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by Frank van Meeuwen

With the continuously increasing amount of online information, there is a pressing need

to structure this information. Text classification (TC) is a technique which classifies

textual information into a predefined set of categories.

This thesis describes a case study on classifying news articles on two different datasets

collected by the business-to-business news publisher ASDMedia. The goal is to find out if

it’s possible to use a machine learning (ML) approach to TC to construct a classification

system that can be used in a semi-automatic setting. Two main challenges of the cases

are that news articles are potentially labeled with multiple categories (multi-label) and

the dataset is very imbalanced.

For analytical purposes, we restrict ourselves to ML algorithms that generate humanly

interpretable models, namely decision trees. We applied state-of-the-art techniques to

solve the above mentioned challenges and conduct various experiments. Our focus is

on 1) Finding the best feature representation of news articles and 2) Trying out tech-

niques to exploit structures within the class labels; namely classifier chains (CC) and

hierarchical top-down classification (HTC).

By using the optimized feature representation and by applying the CC technique we

managed to improve the results substantially for both datasets from a default setup.

The best settings reached a Micro-F1 value of .625 and .752 for both ASDMedia

datasets.

We can conclude that our constructed classification system is suited to be part of a

semi-automated system. However, advisable is to collect more data for the minority

categories. Although HTC looked promising and saves a lot of CPU-time, the actual

performance was considerably lower than not using it.

http://www.uu.nl
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Chapter 1

Introduction

1.1 Motivation

In the past decades information that individuals and companies share online has grown

and continues to grow rapidly. In addition, the number of people that have access to the

Internet continues to grow day by day since 1995 [2]. With all this, often unstructured,

online information available, there is an increasing need for techniques that give structure

to this information.

An example of such a technique is text classification (TC), which is a technique to

classify textual information into a predefined set of categories. Examples of interesting

sources for TC are e-mail, news feeds, reviews, forums, blogs and social media. TC has

been applied to categorize news articles [3–5] , filter spam e-mail [6, 7] and authorship

attribution of texts [8].

In the ’80s, when constructing an automatic classification system this was done by

building an expert system. The system consists of simple ‘if-then-else’ rules, which are

used to classify a piece of data into a category. In other words, the domain knowledge

of experts is translated to rules which are easily interpretable by a computer system.

Although this approach can achieve good performance, a clear drawback is that the

rules have to be constructed manually. Usually this is done by people other than the

domain-experts, which have explicit knowledge about constructing those rules. This

makes it difficult to expand to a new domain or to add new categories.

The machine learning (ML) approach to automatic TC solves this problem. The only

thing needed is an example database with pre-classified examples. Instead of manually

creating rules, now a model is created automatically by learning from examples. This

1



Chapter 1. Introduction 2

makes the ML approach more scalable and flexible than manually constructing the

model, while achieving the same or even better performance.

1.2 Background

Automatic TC is widely studied in the literature and the ML approach is applied with

success. Since the early 90’s research has begun and various learning algorithms have

been researched, such as: probabilistic methods, DTs/ decision rules, neural networks,

nearest neighbor and support vector machines (SVMs). An overview of the ML approach

to TC is given in figure 1.1. Consider here a collection of news articles about sports

and the problem of classifying a new document with the right type of sport. The

ML algorithm will need the training documents with class labels to learn from. The

documents are translated to a set of features for each document. With this information

the algorithm can construct a model, which can predict the category of previously unseen

documents. We will briefly explain the different parts of the learning process next.

Soccer
football
grass
………….

Machine 
Learning 
Algorithm

Model / 
Classifier

Predicted 
Label

New 
Document

Vector of 
Features

Features
basketball
NBA
shot
.……….

Feature 
Generation

Feature 
Selection

Feature 
Generation

Tennis
racket
net
………….

Basketball
NBA
shot
………….

Training Documents with 
labelings

Label
Label

Label

PREDICTION

LEARNING

Figure 1.1: The supervised learning process applied to TC

1.2.1 Feature generation

In this part of the learning process the textual data (documents) have to be transformed

to features. A feature is a distinct property of the data. For example some features of

a car are it’s color, the manufacturer, the type of engine, etc. For textual data usually

a collection of terms and associated weights are used as features. There are different

approaches on how to identify terms and how to calculate the weights.

A simple approach, called the set of words model identifies terms for each word occurring

in the collection of documents. The weight for a term is one if it occurs in the document,
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otherwise the weight is zero. Note that with this model the order of the words is not

maintained. Another possibility is to, in addition to one term for each word, also generate

a term for each sequence of two words. Such a sequence of two words is called a 2-gram.

In general we can talk of n-grams, where n is the number of words. In figure 2.9 you

can see an example of how 1-grams and 2-grams are generated from a sentence.

“The quick brown fox jumps over the lazy dog”

The

quick

brown

fox

jumps

over

the

lazy

dog

The_quick

quick_brown

brown_fox

fox_jumps

jumps_over

over_the

the_lazy

lazy_dog

1-grams 2-gramsSentence

Figure 1.2: An example of how 1-grams and 2-grams are generated from a sentence

1.2.2 Feature selection

In the previous section we described how the features are generated from a collection of

documents. Depending on how many documents there are available to learn from and

the number of words in each document, the number of features that are generated can

be enormous. Especially, when in addition to 1-grams (single words), also 2-grams are

collected. Most learning algorithms cannot cope with this large number of features. To

reduce the term space, feature selection is applied.

A popular method that reduces the term space by approximately a factor 10, is the

removal of very rare words. Because of their low frequency they probably are not dis-

tinctive anyway. Usually this method is used in combination with a statistical approach.

There exists many statistical approaches, a popular one being the Chi Squared statistic.

They all roughly indicate how distinctive a term is to a certain class label. A term can

be positive distinctive if it co-occurs often with a class label and it does not occur in

documents without that class label. If it’s the other way around, the term is negative

distinctive. The number of features that eventually are feed to the learning algorithm

are also an important factor. Either too many features, or too few features will result
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in bad performance. However what the optimal number of features is different for each

classification problem.

1.2.3 Categories

The labellings of categories to examples is an important aspect of the learning process.

When the labellings are inconsistent, it will be impossible for a ML algorithm to create

a model with good performance. A big difference is whether the examples are labeled

with multiple categories (multi-label) or only with a single category (single-label). A

multi-label classification (MC) problem is much more involved than a single-label one,

which we will explain later in the thesis. An interesting aspect of MC is that the class

labels themselves can be correlated. This internal structure of class labels can be useful

for a learning algorithm.

Sometimes the categories are organized with an external structure, such as for example

a hierarchy. This actually happens often in the case of topic classification. A good

example are the topics from the BBC (www.bbc.co.uk), where the topics are organized

in a hierarchical way. Figure 1.3 shows the general groups of categories in which more

specific topics resides. For example the group Sport, which has topics like ‘Cricket’,

‘Formula-1’ and ‘Tennis’.

Koller and Sahami [9] were the first to introduce an approach that exploits the hier-

archical structure of topics in 1997. They did this by decomposing the problem into

multiple sub-problems, one for each node in the hierarchy tree. For each sub-problem

a simple classifier is trained, each having its own specialized set of features for that

category. This has the advantage that the number of features for each sub-problem can

be reduced significantly. Another advantage is that the number of classes and training

examples for a sub-problem can be reduced. Nowadays hierarchical classification (HC)

is widely studied and has been showed to improve the classification performance in many

cases [10]. Another great advantage of HC is that it reduces the learning and predicting

time considerably.

1.2.4 Bringing theory to practice

During my part-time job at ASDMedia, we were discussing plans for automating parts of

their work. A part of their business is to maintain Business-to-Business news websites in

the ‘Aerospace & Defence’ market (www.asdnews.com) and in the ‘Energy & Resources’

market (www.globalenergyworld.com). The most work for them lies in the retrieval

of news articles and labeling them with the right categories. As a technical artificial

www.bbc.co.uk
www.asdnews.com
www.globalenergyworld.com
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Figure 1.3: The hierarchical topic categories from the BBC website (source http:

//www.bbc.co.uk/a-z/

intelligence (AI) student the question of automating the categorization of the news

articles was very interesting.

Apart from facilitating news, ASDMedia also sells market reports and event tickets.

These three units, news, reports and events could all benefit from a system which auto-

matically retrieves them and labels them with the right category. In the end the plan

is to build a semi-automatic system which automatically retrieves news, reports and

events and in addition performs some extra tasks on those units. One of the tasks is

classification, but also determining whether a unit is relevant to show on the correspond-

ing websites is an important task. Furthermore the text and layout of some units has

to be adjusted such that it looks good and can be showed on the website. The idea

is that the semi-automatic system supports a human user in those tasks. Figure 1.4

http://www.bbc.co.uk/a-z/
http://www.bbc.co.uk/a-z/
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shows roughly the process of the intended News Data Conversion System (NDCS). The

goal of this research is to find out if it’s possible to use the ML approach to TC for the

classification task of the intended NDCS system. The training data for our experiments

are the manually labeled news articles from the two news websites mentioned earlier.

We will refer to the dataset containing news from the ‘Aerospace & Defence’ market as

the ‘ASD’ dataset. The dataset containing news from the ‘Energy & Resources’ market

is referred to as the ‘GEW’ dataset. We will study the ML approach applied to those

two datasets.

Energy

Defence

Aerospace

Life & 
Science
Text

Publishable News

Raw News

Raw News ArticlesRaw News Articles

retrieve

Select articles to publish &
Check category and layoutPredict 

Relevance
Predict 
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store

Filter non suitable RSSItems

Raw News

HTML

News RSSFeeds

RSSItem 1

RSSItem 2

RSSItem N

HTML

HTML

Navigate to link

Navigate to link

Navigate to link

Navigate to link

Parse News store

Raw News ArticlesRaw News Articles

Filter non 
suitable Raw 

News

Step 1: Collect Raw News Articles

Step 2: Select articles to publish

Company Websites

Navigate to links

Figure 1.4: A flowchart of the intended news data conversion system

1.3 Problem statement

A lot of research is done on the ML approach to TC. There are different forms of TC

and we will be concerned with Topic Categorization. This is a form of TC where the

goal is to determine the topic(s) of a piece of textual information.

Our research will use two datasets collected by the business-to-business news publisher

ASDMedia. One dataset contains news articles about the Aerospace & Defence market

and the other about the Energy & Resources market, which we will refer to as the ‘ASD’

and ‘GEW’ dataset respectively. Each article can be labeled with multiple categories,
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which makes them both a multi-label classification (MC) problem. We will refer to these

two problems as the ASDMedia classification problem.

In our case we restricted ourselves to algorithms that generate models that are easily

interpretable by humans and decided to use decision trees (DTs). This has the advantage

that the models can be analyzed, even by people which are not familiar with ML. It

should be noted however that this is not the best performing classification algorithm for

TC. It is not the goal of our research to address the question whether resulting models

are humanly interpretable. Instead we restrict ourselves to DTs, which are known to

produce the best humanly interpretable models.

The goal of this research is to find out if it’s possible to construct a classification system

that can classify news articles with reasonable performance, while using a ML algorithm

with the above mentioned restriction. Our first subgoal will be to find out which ap-

proach of translating a news article into features is the most suitable for our problem.

The other goal is to find out if we can improve the performance of our classification

system by exploiting the structure of the categories.

The main question we will address during this research is the following:

Is it possible to develop an automatic classification system with the following features

to solve the ASDMedia classification problem?

• Use ML to generate the model

• The ML algorithms are restricted to those which generate humanly interpretable

models

• The classifier achieves a reasonable performance

The performance of the classifier must be good enough to be able to use it in a semi-

automatic system. This means that the result of the classifier is verified by a human,

before the choice is final. If the result is wrong the human can adjust the categories.

Because there is always a human verification, we intentionally are vague about what a

reasonable performance is. Later in the introduction we will discuss this semi-automatic

system in more detail.

In order to find the best solution for the ASDMedia classification problem, we will

address two questions. The first one deals with the representation of news articles as

features for the classification model. We will try various approaches looking at both the

generation of features and the selection of features.
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The second question deals with the structure of the categories. A distinction is made

between the external structure (such as defining a hierarchy for the categories) and

internal structure (such as correlations between categories). We will try approaches that

exploit this structure and hope to improve the performance of our classification system.

While doing these experiment we will continue each experiment with the best setting

from the previous experiment. This way we will attempt to find the best combination

of settings for both ASDMedia datasets.

1.4 Challenges

One of the challenges of the ML approach to text classification is how to translate the

textual information into the features that eventually can be used by a ML algorithm.

This is what we refer to as feature generation.

Perhaps in an ideal world the true semantics of the text is understood and only the

relevant concepts are used as features. In practice just using each word as a separate

feature already works quite well. However most approaches will generate an enormous

number of features, which not all ML algorithms can handle well. In order for them to

work, only the most promising features are selected to feed to the algorithm.

Topic categorization is a part of TC that addresses the problem of determining the

topic(s) of a text document. In the ASDMedia cases a document can belong to multiple

categories, making it a MC problem. This is often the case in topic categorization.

Most ML algorithms however, can only handle single-label problems. Furthermore the

number of distinct categories tends to be very large and unbalanced. This makes Topic

Categorization a challenging problem to research.

1.5 Outline

In chapter 2 a literature study relevant to our problem will be discussed. First an

introduction will be given to Single-Label Classification (SC) and MC in general, after

which we will discuss HC. Then we will discuss TC and give a small introduction on

DTs. We will end the chapter with a section on the evaluation of classifiers.

In Chapter 3 we will analyze the data we had available to learn from. First we will show

which attributes of a news article are stored in the database. Then the existing categories

are discussed and we will end the chapter with a manually constructed hierarchy for the

categories.
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Chapter 4 will give an overview of the experimental setup of this research. First the

basic settings are explained, which are settings that are the same for all experiments.

Then we will explain in detail the methodology of the experiments.

In Chapter 5 the results will be presented and discussed in detail. Some interesting

findings are made and when problems are found with the designed experiments, attempts

are made to solve them. In Chapter 6 we will conclude that we can use the ML approach

to TC for our cases, to generate DTs that can achieve reasonable performance. We will

end with a discussion on future research.



Chapter 2

Introduction to multi-label

classification in the text domain

This chapter gives an introduction to multi-label classification (MC), starting by first

explaining the single-label classification (SC) case. We will also mention the topic of

hierarchical classification (HC), which can also either be single or multi-label. In addition

we describe techniques that can improve MC. Then we describe specifics for the text

classification (TC) domain. We continue with a brief introduction on decision tree (DT)

induction, the algorithm for generating DTs from examples. We will end this chapter

with a detailed explanation on how to evaluate classifiers.

2.1 Inductive learning and classification

Machine learning (ML) is a branch of artificial intelligence (AI) concerned with the design

of computer programs that can improve their performance by learning from empirical

data. Mitchell [11] describes the ML field by the central question it studies: ‘How can

we build computer systems that automatically improve with experience, and what are

the fundamental laws that govern all learning processes?’.

Inductive learning is the area in ML that specifically deals with learning models from

observations. Within this area, learning tasks are often characterized in terms of the

feedback given back to the learner [12], as follows:

• Supervised learning: The learner is provided with the desired output for each

observation. The goal is to learn the function that predicts the correct output

value when provided with a possibly previously unseen observation.

10
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• Unsupervised learning: No output is provided to the learner. The goal is to

discover patterns and regularities in the data.

• Reinforcement learning: This is a special case of supervised learning, where

the learner is provided with a reward after each action.

In supervised learning, when the task is to learn a discrete-valued function, it is called

classification. When learning a continuous-valued function the task is called regression.

Clustering on the other hand is an unsupervised learning task which finds groups of

similar objects in the data.

The set of assumptions made to be able to learn is called the inductive bias. A famous

inductive bias is Occam’s Razor, which states that when choosing from multiple hy-

potheses, we should pick the simplest one consistent with the data. We will continue

with explaining in detail what classification is in the next section.

2.1.1 Classification

Classification is the task of assigning observations to one of several predefined categories

also called classes. It is a supervised learning task of learning a discrete-valued function

that maps an observation to the correct class label. An observation consists of a vector

of attributes F , called features.

The set of observations or examples with for each entry the correct class label is called

the training set. More formally it contains pairs 〈x, c〉 ∈ O×C, where O is the domain of

observations and C = {c1, . . . , c|C|} is the set of predefined classes or categories. When an

observation x ∈ O is labeled to a class ci ∈ C this observation is called a positive example

of ci, otherwise it’s called a negative example of ci [1]. The classifier is evaluated on a

test set which is disjoint from the training set. This is important because if you use the

same data to train and to test on, the performance assessment can be too optimistic. We

will tell more about evaluating classifier in section 2.7. Later the classifier (also known

as hypothesis or model) can be used to predict unknown instances.

Definition 2.1. Classification

Classification is the task of approximating the unknown target function Φ̆ : O → C by

means of a function Φ : O → C called the classifier, which assigns each observation

x ∈ O to one of the predefined class labels c ∈ C.

The supervised learning method can now be formally defined as a function Γ : O×C → Φ

which, given the training-set, produces as output the classifier Φ. The whole supervised
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learning process is presented in figure 2.1. First the data is split into two disjoint sets the

training and the test set. Then feature generation and selection is applied. The arrow

from the feature generation & selection in the training phase to the test phase indicates

that some information is passed from the training to the test phase. For example the

features that are selected in the train phase should be the same as in the test phase.

Start
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Set
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Learn Model

Model/
Classifier

Evaluate Model 
On Test Set 

End

Performan
ce 

Measure

Feature 
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Vector of 
Features

Vector of 
Features

Figure 2.1: The Supervised Learning Process

The constraint of assigning exactly one class label to each observation x ∈ O is called

SC. The class labels are assumed to be mutually exclusive. A special case of SC is binary

classification (BC), where each x ∈ O must be assigned to either the class ci or to its

complement c̄i.

Not having this single-label constraint is termed MC. Here the classes are not disjoint

and an observation x ∈ O can belong to multiple classes c ∈ C. We will further explain

this in the next section.

2.2 The multi-label classification problem

As mentioned before with MC an observation can belong to multiple classes. Not only

does the training data has examples with multiple labels, the classifier has to be able

to predict a single record into multiple classes as well. The training procedure has to

be adjusted to be able to handle multiple labels. The definition of classification can

be extended to allow for the multi-label case by having the classifier output a (possibly

empty) set of categories, member of the power set of categories as in definition 2.2.

Definition 2.2. Multi-Label Classification

Multi-Label Classification is the task of approximating the unknown target function

Φ̆ : O → P(C) by means of a function Φ : O → P(C) called the classifier, which assigns

each observation x ∈ O to zero or more predefined class labels from C = {c1, . . . , c|C|}.
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2.2.1 Multi-label approaches

Most traditional learning algorithms are developed for SC problems. Therefore a lot of

approaches in the literature transform the multi-label problem into multiple single-label

problems, so that the existing single-label algorithms can be used. There are quite some

different approaches and we will give an overview of them here.

A clear distinction can be made between algorithm dependent and algorithm indepen-

dent approaches also called problem transformation approaches. Algorithm independent

problems transform the problem to multiple single-label problems, which can be further

divided into instance-based and label-based methods.

When the transformation is based on instances, i.e. simply eliminating all instances

with multiple labels, it is termed instance-based. Label-based methods transform the

multi-label problem to one or more single-label problems by only looking at the class

labels [13]. A hierarchical structure representing the approaches, based on the figure by

Carvalho and Freitas [13] , is shown in figure 2.2.

Algorithm 
Independent

Algorithm 
Dependent

Multi-Label 
Approaches

Instance Based Label-Based

Label Power-Set 
Method (LPM)

Binary 
Relevance 

Method (BRM)

Instance 
Elimination

Conversion Label Creation

SVM
Alternating 

Decission Trees

Simplificiation Other...

Other...

Figure 2.2: Multi-Label approaches

Most approaches have to choose between at one hand the computational complexity and

on the other hand taking into account the correlation between class labels. The simplest

method is probably instance elimination, which simply ignores all multi-label instances.

Another simple method called simplification, randomly selects one label from multiple

labels and uses that to train on. The two previously mentioned approaches however do

not give good results.

A promising algorithm independent method, which also takes into account a hierarchy,

not discussed here is a method by Bi and Kwok [14] that transform the instances to



Chapter 2. Background Knowledge 14

multiple single-label problems using kernel dependency estimation. Here the labels are

transformed to a low-dimensional space while preserving their hierarchical structure.

We will discuss two algorithm independent approaches here which are commonly used

in the literature and have good performance, namely the binary relevance (BR) method

and the label power-set (LP) method.

2.2.1.1 Binary relevance method

A popular label-based approach is the BR method aka one-against-all approach. In this

case an ensemble of single-label binary classifiers is trained, one for each class. Each

classifier predicts either the membership or the non-membership of one class. The union

of all classes that were predicted is taken as the multi-label output. This approach is

popular because it is easy to implement, however it ignores the possible correlations

between class labels. This method needs |C| classifiers and has a low computational

complexity relative to other multi-label approaches.

2.2.1.2 Label power-set method

An instance-based approach called multiplicative conversion by Carvalho and Freitas

[13] does take possible correlations between class labels into account. More commonly

this approach is called the LP method, because it considers each member of the power

set of labels in the training set as a single label.

This method needs worst case 2|C| classifiers, and has a high computational complexity.

In an extensive comparison with other algorithm independent approaches, this method

scored best, followed by the one-against-all method [15]. However when the number of

classes increases the number of distinct label combinations can grow exponentially. This

easily leads to combinatorial explosion and thus computational infeasibility. Further-

more, some label combinations will have very few positive examples.

2.2.2 Techniques to improve the binary relevance method

Because of its low computational complexity and relatively good performance the BR

method is popular in the literature. However because it completely ignores the possi-

ble correlations between class labels, techniques have been introduced to enhance this

method by making use of some correlations between class labels.
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2.2.2.1 Stacking

Godbole and Sarawagi [16] provided two improvements for a Support Vector Machine

(SVM) learner, one improvement being algorithm independent. This improvement is a

technique based on stacked generalization or simply called stacking by Wolpert [17].

The classification problem is divided into two levels. The first level being the classifica-

tion problem with the normal feature space |F|. The second level classifiers are trained

on an extended training-set which contains all predictions of the level-1 classifiers used

on the training-set. So the training-set of level-2 consists now of |F| + |C| attributes.

The process is illustrated in figure 2.3. The level-2 classifiers can take into account label

dependency and improve the BR method, by doubling the computational time using

2|C| classifiers.

Training 
Set level 1

Learn level 1 
Model

Level 1 
Model/

Classifier

Apply Model on 
Training Set 

level 1

Training 
Set level 2

Learn level2 
Model

Level 2 
Model / 

Classifier

Start

End

Figure 2.3: The learning process of stacking

2.2.2.2 Chaining

Read et al. [18] introduced a technique called chaining. A chain of binary classifiers

C0, C1, . . . , C|C| is constructed, where a classifier Ci uses the predictions of all the clas-

sifier Cj , where j < i. This way the method, also called classifier chains (CC), can take
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into account label correlations. The total number of classifiers needed for this approach

is equal to the number of classes, but the training of the classifiers is more involved.

This process is illustrated in figure 2.4, with a classification problem of three categories

{C1, C2, C3} chained in that order.

Training 
Set

Learn Model for 
C1

Model/
Classifier 

for C1

Apply Model On 
Training Set

Training 
Set + C1

Learn Model for 
C2

Model/
Classifier 

for C2

Apply Model On 
Training Set + 

C1

Training 
Set + C1 

+ C2

Learn Model for 
C3

Model/
Classifier 

for C3

Start

End

Figure 2.4: The learning process of chaining

The order of the classifiers in the chain clearly can have a great impact on the accuracy

of the method. Read et al. [18] solved this problem by creating ensembles of chain

classifiers (ECC), each chain having a random order and a subset of the training data.

This ensemble approach is a state-of-the-art method in MC.

Dembczynski et al. [19] presented probabilistic chain classifiers where a CC is put

in a probabilistic framework. Therefore it uses a classifier which has as output an

approximation of the probability that an instance belongs to a class label. They calculate

all joint probabilities of classes by using the chain rule, whose computational complexity

is very high.

Zatagoza et al. [20] introduced an improvement of the ECC by building a probabilistic

network that models the label dependencies. They also build an ensemble of chains but

instead of picking the chain order totally random, they first build a probabilistic network

and picked orders consistent with that network.

