more alternatives match, we take their union. Without recursion, which would get us
into reduction cycles, this algorithm eventually leads us to one of the four possible matching
values:

• TotalMatch: the pattern or path represents the input bottom/top value entirely;

• PartialMatch: a Top value for the pattern;

• BotMatch: a Bot value for the pattern;

• NoMatch: other cases.

These results tell us which patterns have to be analysed. For instance, PartialMatch indicates
that further matches, or paths, need to be verified and added to the output union, but the
current one need not, as it may or may not terminate. Through these results we get an abstract
reduction that mimics the original program quite accurately.

Instead of using a fixpoint approach for dealing with recursion, the authors let the algorithm
run until it reaches a hard set limit on memory use, time use, or on the number of reduction
steps. Once that limit is reached, the terms with recursive calls are replaced by Bot if verified
that it is still needed. Otherwise, it may always be replaced by Top, which is safe. Informally,
we say that it is needed if the term is either in a strict position or in all alternatives of reduction.
It might be necessary to have dependency analysis before applying the algorithm so we can
check functions in the right order and have all necessary strictness information in time.

It is also worth noting that Nöcker mentions that high-order functions are supported by the
reduction system as long as currying is available.

Arbitrary data-types can be easily supported merely by adding those constructor possibilities
to the set of possible symbols in the domain. However, in some cases, we might do better by
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3.2. Projection

including further elements to the domain. For instance, we might want to encode list head
and tail strictness differently, along with potentially infinite lists. The downside is that this
complicates the system, since now we have to encode more strictness possibilities directly in
the system and verify up to 4 possibilities of values, themselves able to reduce even further
recursively. This is similar to the treatment of lists in abstract interpretation.

3.1.2 Comportment analysis

Also somewhat similar to the systems mentioned above, Cousot and Cousot presented a system
called comportment analysis [9]. It “generalizes strictness, termination, projection (including
absence), dual projection (including totality) and PER analysis and is expressed in denotational
style.” This analysis uses a much more complex lattice than the ones presented so far but seems
to be reasonably precise and complete. The authors are also able to prove equivalences, after
simplification of lattices, to earlier work, such as Mycroft’s strictness analysis.

Its target language is a basic simply typed lambda calculus with pairs, Booleans, conditionals
and fixpoint. There is little to no information about the practicality and even usefulness of
implementing the full system as presented in the article, or even on how to expand it to support
user defined datatypes and other advanced language features. However, it seems to have a very
solid mathematical foundation explaining the reasoning for each design choice, paving the way
to a more complete system.

3.2 Projection

A projection is an idempotent function that may remove information from its argument. Differ-
ent from abstract interpretation and reduction, it does not alter the original function’s domain.
Through the use of projections and projection transformers it is possible to implement strictness
analysis by verifying which projections may be safely applied to our input functions [10], [11].

A function α is a projection when it is continuous, discards information, and does so only once.
It never alters or adds information to the input. Formally, we say that α has to respect the
following properties:

α u v u

α (α u) = α u

For instance, the identify function id is clearly a projection, which we call ID . This element
is also top in any lattice of projections, as it is the function that removes the least amount of
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information. Typically, a projection BOT that maps every input to ⊥ is the bottom of that
lattice.

Before we go on, it is important to explain some notation. Given a function f and projections α
and β, f is β-strict in context α if α ◦ f = α ◦ f ◦ β, and we write it as f : α ⇒ β. This basically
means that β will never remove more information than what α needs in f .

We also define a new value element  , called abort. It is used to indicate values that are not
acceptable, as the function needs more information than available. All functions are strict in  ,
so f  =  . We also need to add a way of handling  when taking the join of elements, done
through the use of the & operator:

u & v =

{
u t v , if u 6=  and v 6=  
 , otherwise

We can then define a strictness analysis by using carefully selected projections and verifying
how our input function behaves with regard to those. More concretely, we define a strictness
projection STR that considers the value ⊥ unacceptable and then we verify if f : STR ⇒ STR

is the case. Formally, we define STR as:

STR u =

{
 , if u is ⊥ or  
u , if ⊥ < u

Projection properties force us to consider STR ⊥ v ⊥, so we must have  < ⊥ and  becomes
our new domain bottom. Also because of that, we have to define a bottom projection called
FAIL, which maps every input to  , to be used instead of BOT . In addition to those, the lattice
also contains ABS , or absent projection, which maps everything except  to ⊥.

While this notion of β-strictness can be generalized to multiple argument functions, describing
it can quickly become awkward. In order to simplify notation, the original authors defined pro-
jection transformers, which are functions that transform a projection of a function to projections
that can be safely applied individually to one of that function’s arguments. So if we call f i a
projection transformer to the i-th argument of a function f of arity n, and βi = f iα for every i,
1 6 i 6 n, we have that:

α (f u1 . . . un) v f (β1u1) . . . (βnun)

Just like with functions, we also have transformers for individual variables inside expressions.
We typically denote those as the expression itself indexed by the variable the transformer relates
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to. For instance, for a given strict α 6= FAIL, we have the following basic expression projection
transformers:

xx α = α

yx α = ABS

kx α = ABS, if k is a constant
(f e1 · · · en)x α = ex1 (f1 α) & · · · & exn (fn α)

With those, we can define the strict and non-strict parts of a transformer, STRuα and STRtα
respectively.

Using these carefully designed projections, rules, and operators, we can identify on which argu-
ments of a function is it strict and which it is not. This analysis support datatypes directly with
rules for creating projection transformers that pattern match on constructors. Function calls and
recursion are handled like in abstract interpretation. For function calls we use their calculated
transformed projections and recursion is handled through fixpoint iteration. The first iteration
is defined as FAIL instead of 0, and the following iterations are calculated on top of that.

3.3 Totality analysis systems

As an alternative to detecting strictness, we can focus on termination of expressions through
totality analysis. If a function is strict, we can evaluate its argument before performing the call.
Alternatively, if the argument is known to result in a head normal form, we can safely evaluate
it before performing the call. As both occasions effectively result in the same idea of converting
safe cases of call-by-name to call-by-value, they can be used in a somewhat interchangeable
way.

Several techniques have been developed for totality analysis, and most of those involve type
inference with effects carrying totality information. Type inference is typically described in a
declarative way as a deductive system with inference rules composed of premises and a con-
clusion. These rules indicate how to (re)build the type information of the original expression
and the final judgement has the form Γ ` e : τ , where Γ represents the environment containing
information necessary to type the expression e with type τ . For more expressive systems, like
the ones below, τ is usually expanded to carry annotation information on top of the usual types.
Chapter 6 describes how these systems may look like in more depth.
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3.3.1 Kuo & Mishra’s type inference system

For instance, Kuo and Mishra presented a technique for detecting non-termination of evaluation
[12]. It first focuses on defining termination with regard to a head normal form, that is, a term
converges under head evaluation if it results in one of the head normal forms. Otherwise, we
say it diverges. The entire system consists of a phase for type inference with constraints, and
another for constraint solving.

In this system, types are defined in terms of φ and � identifiers. Also, we gather and solve a set
of constraints C during the algorithm’s execution. The system uses the following identifiers:

σ ∈ TyExp Type expression
τ ∈ Ty Type
α ∈ TyVar Type variables
φ ∈ {e | e is divergent} Type for divergent expressions
� ∈ Exp Type for all expressions
w ∈ Coercions Coercion
C ∈ P(Coercions) Coercion set

From those we can define the required types:

τ ::= φ | � | α | τ → τ

w ::= τ ⊆ τ
σ ::= C, τ

Note that φ ⊆ �, as every divergent term is a term.

In other words, the type returned by the inference rules is σ, composed of the gathered con-
straints and the expression’s type. Once we have the expression type, the constraint solver
verifies that we have achieved a consistent set of constraints and simplifies them using some
rules.

The authors argue that separating the constraint solving from the type inference allows us to
express more types. As an example, the function λf x → f (f x ) may have any of the following
types:

• (φ→ φ)→ φ→ φ

• (�→ �)→ �→ �
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• (�→ φ)→ �→ φ

These several types cannot be expressed solely through parametrized types with type variables.
We need to express that the second and fourth elements are equal and have to be smaller than
the first and third, also equal among themselves. Later works presented solutions that avoid this
by allowing conjunctive types, which give us a set of possible types instead of a single one [3],
[13]–[15]. For this system we simply represent the final type as {β ⊆ α}, (α→ β)→ α→ β.

This system supports higher-order functions, but the authors did not describe how to properly
integrate recursion and arbitrary datatypes.

3.3.2 Jensen’s system with polymorphic support

Jensen’s approach looks rather similar, but uses conjunctive types instead of constraints and
uses a strictness logic to help simplify strictness properties [13]. This system also allows condi-
tional and polymorphic strictness properties. With all those features, the author argues that it
becomes equivalent to Burn, Hankin, and Abramsky’s abstract interpretation.

Instead of � and φ, we now use the properties t, true for all types, and f, for undefined values.
For instance, using the conjunctive type, λf x → f (f x ) could then be described as (t → t) →
t→ t∧ (f→ f)→ f→ f∧ (t→ f)→ t→ f. Furthermore, operators for conditional strictness
properties, ?, and its dual,⇐, are introduced. They are defined as:

ϕ ? α =

{
f , if α ≡ f

ϕ , otherwise
ϕ ⇐ α =

{
t , if α ≡ f

ϕ , otherwise

These allow expressions to be represented more precisely. For instance, we can type the if

operator as ϕ ?ϕ1, where ϕ1 is the type for the conditional and ϕ is the type for the expressions.
Meaning it will have strictness indicated by ϕ as long as the conditional can be evaluated. If the
conditional does not terminate, neither does the evaluation of if .

This system supports recursion and higher-order functions, but polymorphic and algebraic
datatypes were not introduced.
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3.3.3 Strictness Meets Data Flow

In a way similar to Jensen above, Schrijvers and Mycroft presented a type and effect system
with data flow information on effects [15]. It lacks the conditional strictness and polymorphic
variables but has sequential composition of effects (φ1 · φ2) and parameters with subeffecting
constraints (φ <: γ) to emulate both features. On top of those features, effects also contain
branching (φ1 + φ2) and 0 as a minimal element.

Perhaps the most notable side effect of having the data flow present is that we gain further op-
timization possibilities. The authors argue that this type and effect system is capable of guiding
not only traditional call-by-value transformations expected from strictness analyses, but also
implicational strictness. This form of strictness appears when we know a particular thunk will al-
ways be forced and can remove the “is-computed” check before loading its value. Not only that,
but we are able to do it in a interprocedural manner since data flow with argument evaluation
order information is exposed to outside functions. Additionally, we are also able to use the data
flow information on the effects to see which arguments might be used and to guide selective
inlining to expose further strictness optimization possibilities or to remove absent parameters
from function calls.

3.3.4 Gasser, Nielson & Nielson’s strictness and totality analysis

In a similar fashion, Gasser, Nielson, and Nielson presented a system that treats both strictness
and totality [14]. They also use conjunctive type systems and use annotation values related to
the evaluation of expressions to Weak Head Normal Form (WHNF).

The possible annotation values are b, n, and >. b works as bottom, and is used when the
expression does not evaluate to WHNF, while n represent expressions that do. > can be used in
any expression, including cases where we do not have further information.

A good chunk of Gasser, Nielson, and Nielson’s work relates to describing how strictness and
totality type annotations may be coerced to avoid writing redundant rules. They then prove that
the analysis is sound and argue that their system cannot be compared to most of the previous
ones, saying that sometimes they achieve better results, sometimes worse. Finally, it is worth
noting that this system was presented with fixpoint support already, but no integration with
datatypes, although a possible solution for that has been mentioned.
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3.3.5 Strictness analysis with HORN constraints

Most of the previously shown systems were developed for specifically designed languages,
usually omitting certain features such as datatype support or recursion. Glynn, Stuckey, and
Sulzmann presented a system running in GHC and supporting the full Haskell 98 language [3].
Therefore, it has support for recursion, high-order functions and datatypes, though in the case
of recursive datatypes, only the head element is analysed.

It is based on constraints of a strictness logic system with HORN propositional formulas with
conjunctions and existential quantifications. They also argue their system is correct by showing
the equivalence to that of Burn, Hankin, and Abramsky’s abstract interpretation for first-order
programs.

The system uses Kleene-Mycroft iterations to find the types and constraints for the fix operator,
but an alternative following a similar method as that of Kuo and Mishra is also presented. This
alternative is not as precise but is also correct and seems to be faster.

3.4 Relevance typing

Totality analysis did not focus on strictness but achieved similar results by treating arguments
that were guaranteed to reduce to HNF as safe to be evaluated strictly. Similarly, we can try
to detect which arguments are guaranteed to be used during the evaluation of a function to
its head normal form. Those arguments are then said to be relevant and may be evaluated.
Typically the relevance can be inferred through non-standard type inference, hence the name
“relevance typing”.

