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Abstract

Bugs in Pareci programs are often only found when the application is run. Another

issue is that it is also easy to have many database queries, without the developer

being fully aware of them. Using static data flow analysis we can find out many of

these issues before we run the program and thereby reducing runtime errors and

superfluous database queries.

This thesis describes what Pareci is, what its computational power is and how to

parse it into a form to do program flow analysis on. We define how to create a Mono-

tone Framework instance for Pareci, which is used to run analyses using a maximal

fixed point worklist algorithm. We define three analyses that help respectively iden-

tify unresolvable bindings, superfluous database queries and incoherent variable type

usage.
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1. Introduction

Eljakim IT (co-)develops a web development framework called Pareci that is used to

create web applications. Pareci can be considered a programming language in itself as

will become clear in chapter 2.

The main focus of this research will be to find ways to make Pareci more developer-

friendly using proven research techniques as also used in modern compilers.

Due to Pareci’s interpreted nature it suffers from the same problems as other in-

terpreted languages. It has no strict types and exceptions only occur at runtime. This

means that errors are only found when running the program and at worst only when

the specific error condition occurs.

Many of these exceptions can be discovered by doing program analysis on Pareci

programs. These analyses can be built into Pareci as dynamical analyses, but this will

increase the overhead every time the program is executed. Therefore we will look into

ways to make Pareci less error-prone by doing offline, static analysis.

To be able to analyse Pareci we need to be able to handle Pareci code. In order

to do this a grammar, parser and Monotone Framework instance will be created as

described in the next chapters.

1.1. Open Problems

This section discusses some known problem with Pareci, which can be (partially) solved

using program analysis.

1.1.1. Runtime exceptions

Due to the interpreted nature of Pareci applications and the lack of type checking, all

errors show up as exceptions at runtime. This means that to be sure that no exceptions

are thrown during use, all possible uses of an application need to be tested. Of course

this is not feasible due to the possibility of infinite program executions.

A simple example of many occurring runtime exceptions are referencing objects

or fields on objects that do not exist. Since Pareci only tries to lookup these kind of

references when they are accessed, these unresolvable references can lay low for quite

a while until a user encounters them.

Many of these problems can be found beforehand by doing static analysis, for ex-

ample in the form of type checking. For instance, references to identifiers that do not

exist in the program can be reported before the program is actually used by a user.

7



1. Introduction

1.1.2. Superfluous database queries

If a Pareci page contains a reference to a field that is not by default fetched from

the database, the data layer does an extra database query for every additional field

requested. This is by design to avoid unnecessary data transfer. This can be adjusted

manually by inserting an includeFields parameter, which specifies the additional (for-

eign) fields to be retrieved. However, the developer can only find out about superfluous

queries by knowing the system thoroughly or by investigating database logs.

A simple detection mechanism can be to scan the current page for requested fields

and see if they are requested by default. This will be sufficient for most situations.

However, it is possible that the resource is never used on the page due to dead code

or that foreign fields are only used in specific cases. To handle these scenarios full a

data flow analysis is required.

1.2. Approach

For parsing Pareci a formal syntactic form needs to be specified. The syntax is XML-

based so in this sense the structure is straightforward. This means we can piggy-back

on the XML specification [xml08] and use readily available parsers for this.

We do have to focus on the grammar of specific language parts falling outside the

XML specification. How the XML and specific parts are handled can be found in chap-

ter 3.

Another important part of parsing will be the parsing of the data model (in Pareci,

the models.yml). With this information the analysis can check for presence of the
correct fields and their types and is therefore more precise. For this we can reuse

existing YAML parsers such as [yam13].

A nice detour is to also look at the computational power of Pareci in section 2.2. If

we know what the expressiveness of the language is, then we know how difficult the

analysis of Pareci is.

Statical analysis is discussed in the form of data flow analysis (see chapter 4). We

discuss a notion of Monotone Frameworks and an instance [NNH04] for Pareci (in

chapter 5). In section 5.2 three analyses relevant for Pareci are introduced, which solve

the problems previously presented.

1.3. Bumps on the road

Pareci is an at the moment unreleased programming framework that is mainly used

in-house at Eljakim IT. This means that there is a small user base and that lines to

the developers are short, resulting in quick feedback. Pareci is in active development,

therefore new versions and features are constantly released.

The changing environment, limited documentation and new language made it hard

to quickly start with the actual analyses. Pareci is a complex language, unlike many

8



1.3. Bumps on the road

of the well-known programming languages, therefore it was hard to grasp the whole

semantics quickly and correctly. Much time was taken by learning the ins and outs

out Pareci and considering all Pareci possibilities that had to be taken into account for

the analyses. There was also a strong learning curve in grasping the necessary static

program analysis techniques, which took up much of the research time.

While working on the thesis I encountered a couple of bugs and usability quirks in

Pareci, which were readily noted and sometimes immediately fixed. Due to the esoteric

nature of my attempts and usage of Pareci I ran into situations that most users would

not encounter. Also some bugs in documentation and implementation of the Utrecht

University Attribute Grammar Compiler [DS05] were found and reported.

Due to time constraints only the approach of analyses on Pareci are reported in

chapter 5. An implementation of these methods is also available, although not fully

supporting all the analyses as described.

The following tools are implemented:

∙ a Pareci parser

∙ a binding and expression syntax parser

∙ an object model representation and parser

∙ a stand-alone monotone framework and worklist algorithm implementation sup-
porting interprocedural analysis

∙ a monotone framework instance for Pareci
– representing the complex program execution flow of a Pareci program

– including the correct handling of scope, context, bindings and expressions

– incorporating knowledge from the object model to improve the analysis

results

∙ a liveness and used fields analysis

The source code is property of Eljakim IT and available to the graders.

9



2. Pareci

We will discuss the syntax and language features of Pareci in this chapter. Since Pareci

is not a well known language at the time of writing, we will try to cover the most-used

features to give the reader an intuition about Pareci. We will see Pareci pages, context

and scope in section 2.1.

To determine which analyses techniques are required and strong enough to analyse

a Pareci program, we will also look at the computational power of the language in

section 2.2.

We end with a description of how to interpret a Pareci program, which contains the

data structures and types needed to keep track of the program state and execution in

section 2.3.

2.1. Language

Pareci is a declarative programming language, tailored for creating web applications.

The back-end and the interpretation are written in PHP. This section will explain some

basic details about the structure and semantics of Pareci, but is by no means an ex-

haustive definition.

The Pareci framework outputs HTML and JavaScript that is used on a client web

browser. It has an AJAX based approach in communicating events to the web server.

These can trigger actions such as updating database entries or refreshing (parts of) the

page. Furthermore it connects to a database mainly through an extended version of

the Doctrine Object Relational Mapper. Other database wrappers are also available for

Pareci but not yet stable.

Throughout this thesis the following markup will be used for different Pareci aspects:Widgets, properties on widgets, literals and bindings.
2.1.1. Similar languages

Since Pareci is a dynamically typed language it shares properties with other dynamically

typed languages. Formany of these languages such as Perl [Jac05], PHP, Python [RHP05]

and JavaScript [JMT09] soft typing work has been done. Many of the concepts discussed

in these papers will also be applicable to Pareci.

For JavaScript [Thi05, JMT09], Python [Fri11] and PHP [CHH09] work is done in for-

mulating type systems using Monotone Frameworks. The ideas used in typing these

dynamically typed languages will prove particularly useful for creating a type system

for Pareci.

10



2.1. Language

2.1.2. Pages

One of the most important building blocks in Pareci is a Page. A Pareci application
consists of pages which can be rendered as a web page or as a section inside another

page. Pages are specified in an XML-format. Although the format is valid XML, some

attributes contain “magic” strings that are parsed by the framework. An example is the

binding and expression syntax, which we will see shortly.

Below, we see a simple example page examplePage.xml which renders into a web
page with a simple link and a section placeholder. We will go through it step by step.

<Page xmlns="urn:Widget" xmlns:a="urn:Widget_Action" ><Page.message><Var id="varId" name="n" value="0" /></Page.message><Page.resources><Var id="newSectionName" value="=’newSection’ . {n}" /></Page.resources><Page.actions><a:Goto id="goto" target="{#newSectionName.value}"page="examplePage"><Var name="n" value="={n}+1" /></a:Goto><Action_Log message="Goto completed." /></Page.actions><Page.content><Stack><LinkButton text="=’Load section ’ . ({n}+1)"onclick="{#goto}" /><Section name="{#newSectionName.value}" id="sectionid" /></Stack></Page.content></Page>
Each XML-element corresponds to a widget defined in the framework, or a property

of a widget. Elements containing a ‘.’ (dot) corresponds to a property of a widget, i.e.

A.B is a property B of widget A. This construction also allows for properties to be
assigned to widgets next to expressions or bindings. The attributes of the elements are

matched to properties of the widget.

All properties can be set by using simple text, bindings or expressions. Expressions

can be either a normal string or a more complicated expression, using arithmetic,

boolean operators or references using bindings. The syntax and grammar of these

expressions can be found in section 3.3. Bindings are references to objects on the

page or fields of those objects. They are relative to the scope or the context which they

are used in.

11



2. Pareci

The first element of the example page is a Page widget. It also contains the name-
space declarations for different kinds of widgets. In this case the page contains widgets

and actions. The XML namespaces are not required, but make writing down the widgets

more concise. Without the default namespace present it is possible to write out the

full widget names such as Widget_Page and Widget_Action_Goto. In the example
the notation Action_Log is used for a log action widget using the default namespace,
but not using the a namespace.
The Page contains four much used properties (in element syntax) each with a dif-

ferent purpose: message, resources, actions, content. We will go through them
one by one below.

The overall flow for this example page is that the user can click the LinkButton and
then the placeholder Section gets filled in with another instance of the “examplePage”
page, but with an increased value for n.

Messages

The message property contains possible arguments available to the page. They can
have a default value, or can be passed in by a call from another page. In this example

case the message contains a Var widget with id n and default value 0. The Var’s
value is available in the current page context with its name n. The Var itself is available
by its id in the page scope as #varId.
Resources

The resources property contains the local resources available to this page. Database
objects can be placed in resources, including the possibility to do filters and special-
ized queries on the database.

The most frequently used resource is the ObjectResource widget. This widget
binds to a PHP object via the property object, which is usually a wrapper around a
database object. The value of the ObjectResource is then set to the result of the
specified method of the object specified. For example:
<ObjectResource id="or" object="Person" method="getNew" />
This ObjectResource then has a value property of an empty Person object as

specified in the associated object model. Two other default methods are search andgetSearchQuery which allow for filtering the Person table in the object model. Both
return a collection of the specified object. Note that in principle all PHP objects can
be made accessible to the Pareci world.

Actions

The actions property contains all actions that are defined on the page.

12



2.1. Language

The example page has a Goto action widget that fills the Section with id target
with the specified page. The new page message is set to the child Vars of the Goto
with corresponding name.
Actions can also be nested, for example with an ActionList element.

<a:ActionList id="saveAll"><a:Repeater items="{selected}"><a:Method object="{}" method="save" /></a:Repeater><a:Goto page="selectPerson" /><a:Execute command="alert(’Success.’);" /></a:ActionList>
Actions in an ActionList are executed in a sequential manner and can alter the

state of the execution. This ActionList saves all items stored in the object selected,
changes the page and displays an alert via javascript. {selected} is binding syntax
and a reference some object in the current scope with identifier selected. Repeater
acts as a foreach and iterates over all items contained in the selected binding. The
child elements of the Repeater are the body of the loop and in this case performs
the save method on each element1. The value of method corresponds to a function
on the PHP object corresponding with the object property.
Essentially actions allow you to make calls to other actions and objects that alter

the program state. Non-action widgets such as used in the page content, only exist in

display data and can only alter the program state though calling actions.

Content

The content property is the actual rendered page content. Some widgets, such as theStack widget, can contain more than one widget directly as children without the use
of a property in element syntax. In this way widgets can be nested andmultiple widgets

can be displayed on the page. The Stack in the example contains a LinkButton andSection widget. The LinkButton in the example renders as a hyperlink that triggers
the action with id equal to goto when clicked. Section is a placeholder here since
its page property is not set; its page property can for example be set using an action,
which will result in displaying the corresponding page at the location of the Section.

2.1.3. Context and Scope

Every binding in Pareci is relative to the context or to the scope. In most cases the scope

and context of a widget are inherited from the parent in the page tree, sometimes

changed or updated by a context set on the widget or a context changing widget type.

1{} is binding syntax for the current context, which is in this case one of the children.

13



2. Pareci

In the case of an action widget the scope and context is always inherited from the

calling widget. Basically before executing the widget the parent is set to the calling

widget to make sure any scope and context lookups get resolved correctly.

There are three things of the parent widget that are relevant for the child and im-

portant for correctly resolving bindings: the parent context, the parent scope and the

parent itself. All three of these must be provided and updated by the runtime.

Scope consists of all the ID’s and Var names specified. Context is relative to the
scope and used to set the context in which bindings are resolved for a block of widgets.

It is also used to set the binding context for triggered actions.

Scope

Scope is defined by some widgets, such as Page, Repeater, Paginator, Table andTree. As a rule of thumb, Page creates a scope, and widgets that iterate over items
create a scope.

All ID lookups (such as #id) are relative to their scope. If an ID can not be found
in the current scope the parent scope is searched until the top level scope such as aPage is reached. This is similar to variable lookups in many programming languages.
Scope lookup only goes up to parent scopes and never down to children scopes.

In the case of widgets which iterate over their items, for each of the children a

separate scope is created. This means that ID lookups can only be done to current and

parent scopes, but never to scopes of siblings.

The scope can thus be represented by a stack containing for each level a set of the

available ID’s. The top item of the stack contains the ID’s of the current level and the

next item the ID’s on the parent level and so on. An ID lookup will check the stack

top-down until the requested ID is found. If a new scope is entered a new level of ID’s

is added to the stack. If a page scope is entered a new empty stack is used. This means

that scope lookups do not go up further than the page and only ID’s defined on the

current page are found in the scope.

Context

Context in Pareci is the environment in which all the context relative bindings get

resolved.

Every binding type can be reduced to a normalized (~) form as can be seen in ta-
ble 2.1. The (~) corresponds to the current widget.

Table 2.1.: Reduction to normalized form

Binding syntax Normal form

{~id} ~id

{id} ~context.id

... continued on next page
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2.1. Language

Table 2.1.: Reduction to normalized form (... continued)

Binding syntax Normal form

{__name.id} ~_globals.name.id

{^id} ~_parent.id

{#id} ~_scope.id

As seen above with {id}, bindings without special characters #,~,^, are relative the
current context. {id} is equivalent to {~context.id}, meaning that we are always
looking up values. In this example it is the id value of the item in the current context.
Every widget has a context. It can either be set by its context property or inherited

from its parent widget. Possibly the set context is relative to the inherited context
of the parent. For the Page widget the context is always set to page message and
therefore will contain the variable names declared there.

A special case for context inheritance are action widgets, where the context and

scope are inherited from the calling widget. For example an action event that is regis-

tered by a LinkButton with an onclick event will use the context of the LinkBut-ton. This can be seen as an implicit parameter passing the context when an action is
executed. Also scope and parents are dynamic in this sense. ^id binds to id property
of the calling widget.

Widgets that iterate over items such as Table and Repeater, have a context of
the respective item that is currently iterated over. The following fragment illustrates

the use of such a widget where listOfPersons binds to an object collection with
fields firstname and surname. The context of each of its children is one element of
that collection.

<Table items="{listOfPersons}"><TextInput value="{firstname}" /><TextInput value="{surname}" /></Table>
If we do not look at the dynamic context of actions and iterating widgets for a mo-

ment, we can rewrite every contextual binding to a more absolute binding relative to

the scope. For example:

<Stack context="{#person.value}"><TextOutput value="{name}" /></Stack>
is equivalent to:

<Stack><TextOutput value="{#person.value.name}" /></Stack>
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2. Pareci

If we do take dynamic contexts into account, then we need something more when

looking at actions. Let us call the triggering of an action an event. A widget w can

register an event e that can be triggered, which will result in the action a being executed.

Upon triggering event e the context, scope and parent of w will be set to a, so that a

can correctly resolve the bindings used in the execution of a as if it was a direct child of

w (and thus inheriting its context). The crux here is that we need the context, scope
and parent to correctly resolve the bindings used in the action. Since a single action

can be triggered by multiple different widgets, we can not know beforehand what the

calling context, scope or parent is and therefore we can not create an absolute binding

beforehand. This is a dynamic feature of Pareci.

The Trigger action widget can trigger another action a and thus results in the
execution of a which also needs to be in the correct context. This can be handled in the

same way as any other action execution, taking into account that the context, scope

and parent are also passed/set correctly.

2.1.4. Obscurities

Properties as Children

A property p on widget W can also have a child element in the XML tree with the widget
name prefixed, as value. This way also widgets used as a property value.

<W p="value" />
≡

<W><W.p>value</W.p></W>
For simplicity, let us call the specification of properties in the widget element tag the

attribute-wise specification of properties and the above specification of properties in

child elements the element-wise specification of properties.

Some widgets also support content directly as a child. The value is then bound to a

property specified in the widget definition. This property is called the logical child and

not the same for every widget; for example a direct child value for the TextOutput
represents its value, while for Stack its children can only be Widgets and represent
its children. Not all widgets have a specified logical child.
The code illustrates the equivalence of both ways of specifying properties.

<Stack><TextOutput>text</TextOutput></Stack>
≡
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<Stack><TextOutput value="text" /></Stack>
There is no corresponding attribute specification syntax for children of Stack, al-

though it is possible to do something similar to: children="text",children="{#to}"
or children="=({#w},{#w2})" (Pareci list syntax). Although it is not fully sup-
ported this will result in the rendering of respectively a child cell with text contenttext, a clone of the widget with id equal to to and two clones of widgets with ids w
and w2. The clones are identical instances of the referenced ones, also the context and
scope of the cloned object are used.

Defining an action widget in the element specification of an event property is explic-

itly not allowed by the framework and results in an exception.

Using the above element and attribute syntax and the ability to have child elements

as property value, properties can thus be one of the following number of types:

1. a simple text string, both in attribute and element specification

2. a binding, only attribute specification

3. an expression, only attribute specification

4. a widget, only element specification

5. a list of widgets, only element specification

Parent as context

The properties context, condition, permissions and resources are relative to
the parent context. This means they should be evaluated as such instead of in the

current widgets context. In other words,

<Stack context="{a}"><TextOutput context="{b}" condition="{c}" value="{d}"><TextOutput.resources><Var name="v1" value="{e}" /></TextOutput.resources></Stack>
is equivalent to:

<Stack><TextOutput context="{a.b}" condition="{a.c}" value="{a.b.d}"><TextOutput.resources><Var name="v1" value="{a.e}" /></TextOutput.resources></Stack>
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This makes sense because both condition and permissions determine whether
a widget gets rendered or not. resources are available for use by the widget and
therefore need to exist before the widget is rendered, and use the context of the

parent of the widget in which it is contained. context is also required before other
bindings can be resolved. All other properties such as value are resolved in the new
context.

Assigning

It is not possible to assign a value to a field of an object that does not exist:

[..]<ObjectResource id="person" object="Student" method="getNew" />[..]<a:Assign field="{#person.value.age}" value="=2" />[..]
If class Person has no field age this will result in a runtime error when the Assign

action is called, because the binding cannot be resolved.

It is possible to assign a new value to a Var:
[..]<Page.message><Var name="person" value="={#or.value}" /></Page.message>[..]<ObjectResource id="or" object="Student" method="getNew" />[..]<a:Assign field="{person}" value="=2" />[..]
Before the Assign action is called, the variable person refers to a Person object,

but after the action is executed, it will become an integer value. Note the = in thevalue of the Var, this expression makes sure that the Var can be reassigned. This is
called a weak binding for Pareci. If the = is omitted the variable resolves to the value
of the {#or.value} and since the value of an ObjectResource is read-only it will
result in an error.

Special Bindings

Globals Global values can also be queried by using the binding syntax, i.e. {__ap-plication.name}, which is equivalent to {~_global.application.name}, will
return the application name. A couple of default available global stores exist, such as _-_application, __authentication, __page, __datetime, __session, __cook-ies and __gds. All but the last have specified available fields in the documentation.
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__gds is the global data store in which the developer can store key-value pairs which
are available throughout the whole application.

It is also possible that other global stores are registered and available in the applica-

tion.

Getters and Setters Bindings are usually resolved by querying the associated PHP

object that it is associated with. Consider binding {a.b}, which is equivalent to {~_-context.a.b}. The symbol ~ is the current widget, thus ~_context.a refers to
some a in the context of the current widget.
Different kinds of MemberAdapters are registered in a specified order to handle

every part of the binding. {~_context.a.b} translates to PHP: widget->get_-scope()-><..>(a)-><..>(b) given that there is a MemberAdapter that recognizesa and b on the object. For example if the object returned by <..>(a) is an array,<...>(b) will return the value associated with key b in that array.
Important to mention here is that the last registered adapter always tries to callgetAbc() for binding abc. This also happens with get_scope() for _scope. So if

you create a method on a PHP object which starts with get<X>, it is accessible in Pareci
by x given the context of an instance of that object. Note the case difference, Pareci
calls the php function with the first letter capitalized.