2.2.3 Multi-label statistics for datasets

The number of labels that each example has and it’s proportion of the total number

of labels differs per dataset. These two parameters describe more or less the multi-

labeledness of the dataset and can influence the performance of the classification. We will
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show here two statistics, the label cardinality and label density described by Tsoumakas

et al. [21]. The label cardinality is the average number of labels per example. The

label density is the average number of labels per example divided by the total number

of labels.

Definition 2.3. LabelCardinality =
1

|O|
∑
x∈O
|Φ̆(x)|

Definition 2.4. LabelDensity =
1

|O|
∑
x∈O

|Φ̆(x)|
|C|

Another measure of importance is the number of distinct label sets. This is mainly for

algorithm transformation methods that operate on subsets of labels, such as the LP

method which we have discussed in section 2.2.1.2.

2.3 Common classification issues

This section explains two issues which may be present in a classification problem, namely

overfitting and a skewed class distribution. Overfitting is something every ML algorithm

has to deal with. A skewed class distribution can be a property of the training data.

2.3.1 Overfitting

Overfitting basically means that the classifier has modeled the training-data too well

and does not perform well on previously unseen data. The errors a classifier makes on

training-data are called training-errors and the estimated errors on previously unseen

samples are called generalization-errors. A good model has both a low training-error

as well as a low generalization-error. Underfitting occurs when a model has both high

training-error as generalization-error. Overfitting on the other hand, generally occurs

when a model has low training-error but high generalization-error [22].

Overfitting basically means that the model fails to generalize well and fits too good

on the training data. In other words the model has adjusted itself to the noise in the

training data. A good model finds a balance between training and generalization errors.

See figure 2.5, the green line clearly overfits and fails to generalize well.

Overfitting can occur when the criterion the model is optimized on when learning, is not

the same as the one it is evaluated on when testing. But most often occurs when there

is much noise in the training data.
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Figure 2.5: An example of overfitting, the green line fits the data points too well
(source: By Chabacano (Own work), 2008, Overfitting.svg , via Wikimedia Commons,

Available from http://commons.wikimedia.org/wiki/File:Overfitting.svg)

2.3.2 Skewed class distribution

A skewed class distribution can occur in both SC and MC problems. Even when there

is an uniform class distribution, by using the BR method and the number of classes is

high, the training data for each classifier will be skewed. Lets illustrate this with an

example.

Example 2.1. A skewed class distribution

Lets look at a MC problem with N classes {c1, . . . , cN}, using the BR method. There

are N classifiers trained {C1, C2, . . . , CN}, where classifier Ci predicts the membership

or non-membership of an observation to the class ci.

Suppose that N = 100 and suppose that the classes are uniformly distributed in the

training and test data. Then the training and test data for classifier Cj will have 99%

of the observations labeled c̄j and only 1% of the observations labeled cj.

In the example above a classifier Ci which simply assigns all observations to c̄i, the

majority class, achieves an accuracy of 99%.

By taking the accuracy measure, misclassifying a fraction of the majority class has more

impact than misclassifying the same fraction of the minority class, simply because there

are more observations that belong to the majority class. Consider for example the

classifier Ci from example 2.1. Misclassifying 50% of the records that belong to ci will

have an impact of 0.5% on the total accuracy. On the other hand, misclassifying 50%

of the records that belong to c̄i will have an impact of 49.5% on the total accuracy.

http://commons.wikimedia.org/wiki/File:Overfitting.svg
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Sometimes this is not what you want. In example 2.1 the classifiers should be punished

more for misclassifying an observation that belongs to the minority class. In order

to prevent the classifier in predicting all instances to the majority class. There are

broadly two techniques to balance the class distribution, namely sampling and example

weights. Balancing the class distribution can be done with sampling by over-sampling

the minority class or by under-sampling the majority class. Another option is to use

example weights, which assigns a weight to an example based on which class it has

labeled. By making sure the weights sum up to the same value for each class, one can

balance the class distribution. The ML algorithm has to be able to incorporate this

weighting mechanism. When changing the way the classification algorithm trains this

should also be reflected in the evaluation measure which the algorithm is evaluated on.

Different measures will be discussed in section 2.7.

2.4 Hierarchical classification

This section will give an overview of the literature on HC. First we will explain the

hierarchical class structure and how ML algorithms can exploit this structure.

2.4.1 Hierarchical structured classes

Structured classification is a form of classification where the class labels have a struc-

ture. HC is a type of structured classification where the classes form a hierarchy. An

observation that belongs to a class, automatically belongs to its superclasses. This is

called the hierarchy constraint [23].

Wu et al. [24] defined a class taxonomy for a tree structured hierarchy as a strict partially

ordered set (C,≺) where C is the set of classes and ≺ represents the ‘IS-A’ relation. The

‘IS-A’ relation is defined to be anti-reflexive and transitive. Later Silla and Freitas [10]

extended this relation to be also asymmetric and noted that it also holds for directed

acyclic graphs (DAG). In this case a class can have multiple superclasses.

Definition 2.5. Hierarchical Class Taxonomy

• There is one greatest element ‘R’.

• ∀ci ∈ C, if ci ≺ cj then cj ⊀ ci (asymmetric)

• ∀ci ∈ C, ci ⊀ ci (irreflexive)

• ∀ci, cj , ck ∈ C, ci ≺ cj and cj ≺ ck ⇒ ci ≺ ck (transitive)
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According to the hierarchical constraint a HC problem is by definition multi-label. Since

an observation which belongs to a class automatically belongs to its superclass, each

observation has multiple class labels. However in the literature, when talking about

hierarchical multi-label classification (HMC), it indicates that training instances can

have multiple class labels not related by the ‘IS-A’ relation.

Figure 2.6 gives an example of an hierarchical DAG, here the countries China and India

have two parents.

BRIC

Brazil Russia ChinaIndia

Asia

Indonesia Japan ….

Figure 2.6: An example of a hierarchical DAG of grouping countries

2.4.2 Exploiting the hierarchy

Ignoring the class hierarchy is termed flat classification (FC), because only predictions

at the leaf nodes of the hierarchy are made. This basically flattens down the hierarchy.

The hierarchy can be exploited by a ‘divide and conquer’ approach splitting the classifi-

cation problem in multiple sub-problems. Each sub-problem dealing with another part

of the hierarchy. There are multiple ways to split the hierarchy, which will be explained

in the next section. The idea is that each sub-problem is simpler than the original and

thus can be solved more efficiently. There are a few advantages to this approach:

• These sub-problems may have different partitions of the data set which reduces the

number of classes which in turn may reduce the skewness of the class distribution.

• A more specialized set of features can be used for each sub-problem which can lead

to better results [9].

• Some sub-problems can be ruled out, thereby saving computation time.

Disadvantages are:

• How to combine mixed results from different levels in the hierarchy? The hierarchy

constraint cannot be violated.
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• Some classes may have very few training instances to learn from. Note however

that the positive instances for a class are the same as in FC.

Exploiting the hierarchical structure can be done broadly in two distinct ways: Globally

a.k.a the Big-Bang approach or locally. It has been shown by many that exploiting

the structure can improve the classification result [9, 14, 23–25]. Global means that

one classifier is trained which can deal with the whole hierarchical structure, usually

adapting an existing algorithm. A state of the art example is an adaptation of the C4.5

DT by Blockeel et al. [23].

Local means that multiple classifiers, usually one for each class in the hierarchy, are

combined. A popular approach is the ‘top-down’ approach, which starts at the highest

level of the hierarchy, and if a membership of a class is predicted, the classifiers for

its children are used to classify further down the hierarchy. See for example figure 2.7,

where the dashed lines indicate each sub-problem and the shaded nodes are the predicted

ones. Consider this a SC problem, starting at the root node with a multi-class classifier

at each parent node. The first problem is to predict the class C1 or C2 or C3. Then

another classifier predicts C3.1 or C3.2 until finally we end with the predicted category

C3.2.3. Note that instead of a multi-class classifier at the parent node, the BR method

can also be used.

A disadvantage of this top-down approach is the so called blocking problem. When

a classifier higher in the hierarchy predicts the non-membership for an example, the

classifiers lower in the hierarchy will not be applied. This is not a problem when the

prediction is correct. However, when the classifier higher in the hierarchy predicts a false

negative (it incorrectly predicts a positive example), then the example is ‘blocked’. The

Recall of the classifiers at higher levels in the hierarchy should be very high, because

otherwise they drag the whole system down.

Another approach by Valentini [26] in the gene domain is a combined ‘bottom-up’ and

‘top-down’ approach, called the True Path Rule Algorithm. The classification starts

at the bottom level, with local classifiers which propagate their answer to a higher

level if the classification is positive. When a classification is negative, the classification

is propagated downward to stay consistent with the hierarchy. A local classifier there

combines positive classifications from descendants, negative classifications from ancestors

and its own prediction to determine the membership of a class.
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Step 1: Predict class C1 or C2 or C3.

Step 2: Predict C3.1 or C3.2. 

Step 3: Predict C3.2.1 or C3.2.2 or C3.2.3.

R

C1 C2 C3

C1.1 C1.2 C2.1 C3.1 C3.2

C3.2.1 C3.2.2 C3.2.3

Figure 2.7: An example of ‘top-down’ approach, the filled nodes are the predicted
ones

2.4.3 How to partition the training data?

There are many possible ways to partition the training data for each local classifier.

For text classification, an extensive study by Fagni and Sebastiani [27] showed that the

sibling approach seems to work best. A class has positive examples of those instances

labeled with that class or its descendants. And negative examples of those instances not

labeled with its class or descendants, but labeled by its siblings or their descendants.

Figure 2.8 shows which training data to use when using the sibling approach, to learn

a classifier for the category C1.1. All examples labeled with C1.1 are used as positive

examples, as opposed to all examples labeled with C1.2 or C1.3 (and not with C1.1)

which are used as negative examples.

Positive Examples Negative Examples

R

C1

C1.1 C1.2

... ...

C1.2

Figure 2.8: A part of a hierarchy where the training data is indicated when using the
sibling approach for learning a classifier for the category C1.1
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In domains with many features, like in text classification or music genre classification,

it may help to also apply different Feature Selection at different levels in the hierarchy.

Because the most-discriminating features tend to be different at each level in the hierar-

chy. This was shown by Silla and Freitas [25] to improve classification results in music

genre classification. Also Koller and Sahami [9] show that using a smaller specialized

set of features at each level in the hierarchy improves accuracy and reduces the risk of

overfitting in the text domain, as opposed to using more less specialized features.

2.5 Text classification

In this section we describe the specifics of classification in the text domain. Mainly this

has to do with how a textual document is transformed into a set of features F , which

can be used in classification. This transformation which we will call data preprocessing

consists of two steps: feature generation and feature selection. We explain those steps

later.

TC can be formally defined by extending the previous definition of (multi-label) classifi-

cation 2.2, by replacing the observations by documents. Here we will give the definition

of multi-label text classification (MTC), the same way a definition for single-label text

classification can be defined.

Definition 2.6. Multi-Label Text Classification

Multi-Label text classification is the task of approximating the unknown target function

Φ̆ : D → P(C) by means of a function Φ : D → P(C) called the classifier, which

assigns each document x ∈ D to zero or more predefined class labels from the set

C = {c1, . . . , c|C|}.

The set of documents in TC provided with class labels is also called the initial corpus

Ω.

2.5.1 Data preprocessing

In this section we will explain both the feature generation and feature selection methods

in detail. The features that are generated usually correspond with the words in the

text and associated weights. How the words are extracted from the text is not a trivial

task and is explained in section 2.5.1.2 about term identification. After this step many

features may be extracted, which can be problematic. This is because many classifiers

can’t deal well with that many features and usually they are reduced by applying Feature

Selection [1].
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2.5.1.1 Feature generation

Many techniques used for document indexing in the field of information retrieval (IR) can

be used to generate features. Document indexing has been studied extensively already

in the late 50’s [1]. This technique deals with the representation of text and this is

usually done by a set of terms with associated weights. The weights roughly indicate

the contribution of the term to the meaning of the document. There are various ways

of defining what a term exactly is and how to calculate the associated weight. Much

research has been done, starting with the set of words model where each word is identified

as a term and the weight is 1 if the word occurs in the document and 0 if not. Later

this was extended by the bag of words model which computes the weight by calculating

the term frequency [28].

Research has been done on using phrases as terms, instead of single words. In the IR

field a phrase consisting of n words, in exact that order, is called a n-gram. This can be

extended for any n, however the number of features will grow very fast and may lead

to an explosion of features. In figure 2.9 you see the example from the introduction on

how 1-grams and 2-grams are generated from a sentence.

“The quick brown fox jumps over the lazy dog”

The

quick

brown

fox

jumps

over

the

lazy

dog

The_quick

quick_brown

brown_fox

fox_jumps

jumps_over

over_the

the_lazy

lazy_dog

1-grams 2-gramsSentence

Figure 2.9: An example of how 1-grams and 2-grams are generated from a sentence

Although n-grams are widely used in the IR field, their usage in TC is not clear. There

are mixed results and there is no consensus on whether using phrases improves classifi-

cation performance [1, 4, 29, 30]. Other options are to use natural language processing

(NLP) techniques to extract language semantics and encode that as feature. A com-

prehensive study by Moschitti [4] showed no advantage of using a more complex model

than the bag of words model when using a SVM or Rochio classifier.
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Nowadays, usually the term frequency - inverse document frequency (TF-IDF) weighting

is used [31]. This measure takes into account a collection of documents and attempts to

measure the discriminative power of a term inside that collection. The term frequency

(TF) is divided by number of times the word occurs in the other documents. This is

more formally defined as:

Definition 2.7. TF-IDF(tk, dj) = TF(tk, dj).log
|Ω|

DF(tk)

where TF(tk, dj) denotes the TF of term tk in document dj and DF(tk) denotes the

document frequency (DF) of term tk, which is the number of documents where tk occurs

at least once. The function represents that the more often a term occurs in a document,

the more it is a representative of its content and the more documents a term occurs

in, the less discriminating it is. The weights of TF-IDF are often normalized by cosine

normalization, where T is the number of terms.

Definition 2.8. Cosine normalization wkj =
TF-IDF(tk, dj)√∑|T |
s=1(TF-IDF(ts, dj))2

Usually the full-text of a document is indexed, but in some cases indexing only the title

or a part of the full-text gives better performance [32]. Another method that influences

the calculated scores is to apply weights on different types of text, like the title and

the full-text. Please note that apart from selecting terms as features, a document can

contain other information. For a news article this can be the source of the news, or

perhaps the author. Sometimes the length of the document can also be a useful feature.

2.5.1.2 Term identification

Before the words in the text can be used as terms, first we need to be able to identify

the words or tokens from the text stream. This is done by a process called tokenization.

Another step, which depends on the application, is to apply stemming which converts

different tokens of the same semantics into one standard form. Tokens which are not

needed can be removed from the text, which is done by the processes called filtering.

We will explain these processes next.

Tokenization This process splits the text into a list of tokens by searching for specific

token delimiters. Some delimiters like white space and the newline character are easy to

determine. However some character are ambiguous and can be both delimiter and part

of a token depending on its context. A period for example can be part of a token as in

an abbreviation, but at the end of a sentence it is a token delimiter.
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Stemming There exist different kinds of stemming which basically transform words

with roughly the same semantics to one standard form. Inflectional stemming is a

form of stemming which reduces all inflected variants of words in different grammatical

contexts to one standard. Plurals forms can be transformed to singular form, like ‘books’

to ‘book’. The past tense of words can be transformed to present tense, like ‘ate’ to

‘eat’. The same holds for other inflected forms of words. Here a word can also be

ambiguous, the context is needed to determine the semantic of a word. Another method

which is similar to stemming, is to find synonyms of words and transform them to one

form. Not in all classification cases stemming improves the result, as for example author

classification relies on the subtly different writing styles of authors.

Filtering In this process certain words are removed from the text. Often so called

stop words are removed, which are words that almost never have a predictive capability,

such as ‘a’ and ‘the’ in English. This is usually a straightforward task.

2.5.1.3 Feature selection

The high dimensionality of the term space may be problematic for TC. Therefore, before

learning a classifier, often dimensionality reduction (DR), is applied to the term space.

Another benefit is that DR reduces overfitting. Experiments have shown that to avoid

overfitting, training examples roughly proportional to the number of terms are needed.

Around 50-100 examples are needed per term according to Fuhr and Buckley [33]. There

are two ways of using DR, globally and locally, the first reduced the set of terms chosen

for the classification for all categories, the latter chooses a reduced set of terms per

category. The resulting terms can also either be selected from the original terms by

term selection or extracted from the terms by term extraction.

Term selection Term selection has been shown by Yang and Pedersen [5] to increase

the effectiveness a bit (< 5%), depending on the classifier, the aggressiveness and the

DR technique. An approach called filtering by John et al. [34], is to keep the terms

that receive the highest score according to a function that measures the importance of

the term for the TC task. There are different functions to measure the importance of

a term, where the document frequency has been shown to reduce the term space by a

factor ten without loss of effectiveness [5]. Many authors remove terms that occur in at

most one-three training documents.

Other more sophisticated functions used are the DIA association factor, chi-square, NGL

coefficient, information gain, mutual information, odds ratio, relevancy score and GSS
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coefficient. A study by Rogati and Yang [35] compared around 100 methods of feature

selection for text classification among different classifiers. There main results were that

usually a combination of methods works best and the best combinations differ for each

type of classifier. However they state that:

• Almost all top performers had χ2 as a component.

• Eliminating the low document frequency words boosts the performance.

• Combining good methods with little or no correlation improved the result.

Term extraction Term extraction creates a new set of synthetic terms, from the

original set of terms. First a function that extracts the synthetic terms from the original

set of terms is needed and secondly a function that converts the old representation of

a document in the new one. There has been experimented with term clustering which

clusters terms that are related to each other on some similarity measure and uses a

synthesized term to represent that cluster. Slonim [36] found an improvement of the

effectiveness of classification by clustering per category. He used the co-occurrence of

words contributing to the same category as similarity measure.

2.5.2 Text classifiers

Sebastiani [1] extensively compared classifiers in the TC domain and found the following

results:

• Boosting-based classifier committees, support vector machines, example-based meth-

ods, and regression methods deliver top-notch performance.

• Neural networks and on-line linear classifiers work very well, although slightly

worse than the previously mentioned methods.

• Batch linear classifiers (Rochio) and Naive Bayes classifiers seem to be the worst

of the learning-based classifiers.

• The data collected was unable to say something sufficient about DTs.

2.5.2.1 Support vector machines

Most classification algorithms cannot handle a large number of features well. One no-

table exception is the SVM, introduced to the field of TC by Joachims [37] in 1998,
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which is now one of the state-of-the-art algorithms in TC. It attempts to find the sur-

face σi from all the surfaces from |T |-dimensional space, that separates the positive

from the negative examples by the widest possible margin. The best decision surface is

determined by only a small set of training examples, called the support vectors. It offers

advantages over other classifiers because:

• Term selection is often not needed, a SVM can scale up to considerable dimen-

sionality’s and is robust to overfitting.

• No effort in parameter tuning, as there is a theoretical ‘default’, which is shown

to provide the best effectiveness.

It’s power and suitability for TC is that it can handle large number of features. For

most other classification algorithms a feature selection procedure is done to reduce the

number of features.

2.6 Decision tree induction

In this section we will discuss the DT learning algorithm and the product of this algo-

rithm, a DT classifier. Because the model is easily interpretable by humans it makes it

great for analytical purposes. We will first discuss the DT classifier and then describe

the basics of the learning algorithm.

2.6.1 The decision tree classifier

A DT classifier uses a tree model to predict the class of an example. The tree consists

of one root node, which is where the classifier starts. The other nodes are either leaf

nodes, when they have no branches or internal nodes. The internal nodes and the root

node represent a feature and a test that has to be performed on that feature. For each

possible outcome of the test, the node has a branch that leads to the next node. The

leaf nodes eventually indicate a class.

A DT classifier predicts the class of an example by following a path from the root node

of the tree until it encounters a leaf node. At every node (except leaf nodes) a test

is performed to choose which branch to follow to the next node. When a leaf node is

encountered, the classifier predicts the class that the leaf nodes indicates.

Take a look at figure 2.10 where a DT is displayed which decides whether to play tennis

outside. Assume the following conditions: Outlook=Sunny and Humidity=High. To
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decide whether to play tennis, we start at the root node of the tree which is Outlook

and follow the branch labeled ‘Sunny’ to the internal node labeled ‘Humidity’. Here we

follow the branch labeled ‘High’ to the leaf node labeled ‘no’. This means we will decide

not to play tennis under these conditions.

Figure 2.10: An example decision tree which decides whether to play tennis outside or
not (source http://jmvidal.cse.sc.edu/talks/decisiontrees/allslides.html)

The whole tree could also be represented as if . . . then . . . else . . . rules. The following

rules would represent the same DT:

IF Outlook = Sunny THEN

{

IF Humidity = High THEN

No

IF Humidity = Normal THEN

Yes

}

IF Outlook = Overcast THEN

Yes

IF Outlook = Rain THEN

{

IF Wind = Strong THEN

No

IF Wind = Weak THEN

Yes

}

http://jmvidal.cse.sc.edu/talks/decisiontrees/allslides.html
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2.6.2 The learning algorithm

The goal of the learning algorithm is to construct a DT based on the examples in the

training data. However the algorithm should avoid to build a tree that overfits the

training data. That is why the optimal tree is the smallest DT which best distinguishes

between classes. In theory, finding this optimal DT for a given classification problem

is a search problem, which is shown to be NP-complete [38]. The search space consists

of all possible ways to construct a DT from the given set of attributes, which grows

exponentially, when the number of attributes increases. Usually a greedy search strategy

is applied which constructs an accurate, although sub-optimal, DT. [22]

2.6.2.1 Hunt’s algorithm

Hunt’s algorithm is the basis of many existing DT induction algorithms, such as ID3,

and C4.5. When constructing the tree, each node t is associated with a subset of the

training data Dt ⊂ O. Let C = {c1, . . . , c|C|} denote the set of predefined classes. Then

starting with the root node, the following is a recursive definition for constructing a DT

according to Hunt’s algorithm:

• If Dt = ∅ then t is a leaf node identifying the majority class cm of the parent node.

• If Dt 6= ∅ and all records in Dt belong to the same class ci, then t is a leaf node

identifying the class ci.

• If Dt 6= ∅ and records in Dt belong to a mixture of classes, then a single attribute

and corresponding attribute test is selected to partition the data further in disjoint

sets. Each outcome of the test is mutually exclusive and for each outcome a child

node is created. The algorithm is then recursively applied for each child node and

corresponding partition of the training data.

A special case is when no attributes can be found to split the data further, for

example when they all have identical values. In this case the node becomes a leaf

node which identifies the majority class cm of the examples associated with this

node.

2.6.2.2 Stopping criteria and pruning

An important decision for this algorithm is when to stop splitting nodes, which is called

pre-pruning. Otherwise the DT may overfit the data. Another way to make the tree

smaller is to prune the DT afterward, called post-pruning. There exists different ways of
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doing this, for example, the C4.5 algorithm uses Error-based pruning, while the CART

algorithm uses Cost-complexity pruning. The reader is referred to [39] for a detailed ex-

planation about Error-based pruning and to [40] for more information on Cost-complexity

pruning.

Example (pre-pruning) criteria are:

• MinimalLeafsize: Determines the minimal number of training examples a leaf

node should have when deciding to create this leaf node as a result of splitting it’s

parent node.

• MinimalSplitSize: Determines the minimal number of training examples a node

should have to be able to create child nodes.

• MaxTreeDepth: Determines the maximum depth of the DT.

• MinimalGain: Determines the minimal gain in impurity measure the split should

achieve.

2.6.2.3 Selecting the best split

The algorithm needs to select the best attribute and corresponding test to partition the

data in the optimal way. There are many measures available to select the best split.

Most of them use the class distribution of the child nodes, that would be created if the

parent node was split. The class distribution can be expressed as a level of impurity,

which is zero when all examples belong to the same class. The optimal split is then the

split that results in the least impure child nodes. Different measures are Gini index,

information gain and classification error. Impurity measures as information gain and

Gini index tend to favor attributes that have a large number of distinct values, which

may cause problems.

