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Abstract

Implementing re-use of previously computed values is hard and is therefore
often dismissed by programmers: a missed opportunity for improved compu-
tational efficiency. Memoisation and change propagation are techniques for
implementing the re-use of previously computed values. Using existing libraries
either destroys the conciseness of the code or is too limited for a real-world
application where fine-grained control over the amount of memory used is
necessary. We combine both memoisation and change propagation and pro-
vide clean interfaces through the ubiquitous applicative, monad, and arrow
interfaces.
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Chapter 1

Preamble

1.1 Introduction

We unnecessarily waste energy and decrease performance by repeatedly recom-
puting values. Re-using previously computed values increases performance
and thereby reaction time as less computations areas the processor is less active
and when it is active it is for shorter periods of time. Long reaction times have a
negative impact on user experience and on the energy efficiency of the computer.

1. User experience - The user has to wait longer for results and in some cases
desired features, such as automatically updating the table of contents of a
large Word document, are not available because they would cost too much
performance.

2. Energy efficiency - Processors are active unnecessarily frequent and for
unnecessary long periods of time.

Performing the same computation repeatedly is equal to not re-using the re-
sults of previously performed computations. Re-using results from previously
computed results is known as incremental evaluation. incremental

evaluation
Because of the absence of side-effects in purely functional languages, programs
written in such languages are easier to incrementalise than in stateful, imperative,
languages: when a previously evaluated expression is encountered we know
that re-evaluating it will yield the same result; therefore, it is safe to re-use the
result of the previous evaluation.

The foremost reason for the lack of the re-use of previously computed values
is the additional programming effort it requires. The implementation of an
algorithm in a programming language is less concise due to implementation de-
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tails, thus the implementation does not resemble the original algorithm strongly.
Adding the re-use of previously computed values is another implementation
detail and completely destroys any residual conciseness and resemblance to the
original algorithm, thus further reducing the readability and maintainability of
the program. Besides the initial effort required to add the re-use of previously
computed results, the addition also increases the effort necessary for future up-
dates. Additionally, real- life applications require the possibility of fine- tuning
of how and when to re- use values which is absent in current solutions for the
re-use of previously computed results. In this thesis we show how to provide
for this fine- tuning.

It is necessary to know whether a function is side-effect-free to safely assume
that the result of a previous computation can be re-used without changing the
observable behaviour of the application. In order to not make the problem more
complicated than necessary this thesis is embedded in the context of the purely
functional language Haskell (S. Peyton Jones, 2003).

In particular, there are two techniques for implementing the re-use of previously
computed results: memoisation and change propagation. Memoisation has been
investigated extensively in many languages, including Haskell, and is known as
caching in imperative languages. Little is known, however, on implementing
change propagation inHaskell. Change propagation has primarily been research
in the context of Attribute Grammars (AG) (Reps et al., 1983) and Standard
ML (U. A. Acar, Blelloch, and Harper, 2002). Both memoisation and change
propagation are techniques that can be used to achieve incremental evaluation. incremental

evaluation
In this thesis we present a library for easily adding support for the re-use of
previously computed values without drastically changing the layout of the
program. We evaluate our implementation by running some benchmarks that
show that the desired effect is indeed achieved.

The remainder of this introductory chapter consists of the explanation of the
technical terms and techniques used in this paper: memoisation is explained in
subsection 1.2.1 and change propagation in subsection 1.2.2, followed by their
differences in subsection 1.2.3. We present our goal in more detail in section 1.3.
The final research question and the sub research questions are presented in
section 1.4, followed by our research methods in section 1.5. We conclude with
an overview of the remainder of this thesis in section 1.7.

1.2 Memoisation, Change Propagation en their dif-
ferences

Memoisation and change propagation are at the core of the solution presented
in this thesis and we explain them in the following sections, starting with mem-
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oisation, followed by change propagation and concluding with the differences
between the two techniques.

1.2.1 What is memoisation?

The concept of memoisation is well known. Hughes describes memo-functions
as follows: “Memo-functions are functions that remember the arguments they
are applied to, together with the results computed from them.” (Hughes, 1985).
This means that a memo-function can lookup the result for a certain input if
it has seen the input before, instead of having to recompute the result again.
The process that creates a memo-function out of an ordinary function is called
memoisation.

We further explain what memoisation is on the basis of the textbook example
of memoisation: the Fibonacci sequence. The function fib n is the function
that calculates the nth Fibonacci number. The default implementation of fib in
Haskell reads as follows:

fib 0 = 0

fib 1 = 1

fib n = fib (n − 2) + fib (n − 1)

This definition of fib is not efficient because for every call of fib two additional
calls to fib occur and each path to fib 0 or fib 1 is at maximum n calls long; thus,
this function has a run-time complexity of O

(
2n

)
. We can improve this to a

complexity of O
(
n2

)
by storing the results of fib in a Haskell list. The lookup

of fib n has a complexity of O
(
n
)
but we only perform one lookup for every n;

therefore, mfib has a final run-time complexity of O
(
n2

)
.1

In the following implementation we use a standard Haskell list to store our
results and use the operator !! to lookup our result in the list. We will see that
there are more methods for storing our inputs and results in section 3.6 and
subsection 6.1.1. The advantage of using a list is that it does not require additional
memory to store the input of our function, in contrast to the commonly used
technique of storing input and value together in a list or map. The principle used
here is the same principle as used in implementing memo-tries as described in
section 6.1.1.

mfib = (map fib [0 . . ] !! )

where

fib 0 = 0

fib 1 = 1

fib n = mfib (n − 2) + mfib (n − 1)

1In section 7.1, we see that a linear implementation of fib can also be given.
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This implementation has the aforementioned complexity because the result of
map fib [0 . . ] is shared between the recursive calls to mfib in the definition of
fib; therefore we call fib n only once for every n. Additionally, due to Haskell’s
lazy-evaluation the list is only evaluated up to the nth element; therefore, this
function terminates in a finite amount of time.

Side-effects Note that we can only perform memoisation on a pure function.
We cannot re- use the previously computed results of a function that has a side-
effect without risking to change the observable behaviour, and therefore the
semantics, of our program; moreover, the result of the new function call could
be different due to possibly different global state.

Levels of sharing There are different levels of sharing. In the example above
the list is shared between all calls to fib within the initial call to fib; however,
the list is not shared between the two different calls to fib in an expression like
fib n + fib n . This means that evaluating this expression takes twice the time
to calculate fib n and a constant for the summation. If the list was shared, the
evaluation would only take as long to calculate fib n once plus the time it takes
to lookup the result in the list. Therefore, we can discern at least three levels of
sharing.

1. Memoisation on the outer call

2. Memoisation on the outer call and contained calls

3. Memoisation between outer calls and contained calls

In the remainder of this thesis we refer to the last level of sharing as Third-level Third-level Shar-
ingSharing. A sub goal for our implementation of memoisation, as described in

section 1.3, is to achieve this third level of sharing.

1.2.2 What is change propagation?

We call a program reactive if it responds to changes in its input by using change
propagation. A reactive program is the sum of two parts:

1. The Reactive model, or model, is the run-time representation of an expres- Reactive model
sion by variables and the dependencies between them, also known as the
data-dependency graph. There are input variables containing input of the
calculation, and output variables that contain the result.

2. The mutator (U. A. Acar, Blelloch, Blume, et al., 2009) that updates the
input variables and propagates the changes from the input variables to
the output variables.
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8

∗

4

+

6

Figure 1.1: Graph representation of the calculation xyz 4 6 8. The arrows
indicate the direction of the data-flow. The arguments of the operators are
not depicted.

We define change propagation as the process of updating the result of a cal-
culation by computing the effect of a change in a value of an argument to a
calculation on its result where only those parts of the calculation that depend
on the changed input are recomputed.

We illustrate this process by comparing a simple calculation and its reactive
counterpart. We use the expression x + y ∗ z , in which x , y , and z are input
variables, which can be modelled in Haskell with the function xyz :

xyz :: Int→ Int→ Int→ Int

xyz x y z = x + y ∗ z

If we apply the function xyz to the values 4, 6 and 8, we get the calculation
4 + 6 ∗ 8 as illustrated in Figure 1.1.

Now we proceed by applying the function to the values 10, 6 and 8 we get the
calculation 10 + 6 ∗ 8. Note, however, that we again evaluate the, unchanged,
expression y ∗ z which translates to the computation 6 ∗ 8 as illustrated in
Figure 1.2. We want to avoid the evaluation of unchanged expressions and
thereby the computation of unchanged values.

8

+

∗

106

Figure 1.2: The calculation of 10 + 6 ∗ 8with the repeated calculation of
6 ∗ 8 highlighted with a blue background.
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Change propagation prevents the repeated evaluation of (sub)expressions by
locally storing the values of each (sub)expression and by only recomputing the
value of an expression if the value of a sub-expression has changed.

We can implement the remembering of values by associating a variable to each
expression. A variable represents the location of changeable value in thememory.
We introduce the type V ar α for a variable of type α and we lift the operators +
and ∗ to work on variables of integers. We do the same with the function xyz

leaving only the types changed:

( + ) :: V ar Int→ V ar Int → V ar Int

( ∗ ) :: V ar Int→ V ar Int → V ar Int

xyz :: V ar Int→ V ar Int→ V ar Int→ V ar Int

The function + yields a variable containing the result of the summation of the
values of the two arguments and similarly for ∗.

Assume that we have three variables x , y and z of type V ar Int with the values
4, 6, and 8, respectively. Applying the function xyz to these variables results in
a structure of variables with dependencies between the variables. The struc-
ture is illustrated in Figure 1.3. The squares are the variables representing the
(sub)expression on the left hand side and the value of the variable is displayed
inside the square.

4

48

8

52+

6

∗

y xz

Figure 1.3: The calculation 4 + 6 ∗ 8with the variables illustrated as rect-
angles to the right of the associated expression.

We now proceed by illustrating how change propagation works. We change the
value of the variable x to 10; hereby we have created a situation where the value
of the summation is invalid as illustrated in Figure 1.4. An invalid variable is a
variable with an invalid value and is represented by a grey square.

By creating an invalid variable we have put our reactive model in an invalid state
and this has to be fixed. We return the model to a valid state by re- evaluating
every expression that is a dependant of x ; i.e., we propagate a change in the value
of x to all children of the expression x in the graph. In this case, we only have to
perform a single update. We do this by recomputing the result of + and storing
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10

48

8

52+

6

∗

y xz

Figure 1.4: The situation of 1.3 after changing the value of x to 10. The
value of the summation is now invalid as the value of x has changed.

the result in the associated variable as illustrated in Figure 1.5. We now have
prevented the recomputation of 6 ∗ 8.

10

48

8

58+

6

∗

y xz

Figure 1.5: The situation after propagating the change in the value of x as
illustrated Figure 1.4.

The previous example was a simple case. We now repeat the process for a more
complex situation. This time we change to value of y to 2 creating the situation
as depicted in Figure 1.6 where the value of y ∗ z has become invalid.

10

48

8

58+

2

∗

y xz

Figure 1.6: The situation as in Figure 1.5 after changing the value of y to 2.

We correct this invalid state by recomputing y ∗ z and storing the result in the
variable associated with y ∗ z . While now the sub-graph representing y ∗ z is
now valid the graph representing x + y ∗ z is still invalid as the value of the
summation has become invalid as depicted in Figure 1.7.
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10

16

8

58+

2

∗

y xz

Figure 1.7: After propagating the change in Figure 1.6. The result of the
addition has become invalid, depicted with the grey square.

By recomputing the value of the summation we bring the model to a valid state
again as illustrated in Figure 1.8.

10

16

8

26+

2

∗

y xz

Figure 1.8: The final situation after updating the value of the addition
from Figure 1.7.

This process of propagating changes through the model is change propagation.

A downside of remembering the value of each sub-expression is that it can be
disadvantageous because it can cost a lot of memory. By not remembering the
value of every sub-expression, we can perform computations with very large
sub-expressions without risking a memory shortage.

Some might argue that change propagation is equivalent to memoisation with a
table size of 1. However, with change propagation both results of applying +

twice are remembered by the variables created by calling +, whereas only one
result would be remembered when using memoisation with a memo-table size
of 1.

Outside the context of Haskell, there are good implementations for evaluating
an Attribute Grammar (Reps et al., 1983) (AG) with change propagation as well
as for the programming language Standard ML (Milner et al., 1997) (ML) as we
will see in Related Work (chapter 6) and specifically in subsection 6.1.2.
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1.2.3 Differences between memoisation and change propaga-
tion

As we have seen, both memoisation and change propagation can be used to pre-
vent the repeated recomputation of the same calculation. Why are we interested
in their combined application? The answer is simple: by combining the two
techniques we expect to prevent more recomputations.

Conceptually the two techniques are different as well. Memoisation prevents
recomputation if a function is called; whereas change propagation prevents the
function from being called. Memoisation looks at inputs and results of functions
where change propagation uses the values of expressions. Expressing this in
terms of a graph: with every node a variable, change propagation happens on
the nodes and memoisation happens on the edges between nodes.

There are situations where memoisation prevents recomputation better than
change propagation does and vice versa. We present a scenario for each situation,
starting with a scenario where memoisation is better suited for preventing
recomputation than change propagation.

If the input of a reactive program oscillates between two values the program
efficiently calculates the new result of each change; however, on a larger scale
it repeatedly performs the same calculations. A memoised function would
compute and then store the two results; therefore, subsequent calls would only
involve a lookup. As we will see later, by combining the two techniques we can
efficiently compute the result associated with the second value by using change
propagation and then store it.

The scenario that shows that change propagation can be more effective than
memoisation is more complicated. The following scenario is adopted from the
work of Acar (U. A. Acar, Blelloch, Blume, et al., 2009).

The calculation in this scenario is the quicksort sorting algorithm for lists. This
algorithm takes the first element of the list, the pivot, and divides the remainder
of the list in two lists: a list with elements smaller than the pivot and a list
with elements greater than or equal to the pivot. Both lists are then sorted by
recursively applying quicksort and the resulting sorted lists are concatenated
with the pivot in between.

The state of the reactive model after sorting the list [11, 7, 4, 17, 5, 19, 9] is illus-
trated in Figure 1.9. The functions qs and sp are the functions for quicksort and
the splitting of the list based on the pivot respectively. The expression qs (11) is
used for denoting a call to qs with the list that starts with 11. The control-flow is
depicted with the thin arrows; i.e., the call qs (11) applies the function sp on the
list starting with 7.

Inserting the element 8 between elements 17 and 5 changes the list from element
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17 and further. The whole list now reads [11, 7, 4, 17, 8, 5, 19, 9] and we have not
applied quicksort to this list before; therefore, memoisation has no effect and
without change propagation we would have to sort the entire list again.

With change propagation we have to redo the first partitioning from element 8
and further. This results in a change in the list with elements smaller than 11 so
we have to sort that one again. This time the list with elements greater or equal
than the pivot has changed. We sort this list again. All sorted lists are now again
concatenated an we end up with a sorted list.

In Figure 1.9 the function calls that are avoided with change propagation and
which would have been performed if we had used only memoisation are high-
lighted with the grey background.

1.3 Goals

We have seen what memoisation is (subsection 1.2.1), what change propagation
is (subsection 1.2.2) and we have determined that they are two intrinsically
different techniques that serve their own purpose in preventing recomputation
(subsection 1.2.3).