Relevance implies strictness, because if the evaluation of a relevant abstraction diverges, it is a
safe approximation to consider it strict as well. However, there are strict functions that are not
relevant. One interesting example is λx → error , which is strict but not relevant [1].

3.4.1 Wright’s head neededness analysis

Wright presented a method that used type inference with enhanced types to implement a form
of relevance analysis called head neededness analysis [16]. These types carry information on the re-
duction behaviour of functions with regards to the arguments it receives. We say that a function
head needs its argument if every reduction path of that function to head normal form contains a
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descendent of the argument. When that happens, we say that it has a type head needed, repre-
sented by⇒. If it is not needed, then we say it is constant and represent it with 6→. For instance,
(λx → x ) M beta reduces to M , meaning that the identity function will reduce to its argument
for any application, so we may give it a type α⇒ α. Alternatively, (λx → y) M beta reduces to
y , so its type is α 6→ β.

Those types are insufficient to represent higher-order functions. The function λf → f x has
types (α 6→ β)⇒ β and (α⇒ β)⇒ β. To solve this issue, the author included arrow types with
variables, represented by→n, where n is a unique index among all variable arrow types. That
function can then be typed as (α→1 β)⇒ β or similar.

In some cases, the function’s type might depend on more than one single arrow variable type.
To be able to represent these functions, the system also extends the function type constructors
with a Boolean algebra, considering any variables instantiated to 6→ as false and all instances of
⇒ as true. We can take the case of function composition, for instance: λx → (f ◦ g) x has a final
type that depends on both f , with type β →1 γ, and g , with type α→2 β. In this case, we would
have the final type α (→1 ∧ →2) γ.

In situations where functions have more than one argument with the same base type, keeping
the original type equality might not lead to the most general type, as they might have different
head neededness. A similar reasoning applies to arrow variables themselves. To counter this
issue, we add fresh arrow and type variables and constraints of the form b1 6 b2. On those
constraints, b1 and b2 can be any arrow expressions, including variable arrow expressions, and
they indicate that b1 is substitution equivalent to b2. We say that b2 is a renaming instance of b1.

Through the use of type inference and constraints, we are able to get the most general type
for expressions such as λx → λy → f (g x ) (g y). Suppose f and g have (regular) types
γ → γ → β and α → γ, respectively. A first attempt at typing our function would result in
f and g having types γ →2 γ →2 β and α →1 γ, respectively, and the final type would be
α (→1 ∧ →2) α (→1 ∧ →3) β. But that assumes both x and y have the same head neededness.
Through the use of constraints and fresh identifiers, however, we can generate the more general
type α′ (→′

1 ∧ →2) α′′ (→′′
1 ∧ →3) β, with constraints such as α →1 γ 6 α′ →′

1 γ′ and
α→1 γ 6 α′′ →′′

1 γ
′′. This allows x and y and their respective applications to g to differ in head

neededness, if necessary, later during type inference.

This inference system also supports polymorphism and recursion through a fixpoint combina-
tor. Furthermore, the author argues that the system has also been extended to support arbitrary
user-defined algebraic datatypes.
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3.4.2 Amtoft’s minimal thunkification

Amtoft bases himself on the work of Wright to develop a system focused converting programs
from call-by-name to call-by-value [17]. We can convert a lazy, call-by-name program to call-by-
value by wrapping every expression in a thunk. This thunk is a function around the expression
that expects a dummy argument. During execution, this argument is passed to the thunk, forc-
ing its evaluation and unwrapping it. The challenge becomes to detect which expressions do
not need to be “thunkified” and “dethunkified” to avoid wasting computation time on those
operations. In effect, this is the same as detecting strictness.

Just like with Wright, this system also has two basic arrow types: →0 for strict applications
and→1 for the general case. Constraints are also used and are of the form >, which is similar
to 6 presented by Wright, and �. These constraints distinguish between arguments on con-
travariant and covariant positions. Arrows in contravariant positions allow us to find a least
assignment to arrows in covariant ones. The details of how to manipulate these constraints
were not presented in the paper itself, however.

This system supports recursion but does not seem to support polymorphic lets or user defined
datatypes. The system is also shown to be correct. Interestingly, the author uses two different
types of recursion, bounded and unbounded, to help prove correctness theorems with regard
to recursion.

3.4.3 Making “stricterness” more relevant

Holdermans and Hage focuses on the issue of implementing strictness analysis in languages
that contain operators for forced strict application, such as Haskell’s seq operator [1]. This is
important because that sort of forced strictness is often used to handle performance issues,
and practical, real world implementation of strictness analysis should be aware of them. They
present an analysis on a language with regular and strict applications, abstractions, if cases,
Booleans, natural numbers, and error . In that language, we can rewrite seq into λx → λy →
((λz → y) • x ), where • represents strict application.

They first present a type-driven call-by-value transformation and show how the system gets ei-
ther unsound and effective, or ineffective and sound when handling strict applications naively.
With that in mind, they develop a type system that has annotations for both demand, repre-
sented by ϕ, and applicativeness, ψ.

Demand and applicativeness annotations are both of either S or L. We can think of those values
as “strict” and “lazy”, or “small” and “big”, respectively, as that is the relation between them:
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S < L. In this type system, arrows are annotated with demands. S→ represent computations that
produce relevant abstractions when evaluated to weak head normal form, whereas L→ represent
terms that may or may not produce relevant abstractions. Also, types on both sides of arrows
are annotated with ψ, with S representing that it is guaranteed to be applied to an argument
and L, that it may or may not be applied to an argument. The final annotated type τ̂ is of the
form:

τ̂ ::= Bool | Nat | τ̂1ψ1 ϕ→ τ̂2
ψ2

Additionally, the result of judgements have types of the form τ̂ (ϕ,ψ), always holding ϕ v ψ.

This system handles an issue mostly ignored in previous work on strictness analysis and that
is quite necessary for practical implementations. However, it is still not suitable for languages
such as Haskell due to the lack of support for type polymorphism, recursion, and algebraic
datatypes. At least for type polymorphism and algebraic datatypes, the authors argue that these
features are orthogonal to the issue they focused on and should not be difficult to implement.

3.5 Summary

Understanding other lines of development may give us a notion on the complexity of the prob-
lem at hand and of issues we might face when developing support for more advanced language
features. Preferably we will support as many features as UHC itself supports, though its archi-
tecture allows us to selectively skip some of the more advanced ones, if necessary.

Other people have already tried to solve the main issue of implementing strictness analysis
in a practical sense in the Utrecht Haskell Compiler. Lokhorst described an implementation
on TyCore, an intermediate typed language for UHC [18]. As far as I know, TyCore is still not
fully implemented and any analysis performed at that stage would have less ordering flexibility
versus one implemented in Core, for which more transformations have already been developed
and implemented.

The most recent work was that of Verburg, which follows the ideas adopted by Holdermans
and Hage with some differences, like the use of counters instead of S and L values for applica-
tiveness annotations. These counters are called saturation and allow easier handling of partial
applications. It still lacks support for some basic Haskell features, such as data structures and
handles only lambda-lifted code. However, as it already has a system and code in UHC, it is an
inspiration for this project.

26 Chapter 3. Strictness Analysis



Chapter 4

The Utrecht Haskell Compiler

The Utrecht Haskell Compiler (UHC) aims to be a full Haskell 98 compliant compiler and was
designed to be extensible and easy to work with. It was announced in its current form on April
of 2009 and has been under development ever since. Although small projects may use it as
main compiler, its architecture makes it more suitable as a compiler for developing experimental
language features [19].

In order to isolate which parts we need to work on, we should know how the compiler is or-
ganized internally. The following sections present the overall UHC architecture and the core
language, which was used for implementing our analysis and transformations, in detail.

4.1 The UHC Architecture

A program compiled with UHC is transformed into several different intermediate languages,
each of which may contain several internal transformations in itself. Compilation steps are
presented in Figure 4.1. The two most basic forms of compilation currently well maintained are
compilation to bytecode for an interpreter and regular compilation to executables. In all cases,
Haskell code is parsed and then converted, in sequence, to Essential Haskell, Core, and GRIN.
At the end of the pipeline, it is then converted to either BC or executable, optionally through
Silly, depending on the selected backend. On Core, GRIN, and Silly there are also a quite a few
internal transformations to simplify and optimize the code.

In more detail, we have the following languages involved in the compiler:
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HS EH Core GRIN

Silly

BC Interpreter

C exe

Figure 4.1: UHC pipeline for a single module.

• Regular Haskell, parsed from the source file.

• Essential Haskell, also called EH. It can be seen as a form of desugared Haskell. Name
resolution, operator fixity and precedence, and name dependency are handled in this step.

• Core language is an untyped, lazy functional language, described more in detail in Sec-
tion 4.2. Most, if not all, of this project will be implemented on this language.

• GRIN, or “Graph Reduction Intermediate Notation”. It represents code in a “state monadic,
first order, strict, functional program” with features to describe laziness. This language al-
lows extracting better call graphs from lazy languages such as Haskell than other popular
representations and is, therefore, well suited to be used before code generation [20].

• Silly, for “Simple Imperative Little Language” is a language that abstracts the impera-
tive functionality of the possible target machines. It contains program control features,
datatypes and primitives for stack manipulation that can be easily translated to low level
languages such as C.

• BC is the bytecode for the UHC interpreter.

Boquist and Johnsson hinted at the possibility of implementing strictness analysis in GRIN di-
rectly [20]. However, it occurs very late in the pipeline and is mostly strict with lazy features.
We believe that Core is better suited for this task as we may more easily experiment with differ-
ent transformation orderings and the language is still lazy by default.

Before explaining Core itself, it is worth studying the use of attribute grammars and the as-
pect/variant concept used for incremental addition of language features in UHC.

4.1.1 Attribute grammars

The function foldr and other fold -like functions are good ways of abstract list traversal opera-
tions in functional programs. More generically, for any datatype, we can define one function
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per constructor and apply those functions where appropriate while traversing it. This set of
functions is called an algebra and they define a semantic of our data structure. The function that
performs the traversal is called a catamorphism.

UUAG is an attribute grammar system that generates Haskell code from a specification contain-
ing the datatype and the desired catamorphism. This specification contains a description of the
datatype we will operate on, the attributes we wish to generate, and semantic rules describing
how those rules are generated. It is written in a language with features that make describing
those catamorphisms much easier and less error prone. Details of that syntax are available in
UUAG’s user manual [21].

The description of datatypes follow mostly what is expected in Haskell, however every con-
structor field must be named so we may mention them directly in the semantic rules later.
The following code describes in UUAG a datatype defined in plain Haskell as data Expr =

EInt Int | Add Expr Expr :

data Expr = EInt value :: Int
| Add a :: Expr b :: Expr

This informs UUAG of the datatype’s constructors and how we may refer to each of the data
fields later, when writing semantic rules. UUAG also has built-in support for some of Haskell’s
most common datatypes, such as Maybe and List , and for type synonyms.

Attributes are values that may flow bottom-up, which we call synthesized, or top-down, called
inherited. They may be summarized values, different trees or even just a transformed tree of
the same type as input. An example would be to describe the result of the evaluation of the
Expr datatype above:

attr Expr syn result :: Int

This means we will have a synthesized attribute called result of type Int .

Finally, semantic rules define how we want to generate the attributes. For generating the result,
for instance, we may use the following rule:

sem Expr | EInt lhs.result = @value
| Add lhs.result = @a.result + @b.result

Here, the @ symbol indicates we are accessing some attribute or field from that particular con-
structor and is only necessary on the right hand side of the attribution. lhs indicates we are
handling some data available on that constructor, in this case, result . We may omit some rules
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on constructors by providing default functions and values. It is also possible to set some at-
tribute properties, such as copy, which just propagates the original values up.

Compilers typically require a lot of parse tree traversals. In fact, each transformation between
(and within) intermediate languages inside the pipeline as described above is a traversal in it-
self. In UHC, traversals are written in UUAG and takes advantage of all these features. Because
of that, UHC’s code is quite easy to work with.

4.1.2 Aspect-oriented architecture

In order to enable a simple incremental development approach in UHC, it was developed with
variants and aspects. Variants are versions that incrementally add support for language features,
starting from simply typed lambda calculus and ending in full Haskell. Aspects are features
that are developed somewhat independently of variants. UHC’s build system allows us to pick
a variant and several aspects and generate a compiler with only those features.

Variants start at 1, with lambda-calculus and type checking and grow until 99 for all Haskell
language features. Numbers 100 and 101 are typically used for testing and release, respectively.
Intermediate numbers add support for datatypes, records, classes, modules, and other features.

