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Abstract

Human pose estimation in video has numerous applications, such as human activity analysis, automatic

surveillance, human-computer interaction and markerless motion capture. It is challenging because of the

kinematic structure of the human body and the variety of possible human poses, the endless appearance

options caused by clothing and, �nally, due to background clutter that can look like parts in the human

body and confuse the system.

Current methods in human pose estimation either focus on speci�c situations, such as pedestrians or

laboratory controlled motions, or sacri�ce accuracy in favour of coping with videos containing any type

of human activity. What we will show in this thesis is an improved system built upon the method of

[Ramanan et al., 2007], which models a person's body con�guration as a puppet of rectangles. The system

�rst analyses all the frames from a video to �nd a speci�c pose from which it learns the appearance of

the person to be tracked. Then it processes the video to detect the person in any possible pose.

We analysed the robustness of the original method by comparing pose estimations with labelled ground

truth. We challenged the authors' claim that one set of parameters can �t multiple videos, which

remains an open issue. Then, we extended the original method by including temporal information using

two di�erent types of motion models, which improved the tracking results. According to our qualitative

evaluation of side-by-side tracking sequences, the new extensions resulted in more stable and accurate

detections throughout time and are able to solve some challenging situations which arise when the motion

is fast or body parts resemble each other. We found that the system performs poorly when detecting

arms, due to their size, which remains the main problem to be solved in future work.

ii



Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Related work 4

3 Pictorial structures 7

3.1 Pictorial structures in static images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Temporal pictorial structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Sampling from the posterior distribution of body con�gurations . . . . . . . . . . . . . . . 12

4 Model building 14

4.1 Searching for body parts using generic templates . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Rectangular �lters as part templates . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.2 Chamfer matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Stylised pictorial structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Classi�cation and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.1 Linear methods for classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.2 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.3 Walking pose evaluation in di�erent frames . . . . . . . . . . . . . . . . . . . . . . 28

5 Detection 30

5.1 Searching for body parts using appearance models . . . . . . . . . . . . . . . . . . . . . . 31

5.2 General pictorial structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Single frame pictorial structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.2 Two frame pictorial structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.1 Mean shift algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Experimentation 42

6.1 Method analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1.1 Size in�uence on candidate detection . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2.1 Two frame pictorial structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2.2 Motion models: bounded velocity and Gaussian noise . . . . . . . . . . . . . . . . 55

7 Conclusions and future work 60

Bibliography 64

iii



1 | Introduction

Human pose estimation in video is a promising topic that can enable numerous applications, such as

human activity analysis, automatic surveillance, human-computer interaction and markerless motion

capture [Brubaker et al., 2010, Sigal]. It is a challenging task, mainly because of the kinematic structure

of the human body and the variety of possible human poses, the endless appearance options caused

by clothing and, �nally, due to background clutter that can look like parts in the human body and

confuse the system. Other challenges include and are not limited to: the variety of human motions (from

pedestrian walking to sports activities), the number of people in the scene (which can be crowded with

either a large number of distinctly looking people, or with a sports team wearing the same clothes),

camera motion, point of view and quality of the recorded material. Solving these issues can be done

either by knowing the nature of a particular type of input beforehand, or by working on improving the

robustness of the system with respect to the variety of inputs.

Given all the above stated challenges in the broad problem of human pose estimation in video, we address

a particular type of associated applications - automatic sport analysis from video. Analysing videos is

a low cost, nonintrusive procedure. Another advantage is that numerous recordings of sports activities

exist and can be thus interpreted. Research in the �eld of sports analysis from video (such as [Li et al.,

2010, 2006, Han et al., 2005, Ekin et al., 2003, Zhang et al., 2012, Ghanem et al., 2012]) provided

systems that can automatically detect and classify athlete's actions, which is useful for video indexing

and retrieval or for summarization of sports matches. Other uses include performance improvement and

coach assistance based on kinematic measurements, real life action comparisons with actions in video, or

strategy revealing and understanding based on player formations and trajectory patterns.

Di�erent sports and types of video data face di�erent challenges. For example, automatic analysis of

large court sports, such as football or American football, needs to cope with camera movements (pan, tilt,

zoom), blurred or low-resolution capture of distinct players due to the far-away view of the camera and

appearance similarity between players belonging to the same team [Zhang et al., 2012, Ghanem et al.,

2012]. In individual sports, like diving and athletic jumping [Li et al., 2010, 2006] the background clutter

and dynamics pose a challenge on the person segmentation. Regarding the types of video data, two

examples of associated challenges are to discriminate between commercial sequences and actual sports

sequences in a television broadcast [Han et al., 2005] and to identify cuts and transitions in the video

material [Ekin et al., 2003].

Within the scope of human pose estimation and with the above applications and their associated chal-

lenges in mind, we aim to estimate the human body pose from videos of individual athletes. Our interest

is to determine the best extent to which we can accurately approximate the 2D body con�guration, given
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Chapter 1. Introduction 2

a video sequence from a single colour camera. We choose as input videos of gymnasts performing at the

balance beam, in front of both cluttered and uncluttered background. The desired output is the body

pose detection at every frame, consisting of the exact localisation of major body parts.

Because we aim at �nding precise pose detections in videos that have been recorded in the past, we do

not restrict ourselves to real-time methods. The basic employed method is tracking by model-building

and detection, which means that the system �rst learns a model of the people to be tracked in the video

sequence, then uses this model to detect them frame by frame. Hence, the system consists of two parts:

the model building module and the detection module.

Possible applications of precise pose estimation in individual sports such as gymnastics include and are

not limited to: athlete's time progress analysis or performance comparison with other athletes, visual

cues highlighting on replays or markerless motion capture for sports motion databases. Once the goal

of estimating major body parts is achieved, one could go further to more complex models of the human

body, which could result in a system that automatically evaluates athlete's performances in formal

competitions.

For this purpose, we start from the excellent work of [Ramanan et al., 2007], which employs pictorial

structures as a successful technique for the task of estimating the human pose as a con�guration of body

parts. We investigate how their system reacts to di�erent inputs, in order to investigate whether the

method is applicable to material coming from di�erent video archives. Then we extended it to improve

the tracking quality. We plan to do so by exploring the temporal component, or how the detection in

the current frame can help the detection in the next frame.

The layout of this thesis report is as follows. We continue this chapter by giving an overview of the

practical application, including constraints and implementation details. The Related work chapter gives

a short survey of relevant papers in the �eld and the motivation for our choice of the main reference

papers. The Pictorial structures chapter explains the statistical framework which constitutes the skeleton

of the tracking system. The Model building chapter explains the theory behind [Ramanan et al., 2007]'s

stylised pictorial structure which enables us to learn the appearance of the people in the video. The

Detection chapter explains [Ramanan et al., 2007]'s single frame pictorial structure algorithm, which is

an approach to detect people from still images, that we will deploy as part of the general tracking solution.

The Detection chapter also introduces our contributions: two variants of expanding the graphical model

behind the pictorial structure algorithm to include information from the previous frame as well, under

inference techniques and implementation-wise constraints. Chapter Experimentation shows our studies

on the system robustness and on the newly implemented temporal graphical model variants. Finally, we

conclude with the Conclusions and future work based on our �ndings.

System description and constraints

The application takes in a video sequence of a person and outputs a video containing the person's pose

detection depicted with solid line coloured rectangles corresponding to each body part. The system works

in two phases:

1. Model building - processes each frame in search for a stylised pose, then learns the appearance

parameters for a person. This module is explained in Chapter 4.
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2. Detection - uses the learnt appearance parameters to detect general poses in each frame. This

module is explained in Chapter 5.

The constraints of our implementation are:

1. The system learns the appearance model and detects the pose for a single person in the video.

2. Both modules of the system require that the scale of the person to be detected is known and that

it remains approximately constant throughout the video.

3. The body parts can easily be approximated by rectangles. The system will not detect people

wearing skirts, dresses or loose clothes.

The chosen videos of gymnasts performing the balance beam conveniently cope with these constraints.

First, the videos contain only one gymnast at the time. Next, the gymnast movement is constrained

mostly on the horizontal axis, so that the scale remains approximately constant. Last, the lean body

constitution and the tight�tting sports suit allows for good approximations of individual body parts with

rectangles.

System implementation

Our implementation of the human tracking system is based on [Ramanan et al., 2005]'s Matlab im-

plementation made available at http://www.ics.uci.edu/~dramanan/papers/pose/index.html. Our

implementation is written in C++ and makes use of the OpenCV 2.4.3 library [Bradski and Kaehler,

2008] for computer vision functions and ALGLIB [alg, 2013] for algebraic functions. The design is object

oriented, each of the two modules being written as separate classes. Besides the video sequence, the

system also requires two settings �les (one for each module), containing information about the person's

size and various thresholds that we will explain in the dedicated chapters.

http://www.ics.uci.edu/~dramanan/papers/pose/index.html


2 | Related work

[Sigal] de�nes human pose estimation as �the process of estimating the con�guration of the body (pose)

from a single, typically monocular, image�. Estimation of human poses over time is a di�erent problem

and can be referred to as human motion analysis [Poppe, 2007]. A great deal of research exists on human

pose estimation in still images. This research usually focuses on learning sophisticated deformation

models and appearance dependencies from labelled datasets. These models are then applied to still

images (sometimes using advanced limb detectors). The person(s) in these images is not necessarily

someone who has been seen in the training data and might appear in any pose or wear any type of

clothes.

Pose estimation in video can be 2D or 3D. The latter can be aided by multiple camera footage and motion

databases. On the other hand, 2D pose estimation in video only requires a single camera captured video

as input. We wish to focus on this type of input. In this chapter we approach human pose estimation

in video from the tracking perspective and select a number of papers that deal speci�cally with 2D pose

estimation in video for comparison.

[Forsyth et al., 2006] identify the scale as the most important variable of the human tracking problem.

They di�erentiate between the following three levels of the scale of the people in video frames:

1. Coarse scale. People occupy small patches in the frame, which allows only for global assumptions

of a person's position, but not about the positions of individual body parts. Examples of applica-

tions that use such videos as input are applications that analyse patterns of activities in crowds or

in large open spaces ([Stau�er and Grimson, 2000]).

2. Medium scale. People can be regarded as blobs with motion �elds. The task of tracking the entire

body as a single object is called human tracking or detection [Poppe, 2007]. Possible applications

that deal with this type of input videos might concern situations such as a TV broadcast of a team

sport or surveillance cameras overseeing a subway station, a tra�c intersection, etc. ([Breitenstein

et al., 2011])

3. Fine scale. All body parts are visible and the application aims at �nding the body con�guration

or the body pose. This task can come under di�erent names: kinematic tracking [Forsyth et al.,

2006] or human motion analysis [Poppe, 2007].