Sadly they are often not used; firstly, due to the difficulty to implement them
or because the available libraries are lacking in the availability of fine-tuning
necessary for real-world applications; secondly, because the provided libraries
tend to reduce readability, with the notable exception of the latest contribution
by Chen et al. (Chen et al., 2012) and several purely functional memo functions;
and thirdly, because none of the existing libraries implement the combination of
memoisation and change propagation.

Our primary goal is therefore to apply the combination of the techniques memoi-
sation and change propagation to improve the performance of a reactive Haskell
program when it reacts to changes in input and give the programmer access to
the behaviour of the memoisation and change propagation, without changing
the compiler or the language, in an easy to use format that does not alter the
appearance of the code drastically.

Furthermore, where memoisation is applied it should use the third level of
sharing where multiple calls to the same memoised function use the same
memo-table because this further increases the re-use of previously computed
results.

We illustrate how we want the combination of memoisation and change propa-
gation to behave by applying the combination to the fib function from subsec-
tion 1.2.1. We depict calculations as a graph as depicted in Figure 1.10: The
values are represented by the nodes and the functions are represented by the

12



3:8 • U. A Acar et al.

fun qs(nil,r)  = r
  | qs(h::t,r) = let (l,g) = sp(h,t)
      in qs(l,h::qs(g,r))
and sp(p,nil)  = (nil,nil)
  | sp(p,h::t) = let (l,g) = sp(p,t)
      in if h<p then (h::l,g) else (l,h::g)

Not found by memoization Woken up by change propagation

Required updatesControl dependences Data dependences

11

7

4

9

17

19

5

qs(11)

sp(7)

sp(4)

sp(9)

sp(17)

sp(19)

sp(5)

qs(17)

sp(19) qs(19)

qs(7)

sp(4)

sp(5)

sp(9)

qs(9) qs(4)

sp(5) qs(5)

Input Call Tree

11

7

4

9

17

19

5

qs(11)

sp(7)

sp(4)

sp(9)

sp(17)

sp(19)

sp(5)

qs(17)

sp(19) qs(19)

qs(7)

sp(4)

sp(5)

sp(9)

qs(9)

qs(4)

sp(5) qs(5)

Input Call Tree (after insertion)

8 sp(8)

sp(8) sp(9)

qs(8)

Fig. 2. Memoization versus change propagation for quick-sort (qs). The number in parenthesis is
the first element of the argument list for the corresponding function call.

re-executed such function calls will likely perform little work. The performance
of DDGs thus critically depends on the nature of the data modifications.

As an example, consider the quick-sort algorithm. Figure 2 shows the
function-call trees of quick-sort with the inputs I = [11, 7, 4, 17, 5, 19, 9] (top)
and I ′ = [11, 7, 4, 17, 8, 5, 19, 9] (bottom). Suppose that we start with the DDG
of the computation with I , modify the input to I ′ by side-effecting memory and
inserting the new key 8, and perform change propagation. Change propagation
will re-execute the function calls that depend on the new key. In the bottom
part of Figure 2, we show the function calls executed by change propagation in
dotted boxes. By reasoning with call trees as illustrated, we can show that if an

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 1, Article 3, Pub. date: October 2009.

Figure 1.9: Example of a scenario(U. A. Acar, Blelloch, Blume, et al., 2009)
where change propagation prevents work in contrast to memoisation.
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edges. We can read the graph as follows: the value of variable y depends on the
value of variable x and is obtained by applying f to x .

yx
f

Figure 1.10: The value of variable y depends on the value of variable x

and is calculated by applying f to the value of x .

We now show how we expect the combination of change propagation and
memoisation to behave using the fib example. If we start with calculating fib 2

two additional calls to fib take place: fib 0 and fib 1 resulting in the situation
illustrated in Figure 1.11.

0

1

12

1

0

fîb

fîbx y
in1

in2

out1

out2

Figure 1.11: State of the reactive model after calling fib with a variable
with value 2. The squares represent a variable and the edges functions.
Two converging edges means +.

Change propagation causes the values of the variables for the (n − 2) and for
the (n − 1) branches to change when the value of n changes; i.e., changing the
value of n to 3 changes the value of in1 to 1 and the output, out1, becomes 1.
The value of in2 becomes 2. As we saw before, for fib 2 two additional calls to
fib take place and they create two additional pairs of variables: (in3, out3) and
(in4, out4). Subsequently, the value of out2 will be updated to the sum of the
values of out3 and out4 and becomes 1. The value of y is updated to the sum of
out1 and out2 and becomes 2. The current situation is illustrated in Figure 1.12.

Note that the sub-graph highlighted by the blue background, representing the
calculation of fib 2 is identical to the graph in Figure 1.11 up to renaming of
variables. To prevent the recomputation of fib 2 we use memoisation. The
memoised fib function is ˆfibm . Memoising a function over variables is analogous
to memoising a function over values: As soon as a result is computed it is stored
in the memo-table together with its input. When the input variable changes, the
new value is first looked up in the memo-table and if it exists the corresponding
result value is assigned to the result variable. Note that we choose to store the
values and not the variables. Storing the variables could potentially be more
efficient but it also makes the implementation more difficult. The situation
illustrated in Figure 1.13 depicts the same situation as Figure 1.12 but with the
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Figure 1.12: The reactive model after changing the value of variable x to 3

without applying memoisation.

addition of memoisation.
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Figure 1.13: The sitation of the reactive model after changing the value of
x to 3when applying memoisation together with change propagation.

Now imagine the calculation fib 3+fib 3 as we gave at the end of the explanation
of memoisation (subsection 1.2.1) with n = 3. Our goal is to calculate the value
of fib 3 only once and that the result of the second call of fib 3 is obtained by a
lookup in a shared memo- table. This means that the there has to be sharing
of the memo-table between the two calls to fib. We have illustrated a possible
execution in Figure 1.14, note that we do not impose an order in the evaluation
of the arguments to +.

1.4 Research question

How can we apply the combination of the techniques memoisation and change
propagation to improve the performance of a reactive Haskell program when
it reacts to changes in input and give the programmer access to the behaviour
of the memoisation and change propagation, without changing the compiler or
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Figure 1.14: A possible state of the reactive model after fib n + fib n with
n = 3 has been calculated when sharing the memo-tables.

the language, in an easy to use format that does not alter the appearance of the
code drastically?

1.4.1 Sub questions

1. Stateless memoisation with fine-tuning of the memoisation - How can
we add memoisation to our pure functions and give the programmer
control over the memoisation, without making the functions themselves
side-effectful?

2. Stateless change propagation - How can we describe and consequently
use change propagation in pure functions where we describe the changes
in input and translate these to changes in output?

3. Combination of Memoisation and Change Propagation How can we
combine the two intrinsically different techniquesmemoisation and change
propagation into one system?

4. Easy-to-use How can we package this in an interface that is easy to use
for the programmer and has a minimal effect on the conciseness of the
program code?

5. Third-level sharing How do we achieve Third-level Sharing of memo- Third-level Shar-
ingtables when applying memoisation?
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1.5 Research method

We choose to create a library instead of creating a compiler-extension, because
a library is easier to maintain, and to show that Haskell is powerful enough to
extend the possibilities of the language with powerful features without changing
the compiler or the language.

During this thesis we encounter the following types of Haskell functions.

1. non-recursive functions on non-recursive datatypes;

2. recursive functions on non-recursive datatypes;

3. recursive functions on recursive datatypes;

The program x + y ∗ z is used to illustrate the simple programs. We then extend
the simple program with recursion to obtain fib and finally we use quicksort

and Maximum Segment Sum (MSS) as examples of recursive programs over
recursive data-types.

We show that using the methods presented in this paper increases the re-use of
previously computed values. We compare our methods with native Haskell.

1.6 The chosen approach

During my thesis I started out with a straightforward implementation of change
propagation and tried to add memoisation in a later stage. This proved to be
difficult; therefore, I attempted a second approach based on memoisation in the
first place. Both implementations have their advantages and disadvantages as
we will see in the remainder of this thesis.

1.7 Overview of the remainder of this thesis

In the next chapter, chapter 2, we describe the first system we designed followed
by the second system in chapter 3. We then relate both implementation to each
other in chapter 4 followed by the benchmarks of the implementations and other
solutions in chapter 5. Subsequently, we describe all related work in chapter 6
and we conclude in the last chapter, chapter 7.
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Chapter 2

Change Propagation first

Change propagation and memoisation are intrinsically different techniques, as
we explained in the introduction. In this chapter we approach the combina-
tion of both techniques by first implementing change propagation and adding
memoisation afterwards. We will see that adding memoisation proves to be
difficult.

We first introduce a low-level library for building a reactive program. Followed
by the implementation of the first approach and the issues with this approach.

We intent to be able to write the functions fib, quicksort , and mss in the following
form at the end of this chapter:

fib n = do

l ← fib (n − 2)

ρ← fib (n − 1)

return $ l + ρ

quicksort [] = return []

quicksort (x : xs) = do

(l , g)← split x xs

ls ← quicksort l

gs ← quicksort g

return (ls ++ [x ] ++ gs)

split p [] = return ([], [])

split p (x : xs) = do

(l , g)← split p xs

if x < p then

return (x : l , g)
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else

return (l , x : g)

2.1 Overview of the reactive library

This library is a straightforward implementation of the idea change propagation.
The library is based on the concept of a variable. A variable has a changeable
value and every variable has a collection of variables that use the variable as
source, the dependants or reactors. When a value of a variable changes the reactors
reactors of the variable are notified of the new value together with the old value.
Every variable maintains his own record of reactors.

The implementation of this system consists of two parts: the first part contains
the basic functions for creating variables and for creating a dependency between
two variables called linking, and the second part contains higher level functions
modelled after the interfaces of the Applicative, Functor, andMonad classes.

Because the aforementioned functions are stateful the functions run in IO. For
simplicity reasons we have chosen to forgo any abstraction to other monads that
support state such as the St monad. Because the functions run in a monad, the
use of the functions is more cumbersome than the use of the operators they were
derived from.

To fix this, we introduce a datatype that contains a constructor for each function
in the interface that wemodel. We use these constructors as our Domain-Specific-
Language (DSL). We can then interpret this DSL to obtain the same result as
whetherwewrote the stateful functions by hand rendering the codemore concise
and, therefore, cleaner and easier to read.

The library further has the following two properties.

1. Lazy evaluation The value of the variables is only evaluated when the
value of the result variable is evaluated.

2. Garbage collection The library ensures that any variables that are dead
can be garbage collected.

The following sections describe how the creating and linking of variables works.
After that we introduce the stateful abstractions bases on the aforementioned
classes. Subsequently, we describe how to abstract over the stateful abstrac-
tion by applying a technique called deep-embedding and how to interpret the
abstraction.
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2.1.1 The reactive library - basics

As implementation of a variable we use the standard Haskell type IORef . A
variable has the type RV ar α; i.e., it is a variable containing a value of type α.
Additionally, the variable contains meta-data such as the collection of reactors.

type RV ar α = IORef (RV al α)

data RV al α = RV al {
rMeta ::RMeta α

, rValue :: α

}

The meta-data consists of the reactors, the sources of the variable, the IO ()

actions that should be executed when the value of the variable changes, and
debug information.

A new variable with an initial value is created with the function newRVar .

newRVar :: α→ IO (RV ar α)

We can lookup the current value of a variable with the function getRVal and as-
sign it a new value with the function setRVar . For convenience, there printRVal

function that prints the variable to the standard output exists.

getRVal ::RV ar α → IO α

setRVal ::RV ar α→ α→ IO (RV ar α)

printRVal ::RV ar α → IO ()

Two variables can be linked by the function linkRVar . The first argument be-
comes the reactor to the second argument. The third argument to linkRVar is the
function that should be executed when the value of the source variable changes.

type OnV alSet α = α→ α→ IO ()

linkRVal ::RV ar β → RV ar α→ OnV alSet α→ IO HandlerLink

The typical use of the third argument is to set the value of the of the reactor by
calling setRVal .

2.1.2 Stateful abstraction

We introduce a set of functions based on the interface of Functor, Applicative,
andMonad to provide a familiar interface for the programmer. The functions
rValFMap and rValStar are the counterparts of fmap and <∗> respectively. The
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function rValBind is the counterpart of >>= and is implemented in terms of
joinRVal and rValFMap.

rValFMap :: (α→ β) → RV ar α → IO (RV ar β)

rValStar ::RV ar (α→ β)→ RV ar α → IO (RV ar β)

joinRVal ::RV ar (RV ar α) → IO (RV ar α)

rValBind ::RV ar α → (α→ RV ar β)→ IO (RV ar β)

Compared to their counterparts the functions run in IO. We would like to
write our programs in applicative or monad style but the extra IO makes this
impossible because we cannot use these functions to define the instances for the
three classes. We first show why this is a problem, followed by a solution in
subsection 2.2.1.

Remember the calculation x +y ∗z from the introduction. Written in Applicative
style it, with I the identity functor, would read as follows.

xyz :: Integer → Integer → Integer → I Integer

xyz x y z = (+)<$> pure x <∗> ((∗)<$> pure y <∗> pure z )

However, as we do not support this style yet we have to write this by using the
associated functions from our library which would be done as follows.

xyz x y z = do

ytz ← do yt ← rValFMap (∗) y

rValStar yt z

xp ← rValFMap (+) x

xpytz ← rValStar xp ytz

return xpytz

Obviously, this is less concise than our original calculation, x + y ∗ z , and less
concise than our applicative implementation and therefore less readable. We
can now use the created reactive model by wrapping it in a mutator as follows.

main :: IO ()

main = do

x ← newRVar 4

y ← newRVar 6

z ← newRVar 8

out ← xyz x y z

printRVal out -- Prints "52"
setRVal x 10

printRVal out -- Prints "58"
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We create the input variables first and then construct the reactive model by
applying xyz to the variables. The first time that we request the result of xyz , the
value of variable out, it will be equal to 52. When we change the value of x to 10,
as in our example from the introduction, we will see that the value of out is 58.

In the following sections we show how to use this library to achieve change
propagation without writing the whole program in IO.

2.2 Implementation

We want our library to be user-friendly and therefore writing functions with
it should be easy. The goal is to keep the advantage that Haskell code closely
resembles the original algorithm. Besides reduced conciseness, we have now
introduced IO in a calculation that is essentially side-effect- free, which is unde-
sirable.

In the next section we show how we can eliminate the IO in order to be able to
write our functions in applicative style.

2.2.1 The Representation

In this section we introduce the stateless representation of our programs and
translate the representation to a Reactive model. Reactive model

Note that the only difference between the types of our functions and the types
of the functions from our model classes is that our functions run in IO. We only
use IO as our implementation monad and it does not effect the semantics of
the structure we are trying to express so can we somehow leave it out? Yes we
can. We create a DSL, essentially delaying the IO actions until the interpretation
phase.

We create a datatype with a constructor for each method we want to support
in our DSL. This technique is called Deep Embedding and is common when Deep Embed-

dingworking with DSLs. A deep embedding captures the semantics of a language and
enables multiple interpretations of the model, whereas a shallow embedding
allows for a single interpretation only. This embedding is the representation of
our reactive model, representation for short.