2.6.2.4 How to split the data

The way to split the data based on the values of a single attribute depends on the type

of the feature. When the feature is binary, the data is partitioned in two sets, one where

the feature is true, and the other where the feature is false. However when splitting

nominal (categorical) attributes, this can be done in different ways. For example, the

C4.5 algorithm splits the data with one branch for each possible value of the feature,

called a multi-way split. The CART algorithm always makes binary splits, by grouping

multiple values of a feature together. Continuous attributes can be split by first sorting
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the values and then selecting a point x, which lies between two adjacent values, to split

the data on. For example, one partition contains the data where the attribute value < x

and the other partition contains data where the value ≥ x.

2.7 Evaluating classifiers

The performance of classifiers is usually evaluated experimentally rather than analyti-

cally [1]. To get an unbiased estimate of the performance, the classifier is applied on

previously unseen data, the test set. This is important because a classifier that per-

forms well on the training set may have been subject to overfitting, and therefore will

not perform well when used on previously unseen data. There are different methods to

evaluate the performance of classifiers, which all divide the data into a training and test

set and calculate the performance by using an evaluation measure. We will first give

an overview of common evaluation methods. This is followed by a section on sampling,

which describes the way examples are selected from a dataset. Then we will discuss the

different evaluation measures for SC and then MC problems. There exist also evaluation

measures for HC problems, but they fall outside the scope of this thesis.

2.7.1 Evaluation methods

There exist a couple of evaluation methods, which we will discuss here briefly. The way

the data is selected from the original data is determined by the sampling technique used,

which we will discuss in the next section.

• Holdout Method:

This method is the classic evaluation method, which is simple but has some clear

drawbacks. The original data is split into two disjoint sets, the training and test

set. The classifier is trained on the training set and evaluated on the test set. The

proportion of the training set is typically two thirds for training and one third for

testing. The obvious limitation to this method is that fewer examples are available

for training because they are reserved for testing. Another limitation is that the

classifier depends on the composition of the training and test data [22].

• Random Subsampling:

This method repeats the holdout method several times to improve the estimation

of the classifiers performance, by taking the average. However it still suffers from

the same limitations as mentioned by the holdout method [22].
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• Cross-Validation:

This approach partitions the data into k equal partitions and uses each partition

and thus each record exactly once for testing. The other k−1 times, the partitions

are used for training. The advantage is that each record is used exactly once for

testing and the evaluation measures can be combined to obtain a good estimate

of the average performance of the k classifiers. This method does not suffer from

the limitations of the holdout method [22].

2.7.2 Sampling

Regardless of which evaluation method is used, there are different ways to partition the

data into a training and test set. Sampling is a technique to select a subset from a

dataset. In the case of splitting the data into a disjoint train and test set, sampling

is done without replacement. One way of selecting records is to randomly select each

record also called random sampling. A problem with this method is that, although

probably with a low chance, this can lead to a training set which is quite different than

the test set.

Another sampling approach called stratified sampling covers this problem by maintaining

the class distribution of the original data set when selecting a subset. This has been

shown to improve cross validation with random sampling in both bias and variance [41].

In SC, stratified sampling is a straight-forward task. However, stratifying a multi-labeled

data set is more involved. This is because there are multiple interpretations of how to

maintain the same class distribution in the selected sample.

One way to look at it is to maintain the same distribution for each combination of labels.

This has similarities with the LP method, which trains a classifier for each combination

of labels. Another, more relaxed approach is to only look at the distribution of all

single-labels, which is similar to the BR Method. This method looks only at each single

category and aims to distribute the positives examples for that category evenly.

Sechidis et al. [42] compared the two approaches with random subsampling. Their

conclusion was that random subsampling performs consistently worse than both multi-

label stratification approaches. The label combination method achieves low variance for

datasets where the number of distinct label sets is low compared to the total number of

examples in the dataset. The main problem with this method occurs when the number of

examples for a certain label set is fewer than the number of folds you want to divide the

data in. In those cases the label sets can’t get evenly distributed. The other approach,

which looks at positive examples for labels achieves low variance in cases where the

number of distinct label sets is large compared to the number of total examples.
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Perhaps a method combining both approaches will be ideal, however we did not come

across such a method in the literature. The next example will show a case with many

distinct label-sets, where the approach that looks at positive examples works better.

Example 2.2. Applying Multi-Label Stratification

In table 2.1a a dataset is shown with the occurrences of each label combination, that

serves as a toy example. Suppose we want to select (without replacement) four folds of

the dataset. Lets first look at the approach to maintain the same class distribution by

looking at the label combinations. An immediate problem is that the label combinations

{c1, c2, c3} and {c1, c3} occur less than four times, namely two, so we can only put it in

two folds. For the label combination {c2, c3} there are six examples, which means we can

put them into two folds once and also in two folds twice. How do we decide which folds

get the example twice? Table 2.1b shows the positive examples for each label. Creating

four folds with the same distribution of positive and negative examples for each category

is simpler, because there are enough positive examples for each category.

Table 2.1: A toy example set

label combination occurrence

{c1} 8
{c2} 2
{c3} 10
{c1, c2} 4
{c2, c3} 6
{c1, c3} 2
{c1, c2, c3} 2

(a) Label Combinations

positive example for occurrence

c1 16
c2 14
c3 20

(b) Positive Examples

2.7.3 Evaluation measures

The evaluation measures for SC are usually different than for MC. This is because in

the multi-label case when predicting two of the three labels correctly this is better than

predicting no labels at all. These differences are all captured in the evaluation measures

and are explained in the next sections.

2.7.3.1 Basic measures

We will first explain some basic measures used mainly for SC. Here the evaluation is

straightforward, the predicted value is either the correct one, or not. We define a function

Wrong which is 1 when the target function Φ̆ and the classifier Φ do not output the

same class as follows:
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Definition 2.9.

Wrong(x) =

{
1 if Φ̆(x) 6= Φ(x)

0 if Φ̆(x) = Φ(x).

We can define the error rate for a set of observations D by taking the sum of wrong

predictions and dividing it by the total number of observations as follows:

Definition 2.10. Error Rate Err(D) =

∑
x∈DWrong(x)

|D|

The accuracy of a classifier is then 1 minus the Error Rate.

Confusion matrix Before explaining other measurements we will first explain a

confusion matrix for a BC problem, see table 2.2. Consider the prediction of the mem-

bership for a certain class ci. Two types of errors can be made, misclassifying an actual

positive example, called False Negative (FN) which corresponds with the Type I error

in statistics. The other error is predicting ci for an actual negative example which is

called a False Positive (FP) which corresponds with the Type II error in statistics.

Class Predicted
ci positive (ci) negative (c̄i)

Actual
positive (ci) True Positives (TPs) False Negatives (FNs)
negative (c̄i) False Positives (FPs) True Negatives (TNs)

Table 2.2: The structure of a Confusion Matrix

Now the accuracy of ci can be defined in terms of True positives (TPs) and True Neg-

atives (TNs) divided by the total number of examples |D|. In the definitions below for

TPs, TNs, FPsandFNs the parameters (D, ci), which resembles the set of observations

D and the class label ci are omitted for clarity purposes.

Definition 2.11. Accuracy Acc(D, ci) =
TPs+ TNs

|D|

Straightforward error rate can now be defined in terms of FPs and FNs.

Definition 2.12. Error Rate Err(D, ci) =
FPs+ FNs

|D|

An interesting measure we can now define is precision, also called the positive prediction

value. This expresses the estimated probability that an example which is predicted as

positive is correctly classified.

Definition 2.13. Precision Prc(D, ci) =
TPs

TPs+ FPs
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On the other hand we can also define recall also called the sensitivity, or the true positive

rate. This expresses the estimated probability that an example which actual value is

positive is correctly predicted.

Definition 2.14. Recall Rcl(D, ci) =
TPs

TPs+ FNs

Figure 2.11 shows a Venn diagram, with the left circle containing all the actual positive

examples and the right circle containing the predicted positive examples. This figure

can help understanding the precision and recall measures. Precision is the percentage of

TPs of the predicted positive examples and recall is the percentage of TPs of the actual

positive examples.

Predicted Positives Actual Positives

FPs TPs FNs

TNs

Figure 2.11: A Venn diagram of actual positive examples and predicted positive
examples, illustrating the precision and recall measures

Table 2.3 shows the precision and recall of some trivial binary classifiers taken from the

paper of Sebastiani et al. [1]. The trivial rejector always classifies the non-membership

for a class, as opposed to the trivial acceptor which always classifies the membership for

a class. The trivial ‘YES’ Collection is a test set which contains only positive examples

and the trivial ‘NO’ Collection is a test set which contains only negative examples.

The C-Precision and C-Recall are the precision and recall calculated by switching the

negative and positive classes.

Note that previously defined measures are for one specific class label ci. To measure

a multi-class classifier we have to average out the classes somehow. There are two

different methods of doing this called microaveraging and macroaveraging. In the first

case all TPs, TNs, FPs and FNs for each class are summed up and then the average is

taken. This treats each single example of the same importance. The latter applies the

measure for each class and then takes the average of that, which treats each class of the

same importance. There can be quite a difference in performance when using micro- or

macroaveraging, especially with datasets that have a skewed class distribution.
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Table 2.3: Trivial cases in Text Classification, taken from [1]

Precision Recall C-Precision C-Recall

TPs
TPs+FPs

TPs
TPs+FNs

TNs
FPs+TNs

TNs
TNs+FNs

Trivial Rejector TPs = FPs = 0 undefined 0
FNs = 0 TNs

TNs = 1 TNs
TNs+FNs

Trivial Acceptor FNs = TNs = 0 TPs
TPs+FPs

TPs
TPs = 1 0

FPs = 0 undefined

Trivial ‘YES’ Collection FPs = TNs = 0 TPs
TPs = 1 TPs

TPs+FNs undefined 0
FNs = 0

Trivial ‘No’ Collection TPs=FNs=0 0
FPs = 0 undefined TNs

FPs+TNs
TNs
TNs = 1

Definition 2.15. Microaveraging Precision Prcmicro(D) =

∑
ci∈C TPs(ci)∑

ci∈C TPs(ci) + FPs(ci)

Definition 2.16. Microaveraging Recall Rclmicro(D) =

∑
ci∈C TPs(ci)∑

ci∈C TPs(ci) + FNs(ci)

Definition 2.17. Macroaveraging Precision Prcmacro(D) =

∑
ci∈C Prc(D, ci)

|C|

Definition 2.18. Macroaveraging Recall Recmacro(D) =

∑
ci∈C Rcl(D, ci)

|C|

Utility In some classification applications the different misclassification costs should

not be considered equal. Custom utilities uTP , uFP , uFN , uTN can be defined to express

the gain or loss brought about by a TP, FP, FN and TN respectively. In general cases

uTP = uTN > uFP = uFN which just states that a misclassification should bring less

gain than a correct classification. But utilities are particularly useful in applications

where this is not the case. For example when evaluating a classifier to filter spam e-mail

messages. A legitimate e-mail message predicted to be spam (FN) should be avoided.

But the other way around, classifying a spam email as legitimate (FP) is tolerable. In

this case the utilities are uFN < uFP < uTP = uTN [1].

2.7.3.2 Multi-label classification measures

In MC a misclassification is no longer a hard wrong or right. A prediction containing a

subset of the actual classes should be considered better than a prediction that contains

none of them. There have been some proposals in the literature for measures that

capture this. Tsoumakas divides them into two groups: label based and example based
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measures [21]. Label based measures use BC measures per label and average them out

using micro- or macroaveraging. Just like we showed in the previous section. On the

other hand example based measures look at each example and their set of predicted

labels.

A popular example based measure is the Hamming-loss [43]. Let D be a set of observa-

tions and ∆ the symmetric distance between the output of the target function Φ̆ and

the classifier Φ. The symmetric distance ∆ contains the classes that do occur in one set

but not in the other. For example, {A,E,G} ∆ {E,F,G} = {A,F}. It’s a loss function

so the better the prediction the lower the value for Hamming-Loss.

Definition 2.19. Hamming-Loss Hml(D) =
1

|D|
∑
x∈D

|Φ̆(x)∆Φ(x)|
|C|

Godbole and Sarawagi [16] have used adapted multi-label versions of precision, recall,

F1 and accuracy as follows.

Definition 2.20. Multi-label Precision Prcml(D) =
1

|D|
∑
x∈D

|Φ̆(x) ∩ Φ(x)|
|Φ̆(x)|

Definition 2.21. Multi-label Recall Rclml(D) =
1

|D|
∑
x∈D

|Φ̆(x) ∩ Φ(x)|
|Φ(x)|

Definition 2.22. Multi-label F1 F1ml(D) =
1

|D|
∑
x∈D

2|Φ̆(x) ∩ Φ(x)|
|Φ̆(x)|+ |Φ(x)|

Definition 2.23. Multi-label Accuracy Accml(D) =
1

|D|
∑
x∈D

|Φ̆(x) ∩ Φ(x)|
|Φ̆(x) ∪ Φ(x)|

Combining measures Sebastiani [1] argued that in MC, neither precision nor recall

alone can effectively measure the performance of a classifier in isolation of each other.

He notes that this does not hold for SC where precision and recall are dependent of

each other. A classification to the wrong category (decreasing precision), automatically

means it’s not classified to the right category (decreasing recall). Therefore in SC either

precision or recall can be used for measuring the performance. In MC however this is

not the case.

Take for example the trivial acceptor from table 2.3, this classifier will obtain a recall

of 1 for ci, because it has no FNs. In contrast its precision will depend on the number

of FPs. In practice, when tuning a classifier, obtaining a higher precision yields a lower

recall [1]. Therefore a combination of both measures should be used. A number of

methods have been proposed in the literature, we will list the most popular three [3]:
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• Break-Even Point: The Break-Even Point, proposed by Lewis [44], between the

precision and recall curve, in other words the point on the curve where they are

equal. Sometimes this point does not exist and an interpolated point has to be

calculated.

• Fβ Measure: Proposed by Rijsbergen [45] is a measure which uses a value β which

indicates the importance of precision or recall. Using β = 0 indicates only recall

is relevant and +∞ indicates that only precision is important. Usually a value of

1 is chosen, which assigns equal importance to both precision and recall, called the

F1 measure.

Definition 2.24. Fβ =
(β2 + 1) · Prc ·Rcl
β2 · (Pcr +Rcl)

• Average 11-point precision: The classifier is tuned such that the recall takes up the

eleven values {0.0, 0.1, . . . , 1.0} and the precision at each point is calculated and

averaged out over those points. This method is mainly used in document ranking

applications [1].
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The data

In this chapter we will describe the data that was available for classification. We will

provide some interesting statistics about the data and show which choices were made

regarding which attributes and data to select. Furthermore, the transformation of the

data labels into a hierarchical structure will be explained.

3.1 Introduction

The data we use in our experiments is a manually labeled database of news articles by

ASDMedia. The articles are labeled with categories which provide information about the

market the article is for and the channel the article is in. Basically the data consists of

news articles for two different markets, namely news about the ‘aerospace and defense

market’ and news about the ‘energy and resources’ market which we will refer to as

‘ASD’ and ‘GEW’ dataset respectively. The news is a selection of news articles issued

from industry, government, and the largest, global press agencies, such as the Associated

Foreign Press (AFP). Articles are focused on contract announcements, new developments

and hot topics in the marketplace. All the news is in the English language.

Take a look at the example news article in figure 3.1. We can clearly see the title and

text of the article along with the source, which is presented below the text. On the left

of the article we can see a list of categories and channels, where a category or a channel

is highlighted when it is labeled to this news article. This specific article is labeled

with the category ‘Defense News’ and with the Channels ‘EOD / IEDs / Mines’ and

‘Unmanned Systems’. EOD stands for ‘Explosive Ordinance Disposal’ and IEDs stands

for ‘Improvised Explosive Device’. The article is about an unmanned robotic system

that can remotely disarm IEDs, which justifies the labellings of the channels. In the

40
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Figure 3.1: An example news article from the website www.asdnews.com

next sections we will tell you more about the attributes of a news article that can be

used for automatic classification and about the category and channel labels.

The ‘ASD’ dataset contains news articles that have been labeled since 1 January 2008

and it contains roughly 22,600 records available for classification. This makes the dataset

considerably larger than the ‘GEW’ dataset, because this one has been collected since

February 2011 and has roughly 6,000 records available for classification. The manual

labellings are done by one person who started the task from the beginning. The articles

we will use for classification were extracted from the database on 4 December 2012.

The task of labeling an article with the right channels is pretty difficult and is not clear-

cut. The example article might as well be labeled with the channel ‘sensors’, because of

the sensors in the robot that provide the feedback system. In this case there is chosen to

www.asdnews.com
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exclude the sensors label, because the main message of the article is not about sensors.

However, labeling the article with ‘sensors’ is not clearly a mistake.

3.2 Attributes for classification

The news articles are stored in a database as a collection of attributes. In table 3.1 you

see a selection of the attributes that are potentially interesting to use in the learning

process. MAX,AVG and Distinct stands for the maximum, average and distinct number

of examples with the same value for that attribute respectively.

Table 3.1: The attributes of a news article from both datasets up to 4-12-2012

ASD dataset of total 27,130 examples

Attribute Missings MAX AVG Distinct Description

Title 0(0%) 6 1 26,953 The title of the news article
Full-text 0(0%) 1 1 27,130 All the text except the title
Source 4,481(17%) 1,525 17 1,276 The news source
Issue place 14,762(54%) 1,079 6 2,049 The issue location

GEW dataset of total 6,261 examples

Attribute Missings MAX AVG Distinct Description

Title 0(0%) 3 1 6,207 The title of the news article
Full-text 0(0%) 1 1 6,260 All the text except the title
Source 14(0%) 2,585 5 1,196 The news source
Issue place 712(11%) 215 4 1,333 The issue location

The title and full-text are clearly available to use for text classification. However for

the source and issue place attribute this is not so clear. Especially in the ‘ASD’ dataset

there are a lot of missing values for those attributes, this is because those attributes

have not been collected from the start. The ‘GEW’ dataset, which is newer, has less

missing values, but still 11% for issue place.

Interesting is that there are some news articles that have the same title, but have a

different full-text. On further investigation we found out that these are actually the

same articles stored on a different time in the database. There are around 150 of

those duplicates, where the full-text is just a little bit different. More interesting is

that identical articles are sometimes not labeled with the same channels. This raises

questions about the consistency of the labellings.

Another interesting fact is the maximum examples with the same source attribute. For

the ‘GEW’ dataset these are 2,585 articles with the same source, around 41% of the

dataset. This actually is the source ‘AFP’, where a lot of articles come from.



Chapter 3. The Data 43

Domain experts have indicated that the source attribute could be correlated to the label

but the issue place shouldn’t. A news source could have a certain selection of categories

it produces news about. Therefore we will investigate if the source attribute contributes

to the performance of the classification system. To handle the missing values, we will

mark missing values with a ‘?’, which is then handled by the decision tree (DT) learning

algorithm as a single source. The issue place will not be investigated due to the large

number of missing values and the judgment of domain experts.

To give some more insight into the text fields, in table 3.2 we show some statistics about

them. We provided the average number of characters in the title and the full-text. The

number of distinct words showed is after removing very rare words. Interesting is that

the ‘GEW’ dataset has almost half of the distinct words as the ‘ASD’ dataset, which is

probably because the size of the ‘GEW’ dataset is around 4.3 times smaller as the ‘ASD’

dataset.

Table 3.2: Some text statistics about both datasets

Dataset Avg. title characters Avg. full-text characters Distinct words

ASD 57 2,228 23,127
GEW 58 2,441 11,487

In table 3.3 and 3.4 we show the top most occurring words of the ‘ASD’ and ‘GEW’

dataset respectively. These words have already been stemmed. Interesting to see is that

the words ‘said’, ‘quot’ and ‘year’ are in both datasets in the top 10 words.

Table 3.3: The top 10 most occurring words in the ‘ASD’ dataset

Word Total Occurrences Document Occurrences

system 67,344 15,496
said 52,326 19,463
aircraft 39,039 10,944
air 33,097 10,434
support 26,432 11,227
quot 25,372 3,295
force 25,123 9,575
year 23,343 12,560
program 22,718 9,397
provide 22,484 12,226

3.3 Labeled categories

Each news article in the datasets is labeled with two different categories. One category

represents the general market which the article is for, which we will refer to as market

category. The other is a more specialized category which tells what the news article is
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Table 3.4: The top 10 most occurring words in the ‘GEW’ dataset

Word Total Occurrences Document Occurrences

energy 17,691 4,127
quot 14,476 1,874
said 13,736 4,461
pow 12,720 2,909
solar 12,490 1,528
project 9,586 2,607
oil 9,458 2,032
gas 8,523 2,058
company 7,963 3,432
year 7,472 3,601

about, which we will refer to as the channel category. This channel category can be seen

as a topic of the news article but also as a more specialized market within the more

general market category. Each news article can be labeled with one or more market

categories and also with one or more channel categories.

3.3.1 Market categories

We will show examples of all the market categories occurring in the ‘ASD’ and ‘GEW’

datasets in table 3.5 and 3.6 respectively. Each article in the ‘ASD’ dataset has on

average 1.27 market categories as opposed to articles in the ‘GEW’ dataset, having on

average 1.05 market categories.

Table 3.5: The market categories of all news articles from the ‘ASD’ dataset up to
4-12-2012

ASD dataset of total 27130 examples
Each article having on average 1.27 market categories

Market category Examples Percentage

Aviation 6,321 23.30%
Defence 16,536 60.95%
GlobalNews 1,747 6.43%
Space 543 2.00%
Aerospace 9,294 34.26%
Financial 18 0.06%

Not all of these market categories are useful, mainly because of the low occurrence.

Some of them had a temporary existence and some are actually indicating something

else than the market the news article belongs to. The ‘GlobalNews’ in the ‘ASD’ dataset

and ‘Global’ in the ‘GEW’ dataset are examples of a market category which is actually

not indicating a market. The category was originally intended to indicate news articles

originating from the ‘AFP’. Interesting to note is that the GEW dataset, with on average
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Table 3.6: The market categories of all news articles from both datasets up to 4-12-
2012

GEW dataset of total 6261 examples
Each article having on average 1.05 market categories

Market category Examples Percentage

Sustainable 3,452 55,13%
Global 126 2,01%
Distribution 237 3,79%
Traditional 2,743 43,81%

1.05 market categories per article is hardly multi-label. This is because the ‘Sustainable’

and ‘Traditional’ categories almost exclude each other.

3.3.2 Channel categories

The channel categories are the more specialised categories which are supplied in addition

to the market categories. Some of the channel categories can belong to only one market

category, but it is also possible that it belongs to multiple market categories.

We will show examples of channel categories in table 3.7 for the ASD dataset and table

3.8 for the GEW dataset.

3.4 A hierarchical labeling

The market- and channel categories are clearly correlated. For example an news article

in the ‘ASD’ dataset labeled with the channel category ‘Homeland Security’ will belong

to the ‘Defense’ market category. Because a news article is multi-label it may also belong

to other market categories but also to other channel categories. Because both objectives

need to be classified, we decided to create a new category structure which encapsulates

both categories. It is clear that the channel categories belong to one or more market

categories, the first being more-specific than the latter. Therefore these two categories

are a good candidate to be merged into a hierarchical category structure. Now because

a channel category can belong to more than one market category theoretically this is an

overlapping hierarchy or DAG based hierarchy. However in practice working with such

a hierarchy brings many implementation difficulties. Therefore we decided to force the

structure to be Tree-based, meaning that each node in the hierarchy has at most one

parent.

In order to do this the channel categories that belong to more than one market category

are split into different market categories, one for each parent. For example the channel
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Table 3.7: The channel categories of all news articles from the ‘ASD’ dataset up to
4-12-2012

ASD dataset of total 27130 examples
Each article having on average 1.75 channel categories.