2.1.5. Multiple Pages

Embedding and changing pages

When a Pareci application is run, a single page is displayed. This page can contain

more pages by using the Section widget. This widget contains a reference to another
page in its page property. The page can be relative to the current page or absolute
to the page directory (starting with a /)2. The file extension should be omitted. Thepage property can be set directly in the page definition or later by an action or a Goto
action.

The Goto action changes the page element of a section. When its target is not
specified this is the section in which it is contained, i.e. a page change. If the target
is set to resolve to a Section as well, then the section will load the specified page.
Passing arguments to pages

Interesting here is the possibility to pass values to the newly loaded page. Variables
made available in the Page’s message can be set by placing corresponding Vars in aSection or Goto widget. For example:
<Section name="newSection" page="newPage">
2It is also possible to have more page directories, they will be used in the order specified in the Pareci

settings.
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<Var name="text" value="This is a new page" /><Var name="backLink" value="backPageName" /></Section>
The values of the above Var widgets are set on the specified newPage to the Var

widgets in the page’s message there with the same name. This is a copy, so changes
on the new page are not reflected on the calling page. This way it is possible to pass

arguments to a page which can do some computation and display the result, or pass it

to another page.

The default values set on the Page’s message are overwritten with the specified
variable values only if the default value was set with a weak binding (i.e. ={a} instead
of {a}).
Recap

We have seen the basic building blocks of a Pareci page. Using bindings we can refer

to other parts of the page and (data) resources.

An important part and power of Pareci lies in the scope and context. Scope and

context allow for easy reuse of code by using the same widget declarations for different

instances with different values due to different scope or context. A simple example of

this is a table which repeats its child widgets each time in the context of the next data

object in its items. Another is the different context used when calling an action from
a widget with a different parent context.

We have also looked into different ways to specify widget property values: using

element and attribute syntax, and via logical children.

In the end we described how to reference other global specified variables and an

extra way to refer to values on objects.

2.2. Computational power

This section discusses the computational power of Pareci. The possibility of recursion

is a good indicator of the expressiveness and complexity of a programming language.

We will first look at the possibility to do simple recursion in Pareci and then at what

this means for Pareci.

2.2.1. Recursion

Recursion with Actions

We first approach recursion by using actions and a single page. An ActionList is
used to simulate function calls. This simple page tries to count down from n to 0 by
doing a recursive call. The computation is started by clicking a button with the text DoRecursion
The computation corresponds roughly to the following Haskell code:
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decrease :: Int -> Intdecrease 0 = 0decrease n = decrease (n-1)
<Page xmlns="urn:Widget" xmlns:a="urn:Widget_Action"cacheBindings="false"><Page.resources><Var id="n" value="{#input.value}" /></Page.resources>
<Page.actions><a:ActionList id="method"><a:ActionList id="recCall" condition="={#n.value}>0" ><a:Assign field="{#n.value}" value="={#n.value}-1" /><a:Trigger id="rec" target="method" /></a:ActionList><a:Refresh target="{#output}" /></a:ActionList></Page.actions>
<Page.content><Stack ><Debug id="output" value="{#n.value}" /><NumberInput id="input" label="Input" value="=10" /><LinkButton onclick="{#recCall}"text="Do recursion" /></Stack></Page.content></Page>
This approach runs into problems when trying to use the page. There are two issues

with the framework.

∙ Calling trigger target by binding {#method}, results in infinite unfolding of
actions.

∙ Calling by name methodmakes the page work, but when the action is triggered
by the button press Pareci crashes the second time the action is called. This is

related to the dynamic parent getting set or unset incorrectly. Basically the called

action is its own parent and the interpreter loops when resolving the bindings.

If we follow the specification of Pareci this scenario should be supported, the imple-

mentation in fact does not support it at the moment of writing.
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Recursion with Pages

We will now look at an approach that uses a page as a function and their messages as

arguments to calculate a fibonacci sequence. No actions are involved.

<Page xmlns="urn:Widget" xmlns:a="urn:Widget_Action">
<Page.message><Var name="n" value="=90" /><Var name="first" value="=0" /><Var name="second" value="=1" /></Page.message>
<Page.content><Stack layoutMode="Flat"><NumberOutput value="={first}+{second}" /><Section page="fibonacciPages" condition="={n} != 0" ><Var name="n" value="={n} - 1" /><Var name="second" value="={first}+{second}" /><Var name="first" value="={second}" /></Section></Stack></Page.content></Page>
When this page is displayed it will render the first ninety numbers of the fibonacci

sequence (minus 0). The n variable is used as an accumulator to make sure the com-
putation terminates.

One drawback from this approach is that you can not use function results in compu-

tations. Results are only printed to the page. If the PHP debugger XDebug is active then
the default PHP function nesting level is reached when setting n higher than 8. If the
limit is increased or the debugger disabled Pareci happily computes higher numbers.

Recursion with Goto

This approach passes the result to the current page by using the Goto action instead
of nesting Sections.
<Page xmlns="urn:Widget" xmlns:a="urn:Widget_Action"onloadServer="{#onload}"><Page.message><Var name="n" id="value" value="=90" /><Var name="first" value="=0" /><Var name="second" value="=1" /></Page.message>
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<Page.actions><a:ActionList id="onload"><a:Goto page="fibonacciPagesGoto" condition="={n} > 0"><Var name="n" value="={n} - 1" /><Var name="second" value="={first}+{second}" /><Var name="first" value="={second}" /></a:Goto></a:ActionList></Page.actions>
<Page.content><NumberOutput value="={first}+{second}" /></Page.content></Page>
In this approach the page replaces itself with a new instantiation of itself and thereby

setting its two fibonacci counters to appropriate new values. This variant uses the on-loadServer property of the page to trigger the computation. The n variable denotes
that is will calculate the n+2th fibonacci number. Again the PHP function nesting level
is reached for any n larger than 4, but it works fine if this restriction is lifted.
If the onloadClient is used instead, the client will trigger the action call, this results

in seeing each page being displayed and replaced until the n+2th fibonacci number
is reached. Here the nesting limit is not reached, since every next call results in a new

request with new values, which is handled by a fresh server process.

Recursion with Goto and return values

A naïve exponential time fibonacci algorithm corresponding with the following Haskell

code is implemented in the Pareci page (fibonacciPages2.xml).
fib 0 = 1fib 1 = 1fib n = fib (n-1) + fib (n-2)
The corresponding Pareci page is:

<Page xmlns="urn:Widget" xmlns:a="urn:Widget_Action"onloadServer="{#function}" >
<Page.message><Var name="n" value="=5" /><Var name="result" /><Var name="result1" /><Var name="result2" />
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<Var name="putResultName" value="result1" />
<Var name="parentSectionName"value="{#section.value.logicalParent.scopePath.0}" /></Page.message>

<Page.resources><ObjectResource id="section" object="Widget_Section"method="getSection"><Param name="sectionName" value="{~scopePath.0}" /></ObjectResource></Page.resources>
<Page.actions><a:ActionList id="function">

<a:ActionList condition="{result}"><!-- Return value to parent --><a:Log message="=’return branch=’.{#section.value.name}" /><a:Trigger target="return" section="{parentSectionName}"><Var name="{putResultName}" value="{result}" /></a:Trigger></a:ActionList>
<a:ActionList condition="=NOT {result}"><a:Log message="=’functi branch=’.{#section.value.name}" /><!-- Base cases --><a:Goto condition="={n} == 0 OR {n} == 1"page="fibonacciPages2"><Var name="putResultName" value="{putResultName}" /><Var name="result" value="=1" /></a:Goto>

<!-- Recursive case --><a:ActionList condition="={n} > 1"><a:Goto target="={#section.value.name}.’_l’"page="fibonacciPages2"><Var name="n" value="={n}-1" /><Var name="putResultName" value="result1" /></a:Goto><a:Goto target="={#section.value.name}.’_r’"page="fibonacciPages2" ><Var name="n" value="={n}-2" /><Var name="putResultName" value="result2" />
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</a:Goto>
<a:Goto page="fibonacciPages2"><Var name="putResultName" value="{putResultName}" /><Var name="result" value="={result1}+{result2}" /></a:Goto></a:ActionList></a:ActionList></a:ActionList>

<a:ActionList id="return" public="true" /></Page.actions>
<Page.content><Stack><Section name="={#section.value.name}.’_l’" id="leftBranch" /><Section name="={#section.value.name}.’_r’" id="rightBranch" /></Stack></Page.content></Page>
This page has subsections creating the sub-results. If the result of the current page

is calculated it replaces itself with a version that contains the result. With a Trigger
action the result is passed to the parent.

The parent section parentSectionName is resolved by a doing a call to a static
method of the Section PHP class to get the current section and then the logicalParent.
To calculate a sub-result a Section is created with a corresponding result Var. If

the base case is reached (n ∈ {0,1}) the base value is set on the parent by using the
public action by using the Pareci feature where the Var of Page’s message can be
set by specifying a Var with the same name inside the Trigger. The child actions
of an ActionLists are carried out sequentially and are therefore the results in the
first branches get computed first and inserted in the current Section and therefore
are available to the rest of the ActionList. conditions are used to make sure that
either the sub-results are computed or that the result is passed up.

The computation is done depth first and the answer is ultimately displayed in the

section where the page is first embedded.

The function can be “called” with:

<Section id="fiboMethodCall" name="fibo" page="fibonacciPages2"condition="=ISNULL {result}" ><Var name="n" value="=4" /><Var name="putResultName" value="result" /></Section>
The calling Section should contain a variable in the page message with name equal

to result and a public ActionList with id ‘return’. The condition makes sure that
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the computation is not done again once the result is known.

The way the variables are passed here is similar to the way an attribute grammar

works. First the left branches are calculated as a whole (depth first), then the right. For

example the following log information is output for the 4th fibonacci number:

functi branch=fibofuncti branch=fibo_lfuncti branch=fibo_l_lfuncti branch=fibo_l_l_lreturn branch=fibo_l_l_lfuncti branch=fibo_l_l_rreturn branch=fibo_l_l_rreturn branch=fibo_l_lfuncti branch=fibo_l_rreturn branch=fibo_l_rreturn branch=fibo_lfuncti branch=fibo_rfuncti branch=fibo_r_lreturn branch=fibo_r_lfuncti branch=fibo_r_rreturn branch=fibo_r_rreturn branch=fibo_rreturn branch=fibo
Pareci seems to be able to do this recursion for bigger fibonacci numbers without

running out of memory, but is limited by the PHP timeout of default 60 seconds. Of

course the algorithm is very inefficient and it quickly takes too much time to compute

it. For example the 10th number takes about 50 seconds to compute on the testing

machine and this increases exponentially with every increase of the number. Of course

this has to do with the inefficiency of the algorithm used. There is no caching or sharing

done and thus every branch calculates the same fibonacci numbers over again.

2.2.2. Turing Completeness

Given the nature of Pareci, the possibilities of actions and the possibility to do recursion

as done in the previous sections, it seems likely that Pareci is in fact Turing Complete

[Sip06] and that a proof for this can be formulated.

It is interesting to know what the computational power of Pareci is. When we know

the power of Pareci, we can determine which analysis techniques are complex enough

to model and analyse Pareci programs.

Turing Machines

In his 1936 article [Tur36] Alan Turing describes a machine, the Turing Machine, which

is capable of computing everything that is computable. This machine is in essence a
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very simple device, consisting of a ticker tape with data cells, a reading and writing

head and a mechanism to move the head over the tape.

If we are able to devise a Turing machine inside Pareci, the whole computational

power of the Turing Machine is also available to Pareci and therefore Pareci would be

a Turing Complete language.

Of course Pareci is Turing Complete when we take into account the possibility to do

calls to PHP functions, since PHP is Turing Complete. Below we will show that Pareci is

also powerful enough to simulate a Turing Machine enough without excessive calls to

PHP functions beside the use of an external data container.

Simulating a Turing Machine with Pareci

To correctly simulate a Turing Machine we must support all actions a Turing Machine

supports. Let us first look at the ticker tape that is used for the data. We can see the

ticker tape as three parts, one cell on which the head currently resides, one part to the

left of it and one part to the right. We can simulate this as three Pareci Var widgets.
The left and right parts of the tape are implemented by using a PHP object ArrayList
which is used as a simple stack on which we can pop from and push out values. These

are handled by using an ObjectResource to instantiate the ArrayList with the
initial configuration of the ticker tape as seen below.

<Page.message><Var name="tapeLeft" value="={#arrayL.value}" /><Var name="current" value="=0" /><Var name="tapeRight" value="={#arrayR.value}" /></Page.message><Page.resources><ObjectResource id="arrayL" object="Util" method="getNewArrayList" ><Param value="=(1,1,1)"/></ObjectResource><ObjectResource id="arrayR" object="Util" method="getNewArrayList"><Param value="=(1,1,1,0,0)"/></ObjectResource></Page.resources>
In this case we have a ticker tape with values ⟨1,1,1,0,1,1,1,0,0⟩ and the machine’s

head on the first 0 in the sequence.
The moving of the head is handled by two actions, one for each direction:

<a:ActionList id="moveRight"><a:Method method="append" object="{tapeLeft}"><Param value="{current}" /></a:Method><a:Method id="popRight" method="shift" object="{tapeRight}" /><a:Assign field="{current}" value="={#popRight.result}" />
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</a:ActionList><a:ActionList id="moveLeft"><a:Method method="unshift" object="{tapeRight}"><Param value="{current}" /></a:Method><a:Method id="popLeft" method="pop" object="{tapeLeft}" /><a:Assign field="{current}" value="{#popLeft.result}" /></a:ActionList>
For a move of the head one cell to the right, the value under the head gets appended

to the left part and the value on the top of the right stack gets used as the new cur-

rent/head value. The move to the left is done symmetrically. Note that for the handling

of the right tape part we make use of the shift and unshift functions which are
analogous to relatively append and pop functions, but work on the other end of theArrayList. Since we only use one pair of these functions per side, this can trivially
be rewritten to make use of the same functions. For displaying purposes we use this

approach.

Each Turing Machine also has a state the controller is in, this is denoted by another

variable state. The starting state of our simulation is 1. The machine wil halt as soon
as it reaches state 0.

<Var name="state" value="=1" />
The Turing machine also has a configuration which consists of a set of 5-tuple

⟨s,r,w,d,n⟩; the current state s, the symbol on the tape at the head r, the symbol
to write w, the direction to travel d and the new state of the machine n. Given the cur-

rent state s and the symbol read r from the tape the behavior of the machine {w,d,n}
can be determined by looking them up in the configuration.

We represent this in Pareci with a big set of actions with appropriate conditions on

them, to control which rule is relevant. Below is an example of corresponding with a

configuration with one rule ⟨1,0,1,r,2⟩

<a:ActionList id="run"><!-- Begin Machine configuration table --><a:ActionList condition="=(NOT {done}) AND {state} == 1" ><a:ActionList condition="=(NOT {done}) AND {current} == 0" ><a:Assign field="{current}" value="=1" /><a:Trigger target="{#moveRight}" /><a:Assign field="{state}" value="=2" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><!-- Possibly more rules here -->
<a:ActionList id="nextStep" condition="={done}" >
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<a:Goto page="turingMachineMult"><Var name="tapeLeft" value="{tapeLeft}" /><Var name="current" value="{current}" /><Var name="tapeRight" value="{tapeRight}" /><Var name="state" value="{state}" /></a:Goto></a:ActionList></a:ActionList>
The first ActionList with id run is used to execute the next step of the Turing

Machine. In this case the second and third ActionLists only get entered if their
conditions are met, corresponding to being in state 1 and reading a 0. A boolean
variable done is added to make sure that only one rule is executed per step when
multiple rules are present inside run. Also the tape variables get updated for a move
of the head to the right by the triggering the action moveRight, the state gets updated
to the new state 2.
After the rule for the current step is processed, the page replaces itself with a Goto

widget with the relevant tape and state information passed. If no rule is applied (in the

case the state is 0), then the done variable stays false and the whole system halts.
In the appendix two example programs can be found based on this principle. The

first example found in appendix A.1 starts with the machine’s head between two num-

bers encoded in unary notation, after halting, it will have one number on the tape which

is the sum of the two. The second machine found in appendix A.2 has a larger program

and calculates the product of two binary encoded numbers. Both run correctly.

We can see that Pareci can mimic a Turing Machine with constant overhead, thus

Pareci is Turing Complete.

Turing Completeness means that we need a powerful analysis technique to be able

to do correct and concise enough static analyses on Pareci. This will be achieved with

Monotone Frameworks for doing data flow analysis on Pareci programs in section 4.2.

Next we discuss what a Pareci interpreter Pareci should support, to evaluate a Pareci

program correctly.

2.3. Interpreting Pareci

To be able to interpret and evaluate a Pareci application correctly a couple of things

are needed.

Let us define a Pareci application A= ⟨P,p,G,M⟩ where

∙ P ∈ P(PageName×TreeRepresentation) are the available pages

∙ p ∈ P is the initial page

∙ G ∈ P(StoreName×P(KeyValuePair)) are the available global stores

∙ M ∈ P(ObjectName×ObjectType) is the object model.
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When a Pareci application is started the following events happen in order:

1. The initial page p is loaded.

1. All declared widgets loaded on the initial page are instantiated.

At this moment all variables in the Page message, resources and
local variables are available.

2. For every widgetw the scope is set by taking the scope of its direct

parent possibly updated by its own scope if w is a scope creating

widget.

3. For every widget w the context is set by taking the context of its

direct parent and possibly updating it with its own context if it
is set.

2. Any onloadServer event is executed first.
3. The page is rendered on the client.

4. The onloadClient event is executed.
5. An action can be executed by a user triggering an event.

1. An instantiation of the corresponding action with the correct con-

text, scope and parent is executed.

6. Possibly another event can be triggered.

Triggered Action a:

1. If a is a scoped widget, the scope is updated.

2. The permissions and condition are checked. If false then the action is
not executed.

3. The resource is instantiated.
4. The context is set for all other bindings to use.
5. The firemethod of the action is executed.

1. Any bindings are looked up.

Binding lookups:

For binding lookups the following should be available:

∙ Binding b

∙ Object ModelM

∙ Global store G

∙ Current widget w with associated context c, parent p and scope s.
First we rewrite b to its normal form b as seen in table 2.2. The normal form b can

have a limited number of forms:
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Table 2.2.: Resolving of Bindings

Form of b Resolved by

~a Get property a from widget w.
~context.id Resolve id in the context c of w using

M.

~_globals.name.id Find value with key id in global store un-
der name in G

~_parent.id Resolve ~id on parent p of w
~_scope.id Find id in scope s
M and G can be determined before running the application and are immutable. The

values of c, p and s can also be determined statically when non-action widgets are

used, but since actions use the context of their caller we have to deal with dynamic c,

p and s there.

Let us delve a bit into the TreeRepresentation. This tree representation represents

a Pareci page. The root of the tree is the page widget, for which a couple of properties

in the form of widget XML-elements are set. We also need a set of allowed WidgetsW,

which contains all of the actual implementation of available widgets.

2.4. Conclusion

We have seen many of the language constructs that are used to create Pareci programs.

The computational complexity of Pareci is also determined to be Turing Complete and

therefore we need powerful analysis techniques. We will look into analysing Pareci in

the form of Monotone Frameworks in chapter 5. In the next chapter we will first look

at how we can represent and read in Pareci programs.
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To be able to start analysing Pareci programs, we need to represent them. This chapter

describes this. We first look at how to represent the structure of a Pareci program

in custom data types in section 3.1, in this case Haskell data types. Then we look at

how to parse the XML into these data types in a bidirectional sense using Picklers in

section 3.2, then we will discuss how we can parse the expression and binding syntax

in section 3.3.

3.1. Pareci data types

The representation of Pareci has gone through a couple of stages of varying complexity

and correctness. We will describe the main variants here. The first variant is to create

a data constructor directly corresponding with each Pareci widget. We will discuss two

flavours for this first approach: One more restrictive and one more loose.

The second and final variant generalises over widgets and stores information about

their types separately.

3.1.1. Constructor per Widget

Restrictive

We will construct a simple data type which has a constructor for each widget. Each

constructor has fields associated to the widget’s properties.

Consider this simple Pareci page fragment.

<Stack id="pageId"><TextOutput id="varId" /></Stack>
A first attempt is to represent the different widgets by creating a parameterized

generic algebraic data type.

data Stackdata TextOutputdata Widget a whereTextOutput :: {vId :: String} -> Widget TextOutputStack :: {sId :: String, children :: [Widget a]} -> Widget Stack
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The problem with this approach is that while a Stack can contain multiple children,
all the children of Stack need to be of the same widget type. while in Pareci a Stack
can contain more than one specific respresented widget type. This approach is thus

too strict. Therefore, we need another approach, allowing for more mixed child widget

types. It needs to allow more than Action Widgets inside Page.actions.