Aspects represent features and compiler capabilities that may be enabled or disabled indepen-
dently of variants, except for a possible minimal variant restriction. The two most common
aspects are typing and codegen, responsible for typing and code generation, respectively. This
built-in feature also allows us to isolate our strictness analysis in an aspect of itself, so it may be
enabled without affecting other parts of UHC.

In order to handle all these different variants and aspects, UHC uses a tool called shuffle. It is
responsible for taking chunk files of attribute grammars (.cag) and haskell source (.chs) and a
list of aspects and variants and generate an output from those files containing only the relevant
chunks. Chunks are defined by headers that identify which variants and aspects they refer to.
They may also contain other information such as aliases to be used later and lists of chunks that
should be removed before it is inserted. This is useful when mixing variants or aspects as some
functions or datatype definitions may have to be redefined or expanded in the presence of extra
language features.
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4.2 The Core Language

Core is the most important of UHC’s intermediate languages for this project. It is based on
lambda calculus with all the required features to support Haskell, some of which are only en-
abled in later variants. As code generation is only available from variant 8 onwards, this is the
one we should focus on at the beginning. In simplified terms, it is defined as:

CModule ::= Name CExpr

CExpr ::= Int | Char | String | V ar Name | Tup Tag
| FFI CallConv ForeignEnt Ty

| Lam CBind CExpr | App CExpr CBound
| Case CExpr [CAlt] CExpr | Let Categ [CBind] CExpr

CAlt ::= CAlt CPat CExpr

CPat ::= V ar Name | Int | Char | Con Tag [Fields] | BoolExpr CExpr
CBind ::= Bind Name [CBound]

CBound ::= BBind CMetas CExpr | ... | FFE CallConv ForeignEnt CExpr Ty

The actual language is actually slightly more complex and includes debugging information,
annotations, and other language features such as support for extensible records, depending on
which variant and aspects were selected. UHC makes a distinction between Foreign Function
Interface calls and exports. The former is represented using FFI, the latter through FFE (for
Foreign Function Exports). FFE is only enabled on variants 90 and above, despite being in-
cluded here. The exact abstract syntax is defined in the file src/ehc/Core/AbsSyn.cag, relative
to UHC’s root path.

The Core language is composed of a module, defined by a name and an expression. An expres-
sion may be an int, char, string, variable, tuples or constructors, a FFI call, abstractions, case
distinction and let bindings. The top level expression is typically a sequence of recursive occur-
rences of let bindings defining the top level entities of the module in an appropriate dependency
order.

The Tup constructor represents either a tuple or a datatype constructor, depending on the in-
formation on the Tag data. It is always fully saturated inside the AST, with the datatype con-
structor always wrapped in a function. This way we can have partial applications to datatype
constructors without breaking this saturation constraint. With tuples, Tag does not indicate
arity, as these are defined by the number of consecutive applications inside the wrapping func-
tion.
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The case expression contains the expression to be pattern matched, alternatives, and a default
expression. Alternatives are written in terms of CAlt , which contain patterns and expressions.
These patterns contain, among other possibilities, constructor cases that refer to the same tags
used in Tup.

Finally, Let bindings contain category information indicating whether they are regular, strict or
recursive bindings. On regular and strict bindings we may have a simple binding if we want
to, but mutually recursive let definitions require them all to be available on the same level and,
for that reason, Let has a list of bindings.

4.2.1 Comparison to GHC Core

When reading UHC core, it is interesting to keep in mind how other Haskell compilers behave
with the same input. The obvious choice for comparison is GHC Core, GHC’s intermediate
representation language, given that GHC is the de facto standard Haskell compiler. The current
version of GHC Core is based on system FC , a variation of system F that includes support for
generalized algebraic datatypes (GADTs) and associated types. [22]

Despite their differences, it is still possible to compare the generated intermediate represen-
tation from both compilers to some extent, as long as we take their differences into account.
Because of those roots, and contrary to UHC’s Core, GHC’s is typed and contains big lambdas,
type applications and explicit casts, all of which can usually be safely ignored for our purposes.
Also, all case matching is strict in the scrutinee and that behaviour is used instead of defining
a strict let binding used in UHC [23]. In other cases, they behave quite alike. For instance,
GHC also wraps datatype constructors in functions (however, its considerably more powerful
optimizations might eventually eliminate them).

In general, we will analyse GHC’s behaviour in parallel to our developments without explicitly
mentioning this in our text unless explicitly necessary for clarity.

4.3 Current UHC status

Since its creation in 2009, UHC has been maintained mostly by Atze Dijkstra with occasional
contributions by students in the form of projects. Some examples of previous projects are the
addition of support for LLVM and Javascript back-ends and Lokhorst’s work on TyCore, men-
tioned at the end of Chapter 3.
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Despite containing a few interesting experimental language features, UHC in its current state
is not feature complete enough yet to be able to compile itself and relies on GHC for this. Ad-
ditionally, the experimental and short lived nature of some of its associated projects resulted
in a code base of non-consistent quality, with quite a few incomplete or not well maintained
features. For instance, there is an on going effort to abstract both Core and TyCore through an
interface called AbstractCore, which should be used whenever possible.
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Chapter 5

Approach

We implemented our analysis and designed transformations as tree traversals inside UHC. Core
was used as both source and destination languages and the source files were be added to the di-
rectory src/ehc/Core/Trf, following UHC’s conventions. Transformations and analysis were
designed to be as independent as possible to be added to different files. This made the dis-
tinction between steps explicit and, hopefully, make the code easier to work with and more
reusable.

We followed these steps, in order:

1. Clean up previous work: Prepare code that already works to receive the changes, without
disrupting normal compilation, like cloning the repository, set up the build system to
accept the new aspect, add skeleton code files, and add example files;

2. Build infrastructure: Develop a basic framework with stub functions handling all rules so
that development may be done stepwise;

3. Write first attempt: Implement basic language features to see how things run and which
plan changes have to be performed;

4. Test: Verify that our examples run and work and that no unexpected side effects happen
when the analysis or transformations are activated;

5. Add further functionality: Language features that were skipped on step 3 can then be
developed and tested.
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Given that there were attempts of implementing strictness analysis already and the code is still
available, steps 1 and 2 were composed mostly of code reviewing and expansion. We needed
to make sure the available code was compatible with the changes implemented to the analysis
system.

The actual work, particularly on the first attempt, depended on which features we wished to
implement and support. Roughly speaking, we have three different dimensions in this project:
language features, transformations, and analysis. Defining how precise the analysis will be,
which language constructs we should support, and where and how the transformations should
take place are decisions that are relatively independent.

As transformation are not the focus, they should be quite simple and straightforward and occur
only after analysis has been performed. Analysis precision depends on the features we would
like to implement and language features will be implemented incrementally.

5.1 Analysis

Initially the analysis was as simple and pessimistic as possible and as features were added and
matured, we could increase precision. This means providing results that are as close to the best
valid strictness for the analysed terms as possible. We often lose precision due to termination
or performance considerations, or simply due to the way the algorithm works. Regardless of
those issues, we would like our development to be monotonic in this dimension.

However, to avoid issues later, we should keep in mind some of the issues we may face and
that might affect the development of the basic framework. For instance, we would like to have
the analysis context sensitive so we may use it in non-lambda-lifted code. This gives us more
flexibility on the order of transformations inside the UHC pipeline. Also, we aim to make our
system polyvariant to better handle higher order functions. This contrasts with existing GHC
and UHC monovariant approaches. GHC relies on aggressive inlining to achieve good results
when handling higher order functions, but this feature is not yet available in UHC, making it
particularly dependent on polyvariance for performance gains.

The work of Holdermans and Hage and, more recently, Verburg was used as a base for the
analysis system. However, learning from past experience and incrementing the system, some
major changes were implemented. The first being the already mentioned polyvariance for this
system, along with the context handling to deal with non-lambda-lifted code. Also, Verburg
utilized three different annotations instead of Holdermans and Hage’s two. Of those three,
two were saturation counters in order to deal with partial applications. However, only the
difference between them was needed and, in order to simplify this system, we used the two
annotation approach and relied on careful use of annotations in arrow types to represent partial
applications.
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5.2 Language features

To ensure the project has a usable result, we will have to support at least variant 8, when code
generation is added. Support for further variants will be added later, depending on their com-
plexity, implementation maturity, and availability of our time. As our code relies entirely on
Core, the only syntax changes we should need to worry about when supporting further vari-
ants are on the AbsSyn.cag file mentioned earlier.

Also, in order to isolate the changes introduced by our project from the rest of the compiler’s
functionality, it will all be introduced in an aspect before the code is merged back to the master
development trunk. This approach allows to both reduce the impact of this project on UHC and
will allow later comparisons between code generation and execution with and without these
optimizations.

We do not plan to support every feature of variant 8 immediately. Initially, only Int , Char ,
String , Var , Tup, Lam , and App were supported. This gave us a nice overview to identify
major issues in the overall approach and test for simple bugs in the transformation code. This
is equivalent to step 3 mentioned above.

After testing, we repeated the cycle of adding functionality and then testing to implement more
of the language. In order, they were plain and strict Let , Case , and then recursive Let .

5.3 Validation

In order to validate our results, and as part of the testing processes during development, we
also perform some basic benchmarking. This means checking for changes in code size and
compilation times when comparing UHC compilation with and without our code enabled, as
well as comparing how it behaves at different stages of the UHC pipeline. Additionally, we
should also verify that enabling the analysis and transformations does not alter the meaning of
any program.
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Chapter 6

Analysis

In order to describe the actual analysis system we detail some notation and background for our
system. Just like the system presented by Holdermans and Hage, we were also inspired by
the sub-structural type systems presented by Walker [24] to define our analysis. We define our
system using inference rules that allow us to generate the final judgment, of the form Γ ` e : τ ,
just like mentioned in Section 3.3.

Our presentation begins with the usual underlying type system, which we simplify to contain
only information that may be relevant to us. Later we expand these judgments to carry anno-
tations and restrictions as our problem demands. When reading the rules, one should keep in
mind that relevance information flows backwards, towards the root of the AST.

6.1 Underlying type system

We define an underlying type system as a basis for the analysis. It will be altered to carry
the relevance and applicativeness annotations. It should be based on Haskell’s type system as
this is our source language, but does not need to support all of it due to desugaring and other
simplifications. Our analysis handles code that has already been parsed and type checked by
UHC, so we may safely assume all input is type correct and only contains expressions in the
Core language. The types in our system are represented by the following grammar:

τ ::= () | α | τ → τ | D Tag τn

σ ::= ∀α.σ | τ
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6.1. Underlying type system

Despite being based on Haskell, we do not need to express as much as a regular Haskell pro-
gram can. For instance, class instance constraints are not necessary, as earlier transformations
in the compiler pipeline take care of replacing functions with their instances. Furthermore, we
only care about the function and datatype structure of types and distinguishing between differ-
ent primitive types is not relevant for strictness. So all primitive values share the same type, (),
called unit. For example, a function of type (Int→ Bool)→ Int may have type (()→ ())→ ().

We represent datatypes with a structure called D. With each datatype we associate its Tag
structure and how its type variables are instantiated. The former indicates which datatype it
refers to, while the latter lists the current value of its type variables, if any. Just like with the
core language, we also use this datatype to represent tuples. Also, all tuples share the same
generic Tag but differ in the number and value of the instantiated type variables. Later we will
add information carried on datatypes to handle strictness annotations on datatype constructors.

Our system is polymorphic, so we need to be able to carry type variables, represented by α. For
that, we use type schemes, represented by σ, which may quantify over type variables its inner
type may contain.

As expected, we define a series of ftv functions to retrive free type variables of type schemes
and types:

ftvσ(τ) = ftvτ (τ)

ftvσ(∀α.σ) = ftvσ(σ) \ α
ftvτ (()) = ∅
ftvτ (α) = {α}
ftvτ (τ1 → τ2) = ftvτ (τ1) ∪ ftvτ (τ2)

ftvτ (D Tag τn) =
n⋃
i=1

ftvτ (τi)

6.1.1 Environments

An environment is a mapping of identifiers to type schemes. It can be empty or an extension of
an existing environment, as in:

Γ ::= [ ] | Γ[x 7→ σ ]

We can also write the environment by listing its bindings: [x1 7→ σ1, ..., xn 7→ σn ] is a shorthand
for [ ] [x1 7→ σ1 ] ... [xn 7→ σn ].