Our datatype is a Generalised Abstract DataType (GADT) called R. We first
introduce the support for theApplicative class andwe add themonadic interface
in subsection 2.2.3 afterwards.

data R α where

FMap :: (α→ β)→ R α→ R β
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Star ::R (α→ β)→ R α→ R β

Pure :: α → R α

Input ::RV ar α → R α

The instances of Functor R and Applicative R are trivial, each function from
the class maps to its corresponding constructor and, therefore, omitted from this
text. In essence this datastructure represents the calculation the programmer
wrote, however, delaying the actual creation of the run-time variables.

We can now use this embedding to write xyz in applicative style.

xyz ::R Integer → R Integer → R Integer → R Integer

xyz x y z = ( + )<$> x <∗> (( ∗ )<$> y <∗> z )

Note that the parametrisation of the model happens at the Haskell level. The
model only describes how to create a variable of type α, lacking the concept
of input. Concretely, the function xyz is a Haskell function that takes three
representations of values and creates a new representation of value and it is
not a representation of a function that takes three values and constructs a new
value.

Now that we have this representation of our reactive model we want to create
the reactive model in order to actually create our values. In the following section
we describe how we can interpret this representation to obtain our model.

2.2.2 Interpreting the Representation

In this section, we show how to interpret the DSL in order to actually perform
the stateful operations the programmer had in mind. The implementation of
the interpretation follows directly from the datatype and the functions we have
available from our reactive library. The function install creates the reactive
model.

install ::R v → IO (RV ar v)

install (FMap f rv) = do v ← install rv

f ‘rValFMap‘ v

install (Star rf rv) = do v ← install rv

f ← install rf

f ‘rValStar ‘ v

install (Pure x ) = newRVar x

install (Input ρ) = return ρ

For FMap and Starwe recursively call install on the children of the constructors
and combine the results with the associated operators. For a pure value we
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create a new variable and we just return the embedded variable in the case for
Input.

With this install function and the modification we made to xyz our mutator
remains almost the same. The only difference is that we embed the variables in
our DSL and that we call install to create the model. We avoid having to write
our calculation with our IO functions by adding an extra layer of indirection.

main :: IO ()

main = do

x ← newRVar 4

y ← newRVar 6

z ← newRVar 8

out ← install $ xyz (Input x ) (Input y) (Input z )

printRVal out -- Prints "52"
setRVal x 10

printRVal out -- Prints "58"

2.2.3 Reactive Recursive Datatypes

In this section we add support for reactive recursive datatypes. We start with reactive recur-
sive datatypeshow we represent reactive recursive datatypes and how they are stored at run

time followed by how we interpret the representation and how we can mutate
the reactive recursive datatypes. Weillustrate this by using reactive lists; i.e.,
lists that are reactive in their tail. This means that expressions can automatically
be recomputed when the structure of the list changes.

2.2.4 Representation

To represent all reactive recursive datatypes we view recursive datatypes as
fix-point and we express this with the newtype1 RFix. We add the counterpart
RV arFix to represent a datatype with run-time variable at the recursive points.

newtype RFix f = RIn {out ::R (f (RFix f ))}
newtype RV arFix f = RV arIn {valout ::RV ar (f (RV arFix f ))}

We can now define the type of our reactive list with RFix as follows.

data ListF α f = Nil | Cons α f deriving Show

type RList α = RFix (ListF α)

type RListV ar α = RV arFix (ListF α)

1We would rather have a type synonym; however, the Haskell type-checker doesn’t agree with
the infinite type.
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The ubiquitous function foldr is used to abstract away the recursion over Haskell
lists. We introduce a similar function for our reactive lists. We will see that we
need to make our representation an instance of a monad in order to write this
function. The, incomplete, definition of foldr is as follows.

foldRList :: (ρ, α→ ρ→ ρ)→ RList α→ R ρ

foldRList α@(nil , cons) (RIn rxs) =

...

case rxs of

Nil → ...Nil

Cons y ys → Cons y <$> foldRList α ys

Note, the type of rxs isR (ListF α (RFix (ListF α))) so it is not a value of type
ListF α that we can use for our pattern match: we first need to unwrap the R.
This exactly models the concept that the variable needs to be read before we can
pattern match on the value. The case depends on the value of our variable and
this sounds as anMonad; therefore, we apply this idea to our definition and get
the following implementation where we use R as a monad. The implementation
of R as a monad follows shortly.

foldRList :: (ρ, α→ ρ→ ρ)→ RList α→ R ρ

foldRList α@(nil , cons) (RIn rxs) = do

xs ← rxs

case xs of

Nil → return Nil

Cons y ys → Cons y <$> foldRList α ys

We first unwrap the fix-constructor by pattern matching on RIn, then we bind
the value of the variable, our list, rxs to xs and finally, we pattern match on the
list.

The astute reader has noticed that the type of our case-branches is not correct.
We return a ListF α f instead of a RList α. To ease the construction of values
of type RList α we introduce the following smart-constructors.

nil ::RList α

nil = RIn (return Nil)

cons :: α→ RList α→ RList α

cons v = RIn ◦ return ◦ Cons v

And now we come to our final, correct, definition of foldRList .

foldRList :: (ρ, α→ ρ→ ρ)→ RList α→ R ρ

foldRList α@(nil , cons) (RIn rxs) = do
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xs ← rxs

case xs of

Nil → return nil

Cons y ys → cons y <$> foldRList α ys

We now use theMonad class in our representation; therefore, we need to make
our DSL a Monad. Essentially, we create a Bind constructor for the >>= op-
erator. In our install function we map the Bind constructor to the function
rValBindIO . The function rValBind behaves the same as >>= where the continu-
ation of rValBindIO runs in IO. We need the argument to run in IO because
we will have to install the model that results from the function argument of the
bind.

rValBindIO ::RV ar α→ (α→ IO (RV ar β))→ IO (RV ar β)

We extend R with the constructors Bind and Return and add the cases to the
interpretor install .

data R v where

...

Bind ::R α→ (α→ R β)→ R β

Return :: α → R α

It is now easy to define an instanceMonad R.

instanceMonad R where

return = Return

v >>= f = Bind v f

2.2.5 Interpretation

We first implement the cases for Monads in our interpreter and subsequently
we add the interpretation of an RFix representation to a RV arFixmodel, anal-
ogous to the interpretation of R to RV ar.

Monads We need to add support for Monads to our interpreter in addition
to supporting them in our model. This is done easily by adding the following
two cases to our interpreter where we use rValBindIO from above. For Bindwe
first translate the representation to the model and for the callback of the bind
we apply the function f to the value and install the resulting representation.

install (Bind v f ) = do α← install v

let fx α = install (f α)
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rValBindIO α fx

install (Return α) = newRVar α

Note, that the Monad instance we provided in the previous section does not
satisfy the monad laws. We, realistically, assume that they do hold under install ;
i.e., we assume that the following rules hold.

install (return α >>= f ) ≡ install (f α)

install (m >>= return) ≡ install m

install ((m >>= f )>>= g) ≡ install (m >>= (λx → f x >>= g))

Recursive representations We can use our quicksort function as in the code
below which would give an undesired result. It would yield us a variable
containing a representation of the sorted list instead of the actual run-time value.
Although this might be the desired result in some cases, we would like to see
the sorted list using run-time variables in this case.

To achieve this we rename the previous install function to installr and create a
class Reactive α β that contains the install function which interprets a value of
type α to a value of type β in IO. We obtain the original behaviour by defining
the instance Reactive (R α) (RV ar α).

class Reactive α β where

install :: α→ IO β

instance Reactive (R α) (RV ar α) where

install = installr

We then addour case for the reactive lists by defining an instance forReactive (RList α) (RListV ar α)

analogous to Reactive (R α) (RV ar α). We first unwrap the recursive position.
Then we install the first item of the list which yields a variable containing a
ListF αwith an RFix at the recursive position and wee need to translate this
representation to a run- time variable as well. We do this by mapping the
function that applies install to the recursive point on the variable.

instance Reactive (RList α) (RListV ar α) where

install (RIn ρ) = do

out ← install ρ

fmap RV arIn $ flip rValFMapIO out $ λxs → case xs of

Nil → return Nil

Cons x rxs → do

rvxs ← install rxs

return $ Cons x rvxs

Thismethod creates an additional variable per list itemwhich is not very efficient.
Optimising this is left as future work.
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2.2.6 Mutation and Usage

We now have enough material to write our quicksort function. The definition
differs slightly from the definition we showed in the introduction of this chapter
as illustrated in Figure 2.1.

The difference with the original function is the extra pattern match on RIn
because of the RFix newtype, and the extra lines for the monadic unwrapping.
We could prevent the latter by using the function withFix :: (f (RFix f ) →
R β)→ RFix f → R β.

split p = withFix $ λxs →
case xs of

...

We can obtain a sorted list by constructing the representation below. We create
a RList with the fromList function, we sort it with the quicksort function and
translate it back to a Haskell list. Printing the result shows the Haskell list
[1, 2, 3, 4, 5].

main = do

let m ::R [Int]

m = do let l = fromList [5, 4 . . 1]

toList $ quicksort l

out ← install m

printRVar out

Fibonacci We also have enough to create our Fibonacci function. Again the
code is similar to the original code but certainly less concise. We have now
shown that we support all three kinds of functions that we introduced in the
introduction.

fib ::R Int→ R Int

fib rn = do

n ← rn

case n of

0→ return 0

1→ return 1

n → do l ← fib (return $ n − 2)

ρ← fib (return $ n − 1)

return (l + ρ)
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quicksort ::Ord α

⇒ RList α→ RList α

quicksort (RIn rxs) = RIn $ do

xs ← rxs

case xs of

Nil→ return $ Nil

Cons y ys → do

(l , g)← split y ys

let ls = quicksort l

gs = quicksort g

out $

ls ‘app‘

singleton y ‘app‘

gs

split ::Ord α

⇒ α→ RList α

→ R (RList α,RList α)

split p (RIn rxs) = do

xs ← rxs

case xs of

Nil → return (nil ,nil)

Cons y ys → do

(l , g)← split p ys

if y < p then

return (y ‘cons‘ l , g)

else

return (l , y ‘cons‘ g)

(a) Reactive quicksort

quicksort [] = return []

quicksort (x : xs) = do

(l , g)← split x xs

ls ← quicksort l

gs ← quicksort g

return (ls ++ [x ] ++ gs)

split p [] = return ([], [])

split p (x : xs) = do

(l , g)← split p xs

if x < p then

return (x : l , g)

else

return (l , x : g)

(b) Monadic quicksort

Figure 2.1: Comparison of the reactive and monadic versions of quicksort .
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2.2.7 Returning multiple values

Currently we can only create top-level reactive values such as a reactive Int, or
a variable that contains a list, or a reactive list. We can also create a variable that
contains a tuple. But if the tuple contains an representation R it is not translated
to a variable. To counter this we add the following instance for Reactive where
we apply install to both elements of the tuple. The function doFirst applies an
IO function to the first element of a tuple and lifts the IO outside of the tuple
and the function doSecond does the same for the second element.

instance (Reactive α α′,Reactive β β′)

⇒ Reactive (R (α, β)) (RV ar (α′, β′)) where

install ρ = do

out ← (install ::R x → IO (RV ar x )) ρ

out ′ ← rValFMapIO (doFirst install) out

rValFMapIO (doSecond installr) out ′

doFirst :: (α→ IO α′)→ (α, β)→ IO (α′, β)

doFirst f inp = do

let (iores, right) = first f inp

res ← iores

return (res, right)

doSecond :: (β → IO β′)→ (α, β)→ IO (α, β′)

doSecond f inp = do

let (left , iores) = second f inp

res ← iores

return (left , res)

There is a catch to this however, we can now write a program that behaves
different from what we expect as we illustrate with the following example.

We create a representation that takes a literal Haskell list, and that yields a tuple
containing a reactive list created from the Haskell list and the sorted reactive
list. We construct the model by applying install to the representation.

main = do

let m xs = do

let list = fromList xs

return (list , quicksort list)

out ← install (m [5, 4 . . 1])

...

We define a function insert that takes the position where the new item has to be
inserted, the value of the item, and the list in which the item has to be inserted.
The definition follows later. We use this function to insert an element in reactive
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list and expect the sorted list to be updated as well because it depends on the
list . The function toListRVar :: RListV ar α → IO (R [α]) takes a reactive list
and creates a variable containing the corresponding Haskell list. We use this
function to make the printing of the variables easier.

...

(list , sortedlist) ← getRVal out

haskellList ← toListRVar list

sortedHaskellList ← toListRVar sortedlist

printRVar haskellList

printRVar sortedHaskellList

insert 2 10 list

printRVar haskellList

printRVar sortedHaskellList

We would expect the output of this function to be as follows: the unsorted list,
the sorted list, the unsorted list with the inserted element and the sorted list
with the inserted element at the correct position.

[5, 4, 3, 2, 1] { list }
[1, 2, 3, 4, 5] { sorted list }
[5, 4, 10, 3, 2, 1]{ updated list }
[1, 2, 3, 4, 5, 10]{ updated sorted list }

Instead the sorted list is not updated.

[5, 4, 3, 2, 1] { list }
[1, 2, 3, 4, 5] { sorted list }
[5, 4, 10, 3, 2, 1]{ updated list }
[1, 2, 3, 4, 5] { not updated sorted list }

This is because the representation of the list is copied and the same representation
is installed twice: once for the first element of the tuple and once when installing
the representation of the sorted list. Therefore, the reactive list in the first element
of the tuple is a different list than is used by the quicksort function.

2.3 Memoisation

As we discussed in subsection 1.2.1, memoisation is a process that reasons over
functions; i.e., something with an input and an output. The current representa-
tion models values and not functions. Remember that the function memo takes a
function and returns a memoised function.
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Ideally we would want to use this concept in our DSL; therefore, we should
include it in our embedding. However, we are missing the concept of input in
our DSL. Leaving the concept of input out of memo would result in the following
embedding.

data R v where

Memo ::R v → R v

How could we interpret this constructor in our interpretor? Conceptually, we
could traverse the representation in the first argument ofMemo to look for Input
nodes and then construct a mapping of these inputs to the value. Additionally,
we would have to prevent propagation of a change in a value in one of the inputs
if we already have seen the new set of values in the inputs.

Actually implementing this idea would be even harder than comprehending
all possible implications of this idea; Moreover, we, falsely, assume that we can
traverse the model which is not possible because our model is not inspectable
due to Haskell function in the second argument of Bind.

We could still apply memoisation to increase the performance of our change
propagation by memoising the function argument to the bind. This would mean
that the dynamically constructed model is reused if the input of the bind was
seen before. We leave the implementation for future work.

data R v where

...

MBind :: Ord α

⇒ R α→ (α→ R β)→ R β

We forgo the implementation of memoisation in this system because memoisa-
tion is easily added to our second system as we will see in chapter 3.

2.4 Summary

In this chapter we have shown how to create a reactive model manually using
the reactive library. We have shown how to abstract over the functions in the
reactive library to avoid having to program in IO. Additionally we showed that
while it easy to obtain change propagation it is difficult to add memoisation.
Also, as seen in subsection 2.2.7, the programmer may encounter unexpected
behaviour.

We have seen that this implementation supports all three kinds of functions
from the introduction.
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Aminor issue is that the model is not inspectable because it can only be deter-
mined by interpreting it at run-time. This prevents the printing and optimisation
of the representation which would have been nice to have.