Less restrictive

Another less restrictive way is to represent the code fragment above as the following

Haskell data type. Note that all widgets have some common base fields.

data Base = Base { id :: String }data TextOutput = TextOutput { base :: Base }data Stack = Stack { base :: Base, children :: [TextOutput] }
fragment = Stack { base = Base { id = "pageId"}, children =[TextOutput { base = Base { id = "varId"} }]}
This way only TextOutputwidgets can be added as children. To be able to havemul-

tiple kinds of widgets, we introduce a constructor for each widget and let the children

contain any widget.

data Widget = Base { id :: String }| TextOutput { base :: Base }| Stack { base :: Base, children :: [Widget] }
To be able to extend the supported widgets, we create this Widget data type us-

ing Template Haskell, a meta-programming tool that generates valid Haskell code (de-

signed by Sheard and Jones [SJ02]). Since we use Template Haskell it is not necessary

to model inheritance using a Base widget like above. From a structure that does con-
tain the inheritance hierarchy, we can generate the widgets with all their inherited

properties.

The generated Haskell data types have the following pattern.

data Widget = TextOutput { id :: String }| Stack { id :: String , children :: [Widget] }
In this case we allow all widgets as children for Stack, while this is not allowed by

Pareci. An action widget can not be a child of Stack. Dealing with the actual valid
instances of the more restrictive data types is done in the actual analysis part.
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Property Values

Instead of using Strings to represent all property values we can make it correspond-
ing more directly to how Pareci works. If we implement it as Maybe String, we can
represent whether the value has an actual associated value in the XML or not. We use

the Bindable type synonym for this:
type Bindable = Maybe String
Pareci experts will immediately see a problem here: property values can not be

represented correctly by simple strings.

We can differentiate between a couple of scenarios as discussed in section 2.1.4, and

therefore determine types of Widget property values.

Property values can be:

∙ not set, sometimes having a default value

∙ simple text, unresolved bindings or expressions

∙ widgets in the XML-tree

We can thus have either actual textual information in the form of text, bindings

and expressions, or actual widgets. To be more precise we have a distinction between

textual property values and actual resolved property values. Pareci internally stores

the textual property values and replaces it with a reference to the resolved entity when

requested.

When actually using this representation we create a distinction between property

values that are directly input after the first parsing process and the property values

used during analysis.

We define data type UPropVal to represent the first unparsed version of property
values.

data UPropVal = NotSet| Unparsed String| UResolved [Widget UPropVal]
NotSet is used when the property has no value set in the XML. Unparsed wraps

a String that is found corresponding with a property, this can either come from at-
tribute syntax, containing a string, binding or expression or from simple text contained

in element syntax. The last case, UResolved is used to insert children widgets that are
directly found and parsed from the XML-tree.

For analysis we use a more specific type representing parsed property values:

data PPropVal = PV PropertyValue| Resolved (OneOrMany (Widget PPropVal))
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Constructor PV wraps a parsed PropertyValue, which contains variants for not
set values, bindings and expressions. This is a parsed version in which we will consider

in more detail below when discussing Pareci bindings and expressions in section 3.3.Resolved denotes an already resolved widget, andmakes a distinction between single
widgets (One) or a list of widgets (Many). This distinction is made because some widget
properties only allow single widgets. Ideally the parser uses this distinction to not loose

information in the parsing step.

Given a binding and expressions parser we can trivially translate between these two

property value types. These parsers are discussed below in section 3.3.

The alert reader might have noticed that we also need to update the definition ofWidget to take into account two different kinds of widget value types. We now have a
widget definition along the lines of:

data Widget a = TextOutput { id :: a }| Stack { id :: a , children :: [Widget a] }[..]

3.1.2. Generalised approach

There are a couple of shortcomings with the previous approach, such as:

∙ Because the different widgets are hard coded in the Haskell data type, new kinds
of widgets can not be added without recompiling and explicitely specifying how

the analysis works for the new widgets.

∙ There are shortcomings with widget types, inheritance and specifying the types
of properties.

∙ Picklers implementation as discussed in section 3.2 will turn out th be harder
and have to be generated using Template Haskell accordingly. It is also harder to

deal with element and attribute syntax, see section 3.2.

To solve this we use a more general approach to modelling widgets. We do not

encode widgets directly in a data constructor but create a notion of what a widget is

by defining widget definitions and a notion of widget instances.

data WidgetDefinition =WD{ name :: WidgetName, parent :: Inherit, isAbstract :: Abstract, properties :: PropertiesDefinition, logicalChild :: Maybe PropName}
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A widget definition consists of a widget name, a possible parent definition, a boolean

flag indicating whether the widget is abstract, i.e. not directly available as a widget, the

value properties in a map, containing the property name and type, and a logical child

denoting which property the direct child elements of the widget’s XML element should

be interpreted as.

The widgets properties also contain type information, which we will discuss in more

detail later on in section 5.2.1.

Analogous to the definition we have the widget instance:

data WidgetInstance a =WI { instanceOf :: WidgetDefinition, propertyValues :: PropertyValues a}
An instance contains the widget definition it is an instance of and has a map filled

with property names and values. It is parameterized with a type variable a to be able
to have instances for both UPropVal and PPropVal. We also make it an instance ofFunctor so that we can easily provide a functor to translate from WidgetInstanceUPropVal to WidgetInstance PPropVal which we can use in the analysis.
For convenience we introduce the type synonyms UnparsedWidget and Parsed-Widget for respectively WidgetInstance UPropVal and WidgetInstance PProp-Val.
This definition is also closer to the way the widgets are implemented in Pareci than

the constructor-per-widget approach in section 3.1.1. I have adapted the program

PareciSchemaGenerator, already provided by the Pareci developers to create XML-

schema files to recognise correct Pareci Pages, to also support outputting the widget

definitions in valid WidgetDefinition Haskell code. These can be readily used by
the actual implementation.

This approach is less precise than the other approach and does not make full use

of the possibilites of representing widgets more strictly using the Haskell type system,

but makes up for this by having widget definitions and instances available as values

during runtime, making it possible to add new widgets without changing the whole

program. Both the widget type and the corresponding XML-picklers (as discussed in

section 3.2) become less complex and thereby no longer require Template Haskell to

work. It also becomes easier to add type information to the the widget properties.

3.2. From and to XML

The next step is to get from the Pareci XML pages to the Haskell data types. There are a

couple of approaches to do this in Haskell. One of the more mature packages is Haskell

XML Toolbox [hxt12] (HXT) which uses the nice concept of Picklers. Originally this came

from a Functional Pearl by Andrew Kennedy [Ken04].

A pickler is a bidirectional translator between two data forms, in this case between

XML data and custom data types. It consists of two functions:
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data PU t a = PU { unpickle :: t -> a, pickle :: a -> t}
In our case we need to have a pickler of PU XmlTree Widget for some type Xml-Tree which makes it possible to translate the types back and forth.
The advantage a pickler gives us is that we can easily convert the Haskell representa-

tion of our widget back to a valid Pareci page. This might be useful in the future when

implementing code optimisations.

Since the XmlPickler from HXT is created for parsing program generated XML and
therefore always handles XML Elements in a fixed order, it is not suitable for parsing

Pareci pages, since developers do not all use the same order for their elements in

for example specifying the Page.message, Page.actions, Page.resources andPage.content. For this reason we chose to use the xml-picklers package, which
does not have this restriction. It does this by trying to pick all child elements and

consuming only those that succeed, leaving the remainder for consecutive picklers.

Another possibility is to write a pickler that can unpick every permutation of a list of

given picklers. Baars, Löh and Swierstra have defined a way by using lazy evaluation in

to create efficient permutation parsers [BLS04]. This could be a good starting point in

creating permutation parsers in HXT, but we chose a different derived pickler package

discussed below.

3.2.1. A picklers for constructor per widget data type

We first give an example for the widget per data constructor version from section 3.1.1

to illustrate how the library works. The xml-picklers package uses the following PU
data type:

data PU t a = PU{ unpickleTree :: t -> UnpickleResult t a, pickleTree :: a -> t}
Here an UnpickleResult can either give a result and a remainder, no result , or

an UnpickleError. Note that there is a remainder here. This means that unpickling
does not necessarily need to consume the whole input.

To create specific picklers for parts of data we can use the xpWrap pickler combi-
nator, which comes in handy when handling data constructors. The function xpWrap3
takes two functions to translate back and forth to the projected type and uses it to

transform a pickler of type PU t a to PU t b.
Consider:

xpVar :: PU t Widget
3xpWrap :: (a -> b) -> (b -> a) -> PU t a -> PU t b
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xpVar = xpWrap (\ id -> Var id)(\(Var id) -> id)...
We use xpWrap to remove and add the Var constructor. This means we must pro-

vide a pickler of type PU t String. Since we want to create XML of the following
form <Var id=”id” />, we can use the xpElem4 pickler combinator. This combi-
nator takes an element name (“Var”), a pickler for the element attributes (“id”) and a

pickler for the element child elements (Nothing in this case).

To complete xpVar we use a specialised version xpElemAttrs of xpElem, which
handles an element with only attributes an no child elements.

xpVar :: PU [Node] WidgetxpVar = xpWrap (\ id -> Var id)(\(Var id) -> id)$ xpElemAttrs "Var" (xpAttr "id" xpString)
xpAttr handles the attribute whose content is handled by xpString. Note that

the type of xpVar now actually contains the XML type Node.
For constructors with more than one field we can do the same trick, only translating

to tuples instead of single values:

xpStack :: PU t WidgetxpStack = xpWrap (\(Stack id children) -> (id, children))(\(id, children) -> Stack id children)...
This means that we must now deal with a pair of type (String, [Widget]). For

this we use xpElem which also handles child elements, to handle the children as
elements. We can now finish defining xpStack:
xpStack :: PU [Node] WidgetxpStack = xpWrap (\(id, children) -> Stack id children)(\(Stack id children) -> (id, children))$ xpElem "Stack"(xpAttr "id" xpString)(xpList xpVar)
As soon as more than one attribute or element we use another convenience picklerxpPair5 which combines two picklers into a pickler that handles the different parts of

the pair.

We can thus use xpPair xpString (xpList xpVar) where the first argumentxpString handles the first element of the pair and xpList xpVar handles the sec-
ond element. The function xpList p does nothing else than during unpickling apply-
ing p to each single element until it does not return anything. During pickling it appliesp to each element in the list.
4xpElem :: Name -> PU [Attribute] a -> PU [Node] n -> PU [Node] (a,n)
5xpPair :: PU [a] b1 -> PU [a] b2 -> PU [a] (b1, b2)
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We can immediately see how this scales to more than two fields in a constructor. We

can create bigger tuples and handle them with xp3Tuple, xp4Tuple, . . . functions
where xpPair is used . Note that xp2Tuple is the same as xpPair and xp1Tuple
equals id.
This approach works for our simple example. But for more interesting nested wid-

gets, we need a pickler for the whole data type. To create this xpWidget we can usexpAlt6, which takes a selector function that maps the different constructors to a num-
ber corresponding to the index of pickler to use in the second list argument.

xpWidget :: PU [Node] WidgetxpWidget = xpAlt tag pswhere tag w = case w ofVar _ -> 0Stack _ _ -> 1ps = [xpVar, xpStack]
Now we can change the definition of xpStack to support all Widgets as children.

xpStack :: PU [Node] WidgetxpStack = xpWrap (\(id, children) -> Stack id children)(\(Stack id children) -> (id, children))$ xpElem "Stack"(xpAttr "id" xpString)(xpList xpWidget)
We can see that this method can easily be expanded to support more Pareci widgets.

It is also clear that both the Widget data type and the pickler implementation is trivial
to implement, given the widgets and their properties. This pickler can be generated

using template haskell given the Widget type.
One drawback of this pickler is that it only supports some specific widget properties

in either attribute-wise or element-wise specification, not both specifications. Also

real element mode for arbitrary properties is not supported, only the logical child, if

specified, is allowed. The parsing of the xml only works in a specific way and is not

generally useful for real programs where both property values specifications are used

interchangeably. The next section describes a pickler for the generalised widget that

does support both ways of setting property values.

3.2.2. A pickler for the generalised widget type

For the generalised WidgetInstance in section 3.1.2 we can generate picklers with-
out depending on Template Haskell.

Since we are translating the XML-tree into an UnparsedWidget we only need to
define the pickler for that specific type: PU [Node] UnparsedWidget.
6xpAlt :: (a -> Int) -> [PU t a] -> PU t a
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Since we are not hindered by using the exact widget constructor, we can use the

provided xpElemWithName7method, which, given an attribute and node pickler, gives
us a triple with the widget (XML-)name, attributes, and elements. Wrapping this usingxpWrap gives us the possibility to match the XML-name with a widget name from
a widget, to combine the properties found in the attributes and elements, and to

construct an UnparsedWidget instance. When combining the two sets of properties
we can immediately check for duplicate properties and report this.

The other way around when producing the XML we have to supply the widget name,

a list of properties which we want to output as attributes and a list of properties that

we want to output as elements. Since we know we are dealing with UPropVal we
can ignore all NotSet since we do not need it in the output, output all Unparsed
information as attributes (, since we know that they can only be strings), and output allUResolved widgets as child elements using element property syntax.
In the actual implementation we use a modified version of xpElemWithName that

passes the definition of our widgets to the picklers used for the attributes and elements:xpElemWithWidgetDef8.

xpUnparsedWidget :: WidgetDefinitions -> PU [Node] UnparsedWidgetxpUnparsedWidget wds =xpWrap(\(name, props, props’)-> WI (getWidgetDefFromWds wds name) (joinProps props props’))(\(WI wd (M.toList -> props))-> ((createName $ name wd), filterPropsForAttr props, filterPropsForElem props))(xpElemWithWidgetDef wds(xpUPropsAttr)(xpUPropsElem wds))
The function getWidgetDefFromWds takes care of looking up the widget defini-

tion given a widget name. joinProps joins the sets of found properties and handles
possible duplicate properties. The filterPropsFor functions filter the PropVals as
described above. Some extra care has to be taken such that the Pareci namespaces are

respected. One can for example declare a Goto action widget as Widget_Action_-Goto of a:Goto using namespace urn:Widget_Action. If the logical child is set for
a widget, we have to allow this as child element as well.

7xpElemWithName :: PU [Attribute] a -> PU [Node] n -> PU [Node] (Name,a,n)
8xpElemWithWidgetDef :: WidgetDefinitions -> (WidgetDefinition -> PU [At-tribute] a) -> (WidgetDefinition -> PU [Node] n) -> PU [Node] (Name,a,n)
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3.3. Expression and Binding Syntax

Many values in Pareci are constructed using property values. Property values can be di-

vided into two parts: the expressions and the bindings. Expressions contain arithmetic

operators, logical operators and plain numbers, strings and booleans and binding syn-

tax refers to dynamically bounded variables.

Whether a string is a binding or expression depends on the first character. If it is an

equals (= ) sign it is a expression, otherwise it can be a simple string or a binding. A

binding can be recognised by its surrounding curly brackets ({ } ).

The implementation of the property value parser is made using the uu-parsinglib

[Swi09].

The grammar and data types for the property values can be found in appendix B

3.4. Combining the Pickler and Property Value parser

The XML picklers and the expression syntax parser can be combined to check both the

content and the structure of a Pareci page or application. The next step is to actually

validate the semantics of the page to see if the pages make sense, which we will not

do here.

To summarise we have bidirectional functions to translate between the Page XML,

the UnparsedWidget and ParsedWidget. This is illustrated in fig. 3.1.
Page XML

UnparsedWidget

ParsedWidget

unpickle

fmap (execParser pPropertyValue)

pickle

fmap out

Figure 3.1.: Bidirectional translation from XML type to Analysis types

The pickler defined in section 3.2.2 provides the pickle and unpickle functionalily.
The parser and Functor implementation of WidgetInstancemakes sure we can run
the parser from section 3.3 to translate from UnparsedWidget to ParsedWidget.
The translation back is done by simply outputting the parsed expressions and bindings
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to plain string using the out function. Note that this is simplified a bit, since PPropVal
also contains widget instances and not just strings.

The next chapter discusses how to describe an analysis of a Pareci program as a

Monotone Framework and how to perform these analyses.
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To be able to analyse Pareci we will need to have some kind of analysis methodology.

We will use data flow analysis. This is based on analysing the control flow of the anal-

ysed program. We will first look at what data flow analysis means by discussing it using

some simple examples and how we can use a monotone framework formalisation

and a worklist algorithm to solve them. Then we will focus on applying these ideas to

Pareci.

4.1. Program Analysis

Before we delve into the analysis of Pareci, let us first look at program analysis in a

more generic way. In essence with program analysis we can do static compile-time

analysis, which will result in fewer run-time bugs and allow for optimisations. This

is done by analysing all program statements and combining knowledge about them

from different parts of the program into information that can be used to filter out for

example redundant computations and undefined variables.

One of the most important parts of data flow analysis is the control flow graph.

This control is a graph that represents the flow of a program execution. Each node

corresponds to a program point which we will represent as [p]l where p is the program
point and l is a unique label. Basically each program point corresponds to a statement

in the program source code or a point on which the control flow of the program can

diverge or converge. An example for the last case is a function call. Edges between

nodes represent a flow of control during program execution.

We will discuss some useful classical program analyses below as defined in [NNH04],

which the analyses on Pareci are based on.

4.1.1. Classical Program Analyses

Reaching Definitions

Reaching Definitions is an analysis that determines which relevant assignments have

been made at points in program executions. This allows us to determine whether there

are unnecessary assignments. For example see the following piece of code, where :=
denotes is an assignment and x and y are variables.
y := 1y := 2x := y

43



4. Data Flow Analysis

We can easily see that the first assignment y := 1 is redundant, because y imme-
diately gets reassigned another value in y := 2. Reaching definitions analysis can
detect these kind of redundant assignments.

This analysis can be done by following the program flow and keeping track of which

assignments are done where and overwriting them when another assignment is done.

Live Variables

A variable is live if it holds a value that may be needed in the future, i.e. a variable may

potentially be read before it is reassigned.

Live Variable analysis is used to determine if there is code that is executed but which

has no observable effect on the program’s result. It can also detect if variables are

being used before they are defined.

4.1.2. Analysis results

The result of an analysis is a mapping from program points to a relevant value. To

generalise this, we restrict the values for each result set to the elements of a complete

lattice [Wil12,NNH04,Fri11]. A lattice is a partially ordered set, which captures the intu-

itive concept of an ordering. This ordering is defined for each lattice L with a reflexive,

anti-symmetric, and transitive binary relation⊑. L also has a least upper bound or join
(⊔) and a greatest lower bound ormeet (⊓). Its greatest element is called top (⊤) and
its least element is called bottom (⊥), meaning that ∀a ∈ L.(⊥⊑ a⊑⊤).
Elements of a lattice are used to represent analysis results. Given a lattice L, for

each program point we have two kinds of values: a context value L◦. The effect value
is thus always dependent on the context value and is calculated by a transfer function.

The calculated effect values are propagated to the context values of the successors

program points in the flow graph.

Intuitively a lattice’s bottom is the most amount of information, increasing by each

larger element and top is the least amount of information.

4.2. Monotone Frameworks

All analyses described above can be formalised as instances of Monotone Frameworks.

Using a similar framework to represent the analyses, we can make use of generic

algorithms to solve the data flow equations.

For all of the analysis variants [NNH04] that they have this overall pattern.

Analysis◦ (l) =

ι if l ∈ E⊔
{Analysis• (l

′)‖(l ′, l) ∈ F} otherwise

Analysis• (l) = fl (Analysis◦ (l))
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where
⊔
is the join of the lattice L, F is the control flow, ι is the initial analysis value

and fl is the transfer function associated with program point l. (a,b) is used to denote
an edge from node a to node b.

We have two kinds of analysis directions, forwards and backward. The forward anal-

ysis means that the program control flow (flow(S∗)) is used as the program executes;
the backwards analysis has exactly the program control flow backwards (flowR (S∗)),
which can be easily obtained by reversing each edge in the directed flow control graph.

S∗ denotes all the statements in the analysed program. Typically extremal nodes are
each others duals for directions.

Transfer function fl ∈ F, where F is the set of monotone functions from L to L

including the identity function. fl is a transfer function that computes the effects of

program point l given the context of l. It is monotone in the sense that l⊑ l ′⇒ fl (l)⊑
fl (l

′), meaning that an increase in knowledge in the input lmay not lead to a decrease
in the knowledge of the output fl (l).
Lmust be a complete lattice that satisfies the Ascending Chain Condition, meaning

that each ascending chain l1 ⊑ l2 ⊑ l3 . . . eventually stabilises, ∃n.(ln = ln+1 = . . .). Be-
cause we choose our lattices finite (i.e. only picking the actual variables used in our

program instead of all possible variables), this is the case.