We define Γ(x ) as the rightmost type associated with x in the environment Γ and it is not defined
for x not in the domain of Γ, written Dom(Γ). The function ftvΓ(Γ) is the union of the ftvσ of
the rightmost type for all bound identifiers in the domain of Γ.
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6.1.2 Basic language

We develop our project around the Core language, described in Section 4.2. However, in order
to make the description of the type systems easier to work with, we describe them through a
more abstract version of that language. The following language can easily be derived from Core
and is at least as expressive:

e ∈ Exprs Expression
p ∈ Pats Pattern
v ∈ N, Char, String Value
x ∈ Vars Variable identifier

e ::= v | x | Con Tag en | FFI τ
| λx → e | e x | case e of pn → en

| let x = e1 in e2 | let! x = e1 in e2 | letrec xn = en in e

p ::= v | x | Con Tag pn

where e corresponds to CExpr and p represents CPat from Core. Integers, characters, and
strings are stored as thunks to expressions converting a string representation to the actual value,
but their lowest level arguments are always evaluated and their type is always unit so a single
value v represents all three cases. Application has been changed so that we always apply an
expression to a variable. Calling convention to an underlying runtime system via foreign func-
tions should not, at this point, be relevant, so FFI only carries its type. Also, let types have
been split into three different expressions: regular (let), strict (let!), and recursive (letrec). Regu-
lar and strict lets only carry one binding at a time as lists of bindings can be converted to nested
lets but, due to mutually recursive definitions, recursive lets must have a list of bindings. Fi-
nally, the default pattern in case does not have to be written explicitly, as it may be converted
to a pattern with a fresh variable.

In UHC, Tups are the representation for both datatype constructors and tuples. They carry the
same Tag mentioned in Section 6.1 which identifies both the datatype and which constructor
for that datatype it represents, among other information. However, tuples are treated specially
in that their arity is not explicitly defined. Instead, UHC relies on the fact that every use of Tup
occurs fully saturated in the code. To represent Tup, we just use Con with a list of expressions
instead. We still use the Tag element used in Tup as it contains the identifier for the constructor,
its arity (if not a tuple) and type and relevance information for each its fields.

To simplify our examples later, we will often write multiple successive lambdas using a single
λ symbol and infix application as in regular Haskell when it may help readability. Additionally,
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we may use regular lets with lists of bindings to shorten our inference tree. We will also use the
application of functions to expressions without first defining a let binding of the value. Given
our typing rules, presented below, we believe it is clear this should not alter the result while
shortening the display of inference trees significantly and improving readability.

6.1.3 Underlying type system proper

With this background defined, we define the rules shown on Figure 6.1. Most cases are straight-
forward, as they behave as expected in the regular type system, with the difference that every
base type is forced to be ().

Underlying type system Γ `u e : σ

Γ `u v : ()
[u-Val]

Γ `u FFI τ : τ
[u-FFI]

x 6∈ Γ′

Γ[x 7→ σ ]Γ′ `u x : σ
[u-Var]

∀i .1 6 i 6 n : τi = tagTypeu(Tag, τn, i) Γ `u ei : τi

Γ `u Con Tag en :D Tag τn′
[u-Con]

Γ[x 7→ τ2 ] `u e : τ

Γ `u λx → e : τ2 → τ
[u-Lam]

Γ `u e : τ2 → τ Γ `u x : τ2

Γ `u e x : τ
[u-App]

Γ `u e : τ0
∀i .1 6 i 6 n : τ0 `up pi : Γi ΓΓi `u ei : τ

Γ `u case e of pn → en : τ
[u-Case]

Γ `u e1 : σ1 Γ[x 7→ σ1 ] `u e2 : τ2

Γ `u let x = e1 in e2 : τ2
[u-Let]

Γ `u e1 : σ1 Γ[x 7→ σ1 ] `u e2 : τ2

Γ `u let! x = e1 in e2 : τ2
[u-Let!]

∀i .1 6 i 6 n : Γ[x1 7→ τ1, ..., xn 7→ τn ] `u ei : τi
Γ[x1 7→ τ1, ..., xn 7→ τn ] `u e : τ

Γ `u letrec xn = en in e : τ
[u-LetRec]

Γ `u e : σ α 6∈ ftvΓ(Γ)

Γ `u e : ∀α.σ
[u-Gen]

Γ `u e : ∀α.σ
Γ `u e : [α 7→ τ ]σ

[u-Inst]

Figure 6.1: Underlying type system for the relevance analysis.

Rule [u-FFI] assumes the τ stored within FFI is valid and merely extracts it. We define an
auxiliary function tagTypeu : Tag → [τ ]→ N→ τ for [u-Con]. It takes the Tag, list of types and
the index for the field selection that was stored within that constructor so we can properly infer
its type.
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Underlying type system for patterns τ `up p : Γ

() `up v : [ ]
[up-Val]

τ `up x : [x 7→ τ ]
[up-Var]

∀i .1 6 i 6 n : τi = tagTypeu(Tag, τn′, i) τi `up pi : Γi

D Tag τn′ `up Con Tag pn : Γ1 ... Γn
[up-Con]

Figure 6.2: Type system for the pattern language, unannotated.

Rules for cases use an auxiliary environment Γi per pattern. These include the bindings each
pattern introduces so we can properly type the inner expression ei associated with it. To help
with this we add a separate system, the underlying type system for patterns, defined in Fig-
ure 6.2.

There is no distinction between let and let! at this level as strictness does not affect types. Note
that the type for the inner expression x is a σ instead of a τ . This fact, along with the treatment
for σs in [u-Var] and the generalization and instantiation rules [u-Gen] and [u-Inst], allows us to
represent types for polymorphic functions.

The [u-LetRec] rule does not describe in detail how to obtain the bindings as we only worry
about having a consistent system. We also avoid the issue of typing polymorphic recursive
functions by requiring the types for letrec to be τs.

6.2 Relevance for strictness

Holdermans and Hage developed their system by annotating types with demand and appli-
cation information. We follow a similar path in that, in order to detect strictness, we focus on
the uses of bindings in our environments, which we call relevance. We add annotations that
indicate if an identifier is used or not inside the term being analyzed and store that information
in the environment with its type. At the end of the analysis we have a set of accessible bindings,
of which some are known to be relevant, per term of the program.

Relevance depends on both the binding and on the point of the program being analyzed, as the
same binding may have different relevances at different points of the program. Our goal is to
find the highest node in the AST in which a binding is relevant and transform the program to
force its evaluation at that point. To aid in our goal, and also based on Holdermans and Hage,
we use several auxiliary concepts, such as application annotations, containment and context
splitting.

Before presenting our annotations and our annotated type system, we present a series of moti-
vating examples to show, incrementally, why they are necessary and how they fit in.
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6.2.1 Basic idea

Our first example is a simple addition function. Naturally, no one would have to write this, as
any case where f1 might be used, using (+) would suffice. However, it is a nice example to
show some of the basic concepts behind our system.

The input code is as follows:

f1 = λx → λy → x + y

We can clearly see that both x and y are used by the inner function and that it is safe to force
the evaluation of y as soon as it is introduced. A naive approach may also do the same for x .
However, that could be incorrect as we can only say at this point that x is relevant inside the
inner lambda.

For instance, the following transformed f1 is used in a relevant context, but x is not supposed
to be evaluated because it will (incorrectly) cause an error in an otherwise clean terminating
function:

let f1 ′ = λx → let! x ′ = x

in λy → let! y ′ = y in x ′ + y ′

in f1 ′ (error "This fails.") ‘seq ‘ 1

To avoid this issue, Holdermans and Hage use applicativeness and containment. Applicative-
ness propagates information that the function was used (or not used) back to its definition. If it
is not guaranteed to be applied in full, then the applicativeness information that flows back to
the definition of the lambdas triggers a containment of relevance. For instance, the binding for
x found to be relevant inside the inner most abstraction will not be considered relevant between
the lambdas and the transformation presented above is no longer valid.

Verburg [2] developed an alternative with a more complex applicativeness annotation to handle
partial applications properly. It uses two saturation counters that keeps track of how many of
the arguments of a function are passed and how many are still needed. We expand this idea to
be able to deal with polymorphism and higher order functions.
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6.2.2 More complex applicativeness

Given the previously defined notion of relevance, we developed our system to be as precise as
possible. However, the addition of polymorphism, treatment for higher order functions, and
support for user defined datatypes introduces some additional difficulties. Most of these issues
can be observed easily from simple examples, as shown below.

We begin with a simple function defined in a let and used only once:

f2 = λx → let f ′ = λy → x + y

in f ′ 1

We can clearly see that x is relevant in f ′ because it is used inside its definition, in the first line.
Additionally, as we can see that f ′ is used in a relevant context inside f2 because it is used in the
body of the let binding, we know x will also be used and is also relevant inside f2 , although
indirectly.

One could see relevance as the only required attribute. However, as the example below shows,
being in a relevant context is not enough:

f3 = λx → let f ′ = λy → x + y

in f ′ ‘seq ‘ 1

Here, f ′ occurs in a relevant in the body of the let binding, but no arguments are passed to
it. Therefore, f ′ is never reduced beyond WHNF and x ’s value is no longer needed, directly
or indirectly, to calculate the result of f3 . In this case, this means x should not be considered
relevant in the body of the let binding or of f3 .

On account of this, we add applicativeness information. We may try simply having one an-
notation of either “Fully applied” or “Other” (called >, if in a lattice). This apparently solves
some issues, but we then need to be able to properly define what it is to be fully applied. Take
a higher order function, for instance:

const = λx y → x

apply = λf x → f x

f4 = apply const 1

Here, apply is fully applied, but the final type of the application in f4 is still a function. It is
even worse that it returns a partially applied function that is derived from one of its original
parameters. Clearly, this situation requires a more refined handling of applicativeness.
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We initially tried to use a per argument applicativeness annotation. That is, for every argument,
we propagate back the information on whether it had been applied or not. In f4 above we would
be able to say that apply has been fully applied, but const has not.

This notion of applicativeness seemed to be sufficient for a while, but breaks easily with rather
simple higher order functions. Say we have the following expression:

flip = λf y x → f x y

f5 = flip const 1

As we had decided to use annotated arrow types to carry application information, the type of
flip could be (y

1→ x
2→ z )

3→ x
4→ y

5→ z , where numbers identify the application. If we are not
careful, we may arrive at the conclusion that const ’s second argument has been applied inside
flip by making 1 = 5 and 2 = 4. This is obviously not the case, however, as no application takes
place until flip is fully saturated.

One possibility is to always go for the safe assumption and consider them as not applied. This
leads to an unacceptable loss of precision, given that higher order functions are heavily used
in Haskell. To avoid that, we redesigned the applicativeness annotations to include informa-
tion of related functions. We indicate at every arrow type, which other functions may also be
considered (partially or fully) applied once the current one is.

In our new setting, every applicativeness annotation is followed by a set of related applica-
tiveness identifiers. Once we receive an extra argument, the arrow identifiers and its related
identifiers are considered applied. For instance, in the case above we could say that once we
pass the argument for arrow 4, nothing else is considered applied. However, we consider the
abstractions indicated by {1, 2} to also be applied once arrow 5 receives its argument. We will
no longer conclude that const has been applied at all in f5 but we still maintain the information
that we can reach that conclusion once an extra parameter is provided.

6.2.3 Polymorphism and polyvariance

One of the major differences between our system and that of Holdermans and Hage is that we
have to support everything Haskell does in order to properly integrate our system in UHC.
This means that polymorphism has to be handled. Verburg did so with a monovariant system.
We consider a polyvariant version to greatly increase accuracy when handling polymorphism,
although it also benefits us in some monomorphic functions.

Polyvariance is to annotations what polymorphism is to types. Whenever we bind a function
we may also extend its annotations to depend on the instantiation we perform. As we use two
types of annotations, it makes sense to consider universally quantifying on both annotations:
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1. Relevance is a property local to the use of a binding. The main advantage in having
polyvariant relevance is to be able to propagate relevance property through functions.

For instance, in apply id , the relevance for the final argument is instantiated to that of id , so we
can conclude the final argument of apply in this case will be relevant. Similarly, apply (const 1)

gets its final relevance instantiated to “not relevant”, just like const ’s second parameter.

2. Application is a property of the definition of the binding. Polyvariant application allows
us to handle different higher order function parameters with precision.

A program that uses both apply id and apply (const 1) will be able to properly annotate the
application of both id and const (in its first argument only, so far) even if they are only applied
through apply .

The code below presents an example on how polyvariance my increase precision:

f6 = λy → let apply = λf x → f x

addy = λx → x + y

in apply addy 1

As we apply apply to addy , the “unleashed” annotations are that of addy because apply ’s first
argument is applied once within its definition. We also observe that apply is fully saturated and
so the “unleashed” annotation tells us that addy was also fully applied. Because of that, y may
be considered relevant and forced to be evaluated before the body of the let and, in fact, before
f6 is even called.