We focus on the last case, where the people are clearly visible in the video sequences and their scale

allows for individual identi�cation of distinct body parts. The most successful approach so far towards

statistically modelling the human body as a collection of parts are the pictorial structures [Fischler and

Elschlager, 1973]. We discuss these in Chapter 3.

4



Chapter 2. Related work 5

Pose representation Various representations of the body parts are possible. For example, [Niebles

et al., 2008, 2010] aim at �nding volumes (or contours) of the human body in an application that does

not require any assumption about the appearance or number of people in the videos and is targeted

at real world data, such as low-resolution videos from the internet, depicting a large range of human

motions. [Huo and Hendriks, 2012] focus on the upper body (motivated by human-computer interaction

applications) and show their tracking results as rectangles for the torso and the head and as lines (skeleton

representation) for the arms. [Ramanan, 2007, Andriluka et al., 2008] detect full body humans and show

the poses as (line) skeletons drawn on the colour frames. [Ramanan et al., 2007, 2005] represent people

as puppets of rectangles, where a rectangle is matched to the image evidence corresponding to each major

body part (torso, upper and lower legs and arms and the head).

Video characteristics Aside from the representation, we also bring the character of the videos into

discussion. Researchers tend to study speci�c situations and solve problems that arise in each case.

[Andriluka et al., 2008] focus their e�orts on long-term occlusion in the case of pedestrians. [Niebles

et al., 2008, 2010] sacri�ce per-pixel accuracy and build a fully automatic system that requires no manual

initialisation and no a priori knowledge about the number of people in the scene or about their appearance

and works with arbitrary videos. [Huo and Hendriks, 2012] focus on estimating the positions of occluded

parts and test their system on laboratory captured upper body motions that are designed for games

interaction.

Unlike the previous, [Ramanan et al., 2007, 2005] build a more general framework, which allows for

di�erent inputs in terms of activity types, number of people in the video, source of the video and type of

setting, such as sports activities, outdoor activities, movie scenes and people walking in a park. While

covering all these situations, the tracking representation (puppet of rectangles) remains highly detailed,

aiming at identifying individual body parts.

Constraints Tracking systems require a degree of knowledge about the people to be found. This

knowledge is referred to as a model and can be either generic or speci�c. A generic model will describe

the human body and will be applicable to any person. Such models will usually contain information

about the shape and the con�guration of the human body. The con�guration of the human body does

not only encompass the hierarchy of parts, but also the range of possible relative positions, which depend

on the type of actions that the person performs in the video. The wider the range of actions that the

system needs to cover, the less restrictive the model will be. For this reason, for the generic model to

succeed, it will need stronger knowledge about some characteristics of the people in the video, which will

either restrict the applicability of the system with respect to the type of input, or will make the system

require some sort of manual intervention or initialisation.

For example, [Andriluka et al., 2008] develop an expressive kinematic limb model based on the character-

istics of the walking cycle for pedestrians. Also, [Hogg, 1983] describes very speci�c positional, movement

and posture constraints for walking. [Niebles et al., 2008, 2010] do not require knowledge about the type

of motion or about the person, but only deliver an approximate volume of the person's position and

con�guration in the video. [Huo and Hendriks, 2012] require a controlled laboratory setup, where the

cameras are synchronized, their position is known and the subjects are asked to perform a speci�c pose

to initialise the system. Such restrictions, however, make it possible for the system to accurately deal



Chapter 2. Related work 6

with inter-person and self occlusion and show the position of the occluded body parts. [Ramanan et al.,

2007] learn the colour appearance models of the people (speci�c model) in the video o�ine (in the �rst

stage), then use these models to detect each person at limb-level accuracy (in the second stage). This

procedure is also called tracking by model-building and detection. There is no restriction on the type of

action performed in the video and the body con�guration restrictions are designed as general focusing

mainly on making sure that the pairs of body parts that are normally connected in the human body also

have close positions in the video frames.

Our employed method We chose to use [Ramanan et al., 2007]'s work as a starting point, because

their method was tested on videos from various sources, containing a wide range of activities and showed

promising detection results at body part level accuracy. The full body puppet of rectangles representation

is suitable for our goal of precisely tracking all the major body parts. The fact that the method was

tested on videos from unconstrainted sources shows potential for our goal of being able to process diverse

archives of sports videos.



3 | Pictorial structures

3.1 Pictorial structures in static images

A pictorial structure [Fischler and Elschlager, 1973] is an object representation consisting of a collection

of parts connected in a deformable con�guration. The parts encode how well the image patch matches

the visual data according to a visual model, while the connections describe the agreement between the

relative parts positions and the deformable model. [Felzenszwalb and Huttenlocher, 2005] de�ne the

statistical framework for matching a static image to a pictorial structure through the following concepts:

u = {u1, . . . , uN} appearance model parameters, where N is the number of parts

c = {cij |(vi, vj) ∈ E} the deformable model between connected edges in set E

θ = (u,E, c) set of object model parameters

I the image

P 1:N the object con�guration

P
(
I|P 1:N , θ

)
the likelihood of seeing an image given the object's con�guration

P
(
P 1:N |θ

)
the prior probability that the object is in a particular con�guration

P
(
P 1:N |I, θ

)
the posterior distribution of the object con�guration given the model θ and the

image I.

The problems that can be solved within this statistical framework are the following:

1. MAP estimation, which �nds the con�guration P 1:N with maximum posterior probability,

2. Sampling from the posterior, which �nds several good matches of the object model to the image,

instead of only the best one and accounts for imprecise models (for example, due the large variety

of deformations in the human body),

3. Model estimation, which learns the model θ from training data using maximum likelihood estima-

tion.

[Felzenszwalb and Huttenlocher, 2005] demonstrate that for articulated models (such as models of the

human body), where the constraints between parts are relatively loose and allow for overlapping, gener-

ating multiple samples from the posterior distribution gives a good estimate of the object con�guration.

[Ramanan et al., 2007] feed these samples into a mode �nding procedure to obtain the �nal body con�g-

uration.

7



Chapter 3. Pictorial structures 8

Using Bayes' rule, the posterior P
(
P 1:N |I, θ

)
is given by:

P
(
P 1:N |I, θ

)
=
P
(
I|P 1:N , θ

)
P (P 1:N |θ)

P (I|θ)
(3.1.1)

and results in the following form for the posterior distribution of the object con�guration:

P (P 1:N |I, θ) ∝ P
(
I|P 1:N , θ

)
P
(
P 1:N |θ

)
. (3.1.2)

Assuming conditional independence between the parts appearance model, the likelihood of seeing an

image given the object's position becomes:

P
(
I|P 1:N , θ

)
= P

(
I|P 1:N , u

)
∝

N∏
i=1

P (I|P i, ui). (3.1.3)

This assumes that the body parts occupy di�erent patches of the image, meaning they do not overlap.

[Felzenszwalb and Huttenlocher, 2005] solve this model impreciseness by sampling from the posterior

distribution, which gives several possible matches instead of just the best one, and �nally selecting one

sample.

The prior distribution is described by a tree-structured Markov random �eld with vertices V and edge

set E as:

P
(
P 1:N |θ

)
=

∏
(vi,vj)∈E P

(
P i, P j |ci,j

)∏
vi∈V P (P i|θ)degvi−1

, (3.1.4)

where degvi is the number of parts connected to part i, P
(
P i|θ

)
models the absolute position of part

i, P (P i, P j |ci,j) models the relative con�guration of parts i and j and ci,j are the deformable model

parameters for the connection between parts i and j. As there is no need to model a preferred absolute

position, P
(
P i|θ

)
can be set to 1. Therefore, the previous equation becomes:

P
(
P 1:N |θ

)
=

∏
(vi,vj)∈E

P (P i, P j |ci,j). (3.1.5)

For the remaining of this report, we will use [Ramanan et al., 2007]'s notation, where C is the appearance

model, the image likelihood is P
(
I|P i, Ci

)
, and each part's con�guration depends only on the parent

body part, such that the prior is written as P (P i|Pπ(i)), where π(i) is the parent of part i. With this

convention and the likelihood detailed in equation (3.1.3) and the prior detailed in equation (3.1.5),

equation (3.1.2) becomes:

P (P 1:N , I|C1:N ) ∝

(
N∏
i=1

P
(
I|P i, Ci

)
P (P i|Pπ(i))

)
. (3.1.6)

3.2 Temporal pictorial structures

[Ramanan et al., 2007] approach the tracking in video problem using a Hidden Markov Model (HMM),

where the hidden states are the poses to be estimated and the observations are the video frames. Figure

3.1 shows the pictorial structure graphical model for a full body pose at frame t. Figure 3.2 shows the

temporal graphical model, in which we only selected two connected body parts for clarity. The arrows

between connected body parts represent the relative con�guration probability P (P it |P
π(i)
t ), the arrows

between the body parts and the image observations represent the image likelihood P
(
It|P it , Ci

)
, while
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Figure 3.1: Full body pictorial structure graphical model for frame t. Body part nodes are depicted
in white: torso, head, left upper leg, right upper leg, left upper arm, right upper arm, left lower leg,
right lower leg, left lower arm, right lower arm. Gray nodes represent the image observations I(P i).

Figure 3.2: Temporal graphical model for a sequence of T frames. Horizontal arrows represent the
motion model.

the arrows between same body part nodes at consecutive frames represent the motion model P (P it |P it−1).

The posterior distribution for the temporal pictorial structure also includes the motion model prior:

P (P 1:N
1:T , I1:T |C1:N ) ∝

T∏
t=1

N∏
i=1

P (P it |P it−1)P
(
I|P i, Ci

)
P (P i|Pπ(i)). (3.2.1)

As inference on the full graphical model is di�cult due to loops and the large state space, it is convenient

to ignore loops and pass local messages. The message passing procedure is explained in the sampling

from posterior algorithm (see Section 3.3).

In this thesis, we show the simpli�ed (single frame) graphical model implemented by [Ramanan et al.,

2007], and extend it to two more complex variants, including temporal information.

Image likelihoods

We practically calculate the image likelihood as a function of a singleton potential :

P (I|P i, Ci) ∝ Φi(xi). (3.2.2)

The singleton potential Φi(xi) represents a score for the match between an image patch (or a candidate

xi) and a part template and is usually the result of a convolution between a template and a feature image.

[Ramanan et al., 2007] de�ne templates and features for each of the modules of the tracking system:
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� In the model building module, rectangular �lters are used to detect body parts on the edges of the

input frame (described in Section 4.1);

� In the detection module, 2D Gaussian �lters of rectangular shape are used to detect body parts

on areas of the input frame that resemble the previously learnt colour appearances (described in

Section 5.1).