To make an instance of a monotone framework [NNH04] we thus need:

∙ a complete lattice L

∙ a function space F

∙ a finite flow F, typically forward flow(S∗) or backward flow
R (S∗)

∙ a set of extremal labels E, typically the initial or final program points

∙ an extremal value i ∈ L, the starting value of the extremal program points

∙ a mapping f which maps the program points in F and E to transfer functions in F

4.2.1. Worklist algorithm

To compute the analysis result we must “solve” the monotone framework. This can be

done using a maximal fixed point algorithm, in our case a worklist algorithm based on

the Maximal Fixed Point solution in Section 2.4 of [NNH04].

The input to the algorithm is an instance of a Monotone Framework (⟨L,F,F,E, ι,f⟩).
The output is a stable mapping from program points to analysis result context

(Analysis◦) and effect values (Analysis•).
A formal description can be found in algorithm 1. We can roughly divide it into three

steps: initialisation, iteration and presenting.

The analysis result for each program point is initialised bottom, or if concerning an

extremal program point as ι. The algorithm adds all edges in the control flow graph to

a worklistW. Then it will continue untilW is empty. With each item it will check if it

yields stronger information (using the ordering relation ⊑) and if so add it to the result.
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Algorithm 1Worklist algorithm

function MFP(L,F,F,E, ι,f)

Analysis [l]←

ι for l ∈ E

⊥L otherwise

. Initialisation

W← F . Initialise worklistW
whileW not empty do . Iteration

(l, l ′)← head(W) . Pop the next item from the worklist
W← tail(W) . Update the worklist
if fl (Analysis [l]) ̸⊑Analysis [l ′] then

. Applying the transfer function yields new information
Analysis [l ′]←Analysis [l ′]⊔fl (Analysis [l]) .Merge the analysis result
for all l ′′ with (l ′, l ′′) ∈ F do

. Add edges for which the result is influenced by l ′′ to the worklist
W← (l ′, l ′′) :W

Analysis◦←Analysis . Presenting
Analysis•←map fl Analysis

return (Analysis◦,Analysis•)

Any edges that are influenced by this update are again added toW. Since our lattice

adheres to the Ascending Chain Condition the worklist will eventually become empty

since no weaker results are encountered.

The Haskell implementation used for the Pareci analysis can be found in appendix C.

Optimisation

To optimise the running time of the algorithm discussed above we can make sure the

worklist is initialised in an order for which we know that it will result in decreasing the

number of edges re-added to the worklist.

In a forward analysis it is fastest if all predecessors of a program point have already

been processed before the point itself. The iteration will then contain the latest infor-

mation. This corresponds with a reverse postorder traversal of the context flow graph

starting at the entry point of the application. Reverse postorder iteration visits a node

before any of its successors have been visited. For backwards analysis we want to visit

a node after any of its successors have been visited, this is done by postorder traversal.

We replace the initialisation step of the worklist by the following statement to make

the worklist algorithm follow the analysis direction better, in order to be more efficient.

W←

reverse postorder traversal of F if forward analysis

reversed edges of postorder traversal of F if backwards analysis

For the forwards analysis this is implemented for the control flow graph by doing a

postorder traversal and skipping nodes that have already been visited. The last step is
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to reverse the result list. A backward analysis uses the same postorder traversal and

swaps the edge direction.

4.2.2. Interprocedural data flow analysis

Many programming languages support some kind of functions or method calls. This

is something the analysis should also deal with. A naïve solution would be to insert

a copy of the program points of the function everywhere the function is called, but

this is a not a viable solution since it would increase the number of program point

dramatically and in languages supporting recursion infinitely much. We have to do

something smarter.

We follow the approach found in [NNH04] and introduce two program points for

each procedure call, corresponding to the call and the return of the procedure. The

programs flow is represented by connecting the call point to the first program point in

the function and the last point in the function to the return point.

To drawback of this approach is that the result of all function calls is combined in

each return, resulting in a loss of specificity. To deal with this we introduce the concept

op context-sensitive analysis. This means that we do not only have an analysis result

in terms of lattice L, but also specified by some context ∆, which is used to make the

distinction between different function calls. We lift our analysis result to a new lattice

L̂ : ∆→ L. This means that we also have a lifted transfer function f̂l : L̂→ L̂; this can be

easily implemented by applying fl to each lattice value separately, effectively keeping

the different contexts separate: f̂l(̂l)(δ) = fl

(̂
l(δ)

)
.

To handle the updating of ∆ we need a way to represent the context changes for

relevant the program points. For an interprocedural analysis this are the calling of

procedures and the returning of procedures.

In fig. 4.1 we find a representation of the call and return process. The nodes rep-

resent program point [S]l for statements S and with label l. The edges contain the
analysis result values. The entry and exit of the procedure are represented respectively

by [Entry]ln and [Exit]lx . The [Call]lc program point represents the call to the pro-
cedure and the [Return]lr program point the return of the procedure. The handling

of the incoming analysis result l̂ is handled by the transfer function f̂1
lc
for the call

program point. This function also handles the analysis context changes corresponding

with the procedure call The analysis result from point lx, corresponding with the exit

of the function is handled by f̂2B
lc,lr , which also handles the context changes correspond-

ing with the procedure return. The transfer function used for return program point is

f̂2
lr

(̂
l
)(
l̂ ′
)
, which consists of joining the results coming from the exit point and the

call node: f̂2A
lc,lr

(̂
l
)
⊔ f̂2B

lc,lr

(
l̂ ′
)
. The result coming the call point, can also be transfered,

which handled by f̂2A
lr

(
l̂ ′
)
.

By using lifted lattices and transfer functions, we only have to make a small adjust-

ment to our implementation of the worklist algorithm. The function f̂2
lc,lr is a binary
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[Return]lr

...

[Exit]lx

...

[Call]lc

[Entry]ln

f̂1
lc

(̂
l
)

l̂ ′

f̂2
lc,lr

(̂
l
)(
l̂ ′
)
= f̂2A

lc,lr

(̂
l
)
⊔ f̂2B

lc,lr

(
l̂ ′
)

l̂

l̂

Figure 4.1.: Interprocedural flow and transfer function
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transfer function, which needs to be called correctly by the worklist algorithm. To

be able to discriminate in using the original binary transfer function and the newly

defined unary transfer function, we use a Monotone Framework variant called Em-

bellished Monotone Frameworks, which contains a notion of inter-flow, which is the

set of tuples containing ⟨lc, ln, lx, lr⟩ containing the labels for each function call. The
worklist algorithm can use the binary transfer function whenever the (lx, lr) edge is
encountered in the worklist and the unary transfer function in all other cases. The lc
label can be used to retrieve the l̂ from the analysis result set. The context changes

get handled by the lifted transfer function and the lifted lattice adheres to the same

properties as the original lattice. The new Embellished Monotone Framework instance

is

〈
L̂, F̂,F,IF,E, ι̂, f̂l

〉
, where IF is the inter-flow.

The adaptation of the worklist algorithm based on Embellished monotone frame-

works can be found in algorithm 2 and the Haskell implementation in appendix C.2.

Algorithm 2Worklist algorithm

function MFP(L,F,F,IF,E, ι,f)

Analysis [l]←

ι for l ∈ E

⊥L otherwise

. Initialisation

W← F . Initialise worklistW
whileW not empty do . Iteration

(l, l ′)← head(W) . Pop the next item from the worklist
W← tail(W) . Update the worklist

newAna←

f2
lc,lr (Analysis [l]) ∃(lc, ln, lx, lr) ∈ IF.(l≡ lr)

f1
l (Analysis [l]) otherwise

if newAna ̸⊑Analysis [l ′] then
. Applying the transfer function yields new information

Analysis [l ′]←Analysis [l ′]⊔newAna .Merge the analysis result
for all l ′′ with (l ′, l ′′) ∈ F do

. Add edges for which the result is influenced by l ′′ to the worklist
W← (l ′, l ′′) :W

Analysis◦←Analysis . Presenting
Analysis•←map fl Analysis

return (Analysis◦,Analysis•)

This context can be chosen as any property for which we want to differentiate the

analysis by.

For an interprocedural analysis we want to distinguish between the different func-

tion calls, therefore we pick the ∆ as call strings. A call string is a list of identifiers of

which procedure calls are previously made. A good identifier would be the label of the

corresponding call program point. In this case the lifted unary transfer function f̂1
l can

use the transfer function for L and keep the context identical for all program points
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that are not a call or return. The binary transfer function f̂2
l updates the call string: for

calls we add the call label lc to the context values and for return functions we remove

lc from the call string again. This is the case for forwards analyses. Backward analyses

have the function for call and return program points swapped. To make sure that the

call string does not increase infinitely in case of a recursive function call, we can limit

the call string length.

Using context-sensitive analysis only relevant information from the corresponding

call site is available after the return is handled. Any information from different calls to

the same function are ignored by the transfer function of the return point, while only

needing one representation of the function flow in the control flow graph.
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5.1. Pareci as a Monotone Framework Instance

To be able to do data flow analysis of Pareci programs, we need to describe a way to

turn a Pareci application into a Monotone Framework instance. An important part of

the instance is the program flow. Since Pareci pages are realtime applications depen-

dent on user input, this can be a hard task.

This sections defines how we can create a Monotone Framwork instance for Pareci.

One of the most important aspects of data flow analysis is the data flow. Since Pareci

is GUI-driven and uses events to process user action, we have to model this in the

flow. We look at program analysis for other GUI-driven programming environments

and how we can use those ideas to define the program flow for Pareci.

5.1.1. GUI and events

There are some similarities between Android and Pareci. Both use XML-based declara-

tive layout files and are event-based. Payet en Spoto [PS11] describe how to optimise

their static analysis tool Julia to deal with Android applications. In Android applications

the XML layout files are initialised using Java reflection and thus declared at runtime.

Their model has support for adding the required properties, fields and view objects

to the analysis context, thereby making them available for analysis. In this case the

initialisation is driven by the Java-code. To do something similar the Pareci framework

implementation would also need to be analysed. Since this is out of the scope of this

thesis, a similar approach can be emulated in a step before the analysis.

An initialisation of the analysed Pareci page could be used to make sure that all the

static components of the page are available. This means the extremal values for the

analysis might not be the bottom of the analysis lattice, but one with more information

available. For Android most events can be called from outside the program, so Payet en

Spoto’s [PS11] solution is to add these as entry points to the application. In Pareci this

is not the case, so we do not have to deal with this issue. Events can thus be handled

by doing the initialisation step as described above.

Staiger [Sta07] describes a way to detect which elements of the program are part

of the GUI and how to handle events in Android program analysis. The former is not

important for analysing Pareci, since we already know which widgets are GUI widgets,

but the latter aspect is interesting. They deal with events by adding a main loop to

the program, in order to let the analysis find out which relevant events can happen.

We apply this strategy to Pareci to work with the actions that a user can do while

51



5. Analysing Pareci

interacting with the Pareci application. The main-loop program point is inserted after

the page initialisation steps are completed.

A side note here is that Pareci can handle multiple requests at once and also has

options to delay specific events (or Actions) which would result in parallel handling.
In this thesis we only look at sequential handling of (user) events. This simplified view

makes the analysis less complex and thus more understandable and better performing.

An alternative approach here to deal with multiple requests is to make it possible to

break out of and action and later on return to finish that action. This can be easily

implemented by respectively inserting additional return and calls during the main

program loop as discussed before.

5.1.2. Pareci flow

Page Outline

We define the flow of a Pareci page in two parts. First we initialise the scope of the

page, meaning all UI elements, variables and resources. As a rule of thumb we can

use all widgets that inherit from Widget_Widget as UI widgets. More specifically , we
can check the information/types of the widget properties where children of Widget_-Widget are allowed. Then we insert a main loop in which the (user) events are linked.
In fig. 5.1 we can see the basic layout of a Pareci page flow. When the page is

accessed we start in program point Start, then first the UI widgets are added to the

flow (in UIWidgets). Subsequently we enter a program point called EventLoop at

which point events can occur. An event triggers an action execution. After an action is

finished, the control flow is returned to the EventLoop. From there another action can

be triggered or the execution can finish by following the flow to End.

Note that since this is a flow analysis, there are no problems here with the infinite

loop, because we have chosen an analysis lattice which conforms to the Ascending

Chain Condition as discussed in section 4.2.

The initialisation of the UI widgets is sequential. We traverse the Pareci page in a

depth first order, creating flow for every child widget in the page message, resources
and content property values. The next step is to add the events to the flow. After
creating the EventLoop node, we can make flow to and from all possible callable

actions. For ActionLists we can do the same sequential composition as for the child
widgets of the page. All actions in the list can be connected in execution order.

More generally, there are two ways of handling widgets. One for those with children,

such as Page and Stack and for those without such as LinkButton and Debug.
Those without are the easiest to handle. They have exactly one node and have flow

from their predecessor, and flow to the next in line. Basically their flow is dependent

on what comes before and after. Widgets with children have a node for themselves

and a flow to their children and between them.

Each widget has a program point associated with it in the data flow. We treat widgets

as single entities, which in essence means that they have single effect on the analysis

result. We define a transfer function that handles all the properties and specifics of
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Page

UI Widgets

Events

End

EventLoop

Action nAction 1

Start

Widget m

Widget 1

Figure 5.1.: Schematic Pareci Page Flow
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the widget in section 5.2.2. Most widgets have no flow, unless they can contain child

widgets which have special meaning, such as the children of the Page, ActionList
and Trigger widgets.

Specification of Pareci flow

More formally we can define the above approach as a support function for Data Flow

Analysis. Let us first define a widget w without children [w]l with label l and a widget
[wc]

l
with children c1 . . .cn. .. Any Haskell code in this section is based on our first

widget definition attempt using a constructor for each widget, found in section 3.1.1.

To make this easier to describe we first introduce init and final functions, where

init gives us the initial label of a statement and final the set of last labels.

init : ParsedWidget→ Label

init([w]l) = l

init([wc]
l) = l

final : ParsedWidget→ P(Label)

final([w]l) = {l}

final([wc]
l) = final(cn)

flow :ParsedWidget→ P(Label×Label)

flow([w]l) =∅

flow([wc]
l) = {(l, init(c1))}

∪

 ⋃
ci∈c\cn

({(fi, init(ci+1))‖fi ∈ final(ci)})


∪ flow(c1)∪ . . .∪ flow(cn)

The flow for flow([wc]
l) connects the current widget label l to the inital label of its

first child. Also the possible multi-element results of final of each child is connected to

the next child by the second line of flow([wc]
l). The flow of this children is also added.

Because we defined the final of the wc as the final if the last child the widget itself is

connected by its possible parent. The widget itself has no flow and its effects are dealt

with in the transfer function. Some specific kinds of widgets do manipulate the flow

and are discussed below at the end of section 5.1.2.

When actually implementing this we use an attribute grammar where the list of
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children c is a separate terminal. The flow function becomes:

flow([wc]
l) ={(l, init(c))}

∪ flow(c)

flow(c) =
⋃

ci∈c\cn

({(fi, init(ci+1))‖fi ∈ final(ci)})

∪ flow(c1)∪ . . .∪ flow(cn)

where for the list of children c:

init
(〈

[c1]
l1 , . . . , [cn]

ln
〉)

=l1

final
(〈

[c1]
l1 , . . . , , [cn]

ln
〉)

= {ln}

The functions init(c) and final(c) return respectively the label of the first and last
child of c.

Basically we are creating a chain of widgets in sequential order and connecting their

finals and inits. For example consider the following Pareci page fragment to illustrate

the flow creation for children:

<Stack><LinkButton /><Debug /><TextOutput /></Stack>
We see widget Stack with children ⟨LinkButton,Debug,TextOutput⟩. The corre-

sponding flow is shown below.

[Debug]3 [TextOutput]4[Stack]1 [LinkButton]2

with init
(
[Stack]1)= 1 and final

(
[Stack]1)= final(children of Stack) = {4}.

This way of defining flow is implemented using the Utrecht University Attribute

Grammar System [DS05]. We traverse over the Pareci widget tree and whenever a

widget has child widgets we add them.

The next step is to deal with the events. For this we have to create a special node

which represents the EventLoop. Remember that we have a ParsedWidget type for
representing the Pareci widgets. For the UI elements above, this was enough to define

the flow, but if we are introducing new analysis nodes such as EventLoop we need to

extend it. Therefore we wrap ParsedWidget in ProgramPoint which can contain an
EventLoop node or a Widget.

data ProgramPoint = WrappedW {widget :: ParsedWidget}| EventLoop
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This way we can represent all widgets (albeit in a wrapper) and the EventLoop. The

EventLoop is added to the flow by the Page widget. After all non-action widgets are

added to the flow an EventLoop node is created with the following properties:

init
(
[EventLoop]l

)
=l

final
(
[EventLoop]l

)
= {l}

flow
(
[EventLoop]l

)
=the set of edges of l to the possible triggered actions

We discuss the connecting of actions calls below. This leads to the following flow for aPage:
init

(
[Page]l)=l

final
(
[Page]l)=lEventLoop

flow
(
[Page]l)=flow(wcPage

)
∪
{(
f, lEventLoop

)
‖f ∈ final

(
cPage

)}
where wcPage is Page as a widget with children as above. The children here are themessage, resources and content properties of the Page. lEventLoop is the label

of the event loop that is instantiated during the calculation of the flow of Page.
The flow of the created EventLoop is now extended by adding also the flow used

for the actions. To get all the possible events, we create another attribute which stores

the events encountered when traversing the Page. This consists of basically all Action
Widgets on the Page.
The last step is to wrap the whole analysis with a Start and End node. This is

to make sure we have a single start and end point for the analysis. We add those

constructors to the ProgramPoint data type.
data ProgramPoint = [...]| Start| End
We also make sure that when the analysis is started they are added to the flow. To

do this the whole analysed program gets wrapped in a Top constructor to handle this
part.

data Top a = Top {unTop :: ProgramPoint}
Top only takes over the flow if its wrappee and connects Start to its init and its

finals to End.

flow(Top) =flow(unTop)

∪ (lStart, init(unTop))

∪ {(f, lEnd)‖f ∈ final(unTop)}

unTop refers to the wrapped Widget and lStart and lEnd refer to the created Start

and End program points.
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ActionList

EventLoop

Action1

Action2

Figure 5.2.: Too many paths in an action list

Drawbacks

There are a couple of drawbacks to the approach sketched above.

This approach includes all possible program execution paths of a Pareci program,

but it is not what Pareci does and will make the analysis result imprecise. It produces

too many paths, for example when calling actions.

Consider fig. 5.2; we can either reach Action1 directly or by calling ActionList. This
is no problem in itself, but we also get a situation now where we have the following

path {EventLoop,ActionList,Action1,EventLoop} and thus skipping Action2, event
though it is part of theActionList. The path {EventLoop,Action1,Action2,EventLoop}
has the same issue. This means that there are possible execution paths that can never

occur in a real program and thus only make the analysis stricter than it needs to be.

We handle this by treating the triggering of actions as functions calls and using the

interprocedural analysis technique as discussed in section 4.2.2. For each call to an

action we introduce a Call and Return corresponding with a call site to the action.
To denote the end of an execution of the widget we also introduce Exit. We expand
the ProgramPoint type for this:
data ProgramPoint = [...]| Call {ident :: Ident}| Return {ident :: Ident}| Exit {ident :: Ident}
This means that the flow of each action contains a program point for the action itself,

its children if any, and an Exit node. We require the added program points to have a
identifier (ident) corresponding with the action.
The Call and Return are only created and connected if an action is actually callable

and referenced in an event. An action is callable if it has an id9. To determine which

57



5. Analysing Pareci

ReturnAction
...

EventLoop

...

CallAction

Action

ExitAction

Figure 5.3.: Action call and return flow

actions are called, there is a pass over all the widgets, in which we collect all the id’s
referenced in event properties such as the onClick property10. There are two special
cases: ActionLists and Triggers. In the case of an ActionList, calls are created
to every child and connected sequentially. A Triggercan trigger an action and there-
fore create a Call and Return connected to the triggered action.
A simple action call’s flow diagram can be seen in fig. 5.3.

In fig. 5.4 we can see an example of a fragment of the resulting flow graph con-

taining an ActionList with a Log and a Trigger which calls the Log again. TheActionList is called by some event on the page and therefore called via the Event-Loop. When we follow the flow from the EventLoop, we can see that it correctly goed
through the ActionList, which calls the Log and then we choose at ExitLog which
path to Return to pick. This is not a problem, because it is handled by the interpro-

cedural analysis. The Return corresponding with call from the ActionList (denoted
with box), leads us to the call of the Trigger, which in turn calls the Log again. In this
example we have seen the handling of sequential calls by the ActionList and the
handling of the Trigger11. This rougly corresponding with the following Pareci code
fragment:

<a:ActionList id="al"><a:Log id="log" /><a:Trigger target="log" />
9Note that this is actually a simplification, because actions can also be called by referencing it in another

way than ID, for example by referencing its location in a list. Given a Page with id pageId a valid
binding to the first action of the page would be {#pageId.actions.1}. For this prototype we do
not support this, because it is rarily used.

10Here it is also possible to call an action not with a direct id but by using an expression which evaluates
to a valid id. This is not supported at the moment.