6.2.4 Context splitting

In some situations, we need to get information from two or more different branches of the AST
and merge them. In the case below we can see these in action:

f6 = λx y → let f ′ = λm → m + y

in case x of

True → f ′ 1

False → f ′ ‘seq ‘ 1

For bindings to be relevant, they need to occur in the scrutinee, because it is needed to pick the
proper pattern, or in all patterns at once, so we can guarantee it will be needed. Our function
f6 uses x in a relevant way, as it is the scrutinee of the case in the body of the let. However, y is
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not relevant. It is used in f ′ and this, in its turn, is used on both case alternatives, but only fully
applied in one of them.1

Context splitting is an operation that represents this notion that the bindings with the annota-
tions for each sub term are somehow extracted from the final environment. That is, we “split”
the final environment into two or more environments, all of which contain the same bindings,
but possibly with differing annotations, to perform type inference for each of the sub terms.
Another way of seeing this is that context splitting are guarantees that bindings are relevant or
> in either or both sides, depending on the type of split.

Previous work used only one form of context splitting. We expanded this to two: one that
allows joins and another that allows meets between annotations in the occurring bindings. For
the case rule in f6 above, for instance, we need both to represent that bindings are relevant if
they are relevant on either the scrutinee or on both patterns.

6.3 Annotations

Holdermans and Hage used two variables to represent their demand and application annota-
tions, ϕ and ψ, with two values each: S and L. Later, Verburg used this system as a basis but
moved applicativeness to a pair of saturation counters. These counters keep track of how many
arguments are required until the function can be reduced and how many have been applied so
far. The original system system was developed in a rather limited language, with no datatypes,
polymorphism or even let bindings. The system of Verburg supported most of UHC Core, but
was still monovariant, as well as working only on lambda-lifted code.

We tackle the issue of strictness similarly, but in a polyvariant way and with some limited form
of polymorphism support. Our focus is still on detecting which terms are relevant and at which
nodes of the AST. All variables are considered relevant initially, but are changed to non-relevant
(or rather, >) at points where we can no longer guarantee they are still relevant. This may
happen when joining or containing relevance annotations.

We annotate all types with relevance information and, in the case of functions, we also add
relevance information per argument. The former propagate from the positions where they are
used back to their definition in a backwards fashion, whereas the latter propagate from the
definition of those functions to their uses. Relevance on types and on function arguments can
be eitherR or>, for Relevant and Top, respectively. These are equivalent to S and L as presented
by Holdermans and Hage, but renamed to more closely represent their intended meaning. We
use β to represent annotation variables, and ϕv to represent values.

1And these alternatives cover all cases for the Boolean datatype. But even if it did not, we could arguably ignore
undefined alternatives as those diverge anyways. Diverging before a pattern match that would fail changes the message
error, but not necessarily the expected behavior for the language.
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ϕ ::= β | ϕv
ϕv ::= R | >

Terms that have relevance annotation R are those that are guaranteed to have their evaluation
demanded by the program on all possible execution paths from the point where that annotation
is observed. If its annotation is >, on the other hand, we are unable to provide such guarantee.

We have that R v > or, more generally, for any ϕ, we have that R v ϕ and ϕ v > hold. Similar
to how Holdermans and Hage described a lattice with S and L, we say that (ϕ,v) forms a lattice
with R and > as least and greater elements and joins and meets defined by:

R t ϕ = ϕ R u ϕ = R

> t ϕ = > > u ϕ = ϕ

The annotations per argument are written on arrows. It is used to indicate what is the expected
behavior inside that function: when an arrow type has relevance annotation set to R, we know
that that argument is going to be used. If its value is >, on the other hand, it may be the case
that it is not used, only used under certain circumstances, but not all, or we do not have enough
information to say either way.

One of the main characteristics of the systems we base ours on is the notion of containment. It
will be explained further in detail in Section 6.4.5 below, but for now, we present an intuition
behind this concept. At every abstraction, we detect all relevances local to the body of that
abstraction. We may only allow those relevances to “leak” to outside the lambda, however, if
we detect that the function is applied in a relevant context. To do so while handling partial ap-
plication, Verburg used two saturation counters as annotations on every variable. After some
considerations, we decided to use a different approach in order to properly encode dependen-
cies between applicativeness of higher order functions.

We first define a saturation, or applicativeness, annotation. It indicates whether, on all its exe-
cution paths, a particular arrow is fully applied. We call its values A and >, short for Applied
and Top, use γ as its variable, and ψv to represent values.

ψ ::= γ | ψv
ψv ::= A | >
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Just as with R and > above, they have the relation A v >, and A v ψ and ψ v > hold for all
ψ. Like before, (ψ,v) forms a lattice with A and > as least and greater elements and joins and
meets defined by:

A t ψ = ψ A u ψ = A

> t ψ = > > u ψ = ψ

On every arrow type we add a unique γ for identification purposes. We also add a set of re-
lated γs that are affected indirectly when the function of the current arrow is applied. That is,
this related set indicates which other functions will be applied due to the fact that the current
function was applied. We call γ sets ρ.

6.3.1 Annotated types and type environments

With these annotations defined can update our definitions for types and related concepts. For
instance, our environment needs to map from identifiers to more complex type schemes, with
annotations, and generalization over annotation variables. We call our new variants hat variants
of our previously defined variables: τ̂ , σ̂ and Γ̂. We write Γ̂ ` e : σ̂ ϕ for the judgment of an
expression e under type environment Γ̂ with type σ̂, and relevance annotation ϕ.

Some of our changes are rather simple: references to τ and σ are replaced by τ̂ and σ̂, respec-
tively. We also add ϕ and ψ annotations, as well as related sets ρ to arrow types inside τ̂ ,
following the motivation described in Section 6.3 and add quantifications for annotation vari-
ables to type schemes. Finally, environments bind to annotated type schemes, allowing us to
set the relevance for the entire binding. We define τ̂ and Γ̂ as:

τ̂ ::= () | α | τ̂ (ϕ,γ,ρ)→ τ̂ | D̂ Tag τ̂n

σ̂ ::= ∀α.σ̂ | ∀β.σ̂ | ∀γ.σ̂ | τ̂
Γ̂ ::= [ ] | Γ̂[x 7→ σ̂ ϕ ]

We can also write lists of bindings inside [ ] to describe annotated type environments, just like
with regular type environments. We also define the operator \where Γ̂\x refers to the environ-
ment Γ̂ with all bindings for x removed. More generally, Γ̂1 \ Γ̂2 is Γ̂1 removed of all variables
that occur in Γ̂2.

We bring special attention to the fact that ψ annotations are added to arrows as γ only. In
practice, we only care if those identifiers occur in ρ (in which case they have been applied and
are A) or not (>). That is, for every γ, if γ ∈ ρ, then γ may be considered A. Otherwise, it is
considered >.
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The ρ in arrows indicate γs of related arrows that should be considered applied whenever the
arrow containing the ρ is applied. To see why this might be necessary, we may see the apply
function written in two different ways:

The first is λf x y = f x y , of type:

∀α1, α2, α3, β1, β2, γ1, γ2.(α1
(β1,γ1,∅)→ α2

(β2,γ2,∅)→ α3)
(R,γ3,∅)→ α1

(β1,γ4,∅)→ α2
(β2,γ5,{γ1,γ2})→ α3

Only once it has been fully applied we may consider the first argument, with applicativeness
variables γ1 and γ2, to be also applied.

However, in the second version:

λf x = let f ′ = f x

in λy → f ′ y

It has type:

∀α1, α2, α3, β1, β2, γ1, γ2.(α1
(β1,γ1,∅)→ α2

(β2,γ2,∅)→ α3)
(R,γ3,∅)→ α1

(β1,γ4,{γ1})→ α2
(β2,γ5,{γ2})→ α3

And here, if it has been applied up to the second argument, we may already consider the func-
tion f to be also partially applied up to its first argument.

Join and meet

Additionally, we define joins and meets for annotated types, type schemes and type environ-
ments. This allows us to handle large expressions without poisoning environments. Let� range
over {u,t}, we define its application structurally:

τ̂


() � () = ()

τ̂1
(ϕ1,ψ1,ρ1)→ τ̂ ′1 � τ̂2

(ϕ2,ψ2,ρ2)→ τ̂ ′2 = (τ̂1�τ̂2)
(ϕ1�ϕ2,ψ1�ψ2,ρ1�ρ2)→ (τ̂ ′1�τ̂

′
2)

D̂ Tag τ̂n � D̂ Tag τ̂ ′n = D̂ Tag (τ̂1�τ̂ ′1 ... τ̂n�τ̂
′
n)

σ̂


∀α.σ̂1 � ∀α.σ̂2 = ∀α.σ̂1�σ̂2

∀β.σ̂1 � ∀β.σ̂2 = ∀β.σ̂1�σ̂2

∀γ.σ̂1 � ∀γ.σ̂2 = ∀γ.σ̂1�σ̂2

Γ̂

{
[ ] � [ ] = [ ]

Γ̂1[x 7→ σ̂1
ϕ1 ] � Γ̂2[x 7→ σ̂2

ϕ2 ] = (Γ̂1�Γ̂2)[x 7→ (σ̂1�σ̂2) (ϕ1�ϕ2) ]

In the rules for σ̂ we assume both σ̂1 and σ̂2 are equal with regards to their quantified variables.
That is, quantified αs, βs, and γs are the same on both sides.
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As for γ sets, we define joins and meets as unions and intersections:

ρ1 t ρ2 = ρ1 ∪ ρ2 ρ1 u ρ2 = ρ1 ∩ ρ2

Context splitting

Just like with Holdermans and Hage, we also define context splitting operations. Whereas they
provided only one splitting operator, �, we define two: �u and �t. These allow us to represent
that a particular term’s annotation depends on the combination of two or more sub-analyses.
The first operator represents the notion that the annotation is determined by at least one of the
environments while the second represents that it is determined by its detected relevance on
both environments.

Again, let � range over {u,t}, we define them as:

[ ] �� [ ] = [ ]

Γ̂1[x 7→ σ̂ ϕ1 ] �� Γ̂2[x 7→ σ̂ ϕ2 ] = (Γ̂1 �� Γ̂2) [x 7→ σ̂ (ϕ1�ϕ2) ]

That is, we allow environments to be split into two copies as long as the resulting type anno-
tations are compatible with the resulting annotations with the appropriate � operator. Aside
from depending on this operator, we differ from previous work in that we define context split-
ting while allowing the presence of type quantifiers.

Free variables

As used in the underlying type system, we also have to define free variable functions for our
annotated variables. However, this becomes a bit more involved since we also have to consider
both annotation variables. Besides free type variables (ftv ), we also define functions for free ϕ
variables (fvϕ), and free ψ variables (fvψ). The functions ftv behaves mostly as defined earlier,
except for the obvious change to the hatted variables and two extra cases in σ̂ to ignore β and γ
variables.
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The definition for ftv , fvϕ, and fvψ are given below.

ftvσ̂(τ̂) = ftvτ̂ (τ̂)

ftvσ̂(∀α.σ̂) = ftvσ̂(σ̂) \ α
ftvσ̂(∀β.σ̂) = ftvσ̂(σ̂)

ftvσ̂(∀γ.σ̂) = ftvσ̂(σ̂)

ftvτ̂ (()) = ∅
ftvτ̂ (α) = {α}
ftvτ̂ (τ̂1 → τ̂2) = ftvτ̂ (τ̂1) ∪ ftvτ̂ (τ̂2)

ftvτ̂ (D̂ Tag τ̂n) =
n⋃
i=1

ftvτ̂ (τ̂i)

fvϕσ̂(τ̂) = fvϕτ̂ (τ̂)

fvϕσ̂(∀α.σ̂) = fvϕσ̂(σ̂)

fvϕσ̂(∀β.σ̂) = fvϕσ̂(σ̂) \ β
fvϕσ̂(∀γ.σ̂) = fvϕσ̂(σ̂)

fvϕτ̂ (()) = ∅
fvϕτ̂ (α) = ∅

fvϕτ̂ (τ̂1
(ϕ, , )→ τ̂2) = {ϕ} ∪ fvϕτ̂ (τ̂1) ∪ fvϕτ̂ (τ̂2)

fvϕτ̂ (D̂ Tag τ̂n) =
n⋃
i=1

fvϕτ̂ (τ̂i)

fvψσ̂ (τ̂) = fvψτ̂ (τ̂)

fvψσ̂ (∀α.σ̂) = fvψσ̂ (σ̂)

fvψσ̂ (∀β.σ̂) = fvψσ̂ (σ̂)

fvψσ̂ (∀γ.σ̂) = fvψσ̂ (σ̂) \ γ
fvψτ̂ (()) = ∅
fvψτ̂ (α) = ∅

fvψτ̂ (τ̂1
( ,γ,ρ)→ τ̂2) = {γ} ∪ ρ ∪ fvψτ̂ (τ̂1) ∪ fvψτ̂ (τ̂2)

fvψτ̂ (D̂ Tag τ̂n) =
n⋃
i=1

fvψτ̂ (τ̂i)

As with ftvΓ before, we define ftvΓ̂ (fvϕ
Γ̂

, fvψ
Γ̂

) as the union of ftvσ̂ (fvϕσ̂ , fvψσ̂ ) for all bindings
in Γ̂.