Channel category Examples Percentage

Infantry Weapons 693 2.55%
Commercial Aircraft 5,652 20.83%
Avionics 578 2.13%
Military Aircraft 3,225 11.89%
Communications 3,249 11.98%
Protection 968 3.57%
Cyber Defence / IT 541 1.99%
Contracts 5,331 19.65%
Helicopters 1,740 6.41%
EOD / IEDs / Mines 341 1.26%
Transport / Logistics 753 2.78%
Combat Vehicles / Artillery 1,257 4.63%
Missiles / Rockets 1,743 6.43%
MRO 1,350 4.98%
Navy 2,012 7.42%
NBC 300 1.11%
Sensors 1,652 6.09%
Simulation / Training 2,018 7.44%
Soldier 608 2.24%
Space 3,814 14.06%
Unmanned Systems 1,658 6.11%
Undersea Warfare 473 1.74%
Engines / Power / Fuel 1,874 6.91%
Radar / EW 1,103 4.07%
Homeland Security 1,970 7.26%
Global 1,761 6.49%
Disasters / Accidents 699 2.58%
Financial / Economical 171 0.63%

categories ‘Soldier’ can occur only within the market category ‘Defence’ which means it

doesn’t need to be split. But the channel category ‘Contracts’, occurs in all the available

market categories of the ‘ASD’ dataset. This one will be split into three new categories,

one for ‘Defense’, one for ‘Avionics’ and one for ‘Aviation’.

Tables 3.10 and 3.11 show the resulting category structure which we will use for the

classification, channel categories and market categories not used anymore have been

removed. We used lvl1, lvl2 and lvl3 to indicate the depth of the category in the

hierarchy tree and assigned a unique code to each category. At the top-level of the

hierarchy is the choice between the ‘ASD’ or ‘GEW’ dataset, which resembles the lvl1

category. This top-level decision is actually a single-label classification (SC) problem

which we will not address in this research. The news is already collected separately
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Table 3.8: The channel categories of all news articles from the ‘GEW’ dataset up to
4-12-2012

GEW dataset of total 6261 examples
Each article having on average 1.20 channel categories.

channel category Examples Percentage

Natural Gas & LNG 305 4.87%
Oil and Gas 1,843 29.44%
Refinery 48 0.77%
Fuel & Retailing 28 0.45%
Mining 37 0.59%
Wind 502 8.02%
General News 586 9.36%
Geothermal Energy 62 0.99%
Nuclear 549 8.77%
Solar 1,338 21.37%
Bio 445 7.11%
Hydro 169 2.70%
Pipelines 122 1.95%
Storage 209 3.34%
Power Generation 267 4.27%
Utilities 38 0.61%
Clean Transport 341 5.45%
Smart Grids 249 3.98%
Contracts 97 1.55%
Energy Efficiency 112 1.79%
Exploration 142 2.27%

because the decision is easily made based on the publisher of the news. Our research

will treat each dataset separately and focus on the MC problem within each dataset.

The lvl2 categories correspond to the market categories of each dataset and the lvl3

categories correspond to the channel categories of each dataset. Note that by predicting

the lvl3 categories, the corresponding lvl2 categories can be deduced.

3.4.1 Multi-label statistics

To tell something about the multi-labeledness of the datasets some statistics are pre-

sented in table 3.9. For a full explanation of the measures the reader is referred to

section 2.2.3. For reference we added the statistics of the Reuters dataset taken from

the paper by Tsoumakas et al. [21]. This is a similar dataset often used in multi-label

text classification. The statistics are the averages of the five ‘rcv1v2’ datasets from

Reuters.

When you look at the label cardinality of the ‘GEW’ and ‘ASD’ dataset there is quite

a difference. This is explainable because the two lvl2 categories in the ‘GEW’ dataset
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are ‘Traditional Energy & Exploration’ and ‘Sustainable Energy’. The two categories

are almost mutually exclusive, which we also observed when looking at the market

categories. When we look at the ‘ASD’ dataset, the lvl2 categories are much more

overlapping. The ‘Aerospace’ lvl2 category is about manufacturing of aircrafts, space

vehicles, guided missiles. ‘Aviation’ on the other hand is news about existing aircrafts,

airlines and airports. An article about a company manufacturing parts of aircrafts for

a specific airline will be labeled with both categories.

When comparing the two datasets with the Reuters dataset we can see some similarities

and differences. The main difference is that the Reuters dataset has more labels and a

higher label cardinality. The latter means that on average an example from the Reuters

dataset is labeled with more categories than examples from the ‘ASD’ or ‘GEW’ dataset.

Interesting to see is that the ‘ASD’ dataset has more distinct label sets than the Reuters

and ‘GEW’ dataset.

We suspect that the ‘ASD’ dataset is more difficult, in the multi-label sense, than the

‘GEW’ dataset and suspect that it is harder to classify correctly.

Table 3.9: Multi-label statistics of different datasets

Dataset Examples Labels Cardinality Density Distinct Label set

ASD 26042 54 2.1757 0.040 1972
GEW 5965 24 1.2055 0.050 184
Reuters 6000 101 2.6508 0.026 937

3.4.2 Skewed distribution of categories

The class distribution of both datasets is very skewed. To illustrate this, graph 3.2a

and 3.2b show the categories and the percentage of examples labeled with them for the

‘ASD’ and ‘GEW’ dataset respectively. Tables 3.10 and 3.11 show all the data, note

that in a multi-label setting the percentages don’t necessarily sum up to 100. There are

single categories that are labeled to 20% of the examples, as is the case with commercial

aircraft (aviation) in the ‘ASD’ dataset. And for the ‘GEW’ dataset there are even two

dominating categories such as Solar 20% and Oil and Gas 30%. On the other hand

there are also categories labeled to less than 1% percent of the data.

Because we are planning to use the ‘one-against-all’ approach, one classifier is trained for

each category. A classifier has to distinguish that category from all the other categories.

Therefore it is expected that a classifier for categories with few positive examples may

not perform that well. Because of a practical limitation we require our categories to have

at least 20 examples. This is because, when using 10-fold cross validation, the chance
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(a) The ‘ASD’ dataset (b) The ‘GEW’ dataset

Figure 3.2: This graph shows for each lvl3 category, the percentage of total examples
labeled with it.

of having a fold with no positive examples is very small. So the following categories in

tables 3.10 and 3.11 will be excluded from our experiments:

• NBC under Aviation with 3 positive examples

• Utilities under Traditional Energy & Exploration with 10 positive examples

• Utilities under Sustainable Energy with 8 positive examples
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Table 3.10: The hierarchical categorization for the ‘ASD’ dataset up to 4-12-2012

ASD dataset of total 26,042 examples
lvl2 lvl3 Category Examples Percentage
1010 - Defence 16,411 63.017%

101010 EOD / IEDs / Mines 330 1.267%
101014 Homeland Security 1,569 6.025%
101018 NBC 224 0.860%
101020 Navy 1,969 7.561%
101024 Missiles / Rockets 1,677 6.440%
101028 Combat Vehicles / Artillery 1,244 4.777%
101030 Simulation / Training 1,641 6.301%
101034 Cyber Defence / IT 516 1.981%
101038 Undersea Warfare 467 1.793%
101040 Protection 953 3.659%
101044 MRO 775 2.976%
101048 Communications 2,722 10.452%
101050 Transport / Logistics 655 2.515%
101054 Sensors 1,552 5.960%
101058 Military Aircraft 3,152 12.104%
101060 Unmanned Systems 1,558 5.983%
101064 Soldier 571 2.193%
101068 Radar / EW 976 3.748%
101070 Helicopters 1,220 4.685%
101074 Infantry Weapons 685 2.630%
101078 Contracts 4,043 15.525%
101080 Space 650 2.496%
101084 Engines / Power / Fuel 787 3.022%
101088 Avionics 230 0.883%

1020 - Aerospace 9,809 37.666%
102010 Military Aircraft 1,084 4.163%
102014 Sensors 324 1.244%
102020 Unmanned Systems 499 1.916%
102024 Simulation / Training 535 2.054%
102030 Space 3,706 14.231%
102034 Engines / Power / Fuel 1,139 4.374%
102040 Helicopters 745 2.861%
102044 Radar / EW 220 0.845%
102050 Commercial Aircraft 3,324 12.764%
102054 Communications 1,061 4.074%
102060 Contracts 1,414 5.430%
102064 Protection 42 0.161%
102070 Transport / Logistics 123 0.472%
102074 Avionics 385 1.478%
102080 Missiles / Rockets 114 0.438%
102084 Cyber Defence / IT 57 0.219%
102090 MRO 538 2.066%

1030 - Aviation 6,253 24.011%
103010 Avionics 331 1.271%
103014 Simulation / Training 309 1.187%
103020 Engines / Power / Fuel 809 3.107%
103024 Radar / EW 132 0.507%
103030 MRO 570 2.189%
103034 Homeland Security 1,569 6.025%
103040 Contracts 1,024 3.932%
103044 Communications 195 0.749%
103050 Commercial Aircraft 5,215 20.025%
103060 Transport / Logistics 77 0.296%
103070 Helicopters 628 2.411%
103080 NBC 3 0.012%
103090 Sensors 324 1.244%
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Table 3.11: The hierarchical categorization for the ‘GEW’ dataset up to 4-12-2012

GEW dataset of total 5,965 examples

lvl2 lvl3 Category Examples Percentage

2010 - Traditional Energy & Exploration 2,946 49.388%
201010 Natural Gas & LNG 300 5.029%
201014 Oil and Gas 1,820 30.511%
201020 Refinery 45 0.754%
201024 Fuel & Retailing 27 0.453%
201030 Mining 36 0.604%
201034 Exploration 142 2.381%
201040 Nuclear 547 9.170%
201044 Pipelines 119 1.995%
201050 Power Generation 186 3.118%
201054 Utilities 10 0.168%
201060 General News 306 5.130%
201064 Energy Efficiency 62 1.039%

2020 - Sustainable Energy 3,227 54.099%
202010 Wind 499 8.365%
202014 Geothermal Energy 61 1.023%
202020 Solar 1,329 22.280%
202024 Bio 443 7.427%
202030 Hydro 165 2.766%
202034 Clean Transport 288 4.828%
202040 Energy Efficiency 68 1.140%
202044 Storage 178 2.984%
202050 Smart Grids 187 3.135%
202054 Power Generation 56 0.939%
202060 Utilities 8 0.134%
202064 General News 309 5.180%
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Methodology

In this chapter we will describe the experimental setup. First we will describe the basic

experimental setup and justify the choices we made during that setup. Finally we will

describe each experiment that we will conduct in detail.

Recall that the main question we will address during this research is the following:

Is it possible to develop an automatic classification system with the following features

to solve the ASDMedia classification problem?

• Use Machine Learning (ML) to generate the model

• The ML algorithm is restricted to those which generate humanly interpretable

models

• The classifier achieves a reasonable performance

With the ASDMedia classification problem we actually indicate two problems, one for

each dataset. One dataset contains news articles about the ‘Aerospace & Defence’

market and the other about the Energy market, which we will refer to as the ‘ASD’

and ‘GEW’ dataset respectively. Each article can be labeled with multiple categories,

which makes them both a Multi-Label Classification (MC) problem. We will investigate

various techniques and settings which we explain next. By doing these experiments we

also try to reach the best combination of settings for both classification problems. We

apply a kind of greedy search strategy, and continue each experiment with the best

result from the previous experiment. We are aware of the fact that we do not cover all

possible combinations of settings, so may not find the real optimal setting. However we

must exclude some combinations due to practical limitations.

52
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4.1 The basic setup

In this section we will explain the basics of our classification system. In our experiments

we will compare different settings and approaches with each other, but what they have

in common will be described in this section. Al our experiments are done with the

RapidMiner software [46]. One of the largest open-source data-mining systems, originally

developed by YALE University.

4.1.1 The multi-label problem

To tackle the MC problem we have chosen to use the binary relevance (BR) a.k.a one-

against-all approach. As discussed in section 2.2.1 this approach is widely used in the

literature but may not take into account label correlations. Theoretically there is a

better approach, the label power-set (LP) method, but this approach is computationally

infeasible. The number of distinct label sets for the ‘ASD’ dataset are 1972, see table

3.9. This would mean training 1972 different classifiers that would require a lot of

computation time. For the ‘GEW’ dataset it might be possible with only 184 distinct

label set. However we want to use the same solution for both datasets.

4.1.2 The skewed class distribution problem

A discussed in section 2.3.2 a skewed class distribution in combination with the BR

method can cause problems in the test and training phase. In the training phase the

main problem is that a model will be learned that just assigns every example to the

majority class, thereby achieving a high accuracy. In the test phase this can be solved

by using an appropriate performance measure which we will discuss later in section 4.1.4.

For the training phase, we have to prevent the classification algorithm from learning a

model that just assigns every example to the majority class. One solution is to give each

example a weight, so that the sum of the weights of positive examples equals the sum

of weights of negative examples for a class. This has the effect of balancing the positive

and negative examples for a classifier. Other possibilities are oversampling the minority

class and under sampling the majority class, or both.

In an extensive study by Mccarthy, Zabar and Weiss [47] they compared over sampling,

under sampling and example weights. In almost all cases under sampling scored worse

than over sampling and example weights. Between oversampling and under sampling

there was no clear winner, but in small datasets oversampling achieved a better perfor-

mance. We have chosen to use example weights because it is one of the best methods to

deal with a skewed class distribution.
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4.1.3 Classification algorithm

One of the constraints was, when looking at solutions of our problem, that the resulting

classifier is humanly interpretable. This is so that domain experts can read the learned

model and compare it with what they think the model should look like. This constraint

also prevents us from using techniques that generate multiple models and average the

result, like boosting. Therefore we have chosen to use a decision tree (DT). An alter-

native for that would be a rule based classifier, which is as expressive as a DT. More

specifically we use an algorithm that is similar to Quinlan’s C4.5 in RapidMiner, see

figure 4.1 for the parameters we used.

We used the default values for the parameters, except for the splitting criterion for

which we used the Gini index. This decision was based on a small test we performed

with other splitting criteria. The confidence is one of the most important parameters

which influences the post-pruning of the DT. This pruning is used to make the DT

smaller and prevent overfitting. We excluded experimenting with the DT parameters in

our research due to a lack of time.

Figure 4.1: A form to alter the decision tree parameters in RapidMiner
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4.1.4 Validation & evaluation setup

To evaluate and compare our experiments we will use the 10-fold cross validation setup.

To partition the data into 10 folds, we used the iterative stratification algorithm by

Sechidis et al. [42]. For MC problems this is not a trivial task, see section 2.7 for more

details. Briefly, this method divides the dataset into 10 folds, while trying to maintain

the label distribution of the original dataset. It does so by distributing the positive and

negative examples for each category evenly among the 10 folds.

For our experiments we will use the micro-averaged F1 measure as the main performance

measure, which is the harmonic mean of precision and recall. The F1 measure is defined

in definition 2.24 in section 2.7.3.2. To obtain the micro-averaged F1, the micro-averaged

precision and micro-averaged recall should be used in the formula which are defined in

definition 2.15 and 2.16 respectively in section 2.7.3.1.

The reason why we have chosen for the micro-averaged F1 measure is because we have

a skewed class distribution and we use the one-against-all method. Accuracy is not

an adequate performance measure in this situation, see section 2.3.2. The precision and

recall measures are more suitable in this setting, because they measure the positive class.

However they should not be used in isolation of each other, see section 2.7.3.2. The F1

measure is such a combination of precision and recall, which is widely adopted in the

literature.

We have chosen to use micro-averaging F1 instead of the macro-averaging F1. This

is because the main goal is to predict as many labels from as many previously unseen

documents as possible. If we would adopt macro-averaging, then the categories with very

few examples are treated of equally importance as the categories with more examples.

In our case, some categories have so few examples that they are already expected to

perform very badly. Therefore we want to set the focus on the number of documents

that a category is labeled on instead.

4.1.5 Feature generation

To transform our dataset to a matrix with features that the classification algorithm can

use, document indexing is applied. In the general setup both the full-text and the title of

a news article are used to extract features from. We will also experiment with using parts

of the full-text. A screenshot of the document indexing procedure from RapidMiner is

showed in figure 4.2, which shows the individual steps that are done. More background

information about each step is given in section 2.5.1.1
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Figure 4.2: The document indexing procedure in RapidMiner which iterates over all
documents and applies these steps

1. Tokenization: First the text is tokenized on non-letters. This means that on

every character that is not a letter, like for example a space or a punctuation

mark, the text is split. What remains is a list of tokens that resemble individual

words.

2. Filter stopwords: Then from that list of words the stopwords are filtered out.

Those stopwords are a built-in list of basic English stopwords.

3. Stemming: Now, using the WordNet dictionary stemming is applied. Wordnet

[48] is an electronic lexical dictionary maintained by Princeton University.

4. Filter tokens: In this step tokens are removed that have less than three charac-

ters. Because we have split on non-characters, there can be left overs from incorrect

splits at punctuation marks. Besides most tokens less than three characters are

probably not really descriptive in the English language.

5. Generate n-grams: Depending on the setup, either 1-grams or up to 2-grams

are generated from the words. These are finally used as features.

Now for each feature that is generated the term frequency (TF) and the inverse document

frequency (IDF) are calculated. These features that occur in less than 4 documents are

removed from the list. This was indicated by Sebastiani [1] as an empirical method

widely used to remove the very rare words. The rest of the features is kept, also the

very common words. As was indicated by Sebastiani it was a common mistake to remove

the common words. Furthermore we noticed that for a category that contains only 1

percent positive examples, removing rare words that occur in less than 1 percent of

the document would be a disaster. Very discriminating words that occur in all of the

positive examples could also be removed. This could make it very difficult or maybe

even impossible to learn a good classifier for those categories.
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Finally for each feature the TF-IDF is calculated and the result is a term matrix, con-

taining the documents as rows and the features as columns with as value the TF-IDF

scores. Other options would be to just calculate the TF or even simpler to have only a

boolean flag indicating whether or not the feature occurs in the document. The reason

we have chosen for TF-IDF is because it is widely adopted in the text classification

literature. The generated term matrix will be used to perform the feature selection on.

4.1.6 Feature selection

Our feature selection mechanism consists of two parts. First of all we perform feature

selection based on the word frequency and we filter stopwords. This type of feature

selection is done globally, for each category the same. The next part of our feature

selection is done locally, for each category on its own. [1]

To decide which measure to use in our feature selection we applied a few measures and

reported the top 500 features. We tested Chi Squared, Information Gain and Gini Index.

We let domain experts look at the features that were selected and they found the Chi

Squared measure to select the most promising features. To give an idea of which features

score the highest Chi Squared statistics, in tables 4.1 and 4.2 you can see the top 10

features for two arbitrary categories for both the 1-gram and up to 2-gram settings.

A form of feature selection which is not considered part of feature selection occurs inside

the DT induction algorithm. The algorithm will select a subset of the available features

to split the data on. Recall that we also use the Gini Index as the method to select

the feature that generates the best split in the DT. The tree is also pruned which can

remove certain features again.

Table 4.1: The top 10 features from the category EOD / IEDs / Mines from the
‘ASD’ dataset

1-grams 2-grams

Feature χ2 weight Feature χ2 weight

explosive 1 explosive 1
improvised 0.817 explosive device 0.871
ied 0.647 improvised 0.855
counter 0.358 improvised explosive 0.850
device 0.305 ied 0.720
disposal 0.277 device ied 0.374
bomb 0.261 counter 0.369
aircraft 0.259 device 0.341
threat 0.224 disposal 0.317
mine 0.224 bomb 0.290
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Table 4.2: The top 10 features from the category Natural Gas & LNG from the ‘GEW’
dataset

1-grams 2-grams

Feature χ2 weight Feature χ2 weight

gas 1 gas 1
natural 0.413 natural 0.449
LNG 0.279 natural gas 0.429
liquefy 0.244 LNG 0.268
solar 0.208 liquefy 0.248
cubic 0.185 cubic 0.242
pow 0.136 liquefy natural 0.213
foot 0.097 solar 0.209
reserves 0.089 cubic foot 0.167
shale 0.0815 pow 0.138
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4.2 Experiment I: the feature representation of news arti-

cles

The first experiment is about how a news article eventually is translated to features

used by the ML algorithm. We can make a distinction between feature generation and

feature selection. The first is about how a news article is translated to features and the

second is how we select from those features the ones to feed to the machine learning

algorithm. We would like to find out which representation is the most suitable for these

news articles. The best representation is selected to use in the second experiment.

4.2.1 Experiment variables

First we will give an overview of all settings we came up with that can be varied. After

each item in parenthesis are showed the different variants. Later we will further discuss

those settings in more detail and further explain the experimental setup.

• Selection of Features

– Number of features We will vary the number of features that is selected

which have the highest Chi Squared value. (40, 80 or 160)

– Custom blacklist: We will try out a custom-made list of features that

should not be selected. (include or exclude)

• Generation of Features

– Word modeling: We will vary between using the TF-IDF of words (1-gram)

as features or use the TF-IDF of tokens consisting up to two words (2-gram)

as features. (1-gram or 2-gram)

– Text selection: We will always use the title of a news article as input for

feature generation but we will vary between selecting a part of the full-text.

(no full-text, 500 characters, 1000 characters, all full-text)

– Attribute weighting: We will apply different weights to features originating

from the title and features originating from the full-text of the news article.

(title/full-text ratio: 0.25, 0.5, 1.0, 2.0 and 4.0)

– The source attribute: We will try out including the source attribute as

additional feature. (include or exclude)

When we change the way features are generated, likely there is also another optimal

way to select those features. Ideally we would like to test each setting in combination



Chapter 4. Methodology 60

with each other, by using factorial design. But this would lead easily to a combinatorial

explosion. (3 ∗ 2 ∗ 2 ∗ 4 ∗ 3 ∗ 2 = 288 runs) Therefore we decided to exclude investigating

the source attribute and the attribute weighting from the factorial experiment. This

means that we run the factorial experiment with the source attribute excluded and an

equal weighting among the title and full-text attributes. We will investigate these two

settings after the factorial experiment, in isolation of each other. Knowing that if we

had performed them in combination of the other settings in the first experiment, we

may have had different results. However we have to make this limitation to avoid the

combinatorial explosion.

To justify the exclusion of the source attribute, recall that it is a single nominal feature

which has little to do with the text selection or feature representation. However it may

have impact on both settings. When including the source attribute we will extend the

feature space by one extra feature. This feature is not subject to feature selection.

The reason why we exclude the attribute weighting is mainly to save time. We cannot

argue that this method is independent of feature selection and it depends a lot on the

text selection choice.

4.2.2 The factorial experiment

The main experiment will be conducted according to the basic setup explained in section

4.1. We will try out every combination of the following settings: number of features,

custom blacklist, feature representation and text selection. We will discuss them first in

some detail and also explain our motives for varying these settings.

4.2.2.1 Number of features

Feature selection is a very important part of the classification process. We already have

chosen our algorithm to rank our features to be the chi squared statistic, see section 4.1.6.

However the number of features that are selected is also very important. Because we use

local feature selection, generally less features are needed to achieve good performance,

as was showed by Koller and Sahami [9]. However the ideal number of features is

dependent on a lot of things like for example the dataset, the feature generation method

and classification algorithm used. We have chosen to vary the number of features to be

40, 80 or 160 which we will refer to as Features:40, Features:80 and Features:160

respectively.
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4.2.2.2 Custom blackList

The idea of a custom blacklist comes from a domain expert who looked at the features

being selected and observed a number of features that should not have any predictive

power. To get an idea which features are in the blacklist, you can see a part of the

blacklist in table 4.3. These words are actually very common words in news articles that

do not say anything specific about the markets of ‘Aerospace & Defence’ or ‘Energy &

Resources’. The idea is that those words are subtracted from the available features for

feature selection. Such that there are better (from a domain expert perspective) features

available to learn the model from. The blacklist is constructed by looking at the top 180

features that were being selected for a setting where the word modeling is 1-gram and

the text selection is the title and the whole full-text. Per category words are selected to

add to the blacklist, to receive a global blacklist which is the same for both datasets.

In total the blacklist contains 104 words. We will refer to either including or excluding

the blacklist as Blacklist:yes and Blacklist:no.