Kinematic constraints

The prior which describes the conformity with the deformable model is calculated depending on a pairwise

potential :

P (P i|Pπ(i)) ∝ Ψi,π(i)

(
xi,π(i)

)
. (3.2.3)

In the above equation we use xi,π(i) for the pair of body part candidate and parent candidate
(
xi, xπ(i)

)
.

We will further use the term kinematic constraints when referring to the deformable model. These

constraints can be seen as falling into one of the following categories:

1. Hard constraints - which validate (P (P i|Pπ(i)) = 1) or discard (P (P i|Pπ(i)) = 0) a body part,

usually based on the distance between body parts;

2. Soft constraints - which set a preference for speci�c con�gurations, by setting the value for potential

Ψi,π(i)

(
xi,π(i)

)
according to a function based on one or both the distance and angle between body

parts.

The relative position between body parts plays a key role in calculating the pairwise potential Ψi,π(i)

(
xi,π(i)

)
.

This position is calculated between hinge points of the body parts, as shown in the �gure below.

Figure 3.3: Relative positions between di�erent hinge points: blue - centre to top, red - centre to
centre.

Motion models

We calculate the probability that represents the motion model as a function of a potential depending on

the coordinates of a body part in two consecutive frames:

P (P it |P it−1) ∝ Ψi,prev_i

(
xi,prev_i

)
. (3.2.4)

In the equation above, we use xi,prev_i for the pair of body part candidate in the current frame and the

same body part in the previous frame
(
xi, xprev_i

)
.
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We describe two possibilities for the motion model: the bounded velocity model [Ramanan et al., 2007]

and the Gaussian noise [Brubaker et al., 2010]. Due to the nature of these two models, which consist of

normalized values between 0 and 1, the relationship between the probability and the potential in equation

(3.2.4) becomes the identity function.

[Ramanan et al., 2007] use a bounded velocity motion model. This means that if a body part in the

current frame is within a certain distance away from its position in the previous frame, then it is assigned

the highest probability P (P it |P it−1) = 1, otherwise it is assigned the lowest probability P (P it |P it−1) = 0.

The distance is calculated between the centres of the two body part detections as follows:

P (P it |P it−1) =

{
1, ‖(xit, yit)− (xit−1, y

i
t−1)‖ ≤ vmax

0, ‖(xit, yit)− (xit−1, y
i
t−1)‖ > vmax

(3.2.5)

The issues that arise from this motion model are the following:

� vmax should be activity speci�c, which implies that we either know the type of motion a priori, or

we set a general value in turn for a lower accuracy;

� the camera should be still, so that vmax only describes the person's motion and does not need to

compensate for camera movement as well;

� vmax can take a general value for all body parts, or individual values for di�erent body parts,

requiring �ne tuning for the latter option.

We also look at another motion model, where noise is added to the previous pose, in order to determine

the current one [Brubaker et al., 2010]:

P it = P it−1 + η. (3.2.6)

Here, η is a process noise that can be modelled with a Gaussian η ∼ N (0,Σ). The motion model prior

results in:

P (P it |P it−1) = N (P it ;P
i
t−1,Σ), (3.2.7)

where N (P it ;P
i
t−1,Σ) is the Gaussian distribution function centred at the previous part pose and covari-

ance Σ, evaluated at the current part pose. Aside from the centre coordinates, we can also model the

variation of the body part orientation θ as process noise. The above equation becomes:

P (P it |P it−1) = N (xit−1;xit, σx)N (yit−1;xit, σy)M(θit−1; θit, k), (3.2.8)

whereM(θit−1; θit, k) is the Von Mises or circular normal distribution [Gumbel et al., 1953],

M(θt−1; θt, k) ∝ ek cos(θt−θt−1). (3.2.9)

The same issue as for the bounded velocity motion model arises in this case: tuning the parameters σx,

σy and k.

In comparison, the Gaussian noise motion model gives a preference over the candidates and does not

simply accept or reject candidates, as the bounded velocity motion model does.

The e�ect of the motion model is that it smoothes the tracking result and eliminates the candidates

which are too far from the previous detection. But, the constraint on this model is that the previous

detection should always be correct. When this fails, it is possible that the body track will deviate from

the correct position, in time.
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3.3 Sampling from the posterior distribution of body con�gura-

tions

Given that the structure of the human body can be modelled as a tree (see Figure 3.1), it is convenient

to use belief propagation [Yedidia et al., 2003] to calculate the posterior at each node. The root (torso)

posterior will be proportional to the product of the local evidence P (I|P r, Cr) and all the messages

coming from the root's children:

P (P r, I|Cr) ∝ P (I|P r, Cr)
∏

j∈C(r)

mj,r (xr) , (3.3.1)

where the messages mj,i(xi) are calculated according to the message update rule:

mj,i(xi) ∝
∑
xj

P (I|P j , Cj)P (P j |Pπ(j)) ∏
k∈C(j)

mk,j (xj)

 . (3.3.2)

The messages are calculated starting at the leaves, then propagate through the nodes to the root. Once

the root posterior is known, a sample is obtained (see the sampling procedure below) from this distri-

bution. With the sampled root (denoted as π(i)_idx), the children samples will be obtained from the

following posterior distribution:

P
(
P i, I|Pπ(i)_idx, Ci

)
∝ P

(
I|Pπ(i)_idx, Cπ(i)_idx

)
P
(
P i|Pπ(i)_idx

) ∏
j∈C(i)

mj,i (xi) . (3.3.3)

This procedure is continued until the leaf nodes. It is necessary to calculate the messages only once,

then the sampling can be done multiple times. We detail this algorithm for each employed tree model,

respectively, in the following sections.

Sampling procedure

We explain the employed sampling procedure in the following.

Probability density function A probability density function (PDF), also called density of a continu-

ous random variable, is a function that describes the relative likelihood for this random variable to take

on a given value.

A PDF satis�es P (x ∈ B) =
∫
B
P (x)dx, and the normalization condition P (−∞ < x < ∞) =∫∞

−∞ P (x)dx = 1 [Weisstein, a].

Distribution function The cumulative distribution function (CDF) describes the probability that a

variable X takes on a value less than or equal to a number x. The relation with a continuous PDF is

the following:

D(x) = P (X ≤ x) =

∫ x

−∞
P (ξ)dξ, (3.3.4)
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namely, the PDF, when exists, is the derivative of the CDF. The relation with a discrete probability

P (x) is the following:

D(x) = P (X ≤ x) =
∑
X≤x

P (x). (3.3.5)

We wish to generate numbers distributed as P (x). For this, we use a random number generator that

gives uniformly distributed values y ∈ (0, 1). The x variable distributed as P (x) is obtained by inverting

the CDF, as x = D−1(y) [Weisstein, b]. Figure 3.4 shows the CDF graph for a normal distribution and

the corresponding variable x to a randomly generated value y.

Figure 3.4: CDF of the normal Gaussian distribution



4 | Model building

In this chapter, we explain the model building module, which is responsible with �nding a stylised pose

in a video sequence, then choosing the frame that contains the best pose and learning the body parts

colour appearance model parameters from that particular frame. The module pipeline is shown in Figure

4.1. We break down the components of this pipeline and explain them in their dedicated sections from

this chapter.

Figure 4.1: Model building module pipeline.

4.1 Searching for body parts using generic templates

A reasonable assumption for the shape of the human body is that body parts are cylindrical. Then,

their projection on an image can be approximated by rectangles [Felzenszwalb and Huttenlocher, 2005].

A rectangle is parameterised by its width, length, x and y centre coordinates and orientation θ. A main

assumption of [Ramanan et al., 2007] is the fact that the scale of the person in the video is known.

Knowing the width and length for each body part, the centre coordinates and orientation remain to be

determined. The authors do this by chamfer matching (see Section 4.1.2) a body part template with the

input frame.

14
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Figure 4.2: Model building
pipeline: Searching for body part

candidates.

This section corresponds to the pipeline components shown in Figure

4.2. The input to this module consists of the colour frame and the

body part templates. The output of this module represents the body

part candidates xi and their associated singleton potentials Φi(xi).

In the following we discuss the basis for �nding patterns in images,

then we elaborate on chamfer matching and on additional techniques.

4.1.1 Rectangular �lters as part templates

Linear �ltering is a strategy to �nd di�erent image patterns. Linear

�ltering consists of replacing a pixel in an image with a weighted sum

of the surrounding pixel values using a selected set of weights [Forsyth

and Ponce, 2002]. This operation is:

1. shift invariant - meaning the output depends on the pattern in the image neighbourhood, rather

than its position;

2. linear - meaning that the output of several images summation is the same as the summation of the

individual outputs.

The process is also referred to as a convolution, represented by the following operation:

I
′
(u, v) =

∞∑
i=−∞

∞∑
j=−∞

I(u− i, v − j)H(i, j) = I ? H (u, v) , (4.1.1)

where I is the original image, I
′
is the �ltered image, H is the kernel of the �lter and (u, v) are pixel

coordinates [Sanchez, 2011].

Filters can be used to �nd simple patterns in an image, because they give higher responses in the areas

that look like the �lters [Forsyth and Ponce, 2002]. [Ramanan et al., 2007] use rectangular templates,

with known width and length for each body part. These �lters are applied to the edge image of an input

frame. In this form, part templates are colour invariant and only model the shape of the body part.

Figure 4.6(c) shows a rectangular template for an upper leg rotated with 45◦.

4.1.2 Chamfer matching

Matching is the problem of determining the similarity between predicted features (in our case, the body

part templates) and image features (such as edges). Chamfer matching [Barrow et al., 1977] compares

the shape of two collections of curves, by calculating a measure of similarity called chamfer distance.

The chamfer distance between two sets of feature points is the mean of distances between each point in

the template and the nearest image point. For two point sets U = {ui}ni=1 and V = {vj}mj=1, the formula

for the chamfer distance is the following [Thayananthan et al., 2003]:

dcham (U ,V) =
1

n

∑
ui∈U

min
vj∈V

‖ui − vj‖ (4.1.2)
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To calculate this distance, we �rst introduce the distance transform of an image, then illustrate how this

helps calculating the chamfer distance.

Distance transform

The distance transform of an image is an output image in which every pixel is labelled with its distance

to the closest zero pixel in the original image [Bradski and Kaehler, 2008]. The zero pixels in the original

image denote features, such as edges. Distance transforms are calculated using masks where each pixel

is labelled with the distance between a pixel at that position and the centre of the mask.

Figures 4.3(a) and 4.3(d) show two binary feature images. These images could be the result of an edge

detection process on a colour frame. Figures 4.3(b) and 4.3(e) were obtained by using the OpenCV

function cvDistTransform with the Euclidean distance as a metric.