6.4 Relevance system

Given these definitions, we can alter the type system in Figure 6.1 and Figure 6.2 to include
annotations. We need to be careful to maintain consistency throughout the system while still
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being able to detect relevance whenever possible. That is, we do not add any rules that would
allow the system to be inconsistent and we try to avoid simplifications whenever possible to
get more precise results. On top of that, we still need to add rules to handle polymorphism,
polyvariance, and subsumption, and any necessary auxiliary functions. All these definitions
are given below.

6.4.1 Values

The first rule, for values, is quite straightforward:

Γ̂, ∅ ` v : () ϕ
[a-Val]

Values may be considered relevant or not, so we do not specify any particular ϕ. As expected,
the type is unit.

6.4.2 FFI

Foreign function interfaces carry their own types around and they are immutable. In order to
have them consistent with our system, this type has to be annotated. As no further informa-
tion is provided, we just annotate this carried type with safe annotation values, that is, set all
annotations to >.

To achieve all that, we define an auxiliary function, annFFI : τ → τ̂ :

annFFI (τ) =

{
annFFI (τ1)

(>,>,∅)→ annFFI (τ2) , if τ ≡ τ1 → τ2

() , otherwise

The rule using that function to type a FFI term becomes:

τ̂ = annFFI (τ)

Γ̂, ∅ ` FFI τ : τ̂ ϕ
[a-FFI]

The use of a FFI may still be relevant, even if the type for that FFI call is not. Because of
this, we do not restrict the return type annotation and leave it represented by ϕ.
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6.4.3 Variables

The rule for variables types a variable that must have a binding defined in the type environment.
We also have to guarantee that, since the variable has appeared, it should be considered (locally)
relevant. This is encoded by reading the binding inside the environment directly. Both this
binding and the resulting type have to have the same annotations.

x 6∈ Γ̂′

Γ̂[x 7→ σ̂ R ]Γ̂′, ∅ ` x : σ̂ R
[a-Var]

This way, the relevance annotations are shared between all uses of the same variable binding.
Should x be a generalized type, we can expect instantiation rules to occur after [a-Var] in the
derivation tree without affecting the binding relevance information.

6.4.4 Datatypes

Datatype constructors uses the same ideas we used for the unannotated version. We also use
a tagType function to retrieve the type for each field. However, we alter it so it will also return
the strictness annotation value of the requested field, using the default > when it is absent. Its
new type then becomes tagType : Tag → [ τ̂ ]→ N→ τ̂ ϕ. We then use that annotation and type
when analyzing each field.

Note that constructors might not be in a context with enough type information for the datatype.
The resulting type might contain variables that need to be quantified. However, this step is left
for a later application of the generalization rules.

∀i .1 6 i 6 n : τ̂i
ϕi = tagType(Tag, τ̂n′ , i) Γ̂, ρi ` ei : τ̂i

ϕi

Γ̂,
n⋃
i=1

ρi ` Con Tag en : D̂ Tag τ̂n′
ϕ

[a-Con]

6.4.5 Abstractions

Much like in the original, unannotated system, we require a lambda term to be properly typed
based on how its inner expression may be typed within the environment extended with a bind-
ing for the lambda variable. The issue arises when handling the propagation of annotations,
whenever necessary.
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Containment ϕ I Γ̂

ϕ I [ ]

R I Γ̂

R I Γ̂[x 7→ σ̂ ϕ ]

> I Γ̂

> I Γ̂[x 7→ σ̂ > ]

Figure 6.3: Containment rules for environments.

We make the ϕ2 annotation from the variable x to be the arrow annotation in the final value. If
the term is found to be relevant or not within the expression, then the arrow annotation should
carry that information forward. We always consider its inner expression e to be relevant so its
annotation is set to R to reflect this and allow strictness local to the expression to be detected.

At this point we should also be careful to contain demand annotations detected in the term e .
That is, unless the function has been fully applied in a relevant context, we do not wish the
environment Γ̂ to carry those relevances outside this lambda. To detect if the function has been
applied, we can simply check if the local γ has been inserted into the ρ environment. To perform
the containment of relevances, we use a containment operator I, defined in Figure 6.3. It is
similar to the ones used in previous work by Holdermans and Hage and works by allowing the
environment to be populated with types annotated with safe relevance information with regard
to the input demand and applicativeness annotations.

Using all these ideas, the rules for dealing with lambda abstractions becomes:

> I Γ̂ Γ̂[x 7→ τ̂2
ϕ2 ], ρ ∪ ρ2 ` e : τ̂ R

Γ̂, ρ ` λx → e : τ̂2
(ϕ2,γ,ρ2)→ τ̂ ϕ

[a-Lam]

γ ∈ ρ ϕ I Γ̂ Γ̂[x 7→ τ̂2
ϕ2 ], ρ ∪ ρ2 ` e : τ̂ R

Γ̂, ρ ` λx → e : τ̂2
(ϕ2,γ,ρ2)→ τ̂ ϕ

[a-LamApp]

6.4.6 Application

During application we have to match the arrow strictness with the argument. The other anno-
tations are used in the expression e . In the conclusion we combine both environments used to
type e and x . We use the operator �u to do so, as it suffices for any variable to be relevant in one
sub-expression of an application for it to be relevant for the entire expression.
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Type system for patterns σ̂ `p p : Γ̂

() `p v : [ ]
[p-Val]

τ̂ ϕ `p x : [x 7→ τ̂ ϕ ]
[p-Var]

∀i .1 6 i 6 n : τ̂i
ϕi = tagType(Tag, τ̂n′ , i) τ̂i

ϕi `p pi : Γ̂i

D̂ Tag τ̂n′
ϕ `p Con Tag pn : Γ̂1 ... Γ̂n

[p-Con]

Figure 6.4: Type system for the pattern language, annotated.

Γ̂1, ρ1 ` e : τ̂2
(ϕ2,γ2,ρ)→ τ̂ ϕ Γ̂2, ρ2 ` x : τ̂2

ϕ2

Γ̂1 �u Γ̂2, ρ ∪ {γ2} ∪ ρ1 ∪ ρ2 ` e x : τ̂ ϕ
[a-App]

We also add the arrow application identifier γ2 to the ρ set. This is the only way γs may be
inserted into ρs, while the rule [a-LamApp] above removes it from the ρ set, which has to be
empty at every leaf node. Having a single point of insertion and a single point of removal gives
us the guarantee that no non-applied function is considered applied incorrectly.

6.4.7 Case

The case rule begins with type checking the scrutinee. This should always be done in a strict
setting, so its relevance is set toR. Also, every pattern expression is analyzed locally as relevant
so we may find local strictness information, similar to how we do in abstractions. Instead of
using containment, however, we use context splitting in the conclusion to guarantee that only
expressions that are relevant in all patterns or in the scrutinee may be considered relevant inside
this expression.

We also define an auxiliary typing system, just like we did in the previous system. It is called
`p and is defined in Figure 6.4. With it, we generate the necessary bindings from each pattern
which are then used to type ei in an environment called Γ̂′

i. For each alternative we also get a
split of the original environment, which we call Γ̂i. The concatenation of Γ̂i and Γ̂′

i is then used
to analyze the expression.

Γ̂, ρ ` e : τ̂0
R ∀i .1 6 i 6 n : τ̂0

ϕ `p pi : Γ̂′
i Γ̂iΓ̂

′
i, ρi ` ei : τ̂ R

Γ̂ �u (Γ̂1 �t ... �t Γ̂n), ρ ∪
(

n⋂
i=1

ρi

)
` case e of pn → en : τ̂ ϕ

[a-Case]
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6.4.8 Let bindings

The previously defined rules did not touch three important Haskell aspects: polymorphism,
strict application and recursion. We introduce them by carefully designing annotated rules for
the three different let cases.

Regular let

The first let, the simplest one, introduces polymorphism. Just like in our unannotated version,
we also need to add instantiation and generalization rules. As expected, we use the generaliza-
tion rule when adding a new binding. To accommodate that, we use a σ̂ instead of specifying an
annotated τ̂ explicitly as the type for e1. Otherwise we would not be able to have polymorphic
and polyvariant types for x . Later, the type for every occurrence of x inside e2 is instantiated as
expected.

Γ̂, ρ1 ` e1 : σ̂1
ϕ1 Γ̂[x 7→ σ̂1

ϕ1 ], ρ1 ∪ ρ2 ` e2 : τ̂2
ϕ

Γ̂, ρ2 ` let x = e1 in e2 : τ̂2
ϕ

[a-Let]

Since we need to represent three different types of quantifiable variables, we add three different
generalization rules. All work similarly and differ only in the kind of variable and the use of
the appropriate free variable function.

Γ̂, ρ ` e1 : σ̂ ϕ α 6∈ ftvΓ̂(Γ̂)

Γ̂, ρ ` e : ∀α.σ̂ ϕ
[a-Gen]

Γ̂, ρ ` e1 : σ̂ ϕ β 6∈ fvϕ
Γ̂

(Γ̂)

Γ̂, ρ ` e : ∀β.σ̂ ϕ
[a-GenRel]

Γ̂, ρ ` e1 : σ̂ ϕ γ 6∈ fvψ
Γ̂

(Γ̂)

Γ̂, ρ ` e : ∀γ.σ̂ ϕ
[a-GenApp]

Similarly, we have three different types of instantiation.

Γ̂, ρ ` e : ∀α.σ̂ ϕ

Γ̂, ρ ` e : [α 7→ τ̂ ]σ̂ ϕ
[a-Inst]
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Γ̂, ρ ` e : ∀β.σ̂ ϕ

Γ̂, ρ ` e : [β 7→ ϕ′ ]σ̂ ϕ
[a-InstRel]

Γ̂, ρ ` e : ∀γ.σ̂ ϕ

Γ̂, ρ ` e : [γ 7→ ψ ]σ̂ ϕ
[a-InstApp]

The fresh τ̂ that is instantiated is unified with other information obtained from analyzing the
use of the polymorphic variable x inside the body of e for each of its uses. Similarly, the same
happens to the fresh ϕ. They get instantiated to fresh names with unknown value and, depend-
ing on the necessary meets and joins with other variables and values, we are able to define safe,
and hopefully accurate, values.

Strict let

For the strict let we use the same rule as the regular one with the difference that we have to
always infer the relevances in e1 in a relevant context, so we force it to be R. However, the
binding for x may still have any relevance, as it can be unused or even used in non-relevant
contexts inside e2. The rule below indicates that.

Γ̂, ρ1 ` e1 : σ̂1
R Γ̂[x 7→ σ̂1

ϕ1 ], ρ1 ∪ ρ2 ` e2 : τ̂2
ϕ

Γ̂, ρ2 ` let! x = e1 in e2 : τ̂2
ϕ

[a-Let!]

Recursive let

Recursion, at this point, is let monovariant and monomorphic to simplify the rest of the rules
for our system. Polyvariant recursion would require proving that the fixed point of the analysis
can always be reached, overly complicating our system.

∀i .1 6 i 6 n : Γ̂[x1 7→ τ̂1
ϕ1 , ..., xn 7→ τ̂n

ϕn ], ρi ` ei : τ̂i
ϕi

Γ̂[x1 7→ τ̂1
ϕ1 , ..., xn 7→ τ̂n

ϕn ], ρ ∪
(

n⋃
i=1

ρi

)
` e : τ̂ ϕ

Γ̂, ρ ` letrec xn = en in e : τ̂ ϕ
[a-LetRec]
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6.4.9 Subsumption

One extra property is the subsumption rules for both relevance and applicativeness. These come
directly from the idea that ϕ v > and ψ v >, so replacing either variable with its respective >
should be safe.