11The actual implementation also handles Var as children of a Trigger. This is used for assigning new
values to Vars on page the target action is on. Since our analysis prototype does not support calls to
other pages, we can safely implement this by inserting extra Assigns into the flow replacing eachVar and handling them accordingly.

58



5.1. Pareci as a Monotone Framework Instance

</a:Actionlist>[..]<LinkButton onclick="{#al}" />

Dependency Analysis

When naïvely building up the program flow top-down from a page definition, we run

into problems with flow order. A widget can reference any other widget on the page.

This means that every other widget can be referenced. In Pareci there is no strict order,

the whole page just exists and is accessible. Bindings are resolved lazily.

To deal with this when creating the flow for a page, we can look at the dependency

graph of a page. We build a dependency graph by associating with each widget which

variables it provides and which variables it depends on. Next we can detect cycles in

this graph by finding any strongly connected components which contain more than

one widget [KL94].

If a cycle is found, we can now put out a warning to the user. The analysis can still

continue, but is no longer guaranteed to be correct, since some widgets might depend

on widgets defined earlier in the flow.

A topological sort of the dependency graph now results in the actual order of widgets

depending on each other. To improve the flow definition we can connect this ordering

in a sequential manner and add it to the program flow instead of adding them in the

order as done earlier. We update the flow function for Page:
flow

(
[Page]l)=topological sort of dependency graph of Page’s "UI widgets"

∪ flow(actions)
∪
{(
f, lEventLoop

)
‖f ∈ final

(
cPage

)}
where the UI widgets are the children in the Page’s message, resources and con-tent. The flow of the actions of the Page is also added.
5.1.3. Variables

Almost all analyses use some kind of representation of variables, so we need a good

way to represent them for Pareci. Pareci does not have variables in a standard way,

since in Pareci all bindings occur in a context as discussed in section 2.1.3. Let us start

with a way to look at variables:

type Var = Binding
A Var can be represented as a Binding. For example the binding {#person.name}

directly refers to the object (in scope) with id person on the page. Essentially this
is a variable #person which stores the value of the object associated and name is a
property on this variable and can be seen as a field of this object.
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Figure 5.4.: Action flow fragment with trigger
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Every binding type can be reduced to a normalised form b̂ as discussed before in

section 2.1.3. Associated with this normal form are the Binding constructors as found
in appendix B. This is shown in table 5.1.

Table 5.1.: Reduction to normalised form extended with Binding constructors
Binding syntax Normal form Haskell constructor

{~id} ~id BLocal id
{id} ~context.id BContext id
{__name.id} ~_globals.name.id BGlobal name id
{^id} ~_parent.id BParent id
{#id} ~_scope.id BScope id
Variables are thus always relative to the current widget ‘~’. When the analysis results

follow the flow to the next widget, we also have to make sure that the variables are still

correct. Variables relative to the context must be updated to the possible new context.

Scope changes also have to be taken into account.

Global variables are handled by the widget itself but should always refer to the same

global object, thus for our purposes we can see this as an absolute value.

Simple properties can be handled by denoting variables as Bindings, since we can
just introduce a new variable for every property of an object. Property name of variable~person can be introduced as ~person.name. If method calls and expressions come
into play, a type system and object model are needed to be more precise about which

variables are introducible.

5.1.4. Pareci Context

Every variable is always in a context. Most of the time the context is equal to the

context of the parent element in the source Page updated with the context of the

current widget. Consider the following Pareci fragment:

<Page>[..]<Page.content><Stack context="{#person.value}"><TextOutput id="to" context="{mother}" value="{name}" /></Stack></Page.content></Page>
The value displayed by the TextOutput with id equal to to is the value of the vari-

able corresponding with #person.value.mother.name for some widget in scope
with id set to person. In this example it is straight forward where the variable value
comes from.
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The interesting case is where context is used in action calls. For example:

<Page>[..]<Page.actions><a:ActionList id="update"><a:Assign id="store" field="{name}" value="{#ti.value}" /></a:ActionList></Page.actions><Page.content><Stack context="{#person.value}"><TextInput id="ti" value="{name}" /><LinkButton onclick="{#update}" text="update" /></Stack></Page.content></Page>
Action update is called by the LinkButton. Now the action is executed with the

inherited Pareci context of the calling LinkButton. In this case the Assign with idstore assigns the name field of the calling context #person.value, which results
in assigning #person.value.name to the value that is entered in the text field ofTextInput ti. Another call to store could be from another context, thus it is not
static and can not be known before the analysis runs.

To be able to deal with dynamic Pareci context, each Call contains the context of
the caller and whenever a Call is analysed by the worklist algorithm, it updates the
analysis given this context. To be able to allow recursive and multiple sequential calls,

the corresponding Return also updates the analysis given the context in the opposite
direction to make sure the analysis is correct and does not infinitely grow. This is

handled by the transfer function and is explained in detail for the liveness analysis in

section 5.2.2.

We extend the ProgramPoint to support this by adding the Pareci context to the
constructors of Call and Return.
data ProgramPoint = [...]| Call {ident :: Ident, pContext :: Context}| Return {ident :: Ident, pContext :: Context}| Exit {ident :: Ident}
5.1.5. Monotone Framework instance

To conclude we can now formulate the Monotone Framework instance〈
L̂, F̂,F,E, ι, f̂l

〉
for Pareci. Using L̂= ∆→ L, where L is the relevant analysis lattice and ∆ is the extra

contextual information taken into account in the Monotone Framework instance. F̂
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= P((∆→ L)→ (∆→ L)), F is the flow as defined in section 5.1.2, E are the extremal
labels, which is the init program point in the case of a forward analyses and the

final program points in backwards analyses, ι are the extremal values and therefore

dependent on which analysis is done. f̂l : P((∆→ L)−> (∆→ L)) is as discussed in
section 4.2.2, making use of fl : L→ L.

For all analyses we can pick the same

〈
∆,F,E, f̂l

〉
and we only have to specify the

⟨L, ι,fl⟩ which are dependent on the analysis chosen. For L we can get away by only
specifying the ⊥, ⊔ and ⊑, which is in essence a bounded semi-lattice. The worklist
algorithm uses only those operators. Some analyses define either bottom and join

or top and meet, essentially the lattice flipped upside down. We stick to the notation

using bottom and join. Top is defined as ∀l ∈ L.l⊑⊤ and ∀l ∈ L.l⊔⊤ =⊤, essentially
meaning that once you get to ⊤ you are “done”.

5.2. Analyses on Pareci

Now that we have a Monotone Framework representation for Pareci, we can start doing

program analyses on Pareci programs. Ultimately we want to do type analysis, but it is

also interesting to look at different simpler analyses.

In the following sections we look at liveness analysis as an example of a widely used

analysis type applied to Pareci in section 5.2.2. We devise two new analyses for Pareci.

The first is a used fields analysis in section 5.2.3, which can help reduce the number

of database calls. The second is a soft typing analysis in section 5.2.4, which warns the

user of possible type conflicts. For each analysis we discuss possible input programs

and desired analysis results.

5.2.1. Object Model

To be able to do a correct analysis and because of the fact that Pareci is a mainly used

in data driven applications, we need to have a representation of our objects. We take

our object model as described in section 2.3 asM⊆ P(ObjectName×ObjectType).
Pareci objectmodels mainly come from the datamodel specified in the models.yml

file. This file can be read in by the analyser and are parsed to a Class object which
basically has a list of properties with names and values. The values can be primitive

types or names of other classes. In this case a class is analogous to a type. The Haskell

definitions for this can be found in appendix D.1.

The object model classes can be extended by supplying more properties and types.

We do this because more fields and methods can be added to the PHP-classes that

correspond to the data objects in the models.yml file and thereby become available
for Pareci.

We discuss types more in depth when we get to the type analysis in section 5.2.4.
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5.2.2. Liveness analysis

Liveness analysis (LV) is a backwards analysis that can determine which variables
are live. A variable is live at a program point if its value may be used in the future,

otherwise it is dead. This information can for example be used to optimise a garbage

collector by freeing the memory for objects that are no longer needed to finish the

execution [Mul93].

We can also use live variable analysis here to find all variables used during the

execution, but that are not defined.

In the case of a Pareci page, we create the Monotone Framework instance as de-

scribed in section 5.1. To finish formalising the Monotone Framework instance we

need to define ⟨L, ι, lf⟩ per section 5.1.5.

Live Variable Lattice

The analysis result is an element of our analysis lattice LVL, which is P(Var∗), where
Var∗ is the set of variables in the analysed program and Var is as defined in sec-
tion 5.1.3. We define the ordering ⊑ on this lattice as ⊆, because more variables
means less information. The bottom, the maximum amount of information, of the LVL

is the empty set. As join (⊔) we must use set union (∪).
Our extremal value ι defines the variables dat are requested as output of the whole

application. For us this is the empty set, since we do not require any live variables upon

termination.

With the Monotone Framework instance for this analysis it can be solved using the

worklist algorithm. The undefined variables can then be read out at the Start node
of each Page as a set of variables that were referenced on the page but never defined.
Transfer function

We define the transfer function in an incremental way, adding new important aspects

as we introduce them.

The transfer function f can be formulated as below. The context (∘) are transferred
to the effect (∙) of the widget. The killed variables are subtracted from the analysis
result, then the generated variables are added.

f
[w]lc

: LVL◦→ LVL•

f
[w]lc

(analysis) = analysis\kill
(
[w]lc

)
∪gen

(
[w]lc

)
For each widget [w]lc with label l and Pareci context c, we define gen and kill functions
which define variables that are generated and killed on that node. The \ and ∪ symbols
represent respectively the set minus and union operators

We generate variables when they are used at a program point and kill variables that

are defined. For each widget gen
(
[w]lc

)
contains all generated variables that occur in
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one of their properties and kill
(
[w]lc

)
contains all properties that they can produce. In

both cases we also need to process any Pareci context information, which is discussed

below in section 5.2.2. The kill and gen functions are:

kill,gen : ParsedWidget→ P(Var)

gen
(
[w]lc

)
=

⋃
vars(c,p) , where p ∈ properties of w, that are not child widgets

kill
(
[w]lc

)
= propNames(w)

where vars(p,c) gives us the set of all variables used in p updated with Pareci context c.
Since we filtered out the child widgets p is a PropertyValue, which can be a binding,
expression or simple string. We ignore the string and return the binding or any bindings

found in the expression. propNames(w) returns the names of widget w prepended
with its id.
The flow also consists of Call,Return,Exit,Start,End and EventLoop program

points. We also need to define the kill and gen functions for these points. In all cases

we let them kill and generate the empty set, since they do not create or use variables.

We consider the end of the program to be when the user session is ended. This can be

triggered by a user action or happen after a time-out by not using the application. This

way we can assume that no variable is live at the end of the program execution (and

therefore ι is the empty set).

Killing Data Objects Some widgets kill some more variables than their direct prop-

erties, such as with ObjectResource and Method, we must know which properties
objects have. This is captured in the object model, which is defined in section 5.2.1.

A naïve approach is, whenever such an object comes into scope, to look it up in the

objectmodel and add all possible fields on that object to the kill result. To deal with

possible recursively defined objects and therefore an unlimited number of properties,

we limit the maximum object depth12 used by the kill function.

Killing scope Another special case here are scope generating widgets such as Page.
All ID’s defined somewhere within them and their children are available in that scope

only. References to them on a page are also generated during the traversal of the flow.

The scope generating widgets therefore also need to kill all ID’s defined in that scope.

To deal with any scope changes we introduce the function scopekill that takes into

account the scope stack s.

12Another, maybe better, but not implemented approach is to make the kill function dependent on the

current analysis result, such that we only kill relevant elements. Since the current analysis result is

finite, we can check this in finite time as well and be sure we looked deep enough in the object to find

all relevant variables.
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For a scoped widget [w]lc,s with scope s, we define the following kill function:

scopekill
(
[w]lc,s

)
= top(s)

scopekill(w) = ∅

For scoped widgets the current scope (top of the scope stack) needs to be killed. For

all other widget this kills nothing extra. The stack s can be precalculated before doing

the analysis for non-action widgets and handled in the same way as context for action

widgets and thus each element of s is a set of ID’s defined on that level, stored as

variables.

This results in an updated transfer function:

f
[w]lc,s

: LVL◦→ LVL•

f
[w]lc,s

(analysis) =
(
analysis\kill

[w]lc,s
∪gen

[w]lc,s

)
\ scopekill

[w]lc,s

The scopekill
[w]lc,s

set is removed last because gen also contains the ID and variables

prefixed by the ID of the current scope, which we want killed as well.

Correct Pareci Context Another important factor is the Pareci context. Since some

variables are only valid inside a context, which should stay correct. In the case of as-

signments inside a non-action widget, we already know the context in which a binding

is used and the correct variables (in a scope) can be determined. For actions we must

update the variables accordingly to any context changes.

Given a Pareci context c and LVL analysis result analysis, we can update the analysis

for widgets that are relative to the context. Binding variable set {{a},{b.c},{#id}}
and context {new} can for example be updated to {{new.a},{new.b.c},{#id}}.
Here the context is added for contextual variables (a,b.c) and ignored for non-contextual
variables (#id). All contextual variables have a normal form that begins with ~_con-text by which they can be recognised.
Since this analysis is backwards, all contextual variables in the analysis result need

to be updated or reverted when respectively a Call or a Return is encountered.
These context changes only occur when encountering Call or Return, since for all
the other widgets the Pareci context can be determined statically. In a forward analysis

the update and revert are done inversely. It should be the case that all variables in the

analysis result between the call and return (during the action) are stripped from their

Pareci context, since the whole action and everything in it is relative the call context.

When leaving the action the context is again added to the variables because the action

context is left.

The context update is handled by A .w c. For all w where w is not an instance ofCall or Return it is the identity. For Call or Return it updates the A as described
below.

The graph in fig. 5.5 illustrates the contextual variable changes. This graph does not

include (non-Pareci) analysis context for simplicity. The action generates two variables

66



5.2. Analyses on Pareci

Return pContext={#c}

. . .

. . .

Action (generates {{a.e},{#d}})

Call pContext={#c}

{{x},{#id},{a.e},{#d}}

{{b},{#c.x},{#id}}

{{b},{#c.x},{#id},{#c.a.e},{#d}}

{{b},{#c.x},{#id}}

{{x}}

Figure 5.5.: Context update example

({{a.e},{#d}})). When we follow the flow from the bottom, we see that the Pareci
context is removed from the analysis result while inside the action (the branch fromReturn to Action). The context is re-added when the action is finished (after theCall). The direct (dashed) branch from Return to Call is filled with a copy of the
initial analysis result of Return for use in the binary interprocedural transfer function
of Call.
More generally we have the pattern depicted in fig. 5.6, based on the interprocedural

data flow analysis as discussed in section 4.2.2. Each nodew is decorated with a context

(∘) and effect (∙) node. The Transfer function fw is used to transfer the context to the
effect. We make this distinction in this figure to be specific about the flow of analysis

result values.

Starting at the bottom, we have an analysis context (non-Pareci) cs for which analysis

result g ∈ analysis lattice L is found. The node [Return]lr{c} has label lr and associated
Pareci context c. The edge (∘lr ,∘lc) can be seen as redirecting the input analysis result
of Return to Call. This edge is not needed in the flow, because the f

[Call]lc{c} can
use the input of its corresponding [Return]lr{c} directly. This extra input for f[Call]lc{c}
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[Return]lr{c}

. . .

. . .

[Action gen : gla ]
la

[Call]lc{c}

lr : cs ↦→ (g⊘{c})∪gla

cs ↦→ g

cs ↦→ g∪gla⊙{c}

cs ↦→ g

lr : cs ↦→ g⊘{c}

Figure 5.6.: Context update pattern

is handled by f2A
lc

({cs ↦→ g}); in our case this is the identity function, since we do not
need to modify or update the input.

For the edge (∙lr ,∘la), f1
lr
({cs ↦→ g}) is applied, which updates the analysis context

by updating (with operator :) the calling context and subtracts (⊘) the Pareci contextc from the lattice value, resulting in reducing the values to those only relevant to the
Pareci context corresponding with the function call.Action generates the set gla which

should be added to the analysis value via the gen function, resulting in (g⊘{c})∪gla
for the effect of la.

The last step for this action call is combining the results in the call effect. The func-

tion handling Call is f2
lc

= f2A
lr
∪ f2B

lc
. The result of edge (∙la ,∘lc) is handled by f2B

lc
; it

updates (with ⊙ applied to the correct context c) the result coming from the action
effect. f2

lc
joins both results, resulting in g∪ ((g⊘{c})∪gla)⊙{c}.

We define⊘ and⊙ to have a higher priority than ∪ to reduce the number of brackets.
A⊘b subtracts the context b from every value a∈A, if it can not subtract b from a, a is
omitted from the result, because a is not in context b thusA⊘b⊆A.A⊙b adds context
b to every a ∈A, thus |A|≡ |A⊙b|. Therefore the derivation rule A∪ (A⊘B⊙B)→A

holds because subtracting context B and consequently updating it again with B results
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in the same se.; Items removed by ⊘ stay in the collection because of A∪. Now we can
rewrite the result as follows:

g∪ ((g⊘{c}) ∪gla) ⊙{c}
≡g∪ ((g⊘{c}⊙{c}) ∪gla⊙{c})
≡g∪g ∪gla⊙{c}
≡g ∪gla⊙{c}

This means that the original g is kept in the analysis result after handling an action and

that the possible generated values gla in context c are also added with respect to the
correct Pareci context. This is exactly what we want.

The transfer function f for Live variable analysis becomes:

f
[w]lc,s

: LVL◦→ LVL•

f
[w]lc,s

(analysis) =
(
analysis.w c\kill[w]lc,s

∪gen
[w]lc,s

)
\ scopekill

[w]lc,s

Possible Pareci context changes are handled byA.w cwhich denotes the variables inA
updated given widget w and context c. .w is the identity function for everything other
than Call and Return. For Call and Return it subtracts and updates the Pareci
context as described above.

Expected output given input

Simple Input:

∙ Page p containing
– ObjectResource or with id or, method getNew and object A
– Var v with name v, value #or.value
– Stack s with context v.C with
* TextOutput t value x

∙ ObjectModelM containing

– Object A with fields {b,C,d}

– Object C with fields {x,y}

where capitals denote foreign fields/Classes and non-capitals are primitive (di-

rect) fields.

Expected output:

∙ ∅
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This means that there are no undeclared variables on p. There are two variables

generated during this analysis. The variable x in t is generated using its context (which
is inherited from its parent) v.C.x, which in turn gets more specified using the scope:#or.value.C.x. The other one is #or.value used by v. #or.value.C.x is killed byor using the information fromM and #or.value gets killed because it is a property
of or. The result is thus empty, which means the page is correct.
Missing fields Given the same input as above, we add another TextOutput t ′ to s
with value {z}.
Expected Output:

∙ {{#or.value.C.z}}
This means that #or.value.C.z is used but never declared (because field z is not

found in C in the object model).

Missing Var Input:

∙ Page p containing
– TextOutput t value {x}

Expected Output:

∙ {{x}}
{x} is relative to the scope, but is not found, therefore it is reported as ‘missing’. If

a Var with name x was added, it would be correct.
Concluding

We have defined a liveness analysis that works for Pareci. It can be used to find out

which variables are used, but never declared and we know that there is a program

executions that possibly throws runtime errors when encountered.

Some examples of how the analysis should perform were defined in section 5.2.2.

We also discussed a way to take care of the Pareci context in a specific, and also

more general way. This can now be used in the other analyses.

5.2.3. Used Fields analysis

Included and Excluded Fields

This is an analysis on includeFields and excludeFields to see which fields are
always lazily fetched from the ObjectResource and which fields are always fetched
but not used. It solves the problem sketched in section 1.1.2.
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Both includeFields and excludeFields are a child widget of ObjectResource
contain the fields that respectively should be selected in a query and ones that should

not be selected. Only one should be used at any time. If both are specified exclude-Fields is ignored. When not specified, the default value for includeFields is *,
which means that all fields on the ObjectResource’s object should be selected,
hereby ignoring foreign fields. The default value for excludeFields is empty. If ex-cludeFields has a value the selected fields are all fields from the object, minus the
specified fields. The syntax for include- and excludeFields is a comma-separated
list where the fields of the object can be specified, also fields of related objects can be

specified by sequencing the objects split by a ‘.’. The symmbol * can be used as a wild-
card, which stands for all the fields on the object, except any foreign fields. It is similar

to the Id type, except that a wildcard is allowed. Both properties are parsed using theuu-parsinglib. Let us call the parsed versions includeFields and excludeFields,
which both are subsets of Fields, where Fields = P(Id). Any wildcards * should be
expanded to a list of primitive fields using the specified object model.

A side-note here is that ObjectResource is bound to a PHP object. This means that
any specified also fields and methods are allowed in the include- and exclude-Fields that do not influence the number of queries. By default the fields that are
extracted from the model are flagged as query relevant13. For the user defined classes

it is a setting. This should be set if the methods use a field on the data object. This

means that if all user defined classes correctly correspond to actual PHP classes and

fields, this produces correct analysis results.