Chamfer distance

To calculate the chamfer distance, we superimposed a bar template (like the rectangle template used

to detect body parts), depicted by the black lines in Figures 4.3(b) and 4.3(e). The chamfer distance

is simply calculated by averaging all the pixel values underneath the template points. This is done for

every pixel by translating the template above the feature image.

(a) Binary feature image (b) Distance transform and
superimposed part template

(c) Convolution of distance trans-
form and part template

(d) Binary feature image (e) Distance transform and
superimposed part template

(f) Convolution of distance trans-
form and part template

Figure 4.3: Chamfer matching

We can see that in Figure 4.3(c), where the image looks exactly like the template, the values in the

centre of the image patch are lower than in Figure 4.3(f). This result can be obtained by convolving the

distance transform with the template. Figures 4.3(c) and 4.3(f) resulted by using the OpenCV function

cvFilter2D. The lowest value (in dark green) will give the score and the position of the centre of the

patch that looks like the template. In Figure 4.3(c) we obtained a score of 0 for perfect matching, while

in Figure 4.3(d) we illustrated some degenerate edges and obtained a score of 8 in the centre of the

convolution result shown in Figure 4.3(f).
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Edges and orientation cues

We saw that a feature image is needed for chamfer matching. Given that the search is performed to

�nd shapes that look like the body part templates, the feature image will actually represent the edge

detection of a video frame. To obtain the edges, �rst the x and y derivatives of the image are computed,

by convolving the image with elongated Gaussian �lters [Martin, 2003]. Then the gradient magnitude

of the image (Figure 4.4(a)) is computed as the square root of the sum of squared derivatives. These

operations are performed per separate colour channels. The maximum gradient magnitude is selected

from the colour channels (shown in Figure 4.4(b)) and further processed by non-maximum suppression

(explained next). By imposing a limit on the gradient magnitude level (zeroing the pixels under a certain

threshold), we obtain the strong edges (Figure 4.4(c)).

(a) Gradient magnitude of RGB
image

(b) Maximum gradient magni-
tude across channels

(c) Non-maximum suppression
result

(d) Edge image labelled with
orientation bins

Figure 4.4: Edge detection

To explore orientation cues, [Ramanan et al., 2007] label each edge pixel with the bin in which the

gradient orientation falls (out of 24 bins). We show the labelled edge image in Figure 4.4(d), where

the 24 orientations have been scaled to display a grayscale image. Then, only those edge pixels whose

orientations either fall perpendicular to the rectangular template, either neighbour these orientations to

the left and to the right, are selected.

An example is illustrated in Figure 4.5. For a template rotated 60◦ counterclockwise, with the bin

numbering starting near the positive x axis in counterclockwise order, the selected edges will correspond

to the following bins: 4, 5, 6 (for orientations between 45◦ and 90◦) and the opposite bins, 16, 17, 18 (for

orientations between 225◦ and 270◦).

The distance transform (Figure 4.6(b)) of these edges (Figure 4.6(a)) is �nally convolved with the rotated

template (Figure 4.6(c)) to give the chamfer score (Figure 4.6(d)).

Figure 4.5: Orientations perpendicular on the template
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(a) Edges of interest orienta-
tions

(b) Distance transform (c) Part template (d) Chamfer distance as convo-
lution result

Figure 4.6: Chamfer matching

Non-maximum suppression

Figure 4.7(b) shows the resulting chamfer distance image obtained by selecting the best chamfer scores

over individual edge orientations and their corresponding rotated templates. Sharpening this response

is a useful technique that allows for thinner, more precise lines and eliminates noise. By imposing a

threshold on these thin lines, it is possible to determine the position of the candidate body parts.

(a) Original image (b) Chamfer distance for an upper leg (c) Non-maximum suppression result

Figure 4.7: Non-maximum suppressed chamfer distance

Non-maximum suppression is commonly used to sharpen such responses, making them more appropriate

to threshold [Kitchen and Rosenfeld, 1982]. The idea of non-maximum suppression of gradients is to

search for local maxima in the gradient strength image (in our case, the chamfer distance image, see

Figure 4.7(b)) in the gradient direction [Jepson, 2011].

We implement the non-maximum suppression algorithm as provided by [Martin, 2003]. We use a similar

�gure to [Jepson, 2011] to illustrate the method - see Figure 4.8. The algorithm steps are the following:

1. Determine in which of the eight areas does the edge normal (as depicted by the dashed green arrow)

at the interest pixel (as depicted by a green dot) fall into.

2. Consider the original image. If the two neighbouring pixels in that area (as depicted by black dots

on dashed blue lines) exist (they do not fall outside the image), calculate the angle tangent.

3. Interpolate the values of the pixels, based on the distance (the purple line in Figure 4.8) between

them as given by the tangent.

4. Compare the interest pixel value with the interpolated value. If smaller, then suppress (make equal

to zero) the pixel value in the result image.

Figure 4.7(c) shows the result of the non-maximum suppression on the chamfer distance image. This

result gives clearer indications of the candidate upper legs positions. As the maximum values across

orientations have been retained in the chamfer distance image (Figure 4.7(b)), as well as the corresponding

orientations, only the body part position remains to be determined. By imposing a threshold for the

chamfer distance, only the most likely positions are retained.
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Figure 4.8: Non-maximum suppresion in gradient direction

Finding the body part candidates

The above procedures can be put in order in the following algorithm that �nds candidates for a speci�c

body part:

1. Build rectangle template of known width and length.

2. For each possible orientation of the body part,

2.1 Rotate template.

2.2 Select edges with perpendicular (and neighboring) orientations.

2.3 Calculate distance transform of selected edges.

2.4 Convolve distance transform with rotated template to obtain chamfer cost image.

3. For each pixel in the image, choose the best chamfer score across orientations.

4. Threshold chamfer scores and select those pixels locations that have better scores than the thresh-

old.

Steps 3 and 4 give the orientation and the centre position of the body part detection. With the known

width and length, the body part detection is now fully parameterised and scored. The corresponding

chamfer score will represent the singleton potentials, Φi(xi).

Figure 4.9 shows all upper leg candidates obtained with the above procedure.

Figure 4.9: Sample image with candidate upper legs represented by purple rectangles

The discussed procedure can �nd thousands of body part candidates in an image. Imposing a threshold

on the chamfer score does lower the number of candidates, but it is also convenient to set a maximum

number of candidates. If there are more than a �xed number of candidates, [Ramanan et al., 2007]

sample with replacement (see the sampling procedure in Section 3.3) an exact number of samples from

the discrete distribution given by the chamfer scores of the candidate body parts.
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4.2 Stylised pictorial structure

Figure 4.10: Model building pipeline: Matching a
stylised pictorial structure.

Once the body part candidates have been found,

using the procedure described in Section 4.1, we

need to �nd those candidates which form a typical

pose, as de�ned by kinematic constraints (hence,

stylised). This is done by performing the inference

(described in Section 3.3) on the pictorial struc-

ture tree model, where the nodes are represented

by the candidates. Once the belief (or posterior)

for each node has been obtained through message

passing, we sample from the posterior to obtain

several matches for the body con�gurations. This

section refers to the model building module pipeline components in Figure 4.10.

Finding a typical pose in a video sequence is called opportunistic detection. The system will only recognize

this pose and will use it to learn the colour appearance model parameters. The appearance model will

be used by the detection module to �nd general poses in every frame.

The chosen stylised pose is a lateral walking pose, which has the following properties: it is usually

encountered in a video of a person, it o�ers a clear and distinctive perspective on each of the body parts

(little self-occlusion) and it is relatively easy to detect due to the scissor pattern in the legs. Figure 4.11

shows the tree model of the lateral walking pose, with both legs and one arm only. The acronyms for

the body parts have been explained in Figure 3.1.

Figure 4.11: Tree model of a stylised pictorial structure.

In the single frame pictorial structure formula P (P 1:N , I|C1:N ) ∝
∏N
i=1 P

(
I|P i, Ci

)
P (P i|Pπ(i)), the

value for the image likelihood P (I|P i, Ci) will be:

P (I|P i, Ci) =
e − Φi

(
xi

)
/k∑

xi
e − Φi

(
xi

)
/k
, (4.2.1)

where xi is a candidate obtained with the procedure described in Section 4.1, Φi (xi) is a function of

the candidate's chamfer score and k is a scaling factor used to smooth the likelihood. This procedure is

related to annealing and ensures that di�erent samples will be obtained in the sampling from posterior

distributions procedure [Felzenszwalb and Huttenlocher, 2005].

The image likelihood expresses the match between a rectangle of a given size, representing the shape

template of a body part, and a patch in the edges image corresponding to an input frame. It contains
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no colour information about the person we want to detect. This weakness is compensated by the prior

term P (P i|Pπ(i)), which models strict kinematic constraints of the lateral walking pose such as:

1. the torso must be vertical such that the head is above it,

2. the bent in the elbow must be close to 180◦ (we chose this constraint due to the nature of walking

poses in gymnastics, the source of our test videos),

3. the legs must be below the torso,

4. lower end points of the two lower legs must be away from each other.

Figure 4.12 shows a sampled upper leg and all lower leg candidates which satisfy the kinematic constraints

with respect to the sampled upper leg as the parent body part.

Figure 4.12: Valid lower legs (blue rectangles) under kinematic constraints for a sampled upper leg
(purple rectangle).

[Ramanan et al., 2007] also imposed global appearance constraints for the legs, which means that they

compare the colour histograms of the candidate legs and verify if they have a low dissimilarity. We found

that this feature (shown as the pipeline component in Figure 4.13) does not always add value to the

lateral walking pose detection and often chose to disable it.

Figure 4.13: Module building pipeline: General appearance constraints.

Next, we describe the algorithm steps for �nding a lateral walking pose in a static frame.

Model building pipeline: Algorithm steps 1 and 2 (�nding candidates and calculating potentials).

Algorithm

1. Find body part candidates based on shape:

1.1 Calculate singleton potentials Φi (xi) for i ∈ {tor, la, ua, ll, ul}.
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1.2 Retain candidates for which Φi (xi) ≥ chamfer_threshi for i ∈ {tor, la, ua, ll, ul}.
2. Calculate pairwise (kinematic) potentials Ψi,π(i)

(
xi,π(i)

)
where i ∈ {tor, la, ua, ll, ul} and π(i) is

the parent of part i.