33



Chapter 3

Memoisation first

3.1 Overview

In this chapter wemodel our DSL after calculations, in contrast to chapter 2 where
we used values as foundation for the DSL. Subsequently, we add memoisation
and change propagation.

We use the concept of a calculation, a process with an input and an output, and
therefore the DSL in this chapter is modelled after the Category and Arrow
classes instead of the Functor, Applicative, andMonad classes. The Category
class represents a calculation and provides functions for the identity calculation
and the composition of two calculations. The Arrow class adds the lifting of
Haskell functions and operators for controlling data-flow.

Remember that we want to preserve the conciseness of the program when the
programmer uses our library; therefore, we use the Arrow- syntax (Paterson,
2001; Hughes, 2000; GHC, 2013) in the remainder of this chapter. We refer the
reader to Arrows: A General Interface to Computation (Paterson, 2010) for a concise
explanation of the arrow operators and arrow syntax.

We will also see that we can inspect the DSL given in this chapter which enables
the printing and the optimisation of the DSL.

In the remainder of this chapter we first introduce a new DSL based on the
Arrow-class (section 3.2) and we give an recursive interpretation function that
interprets the DSL to an Haskell function in section 3.3. We show that recursive
models, such as fib, give rise to issues and we provide a solution in section 3.4.
Subsequently, we create a new interpretor function that creates a reactive model
instead of an Haskell function in section 3.5. After this we proceed to add
support for memoisation to the DSL and the interpretor (section 3.6) and show
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that with this implementation we have reached our goal (section 1.3), and we
revisit change propagation and the issues with our current solution in section 3.7.
Next we show that in order to calculate the MSS we need higher-order models
and add support for this in section 3.8. We conclude with possible optimisation
algorithms (section 3.9) and a summary of this chapter in section 3.10.

3.2 Representation: · ·

We, again, create a deep-embedding but now for theCategory andArrow classes.
The definition of datatype follows directly from the definitions of the classes.

data α β where

Id :: α α

Comp :: β γ → α β → α γ

Arr :: (α→ β)→ α β

Split :: β γ → β′ γ′ → (β, β′) (γ, γ′)

First :: β γ → (β, δ) (γ, δ)

Second :: β γ → (δ, β) (δ, γ)

Choice :: β γ → β′ γ′ → (Either β β′) (Either γ γ′)

The instances Category · ·, Arrow · ·, and ArrowChoice · · are trivial to
implement. These instances allow us to use the arrow-syntax; therefore, we can
write the functions xyz and fib as follows.

xyz x y z = x + y ∗ z xyx = proc (x , y , z )→ do

yz ← returnA _< y ∗ z

returnA _< x + yz

fib 0 = 0

fib 1 = 1

fib n = fib (n − 2) + fib (n − 1)

fib = proc n → case n of

0→ returnA _< 0

1→ returnA _< 1

n → do l ← fib _< (n − 2)

ρ← fib _< (n − 1)

returnA _< (l + ρ)

This do-notation for arrows is desugared to a combination of the operators
from the Arrow class. We desugar the function fib′ to show what happens. A
case-expression is translated to two parts. The first parts is a lifted Haskell
function that performs the pattern matching and encodes the chosen path with
Either-constructors. The second part uses the choice-operator, ( ||| ), to traverse
the given path and uses the left- hand arrow when it encounters a Left and the
right-hand otherwise.
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fib :: Integer Integer

fib

= (arr

(λn →
case n of

0→ Left ()

1→ Right (Left ())

n ′ → Right (Right n ′))

≫
(arr (λ()→ 0) |||
(arr (λ()→ 1) |||

(arr (λn ′ → (n ′,n ′))≫
(first (arr (λn ′ → (n ′ − 2))≫ fib)≫

arr (λ(l ,n ′)→ (n ′, l)))

≫
(first (arr (λn ′ → (n ′ − 1))≫ fib)≫

arr (λ(ρ, l)→ (l + ρ)))))))

Further on wewill see that we need to add constrains to the types in the construc-
tors of our datatype. This means that we cannot write programs in our DSL by
using the arrow operators any more; therefore, we introduce our own functions
with the same name as the functions in Category and Arrow in combination
with the RebindableSyntax extension in order to keep the arrow-syntax.1

3.3 Interpretation, recursively

As we did before, we can interpret our DSL by applying our interpretor at each
recursive point and combine the results. Interpreting to a Haskell function is
achieved by simply replacing the constructors with their associated operator
from the Arrow class as→ is an arrow.

runR :: α β → α→ β

runR (Id _) = C .id

runR (Comp _ g f ) = runR g ◦ runR f

runR (Arr _ f ) = f

runR (Split _ f g) = runR f ∗∗∗ runR g

runR (First _ f ) = first (runR f )

runR (Second _ f ) = second (runR f )

runR (Choice _ l ρ) = runR l +++ runR ρ

1Actually, we are forced to the translation manually or with the arrowp package as the combina-
tion of arrow-syntax and RebindableSyntax is broken.
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With this interpretor we can map the xyz and fib representations to Haskell
functions. Note, however, that our definition of fib is recursive and thus our
representation of fib is an infinite datastructure. Because of lazy evaluation we
can obtain the Haskell function representation of fib. However, we cannot print
or optimise our representation in finite time because printing and optimisation
inspect the whole structure.

In the next section we show how to transform this tree-representation into a
graph-representation of our representation of the reactive model.

3.4 Graph representation of · ·

In this section we show why we want to store the representation of the reactive
model differently and introduce the new way to store the representation.

There are two reasons why we want to move away from the infinite representa-
tions.

1. If we want to add change propagation we have to lift our functions to IO
thereby losing lazy evaluation and thus we are unable to interpret finite
representations such as fib. We loose lazy evaluation as IO is a monad
and monads impose an order in the evaluation of the value.

2. It is impossible to print or optimise infinite datastructures which is some-
thing we want.

We, therefore, make the recursion explicit by storing our representation as a
graph instead of a tree. The graph is stored as a map of node identifiers to node
constructors and each recursive point is replaced with a pointer to a node. Each
node is represented by the datatype R′.

data R′ α β where

Id′ :: ...

⇒ R′ α α

Comp′ :: ...

⇒ R′ β γ → R′ α β → R′ α γ

Arr′ :: ...

⇒ Int→ (α→ β)→ R′ α β

Split′ :: ...

⇒ R′ β γ → R′ β′ γ′ → R′ (β, β′) (γ, γ′)

First′ :: ...

⇒ R′ β γ → R′ (β, δ) (γ, δ)

Second′ :: ...

⇒ R′ β γ → R′ (δ, β) (δ, γ)

Choice′ :: ...
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⇒ R′ β γ → R′ β′ γ′ → R′ (Either β β′) (Either γ γ′)

Ptr :: ...

⇒ Int→ R′ α β

We still aim to use the arrow-syntax but the types of the arrow combinators do not
allow to create the desired structure directly. Finding a cyclic representation of a
through recursion created infinite datastructure is equivalent to finding sharing
in a tree structure; therefore we want to detect sharing in our datastructure of
type · ·.

One way to find sharing in a tree-structure is readily available as a Hackage
package (Gill, 2009; Gill, 2011) and we will therefore use this package. The
package detects the sharing that GHC introduces by inspecting the memory
address of values as opposed to creating the sharing itself.

By reifying our tree-structure we essentially find the binding of variables which
is generally hard to do directly with deep-embedding. Another, type- safe,
solution for observing bindings is the work presented by Baars et al. (Baars et al.,
2009). We refrain to use their method here as it is not compatible with the Arrow
operators. Ultimately we would like to be able to reify any Haskell function as
that would enable us to perform the transformation we now perform on our
DSL on any Haskell function.

Our model R′ contains representations of functions with different types and
therefore the constructor ofR′ have type parameters. We store our representation
as a graph in a map only stores values of the same type. We introduce SomeR
as the fully existentially qualified, or Anonymised datatype, type of R′. Because Anonymised

datatypewe need to lookup values and retrieve the type parameters for use later on we
need Typeable constraints on the type parameters so we change our R′ to read
as follows.

data SomeR where

Wrap :: (Typeable α, Typeable β)⇒ R′ α β → SomeR

data R′ α β where

Id′ :: (Typeable α)

⇒ R′ α α

Comp′ :: (Typeable α, Typeable β, Typeable γ)

⇒ R′ β γ → R′ α β → R′ α γ

Arr′ :: (Typeable α, Typeable β)

⇒ (α→ β)→ R′ α β

Split′ :: (Typeable β, Typeable β′, Typeable γ, Typeable γ′)

⇒ R′ β γ → R′ β′ γ′ → R′ (β, β′) (γ, γ′)

First′ :: (Typeable β, Typeable γ, Typeable δ)

⇒ R′ β γ → R′ (β, δ) (γ, δ)

Second′ :: (Typeable β, Typeable γ, Typeable δ)
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⇒ R′ β γ → R′ (δ, β) (δ, γ)

Choice′ :: (Typeable β, Typeable β′, T ypeable γ, Typeable γ′)

⇒ R′ β γ → R′ β′ γ′ → R′ (Either β β′) (Either γ γ′)

Ptr :: (Typeable α, Typeable β)

⇒ Int→ R′ α β

We create a typeModel that contains the start of the graph, conceptually the
main function in our model, and the representation as a graph.

newtypeModel = Graph (Int,Map Int SomeR)

Because we have the Typeable constraints in R′ and we create R′ from · · we
need to add the Typeable constraints on the constructors of · · and to our
smart-constructors as well. This is why we defined our own functions and use
the language extension RebindableSyntax. This extension lets GHC use user
defined functions with the same name as the functions from Arrow class.

We can obtain our graph out of a representation by using the function reify ::

α β → IO Model.2

It is interesting to note that we mentioned in our introduction that the functions
in a reactive model can be represented by edges and that here we have nodes
for our functions.

In the next paragraph we show how we can define an interpretor for this graph
representation.

3.5 Interpretation, again

We now show how we can interpret the obtained graph representation. We first
show how to translate the graph to a Haskell function, similar to runR, to get
an idea how the mechanism works. Subsequently, we change the interpreter to
create a Reactive model. Reactive model

3.5.1 Interpretating to an Haskell function

We now show how to define an interpretor, installFunction , that creates an
Haskell function from the graph representation. The only reason why this
function is in IO is because the reification from · · to R′ happens in IO.

installFunction :: (Typeable α, Typeable β)⇒ α β → IO (α→ β)

2The actual function reify from the package has a more general type and returns a list instead of
a map.

39



Globally this function works as follows:

1. We translate the tree to a graph;

2. Subsequently we map a translate function over the nodes to translate each
node to a Haskell function, the result is a map of identifiers to Haskell
functions;

3. We look up the root of the graph and yield that function as a result.

We can translate the representation into an Haskell function in a finite amount
of time as because the graph is finite and we translate each node only once. The
implementation of the algorithm above reads as follows.

installFunction :: (Typeable α, Typeable β)

⇒ α β → IO (α→ β)

installFunction e = do

Graph root m ← reify e

let functions = Data.Map.mapWithKey (translate functions) m

fromError "letf" $ lookupF functions root

The translate function is similar to runR but instead of a recursive call to runR

it performs a lookup in the map of Haskell functions. The function lookupF

performs a lookup in themap functions and casts the result to the correct function
type. We need an anonymized type for storing our functions with a different
argument and result types in a map.

data SomeFunction where

SomeFunction :: (Typeable α, Typeable β)

⇒ (α→ β)→ SomeFunction

type Error α = Either String α

lookupF :: (Typeable α, Typeable β)

⇒Map Int SomeFunction→ Int→ Error (α→ β)

lookupF m n = case m ! n of

SomeFunction f → let castf = cast f in

case castf of

Just x → Right x

Nothing → . . .

The implementation of translate follows naturally and follows the same pattern
as runR. The, partial, implementation reads as follows.

translate ::Map Int SomeFunction→ SomeR Unique

→ SomeFunction

translate functions (Wrap node) = case node of

Id′ → SomeFunction Prelude.id
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Arr′ f → SomeFunction f

Comp′ (V ar g ::R′ y z Unique) (V ar f ::R′ x y Unique)→
SomeFunction ◦ fromError $ do

g ′ ← lookupF functions g

f ′ ← lookupF functions f

return $ (g ′ :: y → z ) ◦ (f ′ :: x → y)

...

3.5.2 Interpreting to a reactive model

We now construct a reactive model instead of an Haskell function by using our
reactive library. We use the same algorithm as before but now with variables.
This function is called installCP and the body is almost identical to that of
installFunction .

installCP :: (Typeable α, Typeable β)⇒ α β → IO (RV ar α,RV ar β)

installCP e = do

Graph n m ← reify e

let mods = Data.Map.mapWithKey (translate tables mods) m

let f = fromError "letf" $ lookupMod mods n :: ModFunction x y

inp ← newRVar (error "Uninitialised")
out ← f inp

return (inp, out)

We do almost the same as in installFunction : we transform the tree structure to a
graph andwe lookup the root of the model. But instead of returning the function
we apply the function to a new input variable and we yield the resulting output
variable together with the input variable in a pair. The function lookupMod is
analogous to the function lookupF .

The function translate now produces an anonimised ModFunction and this is
reflected in the types as follows.

type ModFunction α β = RV ar α→ IO (RV ar β)

data SomeModFunction where

WrapModFunction :: (Typeable α, Typeable β)

⇒ ModFunction α β → SomeModFunction

translate ::Map Unique SomeModFunction→ SomeR Unique

→ SomeModFunction

The implementation of translate for installCP follows the same pattern as the
function install from subsection 2.2.2, just as the translate function from installFunction

follows the runR function.
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translate mods (Wrap node) = case node of

Id′ →WrapModFunction $ λinp → return (inp ::RV ar α)

Arr′ _ f →WrapModFunction $ rValFMap f

Comp′ (V ar g ::R′ β γ Unique) (V ar f ::R′ α β Unique)→
let (gF , fF ) = fromError $ do

g :: ModFunction β γ ← lookupMod mods g

f :: ModFunction α β ← lookupMod mods f

return (g , f )

inWrapModFunction $ fF >=> gF

The implementation of the Choice′ case is interesting as we have to preserve the
semantics of a case, namely that only the chosen branch is executed in contrast to
executing each branch and choosingwhich result to take later. As case-statement
is translated into a nested set of Choice′ constructors this means that we have to
install either the left or the right branch.

The only way we can do this is by delaying the construction of the sub reactive
model until the input of the Choice′ constructor is set. At that point we know
which sub graph to pick. We then have to link the variables in such a way that if
the value of the Choice′ constructor changes the input of the sub-graph changes
as well. We can perform the choice of the right sub-graph and its construction at
every change in input but we can optimise this as well by keeping the previous
sub-graph intact and only change it when the direction of the input has changed
as well; i.e., it has become a Left instead of a Right x or vice-versa.

type GraphPair α β = (RV ar α,RV ar β)

type ChoiceStore β β′ γ γ′ = IORef

(Maybe (Either (GraphPair β β′) (GraphPair γ γ′)))

translate mods (Wrap node) = case node of

...