Γ̂, ρ 7→ e : σ̂ϕ

Γ̂, ρ 7→ e : [ϕ′ 7→ >](σ̂ϕ)
[a-SubRel]

Γ̂, ρ 7→ e : σ̂ϕ

Γ̂, ρ 7→ e : [ψ 7→ >]σ̂ϕ
[a-SubApp]

6.4.10 Overview

For a quick review of the entire system, we present all judgment rules at once in Figure 6.5.
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Annotated type system Γ̂ ` e : σ̂

Γ̂, ∅ ` v : () ϕ
[a-Val]

τ̂ = annFFI (τ)

Γ̂, ∅ ` FFI τ : τ̂ ϕ
[a-FFI]

x 6∈ Γ̂′

Γ̂[x 7→ σ̂ R ]Γ̂′, ∅ ` x : σ̂ R
[a-Var]

∀i .1 6 i 6 n : τ̂i
ϕi = tagType(Tag, τ̂n′ , i) Γ̂, ρi ` ei : τ̂i

ϕi

Γ̂,
n⋃
i=1

ρi ` Con Tag en : D̂ Tag τ̂n′
ϕ

[a-Con]

> I Γ̂ Γ̂[x 7→ τ̂2
ϕ2 ], ρ ∪ ρ2 ` e : τ̂ R

Γ̂, ρ ` λx → e : τ̂2
(ϕ2,γ,ρ2)→ τ̂ ϕ

[a-Lam]

γ ∈ ρ ϕ I Γ̂ Γ̂[x 7→ τ̂2
ϕ2 ], ρ ∪ ρ2 ` e : τ̂ R

Γ̂, ρ ` λx → e : τ̂2
(ϕ2,γ,ρ2)→ τ̂ ϕ

[a-LamApp]

Γ̂1, ρ1 ` e : τ̂2
(ϕ2,γ2,ρ)→ τ̂ ϕ Γ̂2, ρ2 ` x : τ̂2

ϕ2

Γ̂1 �u Γ̂2, ρ ∪ {γ2} ∪ ρ1 ∪ ρ2 ` e x : τ̂ ϕ
[a-App]

Γ̂, ρ ` e : τ̂0
R ∀i .1 6 i 6 n : τ̂0

ϕ `p pi : Γ̂′
i Γ̂iΓ̂

′
i, ρi ` ei : τ̂ R

Γ̂ �u (Γ̂1 �t ... �t Γ̂n), ρ ∪
(

n⋂
i=1

ρi

)
` case e of pn → en : τ̂ ϕ

[a-Case]

Γ̂, ρ1 ` e1 : σ̂1
ϕ1 Γ̂[x 7→ σ̂1

ϕ1 ], ρ1 ∪ ρ2 ` e2 : τ̂2
ϕ

Γ̂, ρ2 ` let x = e1 in e2 : τ̂2
ϕ

[a-Let]

Γ̂, ρ1 ` e1 : σ̂1
R Γ̂[x 7→ σ̂1

ϕ1 ], ρ1 ∪ ρ2 ` e2 : τ̂2
ϕ

Γ̂, ρ2 ` let! x = e1 in e2 : τ̂2
ϕ

[a-Let!]

∀i .1 6 i 6 n : Γ̂[x1 7→ τ̂1
ϕ1 , ..., xn 7→ τ̂n

ϕn ], ρi ` ei : τ̂i
ϕi

Γ̂[x1 7→ τ̂1
ϕ1 , ..., xn 7→ τ̂n

ϕn ], ρ ∪
(

n⋃
i=1

ρi

)
` e : τ̂ ϕ

Γ̂, ρ ` letrec xn = en in e : τ̂ ϕ
[a-LetRec]

Γ̂, ρ ` e1 : σ̂ ϕ α 6∈ ftvΓ̂(Γ̂)

Γ̂, ρ ` e : ∀α.σ̂ ϕ
[a-Gen]

Γ̂, ρ ` e : ∀α.σ̂ ϕ

Γ̂, ρ ` e : [α 7→ τ̂ ]σ̂ ϕ
[a-Inst]

Γ̂, ρ ` e1 : σ̂ ϕ β 6∈ fvϕ
Γ̂

(Γ̂)

Γ̂, ρ ` e : ∀β.σ̂ ϕ
[a-GenRel]

Γ̂, ρ ` e : ∀β.σ̂ ϕ

Γ̂, ρ ` e : [β 7→ ϕ′ ]σ̂ ϕ
[a-InstRel]

Γ̂, ρ ` e1 : σ̂ ϕ γ 6∈ fvψ
Γ̂

(Γ̂)

Γ̂, ρ ` e : ∀γ.σ̂ ϕ
[a-GenApp]

Γ̂, ρ ` e : ∀γ.σ̂ ϕ

Γ̂, ρ ` e : [γ 7→ ψ ]σ̂ ϕ
[a-InstApp]

Γ̂, ρ 7→ e : σ̂ϕ

Γ̂, ρ 7→ e : [ϕ′ 7→ > ](σ̂ϕ)
[a-SubRel]

Γ̂, ρ 7→ e : σ̂ϕ

Γ̂, ρ 7→ e : [ψ 7→ >]σ̂ϕ
[a-SubApp]

Figure 6.5: Annotated type system for the relevance analysis.
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Chapter 7

Algorithm

Using the system presented in the previous chapter, we identified which values and variables
are needed at each point in our program’s syntax tree to calculate binding relevance. With
that information we are able to construct an algorithm in a Haskell like language in a syntax
directed way. This fits nicely into UHC’s use of attribute grammars to describe transformations
in Core, making the implementation rather straightforward. We also used the W type inference
algorithm system as a starting point to make the implementation easier to write, and work with.

In this chapter, we will present the implementation of some of the simpler rules in Section 7.1.
Section 7.2 describes the idea behind our unification algorithm for annotated types and how it
differs from the simpler versions. Sections 7.3, 7.4, and 7.5 describe our handling of construc-
tors, case pattern matching and let bindings, completing the support for our base language.

7.1 Simple rules

We consider simple rules to be those required for the basic definition of a generic lambda calcu-
lus based language. Therefore, it has to include variables, abstractions and applications. Given
their relative simplicity, we also add values and FFIs to this list. The latter, despite being a
rather complex language feature, has a rather simple and safe type inferred from the unanno-
tated type provided by the Core language itself and should be simple to implement. Figure 7.1
shows rules for type inference of the aforementioned rules along with the type signature for the
function performing the inference.
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7.1. Simple rules

W :: (Γ̂, ρ, ϕ, e)→ (τ̂ ,Subst, ρ, Γ̂)

W(Γ̂, ρ, ϕ, v) = ((), id , ∅, Γ̂)

W(Γ̂, ρ, ϕ, FFI τ) = let τ̂ = annFFI (τ)

in (τ̂ , id , ∅, Γ̂)

W(Γ̂, ρ, ϕ, x ) = let σ̂ = Γ̂(x )
θ1 = {x 7→ σ̂ ϕ}
(τ̂ , θ2) = inst(σ̂)
θ = θ2 ◦ θ1

Γ̂′ = θ Γ̂

in (τ̂ , θ, ∅, Γ̂′)

W(Γ̂, ρ, ϕ, λx → e) = let α, γ1 be fresh
(τ̂2, θ, ρ2, Γ̂2[x 7→ αϕ1 ]) = W(Γ̂[x 7→ α> ], ρ, R, e)

Γ̂′ = if γ1 ∈ ρ
then ϕ I Γ̂

else Γ̂

in (θ α
(ϕ1,γ1,ρ2)→ τ̂2, θ, ∅, Γ̂′)

W(Γ̂, ρ, ϕ, e x ) = let α, β1, β2, γ be fresh
(τ̂1, θ1, ρ1, Γ̂1) = W(Γ̂, ρ, ϕ, e)

(τ̂2, θ2, ρ2, Γ̂2) = W(θ1 Γ̂, ρ, β2, x )
θ3 = {β2 7→ β1}

θ4 = U(θ2 τ̂1, τ̂2
(β1,γ,∅)→ α)

θ = θ4 ◦ θ3 ◦ θ2 ◦ θ1

Γ̂′ = (θΓ̂1) �t (θΓ̂2)
ρ′ = ρ1 ∪ ρ2 ∪ θ{γ}

in (θ α, θ, ρ′, Γ̂′)

Figure 7.1: Simple rules.
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7.1. Simple rules

The function W takes an environment Γ̂, a set of applied arrows ρ, the local relevance ϕ and the
expression to be analyzed. It returns the annotated type for the expression, a substitution, the
set of applied arrows inside that expression and the environment containing updated relevance
for the local bindings.

Rules for values and FFIs are straightforward, as their type is either simple (values) or sim-
ple to obtain from local information only (FFIs). They also return no transformation and no
applied arrows, and do not alter the input environment.

Variables return empty ρs as they do not apply anything. However, they need to apply some
transformations to the environment. The first is θ1 which transforms the binding from the orig-
inal type scheme and annotation to the same type scheme with the new relevance annotation.
The second, θ2, is calculated from the instantiation of the type scheme, if any. Both are combined
and applied to the environment.

Abstractions need more changes than the previous rules, when compared to the basic W al-
gorithm. First, we use the recursive call to infer the relevance of the inner expression e in a
relevant context and pass the binding for x as non-relevant. If x is used in a relevant way or
with a function whose relevance is a β variable, it will return with its binding annotation altered.
We inspect the returned environment for that annotation and use that information to construct
the final value. As we always add and remove bindings in an inverted order, we can use pat-
tern matching for Γ̂ such as in the left hand side of the recursive call to remove extra bindings
from environments. Any applied arrows or arrow identifiers within the body of the function
are added as the return type’s arrow ρ and any substitutions are propagated unchanged.

One major feature of the abstractions’ rule is that we use a fresh γ1 identifier for the newly
generated arrow and immediately check to see if that identifier is in the set of applied arrows,
the input ρ, before containing the environment. This assumes a top level circular propagation of
applicativeness information: we first gather all return ρs from the full module’s AST and only
then use that information as the input for the call to the function W. It is somewhat similar
to an expression such as let (x , y) = (y , 1) in x , where x depends on the value of y even if
both are defined in the same tuple. This trick is possible due to the fact that there is no mutual
dependency between returning and incoming ρs and that γ identifiers are globally unique.

Finally, we implement applications quite similarly to plain W: recursively infer the function
and the argument and generate the substitution from the unification of both results. We also
need to add a substitution for the relevance information of the argument to be equal to that of
the unified type, and perform the context splitting between both updated environments. We
also calculate the return set of applied arrows from both the function and the argument, and
include the newly applied γ to that set, before returning it.
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7.2. Unification algorithm

U :: (τ̂ , τ̂)→ Subst
U(() , () ) = id
U(α , τ̂ ) = {α 7→ τ̂ }
U(τ̂ , α ) = {α 7→ τ̂ }

U(τ̂1
(ϕ1,γ1,ρ1)→ τ̂ ′1, τ̂2

(ϕ2,γ2,ρ2)→ τ̂ ′2) = U(τ̂1, τ̂2) ◦ U(τ̂ ′1, τ̂
′
2) ◦ Uϕ(ϕ1, ϕ2) ◦ Uρ(γ1, ρ1, γ2, ρ2)

U(D̂ Tag en , D̂ Tag e′n ) = Us(en, e′n)
U( , ) = error "Unification error."

Us :: ([ τ̂ ], [ τ̂ ])→ Subst
Us([ ] , [ ] ) = id
Us(e1 : e1, e2 : e2) = U(e1, e2) ◦ Us(e1, e2)
Us( , ) = error "Trying to unify datatype constructors of different arity."

Uϕ :: (ϕ,ϕ)→ Subst
Uϕ(ϕv, ϕv) = id
Uϕ(β , ϕ ) = {β 7→ ϕ}
Uϕ(ϕ , β ) = {β 7→ ϕ}
Uϕ( , ) = error "Failed to unify phi."

Uρ :: (γ, ρ, γ, ρ)→ Subst
Uρ(γ1, ρ1, γ2, ρ2) = {γ1, γ2 7→ (γ1, ρ1 ∪ ρ2)}

Figure 7.2: Unification algorithm.

7.2 Unification algorithm

The regular unification functions for the unannotated types cannot be used directly in our sys-
tem, but they can provide guidance. Unification for unit types and type variables is straight-
forward. The first major changes come with arrows, where we also unify arrow relevance and
applicativeness information, and datatype constructors, that can only be unified if they have
the same Tag and arity.

Unification for relevance annotations is only defined for relevance variables. Relevance values
can be ignored if they happen to be the same, but unifying different annotations results in error
as it is not well defined. We could have defined unification between R with > or App and > to
use subsumption, though guaranteeing soundness in these cases would require knowing any
other kind of dependencies between annotations in our program.

At last, whenever unifying applicativeness information, we also unify the set of unleashed vari-
ables from both sides. The single line in the definition of Uρ means “replace any γ1 or γ2 with
γ1 and set its accompanying ρ to the union of ρ1 and ρ2”.