3. Potentials to image likelihood and deformable model probabilities:

P (I|P la, Cla)← e − Φla
(
xla

)
/k∑

xla
e − Φla

(
xla

)
/k

P (P la|Pua)← e − Ψla,ua

(
xla,ua

)
/k∑

xla,xua
e − Ψla,ua

(
xla,ua

)
/k

P (I|Pua, Cua)← e
− Φua (xua)/k∑

xua
e − Φua (xua)/k

P (Pua|P tor)← e − Ψua,tor

(
xua,tor

)
/k∑

xua,xtor
e − Ψua,tor

(
xua,tor

)
/k

P (I|P ll, Cll)← e − Φll
(
xll

)
/k∑

xll
e − Φll

(
xll

)
/k

P (P ll|Pul)← e − Ψll,ul

(
xll,ul

)
/k∑

xll,xul
e − Ψll,ul

(
xll,ul

)
/k

P (I|Pul, Cul)← e − Φul
(
xul

)
/k∑

xul
e − Φul

(
xul

)
/k

P (Pul|P tor)← e − Ψul,tor

(
xul,tor

)
/k∑

xul,xtor
e − Ψul,tor

(
xul,tor

)
/k

P (I|P tor, Ctor)← e
− Φtor (xtor)/k∑

xtor
e − Φtor (xtor)/k

Model building pipeline: Algorithm steps 4, 5 and 6 (tree inference).

4. Calculate messages from lower body parts to upper body parts:

mla,ua (xua)←
∑
xla

P (I|P la, Cla)P (P la|Pua) mla,ua (xua)← mla,ua (xua)∑
xua

mla,ua (xua)

mll,ul (xul)←
∑
xll

P (I|P ll, Cll)P (P ll|Pul) mll,ul (xul)←
mll,ul (xul)∑
xul

mll,ul (xul)

5. Separate left upper legs and right upper legs, based on orientation, and calculate messages from

upper body parts to torso:

mua,tor (xtor)←
∑
xua

P (I|Pua, Cua)P (Pua|P tor)mla,ua (xua) mua,tor (xtor)←
mua,tor (xtor)∑
xtor

mua,tor (xtor)

mlul,tor (xtor)←
∑
xlul

P (I|P lul, Clul)P (P lul|P tor)mll,lul (xlul) mlul,tor (xlul)←
mlul,tor (xtor)∑
xtor

mlul,tor (xtor)

mrul,tor (xtor)←
∑
xrul

P (I|P rul, Crul)P (P rul|P tor)mll,rul (xrul) mrul,tor (xrul)←
mrul,tor (xtor)∑
xtor

mrul,tor (xtor)

6. Calculate torso (root) posterior:

btor(xtor)← mua,tor (xtor)mlul,tor (xtor)mrul,tor (xtor) btor (xtor)←
btor(xtor)∑
xtor

btor(xtor)

7. Sampling:

- sample tor_idx from btor (xtor)

- sample lul_idx from P (I|P lul, Clul)P (P lul|P tor_idx)mll,lul (xlul)

- sample lll_idx from P (I|P lll, Clll)P (P ll|P lul_idx) where xll on same side as xlul_idx
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- sample rul_idx from P (I|P rul, Crul)P (P rul|P tor_idx)mll,rul (xrul) where xrul similar in

appearance with xlul_idx and far from xlul_idx

- sample rll_idx from P (I|P rll, Crll)P (P ll|P rul_idx) where xll on same side as xrul_idx and

similar in appearance with xlll_idx

- sample ua_idx from P (I|Pua, Cua)P (Pua|P tor_idx)mla,ua (xua)

- sample la_idx from P (I|P la, Cla)P (P la|Pua_idx)

Model building pipeline: Algorithm step 7 (sampling).

Step 7 is performed 2000 times. This leads to 2000 di�erent lateral walking pose con�gurations obtained

in a single frame. The �nal walking pose in this frame is selected as the pose with the highest score,

where the score is calculated as the sum of the image likelihoods of all body parts (model building module

pipeline component shown in Figure 4.14).

Figure 4.14: Model building pipeline: Choosing the best sampled con�guration in a frame.

A result example of the above algorithm on an input frame of a gymnast on a beam is shown in Figure

4.15.

Figure 4.15: Lateral walking pose detection
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4.3 Classi�cation and Evaluation

When a lateral walking pose is found in a frame, the system �rst evaluates the correctness of the pose

detection. Once the entire video has been processed to �nd all the lateral walking poses, their respective

scores are compared to obtain the best detection (pipeline component shown in Figure 4.16(a)). We

explain the evaluation in Section 4.3.3. The best lateral walking pose detection is chosen to further learn

the appearance model of the distinct body parts (pipeline component shown in Figure 4.16(b)).

(a) Model building pipeline: Walking pose evaluation in di�erent frames. (b) Model building pipeline: Learning
appearance model parameters.

Figure 4.16

We �rst lay the foundation of the classi�cation method in Section 4.3.1 and Section 4.3.2. Then we

explain the pose evaluation procedure in Section 4.3.3.

4.3.1 Linear methods for classi�cation

Given a number of variables that describe an object, classi�cation addresses the problem of placing

the object in a class and estimating the probability that the object is part of that class [Feelders and

Veltkamp, 2012].

In the following, we will use the concepts and notations of [Hastie et al., 2001] to derive the theoretical

background for linear methods for classi�cations and linear logistic regression. The set of variables are

called inputs which determine the outputs, also called responses. The outputs can belong to di�erent

classes denoted as G. In our context, the inputs are the colour values of a pixel and the classes are: body

part pixel and non-body part pixel, for a speci�c body part.

The main assumption of linear regression is that the regression function E(Y |X) is linear in the inputs.

Given a vector of inputs X = (X1, X2, . . . , Xp), the linear regression model that predicts the output Y
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has the form:

f(X) = β0 +

p∑
j=1

Xjβj (4.3.1)

where β0 is called intercept or bias and βj 's are model coe�cients and need to be learnt through classi-

�cation. If the vector X includes the constant 1 and the intercept is included in β, equation (4.3.1) can

be rewritten as

f(X) = XTβ (4.3.2)

We wish to model posterior probabilities P (G = k|X = x), that is, given that we know the colour of a

pixel, what is the probability that the pixel is part of a speci�c body segment. Linear methods require

that some monotone transformation of this probability is linear, so that the decision boundaries which

divide the input space in regions are linear.

A common model for the posterior probabilities is the logistic function as logit−1 (α) = 1
1+e(−α) = eα

1+eα .

The graph for this function is drawn in Figure 4.17.

Figure 4.17: Standard logistic function

For the two class case, the probabilities are formulated as follows:

P (G = 1|X = x) =
e(β0+β

T x)

1 + e(β0+βT x)

P (G = 2|X = x) =
1

1 + e(β0+βT x)

(4.3.3)

The monotone transformation is the logit transformation logit (p) = log [ p
1−p ]. The logistic function is

the inverse of the logit transformation. The ratio P (G=1|X=x)
1−P (G=1|x=x) is called odds.

Equations (4.3.3) result in the log-odds:

log
P (G = 1|X = x)

P (G = 2|X = x)
= β0 + βTx (4.3.4)

The decision boundary is obtained by making equation (4.3.4) equal to 0 which describes the hyperplane

{x|β0 + βTx}. Linear logistic regression results in linear log-odds and will be discussed in Section

4.3.2. Now, considering that G has K classes, the responses will be represented by K indicator variables

Yk, k = 1, . . . ,K, with: Yk = 1 if G = k and Yk = 0 elsewise.
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The indicator response matrix Y is a N ×K matrix, where N is the number of available input data and

each row is constituted by the vectors Y = (Y1, . . . , YK) . In the following we will consider K = 2 classes,

body part pixel and non-body part pixel.

4.3.2 Logistic regression

The model for two class logistic regression has the same form as equation (4.3.4). Logistic regression

ensures that the posterior probabilities of the K classes sum to one and remain under the unit value.

[Hastie et al., 2001] demonstrate this on the general case of K classes.

Considering N observations, their log-likelihood is:

l(β) =

N∑
i=1

log pgi(xi;β) (4.3.5)

where pk(xi;β) = P (G = k|X = xi;β).

For our two classes, we can encode gi = 1 with yi = 1 and gi = 2 with yi = 0. Therefore, the response

vectors will contain a 1 for those pixels which belong to the body part and a 0 for all the other pixels in

the image. The log-likelihood log pgi(x;β) takes one of two values:

log pgi(x;β) =

{
log p(x;β), yi = 1

1− log p(x;β), yi = 0
(4.3.6)

Using the 0/1 for yi values as a selector, we can rewrite equation (4.3.5) as such:

l(β)) =

N∑
i=1

{yi log p(xi;β) + (1− yi) log(1− p(xi;β))} (4.3.7)

=

N∑
i=1

{yi log p(xi;β) + log(1− p(xi;β))− yi log(1− p(xi;β))} (4.3.8)

=
N∑
i=1

{
yi log

p(xi;β)

1− p(xi;β)
+ log(1− p(xi;β))

}
(4.3.9)

From equation (4.3.4), we see that log p(xi;β)
1−p(xi;β) = βTxi. From equation (4.3.3), we see that 1−p(xi;β) =

1

1+eβ
T xi

. Replacing these into (4.3.9) leads to:

l(β) =

N∑
i=1

{
yiβ

Txi − log
(

1 + eβ
T xi
)}

, (4.3.10)

where β contains the intercept and vectors xi contain the corresponding constant value 1.

Knowing that d
dx logb u(x) = 1

x ln bu
′(x), the derivation of the previous equation results in the following:

∂l(β)

∂β
=

N∑
i=1

(
xiyi −

1

(1 + eβT xi) ln e
eβ

T xixi

)
=

N∑
i=1

xi

(
yi −

eβ
T xi

1 + eβT xi

)
(4.3.11)
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With (4.3.3) and setting the derivative to 0, in order to maximize (4.3.9), (4.3.11) becomes:

∂l(β)

∂β
=

N∑
i=1

xi(yi − p(xi;β)) = 0 (4.3.12)

Newton-Raphson algorithm

Equations (4.3.12) are called score equations and are solved using the Newton-Raphson algorithm [Weis-

stein, c]. This algorithm is an iterative method to �nd the root of a function. Considering x0 an initial

approximation of the root, x1 = x0 + ε0 is taken as a better approximation of the root. Using the Taylor

expansion of f(x1), the o�set ε0 is ε0 = − f(x0)
f ′(x0)

. With the calculated value of x1, the process can be

repeated until convergence.

In our terms, we can say that x1 is βnew, x0 is βold and f(x) is ∂l(β)
∂β . Then,

βnew = βold −
(
∂2l(β)

∂β∂βT

)−1
∂l(β)

∂(β)
(4.3.13)

This update is repeated until either the log-likelihood increases, or, if the log-likelihood decreases, the

step size is halved.

In matrix notation:

y vector of yi values

X N × (p+ 1) matrix of xi values

p vector of �tted probabilities p(xi;β
old)

W N ×N diagonal matrix of weights p(xi;β
old)(1− p(xi;βold))

Then, the �rst derivative of the likelihood w.r.t. β is ∂l(β)
∂(β) = XT (y−p), and the second derivative of the

likelihood w.r.t. β, or the Hessian, is ∂2l(β)
∂β∂βT

= −XTWX. Practically, in the implementation, we invert

the Hessian matrix using [alg, 2013].