(Choice′ (V ar l ::R′ β β′ Unique) (V ar ρ ::R′ γ γ′ Unique)) =

let (lF , rF ) = fromError $ do

l :: ModFunction β β′ ← lookupMod mods l

ρ :: ModFunction γ γ′ ← lookupMod mods ρ

return (l , ρ)

-- switchSubGraph would also be a good name
getSubGraphF :: ChoiceStore β β′ γ γ′ → RV ar (Either β′ γ′)

→ Either () ()

→ IO (Either (GraphPair β β′)

(GraphPair γ γ′))

getSubGraphF store out side = do

stored ← readIORef store

case (stored , side) of

(Just (Left s), Left _)→ return (Left s)
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(Just (Right s),Right _) → return (Right s)

(x , Left _)→ do

case x of

(Just (Right s))→ unlink out

_ → return ()

inL← newRVar $ error "Choice.inL"
outL← lF inL

linkRVal out outL $ λx _→ void $ setRVal out (Left x )

let res = Left (inL, outL)

writeIORef store (Just res)

return res

-- Create new pair and store in store
(x , Right _)→ do

case x of

(Just (Left (inL, outL)))→ unlink out

_ → return ()

inR ← newRVar $ error "Choice.inR"
outR ← rF inR

linkRVal out outR $ λx _→ void $ setRVal out (Right x )

let res = Right (inR, outR)

writeIORef store (Just res)

return res

inWrapModFunction $ λinp → do

store ← newIORef Nothing :: IO (ChoiceStore β β′ γ γ′)

out ← newRVar $ error "Choice.out" :: IO (RV ar (Either β′ γ′))

let getSubGraph = getSubGraphF store out

let setIn α _ = debugLn "in choice">> case α of

Left x → do

debugLn "Choice.Left"
Left (inL, outL)← getSubGraph (Left ())

setRVal inL x

return ()

Right x → do

debugLn "Choice.Right"
Right (inR, outR)← getSubGraph (Right ())

setRVal inR x

return ()

addEffect inp setIn

return out

The implementations of the cases for the First′ and Second′ constructors are
less natural and straightforward than the implementations in the runR function.
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We only show the implementation of the case for First′ as the case for Second′
is analogous to the one of First′. The implementation reads as follows 3:

(First′ (V ar l ::R′ β γ Unique) ::R′ (β, δ) (γ, δ) Unique)→
let (lF ) = fromError $ do

l :: ModFunction β γ ← lookupMod mods l

return l

inWrapModFunction $ λ(inp ::RV ar (β, δ))→ do

{ Project }
secondv ← fmap snd $ getRVal inp

proj ← rValFMap fst inp

{ Get individual result }
outProj ← lF proj

{ Combine }
out ← newRVar (error $ "Uninitialized First :: "

++ show (typeOf (⊥ :: γ))

, secondv)

linkRVal out inp (λx _→ void $

modifyRVar out (Arrow .second (const $ snd x )))

linkRVal out outProj (λx _→ void $

modifyRVar out (Arrow .first (const x )))

return out

We create an output variable containing the second value of the input pair and an
⊥ first element. We can use ⊥ here because no getRVar occurs before a setRVar

has occured.

3.6 Adding memoisation

Now we go ahead and add support for memoisation to obtain a fast fib function.
We first explain how to achieve this with hard-coded HashTables and subse-
quently we abstract the creation of the memoisation table, and the lookup and
insert functions out.

The idea of the memoisation constructor is that at the point of memoisation we
store the calculated values together with the input in the memo table, just as
memo does for normal Haskell functions. For every call a unique variable is
generated and the value it obtained from the memo-table if possible, otherwise
it is computed.

3The actual implementation has the case statement split over two case statements due to a bug in
ghc.
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First we add an additionalMemoHash constructor to · · and its corresponding
constructor to R′.

data α β where

...

MemoHash :: (Typeable α, Typeable β,Hashable α,Eq α)

→ α β → α β

Now we have to change both the install function and the translate function. As
an additional step in the install function we will create a memo-table for each
MemoHash constructor in our graph and we will then pass these generated
tables along to the translate function. This way the creation of the memo table
is taken out of the IO action of the ModFunction and therefore does not happen
whenever the mod function is called. Creating the table inside the translation
step would make translate run in IO which would make the translation infinite
again for recursive functions.

Recall that theMemoHash′ constructor points to the model that has to be mem-
oised and as that node is unique we can re-use the pointer to the model as the
key for the memo-table. The function isSomeMemoHash ′ checks whether the
value is an anonymizedMemoHash′ constructor. We filter out theMemoHash′

constructors and create a new table for each one by mapping the function
createSomeTable over the list ofMemoHash′ constructors.

installCP =

...

let memoConstructors = filter isSomeMemoHash ′ (elems m)

tables ← fmap fromList $ mapM createSomeTable memoConstructors

let mods = Data.Map.mapWithKey (translate tables mods) m

...

We add the tables argument to the translate function and we define a case for
the MemoHash′ constructor. In the function translate we perform a lookup
in the memo table with the input value as key each time the input of the
MemoHash′ constructor is set. If the value was in the table the output variable
of theMemoHash′ constructor is set to the result value, otherwise, the value of
the input is propagated to the input variable of the inner reactive model. When
the output value of the inner model is set, we store the current values of the
input variable and the inner output variable in the memo-table and we set the
output variable of the constructor to the result value.

MemoHash′ (V ar m ::R′ α β Unique)→
let f :: ModFunction α β = fromError $ lookupMod mods m

table :: Reactive.Implementation.HashTable α β =
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fromError "memohash.table:" $ getMemoTable tables m

inWrapModFunction $ λinp → do

out ← newRVar $ error "out"
innerInp ← newRVar $ error "innerIn"
innerOut ← f innerInp

linkRVal innerInp inp $ λx _→ do

res ← H .lookup table x

case res of

Just x ′ → void $ setRVal out x ′

Nothing → void $ setRVal innerInp x

linkRVal out innerInp (λ_ _→ return ())

linkRVal out innerOut $ λv _→ void $ do

k ← getRVal inp

setRVal out v

H .insert table k v 4

return out

The astute reader has noticed that the output is linked by a void update function.
We could have chosen to perform the lookup twice and to move the setting of the
output variable to the currently void update function. However, for reasons of
performance and avoiding code duplication we have merged the two functions.

As we will see in the benchmarks this gives us a performance increase when we
use theMemoHash constructor in the fib function.

3.6.1 Sharing of the memo-tables

As we pointed out earlier, there is exactly one memo table for eachMemoHash′

constructor. If we translate the function λn → fib n + fib n to arrow form we get
the following code:

dup≫ fib &&& fib &&& arr ( + )

If we translate this to the graph we see that the two arguments of &&& point to
the same constructor, the top constructor of fib in our case theMemoHash′ con-
structor. This, combined with the implementation of theMemoHash′ construc-
tor above, gives us exactly the behaviour as we set out to achieve in section 1.3.

4Actually due to a bug that I haven’t solved yet this line is wrapped in an exception handler. For
some reason the setter function is called while the k and or v are still ⊥which should not happen.
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3.6.2 Abstraction of the memoisation

Remember that our goal is to provide the programmer with the ability to control
how memoisation is performed. To that end we factor out the functions for
creating the memo-table, and inserting and looking up in the memo-table to the
MemoTable constructor. This allows, among other things, the programmer to
control the size of the table and which values are stored.

We add the following constructor to our representation. The implementation
of the interpretor is identical to the case for MemoHash′ with the functions
specialized for HashTables insert and lookup replaced with the generic versions
stored in the constructor.

data α β where

...

MemoTable :: (Typeable α, Typeable β, Typeable2 t)

⇒ IO (t α β)→ (t α β → α→ IO (Maybe β))

→ (t α β → α→ β → IO ())

→ α β → α β

Commutativity The ability to define custom functions for the insert and lookup

operators gives the programmer the ability to take the commutativity of an oper-
ator into account. When an operator is commutative the order of the arguments
does not matter for the result of the operator. The programmer can use this
attribute to either make the memo- table more compact by only storing the
given combination and at lookup try each permutation of the values, or save
on the lookup time and add the same value for each permutation at the cost of
increased memory usage.

3.7 Issues with the change propagation implemen-
tation

The astute reader has noticed from the above that the way change propagation
is implemented in this method does not work as we claimed it would in sub-
section 1.2.2. In fact, it does not prevent unnecessary recomputation at all and
in its current form it is just a convenience to the programmer as the output of
the model is updated automatically when its input changes. In this section we
describe why the change propagation does not work as desired and how we can
work around it.

In the previous chapter we knew for certain that when a variable was changed
that it was the only variable that had changed. Therefore we knew that we could
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update its dependencies and leave other computations untouched. However,
in this implementation each variable contains all the input of the calculation
because all arguments to an are tupled into a single argument. This means that if
one of the arguments changes the value of the input variable, the tuple, changes
but we have lost the information which argument, which element of the tuple,
actually changed.

Adding an equality constraint or function would go someway to solve this as the
changes would stop propagation when the arguments are passed further along
through the model to where they are the only arguments at which point it can be
decided whether it actually did change. However, in addition to that this would
only work if the model has methods with just one argument this also imposes a
significant performance hit aswe have to dowork at every point to checkwhether
the arguments have changed opposed to, as opposed to intrinsically knowing
that we could update a variable because it was the only one that had changed.
Therefore, where we could add the equality check to increase performance in the
previous implementation, it is required to prevent any recomputation in this
implementation.

We could limit the equality checks to the first and second operators thus limiting
the amounts of equality checks performed. However, we recognise at least two
problems with this. The first is that performing equality checks is a serious
performance hit when working with recursive datastructures, such as lists, and
the second is that requiring equality limits the flexibility of the programmer to
choose an other criteria on whether to propagate or not. Therefore we choose
for a solution similar to the predicates used by Acar (U. Acar et al., 2006).

Following this idea we introduce another construct to our DSL, namely, the
Cache constructor. It contains a predicate function that is used to determine
whether the change in the input of the Cache constructor should propagate to
its output-variable.

Please note that it is not possible to add Cache ( ≡ ) nodes at a point after
compilation, e.g. a runtime optimisation step, due to parametricity. We cannot
determine at runtime whether a certain value as an associated Eq instance.

We implement the case for the Cache′ constructor as follows. We create a new
output variable and we link it to the input variable with a link function that only
sets the output variable with the input variable if the predicate p holds.

(Cache′ (p :: α→ α→ Bool))→WrapModFunction $ λinp → do

out ← newRVar (error "Uninitialized Cache")

let setter n = void $ setRVal out n

let set n o = handle (λ(_ :: ErrorCall)→ setter n) $

unless (p n o) (setter n)

linkRVal out inp set
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return out

Note that the implementation of the case for the Cache′ constructor is a bit hairy
as we have a situation where we can’t use the previous argument as it is⊥. I have
made an attempt at wrapping the value of an RV ar in aMaybe however the
extra pattern matching made things to strict in the underlying reactive library.
Therefore we choose to do some exception-handling at this point at the cost of
readability and efficiency.

We now have support for almost all our desired functions. We will now show
how to calculate the maximum segment sum of a list.

3.8 Maximum Segment Sum

In this section we introduce the model of the calculation of the MSS. In order to
define this model we need to introduce a new concept, namely, that of higher-
order models. We first describe the calculation of MSS and show why we need
higher-order models and then proceed with how to add support for this in our
interpretor.

3.8.1 Background

mss :: [Int] Int

mss = tails≫map inits≫ concat ≫map sum≫maximum

Each of the functions in the code above are the arrow implementation of their
Prelude equivalents. We omit the definition of the functions tail , concat and
maximum and focus on the functions map and inits . We have two different
versions of the map function. One that accepts a model as an Haskell level
argument and the other that models that accepts the function as an argument
on the model level. The definition of the first one, map, is straightforward and
follows the definition of its Prelude equivalent.

map :: α β → [α] [β]

map f = proc xs →
case xs of

[] → returnA _< []

x : xs → do mxs ← map f _< xs

fx ← f _< x

returnA _< (fx : mxs)

The inits function in normal Haskell code reads as follows.
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inits :: [α]→ [[α]]

inits xs = [] : case xs of

[] → []

x : xs ′ → map (x : ) (inits xs ′)

When translated to arrow-syntax the function reads as follows.

inits :: [α] [[α]]

inits = proc xs →
do t ← case xs of

[] → returnA _< []

x : xs ′ → do ins ← inits _< xs ′

(map (arr (x : ))) _� ins

returnA _< ([] : t)

Pay particular attention to the line (map (arr (x : )))_� ins . We have introduced
a new operator, namely, _�. This operator stands for the app function from the
ArrowApply-class. The app function takes an arrow and an input value for the
arrow and applies the arrow to the input.

class ArrowApply ρ where

app :: ρ (ρ α β, α) β

We need this functionality because during the evaluation of the inits function
we create a new representation, namely, map (arr (x : )). We then apply the
obtained representation to the inits of the remainder of the list with the _�
operator. In the interpretation of this representationwe create the reactivemodel
and apply it to the inits.

However, the current implementation is not semantically clean: we do not mean
to say that we create a new map function that we will apply to a list but we mean
to say that there is a part of the model, namely, the arr (x : ) that can be only
constructed during runtime as it is only then that the x is know. Therefore we
create a variant of map, namely, mapR.

mapR :: (α β, [α]) [β]

mapR = proc (f , xs)→
case xs of

[] → returnA _< []

x : xs → do mxs ← mapR _< (f , xs)

fx ← f _� x

returnA _< (fx : mxs)

This mapR function performs the application of f to x and this means that we
can change the line from inits we discussed above to read as follows.
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...

mapR _< (arr (x : ), ins)

3.8.2 Implementation

We now have all the models we need to define mss but we still need to support
the concept of app into our interpretor. Therefore, we add the constructor Apply

to our model.

data α β where

...

Apply :: (α β, α) β

The implementation of the case for this constructor is where we are going to
have to make interesting choices. We have to answer the following questions:

1. Sharing memo-tables

When applying a model, the argument model is the inner model and the
model where the application happens is the context. Do we aim for the
sharing of memo-tables between the inner model and the context? That
means, if we have a memo-table for fib and we use fib in the inner model
and in the context, should their memo-tables be shared?

2. Prevent double work As the goal of this thesis is to prevent the repeated
recomputation of work it would be odd if we would repeat the whole
process of translating the model to a graph and translating the graph to a
reactive model each time we call apply. Do we want to prevent this? If so,
how do we prevent this?

The implementation is straightforward if the answers to these questions is “no".
We show this implementation. Furthermore we discuss the changes necessary
to support the sharing of the memo-tables and to support the recomputation of
the model.

The naive implementation of the case for Apply ′ is extremely straightforward.
We create a new output variable and we link it to the input as follows. If the
input changes we take the provided representation of the reactive model, install
it by calling installCP , setting the input variable of the installed model to the
provided value and read the resulting value and storing it in the output variable.

x@Apply ′ →WrapModFunction $ λinp → do

out ← newRVar $ error "Apply.out"

linkRVal out inp $ λ(ρ, x ) _→ void $ do

(innerInp, innerOut)← installCP ρ
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setRVal innerInp x

rx ← getRVal innerOut

setRVal out rx

return out

Sharingmemo-tables In order to be able to share thememo-tables between the
context and the inner model we need to be able to uniquely identify theMemo′

constructors. In the implementation of memoisation in section 3.6 we used the
value of the pointer to the memoised expression as the key for our map of memo-
tables. However, we cannot continue to do this if we want to share the memo-
tables because the identities of two equal nodes in two separate representations
are not necessarily equal as well. Therefore we could an additional field to the
Memo constructor for the id of the constructor and use this field as key as it
will be the same in both the inner representation and the representation of the
context. The question is then how to come up with this id. We can either do
this manually, which is error-prone and thus undesirable, or by using a global
counter. Using a global counter would mean using unsafePerformIO as arrows
don’t support IO.