Table 4.3: A couple words from the global blacklist of features

Terms

get kit
use getting
Sgt corporal
wednesday said
keep tell
using copy
guy nyse
province sunday
lieutenant saying

4.2.2.3 Word modeling

The way the text is transformed to features is an important step in the document in-

dexing procedure, see 2.5.1.1 for more information. We have chosen to test the 1-gram

and up to 2-gram representation, although in the literature there are mixed results on

using the 2-gram representation. However this can be different per domain and in our

case domain experts think that certain two-word combinations may be very distinc-

tive. We will refer to 1-gram versus up to 2-gram as WordModeling:1-gram and

WordModeling:2-gram respectively.
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4.2.2.4 Text selection

Domain experts indicated that when they classified news articles, they primary look at

the title and if that is not specific enough they look at the first paragraph of the news

article. Seldom they read the entire article. As is also the case with feature selection,

less information is sometimes better. This is because there is probably also a lot of

noise in the extra text. Another advantage is selecting only a part of the text is that

it will reduce the computational complexity. Because of the way the data is stored, it

was hard to distinguish the first paragraph from the complete full-text. Therefore we

took from each article the words that occurred within the first 500 characters of the

full-text. This 500 characters is close to the average length of the first paragraph. We

decided to vary the text selection in four cases: selecting only the title, selecting the

title and the words within the first 500 characters, selecting the title and the words

within the first 1000 characters and the complete text. We will further refer to this

settings as TextSelection:Title, TextSelection:T+500c, TextSelection:T+1000c

and TextSelection:All respectively.

4.2.3 Side experiments

The winning setting from the main experiment will be used to conduct the two side

experiments on. These are two experiments which will test the contribution of the

source attribute and find the right attribute weighting. Finally the winning setting from

the factorial experiment and the winning setting from the side experiments will be used

in the second experiment. We will discuss the two settings in detail here.

4.2.3.1 Attribute weighting

This side experiment will try to find the best weighting between the title and the full-

text. Domain experts have indicated that the title is the most important part of the text.

To apply the weights, the calculation of the TF-IDF score is adjusted. When counting

the term occurrences, the weight associated with the attribute where the term origi-

nates from is first applied. This results in a different TF value, while the IDF remains

the same. In the factorial experiment the title and full-text both have equal weights,

but in this experiment we will vary both weights. We will try different title/full-text

weight ratios, namely: 0.25, 0.5, 1.0, 2.0 and 4.0. We will refer to these settings as

AttributeWeighting:0.25, AttributeWeighting:0.5, AttributeWeighting:1, At-

tributeWeighting:2 and AttributeWeighting:4 respectively.
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4.2.3.2 The source attribute

This sub-experiment will test the contribution of the source attribute to the classification

process. As domain experts have indicated, the source attribute may be correlated to

the category of the news article. To test this we simply add the source attribute as

an additional nominal feature, regardless of the feature selection method. By adding a

nominal feature, the problem is not strictly a text classification (TC) problem anymore.

In the ‘ASD’ dataset there are some missing values for the source attribute, which is

handled by the DT learning algorithm. We will test the performance of either including

or excluding the source attribute, which we will further refer to as SourceAttribute:yes

and SourceAttribute:no respectively.

4.3 Experiment II: exploiting the label structure

The purpose of the second experiment is to find out if we can exploit the structure

within the labels. We will look at both the external and internal structure of the labels.

External means that the structure is imposed on the labels from the outside, such as

a hierarchy. A good example of an internal structure is the structure formed by the

correlations between labels. The winning settings from the first experiment are used for

this experiment. First we will list the experiments we came up with to perform. Later

we will describe them in more detail.

4.3.1 Experiment outline

We will list here the different sub-experiments we came up with. Both experiments

will be conducted according to the basic experimental setup, unless otherwise stated.

Furthermore the winning settings from the first experiment are used here, there will

not be experiments to find out the best settings in those setups. The approach here is

compared to the approach we used in experiment I.

• Chaining We will try out the chaining technique in a flat (not using the hierarchy)

classification (FC) problem to exploit the internal structure of the class labels.

• Hierarchical top-down classification We will try out a hierarchical top-down

classification (HTC) system, to exploit the external structure of the class labels.
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4.3.2 Classifier chains

In this experiment we will look at the classifiers chains (CCs) technique explained in

section 2.2.2.2. We will use the winning settings from experiment I and compare the

result with the approach when chaining is not applied. This technique is used to exploit

the correlations between class labels and thus exploits the internal structure of our labels.

4.3.2.1 The order of the chain

In his paper Read et al. [18] created an ensemble of models with a random chaining order.

In our case we restrict ourselves to one model only, so that it stays easy interpretable

by humans. Because of this restriction we need to stick to one order of the CC.

Chaining attempts to exploit correlations between class labels. We observe that since

correlation between two events is symmetric, if there are only two nodes in the chain, the

order does not matter. Both nodes can be predicted by the other node just as good as

the other way around. However when there are three or more variables, then the order

does matter. Now we suddenly have more combinations, take for example as variables

A,B and C. We can calculate multiple correlations between all three variables C|AB,

B|AC and A|BC. In this case however those correlations are not symmetric, and thus

the order does matter. If C|AB gives the highest measure of correlation it makes sense

to put C at the end of the chain so that B and A can help predicting C. Now the order

of B and A can still be determined in a recursive fashion.

With this idea in mind we use statistical multiple regression to determine the order of

the chain as mentioned above. The multiple correlation coefficient determines how well

a variable can be predicted by it’s predictors.

4.3.2.2 Feature selection

The ‘ASD’ and ‘GEW’ have 53 and 22 categories respectively. The last classifier in the

chain would then receive 52 and 21 extra features respectively. Because it is such a

large number, we decided to perform an extra feature selection specially for the chaining

features. This feature selection works the same as the normal feature selection, it uses

the Chi Squared measure and selects the top x number of features. We decided to let

x be proportional to the number of categories in the dataset minus one, because this is

the maximum number of features a classifier can get. We decided to use the following

percentages for x: 0%, 10%, 20%, 40% and 100%. For the ‘ASD’ datasets this means

we will experiment with selecting 0, 5, 10, 21 and 52 chaining features. For the ‘GEW’
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dataset we will experiment with selecting 0, 2, 4, 8 and 21 chaining features. When

0 chaining features are selected the classifiers will be the same as when no chaining is

done. We will refer to these settings as ChainingFeatures:x, where x indicates the

number of chaining features selected.

4.3.3 Hierarchical top-down classification

In this experiment we will try to exploit the hierarchy of the class labels. First we

describe the hierarchical structure used. Then we will describe in more detail how the

classification process looks like and what the differences are compared to FC. For more

information about hierarchical classification (HC) the reader is referred to section 2.4.

4.3.3.1 The hierarchical structure

The hierarchy we use is explained in section 3.4. At the highest level (level-1) of the

hierarchy is the single-label choice between the ‘ASD’ or the ‘GEW’ dataset. Because

these datasets are already collected separately, we will just look at the hierarchy within

each datasets. We will train for each dataset a multi-label top-down HC system, with

for each dataset the winning settings from the first experiment. We will validate the

two classification systems separately. So basically when we talk about the hierarchy in

the context of top-down classification we mean the hierarchical structure formed by the

level-2 and level-3 labels within one dataset. All level-2 and level-3 categories are showed

in table 3.10 and 3.11 in section 3.4.

4.3.3.2 Hierarchical classification in contrast with flat classification

Hierarchical multi-label classification (HMC) has some differences with the FC setup

we had in experiment I. First of all more classifiers are trained, namely for those labels

in the second level of the hierarchy. For the classifiers at level 3 of the hierarchy the

training data is adjusted. The positive examples stay the same, but for the negative ex-

amples only those examples that are labeled with a descendant from the same parent are

included in the training data. This partitioning is according to the sibling approach, as

explained in section 2.4.3. The document indexing and multi-label stratification remain

the same, such that the same document term matrices are used as with FC. However

when feature selection is performed and when a classifier is trained, only a subset of the

training data is used.

The test phase is also different, because we have to apply the top-down approach. This

means that we start with the classifiers at the highest level of the hierarchy, in this case
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the level-2 categories. When the membership of a category at level-2 is predicted, we

go further down the hierarchy and use the classifiers of all the children of that category.

When the non-membership of a level-2 category is predicted we will not use it‘s children

classifiers. When a positive example for a level-3 category is negatively classified by

the corresponding level-2 classifier, then the level-3 classifier will not get the chance to

classify this example correctly. This is called the blocking problem.

There exist many different hierarchical evaluation measures. These approaches usually

measure the performance of the whole classification system given the hierarchy. For

example a misclassification to a category closer in the hierarchy is less problematic

than a misclassification to a category far away in the hierarchy. However since we are

comparing the hierarchical top-down approach with the flat approach, we need the same

performance measures as we used in FC. It might be interesting however to report also

the performances of the classifiers at the highest level of the hierarchy. Because if those

classifiers don’t perform well, they drag the whole system down.

4.3.3.3 Feature selection

Koller and Sahami [9] researched the number of features needed for HTC compared

to FC. In their paper ‘Hierarchically classifying documents using very few words’ they

showed that the classifiers that compose a hierarchy need less features than in FC for TC

problems. Please note that they used a Naive Bayes and Probabilistic classifier. They

showed that words that can distinguish higher levels in the hierarchy are different for

the words that distinguish lower levels in the hierarchy. A classifier in a hierarchy only

has to distinguish its category from it’s siblings, as opposed to a flat classifier, which

has to distinguish it’s category from all other categories in the dataset. This is why the

hierarchical classifiers probably need fewer features than the flat classifiers.

In their paper they compared a HTC approach versus a FC approach. The HTC ap-

proach applied a feature selection for each node in the hierarchy separately and the

FC approach applied feature selection globally. This is different than our experimental

setup, because we apply local feature selection per classifier, also in the FC setup.

However, we decided to experiment with the number of features selected in the HTC

experiment. Because of the results from Koller and Sahami [9] we decided to test if we

needed fewer features in the HTC approach than our FC approach.



Chapter 5

Results & discussion

In this chapter we will present the results of our experiments. We will first briefly discuss

the performance measures we selected and some descriptive statistics of the generated

decision tree (DT) models. We will then present the results of the first experiment on

‘the feature representation of news articles’ and we will then show the results of the

second experiment on ‘exploiting the label structure’.

5.1 Performance measures

Recall that we use the Micro-F1 measure as our main performance measure. For an ex-

planation of performance measures refer to section 2.7 and for a justification on our choice

of measurement refer to section 4.1.4. We also included the measures Micro-Precision

and Micro-Recall, because the Micro-F1 measure is based on those two measures. Aside

from that we also included two special measures, AtLeast1Good and NonePredictedAtAll.

Those measures are not normally found in the literature, but we included them to

make the results more concrete. AtLeast1Good is the percentage of records where at

least one correct prediction is made, NonePredictedAtAll is the percentage of records

where no labels are predicted. Those measures are example-based measures, such as the

Hamming-Loss, which we also included. We use this measure to compare our label-based

F1 measure with a good example-based measure used in the multi-label classification

(MC) literature. Note that the Hamming-Loss is a loss function, which value decreases

when the performance increases.

67
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5.2 Decision tree models

Aside from measuring the performance of machine learning (ML) algorithms, it is also

interesting to analyze the generated DT models. For an introduction on DT, please

refer to section 2.6. An example of a DT model generated for the ‘Geothermal Energy’

category is shown in figure 5.1. We deliberately selected a small model, so it would fit on

paper. The term frequency - inverse document frequency (TF-IDF) scores of features are

used to split the data. The tree will predict the membership to the category ‘Geothermal

Energy’.

In order to give some descriptive statistics about the DT generated, we calculated the

number of nodes and the number of distinct features in the model. The number of

nodes is calculated by counting all the nodes in the tree, including the leaf nodes. This

measures the complexity of the model. The number of distinct features of the model

indicates how many features that were selected are eventually used in the model. In

the example model in figure 5.1, the model has 35 nodes with 15 distinct features. In

this model there are two features that are used twice, namely ‘energy’ and ‘pow’ (pow

remains after stemming the word ‘power’).

5.3 The feature representation of news articles

This experiment, as described in section 4.2, consists of three parts where in total six

experiment variables are investigated. The factorial experiment looks at word modeling,

text selection, number of features and feature blacklist in combination with each other.

After that we will show results of the other two parts which look at the inclusion of the

source attribute of the news article and the attribute weighting technique with the best

results obtained from the first part. At the end we will combine the best settings from

the three parts and evaluate the performance of that setting. This setting will be used

as the basis of the next experiment, ‘exploiting the label structure’.

5.3.1 The factorial experiment

5.3.1.1 Feature explosion

We performed the factorial experiment with some limitations, as we discovered that

some settings would take too long to perform. Mainly because the number of features

that was generated was too large. The number of documents in the dataset of course also

contributes to the duration of the experiments. The most cpu-time for each experiment
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Figure 5.1: An example Decision Tree Model for the category ‘Geothermal Energy’

is spent on calculating the chi squared value for each feature, in order to apply feature

selection.

In general, an experiment on the ‘ASD’ dataset takes considerably longer than the same

experiment on the ‘GEW’ dataset. This is mainly because of two reasons, first the

number of documents is 4.3 times the number of documents in the ‘GEW’ dataset.

Secondly, the number of features generated from these documents is two to four times

the size of the number of features in the ‘GEW’ dataset, depending on whether 1-grams

or up to 2-grams are used as features.
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We found out that when using 2-grams and the whole text of the news article, a sin-

gle experiment would take us seven days of CPU-time when using the ‘ASD’ dataset.

Even when using only the first 1000 characters, the experiment would take two days of

CPU-time when using the ‘ASD’ dataset. Therefore we decided to exclude the combi-

nation TextSelection:All and WordModeling:2-gram from the factorial experiment and

the whole TextSelection:T+1000c setting from experiments on the ‘ASD’ dataset.

(a) The ‘ASD’ dataset (b) The ‘GEW’ dataset

Figure 5.2: The number of features generated with different Text Selection and Word
Modeling settings for both datasets

The reason why those experiments take considerably longer is because of the so called

feature explosion. When using up to 2-grams in combination with a large amount of text,

the feature space begins to explode. To illustrate this, figures 5.2a and 5.2b show the

number of features generated for each combination of WordModeling and Text Selection

for the ‘ASD’ and ‘GEW’ dataset respectively. The number of features shown is after

removing the very rare words (features that occur in less than four documents).

One would expect to see twice as many features when using up to 2-grams, because

the number of 2-grams extracted from a sentence of distinct words is one less than the

number of 1-grams that is extracted. (See section 2.5.1.1 for more information about

feature generation) However, recall that in a certain domain D, only a finite number

N1 of words occur that are not very rare. The number of 2-grams N2 that occur in

D is much higher, because a lot of combinations are possible. Only a small fraction of

the combinations will occur, but N2 will have an upper limit equal to the number of

combinations (with repetition) of two words from N1, namely N2
1 .

5.3.1.2 All results

Table 5.2 and 5.3 show all the results of the factorial experiment with the ‘ASD’ and

‘GEW’ dataset respectively. The best performance value for each measure is shown in

bold. We wanted to use the best experiment setup with the highest Micro-F1 value

as the best setting for further experiments. Unfortunately, both winning experiments
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use 2-grams and we found out that running the remaining experiments with 2-grams

on the ‘ASD’ dataset would take too much time too perform. Luckily settings that use

2-grams for the ‘GEW’ dataset still run in decent time. We have to restrict ourselves

to 1-grams for the ‘ASD’ dataset. Luckily the second best setting is a good candidate

to select. Except for the WordModeling variable, it is identical to the best setting and

furthermore also has only a slightly lower Micro-F1 value. Because of this we selected

the second-best setting from the ‘ASD’ dataset for further experiments and the best

setting from the ‘GEW’ dataset. Table 5.1 shows the default, winning and selected

settings for both datasets.

Table 5.1: The default,winning and selected settings for both datasets

‘ASD’ dataset ‘GEW’ dataset
Default Winner Selected Default Winner Selected

Rank 8th 1st 2nd 35th 1st 1st
Features 80 80 80 80 40 40
WordModeling 1-gram 2-gram 1-gram 1-gram 2-gram 2-gram
Blacklist no yes yes no yes yes
TextSelection All T+500c T+500c All T+500c T+500c

Micro-F1 value .598 .605 .604 .704 .731 .731

Remarkable is that only the number of features is different for both the winning datasets.

The Micro-F1 values for experiments performed on the ‘ASD’ dataset are considerably

lower than on the ‘GEW’ dataset with the same settings. Also remarkable is that the

difference between the default and best setting in the ‘GEW’ dataset is much greater

than in the ‘ASD’ dataset. This is because the TextSelection variable has a greater effect

in this dataset.
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Table 5.2: The results of the ‘feature representation of news articles’ experiment with
the ‘ASD’ dataset
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1 80 2-gram yes T+500c .625 .586 .605 .845 .069 .0314
2 80 1-gram yes T+500c .620 .588 .604 .847 .064 .0317
3 80 2-gram no T+500c .626 .580 .602 .840 .070 .0315
4 40 1-gram no All .598 .600 .599 .853 .055 .0330
5 160 2-gram yes T+500c .612 .586 .599 .849 .058 .0322
6 160 1-gram yes T+500c .601 .596 .599 .856 .051 .0328
7 40 1-gram yes T+500c .633 .567 .598 .829 .079 .0313
8 80 1-gram no All .584 .612 .598 .866 .041 .0338
9 80 1-gram no T+500c .619 .575 .596 .840 .069 .0320

10 160 2-gram no T+500c .607 .585 .596 .845 .062 .0326
11 40 2-gram no T+500c .640 .557 .595 .820 .085 .0311
12 40 1-gram yes All .596 .594 .595 .851 .057 .0332
13 40 2-gram yes T+500c .641 .555 .595 .820 .086 .0310
14 40 1-gram no T+500c .631 .560 .594 .825 .081 .0315
15 80 1-gram yes All .586 .602 .593 .863 .042 .0338
16 160 1-gram no T+500c .598 .589 .593 .848 .057 .0332
17 160 1-gram no All .583 .598 .590 .862 .041 .0341
18 160 1-gram yes All .577 .595 .586 .859 .040 .0345
19 160 1-gram no Title .655 .442 .528 .682 .197 .0325
20 160 2-gram no Title .654 .441 .527 .684 .196 .0325
21 160 1-gram yes Title .660 .431 .522 .671 .212 .0324
22 160 2-gram yes Title .662 .426 .518 .667 .217 .0325
23 80 1-gram no Title .674 .414 .513 .656 .231 .0323
24 80 1-gram yes Title .675 .412 .512 .656 .231 .0323
25 80 2-gram no Title .672 .411 .510 .651 .233 .0324
26 80 2-gram yes Title .673 .408 .508 .648 .236 .0324
27 40 1-gram no Title .673 .395 .498 .628 .255 .0327
28 40 1-gram yes Title .675 .393 .497 .628 .256 .0327
29 40 2-gram no Title .676 .385 .491 .615 .270 .0328
30 40 2-gram yes Title .676 .383 .489 .612 .272 .0329
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Table 5.3: The results of the ‘feature representation of news articles’ experiment with
the ‘GEW’ dataset
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1 40 2-gram yes T+500c .759 .705 .731 .807 .107 .0284
2 40 1-gram yes T+500c .748 .713 .730 .813 .100 .0288
3 80 2-gram yes T+500c .736 .722 .729 .821 .091 .0293
4 40 1-gram no T+500c .739 .715 .727 .814 .100 .0294
5 80 1-gram yes T+500c .731 .722 .727 .822 .090 .0297
6 80 2-gram no T+500c .722 .727 .725 .826 .084 .0302
7 160 1-gram yes T+500c .722 .725 .724 .824 .086 .0303
8 80 1-gram no T+500c .721 .726 .723 .826 .085 .0304
9 160 1-gram no T+500c .716 .730 .723 .828 .085 .0306

10 40 2-gram no T+500c .743 .704 .723 .804 .106 .0295
11 40 2-gram yes T+1000c .739 .706 .722 .804 .102 .0297
12 40 1-gram yes T+1000c .732 .711 .722 .810 .094 .0300
13 160 2-gram yes T+500c .712 .731 .721 .828 .077 .0309
14 80 2-gram yes T+1000c .725 .715 .720 .813 .090 .0304
15 160 2-gram no T+500c .705 .734 .719 .833 .076 .0313
16 40 1-gram no T+1000c .728 .709 .718 .807 .095 .0304
17 80 1-gram yes T+1000c .712 .724 .718 .826 .081 .0311
18 40 2-gram no T+1000c .729 .706 .717 .801 .105 .0305
19 80 2-gram no T+1000c .713 .720 .716 .821 .078 .0312
20 160 2-gram yes T+1000c .705 .728 .716 .826 .076 .0315
21 80 1-gram no T+1000c .706 .724 .715 .824 .076 .0315
22 80 2-gram yes All .695 .732 .713 .831 .079 .0322
23 160 2-gram yes All .693 .733 .713 .833 .074 .0323
24 160 1-gram yes T+1000c .701 .724 .712 .822 .082 .0320
25 40 2-gram yes All .706 .718 .712 .816 .097 .0317
26 40 2-gram no All .702 .720 .711 .816 .090 .0320
27 160 2-gram no T+1000c .689 .733 .711 .829 .072 .0327
28 40 1-gram yes All .701 .717 .709 .811 .094 .0322
29 80 1-gram yes All .681 .736 .708 .830 .073 .0332
30 80 2-gram no All .688 .726 .707 .825 .079 .0329
31 40 1-gram no All .697 .716 .707 .809 .092 .0325
32 160 1-gram no T+1000c .686 .726 .706 .825 .074 .0331
33 160 2-gram no All .683 .729 .705 .828 .078 .0333
34 160 1-gram yes All .686 .725 .705 .826 .071 .0332
35 80 1-gram no All .681 .730 .704 .826 .072 .0335
36 160 1-gram no All .680 .730 .704 .830 .070 .0335
37 80 1-gram yes Title .808 .607 .693 .697 .227 .0294
38 80 1-gram no Title .810 .603 .691 .695 .228 .0294
39 80 2-gram no Title .799 .608 .690 .699 .220 .0298
40 160 1-gram no Title .801 .606 .690 .697 .220 .0297
41 80 2-gram yes Title .795 .608 .689 .699 .219 .0300
42 40 1-gram yes Title .810 .599 .689 .690 .234 .0296
43 160 1-gram yes Title .805 .602 .689 .692 .226 .0297
44 40 1-gram no Title .809 .598 .688 .690 .233 .0297
45 160 2-gram yes Title .793 .607 .688 .697 .218 .0301
46 160 2-gram no Title .792 .607 .688 .696 .217 .0302
47 40 2-gram no Title .802 .597 .684 .686 .233 .0301
48 40 2-gram yes Title .799 .598 .684 .686 .235 .0302
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We will describe the results from tables 5.2 and 5.3, by looking at each experiment

variable.

Number of features We can see that in the ‘ASD’ dataset the top three experiments

all use 80 features. If we look at the text selection column we can see that when only

the title is used, 160 features score the best. This is followed by using 80 features and

at last using 40 features. This hints at an interaction between the number of features

and text selection variable, which we will investigate further in the next section. When

the title and the first paragraph is selected, it is not so clear what the best number of

features is. However using 80 features seems to perform well in combination with this

text selection.

Looking at the ‘GEW’ dataset, we see that things are a bit different. It seems that when

using the title and the first paragraph using 40 or 80 features scores better than using

160 features. When using only the title, 80 or 160 features seems to score better.

Word modeling Looking at the ‘ASD’ dataset, we can’t see which word modeling

setting performs better. Note that the experiments with 2-grams and using the whole

text are excluded from the results, so it may look like 1-gram is better represented in

the top results. When looking at the ‘GEW’ dataset we also see 1-gram and 2-gram

alternating in the top experiments.

Feature blacklist The blacklist variable has some impact on the Micro-F1 value, but

it is not clear whether using or not using it leads to better results. However, for the

‘ASD’ and ‘GEW’ dataset using the blacklist appears in all of the top two and top three

results respectively.

Text selection The fourth variable, text selection, clearly has a great impact on the

results. In both datasets we see that using only the title of a news article at the bottom

of the table and using the title plus the first paragraph in the top results. Looking

closer we can see that using only the title does have a higher Micro-Precision than using

in addition (a part of) the full-text. However it does have a lower Micro-Recall. This

indicates that using only the title is very accurate but not good enough to classify all

articles.

We will look closer at each of the experiment variables and their effect in the next

sections. We will perform an analysis of variance (ANOVA) on each variable it’s main

effect on the Micro-F1 performance value. In addition we will perform an ANOVA
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to detect possible interactions between variables. ANOVA is a widely-used hypothesis

test that can compare the means of several groups. This makes it a more general test

than the t-test, which is limited to only two groups. In this application a group is the

collection of experiments that share the same value for the tested variable.