Input data

[Ramanan et al., 2005] used a quadratic logistic regression model to learn the appearance of distinct

body parts. This model solves the issue of testing on the same data used for training, which in case of

nearest neighbors classi�ers gives zero errors. The input vectors xi, in this case, are composed of:

� R, G, B values of foreground and background pixels

� basis expansions R2, G2, B2, RB, GB, RG

Foreground pixels are those pixels contained within the rectangle that represents the detection of a body

part. Background pixels are all the other pixels in the image. Figure 4.18 shows the mask for the torso

pixels where the occluding arm has been removed. The pixels under this masks will be used as positive

samples, while all other pixels in the image will be used as negative samples.

For each upper leg and lower leg respectively, the pairwise body parts are ignored, in order to remove

false negatives. This is founded by the assumption that the legs should be similar in appearance. Unlike

the original method where pixels from both legs were used as positives, we only use the left side leg pixels

to learn the appearance, for computation speed reasons.
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(a) Lateral walking pose detection (b) Torso pixels mask

Figure 4.18: Torso pixels masks with removed occluding arm for appearance learning

4.3.3 Walking pose evaluation in di�erent frames

In this section we refer to the model building module pipeline components shown in Figure 4.16(a). The

body part detection (pixels within the green rectangles in Figure 4.19) are used as positives and the

�anking rectangles (pixels within the dashed red rectangles in Figure 4.19) of said detection are used as

negatives to build a logistic regression appearance model of the respective body part. The model is then

tested on the same pixels and the misclassi�ed pixels are counted, accounting for the score of a detection.

A misclassi�ed pixel is said to be a pixel whose classi�cation result di�ers from the actual status (inside

or outside the body part detection).

The classi�cation result is given by the computed log-likelihood of the pixel being a body part pixel,

which can be computed with known appearance model β using equations (4.3.3) and (4.3.7). A likelihood

above 0.5 means that the pixel was classi�ed as body part pixel, otherwise the pixel was classi�ed as

background pixel (see the graph of the standard logistic function in Figure 4.17).

(a) Correct body part detection (b) Wrong body part detection

Figure 4.19: Body part detections and �anking rectangles used to evaluate detection correctness

We explain this reasoning by illustrating two cases in Figure 4.19: the case when the detection is correct

and the case when the detection is slightly deviated from the correct position. In case 4.19(a), the pixels

within the �anking rectangles will have a completely di�erent appearance than the pixels within the

detection. In case 4.19(b), the pixels within the �anking rectangles will look like some of the pixels

within the detection (as the incorrect detection includes both body part pixels and non-body part pixels

in the illustrated case). In the latter case, the learnt model will classify pixels from the �anking rectangles

as body part pixels, increasing the number of misclassi�ed pixels, therefore accurately indicating that

the detection is incorrect.
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Finally, the summation of the misclassi�ed pixels for each body part gives the total score for a lateral

walking pose detection. The appearance models are learnt from the frame that contains the lateral

walking pose detection with the highest score.



5 | Detection

The goal of this module is to �nd general human poses by using the learnt body part colour appearance

models, as well as the initially known person scale. The pipeline of the detection module is given in

Figure 5.1. The candidates are matched in a pictorial structure, then inference is performed on the tree

model, to obtain the posterior. Several con�gurations are sampled from the posterior, which determine

the distribution of poses. The last step is to �nd the modes of this distribution which represent the �nal

detection.

Figure 5.1: Detection module pipeline.

The original method, that of the single frame pictorial structure, is contained within the black dashed

rectangle. We try to improve this method by suggesting two ways of including the previous frame

information through the motion model prior:

1. We consider the previous body part detection (obtained with the modes �nding procedure) as P it−1

and calculate the motion model prior with respect to this previous body part as P (P it |P it−1). This

feature is shown with a dot and dash green arrow in Figure 5.1.

2. We consider all the previously sampled body part candidates xit−1 , and calculate the motion model

prior with respect to these candidates as
∑
xit−1

[
P (P it |P it−1)P (It−1|P it−1, Ci)

]
. This feature is

shown with a dashed green arrow in Figure 5.1.

Finding a stylised pose, as described in Section 4.2, is possible due to rigorously imposed kinematic

constraints, general poses require more relaxed body part connections, to account for variety. Colour and

30
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shape appearance models combined give a more reliable image likelihood compared to shape templates

alone. This compensates for the soft kinematic constraints. We also added a motion model to aid

detection accuracy.

5.1 Searching for body parts using appearance models

In this section we explain how rectangular templates and the learnt colour appearance models can be

used to �nd candidate body parts in input frames containing any possible human pose. With learnt

colour appearance model parameters βi, the indicator response vector for body part i becomes:

Yi =


xT1

xT2
...

xTN




βi1
...

βi9

1

 (5.1.1)

where:

xTj colour values
(
R G B R2 G2 B2 RB GB RG 1

)
, at pixel j

N number of pixels in the image

Yi binary N sized indicator response vector

i body part.

The binary image in Figure 5.2(f) showing pixels assigned to a speci�c body part is obtained by reshaping

the values from the output vector Y according to input frame width and height. Knowing which areas in

the image look like body part of interest, the next step is to match the rectangular body part template to

these areas. Matching will give the body part centre coordinates and orientation with the highest score,

or image likelihood. The procedure is conceptually similar to the one described in Section 4.1, namely

using rectangular �lters as part templates. The di�erence is that the search is now more localized.

Similar to [Ramanan et al., 2007], we use a Gaussian centered at the part template to model the local

image patch. This is a two-dimensional Gaussian function calculated as:

f(x, y) = Ae
−
[
x−x0
2σ2
x

+
y−y0
2σ2
y

]
, for x ∈ [0, width] and y ∈ [0, length] (5.1.2)

where:

A is the amplitude, set at A = length · width

σx, σy are the x and y spreads, set at σx = 0.2 · width2 and σy = 0.2 · length2

x0, y0 are the means, x0 = width/2 and y0 = length/2.

For A, σx and σy we use the same values as the authors.

The following two �lters are used: an interior �lter obtained by �anking the two-dimensional Gaussian

function in equation (5.1.2) with two equally sized black rectangles (Figure 5.2(b)) and an exterior �lter

composed of a black rectangle �anked by two white rectangles of the body part's width and length (Figure
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5.2(g)). Let these two �lters be Hi1 and Hi2 (where i denotes the body part), and Ii the input image

obtained from the indicator response vector Yi. Then, the singleton potential for body part i, calculated

at body part i candidate xi, is obtained from the following equation:

Φi (xi(x, y, θ)) = e
− [(1−Ii)?Hi1(θ)](x,y)+[Ii?Hi2(θ)](x,y)

lengthi·widthi·k , (5.1.3)

where Hi1(θ) and Hi2(θ) are �lters rotated with angle θ. Figures 5.2(c) and 5.2(h) show convolutions

(1− Ii) ? Hi1(135◦) and Ii ? Hi2(135◦), respectively.

The body part candidate xi is parameterised by its centre coordinates (x, y), known width and length

and orientation θ. Possible orientations θ are θ = a · 15◦, for a = 1, . . . , 12.

(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 5.2: Body part detection with known appearance and shape model.
(a),(f) - assigned body part pixels. (b), (g) - interior and exterior �lters. (c), (h) - convolutions

(d) - cost as exponential of the sum of (c) and (h). (e) - thresholded cost.

The valid candidates xi are the candidates for which the singleton potential Φi(xi) is larger than an

imposed threshold. Figure 5.2(d) shows the result of equation (5.1.3) for θ = 135◦. Figure 5.2(e) shows

the thresholded result. The non-black pixel values represent the values for Φi (xi(135◦)), while their

coordinates represent the center coordinates (x, y) for candidates xi oriented at 135◦. This procedure is

performed for all possible orientations, mentioned above.

In Figure 5.3 we compare the results obtained when looking for upper legs using only the shape model

(rectangular template) and using both the shape model and the colour appearance model. Figure 5.3(b)

shows more accurately localized upper legs, relative to the person's position.

For the head, which is represented as a square instead of a rectangle and parameterised with a single

orientation θ = 0◦, the above algorithm is slightly di�erent. The Gaussian centred at the part template

f , the interior �lter f1, and exterior �lter f2, are given by the following equations:

f(x, y) = A1e
−
[
x−x0
2σx

2
1
+
y−Y0
2σy

2
1

]
+A2e

−
[
x−x0
2σx

2
2
+
y−y0
2σy

2
2

]
(5.1.4)

f1(x, y) =

{
f(x, y), f(x, y) > 0

0, f(x, y) ≤ 0
(5.1.5)

f2(x, y) =

{
−f(x, y), f(x, y) ≤ 0

0, f(x, y) > 0
(5.1.6)
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(a) Result with shape model (b) Result with shape and appearance model

Figure 5.3: Sample image with candidate upper legs represented by purple rectangles

for x, y ∈ [0, width], where:

A1, A2 are amplitudes, set at A1 = 1 andA2 = 0.5

σx1, σy1, σx2, σy2 are the x and y spreads, set at σx1 = σy1 = 0.25 · width2 and σx2 = σy2 = 0.5 · width2

x0, y0 are the means, x0 = y0 = (4 · width+ 1)/2.

Filters f1 and f2 are shown in Figures 5.4(b) and 5.4(g).

(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 5.4: Head detection with known appearance and shape model
(a),(f) - assigned head pixels. (b), (g) - interior and exterior �lters. (c), (h) - convolutions

(d) - cost as exponential of the sum of (c) and (h). (e) - thresholded cost.

The following equation gives the singleton potential Φhead(xhead):

Φhead (xhead(x, y)) = e−
((1−Ihead)?f1)(x,y)+(Ihead?f2)(x,y)

k . (5.1.7)

Figures 5.4(c) and 5.4(h) show convolutions (1− Ihead) ? f1 and Ihead ? f2, respectively.

As for the other body part types, the valid candidates xhead are the candidates for which the singleton

potential Φhead(xhead) is larger than an imposed threshold. Figure 5.4(d) shows the result of equation

(5.1.7). Figure 5.4(e) shows the thresholded result. The non-black pixel values represent the values for

Φhead(xhead), while their coordinates represent the center coordinates (x, y). We show the result obtained

via this procedure in Figure 5.5.
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Figure 5.5: Sample image with candidate heads (turquoise squares) obtained with shape and appear-
ance model

5.2 General pictorial structure

To deal with overlap between body parts, the general pictorial structure is modelled as a single arm,

single leg pictorial structure. By sampling from the posterior of body con�gurations, we will �nd such

poses that will either encompass only one leg/arm at the time. This means that, for example, for a

fully visible person, some single arm, single leg con�guration samples will contain the right arm, other

samples will contain the left arm. In this case, the mode �nding procedure will determine two modes

which correspond to the two distinct arms or legs (see Section 5.3).