Prevent double work In order to prevent to repeated installation of the same
reactive model we need a mechanism to detect whether the model has changed.
However, a simple equality check on a representation of type · · is a poten-
tially infinite computation. We see at least two options around this, firstly to
perform an equality check on the translated representation R′, and, secondly,
to provide a sound shallow equality. The first option is easy to implement but
has the disadvantage that is computationally expensive because it performs the
translation regardless whether the representation was changed or not subse-
quently performs an expensive equality check. As far as we know the only way
to provide a sound shallow equality is by giving each constructor an unique
identifier, similar to the identifiers forMemo in the previous paragraph, and
to check whether the identifiers are equal. However, this breaks referential
transparency as equal values are not considered equal. However, in the event
that we would subsequently apply the same representation to different values it
is probable that the shallow equality holds. We delegate the decision on which,
if any, optimisation to future work (section 7.2).

We now conclude the implementation of our interpretor. In the following sec-
tions we will provide algorithms for optimising the representation and we give a
summary of this chapter. The benchmarks of the code can be found in chapter 5.
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3.9 Optimisations

In this section we describe three optimisations that can improve the performance
of the reactive model. These three optimisations use the fact that we can inspect
and change the representation of the reactive model. We describe the ideas of
these optimisations but leave the implementation as future work, section 7.2.

3.9.1 Lift to Haskell functions

Aswe saw before in section 3.7, applying change propagation at every node does
not prevent recomputation and in fact only adds additional overhead. Therefore
it would we beneficial if we could reduce the number of variables in our reactive
model. We can achieve this in a two-pass optimisation. We first lift all nodes
to their equivalent lifted Haskell function and subsequently compose the lifted
Haskell functions. We can only lift a node to a Haskell function if its children can
also be lifted to a Haskell function. We can lift any node to its Haskell equivalent
except the Cache andMemo nodes. We illustrate this with the following two
examples.

dup≫ arr ( + 2) &&& arr ( + 1)≫ arr ( + )

≡ { lifting of &&& }
dup≫ arr (( + 2) &&& ( + 1))≫ arr ( + )

≡ { def. of dup }
arr (λx → (x , x )≫ ( + 2) &&& ( + 1)≫ ( + ))

Notice that we can use the same operators inside the lifted Haskell functions
as the Haskell function is also an instance of Arrow. We can lift the &&& to
an Haskell function because none of its children contain a Cache or Memo

constructor. The functions translated from Cache and Memo need to run in
IO and thus cannot be lifted to a pure Haskell function. Therefore, we cannot
directly optimise the following function.

dup≫ (Cache ( ≡ )≫ arr ( + 2)) &&& arr ( + 1)≫ arr ( + )

However, recall that f &&& s ≡ first f ≫ second s . So we can first use this rule
to expand the &&& operator and subsequently optimise the result.

dup≫ (Cache ( ≡ )≫ arr ( + 2)) &&& arr ( + 1)≫ arr ( + )

≡ { expansion of &&& }
dup≫ (first (Cache ( ≡ )≫ arr ( + 2))≫ second (arr ( + 1)))≫ arr ( + )

≡ { assoc. of≫ }
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dup≫ (first (Cache ( ≡ )≫ arr ( + 2)))≫ second (arr ( + 1))≫ arr ( + )

≡ { lifting of second }
dup≫ (first (Cache ( ≡ )≫ arr ( + 2)))≫ arr (second ( + 1))≫ arr ( + )

≡ { comp. of≫ and arr }
dup≫ (first (Cache ( ≡ )≫ arr ( + 2)))≫ arr (second ( + 1)≫ uncurry ( + ))

3.9.2 Common Subexpression Elimination

Common Subexpression Elimination (Cocke, 1970) factors out the identical parts
from a set of expressions. We illustrate this idea with the following example.
In this example the expression y ∗ z is shared between the calculations of α
and β. Therefore, we can first calculate the value of y ∗ z and then use it in
the calculation of α and β. This prevents a second computation of y ∗ z and is
therefore similar to memoising the ∗ operator.

α = t + y ∗ z

β = u + y ∗ z

≡
e = y ∗ z

α = t + e

β = u + e

By eliminating the amount of expressions in our reactive model we further
reduce the overhead imposed by the change propagation, we reduce the need
for memoisation, and we reduce the amount of lookups in the memo-table in
the event that we factor out memoised expressions, all in one go.

3.9.3 Memo re-routing

Imagine the following situation where we define the function fib as we did in
section 3.2.

fib = proc n → case n of

0→ returnA _< 0

1→ returnA _< 1

n → do l ← fib′ _< (n − 2)

ρ← fib′ _< (n − 1)

returnA _< (l + ρ)

If we would now define a function foo = memo fib. We would only memoise
the outer calls to fibm and the runtime of fib would still be bad. An idea is to
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rewrite the recursive calls to point to fibm instead of fib. If there is only one such
case, where we add a memo constructor, then it is evident that we can perform
the rewriting. In the case that we have another function bar = memoHash fib

that uses a different memoisation technique we can choose to either not perform
the optimisation or to copy the implementation of fib and rewrite the recursive
calls to their respective memoised versions.

3.10 Summary

We have seen that it is easy to add memoisation when approaching the problem
from the perspective of a calculation. Because we create the reactive model in
IO we prevent using unsafePerformIO and pure memoisation functions that do
not provide the programmer with the desired control over the memoisation.

The addition of change propagation makes some the implementation of some
cases in the interpretor less intuitive than their Haskell function counterparts.
However, this is invisible to the programmer.

Despite the lack of support of modelling recursively reactive values, e.g. reactive
lists, algorithms over recursive datatypes benefit from memoisation and the
change propagation.

In chapter 5 we will see how much performance we gain by using memoisation
and change propagation.
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Chapter 4

Reflection

We have seen two different methods of representing a calculation. The first DSL,
chapter 2, was based on the concept of an expression, or value. This made the
process of implementing change propagation natural, however, implementing
memoisation was difficult. The second DSL, chapter 3, was based on the concept
of a calculation which made implementing memoisation natural and imple-
menting change propagation difficult, see section 3.7. The first implementation
supports reactive recursive datatypes, whereas the second does not.We have
tabulated this summary in Table 4.1.

Both approaches have the problem that in general we cannot provide a predicate
by which we can control whether to propagate a change or not. However, for
the first approach this is means a missed chance for an additional optimisation
in the change propagation process, whereas for the second approach it means
that the change propagation becomes useless in terms of performance.

The approach to define an embedded DSL has the advantage that it supports a
platform for easy experimentationwith optimisation strategies aswell as support
optimisation of calculations constructed during- runtime.

Features Implementation 1 Implementation 2
Recursive functions X X
Recursive reactive data types X 7

Memoisation 7 X
Sharing of memo tables n/a X
Change Propagation X X, but limited

Table 4.1: Overview of the capabilities of Implementation 1 and Imple-
mentation 2
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Chapter 5

Benchmarks

In this chapter we describe three benchmarks performed to validate ourmethods.
The first benchmark shows that memoisation works. The second benchmark
shows that we have obtained Third-level Sharing, The third example shows that Third-level Shar-

ingchange propagation works. The functions used for these benchmarks are fib n ,
fib n + fib n , and x + fib n , respectively.

Environment The benchmarks are performed by criterion (O’Sullivan, 2013)
on a Intel i7-2600K processor with 24GB of RAM running OS X 10.8.4. A new
Haskell runtime is started for each test to prevent unwanted sharing by a smart
GHC. Every benchmark is run by starting the same executable to ensure the
executable is in memory for each test. The overhead of starting a new executable
and starting the Haskell runtime is 4.5ms. For additional speed we compiled
the hashtables package (Collins, 2012) with SSE4.1 optimisation on. The results
of each calculation are printed to force full evaluation.

Legend In our benchmarks results we used several variants of the same calcu-
lation. We will now explain them.

Native This is either native Haskell code or the DSL from implemention 1
or 2 translated to a Haskell function.

Native+Memo The same as above with native memoisation using a list as a
table as seen in subsection 1.2.1.

Linear The linear implementation of fib using a list as we will see in sec-
tion 7.1.

LinRec The linear recursion implementation as found in B.
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CP The interpretation of the DSL with change propagation enabled.

UnsafeMemo The interpretation of the DSL with memoisation in IO per-
formed inside an unsafePerformIO .

MemoIO The interpretation of the DSL creating an IO function that cleanly
uses the memoisation.

WeakMemoIO As above but using weak memo-tables.

Remarks We have chosen inputs for our functions that cause significant and
comparable run times. When comparing the run-time results we noticed that
sometimes a calculation that should take longer is in fact faster as we can see in
Table 5.3 with the last two results for Native+memo and the results for Native,
Linear, and LinRec in Table 5.1. We can only attribute this to inaccuracies in
the measurement.

Memoisation To show that memoisation works we have used the calculations
fib n and fib n + fib n . We use fib n to verify that memoisation works. We tested
the speed of the memoised function for different n and tabulated the results in
Table 5.1. We see that fib performs better if we add memoisation; however, it
also shows that using a different algorithm yields even better results. The run
times for the Linear versions and LinRec versions are better than when using
memoisation. The comparison might not be entirely fair due to that the native
Haskell versions are heavily optimised by GHC whereas the interpreted DSL
receives no such optimisation.

The benchmark fib n + fib n is used to check whether we have Third-level Third-level Shar-
ingSharing. The results are show in Table 5.2. The column header 500, 500 denotes

that first 500 is used as an input and that the input is set to 500 a second time.
When using memoisation the run time should not double. We see indeed that
writing the calculation fib n twice does not cause the calculation to occur twice
as well.

Change propagation In order to test whether change propagation works we
use the calculation x + fib n where n is a fixed number. The value of n depends
on the used interpretation and is choosen so that fib n takes the majority of the
time. The results are shown in Table 5.4. We see that in all cases except the
native variants, without change propagation or memoisation, the run time of
changing the value of x does not cause the recalculation of fib n as the run time
is not doubled.
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fib n 0 (overhead) (s) 35 (s) 500 (s) 5000 (s)
Native

Native 4.79e−3 8.60e−2 ∞ ∞
Native+memo 4.77e−3 4.73e−3 5.83e−3 8.17e−2

Linear 4.72e−3 4.79e−3 4.81e−3 6.35e−3

LinRec 4.82e−3 4.78e−3 4.75e−3 4.92e−3

System1
Native 5.51e−3 2.36 ∞ ∞
CP 5.07e−3 ∞ ∞ ∞

System2
Native 4.74e−3 5.43 ∞ ∞
UnsafeMemo 4.89e−3 5.93e−3 5.93e−3 1.58e−2

MemoIO 5.08e−3 5.28e−3 5.73e−3 1.17e−2

WeakMemoIO 5.11e−3 5.66e−3 6.19e−3 1.18e−2

MemoIO+CP 5.88e−3 8.89e−3 0.772 ±360

Table 5.1: Benchmark of fib n for a single calculation for different n .

Summary We have shown that the use of memoisation and change propaga-
tion trough our platform increases the run-time efficiency of Haskell programs.

fib n 500 (s) 500, 500 (s) 500, 500, 500, 500

Native
Native+memo 5.83e−3 8.20e−2 8.26e−2

Linear 4.81e−3 7.76e−3 9.67e−3

Linrec 4.75e−3 5.35e−3 6.18e−3

System2
UnsafeMemo 5.93e−3 1.51e−2 1.53e−2

MemoIO 5.73e−3 1.27e−2 1.28e−2

WeakMemoIO 6.19e−3 1.39e−2 1.40e−2

MemoIO+CP 0.772 0.765 0.771

Table 5.2: Benchmark of fib n for a sequence of calculations for different
n .
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fib n + fib n 0 (s) 35 5000 5000, 5000

Native
Native 5.52e−3

Native+memo 4.99e−3 5.05e−3 8.52e− e2 8.43e−3

Linear 4.93e−3 5.04e−3 7.76e− e3 1.09e−2

LinRec 5.01e−3 5.11e−3 5.43e− e3 7.20e−3

System2
Native 0.498 0.997 ∞ ∞
UnsafeMemo 5.94e−3 5.63e−3 1.57e− e2 1.71e−2

MemoIO 5.30e−3 5.51e−3 1.28e− e2 1.47e−2

WeakMemoIO 5.30e−3 5.73e−3 1.31e− e2 1.47e−2

MemoIO+CP 6.92e−3 1.05e−2 ∞ ∞

Table 5.3: Benchmarks indicating the presence of Third-level Sharing.

x + fib n 0 (overhead) (s) 0,1 (s)
Native

Native 1.42e−2 2.35e−2

Native+memo 8.34e−2 8.36e−2

Linear 9.31e−3 1.12e−2

LinRec 7.09e−3 8.55e−3

System1
Native 0.228 0.408

CP 0.363 0.374

System2
Native 0.498 0.997

UnsafeMemo 1.61e−2 1.90e−2

MemoIO 1.42e−2 1.88e−2

WeakMemoIO 1.42e−2 1.88e−2

MemoIO+CP 1.06e−2 1.04e−2

Table 5.4: Benchmark of x + fib n for a single calculation for different n .
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Chapter 6

Related work

In this thesis we presented a platform for achieving incremental evaluation
by combining memoisation and change propagation and in this chapter we
first describe the fundamental contributions to both memoisation and change
propagation in section 6.1 and, subsequently, we relate our platform to existing
platforms for achieving incremental evaluation in section 6.2.

In this chapter we review work related to this thesis and relate them to the
concept of incremental evaluation. As we have not found a single definition of
incremental computation we give a definition that captures the essences of the
found definitions.

We define the evaluation of an expression as an incremental evaluation if the incremental
evaluationevaluation of said expression reuses the results frompreviously evaluated expres-

sions for which it is known that re-evaluating them would not yield a different
value.

6.1 Foundations

6.1.1 Memoisation

Hughes was the first to describe (Hughes, 1985) memoisation in functional
languages and he introduced the following four important concepts which we
describe afterwards.

1. The definition of a memo-function;

2. Lazy memo-functions;
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1

ones

Figure 6.1: Cyclic representation of ones

3. Infinite structures can be represented as cyclic structures by applying
memoisation;

4. The concept of weak memo-tables and their necessity.

Memo-function A memo-function is defined as follows: “a memo-function is
like an ordinary function, but it remembers all the arguments it is applied to,
together with the results computed from them."

Lazy memo-functions Lazy memo-functions use reference equality for non-
atomic values instead of structured equality. This prevents the complete evalua-
tion of the value and, therefore, does not introduce strictness in the memoised
function, in contrast to normal memo-functions that create a strict memo- func-
tion. Using reference equality has the disadvantage that equal values are not
recognized as such if they are stored in different locations in the memory. When
two equal values are not recognized as such, the calculation is repeated and the
result is stored in the memo-table for a second time. To prevent this, we ensure
that each value exists in the memory only once by memoising the constructor
functions.

Cyclic structures By applying memoisation, infinite structures can be repre-
sented as cyclic structures. We illustrate this with the textbook example of
mapping ( ∗ 2) over a list of ones. We define the list of ones as the following
recursive Haskell function.

ones = 1 : ones

The function ones can be represented as the cyclic structure in Figure 6.1.