Basically an ANOVA tests whether a null hypotheses should be rejected or not. The

null hypothesis is that there is no difference between the means of the groups. When

it should be rejected, it means that the variable its effect is statistically significant. To

decide this a p−value is calculated, which indicates the probability that the same results

were obtained assuming the null-hypothesis is true. If the p− value is less than α, here

chosen to be 0.05, it indicates that the null hypothesis should be rejected.

We calculated the ANOVA for the main effect and the interaction effect using the ‘One-

Way’ and ‘Two-Way’ layout respectively as described by DeGroot and Schervish in [49].

5.3.1.3 The number of features

Figure 5.3a and 5.3b display a graph of the average results for the ‘ASD’ and ‘GEW’

dataset respectively. In tables 5.4a and 5.4b the average performances are displayed.

(a) The ‘ASD’ dataset (b) The ‘GEW’ dataset

Figure 5.3: The average performances of experiments with on the x-axis the number
of features

In this and the remaining graphs the performance measures; Micro-Recall, Micro-Precision

and Micro-F1 are displayed on the left y-axis while the Hamming-Loss is displayed on

the right y-axis. The explanatory variable is displayed on the x-axis.

It is remarkable to see that the Hamming-loss is affected by the number of features.

It seems that the lower the number of features, the lower the Hamming-loss for both

datasets. However our main criterion is Micro-F1, which seems to do the opposite for

the ‘ASD’ dataset and increases when the number of features increases. However for

the ‘GEW’ dataset, the Micro-F1 value is the same when using 40 or 80 features and

decreases when using 160 features.
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Table 5.4: The average measures for the Number of Features variable

Number of Features

Measure 40 80 160

Micro-Precision .644 .635 .621
Micro-Recall .499 .519 .529
Micro-F1 .555 .564 .566

AtLeast1Good .748 .771 .782
NonePredictedAtAll .150 .129 .113

Hamming-Loss .0322 .0324 .0329

(a) The ‘ASD’ dataset

Number of Features

Measure 40 80 160

Micro-Precision .747 .733 .723
Micro-Recall .683 .696 .698
Micro-F1 .711 .711 .707

AtLeast1Good .779 .793 .795
NonePredictedAtAll .132 .117 .113

Hamming-Loss .0303 .0309 .0315

(b) The ‘GEW’ dataset

Interesting to observe in both datasets is the effect of the number of features on Micro-

Precision and Micro-Recall. When the number of features increases, the Micro-Precision

decreases and the Micro-Recall increases.

We performed an ANOVA on the main effect of the number of features variable for

the Micro-F1 value and obtained a p value of 0.85 and 0.70 for the ‘ASD’ and ‘GEW’

dataset respectively. This indicates that the main effect is not statistically significant.

Discussion

Recall that the total feature selection process consists of first filtering very rare terms.

Afterward, the top x features with the highest Chi Squared value are selected to feed to

the DT learning algorithm. Finding out the best x value for both datasets is the purpose

of including this variable. The DT itself has it’s own selection procedure, which is why

the number of features that end up in the generated DT can be less than the features

fed to the learning algorithm. More background information on feature selection can be

found in section 2.5.1.3 and more details on the experimental setup and justifications

can be found in section 4.2.2.1.

It seems that the number of features has a positive effect on the Micro-Recall and a

negative effect on the Micro-Precision. In practice increasing the Micro-Recall can often

decrease the Micro-Precision. In addition it seems that the best performing number of

features is different in both datasets.
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A reason why Micro-Recall increases and Micro-Precision decreases could be because

the generated DT uses not necessarily more, but different features, which in combination

with each other can possibly cover a wider range of the positive examples.

Suppose we want to learn a classifier which predicts whether a text is describing the sport

basketball. Due to feature selection, the 2-gram ‘slam dunk’ is excluded from the selected

features. Suppose there are some examples which can only be identified correctly by this

term, then by including it we are able to correctly predict more positive examples, and

thus increasing the Micro-Recall.

(a) The ‘ASD’ dataset (b) The ‘GEW’ dataset

Figure 5.4: The average number of nodes and distinct features in the generated
decision trees with on the x-axis the number of features

To take a closer look at the DTs generated, figure 5.4 shows the number of nodes and

the number of distinct features in the generated DTs. In both datasets, the number of

distinct features used increases when more features are selected, which is as expected.

However the number of nodes in the tree decreases when more features are used. It

could be the case that with more features available, less splits are needed, because the

extra features produce better splits of the data.

The reason why the best performing number of features for the ‘GEW’ dataset is lower

than the ‘ASD’ dataset is probably because the size of the ‘GEW’ dataset is 4.3 times

smaller than the ‘ASD’ dataset.

The optimal number of features is known to vary depending on many things, such

as which learning algorithm is used, the size of the dataset, the way the features are

generated etc. It is hard to say something in general about the number of features, but

Yang and Pederson showed that with Chi Squared feature selection one can reduce the

term space by a factor of 100 without loss of effectiveness [5]. According to Sebastiani

when using local feature selection, typical number of features are between 10 and 50

features [1].

Because we only tested 40, 80 or 160 features, it could be entirely possible that the real

optimal number of features for each dataset is quite different. Especially for the ‘GEW’



Chapter 5. Results & Discussion 78

dataset, for which the best performing number of features is 40, it could be the case

that using 10 features even scores better.

For future research it would be interesting to study a wider range of numbers, to select

from the Chi Squared ranked features.

5.3.1.4 Text selection

As discussed before, the text selection variable has the most effect on the performance

from all the variables in this experiment. Figures 5.5a and 5.5b show the performances

and table 5.5a and 5.5b show the average measures for the text selection variable for the

‘ASD’ and ‘GEW’ dataset respectively.

(a) The ‘ASD’ dataset (b) The ‘GEW’ dataset

Figure 5.5: The average performances of experiments with on the x-axis the text
selection method

We can see that using the title and the first paragraph (T+500c) results in the highest

Micro-F1 values for both datasets. The Hamming-Loss seems to indicate the same

effect. Except for the ‘GEW’ dataset, where the Hamming-Loss of using only the title

is just a little higher than using the title and the first paragraph. Using the title gives a

considerably lower Micro-F1 value than using in addition more full-text in both datasets.

Interesting to observe are the Micro-Precision and Micro-Recall values. When using only

the title, the Micro-Precision is a lot higher than the Micro-Recall, but when more parts

of the full-text are used the Micro-Precision decreases and the Micro-Recall increases.

Remarkable is that the improvement in Micro-F1 performance when using the title and

the first paragraph as opposed to the title and all the full-text, is much greater in the

‘GEW’ dataset than in the ‘ASD’ dataset. In the ‘ASD’ dataset there is an improvement

of 0.003 while there is an improvement of 0.017 in the ‘GEW’ dataset.

We calculated the ANOVA for the main effect of the text selection variable and obtained

p values of 9.240×10−12 and 2.218×10−26 for the ‘ASD’ and ‘GEW’ dataset respectively.

This means that the main effect of the text selection variable is statistically significant.
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Table 5.5: The averages measures for the Text Selection variable (The experiments
with WordModeling:2-gram are excluded from the calculation for the ‘ASD’ dataset.)

.
Text Selection

Measure Title T+500c All

Micro-Precision .669 .617 .587
Micro-Recall .415 .579 .600
Micro-F1 .511 .597 .594

AtLeast1Good .653 .841 .859
NonePredictedAtAll .230 .067 .046

Hamming-Loss .0325 .0321 .0337

(a) The ‘ASD’ dataset

Text Selection

Measure Title T+500c T+1000c All

Micro-Precision .802 .729 .714 .691
Micro-Recall .603 .721 .719 .726
Micro-F1 .689 .725 .716 .708

AtLeast1Good .694 .820 .817 .823
NonePredictedAtAll .226 .091 .085 .081

Hamming-Loss .0298 .0299 .0312 .0327

(b) The ‘GEW’ dataset

Discussion

The purpose of this investigation is to find out which parts of the text are the best to

be used for classification. Details on the experimental setup and justifications can be

found in section 4.2.2.4.

One of the key results is that using the title in combination with the first 500 characters

of the text gives the best performance. This is also what we expected, because domain

experts have indicating the title and the first paragraph to be the most descriptive. The

experts indicated they look first at the title and when they are still not sure, they look

further at the full-text. First they read the first paragraph, which usually is enough to

classify the article but when they are still not sure they look at the full-text. Why the

learning algorithm benefits from excluding a part of the full-text is possibly because the

extra full-text will be misleading. It might contain terms that indicate another category,

but are not the main subject(s) of the news article. By removing the noise we prevent

the algorithm from modeling this noise. We also discovered that in a fraction of the

news articles, the headlines were present in the first part of the full-text. Because these

headlines often summarize the article and contain important keywords this can also be

an explanation why the title and first paragraph performs well.

Nomoto and Matsumoto [32] studied the effect of selecting parts of the text for news

articles of different length. They use a different model and different datasets, so it’s hard

to compare the results. However by testing various different approaches in discarding
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rear text, such as keeping the first i words from the text. Most of them resulted in better

performance than using the whole full-text.

Why the text selection has a greater effect on the ‘GEW’ dataset than the ‘ASD’ dataset

remains speculation. It could be due the fact that the ‘ASD’ dataset is more multi-label

than the ‘GEW’ dataset. Therefore ‘GEW’ could benefit more from using fewer text, as

it has less categories to deduce from the text.

Another result is that the Micro-Recall seems to increase when more parts of the full-

text is used, at the cost of the Micro-Precision. By using the title we can see a very

high Micro-Precision and low Micro-Recall. This could mean that the title can very

accurately predict a fraction of the positive examples, which is not enough to be a good

classifier. By using (a part of) the article-text we can increase the Micro-Recall and

cover a larger fraction of the positive examples, but unfortunately not so precise as

the fraction we could classify by using only the title. Therefore the Micro-Precision

decreases and the Micro-Recall increases. This is exactly what domain experts have

indicated.

We included figure 5.6 to show the influence of the text selection variable on the generated

DTs. Looking at only the title and using (a part of) the full-text we see a big difference

in number of nodes and number of distinct features used. Using (a part of) the full-text

in addition with the title causes a more complex DT to be generated, with more distinct

features. This also explains the behavior of the Micro-Recall and Micro-Precision values.

Given two DTs with the same performance, then usually the most simple tree of the two

is preferred, analogous to Occam’s Razor. The performance of using the title and first

paragraph and the performance of the title and all the full-text are close in the ‘ASD’

dataset. However we can see that the complexity of the generated decision trees is higher

when using all the text. That is another reason why the title and first paragraph text

selection should be preferred.

(a) The ‘ASD’ dataset (b) The ‘GEW’ dataset

Figure 5.6: The number of nodes and distinct features in the generated decision tree
models for both datasets
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A clear drawback of this research is that we could not identify paragraphs from the

text, and thus used complete words that occur in the first 500 characters to represent a

paragraph. We also found that some articles contain headlines in the beginning of the

text. It would be a good idea to structure the data, so that we could further exploit the

headlines or paragraphs.

5.3.1.5 Interaction between number of features and text selection

We studied all the interactions between the variables of this factorial experiment and

found out an interaction between the number of features and the text selection. In

figures 5.7a and 5.7b we can see how the two variables affect each other. For the ‘ASD’

set we excluded experiments that use 2-grams, because the combination of 2-grams and

all the text is excluded from the factorial experiment.

(a) The ‘ASD’ dataset (b) The ‘GEW’ dataset

Figure 5.7: The interaction between the number of features and the text selection
method. The performance measure used is the Micro-F1 value.

When you look closely at the graph in figure 5.7a you can see two types of lines. One

line keeps increasing when the number of features increases, which is when only the title

is used. All other lines follow the same pattern, they change only a little bit when going

from 40 to 80 features and then decrease when going from 80 to 160 features.

For the ‘GEW’ dataset in figure 5.7b the line that represents using only the title, in-

creases when going from 40 to 80 features and decreases when going from 80 to 160

features. In contrast the other lines keep decreasing while more features are used.

If we generalize both datasets, we can say that using only the title has a higher best

number of features than when using the title and (a part of) the full-text.

We performed an ANOVA on the interaction effect and obtained a p value of 3.189×10−4

and 0.014 for the ‘ASD’ and ‘GEW’ dataset respectively. This means the interaction in

both datasets is statistically significant. The interaction seems to be more present in

the ‘ASD’ dataset.
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Discussion

One of the key results is that we showed there is an interaction between the number of

features and the amount of text that is selected. It also seems that when using only the

title, a higher optimal number of features is needed than when using more full-text.

What we would expect is that less features are needed when using only the title, because

the total number of features available is much less than when using (a part of) the full-

text. Figure 5.2 shows the total number of features for each text selection method.

However it seems the results are the opposite. One reason for this could be that the

words in the title are far more descriptive than words in the full-text. Because of this,

the generated DT is less likely to begin modeling noise than DTs generated with (a part

of) the full-text, when the number of features increases.

Another explanation or perhaps in conjunction with the previous one is the fact that

the generated DT when using only the title is much simpler than when using (a part of)

the full-text. This could also be a reason why it can handle more features, because it

will not come overly complex. To support this, we will show the effect of the interaction

on both the number of nodes and on the number of distinct features of the generated

DT models. The effect on the number of nodes is shown in figure 5.8 and the effect on

the number of distinct features is showed in figure 5.9.

(a) The ‘ASD’ dataset (b) The ‘GEW’ dataset

Figure 5.8: The interaction between the number of features and the text selection
method on the number of nodes in the decision tree model

We can see that for the models that use only the title, the number of nodes (complexity)

keeps decreasing at 160 features, whereas the other models decrease only a little bit.

Also the distinct number of features is much less increasing as with the models that use

(a part of) the full-text. The reason for this could be just because the model also has

less nodes, so less room for new features.

As already noted before the different number of features that were tested on is quite

small and the real optimal number of features could be very different. It could be

the case that the real optimal number of features for when using only the title is very

small, lets say 10, but then has a decreasing interval between 10 and 40 features, and
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(a) The ‘ASD’ dataset (b) The ‘GEW’ dataset

Figure 5.9: The interaction between the number of features and the text selection
method on the distinct number of features in the decision tree model

then increases again when more features are used. So we recommend to investigate the

number of features experiment with a wider range of possible numbers.

It would be interesting to find out the real optimal number of features for when using

only the title. It looks like the performance is still increasing when more than 160

features are used.

5.3.1.6 Word modeling

Figures 5.10a and 5.10b display a graph of the average performance for 1-gram and up

to 2-gram word modeling. For the ‘ASD’ dataset experiments using all the text have

been excluded when calculating the average because we excluded the combination of

using up to 2-grams and all the text from the factorial experiment.

(a) The ‘ASD’ dataset (b) The ‘GEW’ dataset

Figure 5.10: The average performances of experiments with on the x-axis the word
modeling method

We can see there is not a big improvement in performance in any measure, when using

up to 2-grams over 1-grams. Especially in the ‘GEW’ dataset the performances are

almost identical. In the ‘ASD’ dataset we see the Micro-Precision slightly increasing

when using 2-grams at a cost of Micro-Recall. Table 5.6a and 5.6b show the performance

values.
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Table 5.6: The averages measures per Word Modeling variable (*The experiments
with TextSelection:All are excluded from the calculation for the ‘ASD’ dataset.)

.
Word Modeling

Measure 1-gram 2-gram

Micro-Precision .643 .647
Micro-Recall .497 .492
Micro-F1 .554 .553

AtLeast1Good .747 .741
NonePredictedAtAll .149 .155

Hamming-Loss .0323 .0321

(a) The ‘ASD’ dataset

Word Modeling

Measure 1-gram 2-gram

Micro-Precision .734 .734
Micro-Recall .692 .692
Micro-F1 .709 .710

AtLeast1Good .789 .789
NonePredictedAtAll .120 .121

Hamming-Loss .0310 .0309

(b) The ‘GEW’ dataset

We performed an ANOVA on the main effect and obtained p values of 0.941 and 0.902

for the ‘ASD’ and ‘GEW’ dataset respectively. This means that the main effect is not

statistically significant.

Discussion

The key result from our investigation is that including 2-grams in the feature space

does not improve the classification performance. However it does drastically increase

the computational complexity, especially when a large amount of text is used. This is

discussed in section 5.3.1.1 on ‘Feature Explosion’.

The reason why using up to 2-grams is not really beneficial is probably because when the

1-grams, where the 2-gram is made of are also available, the 2-gram has almost nothing

to contribute. There is only a small difference between a model that uses two 1-grams

and a model that uses one 2-gram that consists of those 1-grams. The difference is that

the latter has the constraint that the terms have to be in that specific order, which

might be more accurate sometimes. But in other cases it might be to restrictive.

To investigate the 2-grams that end up in the selected features and eventually the gen-

erated DT, we performed some analysis. Figure 5.11 shows the ratio of 1-grams and

2-grams in the generated DTs. The number of 2-grams is not that high but we think

that it is still high enough to make the difference.
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Figure 5.11: The number of distinct 1-grams and distinct 2-grams in generated deci-
sion trees using 2-grams

To further investigate we analyzed the features that were selected by Chi Squared fea-

ture selection in various experiments that use 2-grams. We analyzed the features and

classified three types of 2-grams, based on whether the 1-grams that make up this 2-

gram also are being selected. Take for example the 2-gram ‘explosive device’, it’s 1-gram

components are ‘explosive’ and ‘device’. We looked at all features that were selected in

various experiments and determined for each 2-gram whether it’s 1-gram components

were also selected. We identified three classes of 2-grams; 2-gram 0, 2-gram 1 and 2-

gram 2, where the x in 2-gram x stands for how many of it’s 1-gram components are also

selected by Chi Squared feature selection. So if for example ‘explosive device’ is selected

and ‘device’ is also selected, but ‘explosive’ not, than we would classify ‘explosive device’

as a 2-gram 1.

Figure ?? shows the average ratio’s of this type of 2-grams and 1-grams that end up

being selected either when selecting 40, 80 or 160 features in different experiments.

We can see from the figure that from the 2-grams that are being selected only a very

small number has no 1-gram components that could be selected to replace it. This

means that for almost every 2-gram an equivalent model can be build that uses it’s

1-gram components instead. The only advantage the 2-gram now has, is that the words

have to occur adjacent to each other in the order in which they are specified by the 2-

gram. When using it’s component 1-grams instead, the 1-grams can occur in any order,



Chapter 5. Results & Discussion 86

Figure 5.12: The number of 1-grams and different types of 2-grams in the selected
features

and also anywhere in the text. A nice property of using 2-grams is that the size of the

DT is a little bit smaller and easier to interpret.

Bekkerman [50] supports our finding and argues that the number of highly descriptive

2-grams that can improve the performance is low compared to the ‘junk’ 2-grams that

are found. Especially compared to the number of 1-grams. Other research have found

mixed results [1, 4, 29, 30].

5.3.1.7 Custom blacklist

The blacklist variable does not have much effect on the performance. Figure 5.17a and

5.17b show the averages result of using and not using the blacklist. We can see a slight

improvement of almost all performance measures when using the blacklist for the ‘GEW’

dataset.

The average values of the performances are displayed in table 5.7a and 5.7b for the

‘ASD’ and ‘GEW’ dataset respectively.

We performed an ANOVA on the main effect of using the blacklist and obtained a p

value of 0.971 and 0.485 for the ‘ASD’ and ‘GEW’ dataset respectively. This indicates

that the main effect is not statistically significant.
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(a) The ‘ASD’ dataset (b) The ‘GEW’ dataset

Figure 5.13: The average performances of experiments with on the x-axis the usage
of the blacklist

Table 5.7: The average measures for either using or not using the blacklist

Use Blacklist

Measure no yes

Micro-Precision .633 .634
Micro-Recall .516 .515
Micro-F1 .562 .561

AtLeast1Good .768 .767
NonePredictedAtAll .129 .131

Hamming-Loss .0325 .0325

(a) The ‘ASD’ dataset

Use Blacklist

Measure no yes

Micro-Precision .734 .734
Micro-Recall .689 .696
Micro-F1 .707 .712

AtLeast1Good .785 .793
NonePredictedAtAll .124 .117

Hamming-Loss .0311 .0307

(b) The ‘GEW’ dataset

Discussion

The key result of our finding is that the use of a feature blacklist can have a small

improvement on the performance, depending on the dataset. The improvement is mainly

in Micro-Recall.

The idea behind this blacklist, is that it filters out features that would model noise. We

want to know whether the blacklisted features also get selected to split on in the DT,

or only by the Chi Squared feature selection. In other words, do the blacklisted features

end up in the DT if we wouldn’t filter them? If the DT would filter them out, then we

wouldn’t see any improvement in performance. We investigated how many blacklisted

features occur in the DTs generated which didn’t use the blacklist. In figure 5.14 you

can see in how many DT models the blacklisted features end up when not using the

blacklist.

We can see that although many blacklisted features do not end up in the model or

only in a small percentage of models, there are a few features that occur in a large

part of the models. A blacklisted feature occurs on average in 2.72% and 2.52% of the

generated DTs in the ‘ASD’ and ‘GEW’ dataset respectively. You can see that the term

‘said’ occurs in 40% to 45% of the models, depending on the dataset. Domain experts

indicated that it could be due to the source ‘AFP’ of which many news comes from, that
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(a) The ‘ASD’ dataset (b) The ‘GEW’ dataset

Figure 5.14: The occurrences of blacklisted features in models when no blacklist is
used

often uses this style of writing text. There are 1,525 (5, 65%) articles from ‘AFP’ in the

‘ASD’ dataset and 2585 (41,29%) articles from ‘AFP’ in the ‘GEW’ dataset. Also the

‘rsquo’ and ‘ldquo’ would come from this source, which is an incorrectly stored opening

and ending quote. It’s quite amazing how these words end up with such a high Chi

Squared score, but apparently they are a good predictor for certain categories. By using

the blacklist we can prevent these features to end up in the model, but the question is

whether it helps the classification. It would be a better idea to clean the data source,

so that those encoding artifacts won’t show up.

We have seen that blacklisting features can make a difference, as some of them occur

in quite some models and a feature occurs on average in around 2.5% of the models.

However perhaps there is no significant difference because the other features that get

selected instead, have around the same predictive power. So this means, the features do

have predictive power but not as high that we can see the performance decrease when

ignoring the features.

5.3.2 Title and full-text weighting

In this experiment we looked at the effect of applying weights to text originating from

the title and from the full-text. The full-text is all the text from a news article, except

from the title. Recall that this experiment is done using the selected settings from the

factorial experiment as explained in section 5.3.1.2.

Due to a problem with our chosen data-mining software, we had to use a different

stemming algorithm than in the other experiments, in order for the attribute weighting

to work correctly. We normally use the Wordnet [48] stemming algorithm but for this

experiment we had to use the Snowball stemming algorithm, as described in [51]. It

seems that the Snowball stemming algorithm results in poorer performance. This is

why the results of having equals weights can differ from the results obtained from the
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selected setting from the factorial experiment. For the ‘ASD’ dataset there is a slightly

decrease in performance, a drop of 0.005 in Micro-F1. For the ‘GEW’ dataset there is

not a significant difference.

Figures 5.15a and 5.15b show the performances of the classifier using different title/full-

text weight ratios for the ‘ASD’ and ‘GEW’ dataset respectively. We can see that this

variable has quite some impact on the performance measures.

In both datasets a title/full-text weight ratios of four, results in the best Micro-F1

performance. The Hamming-Loss indicates the same result. Interesting is that using

a title/full-text weight ratio of 0.5 increases the Micro-Recall in both datasets. The

Micro-Recall drops again when using a ratio of 0.25.

The ‘GEW’ dataset seems to benefit more from this variable than the ‘ASD’ dataset.

The average performances are displayed in table 5.8a and 5.8b for the ‘ASD’ and ‘GEW’

dataset respectively.

Because the title/full-text weight ratios of four gives the highest Micro-F1 value in both

datasets, we will use this ratio in experiment II.

(a) The ‘ASD’ dataset (b) The ‘GEW’ dataset

Figure 5.15: The average performances of experiments with on the x-axis the
title/full-text weighting ratios

5.3.2.1 Discussion

This experiment has some similarities with the Text Selection variable in the factorial

experiment. There we looked at which part of the full-text we need to include, and if

we even need to include it aside from the title. Here we assign weights to the different

parts of the news article, in this case the title and the words occurring in the first 500

characters of the full-text.