We note that, whenever combining several substitutions, we use composition ◦ and expect it to
respect an application order from right to left, much like the regular function composition in
Haskell.
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7.3. Datatype constructors

W(Γ̂, ρ, ϕ, Con Tag en) = let x , α, αn′ be fresh
e = x en

τ̂ = D̂ Tag αn′

(τ̂n, ϕn) = tagTypes(τ̂)

τ̂ ′ = τ̂1
(α1,ϕ1,∅)→ τ̂2

(α2,ϕ2,∅)→ ...
(αn−1,ϕn−1,∅)

→ τ̂n
(αn,ϕn,∅)→ τ̂

(τ̂ ′′, θ1, ρ1, Γ̂1[x ]) = W(Γ̂[x 7→ τ̂ ′ ], ρ, ϕ, e)

in (τ̂ ′′, θ1, ρ1, Γ̂1)

Figure 7.3: Algorithm for datatype constructors.

7.3 Datatype constructors

Our rule for datatype constructors uses the fact that they are always fully saturated within UHC.
We create a new expression involving the application of an identifier with the expected D̂ type
for that constructor to all field expressions. Any type or relevance information that may be
obtained from the constructor is used at this point. Everything else is left as type or annotation
variables to be inferred later.

7.4 Case and patten matching

Case pattern matching uses an auxiliary Wp function to correctly infer types for the list of pat-
terns inside the case rule. At top level we perform the inference of the scrutinee e and use union
for ρ and context splitting for the environments as expected.

The Wp function, however, works slightly differently. It takes all arguments W takes plus a
τ̂ indicating the expected type for the pattern. This is used to help generate the local binding
environment for the pattern at each pattern, as they have to have the same type as the scrutinee.

Additionally, Wp mixes the information from all patterns using intersection of sets for ρ and
�u for context splitting. For this to work properly, however, the [ ] case has to have the identity
value for all patterns. This is why we constrain Γ̂ to> and use id and the full ρ value, as well as
a fresh type variable. None of these elements should affect the output of our pattern matching.
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7.5. Let bindings

W(Γ̂, ρ, ϕ, case e of pn → en) = let (τ̂0, θ0, ρ0, Γ̂0) = W(Γ̂, ρ, ϕ, e)

(τ̂1, θ1, ρ1, Γ̂1) = Wp(θ0 Γ̂, ρ, τ̂0, ϕ, pn → en)
ρ′ = ρ0 ∪ ρ1

Γ̂′ = (θ1 Γ̂0) �t Γ̂1

in (τ̂1, θ1 ◦ θ0, ρ
′, Γ̂′)

Wp :: (Γ̂, ρ, τ̂ , ϕ, pn → en)→ (τ̂ ,Subst, ρ, Γ̂)

Wp(Γ̂, ρ, τ̂ , ϕ, [ ]) = let α be fresh
Γ̂′ = > I Γ̂

in (α, id , ρ, Γ̂′)

Wp(Γ̂, ρ, τ̂ , ϕ, (p → e) : pn → en) = let (τ̂1, θ1, ρ1, Γ̂1) = Wp(Γ̂, ρ, τ̂ , ϕ, pn → en)

Γ̂2 = binds(p, τ̂)

(τ̂2, ρ2, θ2, Γ̂
′Γ̂′

2) = W(θ1 (Γ̂Γ̂2), ρ, ϕ, e)
θ3 = U(τ̂1, τ̂2)
ρ3 = ρ1 ∩ ρ2

Γ̂3 = (θ2 Γ̂1) �u Γ̂′

in (θ3 τ̂1, θ3 ◦ θ2 ◦ θ1, ρ3, Γ̂3)

Figure 7.4: Algorithm for case and its support function.

7.5 Let bindings

Finally, we have to consider the three let binding cases. The simplest of them all is let!, as we
know its binding to be relevant. Regular let requires some additional testing for relevance of
the binding. Lastly, recursive lets require an auxiliary function to correctly handle the list of
possible mutually recursive bindings.

In both let! and let we call W recursively on the binding and body expressions and use the
result of the former in the argument of the latter after generalization, as expected. As we know
the binding in let! is relevant, we can simply merge its ρ information in all cases. On the other
hand, the binding in a let may or may not be relevant. We first inspect its relevance before
deciding whether or not to join the ρ set from the binding expression.

In the letrec case we create an environment with bindings for all binding expressions and infer
their types individually to generate a final substitution. This is then used to create a second
environment of types for those bindings. We always assume them to have > relevance, though
within each individual α we may still contain arrows with known R annotations. This relies on
the regular inference of types used in the W	 function.
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7.5. Let bindings

W(Γ̂, ρ, ϕ, let x = e1 in e2) = let (τ̂1, θ1, ρ1, Γ̂1) = W(Γ̂, ρ, R, e1)

(τ̂2, θ2, ρ2, Γ̂
′[x 7→ ϕ1 ]) = W(θ1 Γ̂[x 7→ genθ1Γ̂(τ̂1)> ], ρ, ϕ, e2)

ρ′ = if ϕ1 ≡ R
then ρ1 ∪ ρ2

else ρ2

in (τ̂2, θ2 ◦ θ1, ρ
′, Γ̂′)

W(Γ̂, ρ, ϕ, let! x = e1 in e2) = let (τ̂1, θ1, ρ1, Γ̂1) = W(Γ̂, ρ, R, e1)

(τ̂2, θ2, ρ2, Γ̂
′[x ]) = W(θ1 Γ̂[x 7→ genθ1Γ̂(τ̂1)R ], ρ, ϕ, e2)

ρ′ = ρ1 ∪ ρ2

in (τ̂2, θ2 ◦ θ1, ρ
′, Γ̂′)

W(Γ̂, ρ, ϕ, letrec xn = en in e) = let α1, ..., αn, β1, ..., βn, γ1, ..., γn be fresh

Γ̂1 = [x1 7→ α1
(β1,γ1,∅)→ α1

>, ..., xn 7→ αn
(βn,γn,∅)→ αn

> ]

θ1 = W	(Γ̂Γ̂1, αn, en)

Γ̂2 = genθΓ̂(θ1 [x1 7→ α1
>, ..., xn 7→ αn

> ])

(τ̂2, θ2, ρ2, Γ̂
′Γ̂′

2) = W(θ1 Γ̂Γ̂2, ρ, ϕ, e2)

in (τ̂2, θ2 ◦ θ1, ρ2, Γ̂
′)

W	 :: (Γ̂, τ̂ , e)→ θ

W	(Γ̂, [ ], [ ]) = id

W	(Γ̂, τ̂ : τ̂n, e : en) = let θ1 = W	(Γ̂, τ̂n, en)

(τ̂ ′, , θ2, , ) = W(Γ̂, ∅,>, e)
θ3 = U(τ̂ , τ̂ ′)

in (θ3 ◦ θ2 ◦ θ1)

Figure 7.5: Algorithm for let cases.
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Chapter 8

Transformation

The code presented in Chapter 7 merely encodes how to obtain the relevance information we
need. It did not, however, indicate how that information can be used to direct a program trans-
formation to actually enjoy the benefits of performing strictness analysis automatically. In this
chapter we show how a simple program may be transformed using that information and how
we expect such transformation to solve the issues presented in the motivation chapter.

First, we need to remember which bits of information are directly relevant to us from our algo-
rithm. As this is a relevance analysis, our focus is on the relevance information of every binding.
Additionally, bindings may contain varying relevance information at different points of the pro-
gram. Fortunately, that information is already available in our implemented algorithm as the
return Γ̂ value of every call to W and related functions, such as Wp and W	. These contain not
only the annotated types for every binding visible at that point in the program, but also what is
its top level relevance.

Once we have gathered all the relevant bindings at every point in the program, we may start
identifying at which points is strict application possible and useful. Naturally we could trans-
form the program so that, at every point in the program, we wrap expressions into a let! contain-
ing alternative bindings for all relevant identifiers and then replacing all occurrences of these
identified bindings by the newly introduced ones.

For instance, suppose we have an expression e whose return Γ̂ of our call to W([ ], ρ, R, e) in-
cluded the binding [x 7→ R ]. We can then replace e by the following code, where e [x / x ′ ]

represents e with all occurrences of x replaced by x ′.
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let! x ′ = x

in e [x / x ′ ]

We could repeat that transformation for every relevant binding in the local Γ̂, always using the
result of the previous transformation as the input for the following.

However that would be quite inefficient, leading to both a slow transformation and a slow pro-
gram. Instead, we can traverse the program and perform this transformation only on bindings
that are known to not have been transformed before. This alone cuts off quite a lot of transfor-
mation time and avoids repeatedly checking for thunk evaluation status.

This is still a naive and inefficient approach. To better perform this transformation we should
also take care to respect the dependencies between bindings so that no binding is forced to
be evaluated before bindings it depends on were (and which are, due to the fact they are also
called, also going to be relevant). However, this idea shows clearly how the previously de-
scribed algorithms and judgment systems can provide us with the basic information to convert
programs to their partially strict versions.
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Chapter 9

Implementation and results

As stated in Chapter 5, we implemented our analysis in UHC as we developed it. This allowed
us to both validate our design choices and observe complications that had to be dealt with.
The code was rather compact for such a complex analysis, both due to UHC’s extensive use of
tools such as UUAG, and because similarities between our system and already implemented
transformations inside allowed us to reuse a lot of the infrastructure in place.

In total we had slightly more than 1600 lines of code between the EH.AnaDomain module and
its submodules, and the EH.Core.Trf.AnaRelevance module. Both were already present in the
code, albeit disabled and only partially implemented. Additionally, most of the code was either
adapted or removed so that our annotations could be used instead, although some snippets and
design choices were kept due to their elegance and reusability. For instance, the instantiation
code using higher order attribute grammars for recursively replacing variables was kept and
even expanded to handle annotation variables as well. On the other hand, the representation of
constraints between elements of the lattices was not used as our analysis kept constraint solving
to a minimum thanks to the careful design of our judgment rules.

While developing the code we used our experience to improve the algorithm and the judgment
rules presented in the earlier chapters. The basic cases proved to be relatively easy to work with,
once the encoding of types was done. Additionally, our assumptions when dealing with theory
proved to be valid in practice. For instance, due to the transformation of the code to A-Normal
Form, all applications occurred between expressions and variables and handling the default
pattern in case proved to be simple. On the other hand, handling lets were more complex than
expected as we had to encode all three cases in a single rule, since UHC implements all three
types of let bindings using the same constructor.
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Due to the complexity of the theory behind our system and to the care needed to avoid repeat-
ing our predecessor’s mistakes, such as overcomplicated code or oversimplified or inaccurate
system, not enough time to fully encode our analysis was left. At the moment of this writing,
some necessary bits to allow our code to be merged safely back to UHC’s master were still
missing or untested. The implementation for datatypes is complicated due to the large number
of automatically derived functions for even the simplest example. Performance was also bad,
particularly when handling datatypes, though this could be due to some yet untracked bugs.
Aside from these issues and some yet undetected bugs, our implementation proved to work.
Some small examples worked and we are confident, seeing that no major theoretical issues have
come up, that once these problems are solved we should be able to complete the system and
even enable it as a default UHC feature.

The code developed for this thesis, along with any posterior improvements can be found in
the development fork of UHC at https://github.com/passalaqua/uhc. As of now the code is
still isolated in the branch polyvariant-strictness and not yet merged back to master. The
strictness analysis also needs to be enabled with --optimise=StrictnessAnalysis when run-
ning the compiler. And to observe its behavior, we recommend enabling debug by compiling
variant 99 of UHC and also use the flag --dump-core-stages=on to see the results as a UHC
Core file. The relevant file contains the module name ana-relev.
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Chapter 10

Conclusion

The main objective of this project was the development of an accurate and complete strictness
analysis for the Utrecht Haskell Compiler. This compiler has a lot of interesting features, such as
its very modular, composable architecture that uses variants and aspects to isolate the develop-
ment of language features, but it lacks in optimization transformations and currently generates
rather unoptimized code. We attempted to solve this issue by focusing on detecting and avoid-
ing unnecessary laziness through the use of static program analysis.

Our project was not the first to attempt to solve the presented issue, and not even the first to do
it in the context of UHC. However, we our goals were more ambitious than our predecessors in
that we aimed at higher accuracy through the use of polyvariance. We believed this would im-
prove our handling of higher-order functions and polymorphism considerably over monomo-
prhic analyses while still being compatible with all Haskell features supported by UHC. And
as we had the benefit of being able to learn from these preceding attempts at solving the same
problem, we were able to go further.

Our results included judgment rules describing our ideas and code implementing these ideas
inside UHC. Perhaps even surprisingly, we did not need to add too many simplifications that
would force us lose precision to achieve our goals in our analysis and we had positive practical
results indicating our theory is solid. Although more extensive testing and maturing is still
needed before our code may be accepted to the master development branch of UHC or enabled
by default, the quality of our preliminary results and the ease of development with UHC makes
us confident it is merely a matter of time until we achieve this needed maturing.
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