We can obtain a list of twos by mapping the function ∗2 over the list of ones.
However, the list of doubles will be an infinite structure as opposed to the cyclic
structure of ones as we explain shortly.

twos = map ( ∗ 2) ones

map f [] = []

map f (x : xs) = f x : map f xs
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2 2 2
twos twos twos twos

Figure 6.2: Infinite representation of twos

2

map ( ∗ 2) ones

Figure 6.3: Cyclic representation of twos

By its definition, map is unable to distinguish between infinite lists and lists
and cyclic lists. The result of map can only be cyclic if the input was a cyclic list
and. Therefore, the result of map is always an infinite list. We illustrate this
with showing the evaluation of twos in equational as follows and graphically in
Figure 6.2

map ( ∗ 2) ones

≡ { definition of ones }
map ( ∗ 2) (1 : ones)

≡ { definition of map }
( ∗ 2) 1 : map ( ∗ 2) ones

≡ { application of ( ∗ 2) }
2 : map ( ∗ 2) ones

By memoising map we create the cyclic structure as illustrated in Figure 6.3.
Because the arguments to map are equal the memoisation returns the reference
to the result. The arguments are equal because the reference to ( ∗ 2) is equal
and the list is equal due to the cyclic structure of ones .

Weak memo-tables We need weak memo-tables to ensure that we do not
unnecessarily store results in our memo-tables. It is unnecessary to store results
when the associated key if the memo-function will not be applied to the key.
It is certain that the memo-function will not be applied to the key if the key is,
or has become, inaccessible, from the program. Whether a key is accessible, or
live, is determined by whether another live object has a reference to it. If no
live object has a reference to an object it is dead and it can be garbage collected.
The problem with normal memo-tables is that they keep a reference to all keys
and results, thereby keeping them alive and preventing their garbage collection
causing unnecessary memory usage. Weak memo-tables solve this by using
weak references instead of normal references. Weak references are ignored when
determining the liveness of an object. This allows the keys and results to be
garbage collected when necessary.
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Weak memo-tables in Haskell

Peyton Jones andMarlow implementmemoisation usingweakmemo- tables (S. L.
Peyton Jones et al., 2000) and show how to construct the weak memo-tables.
Weakmemoisation adds additional overhead to the insert and lookup operations
as for each insert additionally a weak pointer has to be created and for each
successful lookup the weak reference has to be traversed to check whether the
value was garbage collected. We verified the existence of some overhead with
our own benchmark in chapter 5 and found it to be marginal. It could also be
argued that this is the price one has to pay for automatic garbage collection.

In contrast, we allow the programmer to make the choice whether he wants to
memoise in the style of lazy memo-functions and or whether he wants to use
weak memo-tables.

Side-effect free memoisation

In contrast to the aforementioned stateful implementation of memoisation (S. L.
Peyton Jones et al., 2000) the following two contributions are purely functional
and rely on lazy evaluation.

Memo-tries The idea behind memo-tries (Hinze, 2000) is to memoise a func-
tion f x by mapping the function f over all possible values of x . This is the same
approach as we saw in the mfib example in the introduction (subsection 1.2.1).
With memo-tries, however, f is mapped over generic representations of the
values in the case of memo-tries.

There is another difference with the version we introduced in our introduction
as we show with the following implementation of mfib. This uses the implemen-
tation of memo-tries: the MemoTrie package (Elliot, 2012).

mfib = memo fib

fib 0 = 0

fib 1 = 1

fib n = mfib (n − 2) + mfib (n − 1)

The difference between this version and the version from subsection 1.2.1 is that
the map structure is shared between calls. Therefore, mfib n + mfib n shows the
behaviour we set out to achieve in our goal (section 1.3).

Although this solution is a textbook example of functional programming it
doesn’t provide the programmer with control over the memoisation process and
trade-off for the obtained sharing is that the whole computed trie remains in
memory until the program ends.
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Memoising catamorphisms The previous contributions provide a solution for
automatic memoisation, requiring only the addition of memo, either as keyword
or function, whereas the following contribution requires manual effort.

The solution presented by Leather et al. (Leather et al., 2010) annotates a datatype
with attributes in order to prevent their recalculation.

The depth of a tree is the maximum distance to one of its root nodes and is easily
calculated with a recursive function. Observe that the use of a recursive function
inside another recursive function is not efficient as illustrated by the following
example (Hughes, 1985). The function depth determines the depth of a binary
tree and traverses the tree once. The function deepest determines the values of
the deepest leafs by using depth at each recursive step.

data Tree α = Leaf α | Bin (Tree α) (Tree α)

depth :: Tree α→ Int

depth (Leaf _) = 0

depth (Bin l ρ) = 1 + (depth l ‘max ‘ depth ρ)

deepest :: Tree α→ [α]

deepest (Leaf α) = [Leaf α]

deepest (Bin l ρ) = case depth l ‘comp‘ depth ρ of

LT → deepest l

GT → deepest ρ

EQ → deepest l ++ deepest ρ

Because depth is called for each level of the tree it is calculated n times for each
node where n is the depth of the node. The authors observe (Leather et al., 2010)
that depth is actually an attribute of the Tree and they annotate the datatype
at the recursive point with a wrapper and fix-point notation so that a tree is
representated as follows.

Bin1 Leaf0 Leaf0

Bin2 (Bin1 Leaf0 Leaf0) Leaf0

The functions depth and deepest are examples of functions that can be rewritten
to use catamorphisms. Catamorphisms abstract away recursive traversal and
take a set of instructions on what should be done at the recursive points, called
an algebra, and the actual datatype to transform. The ubiquitous function
foldr is a catamorphism for lists. Leather et al. lift the observation above to
catamorphisms. The only effort required by the programmer is the annotation
of the datatype with attributes that should be memoised and referencing it from
the algebra.

Use-cases Memoisation has been used for implementing incremental eval-
uation of attribute grammars (W. Pugh and Teitelbaum, 1989; Kuiper and

65



Saraiva, 1998) as well as for incremental evaluation of higher-order attribute
grammars (Saraiva et al., 2000). Another use case is the creation of incremental
parser combinators (Cook and Launchbury, 1997; Frost et al., 2007).

6.1.2 Change propagation

Change propagation has mainly been researched in the context of incremental
evaluation of AGs and by and in the context of ML. We first discuss change
propagation in ML, followed by the work on Attribute Grammars.

6.1.3 Adaptive Programs

Both the implementation of change propagation used in this contribution and
the implementation by Acar (U. A. Acar, 2005) in the language ML are based
on dynamically constructing the Data-Dependency Graph (DDG). The solution
presented in this contribution is based on the approach taken by Acar. We
describe the similarities and the main difference between the two approaches.

What we in this thesis defined as reactive is called adaptive by Acar and What we
call a variable is called a modifiable. Two additional types are introduced by Acar:
changeable and destination. A destination is a modifiable that can only be written
to and a changeable is stored inside a modifiable.

Both approaches provide a set of operators to model the reactive model. Acar in-
troduces the functions mod , read and write . The function mod accepts a function
that creates a changeable from a destination and creates a modifiable and a pred-
icate that determines whether propagation should take place. The function read

accepts a modifiable and a function that given a value will create a changeable
and results in a changeable. The function write takes a destination and value
and yields a new destination. The types of these function can be represented by
the following Haskell code.

dataModifiable α

data Destination α

data Changeable

mod :: (α→ α→ Bool)→ (Destination α→ Changeable)→Modifiable α

read ::Modifiable α → (α→ Changeable) → Changeable

write ::Destination α → α → Changeable

The propagation of changes is split up in two parts. The function change takes a
modifiable and actually assigns a given value to the modifiable in contrast to
the function write that models an assignment. The propagation of the changes
in values is started by calling the function propagate.
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The counterpart of mod from our system is newRVar and read and write are com-
bined in the linkRVar function. Similarly, the functions change and propagate are
combined in setRVar . This means that Acar can change several variables before
performing the propagation which is potentially more efficient as it potentially
reduces the amount of re computations.

The main difference between the two systems is how they store the DDG. In the
adaptive model they are stored separately from the modifiables; whereas in our
system the variables themselves know their dependencies. The advantage of
storing the graph separately is that it is easy to implement algorithms the whole
graph. The disadvantage, however, is that efficiently maintaining an efficient
representation of the graph is difficult. Several of the improvements made over
time to the algorithms involved the maintainance of the graph (U. Acar et al.,
2006; Ley-Wild et al., 2009; Chen et al., 2012).

6.1.4 Finite differencing

In addition, there is a third technique for achieving incremental evaluation,
namely, finite differencing (Paige and Koenig, 1982). Finite differencing is the
application of algebraic knowledge of the operators and datatypes used in an
expression in order to prevent the re- evaluation. Finite differencing can be
applied statically, as illustrated by the CSE optimisation as shown in section 3.9,
or dynamically as shown in section 6.2.

6.2 Platforms for incremental evaluation

Attribute Grammars According to Acar (U. A. Acar, Blelloch, and Harper,
2006) the idea to use dependency graphs for incremental updates was first
introduced by Demers et al. (Demers et al., 1981) followed by a working im-
plementation by Reps and Titlebaum (Reps et al., 1983). They create a static
dependency graph between attributes at compile-time; therefore, higher-order
attribute grammars are not supported (Vogt et al., 1989). Their system is similar
to the approach as described in the introduction subsection 1.2.2. In order to
determine the order in which attributes can be calculated the AG compiler needs
to determine the dependencies between the attributes. Therefore, the depen-
dencies are known statically and this can be used to hard-code which attributes
should be updated if an attribute changes. In contrast, in our system and the
system we describe in the following section the dependencies are constructed at
run- time.

Incremental evaluation is obtained for free, without any additional effort from
the programmer.
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Higher-order Attribute Grammars Equality on functions is hard and Haskell
provides no mechanism to determine equality of functions; therefore, memois-
ing higher-order functions is difficult. There are no frameworks that support
memoising higher-order functions. By using our system however the program-
mer can implement equality check on functions based on pointer equality which
may or may not suit his particular situation.

However, by using the platform presented by Saraiva et al. (Saraiva et al., 2000)
one can achieve incremental evaluation of higher-order Attribute Grammars
which are as powerful as higher-order functions. Saraiva uses a purely functional
representation of Attribute Grammars, and the built-in memoisation features of
LRC.

ML programs The work presented by Chen et al. (Chen et al., 2012) drastically
reduces the amount of work required by the programmer to obtain incremental
evaluation through change propagation. The only effort required by the pro-
grammer is the annotation of the type; subsequently, the compiler transforms
the code written by the programmer to a form using the operators from the
library as described in subsection 6.1.3. In contrast, the solution presented in
this thesis requires the programmer to rewrite their functions in applicative or
monad style for method 1 or to arrow style for method 2.

Finite differencing in the Views system The Views System (Meertens and
Pemberton, 1992) models computer programs by describing the constraints
between values in the program. Ganzevoort shows that these constraints can
be maintained incrementally (Ganzevoort, 1992). His implementation uses the
Observer pattern (Gamma, 1995) to notify the dependencies of an object which
method was called and which what arguments. Each dependency then updates
it own internal state, possibly triggering subsequent notifications.

We can implement this in pseudo object oriented code:

class List {
...
void push(value) {

// update internal representation
observers.all $ \ o -> o.onPush(value);

}

Sum sum() {
Sum res = new Sum(sumvalue);
observers.add res;
return res;

}
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}

class Sum {
int sum;
function onPush(value) {

self.sum += value;
}

}

The advantage of this method is that we can incorporate algebraic knowledge on
the operations and the datatypes in the observers to efficiently update the state
of the observer. Essentially this is performing finite differencing at run-time.

However, there are at least two problems with this approach.

1. Error prone

The semantics of a method f in class α are encoded in at least two places:
in the implementation of f and in each class that handles notifications for
objects of class α.

2. Efficiency

Sometimes the information provided by the method call is not enough.

We illustrate this last point with an example on lists. Each list has the methods
push (value) that pushes a value on the list, pop () that deletes the value , and
sum () that creates a sum object that acts as an observer to the list. When
a value is pushed on the list the Sum object recieves the notification that a
add (value) has happened; therefore, it can add the pushed value to its internal
value. When a value is popped from the list, however, the message pop ()

contains no information on the value of the popped element and the whole array
has to be traversed again to calculate the sum.

6.3 Overview

We have summarized the information in this chapter in Table 6.1.
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Chapter 7

Wrapping up

7.1 Discussion

Better algorithms We have proposed the use of memoisation and change
propagation to improve the performance of Haskell programs; however, there
are other methods to improve performance. The use of a better algorithm even
further lowers the run-time complexity of an algorithm as we will illustrate with
the following implementation of fib and as we saw in chapter 5.

As we saw, it is possible to obtain a run-time complexity of O
(
n2

)
by using

memoisation; however, we can even obtain a linear run-time complexity.

fib n = fibs !! n

fibs = 0 : 1 : zipWith ( + ) fibs (tail fibs)

The value fibs is an infinite list that will be evaluated as far as necessary due
to lazy evaluation. Furthermore, fibs is shared between all calls to fib thereby
creating Third-level Sharing. Third-level Shar-

ing

Better data structures Obtaining better performance without using memoisa-
tion or change propagation can also be achieved by changing the data structure
itself; e.g. adding a constructor for the concatenation of two lists improves the
efficiency of the concatenation while a fold over the list can still be performed in
linear time. Using a different datatype could be beneficial when using change
propagation as well. When using only change propagation pushing an element
on the front of a list is expensive as the whole sub list has to be traversed again,
using a snoclist is more efficient in that case.
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Devising a faster algorithm or data structure is non-trivial for complicated real-
world scenarios, especially for the average programmer; therefore, a general
solution such as memoisation, change propagation or the combination, might
be a better choice in terms of effort.

Convenience of change propagation Even though the overhead added by
change propagation might decrease the performance of a program it might be
convenient to use for a programmer as it will let the program react automatically
to changes in the input without much effort by the programmer.

7.2 Future work

Optimisations for change propagation We have proposed several optimisa-
tions to generate a better performing reactive model. Further research can be
done to figure out which optimisations would benefit change propagation. In
theory one wants to let the propagation stop as early as possible, but maybe it is
better to lift more functions to Haskell functions and thus reduce the overhead
created by change propagation. The optimal division between change propa-
gation and pure Haskell functions is currently not known and is likely to be
different for each use-case.

Reactive recursive datatypes Support reactive recursive datatypes through a
generic diff algorithm in our second system similar to Proxima 2 (Schrage, 2010).
If we can find a way to transform a δα into a δβ we can eliminate the use of IO
in our programs.

Memoisation to improve change propagation Implement the use of memo-
isation to improve the performance of change propagation as mentioned in
section 2.3.

Embed in compiler Perform the interpretation of the model at compile-time to
reduce the overhead of interpreting parts of the model that are statically known.

7.3 Conclusion

Statelessmemoisation and change propagation Wehave addedmemoisation
and change propagation to pure functions by describing the functions in a pure
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language, the DSL introduced in chapter 3, and subsequently interpreting the
language inside the IO monad.

Fine-tuning of the memoisation, Third-level sharing We offer the program-
mer control over the memoisation through the memoisation constructor which
delegates the insert and lookup functions to the programmer allowing for com-
plete control over the amount of memoisation performed. Additionally, the
system

Combination ofMemoisation and Change Propagation We provided a basic
library for implementing change propagation and we used it to create a platform
that combines both change propagation and memoisation.