Recall that to apply the weights, the calculation of the TF-IDF score is adjusted. When

counting the term occurrences, the weight associated with the attribute where the term

originates from is first applied.
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Table 5.8: The averages measures per title/full-text weight ratio

Title/Full-text weight ratio

Measure 0.25 0.5 1 2 4

Micro-Precision .604 .605 .610 .612 .618
Micro-Recall .583 .593 .588 .594 .591
Micro-F1 .593 .599 .599 .603 .604

AtLeast1Good .847 .854 .850 .855 .854
NonePredictedAtAll .060 .055 .060 .056 .060

Hamming-Loss .0328 .0326 .0323 .0321 .0318

(a) The ‘ASD’ dataset

Title/Full-text weight ratio

Measure 0.25 0.5 1 2 4

Micro-Precision .758 .747 .764 .771 .772
Micro-Recall .700 .703 .701 .705 .714
Micro-F1 .728 .724 .731 .737 .742

AtLeast1Good .799 .803 .802 .808 .814
NonePredictedAtAll .115 .109 .114 .112 .111

Hamming-Loss .0286 .0292 .0282 .0276 .0272

(b) The ‘GEW’ dataset

The key result is that having a title/full-text weight ratios of four gives the best perfor-

mance in both datasets. This supports our idea that the title is more important or has

more descriptive words than the full-text.

We know from the Text Selection experiment that when training a classifier which uses

only the title, it has a very high Micro-Precision but low Micro-Recall. Meaning that it

can accurately classify a part of the positive examples.

The reason why a higher weight on the title than the full-text improves the performance

can be because of the following. Consider news articles which have terms in the title

that are discriminating for one or more categories, in the case of a higher weight on

the title, they will probably be more likely to be classified with those categories than

otherwise. On the other hand, news articles that contain discriminating terms for one

or more categories that occur in the full-text and not in the title will be probably less

likely to be classified with those categories. Apparently this improves the performance,

considering the fact that the title can be very precise.

Because the title/full-text weight ratios of four is the highest value we experimented with,

and this value also gives the best performance, it immediately shows the limitations of

our experiment. It would be very interesting to see the results of further increasing this

value above four.
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5.3.3 Including the source attribute

This experiment tested the effect of including the source of a news article as nominal at-

tribute available for the learning algorithm. Please note that the ‘ASD’ dataset has 17%

missing values for the source attribute and the ‘GEW’ dataset has only a couple (0%)

missing values. The DT learning algorithm handles these missing values by considering

all missing sources as being one source.

Figures 5.16a and 5.16b show the performances of the classifier either including or ex-

cluding the source attribute for the ‘ASD’ and ‘GEW’ dataset respectively. The cor-

responding performance values are displayed in table 5.9a and 5.9b for the ‘ASD’ and

‘GEW’ dataset respectively.

We can see that for the ‘ASD’ dataset, including the source attribute has almost no

impact on the performance results. We observe a small change in Micro-Precision and

Micro-Recall but an almost identical Micro-F1 value. For the ‘GEW’ dataset the results

are slightly different, here a small improvement on the Micro-F1 value can be seen.

Which is because of a small increase in Micro-Recall and a smaller decrease in Micro-

Precision. However the improvement is very small.

(a) The ‘ASD’ dataset (b) The ‘GEW’ dataset

Figure 5.16: The performances of experiments with on the x-axis the inclusion of the
source attribute

Table 5.9: The performances of either including or excluding the source attribute

Include source

Measure no yes

Micro-Precision .620 .619
Micro-Recall .588 .590
Micro-F1 .604 .604

AtLeast1Good .847 .848
NonePredictedAtAll .064 .063

Hamming-Loss .0317 .0317

(a) The ‘ASD’ dataset

Include source

Measure no yes

Micro-Precision .759 .758
Micro-Recall .705 .710
Micro-F1 .731 .733

AtLeast1Good .807 .812
NonePredictedAtAll .107 .102

Hamming-Loss .0284 .0282

(b) The ‘GEW’ dataset
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5.3.3.1 Discussion

In this experiment we have observed that including the source attribute has no effect

on the Micro-F1 value for the ‘ASD’ dataset and gives a very small improvement of the

Micro-F1 value for the ‘GEW’ dataset. Domain experts have indicated that the source

attribute could be very helpful in classification, as a source only publishes in a subset of

the categories available.

Some more insight in the source attribute

To get some more insight into the source attribute, let us repeat some statistics from

chapter 3 in table 5.10. The source attribute has many different values, each value only

occurring in very few examples. In the ‘GEW’ dataset there is something peculiar, the

single source ‘AFP’ contributes around 41% of the news from the ‘GEW’ dataset, which

is a tremendous number of articles. On average a source occurs 17 times in the ‘ASD’

dataset and 5 times in the ‘GEW’ dataset. The ‘ASD’ dataset has 1,276 different sources

and the ‘GEW’ dataset 1,196.

Table 5.10: Some statistics of the source attribute in both datasets

Dataset Missings MAX AVG Distinct Description

ASD 4,481 (17%) 1,525 17 1,276 The news source
GEW 14 (0%) 2,585 5 1,196 The news source

We created a scatter plot of the number of news articles a source has contributed per

dataset, which is shown in figure 5.17. Due to the logarithmic scale it may look like

the number of articles the sources contribute are closer to each other than it would

look like on a normal scale. However, only around 5% of the sources in the ‘GEW’

dataset occur in more than ten examples. Table 5.11 and 5.12 show data supporting

the graph and some new measures, for the ‘ASD’ and ‘GEW’ dataset respectively. The

column ‘Examples’ show different partitions of the data, where the partition is based

on the number of examples in the dataset where the source occurs. For example, the

most sources occur only once in the dataset. Sources that occur ten times or less make

up around 84 percent and 95 percent of the sources in the ‘ASD’ and ‘GEW’ dataset

respectively. The column categories, shows the average number of different categories a

news article is labeled with per source. The ‘ASD’ dataset has in total 53 categories,

and the ‘GEW’ dataset 22. So if a source has 30 distinct categories in the ‘ASD’ dataset,

it still means that it has never published in 23 categories, which can be useful. For each

category and each source also the probability is calculated that the source will publish

an article labeled with that category. The category that has the highest probability is

taken as the max probability for each source, which is then averaged out over all sources

in that partition.
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(a) The ‘ASD’ dataset (b) The ‘GEW’ dataset

Figure 5.17: A scatter plot of the number of news articles a source has contributed
to the dataset, the y axis is logarithmic

Table 5.11: The number of sources and other statistics for sources that occur in a
specific number of examples in the ‘ASD’ dataset

Examples Sources % of all Sources Categories Max Probability

1 700 55.25% 2.40 1
2 to 10 369 29.12% 5.10 0.789

11 to 100 154 12.15% 15.25 0.669
101 to 1,000 40 3.16% 34.48 0.562

1,001 to 10,000 4 0.32% 50.5 0.314

Table 5.12: The number of sources and other statistics for sources that occur in a
specific number of examples in the ‘GEW’ dataset.

Examples Sources % of all Sources Categories Max Probability

1 728 63.14% 1.14 1
2 to 10 372 32.26% 1.96 0.856

11 to 100 50 4.34% 4.96 0.774
100 to 1,000 2 0.17% 19 0.322

1,001 to 10,000 1 0.09% 23 0.523

Sources that occur very few times are not reliable to use for predicting the categories of

a news article. Since it may be completely by chance that a specific source is associated

with a specific category. The more examples a source has, the more certain we are about

which categories it can predict. In addition a source that occurs only once will be of

no use when using 10-fold validation. This is because either the source occurs in the

training set or in the test set, but not both. This means that when testing the classifier,

the source of an example will not be found in the model, and will be regarded as a

missing value.

Unfortunately we can see from the tables that for sources that occur frequently the

distinct categories they publish in increases and the max probability decreases.

With the sources that occur in 1, 001 to 10, 000 documents is something special. For the

‘ASD’ dataset the missing values (4,481 in total) are counted here as one source, which

will probably account for half of the examples in that partition. This probably causes
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the distinct categories average to be a bit higher and the max probability to be a bit

lower than when left out.

For the ‘GEW’ dataset the ‘AFP’ source, which contains around 41% of the data, is the

only source in the partition of sources that occur in 1, 001 to 10, 000 documents. We can

see it publishes in all available categories, but also has a high max probability. Which

means it publishes 52.2 percent of the time in a specific category. With this information

we know that it will be very hard to predict a category based on the source alone.

Furthermore it will be very hard for the source attribute to be helpful as this multinomial

value, because there are too many values that are very rare. The improvement in

performance for the ‘GEW’ dataset is probably due to the high number of examples

that have the source ‘AFP’.

Decision trees and multinomial values

In section 2.6 DTs are briefly explained, as well as how they split on nominal values.

The ‘minimal leaf size’ parameter is also briefly discussed there.

We figured out our DT induction algorithm uses the C4.5 way of splitting nominal

attributes, which means that it creates a branch for every value. If the split would be

made at the root node, then it could mean for the ‘GEW’ dataset that around 1,200

branches are constructed with a lot of child nodes containing just one example. You can

imagine that now the data is so fragmented that further splitting on terms is of little

use. Of course splitting on the source attribute can also occur deeper in the tree, where

possibly less branches are constructed, but still the data gets very fragmented. It could

be a good thing if every source publishes in the same categories every time. However

this is not the case.

We noticed that because of a setting in our DT algorithm, called ‘minimal leaf size’,

which was set to two, almost no splits on the source attribute were made. This parameter

determines the minimum number of examples allowed for a leaf node at the DT. When

the algorithm is determining whether to split on an attribute and one of the generated

child nodes would contain less than this specified ‘minimal leaf size’, the split will not

be considered.

Therefore, when ‘minimal leaf size’ is set to two, only a split on the source attribute

can be considered when all the values in that partition of the data have more than one

example. For example, when first splitting on terms, a partition of the data can occur

where only a few sources are left, which may all have more than one example in that

partition. We analyzed the DTs and noticed this is indeed the case in the ‘GEW’ dataset

with the ‘AFP’ source and in some cases in the ‘ASD’ dataset. Apparently the splits
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on ‘AFP’ do help in the ‘GEW’ dataset, because the performance of using the source is

better than not using the source.

We tested changing the ‘minimal leaf size’ to one, which results in splits on all values of

the source attribute, often at root level, which results in too fragmented data. Also when

not using the source, setting the ‘minimal leaf size’ to one decreases the performance.

We also tested the performance of a DT which uses the source as only feature. The

performances are displayed in table 5.13 and table 5.14 for the ‘ASD’ and ‘GEW’ dataset

respectively.

Perhaps using a different method of splitting nominal values is better suited for a nominal

attribute with many distinct values. For example, the CART algorithm creates only two

branches, and groups different values together. However, because then still sources that

occur only one time in the dataset are used for predicting, we still doubt if it would

make an improvement.

Table 5.13: The results of the ‘Including the source attribute’ experiment on the
‘ASD’ dataset.
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Default no 2 .620 .588 .604 .847 .064 .0317
Default yes 2 .619 .590 .604 .848 .063 .0317
Minimal Leaf Size no 1 .603 .576 .589 .836 .065 .0330
Minimal Leaf Size yes 1 .549 .555 .552 .801 .076 .0370
Only source yes 1 .638 .032 .061 .054 .936 .0405

Table 5.14: The results of the ‘including the source attribute’ experiment on the
‘GEW’ dataset
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Default no 2 .759 .705 .731 .807 .107 .0284
Default yes 2 .758 .710 .733 .812 .102 .0282
Minimal Leaf Size no 1 .735 .686 .710 .787 .117 .0307
Minimal Leaf Size yes 1 .735 .597 .659 .680 .224 .0338
Only Source yes 1 .840 .190 .310 .225 .742 .0463
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In order to make use of the source attribute, with our current DT induction algorithm,

we have to translate it to one or more features that the DT can efficiently use. We

think there is a way of translating the source attribute to a feature that can help the

DT. However DTs learned with the source as only feature have very poor performance.

In the next section we will explain a method which translates the source attribute to

different features, which might help the classifier.

5.3.4 Improving the source attribute experiment

Because the source attribute as a multinomial value did not work well in our DT induc-

tion algorithm, we decided to come up with an alternative way of using it. We know from

the previous section that rare sources probably have lower predictive power than sources

that occur more frequently in the data. Furthermore each source tends to publish in

many distinct categories. We tried to combine these two properties and generated a new

feature for each category c and source s, called the SmoothedSourceProbability(s, c),

which replaces the original source attribute. Smoothing is a technique in statistics that

tries to filter out noise or other short term variations, to reveal important patterns in

the data. In our case we attempt to remove the short term variations that is caused

by sources that don’t occur frequently in the dataset. Each classifier for a specific cat-

egory c then gets this SmoothedSourceProbability(c) feature instead of the original

source attribute. This feature is a weighted combination of the SourceProbability(s, c)

and the priorProbability(c). The SourceProbability(s, c) is the estimated conditional

probability that an article belongs to c given that it’s published by source s. The

priorProbability(c) is the estimated probability that an arbitrary example belongs to

category c, without knowing it’s source. We will explain both more formally next.

Source probabilities Given a source s and a category c, the SourceProbability(s, c)

is the estimated conditional probability that s will publish a news article belonging to

category c. The probabilities are calculated with the training data to give an estimate

for previously unseen examples.

Definition 5.1. SourceProbability(c,s) : SP(c,s) = P̂ (category = c|source = s)

We could use only the SourceProbability as a feature, but then sources that occur in only

one news article have a probability of one for each category that news article is labeled

with. To give more weight to a source that occurs more frequently in the dataset, we

decided to smooth the sourceProbability by the PriorProbability. The PriorProbability

for a specific category c is the probability that an arbitrary example will belong to c,
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without that any information about the source of the article is known. More formally

this is defined as:

Definition 5.2. PriorProbability(c) : PP(c) = P̂ (category = c)

The idea is to give very rare sources a probability that is close to the PriorProbability, and

sources that have more examples a probability that is closer to their actual SourceProb-

ability. We constructed a weighted combination of both the Prior Probability and the

SourceProbability, called the SmoothedSourceProbability. Let α be the PriorProbability-

Weight and let β be the SourceProbabilityWeight. Then the SmoothedSourceProbability

is defined as follows:

Definition 5.3. SmoothedSourceProbability(c,s) : SSP(c,s) =
α.PP (c) + β.SP (c, s)

α+ β

We take β to be equal to the number of examples with the source s in the training data

Tr, β = |Tr[source = s]|. When a source in the test set is unknown or is missing, we

just take the prior probability.

We constructed a small experiment to test different values of α to find out which value

is the best suited for each dataset. We decided to test for the following values for α:

0, 2, 5, 10 and 50. We will refer to these settings as SmoothedSourceProbability:0,

SmoothedSourceProbability:2, SmoothedSourceProbability:5, SmoothedSour-

ceProbability:10 and SmoothedSourceProbability:50 respectively.

5.3.4.1 Results

We have tested the effect of transforming the source attribute to a vector of smoothed

probabilities, one for each category. Each classifier for a specific category c now receives

a SmoothedSourceProbability instead of the source attribute itself. We experimented

with varying the PriorProbabilityWeight (α), which we will present here.

In figure 5.18a and 5.18b we present the Micro-F1 performances of using source proba-

bilities with different prior probability weights for the ‘ASD’ and ‘GEW’ dataset respec-

tively. The graph also shows the performances of including the source attribute as a

nominal value and not using the source at all. We scaled the y-axis differently than in

previous experiments, because the differences in performance are very small.

Looking at the graphs we can see that transforming the source attribute to probabilities

does have a positive effect on the classification performance for the ‘ASD’ dataset. How-

ever for the ‘GEW’ dataset, the performance decreases. Here, using no source attribute

at all still performs better than using source probabilities, however using the source as
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a nominal attribute gives the best performance. Looking at the PriorProbabilityWeight

(α) we can see that the best value differs for each dataset. It seems that for the ‘GEW’

dataset the best weight is ten. For the ‘ASD’ the best value is 50, or perhaps even

higher. The performance seems to increase when α increases, until the best value is

reached. We must note however that the performances of classifiers with different values

for α do not differ much.

All performance measures for the SmoothedSourceProbabilities experiment are displayed

in table 5.15a and 5.15b for the ‘ASD’ and ‘GEW’ dataset respectively.

(a) The ‘ASD’ dataset (b) The ‘GEW’ dataset

Figure 5.18: The performances of the SmoothedSourceProbabilities experiment with
on the x-axis the PriorProbabilityWeight (α)

Table 5.15: The SmoothedSourceProbability measures per PriorProbabilityWeight (α)
value

PriorProbabilityWeight

Measure α = 0 α = 2 α = 5 α = 10 α = 50

Micro-Precision .6130 .6123 .6115 .6167 .6125
Micro-Recall .6121 .6129 .6182 .6120 .6195
Micro-F1 .6126 .6126 .6148 .6144 .6160

AtLeast1Good .8568 .8578 .8637 .8627 .8670
NonePredictedAtAll .0536 .0527 .0466 .0492 .0455

Hamming-Loss .03178 .03182 .03180 .03154 .03171

(a) The ‘ASD’ dataset

Prior ProbabilityWeight

Measure α = 0 α = 2 α = 5 α = 10 α = 50

Micro-Precision .7405 .7433 .7513 .7528 .7490
Micro-Recall .7014 .7070 .7051 .7058 .7024
Micro-F1 .7204 .7247 .7275 .7285 .7249

AtLeast1Good .8008 .8059 .8023 .8028 .7985
NonePredictedAtAll .0930 .0909 .1028 .1036 .1068

Hamming-Loss .02976 .02936 .02887 .02875 .02913

(b) The ‘GEW’ dataset
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5.3.4.2 Discussion

The key result to this experiment is that transforming the weight to source probabilities

works for the ‘ASD’ dataset and doesn’t for the ‘GEW’ dataset. In addition the effect

of the prior probability weight is very small, but it’s best value in both datasets is not

close to zero. A value of 50 and 10 seems to work the best for the ‘ASD’ and ‘GEW’

dataset respectively.

The reason why the SmoothedSourceProbabilities does work on the ‘ASD’ and doesn’t

work for the ‘GEW’ dataset could be explained by various differences between the two

datasets. For example, the source attribute in the ‘GEW’ dataset has only 52 sources

that occur more than 10 times in the dataset, compared to the ‘ASD’ dataset which has

198 sources that occur that many times. The fact that the ‘GEW’ dataset has a single

source, ‘AFP’, that occurs in around 41% of the examples can also be the reason why

the SmoothedSourceProbabilities do not work well. Because this is such a large part of

the data, it is perhaps better if a split could be made in the DT such that we obtain

a node that contains only examples from ‘AFP’, instead of splitting on a value of the

SmoothedSourceProbability.

We decided to give a weight to the prior probability such that sources that do not

occur frequently in the dataset have a probability close to the prior probability. Sources

that occur more frequent will have a probability close to their real source probability.

The motive behind this was that sources that are very rare in the dataset don’t have

much predictive power, as opposed to sources that occur more frequently. The DT

implicitly groups sources together, by splitting on a specific SmoothedSourceProbability

value. The PriorProbabilityWeight plays a role in distributing the low-frequency sources

among these groups. Apparently this weight helps the classifier, which could mean our

motive was right.

5.3.5 Combining the results

We have come to the end of the first experiment, ‘The feature representation of articles’.

We have experimented with various representations and will give an overview of the

performances so far. We will combine the winner from the attribute weighting experiment

and the winner from the including the source attribute experiment. Because in both

datasets this combination has a higher performance than each experiment in isolation,

we call this setting the ‘BestRepresentation’.

Table 5.16 and 5.17 give an overview of the different settings of all experiments. The

default and selected settings from the factorial experiment are displayed as well as the
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best settings from the attribute weighting experiment and the including the source at-

tribute experiment. The default experiment for the factorial experiment are the settings

what we would have chosen as default values.

Recall that the attribute weighting did not work in combination with the ‘WordNet’

stemming algorithm, so we changed it to the ‘Snowball’ stemming algorithm for that

experiment. This resulted in a small decrease of 0.005 in Micro-F1 performance for the

‘ASD’ dataset and no significant difference for the ‘GEW’ dataset.

We will use the ‘BestRepresentation’ of both datasets for the next experiment, ‘Ex-

ploiting the label structure’. This experiment will also uses the ‘Snowball’ stemming

algorithm, because we also use attribute weights here.

Table 5.16: An overview of settings and performances of the ‘The feature represen-
tation of articles’ experiment on the ‘ASD’ dataset
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Features 80 80 80 80 80
Word Modeling 1-gram 1-gram 1-gram 1-gram 1-gram
BlackList no yes yes yes yes
Text Selection All T+500c T+500c T+500c T+500c
Title/Full-text weight ratio 1 1 4 1 4
Stemming Algorithm WordNet WordNet SnowBall WordNet SnowBall
Source Included no no no yes yes
Source Type - - - probability probability

Micro-Precision .584 .620 .618 .613 .620
Micro-Recall .612 .588 .591 .620 .614
Micro-F1 .598 .604 .604 .616 .617
AtLeast1Good .866 .847 .854 .867 .863
NonePredictedAtAll .041 .064 .060 .046 .050
Hamming-Loss .0338 .0317 .0318 .0317 .0313
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Table 5.17: An overview of settings and performances of the ‘The feature represen-
tation of articles’ experiment on the ‘GEW’ dataset
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Features 80 40 40 40 40
Word Modeling 1-gram 2-gram 2-gram 2-gram 2-gram
BlackList no yes yes yes yes
Text Selection All T+500c T+500c T+500c T+500c
Title/Full-text weight ratio 1 1 4 1 4
Stemming Algorithm WordNet WordNet Snowball WordNet Snowball
Source Included no no no yes yes
Source type - - - nominal nominal

Micro-Precision .681 .759 .772 .758 .769
Micro-Recall .730 .705 .714 .710 .721
Micro-F1 .704 .731 .742 .733 .744
AtLeast1Good .826 .807 .814 .812 .820
NonePredictedAtAll .072 .107 .111 .102 .103
Hamming-Loss .0335 .0284 .0272 .0282 .0271
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5.4 Exploiting the label structure

This experiment, as described in section 4.3, consists of two sub-experiments, namely

chaining and hierarchical top-down classification (HTC). The first experiment will ex-

plore the classifier chains (CC) technique while varying the number of chaining features.

The HTC experiment will also vary the number of features that is selected. Both experi-

ments will use the ‘BestRepresentation’ setting from the previous experiment, assuming

that it will also give the best results in combination with these techniques.

5.4.1 Chaining

We have tested the CC technique as described in section 4.3.2. In addition the number

of chaining features that are selected for each classifier is varied by applying feature

selection specially for these features.

Figure 5.19a and 5.19b show the performances of these experiments for the ‘ASD’ and

‘GEW’ dataset respectively. We observe that CC has a positive effect on the performance

of the classifiers. The best performance is achieved by not using all chaining features,

but instead by using the top 10 and 8 chaining features for the ‘ASD’ and ‘GEW’ dataset

respectively.

The number of chaining features clearly has a positive effect on the Micro-Precision and

a negative effect on Micro-Recall. The effect is the strongest on the ‘ASD’ dataset. The

Hamming-Loss measure seems to be similar to the Micro-Precision measure.

Table 5.18a and 5.18b show the performances for the ‘ASD’ and ‘GEW’ dataset respec-

tively. In general the Micro-F1 performance is slightly increased when using the right

number of chaining features.