The analysis can look at the includeFields and excludeFields at the same
time. The actual field list used in the query is basically the set of included fields minus

the set of excluded fields. If one of them is not set then it has the default value as

described above. Let us define fields as includeFields \ excludeFields. Then fields

contains effectively the fields used by the database query that is run under the hood

by Pareci.

It can be the case that fields of an object in fields, are not used on the page. This

means that the content of those fields is always collected from the database, but

never used. This is potential overhead and is reported by this analysis by returning

UnusedFields ⊆ Fields. It can also be the case that fields are used on the page but
not in fields. This means that they are collected lazily upon request, which results in

an extra database query for every field collected in this way. The analysis also returns

these with LazyFields⊆ Fields.
Both the unused fields and the lazy field result can be determined per ObjectRe-source in the analysed program. The combined resultUF of the analysis thus becomes

P(ObjectResource∗×P(LazyFields×UnusedFields)), whereObjectResource∗ is the
set of all ObjectResources in the analysed program.
13In the current implementation this is not yet implemented. All the fields, both from the object models

and the user defined classes are interpreted as query relevant.
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Used Fields Lattice

To determine the values for UnusedFields and LazyFields, we need to know which

fields are used during a program execution. The same fields are also captured with the

Liveness analysis. Since the result is different from Liveness analysis we can not just

read out the result at the initial label of the analysis.

The lattice for the Used Fields analysis builts upon the Live Variable lattice by wrap-

ping it. The type of the Used Fields Lattice (UFL) is an element P(LVL×UF). We
collect the Liveness variables in the first position of the pair, and if applicable the

results:w:ObjectResource in the second position. The ordering (⊑) here is ⊆ as well,
because the more variables combined with object resources with found lazy and un-

used field the more information we have. ⊔ is ∪ and bottom is the empty set. ι is the
empty set.

This is a backwards analysis since it piggy backs on Liveness analysis. The backwards

analysis makes sure we can output a suggested value for includeFields at the end
of the analysis. A forward version is also possible where the ObjectResource adds
the fields it creates to the analysis result and when used get removed again. At the

end node of the analysis the remaining fields are labeled as unused, any extra used

variables are lazily loaded (if available in the object model).

Transfer Function

We use the transfer function fLVL
[w]l

from the Liveness analysis the LVL for part of the
lattice with the transfer function of LVL. In the case that the handled widget is a Objec-tResource, it also adds the LazyFields andUnusedFields for that ObjectResource
to the result.

f
[w]l

:UFL◦→UFL•

f
[w]l

((anaLVL,anaUF)) =
(
fLVL
[w]l

(anaLVL) ,uf
[w]l

(anaLVL,anaUF)
)
if w is an ObjectResource(

fLVL
[w]l

(anaLVL) ,anaUF

)
otherwise

uf
[w]l

: LVL◦→UF◦→ UF•

uf
[w]l

(anaLVL,anaUF) = let relevant= anaLVL⊘wid

in anaUF⊔ (w,(relevant\ fieldsw,fieldsw \ relevant))

If f
[w]l

does not encounter an ObjectResource it behaves just as the Liveness anal-
ysis and keeps the Used Fields part untouched. If it does encounter an ObjectRe-source w it using the Liveness results and any included or excluded fields to deter-
mine the lazy and unused fields w and adds it to the analysis. The value relevant

contains the fields relevant for the current ObjectResource by stripping the ID (wid)
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of the resource. Value fieldsw contains the fields used by the database query as de-

scribed above in section 5.2.3 and is specific for w. The first position of the second

pair denote the lazy fields, which are determined by subtracting the queried fields

from the actual used relevant fields. The result for the unused fields is the inverse. The

combined result is indexed by the ObjectResource w and added to the result.
In the initial program point we can read out the final result for each ObjectRe-source in the application. The extremal value ι for the Used Fields analysis is the

empty set.

Expected output given input

Default fields Input:

∙ Page p containing
– ObjectResource or with id equal to or, method with value search andobject A.
– and otherwidgets using (normalised) variables {{#or.value.b},{#or.value.C.x}}

∙ ObjectModelM containing

– Object A with fields {b,C,d}

– Object C with fields {x,y}

where capitals denote foreign fields/Classes and non-capitals are primitive (di-

rect) fields.

Desired output:

∙ or ↦→ (LazyFields : {{C.x}} ,UnusedFields : {{d}})
The external field C.x is queried at the moment it is requested. Since include-Fields has its default value of *, it selects all fields of A, but A.d is not used on the

page.

Include Fields Same input as above, but with an includeFields of *, C.*.
Desired output:

∙ or ↦→ (LazyFields : ∅,UnusedFields : {{d},{C.y}})
Now LazyFields is empty, because all required fields are already selected. Due to

the nature of the wildcard, it now also selects another unused field C.y. This could be
solved by specifying the exact fields used in the includeFields.
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Exclude Fields Same input as Default fields, but with an excludeFields of b,d.
Desired output:

∙ or ↦→ (LazyFields : {{C.x},{b}} ,UnusedFields : ∅)
Set UnusedFields is now empty because all fields are removed by the exclude-Fields. The LazyFields still fetches C.x lazily and now also the b aswell, because we

excluded it for the initialisation query by specifying it in the excludeFields.

Concluding

This analysis detects when it is possible that too many fields are selected in the

UnusedField result. It also detects when field are loaded lazily in the LazyFields

result. Lazy fetched fields potentially blow up the number of database queries that

are described in section 5.2.2. This analysis provides the Pareci programmer with in-

formation of whether this happens in the program. He or she can decide to act on this

information.

This approach piggybacks on the Live variable analysis and depends on its trans-

fer function to collect the variables used on the page. This means that the variables

collected may be used in a program execution, but not necessarily in all program ex-

ecutions. It can be the case that the user of Pareci left some field lazily loaded on

purpose, because in most cases the field is nog needed. It might proof fruitful to also

have a variant of this analysis that reports the must-be-used variables, and thereby re-

porting the fields that are lazily fetched in all program executions. This can be achieved

using the same lattice elements, but changing the join operator to intersection for the

liveness part to make sure that only the variables used in all paths are collected.

5.2.4. Type analysis

Mostly similar to the analysis of LV, but now variables also carry type information,
which have to be taken into account.

The idea is to do an approach similar to the Living Variables analysis, but forward in

this case with types next to the variable names. We can use the same tranfer function

but with the specifics swapped for Call and Return. We can learn the types by how
variables are used or by looking at the object model which already contains the type

information. When encountering Pareci scope or context changes we can still track

the variable types although we can not directly map them to absolute variables. Analo-

gous to the context handling using f̂l in Liveness Analysis we can generate the same

variables.

We take as lattice variables with associated types. Type Lattice (TL) isP(Var∗×Typesk).
The variabel k is used to limit the type lattice as discussed below.
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Let us first look at Types. The definition is found below.

Types ::= TSet|P(TFun)

TSet ::= P(TRep) |⊤
TName ::= String

Primitive ::= Integer|Float|Decimal|Boolean|String|Collection TRep

TRep ::= Primitive|TName

TFun ::= TSet∗→ TSet

TSet is a set of type representations TRep or ⊤ (Top), which can be everything. Having
more TRep in a TSet means that the variable is less restricted to those types. The

ordering of TSet is thus: t1 ⊑ t2 ⊑ . . .⊑ tn ⊑⊤ where ti ∈ TSet for which |ti|6
∣∣tj∣∣ for

i < j and ti ⊑⊤. ⊤ is thus used to bound the lattice.
We can again pick the ordering operator as subset equality (⊆) and the join as set

union (∪), since we want to decrease the knowledge of types that a variable can have.
Both ι and ⊥ are the empty set.
As before PHP functions and extra fields are handled by creating a custom class

interface which can be read in addition to the object model. It can be used to both

specify other PHP classes andmethods, but also extend the classes of the object model.

Since the lattice Types is infinite, we use a widening operator (Ok) as join to limit the

depth. This makes sure our lattice is not infinite and therefore our analysis terminates.

The type lattice Typesk using (Ok) is bound by number k. This means that once the

size of TSet becomes larger than k, the join converges to T . For ∀t,t ′ ∈ Types,k ∈ N,

we can define Ok as this:

tOkt
′ =

⊤ if |t∪ t ′|> k

t∪ t ′ otherwise

where |t| gives us either the size of the encapsulated TSet or P(TFun).
We denote a variable v and its associated types t as (v : : t). Given an Action call

[Call]l{c} to Action a which uses binding {y} as type ty, we get as analysis result after
the action call ({c.y} : : ty). Due to the Pareci context update it gets applied to the
correct contextual value as illustrated in fig. 5.7.

At the end of the analysis we can check if every contraint matches the types as

provided by the object model. Any discrepancies can then be reported to the user.

In addition to the Pareci context changes (.w) as described in section 5.2.2 and which
is handled by the transfer functions for Call and Return, widgets generate variables
and types used and never remove them from the analysis.

The transfer function f for the Soft Typing analysis becomes:

f
[w]lc,s

: TL◦→ TL•

f
[w]lc,s

(analysis) = analysis.w c∪gen[w]lc,s
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[Action gen : {({y} : : ty)}]la[Return]lr{c}

. . .

[Call]lc{c}

. . .

lc : cs ↦→ t⊘{c}∪ {({y} : : ty)}
cs ↦→ t

cs ↦→ t∪ {({c.y} : : ty)}

cs ↦→ t

lc : cs ↦→ t⊘{c}

Figure 5.7.: Type analysis in an action call

Generated variables include the bindings used in the properties of the widgets and

the corresponding types depend on how the bindings are used. All properties have

a type associated with them, for example the condition property is required to be
a boolean value, therefore any direct used bindings in the value of condition are
added as a Boolean. If a binding occurs inside an expression (starting with a =), its
type depends on the operators used. Boolean operators such as AND, OR and XOR

generate a Boolean type and numbers operators such as +, and − generate Number
types. Type inference on properties explains the inferencing and gathering of the

variables and their derived types.

The widget definition (see section 3.1.2), also contain type information for each

property of each widget.

Type inference on properties

To do correct type analysis at the widget level we have to first look at the property level.

For each property we know which type it should have from the widget definition. Given

property p with type τ and a property value v, we can determine the variables and

present in v and their types. We define a function pvVarsTypes : PPropVal→ TRep→
P(Var×Types), where the first argument is the property value v. The second the type
as defined by the widget definition τ. Remember that PPropVal is a tree of either child

widgets, bindings or expressions. We use an attribute grammar for passing down the

requested type τ with a synthesised attribute and use an inherited attribute to bubble

up the return value.
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Consider the expression ={person.age} > 18 as value for a condition prop-
erty. We can create the following derivation given that the type of condition is
Boolean.

= {person.age}> 18 : : Boolean
=: : a→ a {person.age}> 18 : : Boolean

{person.age} : : Num > : : Num→Num→ Boolean 18 : : Num

This natural deduction style of writing follows the tree structure of the expression

data type. On top we have our expression with the requested type. Each line down is a

next step in one of the branches. We know that = keeps the type intact, therefore we
split it in the first step. Because we know that > is a function that takes twoNum argu-

ments we know that both {person.age} and 18must be of type Num. The deriving
is finished, since we have only axioms left. We collect the axioms and filter it such that

we only have variables left, resulting (in this case) in {({person.age} : : Num)}, which
is the result of pvVarsTypes.

Extra care has to be taken with the polymorphism turning up here.Num for example

can be used for either Integer or Float. And the type of =: : a → a is even more

polymorph, so we have deal with that as well.

In this example case the type of>matches nicely with the requested type. In the case

that we have a type mismatch, such as in the example ={person.age} > ‘string’
between > and ‘string’. We can still derive the type for person.age, because it
does not change the type of >. The literal ‘string’ has two types: Num requested
by > and String by looking at its value. We can issue a warning for the user that these

types do not match.

Combining the results

At this moment all program points in the analysis have a corresponding set of variables

and associated derived types. This results in a set, such as: {({person} : : Person) ,
({person.age} : : Num)}, for which it is not yet checked in any way that Person actu-
ally contains a field age of type Num. The ⊑ operator should check this and report a
warning when incompatible types are found.

Concluding

We sketched a possible approach to type analysis. At the writing of this thesis the type

analysis is not implemented, but given the foundation given by the other analyses it

should not be too difficult. The lattice join and transfer function have to be specified,

which can be adapted from the liveliness analysis implementation.
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5.2.5. Results

In this section we discuss the output results of the prototype analyser tool. We run the

analyser on the pages discussed in the “Expected output given input” sections of the

Liveness Analysis and Used Fields Analysis.

Also we demonstrate the use of the analyser on a typical Pareci page. The source

of the page and corresponding data model can be found in appendix E.1.1 and ap-

pendix E.1.2. An illustration of the rendered page can be seen in fig. 5.8. The top of the

page contains a data entry form bound to a Person object via an ObjectResource.
When the LinkButton with text Save Person is clicked an action is fired using the
form’s Pareci context, which calls the save method to store the new person in the

database. Also the table view of all persons below is updated.

Figure 5.8.: Screenshot of page with typical Pareci

5.2.6. Liveness Analysis results

Expected output given input

We run the test cases as defined in the Expected output given input section of the

Liveness analysis.

The input pages and data model files can be found in appendix E.2.

∙ The full output of the analyser run on the Simple test case:

=================================Analysing file: pages/simple.xmlObjectmodel file succesfully read in (yml).XML successfully read in.

78



5.2. Analyses on Pareci

No errors/warnings. :)
Analysis results----------------
Analysis Type: Contextual Live Variables AnalysisFields/Variables used, but not defined (or not in Object Model):Nothing----------------
The result is “Nothing”, which is exactly what we expected.

∙ The results for the Missing fields test case are:

- #or.value.C.z
The result is the binding #or.value.C.z, which is exactly what we expected.
∙ The results for the the Missing Var test case are:

- x
The result is the binding x, which is exactly what we expected.

Results on a typical page

If we run the Liveness analysis on the typical page from appendix E.1, the result is:

Nothing
This means that the page is correct according to our analyser. To make the analysis

more interesting we purposely add some mistakes to the page. The new page source

can be found in appendix E.1.3. The following changes are made:

1. A non-existing action:

<NumberInput label=”Age” value=”{age}” onchange=”{#check}”/>
We change #checkAge into #check

2. A misspelled/non-existing field:

<TextInput label=”Surname” value=”{lastName}” />
We change surName into lastName

3. A misspelled/non-existing field on a foreign object:

<TextOutput value=”{DriversLicense.identification}” />
We change DriversLicense.number into DriversLicense.identification
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4. An non-existing field on a data object (in an Action):

<a:Assign value=”=’Person saved to database: ‘.{name}” />
We change {firstName}.’ ‘.{surName} into name

5. Calling a method on a non-existing object (in an Action):

<a:Method object=”{person}” method=”save” />
We change {} into person

Now the output of the analysis is:

Errors:Error: Could not find callable: "check"
Analysis results----------------
Analysis Type: Contextual Live Variables AnalysisFields/Variables used, but not defined (or not in Object Model):- #allPersons.value.DriversLicense.identification- #check- #person.value.lastName- #person.value.name- #person.value.person- #person.value.person.save----------------
Let us discuss the results in the same order as the changes made:

1. The first thing that happens is the error which notes that a callable “check”

can not be found, this is correct because there is not action defined with id
equal to check. Since a call to check exists this is reported. The #check
in the result is also present because the analysis looks for any used ID’s on

the flow.

2. Result #person.value.lastName is because the field lastName is non-
existing.

3. The same holds for result #allPersons.value.DriversLicense.identification.
The analysis also checks for existing fields on foreign objects.

4. Binding name is used inside the action and therefore relative to the Pareci
context of the action which comes from the caller LinkButton. The anal-
ysis thus correctly handles Pareci context. This result is reported here be-

cause the field name does not exist within Person.
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5. Results #person.value.person and #person.value.person.save
both come from the last change. Field person is not found on the Pareci
context of the call and therefore also its field (or in this case method) can

not be found in the object model.

Concluding

It is thus the case that current analyser tool is able to support the detection of unde-

fined and unresolvable bindings and Pareci context is handled correctly. The analyser

using the Liveness analysis as defined in section 5.2.2 works as desired.

5.2.7. Used Fields Analysis results

Expected output given input

Again we run the test cases as defined in the Expected output given input section of

the Liveness analysis.

The input pages and data model files can be found in appendix E.3.

∙ The full output of the analyser run on the Default fields test case:

Analysing file: pages/default-fields.xmlObjectmodel file succesfully read in (yml).XML successfully read in.No errors/warnings. :)
Analysis results----------------
Analysis Type: Contextual Used Fields AnalysisWidget Widget_ObjectResourceobject:-> "a"method:-> "search"id:-> "or"Lazy loaded fields: {C.x}Preloaded, but unused fields: {d}----------------
The result is exactly what we expected.

∙ The output of the Include Fields test case:

Lazy loaded fields:Preloaded, but unused fields: {C.y,d}
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The result is as expected.

∙ The output of the Exclude Fields test case:

Lazy loaded fields: {C.x,b}Preloaded, but unused fields:
The result is as expected.

Results on typical page

If we run the Used Fields analysis on the typical page from appendix E.1, the result is:

Analysis Type: Contextual Used Fields AnalysisWidget Widget_ObjectResourceobject:-> "Person"method:-> "search"id:-> "allPersons"Lazy loaded fields: {DriversLicense.number}Preloaded, but unused fields: {dad_id,dri_id,id,mom_id}
Field DriversLicense.number is lazily loaded, because by default only the direct

(non-foreign) fields are prefetched. Also some other simple fields from Person are

loaded, but that is not the performance issue.

After we add the following includeFields
<ObjectResource id="allPersons" object="Person"method="search"><Param name="includeFields"value="*, DriversLicense.number" /></ObjectResource>
the result becomes:

Lazy loaded fields: {}Preloaded, but unused fields: {dad_id,dri_id,id,mom_id}
Now the foreign field is also fetched with the first and only query for this request.

Concluding

Using the Used Fields analysis we can thus get some insight in which fields are always

fetched lazily if they are used. We can also see which fields are always fetched from

the database, but never used.

The implementation of the analysis works correctly and as specified in section 5.2.3.
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We have looked at the programming framework Pareci. To improve the usability of

Pareci for developers, we have used static program analysis in the form of data flow

analysis to accomplish this.

Pareci is a Turing Complete language and able to do complex computations, although

day-to-day use is mainly creating data-driven web applications. We have given a com-

prehensive explanation of how Pareci works in chapter 2. We created a parser and

representation for Pareci Programs in chapter 3.

In chapter 4 we have briefly touched on how to do program analysis using data flow

analysis and how we can use Monotone Frameworks to do this.

Next we created Monotone Framework instances for Pareci in chapter 5. The inter-

esting part there was to make sure the program flow of the declaratively specified

Pareci pages was correct and in the right order. Another interesting part is how to

correctly handle Pareci context and scope, since they can not be statically determined,

but are only known at runtime.

In the same chapter we also discuss analyses that can be done on Pareci that help

solving the open problems sketched in the introduction in chapter 1.

The liveness analysis discussed in section 5.2.2 can be effectively used to detect

where Pareci throws runtime exceptions. It detects where undefined references are

used and reports this to the developer. Alongside of the trivial exceptions which are

directly shown by Pareci on a first page request, it also detects exceptions which only

occur after multiple actions triggered by a user of the Pareci program due to the way

the analysis data flow control is modelled, and therefore helps for a developer using

Pareci to finding bugs prematurely by reporting undefined variables. In that sense it is

successful in reducing the number of runtime bugs. Of course it is still the developer’s

decision to act on the analysis results.

The used fields analysis discussed in section 5.2.3 returns for each ObjectRe-source on the page two sets of interesting fields on the object used for that Ob-jectResource. A set of lazily fetched database fields, which uses always an extra
database query for each time they are required on the page and a set of unused fields

which are always fetched from the database, but never used for displaying on the page.

The developer using Pareci, can use these result sets to get a better insight in the

page’s number of database queries and decide to change value of the includeFields

and excludeFields parameters to optimise the page.

An extra unimplemented analysis approach is the soft typing analysis described in

section 5.2.4, which can be used to make sure that variables are sure to be used in the

correct use cases. When implemented this analysis also points the developer to Pareci

code that must be changed to decrease the number of possible runtime exceptions.
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This all resulted in a generic implementation of data flow analysis using monotone

frameworks and solving them using a worklist algorithm. The discussed analyses on

Pareci except the type analysis are implemented using this framework. They are avail-

able as a command line tool that can be run on Pareci projects and individual pages.

In appendix F a description of the tool and source code structure can be found.

Both implemented analyses are evaluated in section 5.2.5, where their expected in

and output, as descibed in the respective analysis sections, is matched up with the

implementation. A page with aspects of typical Pareci usage is also handled well by the

implementation.