In the single frame pictorial structure formula P (P 1:N , I|C1:N ) ∝
∏N
i=1 P

(
I|P i, Ci

)
P (P i|Pπ(i)), the

value for the image likelihood P (I|P i, Ci) will be:

P (I|P i, Ci) =
e − Φi

(
xi

)
/k∑

xi
e − Φi

(
xi

)
/k
, (5.2.1)

where xi is a candidate obtained with the procedure described in Section 5.1, Φi (xi) is calculated with

one of the formulas (5.1.3) or (5.1.7) and k is a scaling factor used to smooth the likelihood.

In comparison with the stylised pictorial structure case, where the image likelihood was a function of

the matching score between a shape template and an edge image patch, now the image likelihood also

carries information about the match between colour appearances of the learnt template and the image

patch, respectively. This allows for lesser strict kinematic constraints, which need to be general enough

in order cover the entire range of human poses. Except for the hard constraints, which impose that body

parts are connected, some softer constraints express a preference for certain relative positions, like:

1. the upper arm/leg position should preferably be far away from the torso,

2. shoulder and wrist should not overlap,

3. the lower leg position should preferably be far away from the upper leg.

5.2.1 Single frame pictorial structure

Figure 5.6 shows the graphical model for a single frame, single arm, single leg pictorial structure. The

inference on this model is done according to the procedure explained in Section 3.3. This algorithm �nds

single arm, single leg body con�gurations using the information found in the current frame only (without
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a motion model prior). [Ramanan et al., 2007] obtained successful detection results using this algorithm

and by smoothing the track. Smoothing was done by adding the previous frame and the next frame

samples to the current set of samples, which they provided as input to the modes �nding procedure.

Sampling was done 1000 times in each frame.

Figure 5.6: Tree model of a single frame pictorial structure

Algorithm

1. Find body part candidates based on shape and colour appearance:

1.1 Calculate singleton potentials Φi (xi) for i ∈ {tor, la, ua, ll, ul, h}.
1.2 Retain candidates for which Φi (xi) ≥ threshi for i ∈ {tor, la, ua, ll, ul, h}.

2. Calculate pairwise (kinematic) potentials Ψi,π(i)

(
xi,π(i)

)
where i ∈ {tor, la, ua, ll, ul, h} and π(i) is

the parent of part i.

3. Potentials to probabilities:

P (I|P la, Cla)← e − Φla
(
xla

)
/k∑

xla
e − Φla

(
xla

)
/k

P (P la|Pua)← e − Ψla,ua

(
xla,ua

)
/k∑

xla,xua
e − Ψla,ua

(
xla,ua

)
/k

P (I|Pua, Cua)← e
− Φua (xua)/k∑

xua
e − Φua (xua)/k

P (Pua|P tor)← e − Ψua,tor

(
xua,tor

)
/k∑

xua,xtor
e − Ψua,tor

(
xua,tor

)
/k

P (I|P ll, Cll)← e − Φll
(
xll

)
/k∑

xll
e − Φll

(
xll

)
/k

P (P ll|Pul)← e − Ψll,ul

(
xll,ul

)
/k∑

xll,xul
e − Ψll,ul

(
xll,ul

)
/k

P (I|Pul, Cul)← e − Φul
(
xul

)
/k∑

xul
e − Φul

(
xul

)
/k

P (Pul|P tor)← e − Ψul,tor

(
xul,tor

)
/k∑

xul,xtor
e − Ψul,tor

(
xul,tor

)
/k

P (I|Ph, Ch)← e − Φh
(
xh

)
/k∑

xh
e − Φh

(
xh

)
/k

P (Ph|P tor)← e − Ψh,tor

(
xh,tor

)
/k∑

xh,xtor
e − Ψh,tor

(
xh,tor

)
/k

P (I|P tor, Ctor)← e
− Φtor (xtor)/k∑

xtor
e − Φtor (xtor)/k

4. Calculate messages from lower body parts to upper body parts:

mla,ua (xua)←
∑
xla

P (I|P la, Cla)P (P la|Pua) mla,ua (xua)← mla,ua (xua)∑
xua

mla,ua (xua)

mll,ul (xul)←
∑
xll

P (I|P ll, Cll)P (P ll|Pul) mll,ul (xul)←
mll,ul (xul)∑
xul

mll,ul (xul)
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5. Calculate messages from upper body parts and head to torso:

mua,tor (xtor)←
∑
xua

P (I|Pua, Cua)P (Pua|P tor)mla,ua (xua) mua,tor (xtor)←
mua,tor (xtor)∑
xtor

mua,tor (xtor)

mul,tor (xtor)←
∑
xul

P (I|Pul, Cul)P (Pul|P tor)mll,ul (xul) mul,tor (xul)←
mul,tor (xtor)∑
xtor

mul,tor (xtor)

mh,tor (xtor)←
∑
xh

P (I|Ph, Ch)P (Ph|P tor) mh,tor (xtor)←
mh,tor (xtor)∑
xtor

mh,tor (xtor)

6. Calculate torso (root) posterior as mixture or messages:

[btor(xtor)]1 ← mul,tor (xtor)mh,tor (xtor) [btor(xtor)]1 ←
[btor(xtor)]1∑
xtor

[btor(xtor)]1

[btor(xtor)]2 ← mul,tor (xtor)mh,tor (xtor)mua,tor (xtor) [btor(xtor)]2 ←
[btor(xtor)]2∑
xtor

[btor(xtor)]2

btor (xtor)← P (I|P tor, Ctor){[btor(xtor)]1 + [btor(xtor)]2}

btor (xtor)←
btor(xtor)∑
xtor

btor(xtor)

7. Sampling:

- sample tor_idx from btor (xtor)

- sample ul_idx from P (I|Pul, Cul)P (Pul|P tor_idx)mll,ul (xul)

- sample ll_idx from P (I|P ll, Cll)P (P ll|Pul_idx))

- sample ua_idx from P (I|Pua, Cua)P (Pua|P tor_idx)mla,ua (xua)

- sample la_idx from P (I|P la, Cla)P (P la|Pua_idx)

- sample h_idx from P (I|Ph, Ch)P (Ph|P tor_idx)

5.2.2 Two frame pictorial structure

We aim to improve the detection result obtained with the single frame pictorial structure algorithm

(without smoothing). Therefore, we introduce two variants of temporal graphical models, which include

the detection from the previous frame.

Algorithm 1

First, we add only the previous part detection (obtained from the mode �nding procedure) as parents

to the current body part nodes, as shown in Figure 5.7. This allows us to introduce the motion model

prior in the posterior from which a body part is sampled as:

P
(
P it , It|P

π(i)_idx
t , P it−1, C

i
)
∝ P

(
It|P

π(i)_idx
t , Cπ(i)_idx

)
P
(
P it |P

π(i)_idx
t

)
P
(
P it |P it−1

) ∏
j∈C(i)

mj,i (xi) ,

(5.2.2)

where P it−1 is the body part detection from the previous frame.

The algorithm steps are the following:

1. Find body part candidates based on shape and colour appearance:

1.1. Calculate singleton potentials Φi (xi) for i ∈ {tor, la, ua, ll, ul, h}.
1.2. Retain candidates for which Φi (xi) ≥ threshi for i ∈ {tor, la, ua, ll, ul, h}.
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Figure 5.7: Two frame pictorial structure with previous parts detections as parents

2. Calculate pairwise potentials:

2.1. Kinematic constraints Ψi,π(i)

(
xi,π(i)

)
, where i ∈ {tor, la, ua, ll, ul, h} and π(i) is the parent of

part i.

2.2. Motion model P (P it |P it−1) = Ψi,prev_i

(
xi,prev_i

)
, where i ∈ {tor, la, ua, ll, ul, h} and prev_i

is the body part detection in the previous frame.

3.-5. Similar to single frame pictorial structure algorithm.

6. Calculate torso (root) posterior as mixture or messages:

[btor(xtor)]1 ← mul,tor (xtor)mh,tor (xtor) [btor(xtor)]1 ←
[btor(xtor)]1∑
xtor

[btor(xtor)]1

[btor(xtor)]2 ← mul,tor (xtor)mh,tor (xtor)mua,tor (xtor) [btor(xtor)]2 ←
[btor(xtor)]2∑
xtor

[btor(xtor)]2

btor (xtor)← P (It|P tort , Ctor)P (P tort |P tort−1){[btor(xtor)]1 + [btor(xtor)]2}

btor (xtor)←
btor(xtor)∑
xtor

btor(xtor)

7. Sampling:

- sample tor_idx from btor (xtor)

- sample ul_idx from P (It|Pult , Cul)P (Pult |P
tor_idx
t )P (Pult |Pult−1)mll,ul (xul)

- sample ll_idx from P (It|P llt , Cll)P (P llt |P
ul_idx
t )P (P llt |P llt−1)

- sample ua_idx from P (It|Puat , Cua)P (Puat |P
tor_idx
t )P (Puat |Puat−1)mla,ua (xua)

- sample la_idx from P (It|P lat , Cla)P (P lat |P
ua_idx
t )P (P lat |P lat−1)

- sample h_idx from P (It|Pht , Ch)P (Pht |P
tor_idx
t )P (Pht |Pht−1)

Algorithm 2

Second, we add all the previously sampled body part candidates as parents to the current body part

nodes, as shown in Figure 5.8. This allows us to calculate the posterior from which a body part is

sampled as:
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P
(
P it , It|P

π(i)_idx
t , P it−1, C

i
)
∝P

(
It|P

π(i)_idx
t , Cπ(i)_idx

)
P
(
P it |P

π(i)_idx
t

)
∑
xit−1

[
P (P it |P it−1)P (It−1|P it−1, Ci)

] ∏
j∈C(i)

mj,i (xi) , (5.2.3)

where we have averaged over all previously sampled candidates xit−1
, to obtain the motion model prior.

This di�erence re�ects in Steps 6 and 7 of Algorithm 2, compared to Steps 6 and 7 of Algorithm 1.

Figure 5.8: Two frame pictorial structure with previous parts candidates as parents

The algorithm steps are the following:

1.-5. Similar to Algorithm 1.