(a) The ‘ASD’ dataset (b) The ‘GEW’ dataset

Figure 5.19: The performances of the chaining experiment with on the x-axis the
number of chaining features
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Table 5.18: The performances of the chaining experiment per number of chaining
features

Number of Chaining Features

Measure 0 5 10 21 52

Micro-Precision .620 .638 .659 .685 .678
Micro-Recall .614 .604 .595 .572 .549
Micro-F1 .617 .620 .625 .623 .606

AtLeast1Good .863 .854 .851 .834 .809
NonePredictedAtAll .050 .062 .065 .077 .098

Hamming-Loss .0313 .0304 .0293 .0284 .0292

(a) The ‘ASD’ dataset

Number of Chaining Features

Measure 0 2 4 8 21

Micro-Precision .769 .771 .778 .789 .800
Micro-Recall .721 .722 .719 .719 .709
Micro-F1 .744 .746 .748 .752 .752

AtLeast1Good .820 .821 .819 .819 .809
NonePredictedAtAll .103 .101 .100 .098 .100

Hamming-Loss .0271 .0269 .0265 .0259 .0256

(b) The ‘GEW’ dataset

5.4.1.1 Discussion

The key results from the chaining experiment are that when using the right number of

chaining features it does improve the Micro-F1 performance. Furthermore it seems that

the number of chaining features does have a positive effect on the Micro-Precision and

a negative effect on the Micro-Recall.

We analyzed the generated DTs and noticed that the chaining features occur a lot. Table

5.19a and 5.19b show some statistics about the generated DT models. Chaining edges

are the number of edges in the generated DT that indicate a split on a chaining feature.

We can see that when using enough features, more than 30% of the edges in the DT are

chaining edges. Another interesting thing is that when all chaining features are used,

the total number of edges decreases considerably. This is a good thing, because it seems

like the model becomes considerably less complex. However, including the prediction

of another classifier as features could also be seen as including the whole DT of that

classifier at that place in the tree. Thereby making the DT not less, but instead more

complex.

The reason why the Micro-F1 performance increases is that apparently the chaining

features can help the DT in predicting the class memberships. The idea behind chaining

is that we can exploit the correlations between categories. The reason why Micro-

Precision increases and Micro-Recall decreases could be explained by the number of
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Table 5.19: Information about the decision tree models per number of chaining fea-
tures

ChainingFeatures Edges ChainingEdges %

0 277.55 0 0 %
5 282.80 60.75 21.48%

10 249.53 86.97 34.85%
21 120.06 43.72 36.42%
52 76.40 27.05 35.41%

(a) The ‘ASD’ dataset

ChainingFeatures Edges ChainingEdges %

0 86.34 0 0 %
2 90.93 9.45 10.39%
4 91.90 18.30 19.91%
8 92.55 31.29 33.81%

21 67.14 26.41 39.34%

(b) The ‘GEW’ dataset

edges in the generated DT. We can see that the effect on Micro-Precision and Micro-

Recall is the largest with the ‘ASD’ dataset. Looking at table 5.19 we also see the

number of edges drop more considerably in the ‘ASD’ dataset.

Chaining was introduced by Read et al. [18] as a way to exploit correlation between class

labels. In his experiments an ensemble of chaining classifiers(ECC) is created, each with

a random order of the chain. In our experiments we constructed the order in advance,

by using regression, see section 4.3.2. This method seems to work, as the performance in

both datasets is improved. In addition we applied a separate feature selection mechanism

for chaining features, which also has a clear effect on the performance and generated

DT models.

5.4.2 Hierarchical top-down classification

We experimented with HTC using the ‘siblings’ approach to select training-data for

each node in the hierarchy. Based on research by Koller and Sahami [9] we decided

to experiment with the number of features. The classification setup that does not use

the hierarchical setup is called flat classification (FC). More information about the

experiment can be found in section 4.3.3 and details about how the hierarchical category

structure is constructed can be found in section 3.4.

Figures 5.20a and 5.20b show the results of this experiment for the ‘ASD’ and ‘GEW’

dataset respectively. We observe that for both datasets the best performing number of

features is not far from the best performing number of features in FC. Moreover we can

see that for the ‘ASD’ dataset the performance increases when more features are used
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and the best performing number of features is 80, as used in FC. For the ‘GEW’ dataset

we observe the same behavior, except that the best performing number of features is 20,

which is lower than in the FC setup. However we did not test this number of features

for the ‘GEW’ dataset in the first experiment, so it might as well be equal to the best

performing number of features.

(a) The ‘ASD’ dataset (b) The ‘GEW’ dataset

Figure 5.20: The performances of the hierarchical top-down experiment with on the
x-axis the number of features

To compare the results with the flat classification approach we included the ‘BestRep-

resentation’ experiment, denoted as ‘Flat’ in the results. These results are shown in

table 5.20a and 5.20b for the ‘ASD’ and ‘GEW’ dataset respectively. Compared to the

‘Flat’ approach the performance of the ‘Hierarchical’ approach is considerably worse in

both datasets. The Micro-Precision of the ‘Hierarchical’ approach is higher than the

‘Flat’ approach with the same number of features in the ‘ASD’ dataset and just a little

bit lower in the ‘GEW’ dataset. However the Micro-Recall is considerably lower in all

‘Hierarchical’ experiments.

The performance of a HTC system depends heavily on the individual performance of

the classifier in higher levels of the hierarchy. When classifiers at higher levels of the

hierarchy predict the non-membership for their category, then the child classifiers, lower

in the hierarchy will not be applied. This is called the blocking-problem. Therefore we

are also interested in the performances of the classifiers that are not at the bottom of the

hierarchy. In our case there is only one layer above the leaf classifiers (level 3), which we

will refer to as level 2 classifiers. The performances of the level 2 classifiers are displayed

in table 5.21a and 5.21b for the ‘ASD’ and ‘GEW’ dataset respectively.

5.4.2.1 Discussion

One of the results was that the best number of features for HTC is probably the same

as the number of features needed in FC. The reason why our results are different from

the research by Koller and Sahami [9] is probably because they didn’t use local feature
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Table 5.20: The performances of the hierarchical top-down experiment per number
of features

Number of Features
Flat Hierarchical

Measure 80 10 20 40 80

Micro-Precision .620 .698 .692 .687 .680
Micro-Recall .614 .452 .493 .532 .552

Micro-F1 .617 .549 .576 .600 .609

AtLeast1Good .863 .710 .759 .796 .820
NonePredictedAtAll .050 .194 .150 .117 .095

Hamming-Loss .0313 .0305 .0298 .0292 .0291

(a) The ‘ASD’ dataset

Number of Features
Flat Hierarchical

Measure 40 5 10 20 40

Micro-Precision .769 .808 .777 .771 .750
Micro-Recall .721 .638 .663 .680 .694

Micro-F1 .744 .713 .716 .723 .721

AtLeast1Good .820 .738 .763 .780 .790
NonePredictedAtAll .103 .177 .138 .124 .115

Hamming-Loss .0271 .0280 .0288 .0285 .0293

(b) The ‘GEW’ dataset

Table 5.21: The performances of the level-2 classifiers in the Hierarchical Top-Down
experiment per number of features

Number of Features

Measure 10 20 40 80

Micro-Precision .856 .855 .872 .867
Micro-Recall .818 .868 .871 .881
Micro-F1 .837 .861 .871 .874

(a) The ‘ASD’ dataset

Number of Features

Measure 5 10 20 40

Micro-Precision .876 .877 .884 .892
Micro-Recall .850 .858 .871 .880
Micro-F1 .863 .867 .877 .886

(b) The ‘GEW’ dataset

selection for their FC approach. They used global feature selection instead, which means

that the same features are selected for all categories/classifiers. As opposed to selecting

different features per category/classifier. Furthermore they didn’t use DTs in their

experiment, but probabilistic classifiers.

Another key result of our experiment was that HTC performed worse than FC. In a

survey on Hierarchical Classification (HC) by Silla and Freitas [10], HC outperformed
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FC in many cases. There are however many approaches of HC, depending on whether

the original problem is multi-label or single-label. Perhaps the hierarchical structure we

created in this domain does not offer advantages over flat classification or is not large

enough.

A possible problem in HTC is the blocking problem. This occurs when higher-level

classifiers incorrectly classify a positive example, a false negative, such that the example

will not be propagated down the hierarchy tree. The higher-level classifier blocks the

positive example from being classified correctly. Our higher-level classifiers (level-2) got a

Micro-Recall of around 88% in each dataset, which is quite accurate, see tables 5.21a and

5.21b. However still 12% of the positive examples gets blocked. By increasing the Micro-

Recall of those level-2 classifiers we could probably increase the overall performance.

However, increasing the Micro-Recall often goes hand-in-hand with decreasing Micro-

Precision, which will be bad for the performance.

Although the results were not as expected, we note that the CPU-time for training a

classifier drastically decreased when using HTC. This is because the size of the training

data is much smaller for most classifiers.

5.4.3 The best performing setting

We have come to the end of the second experiment and found out that CC results in

the best performance, with 10 and 8 chaining features for the ‘ASD’ and ‘GEW’ dataset

respectively. With this setting the Micro-F1 performances are .625 and .752 for the

‘ASD’ and ‘GEW’ dataset respectively. We always showed the micro averaged perfor-

mance of all ‘one-against-all’ classifiers, because we want to measure the performance of

the classification system as a whole. We would like to display the performances of all

individual classifiers for once, just so you can get an idea how the individual categories

perform. Table 5.22 and 5.23 show the performances for all individual classifiers for the

‘ASD’ and ‘GEW’ dataset respectively. We can observe that the individual performances

differ a lot. Some categories even have a F1 performance near zero. In general the more

positive examples a category has, the better the F1 performance. However there are

some categories that do have a moderate number of positive examples and still have a

really poor performance.
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Table 5.22: The performances per category for the best performing setting for the
‘ASD’ dataset, sorted by the number of positive examples

Category Positive Examples % of dataset Precision Recall F1
103050 5215 20.03% .809 .888 .846
101078 4043 15.52% .629 .719 .671
102030 3706 14.23% .903 .944 .923
102050 3324 12.76% .659 .754 .703
101058 3152 12.10% .692 .686 .689
101048 2722 10.45% .638 .610 .624
101020 1969 7.56% .687 .708 .698
101024 1677 6.44% .769 .729 .749
101030 1641 6.30% .648 .562 .602
103034 1569 6.02% .558 .370 .445
101014 1569 6.02% .573 .361 .443
101060 1558 5.98% .819 .721 .767
101054 1552 5.96% .553 .422 .479
102060 1414 5.43% .506 .322 .394
101028 1244 4.78% .723 .750 .736
101070 1220 4.68% .621 .807 .702
102034 1139 4.37% .613 .678 .644
102010 1084 4.16% .307 .057 .096
102054 1061 4.07% .501 .322 .392
103040 1024 3.93% .604 .457 .520
101068 976 3.75% .648 .607 .627
101040 953 3.66% .448 .341 .387
103020 809 3.11% .683 .714 .698
101084 787 3.02% .442 .375 .406
101044 775 2.98% .408 .279 .331
102040 745 2.86% .521 .670 .586
101074 685 2.63% .647 .438 .522
101050 655 2.52% .468 .220 .299
101080 650 2.50% .631 .438 .517
103070 628 2.41% .654 .817 .727
101064 571 2.19% .278 .070 .112
103030 570 2.19% .599 .467 .525
102090 538 2.07% .389 .370 .379
102024 535 2.05% .381 .234 .290
101034 516 1.98% .557 .320 .406
102020 499 1.92% .347 .066 .111
101038 467 1.79% .757 .827 .790
102074 385 1.48% .437 .281 .342
103010 331 1.27% .537 .284 .372
101010 330 1.27% .426 .427 .427
102014 324 1.24% .250 .096 .138
103090 324 1.24% .089 .012 .022
103014 309 1.19% .644 .725 .682
101088 230 0.88% .338 .300 .318
101018 224 0.86% .533 .688 .600
102044 220 0.84% .048 .009 .015
103044 195 0.75% .120 .015 .027
103024 132 0.51% .305 .220 .256
102070 123 0.47% .115 .024 .040
102080 114 0.44% .390 .263 .314
103060 77 0.30% .227 .130 .165
102084 57 0.22% .077 .035 .048
102064 42 0.16% .273 .071 .113
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Table 5.23: The performances per category for the best performing setting for the
‘GEW’ dataset, sorted by the number of positive examples

Category Positive Examples % of dataset Precision Recall F1
201014 1820 30.51% .846 .850 .848
202020 1329 22.28% .959 .924 .941
201040 547 9.17% .924 .934 .929
202010 499 8.37% .910 .912 .911
202024 443 7.43% .854 .716 .779
202064 309 5.18% .492 .317 .386
201060 306 5.13% .371 .173 .236
201010 300 5.03% .471 .460 .465
202034 288 4.83% .644 .604 .624
202050 187 3.13% .599 .599 .599
201050 186 3.12% .516 .355 .420
202044 178 2.98% .590 .646 .617
202030 165 2.77% .774 .745 .759
201034 142 2.38% .519 .472 .494
201044 119 1.99% .641 .765 .697
202040 68 1.14% .154 .059 .085
201064 62 1.04% .167 .048 .075
202014 61 1.02% .918 .738 .818
202054 56 0.94% NaN .000 NaN
201020 45 0.75% .304 .156 .206
201030 36 0.60% .083 .028 .042
201024 27 0.45% .188 .111 .140
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Conclusions

We have performed a case study on classifying news articles, collected by ASDMedia.

They publish business-to-business news articles online for different markets. For our

series of experiments we use two datasets namely ‘ASD’ and ‘GEW’. The ‘ASD’ dataset

contains news articles for the ‘Aerospace and Defence’ market, which is more multi-

label and also around 4.3 times bigger than the ‘GEW’ dataset, which contains news

articles for the ‘Energy and Resources’ market. Each news article can be labeled with

multiple categories, thereby making it a multi-label text classification (MTC) problem.

This makes it a more challenging problem than single-label classification (SC) problems.

The goal of this study is to find out if it’s possible to construct a classification system

that can classify these news articles with reasonable performance. For analytical pur-

poses we restricted ourselves to classifiers which are easy to interpret by humans and

therefore decided to use Decision Trees (DTs). We experimented with various settings

and techniques to find out which setup for a classification system is the best suited for

each dataset. We have done this by:

• Finding the best feature representation of news articles

In this case study we investigated various feature representations of news articles.

We experimented with varying the number of features that is needed, applying

a feature blacklist and whether or not to include the source of the news article.

Furthermore we looked at how the features are generated from the text by experi-

menting with the amount of text that is selected. We experimented with applying

different weights to words originating from the title and words originating from

the full-text. We also considered generating features of word-phrases of length two

(2-grams) instead of single words (1-grams).

110
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• Exploiting the label structure

After having experimented with the feature representation of the news article, we

selected the best representation and continued to look at two techniques that try to

exploit the label structure of this classification problem; namely classifier chains

(CC) and hierarchical top-down classification (HTC). The first method exploits

an internal structure between the labels, namely the correlation between them. It

creates a chain of classifiers and passes the result of each classifier earlier in the

chain to the classifiers later in the chain. The second method makes use of the

hierarchical structure of the categories, which is an external structure of the labels.

It does so by learning classifiers for each node in the hierarchy, and then applies

the classifiers in a top-down fashion.

6.1 Main findings

In this section we will discuss our main findings. First we discuss the findings in the

‘feature representation of news articles’ experiment followed by the findings in the ‘ex-

ploiting the label structure’ experiment.

6.1.1 Feature representation of news articles

Our research on the feature representation of news articles shows a statistically signifi-

cant interaction between the amount of text that is selected and the number of features

that is selected. In general the highest performance was achieved by selecting the title

and the first paragraph of news articles. A classifier using only the title achieves a very

high Micro-Precision but has a very low Micro-Recall. Furthermore, the best performing

number of features is different for each dataset. Either increasing the number of features

selected or increasing the amount of text selected results in a better Micro-Recall and a

worse Micro-Precision.

We experimented with including 2-grams in the feature space, which are features that

represent two words next to each other in the text. However, in combination with

selecting a large amount of text and a large dataset this led to a ‘feature explosion’,

which we experienced ourselves. Including 2-grams however, had no significant effect

on the performance. We showed that for a high percentage of the 2-grams that are

being selected, the single words (1-grams) that form the 2-gram are also being selected

by feature selection. This means that they probably could be replaced by using both

1-grams in the DT, which explains why there is not much difference in the performances.

The main difference between using two 1-grams in the DT and using one 2-gram is that
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with the latter the words have to occur in exactly that order and next to each other,

which apparently doesn’t make the difference in this domain.

We experimented with a custom feature blacklist made by domain-experts. This feature

blacklist consists of features that shouldn’t be discriminative for a category according to

the domain-experts. The features in the blacklist are removed from the feature space.

Although it did slightly improve the performance on the ‘GEW’ dataset, it had no effect

on the ‘ASD’ dataset.

Next we found that giving a higher weight to terms originating from the title of a news

article than words that occur in the full-text improves the classification performance.

The words in the title are usually very descriptive, which could explain why this weight-

ing mechanism does work.

Lastly we found out that including the source of a news article as a feature for our

DT learning algorithm was not a trivial task. There are many different sources which

occur with a very low frequency in the dataset, each source having news articles labeled

with different categories. For one dataset, the ‘GEW’ dataset, including the source

as a nominal (categorical) feature, improved the performance. However for the other

dataset, the ‘ASD’ dataset, the performance decreased. The ‘GEW’ dataset has one

single source which covered around 40% of the data. For the other dataset we came up

with a method to translate the source to a probability vector. For each source s, and

classifier for a specific category c, we calculated the probability that s would publish in

category c. Furthermore we applied a penalty to sources that do not occur frequently

in the data. Including these source probabilities and applying the penalty did improve

the performance for the ‘ASD’ dataset.

6.1.2 Exploiting label structures

Our research on exploiting the label structure showed that a modified version of CC

introduced by Read et al. [18] does improve the performance. This is a technique where

all ‘one-against-all’ classifiers form a chain, and the results of the classifiers earlier in the

chain are propagated to the classifiers later in the chain. Instead of training an ensemble

of classifiers which all have a random order of the chain, we constructed one order by

using multiple linear regression.

We tried to exploit the hierarchical structure of the categories, by performing HTC. This

is a technique which trains a classifier for each node in the hierarchy. Then it starts at

the top of the hierarchy and applies classifiers in a top-down fashion. When a classifier

predicts the non-membership for its category, its children classifiers are not applied



Chapter 6. Conclusions 113

anymore. We found no improvement in performance by using this method, instead the

performance decreased considerably. However, the CPU-time needed for this method

also considerably decreased, because most classifiers do not use all the training-data. We

found no decrease in the best performing number of features for this method as opposed

to the default method, which is termed ‘flat classification’ (FC). Koller and Sahami [9]

did find a decrease in the number of features needed when using HTC. However their FC

setup differs from ours. We performed feature selection locally, that is for each category

separately. They used a global feature selection approach, which means that for all

categories the same features are selected.

6.1.3 Conclusion

We have shown that by using an optimized feature representation of articles and by ap-

plying the chaining technique to exploit correlations between labels, we achieve the best

performance. There are still enough interesting topics to research that might improve

the performance even more, which we will discuss in the next section.

First we want to come back to our research question. We have built a classification

system by using machine learning and restricted ourselves to an algorithm that gener-

ates humanly interpretable models, namely DTs. The question remains whether our

classifiers achieve reasonable performance. We intentionally kept vague what precisely

reasonable performance is, because the system will be used in a semi-automatic envi-

ronment. This means that the result of the system is checked by a human, before the

choice is final.

There are two types of errors made by the classification system we can distinguish: false

positives (FPs) and false negatives (FNs). When for an example a FP is predicted,

this indicates that the example is labeled with a category it doesn’t have. In this

case it should be removed by manual intervention. The other case is a FN, now an

example is missing a label it should have. Now manual intervention is needed to add

the missing category to the example. Assuming both errors have the same cost, there

is no preference between either a high recall or a high precision, so the Micro-F1 value

gives the best indication of how many intervention is required. At some point, it will

cost more work to adjust the predictions than it saves work. However we are not sure

at which Micro-F1 value this point lies, but we think it will not be above a value of 0.5

for the Micro-F1 value. The Micro-F1 value for the best setting is .625 and .752 for

the ‘ASD’ and ‘GEW’ dataset respectively. So we can conclude that the classification

system achieves reasonable performance on both datasets, where the classification system

performs considerably better on the ‘GEW’ dataset.
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6.2 Future work

For future research and/or implementation we first will make a couple of remarks. After

that we will share our thoughts organized per finding. First of all, we like to note that

most experiments had a limited scope. For example, we varied the number of features

for only three distinct values, namely 40, 80 and 160 features. For future research it

would be advisable to extend this range and include more values. It is possible that the

best value is not found yet.

6.2.1 Future implementation

• Try out other classifiers

We advise to experiment with other classifiers, as the DT classifier may not be

the best in the field of TC. The Support Vector Machine (SVM) is the current

state-of-the-art classifier in this field, which would be interesting to investigate.

• Collect more data for minority classes

There are quite a few minority classes which have very few supporting data. The

classifiers trained for those classes perform very badly, we advise to collect more

data for those categories.

• Implement mandatory prediction

In both datasets there are still examples which are predicted to the empty set of

classes. The best performing setting still has 0.065 and 0.098 of those empty set

predictions for the ‘ASD’ and ‘GEW’ dataset respectively. Since all examples in

the training data belong to at least one category, this can clearly be improved.

• Optimize each setting per classifier

In our experiments we tried to find an optimal setting for a specific experiment,

by using the same value for each binary classifier in the classification system. For

example we found that 80 is the best performing number of features to use for

the classification system that uses the ‘ASD’ dataset. However, this is the best

number of features considering that each binary classifier uses the same number

of features. For future research it would be interesting to find out the optimal

settings per classifier instead. Perhaps some classifiers for categories with very

few positive examples could have a higher performance when using more text, or

perhaps more features. We suspect that finding the optimal setting per classifier

would surely improve the overall performance.

• Structure and clean the dataset

We noticed that the text in the datasets sometimes contained encoding artifacts. In
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addition it was not possible to obtain the first paragraph from the full-text, there-

fore we used the words occurring in the first 500 characters of the full-text instead.

It would be advisable to store the data of news articles in a more structured way

such that for example headlines and paragraphs can be easily distinguished. This

way a classifier can be learned which can exploit this structure. In addition clean-

ing the dataset from encoding artifacts may also help increase the performance as

some characters are now not correctly interpreted.

6.2.2 Future research

• Stepwise classification

We have seen that a classifier that uses only the title can be very precise, but has a

low recall, as opposed to a classifier using the title and (a part of) the full-text. It

would be interesting to investigate which part of the positive examples they both

can classify correctly. More specifically: how large is the intersection between the

positive examples correctly classified by both classifiers? Perhaps there is a benefit

in training separate classifiers, one that uses only the title and one that uses the

full-text and perhaps one that uses both. Then we could first apply the classifier

that is the most precise and when it has a low confidence we could apply the

second most precise classifier. This mimics the behavior of the domain-experts, as

they also classify in a step-wise fashion, by first looking at the title, then the first

paragraph and eventually the whole full-text.

• Finding 2-grams that make the difference

We have shown that most of the 2-grams that get selected, also have their 1-

gram components selected. They do not have much to contribute if their 1-gram

components could also be selected instead. It would be interesting to see if applying

a special feature selection for 2-grams, such that we only select distinctive 2-grams

that do not have distinctive 1-gram components, could make the difference.

• Grouping Sources together

By translating the multinomial source attribute to smoothed source probabilities

we could increase the performance a little bit in the ‘ASD’ dataset. The DT algo-

rithm we used (C4.5), implicitly grouped sources together based on their smoothed

source probability. It does so by splitting the data on a particular value for this

attribute. However there are many other ways to group sources together, which are

interesting to explore. For example it would be interesting how the performance

is when using the CART DT algorithm. This algorithm splits a multinomial value

in two groups explicitly.
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• Hierarchical Chaining

We have tried two techniques to exploit the label structure, CC and HTC. The

first did improve the performance and the latter didn’t. It would be interesting to

investigate how the combination of both methods performs. One could chain the

classifiers in multiple ways. For example, all predictions from the classifiers in a

certain level can be chained to the classifiers in a lower level. But also classifiers

within a level can be chained. There are many possibilities here that are interesting

to research.

• Exploiting the structure of text We have shown that using titles and the

first paragraph of news articles gives a better performance than using only the

title, or the title and all the full-text. By weighting the title higher than the first

paragraph the performance increased even more. This shows that better results

can be obtained if the structure of text is taken into account. Since the first and

last sentence in a paragraph often are more important, it would be interesting to

segment the full-text in paragraphs and sentences. Then we would expect that

giving words from the first and last sentence of a paragraph a higher weight would

improve the performance. In addition different weightings can be given to each

paragraph.
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