We have shown that it is possible to model the Pareci program data flow for use in

data flow analysis. Using that flow we created Monotone Framework instances for a

number of analyses for Pareci. The analyses results are useful for developers using

Pareci to find runtime errors in their program code and get insight in the database

queries needed for the page.

6.1. Future Work

6.1.1. Improvement of the analyses

Provided is an approach on how to implement data flow analysis on Pareci and a

prototype implementation for it. It would be nice to improve the analysis using more

advanced techniques, such as:

∙ Improving the parsing and representation:
– At the moment the bidirectional parsing step that can be used to parse

Pareci pages, recognizes more than Pareci strictly allows. The allowed types

of widgets allowed as XML-children is larger than Pareci actually supports.

The checking of the correct child widgets can be handled during a type

analysis step, but it would be better to be able to handle this during the

actual parsing step, since the allowed widget types are available. For this we

can construct a smarter, type-dependent pickler to handle the translation

between the XML-tree and the Pareci page representation.

– The same holds for the Pareci representation in the implementation. At the

moment we allow instances of all widgets as possible values for properties

that should only contain specific widgets (following the Pareci specification).

It would be better to be more strict, for example by making our representa-

tion of widget instances more strict by limiting the property value by making

use of stricter data types within the Haskell type system. The first approach

for representing widgets as discussed in section 3.1.1 tries to do such a

thing by using phantom types, but is thereby stricter than we want. The

more generalised approach as discussed in section 3.1.2 is far less restric-

tive and therefore easily models what we want, although not forcing enough

strictness on the types of allowed widgets and property values by making
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everything analysis time values for which we manually must check if they

conform to our desiredmodel. The ideal approach would be to have a hybrid

approach which could give us the best of both worlds.

– There is no strict defined semantics for Pareci. chapter 2 sketches the intu-

ition of how Pareci works. It would be nice to have a more formal specifica-

tion of Pareci to be absolutely sure that the analyses are also correct.

∙ Improving the program flow:

– Support the analysis of whole applications. At the moment we support a

Pareci project by analysing each page in the project individually. In a real life

application we have nested pages and values being passing to other pages.

This can be added to the analyses by reading in and adding the pages that

are statically declared to the flow. This works for most common situations.

Pages can also be loaded dynamically using expressions and actions. We

have two ways to deal with this. We can either assume worst case assume

that every pages in the application can be used there, or let the user specify

which pages are used on that location.

Pages can be reached in three ways. It is (1) the starting page of the

application, (2) loaded as content of a Section widget, or (3) triggered by aGoto widget. The first way is already supported. For the second and third
ways, the target page can be added to the flow easily when it is known. For

the third way some care has to be taken to make sure the context is

handled correctly, since new pages do not inherit the context from their

parent or calling page.

– The current approach and implementation does not handle the possible

program executions where delays come into play. In Pareci is possible to

delay an action for a given amount of time. During waiting time other actions

can also be triggered. This makes it possible to have interleaved action

sequences sharing the state of the page. A partial solution here is to allow

breaking and resuming of sequences of actions in the program flow where

the delay feature is active. This would model many of the possibilities that

the delay property offers.
– By having a more concrete and formal semantics of the Pareci language, we

can better argue and demonstrate that the approach chosen for the data

flow representation of Pareci is correct. We can then also more easily see

which features of Pareci are not supported yet in the analyses.

– The current program flow representation is also not too strict on the Pareci

semantics in all cases. It deals with context, scope and actions correctly, but

can be made better by supporting specific branching of the control flow for

handling conditions and permissions on widgets. A widget is only rendered

or executed when its condition and permission properties are true.
This could be easily modeled by taking inserting an extra well-known if-then-
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else branch into the program flow, which would result in representing more

possible program executions, but thereby also making the analysis more

precise.

– For some events that can trigger actions, we know that certain events always

occur before other events. An example situation is that an action triggered

by the onkeydown is always called before the one triggered by onkeyup.
Another example situation is the same event trigger is defined on both a

widget and its children. Pareci specifies whether only one of the events is

actually triggered or in which order both are triggered. The current approach

used handles this by modelling all possible calling sequences in the program

flow by using the EventLoop program point, but thereby specifying more

possible program flows than Pareci actually allows. This is not a wrong

approach, but it could be made more precise by allowing the program flow

to only contain one of the possible event sequences. This can be done by

introducing more EventLoop program points, each of them corresponding

with an event trigger, in a sequential flow corresponding with the order of

the handling of these events in Pareci. This chain of EventLoops can then be

connected to form a loop again and added instead of the current EventLoop.

∙ Building a Pareci compiler:

– Often static analysis is used in compilers to optimise the generated code.

Many of the parts needed to implement a compiler such as parsing the

languages, interpreting some part of the code are already in place. These

can be use to actually create an interpreter or compiler for Pareci in

Haskell, making use of possible optimisations and the speed of a compiled

language. With this we can bypass the whole PHP implementation and have

an optimised, better system that can directly be used to host Pareci

applications.

– Another possibility is to try and use quasi- [qua12] or antiquoting [Hin11]

for the binding and expression syntax, which effectively makes it an

embedded domain specific language and makes it possible for the

expressions to be compiled and interpreted by Haskell. This makes any

parse errors occur at compile time in the form of type errors, which would

result in fewer runtime errors. For this approach to work, the developer

using Pareci must have the full Haskell development tools available for

compiling the Pareci pages, because the files need to be compiled by the

Haskell compiler.

∙ Improving the monotone framework implementation
– The lattices and analysis context information should be specified more on

a type level to allow for easier correctness of the analyses. For example a

type for the call string might be data CallString = CallString Num

86



6.1. Future Work

[Ident], where Num specified the exact length of the call string on a type
level. Much research is done in this area in the form of dependent type

theory and already features supporting this are being implemented in the

GHC compiler.

The same trick can be used for lattices where we now use runtime lattices,

because our lattice elements (, for example Var∗ is dependent on the ac-
tual variables present in the analysed program). These can hopefully be

abstracted away on a type level in a clever way.

∙ The Turing completeness in section 2.2.2 proof makes use of a PHP object Ar-rayList to simulate the ticker tape. To argue a better case for sufficient com-
putational complexity for Pareci in itself, without discussing its implementation,

we would want to remove any use of specific PHP objects. It should be possible

to emulate the ticker tape fully in Pareci only constructs as well by using nested

pages to store the ticker tape to the left and right of the machine’s head.

∙ Fully implement the Pareci type analysis as discussed in section 5.2.4 to have
type analysis in Pareci. The type inference would make better use of the types

given in the widget definitions, than the other specified analyses on Pareci.

∙ Improving the usability of the analyser tool
– At the moment the analyses are implemented in a command line analyser

tool that can be run on a Pareci project for which it runs the analyses on all

pages found in that project and prints the results to the standard out. We

can extend this by creating an extra output format that is machine readable.

This can be used to display the analysis results in the editor used to write

the pages, allowing it to run the analysis while writing the page. On Pareci

pages of typical size the analysis runs in a matter of seconds, so this seems

doable.
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A. Turing Completeness programs

A.1. Simple machine counting 1’s

This program is based on the same program used to proof the Turing Completeness

of Random Access Machines I did for the courseModels of Computation [Soe11]. The

machine’s head starts between two numbers encoded as sequential ones, after halting,

it will have one number on the tape which is the sum of the two.

<Page xmlns="urn:Widget" xmlns:a="urn:Widget_Action" onloadClient="{#run}" >
<Page.resources><ObjectResource id="arrayL" object="Util" method="getNewArrayList" ><Param value="=(1,1,1)"/></ObjectResource><ObjectResource id="arrayR" object="Util" method="getNewArrayList"><Param value="=(1,1,1,0,0)"/></ObjectResource>
<ObjectResource id="nextStepName" object="Util" method="getUnique" /></Page.resources>

<Page.message><Var name="tapeLeft" value="={#arrayL.value}" /><Var name="current" value="=0" /><Var name="tapeRight" value="={#arrayR.value}" /><Var name="state" value="=1" /><Var name="done" value="false" /><Var name="step" value="=1" /></Page.message>
<Page.actions><a:ActionList id="run"><!-- Start Machine configuration table --><a:ActionList condition="=(NOT {done}) AND {state} == 1" ><a:ActionList condition="=(NOT {done}) AND {current} == 0" ><a:Log message="state 1, current 0" /><a:Assign field="{current}" value="=1" />
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<a:Trigger target="{#moveRight}" /><a:Assign field="{state}" value="=2" /></a:ActionList><a:ActionList condition="=(NOT {done}) AND {current} == 1" ><a:Log message="state 1, current 1" /><a:Trigger target="{#moveRight}" /><a:Assign field="{state}" value="=1" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == 2" ><a:ActionList condition="=(NOT {done}) AND {current} == 0" ><a:Log message="state 2, current 0" /><a:Trigger target="{#moveLeft}" /><a:Assign field="{state}" value="=3" /></a:ActionList><a:ActionList condition="=(NOT {done}) AND {current} == 1" ><a:Log message="state 2, current 1" /><a:Trigger target="{#moveRight}" /><a:Assign field="{state}" value="=2" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == 3" ><a:ActionList condition="=(NOT {done}) AND {current} == 0" ><a:Log message="state 3, current 0" /><a:Assign field="{state}" value="=0" /></a:ActionList><a:ActionList condition="=(NOT {done}) AND {current} == 1" ><a:Log message="state 3, current 1" /><a:Assign field="{current}" value="=0" /><a:Assign field="{state}" value="=0" /></a:ActionList><a:Assign field="{done}" value="true" /></a:ActionList><!-- End Machine configuration table --><a:ActionList id="nextStep" condition="={done}" ><a:Goto page="turingMachine" target="{#nextStepName.value}"><Var name="tapeLeft" value="{tapeLeft}" /><Var name="current" value="{current}" /><Var name="tapeRight" value="{tapeRight}" /><Var name="state" value="{state}" /><Var name="step" value="={step}+1" /></a:Goto></a:ActionList></a:ActionList>
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A. Turing Completeness programs

<a:ActionList id="moveRight"><a:Method method="append" object="{tapeLeft}"><Param value="{current}" /></a:Method><a:Method id="popRight" method="shift" object="{tapeRight}" /><a:Assign field="{current}" value="={#popRight.result}" /><a:Assign field="{done}" value="true" /></a:ActionList><a:ActionList id="moveLeft"><a:Method method="unshift" object="{tapeRight}"><Param value="{current}" /></a:Method><a:Method id="popLeft" method="pop" object="{tapeLeft}" /><a:Assign field="{current}" value="{#popLeft.result}" /><a:Assign field="{done}" value="true" /></a:ActionList>
</Page.actions>
<Page.content><Stack><TextOutput value="=’step: ’ . {step}" /><TextOutput value="=’state: ’ . {state}" />

<Stack layoutMode="Horizontal" class="panel tmTape" ><TextOutput value="{tapeLeft}" /><TextOutput value="{current}" class="tmHead" /><TextOutput value="{tapeRight}" /></Stack><Section name="={#nextStepName.value}" /></Stack></Page.content></Page>

A.2. Turing Machine Simulation of Binary Addition

This Pareci simulated a Turing Machine that calculates the product of two binary en-

coded numbers. The head starts before the first number and the numbers are sepa-

rated by symbol _. The program is slightly different than the first example in that it

replaces the current page for each step. This is done because Pareci otherwise runs

against the limit of recursive calls in PHP.

A small PHP script is written to generate the Pareci code that is the machine table
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A.2. Turing Machine Simulation of Binary Addition

from the 5 tuples as specified in section 2.2.2.

<Page xmlns="urn:Widget" xmlns:a="urn:Widget_Action" onloadClient="{#run}" >
<Page.resources><ObjectResource id="arrayL" object="Util" method="getNewArrayList" /><ObjectResource id="arrayR" object="Util" method="getNewArrayList"><Param value="=(’1’,’0’,’1’,’1’,’0’,’_’,’1’,’0’,’1’,’0’,’1’,’1’)"/></ObjectResource></Page.resources>
<Page.message><Var name="tapeLeft" value="={#arrayL.value}" /><Var name="current" value="=’1’" /><Var name="tapeRight" value="={#arrayR.value}" /><Var name="state" value="=’a’" /><Var name="done" value="=false" /><Var name="step" value="=1" /></Page.message>
<Page.actions><a:ActionList id="run"><!-- Begin Machine configuration table --><a:ActionList condition="=(NOT {done}) AND {state} == ’a’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’_’OR {current} == NULL)" ><a:Log message="state a, current _" /><a:Assign field="{current}" value="=’_’" /><a:Trigger target="{#moveRight}" /><a:Assign field="{state}" value="=’1’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’a’" ><a:ActionList condition="=(NOT {done})" ><a:Log message="state a, current *" /><a:Trigger target="{#moveRight}" /><a:Assign field="{state}" value="=’a’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’1’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’_’OR {current} == NULL)" ><a:Log message="state 1, current _" />
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A. Turing Completeness programs

<a:Assign field="{current}" value="=’_’" /><a:Trigger target="{#moveLeft}" /><a:Assign field="{state}" value="=’2’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’1’" ><a:ActionList condition="=(NOT {done})" ><a:Log message="state 1, current *" /><a:Trigger target="{#moveRight}" /><a:Assign field="{state}" value="=’1’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’2’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’0’)" ><a:Log message="state 2, current 0" /><a:Assign field="{current}" value="=’_’" /><a:Trigger target="{#moveLeft}" /><a:Assign field="{state}" value="=’3x’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’2’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’1’)" ><a:Log message="state 2, current 1" /><a:Assign field="{current}" value="=’_’" /><a:Trigger target="{#moveLeft}" /><a:Assign field="{state}" value="=’3y’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’2’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’_’OR {current} == NULL)" ><a:Log message="state 2, current _" /><a:Assign field="{current}" value="=’_’" /><a:Trigger target="{#moveLeft}" /><a:Assign field="{state}" value="=’7’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’3x’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’_’OR {current} == NULL)" ><a:Log message="state 3x, current _" />
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<a:Assign field="{current}" value="=’_’" /><a:Trigger target="{#moveLeft}" /><a:Assign field="{state}" value="=’4x’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’3x’" ><a:ActionList condition="=(NOT {done})" ><a:Log message="state 3x, current *" /><a:Trigger target="{#moveLeft}" /><a:Assign field="{state}" value="=’3x’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’3y’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’_’OR {current} == NULL)" ><a:Log message="state 3y, current _" /><a:Assign field="{current}" value="=’_’" /><a:Trigger target="{#moveLeft}" /><a:Assign field="{state}" value="=’4y’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’3y’" ><a:ActionList condition="=(NOT {done})" ><a:Log message="state 3y, current *" /><a:Trigger target="{#moveLeft}" /><a:Assign field="{state}" value="=’3y’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’4x’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’0’)" ><a:Log message="state 4x, current 0" /><a:Assign field="{current}" value="=’x’" /><a:Trigger target="{#moveRight}" /><a:Assign field="{state}" value="=’a’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’4x’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’1’)" ><a:Log message="state 4x, current 1" /><a:Assign field="{current}" value="=’y’" />
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<a:Trigger target="{#moveRight}" /><a:Assign field="{state}" value="=’a’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’4x’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’_’OR {current} == NULL)" ><a:Log message="state 4x, current _" /><a:Assign field="{current}" value="=’x’" /><a:Trigger target="{#moveRight}" /><a:Assign field="{state}" value="=’a’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’4x’" ><a:ActionList condition="=(NOT {done})" ><a:Log message="state 4x, current *" /><a:Trigger target="{#moveLeft}" /><a:Assign field="{state}" value="=’4x’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’4y’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’0’)" ><a:Log message="state 4y, current 0" /><a:Assign field="{current}" value="=’1’" /><a:Assign field="{state}" value="=’5’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’4y’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’1’)" ><a:Log message="state 4y, current 1" /><a:Assign field="{current}" value="=’0’" /><a:Trigger target="{#moveLeft}" /><a:Assign field="{state}" value="=’4y’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’4y’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’_’OR {current} == NULL)" ><a:Log message="state 4y, current _" /><a:Assign field="{current}" value="=’1’" /><a:Assign field="{state}" value="=’5’" />
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<a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’4y’" ><a:ActionList condition="=(NOT {done})" ><a:Log message="state 4y, current *" /><a:Trigger target="{#moveLeft}" /><a:Assign field="{state}" value="=’4y’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’5’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’x’)" ><a:Log message="state 5, current x" /><a:Assign field="{current}" value="=’x’" /><a:Trigger target="{#moveLeft}" /><a:Assign field="{state}" value="=’6’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’5’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’y’)" ><a:Log message="state 5, current y" /><a:Assign field="{current}" value="=’y’" /><a:Trigger target="{#moveLeft}" /><a:Assign field="{state}" value="=’6’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’5’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’_’OR {current} == NULL)" ><a:Log message="state 5, current _" /><a:Assign field="{current}" value="=’_’" /><a:Trigger target="{#moveLeft}" /><a:Assign field="{state}" value="=’6’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’5’" ><a:ActionList condition="=(NOT {done})" ><a:Log message="state 5, current *" /><a:Trigger target="{#moveRight}" /><a:Assign field="{state}" value="=’5’" /><a:Assign field="{done}" value="true" />
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</a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’6’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’0’)" ><a:Log message="state 6, current 0" /><a:Assign field="{current}" value="=’x’" /><a:Trigger target="{#moveRight}" /><a:Assign field="{state}" value="=’a’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’6’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’1’)" ><a:Log message="state 6, current 1" /><a:Assign field="{current}" value="=’y’" /><a:Trigger target="{#moveRight}" /><a:Assign field="{state}" value="=’a’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’7’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’x’)" ><a:Log message="state 7, current x" /><a:Assign field="{current}" value="=’0’" /><a:Trigger target="{#moveLeft}" /><a:Assign field="{state}" value="=’7’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’7’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’y’)" ><a:Log message="state 7, current y" /><a:Assign field="{current}" value="=’1’" /><a:Trigger target="{#moveLeft}" /><a:Assign field="{state}" value="=’7’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’7’" ><a:ActionList condition="=(NOT {done})AND ({current} == ’_’OR {current} == NULL)" ><a:Log message="state 7, current _" /><a:Assign field="{current}" value="=’_’" /><a:Trigger target="{#moveRight}" /><a:Assign field="{state}" value="=’0’" />
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<a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><a:ActionList condition="=(NOT {done}) AND {state} == ’7’" ><a:ActionList condition="=(NOT {done})" ><a:Log message="state 7, current *" /><a:Trigger target="{#moveLeft}" /><a:Assign field="{state}" value="=’7’" /><a:Assign field="{done}" value="true" /></a:ActionList></a:ActionList><!-- End Machine configuration table -->
<a:ActionList id="nextStep" condition="={done}" ><a:Goto page="turingMachineMult"><Var name="tapeLeft" value="{tapeLeft}" /><Var name="current" value="{current}" /><Var name="tapeRight" value="{tapeRight}" /><Var name="state" value="{state}" /><Var name="step" value="={step}+1" /></a:Goto></a:ActionList></a:ActionList>

<!-- Ticker tape modification --><a:ActionList id="moveRight"><a:Log message="Move Right" /><a:Method method="append" object="{tapeLeft}"><Param value="{current}" /></a:Method><a:Method id="popRight" method="shift" object="{tapeRight}" /><a:Assign field="{current}" value="={#popRight.result}" /></a:ActionList><a:ActionList id="moveLeft"><a:Log message="Move Left" /><a:Method method="unshift" object="{tapeRight}"><Param value="{current}" /></a:Method><a:Method id="popLeft" method="pop" object="{tapeLeft}" /><a:Assign field="{current}" value="{#popLeft.result}" /></a:ActionList></Page.actions>
<Page.content>
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<Stack id="content"><TextOutput value="=’step: ’ . {step}" /><TextOutput value="=’state: ’ . {state}" /><Stack layoutMode="Horizontal" class="panel tmTape" ><TextOutput value="{tapeLeft}" /><TextOutput value="{current}" class="tmHead" /><TextOutput value="{tapeRight}" /></Stack></Stack></Page.content></Page>
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B. Property Value Grammar and Data

Types

The grammar for the expression and binding syntax is displayed below in the form of

railroad diagrams [Bra90] for easy reading. The entry point for the syntax is ⟨expr⟩. It
is read from left to right and a non-terminal (between < and > ) points to the definition

also found below and defined in the same way.

We start with a parser that encapsulates property values using the binding and

expressions parsers defined below.

⟨propertyValue⟩ ::=- � ‘=’ ⟨expr⟩� ‘{’ ⟨binding⟩ ‘}’ �� ⟨text ⟩ �
�-�

⟨text ⟩ ::=-
� �� Any alphanumeric character �-

The binding syntax (without braces).