Easy-to-use Weoffer the programmer an easy-to-use interface via the arrow-syntax.
Functions written in the arrow-syntax resemble their non-arrow versions.

We have also shown that using memoisation and change propagation with this
system can increase the performance of an Haskell program and that there are
situations where the use of a better algorithm or data structure deliver higher
performance increases.
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Appendix A

The reactive library

We created our own implementation of change propagation instead of using
the existing Adaptive (Carlsson, 2002) library because it doesn’t allow for the
memoisation structure as we used in section 3.6.

A.1 The basic functions

The library we present here is a straightforward implementation of the concept
of change propagation: A variable is a changeable piece of memory, and it
potentially has other variables that depend on it, e.g., there are other variables
that need to be updated when it changes.

As we saw before we have an RV ar containing the value and the meta-data.
Note that the record fields are prefixed with an underscore. This is because we
generate lenses by using fclabels (Visser et al., 2013).

type RV ar α = IORef (RV al α)

data RV al α = RV al {
_rMeta ::RMeta α

, _rValue :: α

}

The meta-data consists of the reactors and the sources of the variable, the IO ()

actions that should be executed when the value of the variable changes, and
debug information. This is stored as follows:

type OnV alSet α = α→ α→ IO ()

data SomeRVar where
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SomeRVar ::RV ar α→ SomeRVar

data RMeta α = RMeta {
_mReactors :: [(HandlerLink,OnV alSet α, (Int, String))]

, _mSource :: [(SomeRVar , HandlerLink)]

, _mEffects :: [α→ α→ IO ()]

, _mDebugID :: Int

, _mDebugName :: String

}

A new variable with an initial value is created with the function newRVar .

newRVar :: α→ IO (RV ar α)

We can lookup the current value of a variable with the function getRVal and as-
sign it a new valuewith the function setRVar . For convenience there is printRVal

function that prints the variable to the standard output. The functions getRVal

and printRVar simply access the value of the variable. The function setRVal

is where most of the magic happens. When a value is set the setRVal function
updates the value in the RV ar and then performs all the associated effects and
finally it notifies the reactors of the variable that its value has changed. reactors

getRVal ::RV ar α → IO α

getRVal = fmap (get rValue) ◦ readIORef

printRVar :: Show α⇒ RV ar α→ IO ()

printRVar v = getRVal v >>= print

setRVal ::RV ar α→ α→ IO (RV ar α)

setRVal this val = do

this ′ ← readIORef this

setValue this val

let oldValue = get rValue this ′

let thisID = get (mDebugID ◦ rMeta) this ′

let reactors = get (mReactors ◦ rMeta) this ′

{ Notify listeners }
let update f (rid ,name) = do Viz .setRVar thisID rid

f val oldValue

mapM _ (λf → f val oldValue) (get (mEffects ◦ rMeta) this ′)

mapM _ (λ(_, f ,n)→ update f n) reactors

return this

where setValue ::RV ar α→ α→ IO ()

setValue rVal val = modifyIORef rVal (modify rValue (const val))

Two variables can be linked by the function linkRVar . The first argument be-
comes the reactor to the second argument. The third argument to linkRVar
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is the function that should be executed when the value of the source variable
changes. This function is available but its main purpose is the use in the stateful
abstraction functions. The function modify ′ is the strict version of modify which
modifies the value at the provided path.

linkRVal ::RV ar β → RV ar α→ OnV alSet α→ IO HandlerLink

linkRVal this that onSet = do

link ← newLink this

thisName ← fmap (get (mDebugName ◦ rMeta)) (readIORef this)

thisID ← fmap (get (mDebugID ◦ rMeta)) (readIORef this)

modifyIORef ′ that $ !bindReact link thisName thisID

modifyIORef ′ this $ !bindSource link

-- Visualization
thisID ← fmap (get (mDebugID ◦ rMeta)) (readIORef this)

thatID ← fmap (get (mDebugID ◦ rMeta)) (readIORef that)

Viz .newLink thisID thatID

return link

where

bindReact link name rid = modify ′ (mReactors ◦ rMeta)

((link , onSet , (rid ,name)) : )

bindSource link = modify ′ (mSource ◦ rMeta)

((SomeRVar that , link) : )

removeHandler link = filter (λ(ehl , _, _)→ ehl 6≡ link)

The unlinking of a variable is done with the function unlink . The unlinking
makes sure that the variable is not holding any references to other variables to
ensure garbage collection. The variable is removed from the list of the reactors
of the source variables and it removes any references to its sources.

unlink ::RV ar α→ IO ()

unlink rv = do

v ← readIORef rv

mapM _ p (get (mSource ◦ rMeta) v)

modifyIORef rv (modify ′ (mSource ◦ rMeta) (const []))

where

p (SomeRVar rv , link) = modifyIORef ′ rv

(modify ′ (mReactors ◦ rMeta)

(filter (λ(l , _, _)→ l 6≡ link)))
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A.2 The applicative and monadic functions

We will now explain the functions that expose the applicative and monadic
programming style starting with joinRVal the counterpart of join .

We express bind in terms of join and fmap. The join function is the most com-
plicated function in the library as it has to all of the administrative work. The
case where the inner variable changes is easy as we can change the value of the
result variable directly. The case where the value of the outer variable changes,
i.e. we get a new inner variable, is more difficult. We need to unlink the result
variable from the inner variable for which we need to know the link variable so
we store that in the IORef called store . After this we read the value of the new
inner variable and link the result to inner variable.

joinRVal ::RV ar (RV ar α)→ IO (RV ar α)

joinRVal outerR = do

outerName ← fmap (get (mDebugName ◦ rMeta)) (readIORef outerR)

innerR ← fmap (get rValue) (readIORef outerR)

innerRValue ← fmap (get rValue) (readIORef innerR)

innerName ← fmap (get (mDebugName ◦ rMeta)) (readIORef innerR)

res ← newNamedRVar ("join: ( "++ outerName ++ " ("++ innerName ++ "))")
innerRValue

-- Link to innerR
let onInnerSet n o = void $ setRVal res n

innerLink ← linkRVal res innerR onInnerSet

store ← newIORef innerLink

-- Link to outerR
let onOuterSet newInner o = do

innerLink ← readIORef store

modifyIORef ′ o (modify ′ (mReactors ◦ rMeta)

(const []))

modifyIORef ′ res (modify ′ (mSource ◦ rMeta)

(filter (λ(_, l)→ l 6≡ innerLink)))

newLink ← linkRVal res newInner onInnerSet

writeIORef store newLink

newValue ← fmap (get rValue) (readIORef newInner)

setRVal res newValue

return ()

linkRVal res outerR onOuterSet

return res

The following function rValFMap is the counterpart of fmap and is really simple.
We read the value of the source variable, we create the new variable with the
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result of the application of the function to the value of the source variable as its
value and we link the resulting variable so that the function is applied for every
set of the source variable.

rValFMap :: (α→ β)→ RV ar α→ IO (RV ar β)

rValFMap f source = do

sourceValue ← getRVal source { init }
res ← newRVar (f sourceValue)

linkRVal res source (const ◦ void ◦ setRVal res ◦ f ){ connect }
return res

The implementation of the counterpart to bind is now simply the combination
of rValFMap and joinRVal .

rValBind ::RV ar α→ (α→ RV ar β)→ IO (RV ar β)

rValBind ra f = rValFMap f ra >>= joinRVal

The implementation of the counterpart to<∗>, rValStar , is a bit more involved as
there are two variables that can change. The function in rValFMap was constant
so we could embed it in the update function. Here we have to maintain the
current state ourselves. We create an IORef that contains a tuple with the
function and the value. When either variable changes the store is updated and
we update the value of the result variable by calling setVal .

rValStar ::RV ar (α→ β)→ RV ar α→ IO (RV ar β)

rValStar rf source = do

f ← fmap (get rValue) (readIORef rf )

val ← fmap (get rValue) (readIORef source)

res ← newRVar (f val)

store ← newIORef (f , val)

let setVal :: IO ()

setVal = do

debugLn "setVal"
f ← fmap fst (readIORef store)

val ← fmap snd (readIORef store)

void $ setRVal res (f val)

let onUpdateF f oF = do

modifyIORef store (λ(_, val)→ (f , val))

setVal

let onUpdateSource val oval = do

modifyIORef store (λ(f , _)→ (f , val))

setVal

linkRVal res rf onUpdateF
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linkRVal res source onUpdateSource

return res

We also create two versions that accept a function argument that runs in IO for
the benefit of our interpreters. De difference is the monadic bind used in the
local function g of rValFMapIO instead of normal function application. And
again, the counterpart to bind is again the combination.

rValFMapIO :: (α→ IO β)→ RV ar α→ IO (RV ar β)

thatValue ← fmap (get rValue) (readIORef that)

val ← f thatValue

res ← newRVar val

let g v _ = setRVal res =<< f v

linkRVal res that g

return res

rValBindIO ::RV ar α→ (α→ IO (RV ar β))→ IO (RV ar β)

rValBindIO ra f = rValFMapIO f ra >>= joinRVal

A.3 Visualizing the reactive model

In order to visualize how the reactive model grows each function above is
supplemented with a call to the visualization library, which we describe in this
section.

Additionally each link created by the linkRVar function adds a finalizer to the
link so that when it is collected by the garbage collector it calls a function in the
visualizer.

The visualizer uses the ubigraph graph visualising tool(ubietylab.net, n.d.) and
the hubigraph package(Ozaki, 2011). For each action: the creation of a variable
or a link, the command is relayed to ubigraphwhich draws the new network on
the screen as illustrated by FigureA.1. The binary of the server is found in the bin
directory and the code should be compiled with the ENABLE_VISUALIZATION
flag on. A video of a example run is available at http://www.youtube.com/
watch?v=EpI3l_2E_UI.

• We kunnen het reactive model visualiseren. Daarnaast is het ook mogelijk
om de assignments te zien propageren.

• Aangeven dat er een link is met Vacuum etc.

• Plaatje van de nodes
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Figure A.1: Example visualization of running a test case.
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Appendix B

LinRec implementation of fib

Source code listing for the linear recursion implementation of fib.

-- | return scalar product of two vectors (given as lists)
(.*.) :: Num a => [a] -> [a] -> a
a .*. b = sum DOLLAR zipWith (*) a b

-- | apply the recurrence exactly once to a prefix, yielding the next prefix
--
-- @
-- step [1,1] [2,3]
-- @
--
-- results in [3,5]
step :: Num a => [a] -> [a] -> [a]
step rec pre = tail DOLLAR pre ++ [rec .*. pre]

-- | generate the sequence with prefix pre.
--
-- @
-- generate [1,1] [0,1]
-- @
--
-- results in the Fibonacci sequence [0,1,1,2,...]
generate :: Num a => [a] -> [a] -> [a]
generate rec pre = let res = pre ++ map (rec .*.) (tails res) in res

-- | Get the k-th element of the sequence with prefix pre.
-- @get@ obeys the law
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--
-- @
-- get rec pre k == generate rec pre !! k
-- @
--
-- but takes O(n^2 * log(k)) @Num@ operations, where n is the order of
-- the recurrence relation, while @generate@ takes O(n*k) operations.
--
-- @
-- get [1,1] [0,1] 200000
-- @
--
-- calculates the 200,000th Fibonacci number reasonably quickly.
get :: Num a => [a] -> [a] -> Int -> a
get rec pre k = u0inv [] (u k) .*. pre where

-- Let
-- / 0 1 ... 0 \
-- T = | . . . |
-- | 0 0 ... 1 |
-- \ b_0 b_1 ... b_{n-1} /
--
-- The code below is largely concerned with calculating T^k efficiently.
--
-- Let
-- u_0 = ... = u_{k-2} = 0, u_{k-1} = 1,
-- u_n+k = <defined by linear recurrence>
--
-- and define
-- / u_k u_{k+1} ... u_{k+n-1} \
-- U_k = | . . . |
-- \ u_{k+n-1} u_{k+n} ... u_{k+2n-2} /
--
-- Then, U_k = T^k U_0, and T^k = U_k U_0^{-1}.
--
-- Each U_k can be extrapolated easily from the first row by applying
-- the linear recurrence, and U_0 was picked such that it’s unitarian,
-- and thus can be inverted without using divisions.

n = length rec

-- u_0 is the first row of U_0, u_n the first row of U_n.
u_0 = iterate (0:) [1] !! (n-1)
u_n = take n DOLLAR drop n DOLLAR generate rec u_0
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-- u k calculates the first row of U_k,
-- using U_{2k} = U_k U_0^{-1} U_k
u 0 = u_0
u k | odd k = step rec DOLLAR u (k-1)

| otherwise = let u’ = u (k ‘div‘ 2)
u’’ = u0inv [] u’
extrapolate xs = take n DOLLAR tails DOLLAR generate rec xs

in map (u’’ .*.) DOLLAR extrapolate u’

-- u0inv [] x calculates the first row of X U_0^{-1}, where X is the
-- matrix obtained by extrapolating the first row, x, by using the linear
-- recurrence. It’s a streamlined version of Gaussian elimination on U_0.
u0inv acc [] = acc
u0inv acc (x:xs) = u0inv (x:acc) DOLLAR zipWith (-) xs DOLLAR map (x*) u_n

fibLinRec = get [1,1] [0,1]
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Appendix C

Acronyms and Definitions

AG Attribute Grammar (Reps et al., 1983)

CPS Continuation Passing Style

DDG Data-Dependency Graph

DSL Domain-Specific-Language

eDSL embedded DSL

GADT Generalised Abstract DataType

ML Standard ML (Milner et al., 1997)

MSS Maximum Segment Sum

Definitions

Anonymised datatype An anonymised datatype is a completely existantially
qualified type. 38

Deep Embedding The term deep-embedding comes from the domain of Do-
main Specific Languages. Domain Specific Languages can be embedded
into an host language, such as Haskell. We distinguish between two vari-
ants of embedding: shallow and deep embedding. In a shalllow embed-
ding of a DSL the semantics of a language are directly encoded in the
functions used to represent the language, allowing for at a single interpre-
tation of the language. In a deep embedding the functions to represent
the language construct an inspectable representation of the language. This
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allows for multiple interpretations of the language. For more information
and examples we refer the reader to The Difference Between Shallow and Deep
Embedding (Vermeulen, 2013). 22

incremental evaluation We define the evaluation of an expression as an in-
cremental evaluation if the evaluation of said expression reuses the re-
sults from previously evaluated expressions for which it is known that
re-evaluating them would not yield a different value. 3, 4, 61

Reactive model The reactive model, or model, is the run-time representation of
an expression by variables and the dependencies between them. There are
input variables containing input of the calculation, and output variables
that contain the result. 6, 22, 39

reactive recursive datatypes Reactive recursive datatypes are datatypes that
contain a reactive value in one or more fields of a constructor. 24

reactors Each variable x has a collection of variables for which their value
depends on the value of variable x . 19, 80

Third-level Sharing We distinguish three levels of sharing:

1. Memoisation on the outer call

2. Memoisation on the outer call and contained calls

3. Memoisation between outer calls and contained calls

The last level of sharing is referred to as third-level sharing. 6, 16, 57, 58,
60, 71

Anonymised datatype . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Deep Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
incremental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 90
Reactive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
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