⟨binding⟩ ::=- � ⟨bindingExpr⟩� ⟨bindingExpr⟩ ‘|’ ⟨binding⟩ ��-
⟨bindingExpr⟩ ::=- � ⟨local ⟩� ⟨scope⟩ �� ⟨parent ⟩ �� ⟨global ⟩ �� ⟨id ⟩ �� ε �

�-

⟨local ⟩ ::=- ‘~’ �� ⟨id ⟩ ��-

⟨name⟩ ::=-
� �� Any alphanumeric character and ‘%’ or ‘_’ �-

⟨id ⟩ ::=- ⟨name⟩ �� ‘.’ ⟨id ⟩ ��-
⟨scope⟩ ::=- � ‘#’� _scope ‘.’ ��⟨id ⟩ -
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⟨parent ⟩ ::=-
� �� � ‘^’� _parent ‘.’ �� ��� ⟨id ⟩ ��-

⟨global ⟩ ::=- __ ⟨name⟩ �� ‘.’ ⟨id ⟩ ��-
The syntax for the expression.

⟨expr⟩ ::=- � ⟨expr⟩ � ‘+’� ‘-’ �� ‘%’ �� ‘*’ �� ‘/’ �� ‘==’ �� ‘!=’ �� ‘<’ �� ‘<=’ �� ‘>’ �� ‘>=’ �� AND �� OR �� XOR �� ‘.’ �

� ⟨expr⟩

� ⟨expr⟩ IN ⟨list ⟩ �� ⟨expr⟩ ‘?’ ⟨expr⟩ ‘:’ ⟨expr⟩ �� � NOT� ISNULL �� ⟨expr⟩ �
� ⟨exprBase⟩ �

�-

⟨exprBase⟩ ::=- � ⟨constant ⟩� ‘(’ ⟨expr⟩ ‘)’ �� ⟨number⟩ �� ⟨bool ⟩ �� ‘{’ ⟨binding⟩ ‘}’ �� ⟨list ⟩ �� ⟨exprString⟩ �

�-

⟨number⟩ ::=- �⟨integer⟩� ⟨float ⟩ ��-
⟨bool ⟩ ::=- �FALSE� NULL �� 0 �

�-

⟨exprString⟩ ::=- � ‘’’ ⟨text ⟩ ‘’’� ‘"’ ⟨text ⟩ ‘"’ ��-

102



⟨list ⟩ ::=- � ⟨exprBase⟩

� � �� ⟨exprBase⟩ ‘,’ � �
�-

⟨constant ⟩ ::=- ‘#’ ⟨text ⟩ -
All parts are captured in the PropertyValue, Expr and Binding data types in

Haskell in the Language.Pareci.Properties.PropertyValuemodule.
data PropertyValue = Nil| String String| Weak Expr| Strong Bindingdata Expr = Number Number| Binding Binding| Text String| Constant String| Bool Bool| BiOp BiOp Expr Expr| UnaryOp UnaryOp Expr| List [Expr]| In Expr Expr| IfThenElse Expr Expr Expr
data BiOp = Eq| Neq| Lt| Lte| Gt| Gte| Concat| Plus| Min| Mult| Div| Mod| And| Or| Xor
data Number = Integer Int| Float Double

103



B. Property Value Grammar and Data Types

data UnaryOp = IsNull| Not
type Name = String
data Id = Id [Name]
data Binding = BLocal Id| BContext Id| BGlobal Name Id| BParent Binding| BScope Id| BOr Binding Binding
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C. Maximal Fixed Point

C.1. Worklist algorithm

Implementation of the worklist algorithm to compute the Maximum Fixed Point as

discussed in section 4.2.1 in algorithm 1.

This implementation makes use of the Statemonad to be able to abstract over the
imperative while loop.

worklist :: (JoinSemiLattice lat, PartialOrd lat, Monotone expr, Show (Analysed expr), Show lat, DotLatex (Analysed expr), DotLatex lat, DotLatex (Analysis expr lat), Groupable expr, (Grouped expr ~ Analysed expr))=> AnalysisInstance lat expr -> FlowOut (Analysed expr) latworklist inst = (MFP analysis, MFP $ M.mapWithKey f analysis)wherem = expr instdir = direction instbot = bottom insti = initial instf = transfer inst-- initialisation(anaFlow, e) = case dir ofForward -> (reverse $ postOrder (flow m) (init m), [init m])Backward -> (map swap $ postOrder (flow m) (init m), final m)w = nub anaFlow -- inital worklist same as flowinitAnalysis = fromList $ map select (labels m)whereselect lab = ( lab, if lab ‘elem‘ ethen ielse bot -- bottom from BoundedLattice)analysis = fst $ execState ( do while (not . null . snd)$ do (analysis, wl) <- get(step anaFlow f)gets fst -- return analysis from state) (initAnalysis, w)
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-- | Does one worklist algorithm iteration given transfer and join functionstep :: (JoinSemiLattice lat, PartialOrd lat, Eq expr, Ord expr, Show lat, Show expr, DotLatex expr, DotLatex lat, DotLatex (Analysis expr lat))=> Flow expr -> Transfer expr lat -> MonotoneState expr lat ()step fl f =do (analysis, wl) <- getif null wl then return ()else let ((l, l’) : restWl) = wlfanalysisl = f l (analysis ! l)analysisl’ = analysis ! l’(newAnalysis, newWorklist)= if not $ fanalysisl ‘leq‘ analysisl’then(insert l’ ( analysisl’ ‘join‘ fanalysisl) analysis, [ (l’, l’’) | (t,l’’) <- fl , t == l’ ] ++ restWl)else (analysis, restWl)in put (newAnalysis, nub newWorklist)
-- | Utility function representing a while loop in the State Monadwhile :: (s -> Bool) -> State s () -> State s ()while test body =do st <- getif (test st)then do modify (execState body)while test bodyelse return ()
-- | calculating post order traversal of graph ‘fs‘ given-- starting node ‘cur‘postOrder fs cur = snd $ helper fs cur []where helper :: Eq a => [(a,a)] -> a -> [a] -> ([a], [(a,a)])helper fs cur visited =let result = [ f | f@(l,l’) <- fs, l == cur]visited’ = cur : visitedunvisitedChildren = [ l’ | f@(l,l’) <- fs, l == cur, l’ ‘notElem‘ visited’]op c (vis, res) = let (vis’, res’) = helper fs c visin (vis’, res ++ res’)(visitedChildren, resultChildren) =foldr op (visited’, []) unvisitedChildrenin (visitedChildren, resultChildren ++ result)
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C.2. Embellished Worklist algorithm

Implementation of the worklist algorithm to compute the Maximum Fixed Point as

discussed in section 4.2.2 in algorithm 2 for an Embellished Monotone FrameWork

instance.

-- | Worklist algorithmworklist :: (JoinSemiLattice lat, PartialOrd lat, EmbellishedMonotone expr, Show (Analysed expr), Show lat, DotLatex (Analysed expr), DotLatex lat, DotLatex (Analysis expr lat), Groupable expr, (Grouped expr ~ Analysed expr))=> AnalysisInstance lat expr -> FlowOut (Analysed expr) latworklist inst = (MFP analysis, MFP $ M.mapWithKey f analysis)wherem = expr instdir = direction instbot = bottom insti = initial instf = transfer instf2 = interTransfer inst-- initialisationpostorderFlow = postOrder (flow m) (init m)(anaFlow, fl, e, inter) = case dir ofForward ->(reverse postorderFlow, flow m, [init m], interFlow m)Backward ->(map swap postorderFlow, map swap (flow m), final m, map (\(lc,ln,lx,lr) -> (lr, lx, ln, lc)) (interFlow m))-- inital worklist same as flow,-- add possible left out (unreachable..) nodes from postorderw = nub (anaFlow ++ (fl \\ anaFlow))initAnalysis = fromList $ map select (labels m)whereselect lab = ( lab, if lab ‘elem‘ ethen ielse bot -- bottom from BoundedLattice)analysis = fst $ execState ( do while (not . null . snd)$ do (analysis, wl) <- get(step w inter f f2)gets fst -- return analysis from state) (initAnalysis, w)
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-- | Does one worklist algorithm iteration given transfer and join functionstep :: (JoinSemiLattice lat, PartialOrd lat, Eq expr, Ord expr, Show lat, Show expr, DotLatex expr, DotLatex lat, DotLatex (Analysis expr lat))=> Flow expr -> InterFlow expr -> Transfer expr lat-> InterTransfer expr lat -> MonotoneState expr lat ()step fl inter f f2 =do (analysis, wl) <- getif null wl then return ()else let ((l, l’) : restWl) = wlmInter = find (\(lc,ln,lx,lr) -> l == lr) interfanalysisl = case mInter ofNothing-> f l (analysis ! l) -- default transfer functionJust (lc,ln,lx,lr)-> f2 l (f l $ analysis ! lc) (analysis ! l)analysisl’ = analysis ! l’(newAnalysis, newWorklist)= if not $ fanalysisl ‘leq‘ analysisl’then(insert l’ ( analysisl’ ‘join‘ fanalysisl) analysis, [ (l’, l’’) | (t,l’’) <- fl , t == l’ ] ++ restWl)else (analysis, restWl)in put (newAnalysis, nub newWorklist)
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D. Object Model

D.1. Haskell class and type representation

{-# LANGUAGE LambdaCase #-}{-# LANGUAGE TemplateHaskell, TypeSynonymInstances, FlexibleInstances #-}module Language.Pareci.ObjectModel.Types where
import Safe (readMay)import Data.Yaml (decode, encode, FromJSON, ToJSON, decodeFile)import Data.List (groupBy, sort)import Data.Aeson.THimport Data.ByteString.Char8 (pack)import Control.Monad (liftM)import Debug.Trace
data Primitive a = Integer | Float | Decimal| Boolean | String | Collection aderiving (Show, Eq, Ord, Read)type TName = String
-- | Set of typesdata TSet = TSet [TRep]| Anyderiving (Show, Eq, Ord, Read)
data TRep = Primitive (Primitive TRep) -- ^ Represents primitive types| Name TNamederiving (Show, Eq, Ord, Read)
data TFun a = [a] :-> aderiving (Show, Eq, Ord, Read)
-- | Types used in analysisdata Types = Types TSet -- ^| Functions [TFun TSet]deriving (Show, Eq, Ord, Read)
-- | Object model
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-- | Object model to denotetype ObjectModel = [Object]
data Object = ADT TName [(TName, TIdent)]-- ^ An ADT represents a custom data type and objects fieldsderiving (Show, Eq, Ord, Read)
data TIdent = TPrim (Primitive TIdent)| TName TName -- reference to object| TFun (TFun TIdent)| Enum [String]| TAny -- ^ unparsable/unknown types| Self -- ^ special case where return type is the current type| Void -- ^ Special for functionsderiving (Show, Eq, Ord, Read)
emptyObjectModel :: ObjectModelemptyObjectModel = []
exampleObjectModel :: ObjectModelexampleObjectModel = [ ADT "Person" [ ("id", TPrim Integer), ("name", TPrim String), ("Avatar", TName "Picture"), ("getNew", TName "Person")], ADT "Picture" [ ("url", TPrim String) ]]
select :: ObjectModel -> TName -> [Object]select om name = filter (\(ADT n _) -> n == name) om

-- | Default/ parent methods that are added to objects/ADTStype ClassName = TNametype ParentClass = TNametype FieldName = TNamedata Class = Class ClassName(Maybe ParentClass)[(FieldName, TIdent)]deriving (Show, Eq, Ord, Read)type Classes = [Class]
$( liftM concat $ mapM (deriveJSON id) [’’TRep, ’’TSet, ’’Primitive
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D.1. Haskell class and type representation

, ’’TIdent, ’’TFun, ’’Class] )
classesToOM :: Classes -> ObjectModelclassesToOM classes = map adt classeswhereadt (Class cn pc fields) = ADT cn $ map (changeInFields cn) fields++ fieldsOf cn pcfieldsOf :: ClassName -> (Maybe ParentClass) -> [(FieldName, TIdent)]fieldsOf _ Nothing = []fieldsOf cn (Just c) =let parents = filter (\(Class n _ _) -> c == n) classesin concat [ map (changeInFields cn) fields ++ fieldsOf cn pn| (Class _ pn fields) <- parents ]
-- | instantiate self to actual IdentchangeSelfToName :: TName -> TIdent -> TIdentchangeSelfToName name Self = TName namechangeSelfToName name (TPrim (Collection ident)) =TPrim $ Collection $ changeSelfToName name identchangeSelfToName name (TFun (sets :-> set)) =TFun $ (map (changeSelfToName name) sets) :-> changeSelfToName name setchangeSelfToName _ ident = identchangeInFields name (n, field) = (n, changeSelfToName name field)
mergeClasses :: Classes -> Classes -> ClassesmergeClasses left right =let combine = left ++ rightdups = groupBy (\(Class ln lpn lfields) (Class rn rpn rfields)-> ln == rn)(sort combine)-- ^ sort because groupBy only detects sequential duplicatesunion classes = foldr1 op classeswhereop l@(Class ln lpn lfields) r@(Class rn rpn rfields) =if lpn /= rpnthen error $"2 Classes defined with same name, but different parent: \n"++ show l ++ " and \n" ++ show relse Class ln lpn (lfields ++ rfields)in map union dups
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E. Test pages

E.1. A Typical Pareci Page

Below is the source code of a typical Pareci page containing a data entry form and a

table displaying a database data.

E.1.1. Page

<Page xmlns="urn:Widget" xmlns:a="urn:Widget_Action"><Page.resources><ObjectResource id="person" object="Person" method="getNew" /><ObjectResource id="allPersons" object="Person" method="search" /></Page.resources><Page.actions><a:ActionList id="saveAction"><a:Method object="{}" method="save" /><a:Assign field="{#output.value}"value="=’Person saved to database: ’.{firstName}.’ ’.{surName}" /><a:Refresh target="{#allPersons}" /><a:Refresh target="{#all}" /></a:ActionList><a:Refresh id="checkAge" target="{#form}" /></Page.actions><Page.content><Stack id="all"><FormLayout id="form" context="{#person.value}"><TextInput label="Title" value="{title}" /><TextInput label="First name" value="{firstName}" /><TextInput label="Surname" value="{surName}" /><NumberInput label="Age" value="{age}" onchange="{#checkAge}" /><TextInput condition="={age} >= 18" id="dln"label="Drivers License number"value="{DriversLicense.number}" /><LinkButton text="Save Person" onclick="{#saveAction}" /><TextOutput id="output" /></FormLayout><Table items="{#allPersons.value}">
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E.1. A Typical Pareci Page

<TextOutput label="Full name"value="={title}.’ ’.{firstName}.’ ’.{surName}" /><NumberOutput label="Age" value="{age}" /><TextOutput label="Drivers License number"value="{DriversLicense.number}" /></Table></Stack></Page.content></Page>
E.1.2. Data Model

Person:tableName: tblpersoncolumns:id:name: idprimary: truetype: integer(11)autoincrement: truetitle: string(10)firstName: string(100)surName: string(100)age: integer(3)dri_id: integer(11)dad_id: integer(11)mom_id: integer(11)relations:DriversLicense:local: dri_idforeign: idMom:local: mom_idforeign: idclass: PersonDad:local: dad_idforeign: idclass: Person
DriversLicense:tableName: tblDriversLicensecolumns:id:
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E. Test pages

name: idprimary: truetype: integer(11)autoincrement: truenumber: string(10)photo: blob()
E.1.3. A Typical Pareci Page with added mistakes

<Page xmlns="urn:Widget" xmlns:a="urn:Widget_Action"><Page.resources><ObjectResource id="person" object="Person" method="getNew" /><ObjectResource id="allPersons" object="Person" method="search" /></Page.resources><Page.actions><a:ActionList id="saveAction"><a:Method object="{person}" method="save" /><a:Assign field="{#output.value}"value="=’Person saved to database: ’.{name}" /><a:Refresh target="{#allPersons}" /><a:Refresh target="{#all}" /></a:ActionList><a:Refresh id="checkAge" target="{#form}" /></Page.actions><Page.content><Stack id="all"><FormLayout id="form" context="{#person.value}"><TextInput label="Title" value="{title}" /><TextInput label="First name" value="{firstName}" /><TextInput label="Surname" value="{lastName}" /><NumberInput label="Age" value="{age}" onchange="{#check}" /><TextInput condition="={age} >= 18" id="dln"label="Drivers License number"value="{DriversLicense.number}" /><LinkButton text="Save Person" onclick="{#saveAction}" /><TextOutput id="output" /></FormLayout><Table items="{#allPersons.value}"><TextOutput label="Full name"value="={title}.’ ’.{firstName}.’ ’.{surName}" /><NumberOutput label="Age" value="{age}" /><TextOutput label="Drivers License number"value="{DriversLicense.identification}" /></Table>
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E.2. Liveness Analysis test pages

</Stack></Page.content></Page>

E.2. Liveness Analysis test pages

E.2.1. Simple

Page

<Page xmlns="urn:Widget" xmlns:a="urn:Widget_Action"><Page.message><Var name="v" value="{#or.value}" /></Page.message><Page.resources><ObjectResource id="or" object="A" method="getNew" /></Page.resources><Page.content><Stack context="{v.C}"><TextOutput value="{x}" /></Stack></Page.content></Page>
Data Model

A:columns:b: stringd: stringrelations:C: C
C:columns:x: stringy: string
E.2.2. Missing Fields

Page

<Page xmlns="urn:Widget" xmlns:a="urn:Widget_Action"><Page.message>
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E. Test pages

<Var name="v" value="{#or.value}" /></Page.message><Page.resources><ObjectResource id="or" object="A" method="getNew" /></Page.resources><Page.content><Stack context="{v.C}"><TextOutput value="{x}" /><TextOutput value="{z}" /></Stack></Page.content></Page>
Data Model

The same model file as for Simple is used.

E.2.3. Missing Var

Page

<Page xmlns="urn:Widget" xmlns:a="urn:Widget_Action"><Page.content><TextOutput value="{x}" /></Page.content></Page>
Data Model

The object model is empty.

E.3. Used Fields Analysis test pages

E.3.1. Default fields

Page

<Page xmlns="urn:Widget" xmlns:a="urn:Widget_Action"><Page.resources><ObjectResource id="or" method="search" object="A" /></Page.resources><Page.content><Stack><TextOutput value="{#or.value.b}" />
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E.3. Used Fields Analysis test pages

<TextOutput value="{#or.value.C.x}" /></Stack></Page.content></Page>
Data Model

The same model file as for Simple is used.

E.3.2. Include fields

Page

<Page xmlns="urn:Widget" xmlns:a="urn:Widget_Action"><Page.resources><ObjectResource id="or" method="search" object="A"><Param name="includeFields" value="*, C.*" /></ObjectResource></Page.resources><Page.content><Stack><TextOutput value="{#or.value.b}" /><TextOutput value="{#or.value.C.x}" /></Stack></Page.content></Page>
E.3.3. Exclude fields

Page

<Page xmlns="urn:Widget" xmlns:a="urn:Widget_Action"><Page.resources><ObjectResource id="or" method="search" object="A"><Param name="excludeFields" value="b, d" /></ObjectResource></Page.resources><Page.content><Stack><TextOutput value="{#or.value.b}" /><TextOutput value="{#or.value.C.x}" /></Stack></Page.content></Page>
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F. Implementation

The implementation of the approach as described are property of Eljakim IT, but are

available for the graders. This appendix describes the outline of the Haskell modules

(and submodules).

F.1. Main

The main analyser program is typically run from a Pareci application directory with
a pages folder and a models.yml with the data objects definitions.
Al the executables can me build by using the Makefile or by using cabal. For this

the latest (svn) version of uuagc is needed. With the −v flag analyser also outputs a
pdf with a rendered Graphviz representation of the flow with corresponding analysis

values. The dot executable from Graphviz is required in the path for this.

F.2. Pareci representation

∙ Widget representation: Language.Pareci.Types andLanguage.Pareci.WidgetDefinition
∙ Types and object model representation: Language.Pareci.ObjectModel
∙ Property values, Expressions and binding syntax:Language.Pareci.Properties and parsers:Language.Pareci.Properties.*Parser
∙ Pickler for Pareci for translating from XML-tree to the widget representation:Language.Pareci.Pickle

F.3. Monotone Framework

∙ Monotone framework representation:Language.Pareci.Analysis.Montone
∙ Worklist algorithm implementation:Language.Pareci.Analysis.Worklist
∙ General analysis types: Language.Pareci.Analysis.AnalysisTypes
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F.4. Analyses on Pareci

This part is separate from rest of analysis. The worklist algorithm takes an instance

of AnalysisInstance which parameters are an analysis lattice (JoinSemiLatticelat, PartialOrd lat) and a expression on which the necessary Monotone Frame-
work instance properties (Monotone expr) are available. If the analysis is specified
as an AnalysisInstance, we can run the analysis
∙ Monotone framework instance for Pareci:Language.Pareci.Analysis.Flow
The instance for Pareci is defined as an attribute grammar and converted to corre-

sponding haskell code using uuagc.

F.4. Analyses on Pareci

Language.Pareci.Analysis contains two backwards analyses that run on Pareci.
∙ Language.Pareci.Analysis.LiveVariablesAnalysis for detecting if all
used variables are declared

∙ Language.Pareci.Analysis.UsedFieldsAnalysis for detecting surplus
database queries
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