6. Calculate torso (root) posterior as mixture or messages:

[btor(xtor)]1 ← mul,tor (xtor)mh,tor (xtor) [btor(xtor)]1 ←
[btor(xtor)]1∑
xtor

[btor(xtor)]1

[btor(xtor)]2 ← mul,tor (xtor)mh,tor (xtor)mua,tor (xtor) [btor(xtor)]2 ←
[btor(xtor)]2∑
xtor

[btor(xtor)]2

btor (xtor)← P (It|P tort , Ctor)
∑

xtort−1

[
P (P tort |P tort−1)P (It−1|P tort−1, C

tor)
]
{[btor(xtor)]1 + [btor(xtor)]2}

btor (xtor)←
btor(xtor)∑
xtor

btor(xtor)

7. Sampling:

- sample tor_idx from btor (xtor)

- sample ul_idx from P (It|Pult , Cul)P (Pult |P
tor_idx
t )

∑
xult−1

[
P (Pult |Pult−1)P (It−1|Pult−1, Cul)

]
mll,ul (xul)

- sample ll_idx from P (It|P llt , Cll)P (P llt |P
ul_idx
t )

∑
xllt−1

[
P (P llt |P llt−1)P (It−1|P llt−1, Cll)

]
- sample ua_idx from P (It|Puat , Cua)P (Puat |P

tor_idx
t )

∑
xuat−1

[
P (Puat |Puat−1)P (It−1|Puat−1, Cua)

]
mla,ua (xua)

- sample la_idx from P (It|P lat , Cla)P (P lat |P
ua_idx
t )

∑
xlat−1

[
P (P lat |P lat−1)P (It−1|P lat−1, Cla)

]
- sample h_idx from P (It|Pht , Ch)P (Pht |P

tor_idx
t )

∑
xht−1

[
P (Pht |Pht−1)P (It−1|Pht−1, Ch)

]
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5.3 Modes

The 1000 samples obtained for each body part in the single arm, single leg pictorial structure constitute

the feature space for that speci�c body part. Figure 5.9(a) shows an example of 1000 sampled upper legs

drawn on the input frame. Figure 5.9(b) is an alternative representation to show the density distribution

obtained from these samples.

The signi�cant features, or the two upper leg detections that we need to �nd in this case, will be at

the dense regions (or clusters) of the feature space. Finding these clusters can be done using a density

estimation-based nonparametric clustering approach. The main idea is that the feature space is regarded

as the empirical probability density function (p.d.f.) of the represented parameter, such that dense

regions correspond to the local maxima of the p.d.f., or the modes of the unknown density.

(a) (b)

Figure 5.9: (a) 1000 upper legs sampled from the posterior, depicted as purple rectangles.
(b) Probability density function obtained from the 1000 upper leg samples.

5.3.1 Mean shift algorithm

The employed mode detection procedure by [Ramanan et al., 2007] is the mean shift algorithm [Comaniciu

and Meer, 2002]. We derive this algorithm by �rst introducing kernel estimation as a nonparametric

method for probability density estimation. For an arbitrary set of n data points {xi}i=1,...,n in the d-

dimensional space IRd, the multivariate kernel density estimator with kernel K(x) and windows radius

(or bandwidth) h, in the point x is de�ned as:

f̂(x) =
1

nhd

n∑
i=1

K

(
x− xi
h

)
. (5.3.1)

The pro�le of a kernel K is a function k : [0,∞) → IR such that K(x) = ck,dk
(
‖x‖2

)
, where ck,d is a

strictly positive normalisation constant that makes K(x) integrate to 1. Using the pro�le notation, the

density estimator in equation (5.3.1) can be written as:

f̂h,K(x) =
ck,d
nhd

n∑
i=1

k

(∥∥∥∥x− xih

∥∥∥∥2
)
. (5.3.2)

Assuming that the derivative of the kernel pro�le k exists for all x ∈ [0,∞), except for a �nite set of points,

the pro�le g can be de�ned as g(x) = −k′(x). A kernel G can now be de�ned as G(x) = cg,dg
(
‖x‖2

)
.
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The modes are located at the zeros of the gradient ∇f(x) = 0. The estimate of the density gradient can

be de�ned as the gradient of kernel density estimate:

∇̂fh,K(x) ≡ ∇f̂h,K(x) =
2ck,d
nhd+2

n∑
i=1

(x− xi)k′
(∥∥∥∥x− xih

∥∥∥∥2
)

(5.3.3)

=
2ck,d
nhd+2

n∑
i=1

(xi − x)g

(∥∥∥∥x− xih

∥∥∥∥2
)

(5.3.4)

=
2ck,d
nhd+2

[
n∑
i=1

g

(∥∥∥∥x− xih

∥∥∥∥2
)]∑n

i=1 xig
(∥∥x−xi

h

∥∥2)∑n
i=1 g

(∥∥x−xi
h

∥∥2) − x
 . (5.3.5)

The �rst term in equation (5.3.5) can be written in relation to the density estimate computed with kernel

G as:

f̂h,G(x) =
cg,dh

2

2ck,d
· 2ck,d
nhd+2

[
n∑
i=1

g

(∥∥∥∥x− xih

∥∥∥∥2
)]

. (5.3.6)

The last term in equation (5.3.5) is the sample mean shift vector,

mh,G(x) ≡

∑n
i=1 xig

(∥∥x−xi
h

∥∥2)∑n
i=1 g

(∥∥x−xi
h

∥∥2) − x
 , (5.3.7)

or the di�erence between the weighted mean, where the weights are given by kernel G, and the centre of

the kernel window x. It can be seen that the maximum value for f̂h,K will be attained when mh,G(x) = 0.

Replacing (5.3.6) and (5.3.7) in (5.3.5) results in:

∇̂fh,K(x) = f̂h,G(x)
2ck,d
cg,dh2

mh,G(x)⇒ mh,G(x) =
cg,dh

2

2ck,d
· ∇̂fh,K(x)

f̂h,G(x)
, (5.3.8)

which shows that the mean shift vector computed with kernel G is proportional to the normalized

density gradient estimate obtained with kernel K, meaning that the mean shift vector points towards the

maximum increase in the density. The mean shift vector can lead to the stationary point of the estimated

density, which represents the mode.

The mean shift procedure thus consists of the following steps, repeated until convergence:

1. Fix a (kernel) window G(x) around every data point.

2. Calculate the mean shift vector mh,G(x) within that window.

3. Translate the (kernel) window G(x) by mh,G(x).

The convergence of this algorithm is demonstrated in [Comaniciu and Meer, 2002].

Implementation The feature space employed by [Ramanan et al., 2007] consists of the 2D end points

coordinates for each sampled body part. The chosen kernel, G, is the uniform kernel, the metric is

the Euclidean distance and the chosen bandwidth h is the torso length (which is the largest body part

length). The starting point x is the feature vector which tessellates the entire feature space by kernels

of the given bandwidth.

Figure 5.10(a) shows the di�erent body part distributions obtained from the 1000 samples, which are

colour coded as follows: red for the torso, green for the upper arms and upper legs, blue for the lower

arms, lower legs and the head. Finding the single arm, single leg pose means �nding the �rst mode from
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each of these distributions. This is achieved in a relatively small number of iterations, as can be seen in

Figure 5.10.

(a) Probability densities (b) Mean shift iteration 1 (c) Mean shift iteration 6

(d) Mean shift iteration 11 (e) Mean shift (last) iteration 15 (f) Single arm, single leg pose

Figure 5.10: Mean shift on posterior distributions to �nd single arm, single leg pose modes.

The second mode on the arms and legs distributions will fall on the second limb. The search for the

second mode is done on samples that do not belong to the �rst mode. [Ramanan et al., 2007] impose

that a certain fraction of the total number of samples lay next to this second mode. This is motivated

by the fact that the number of remaining samples might be low, thus forming a weak distribution. A

mode found on this distribution would not be as prominent as the �rst one. Figure 5.11 shows the result

of the mean shift procedure on the distribution obtained from the leg samples which do not belong to

the �rst modes (for the �rst upper leg and lower leg, respectively).

(a) Probability densities (b) Mean shift (last) iteration 8 (c) Second mode for upper and lower legs

Figure 5.11: Mean shift on posterior distributions to �nd the second mode for upper and lower legs
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6.1 Method analysis

6.1.1 Size in�uence on candidate detection

We study the relationship between a body part's size and the quality of the search results in the detection

module of the tracking system (body part size and appearance parameters known, as described in Section

5.1). We hypothesize that the larger a body part is, the more reliable the detection.

Experiment setup

We test this hypothesis by searching for a person in three di�erent sequences consisting of ten frames

each. To obtain the ground truth, we �rst inspect the detection results obtained with the two frame

pictorial structure algorithm 1. If the system outputs visually correct �nal body pose detections (in

which the rectangles cover the actual body parts), then we consider these as the ground truth. This

automatic step is useful to save time in the process of labelling the ground truth data. In case the body

pose detection is not entirely correct, meaning it has wrong or undetected limbs, we manually label those

parts (by providing the body part parameters: centre coordinates (x, y) and orientation θ, which we

approximate visually).

In our evaluation, a candidate is considered to be correct if its centre deviates less than 40% of the body

part diagonal length from the ground truth centre coordinates. We chose this measure because we found

that the candidates that abide it manage to cover (a signi�cant part of) the actual body parts.

A sample image from each of the three di�erent sequences is provided in Figure 6.1.

(a) Video 1 (b) Video 2 (c) Video 3

Figure 6.1: Sample image from each test sequences

42
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Table 6.1: Search precision for candidate body parts using appearance and shape models

Results Table 6.1 shows the results of our experimentation, averaged over the ten frames. For each

video and each body part in the single arm, single leg pictorial structure, we list the known size, the

singleton potential Φi(xi) threshold for a candidate to be considered valid, the total number of retrieved

candidates (which scored better than the threshold), the number of correctly retrieved candidates (as

explained above) and the search precision. We colour code the precision with green for high values,

yellow for in-between values and red for small values.

Torso and legs We �nd high precision values for the torso, which means that the method is guaranteed

to �nd a person in a frame, if the person exists and its torso colour appearance model was learnt. We

notice that, for each video, the precision decreases with the size of the body part: from torso to upper

legs and lower legs, respectively. This result is in agreement with our hypothesis.
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Arms The upper arms tend to have a search precision as high as the lower legs, with the exception

of the upper arms in video 3. We assume this is due to the fact that the upper arms in video 3 are

white and the torso is blue and no upper arm candidates are detected on the torso. We observe that a

signi�cant number of incorrect upper arm candidates in the other videos tend to lie on the torso, because

of the colour appearance.

For each video, the precision of the upper arm search is higher than the precision of the lower arm search,

which is in agreement with our hypothesis.

Because the arm detection seems to be more di�cult than the other body parts detection, we also look

at how the degree of similarity between the arms and the other body parts a�ects the search precision.

We list the following properties of our input sequences:

1. In video 1, upper and lower arms are similar in appearance to the torso.

2. In video 2, the upper arm is similar in appearance to the torso and the lower arm is similar in

appearance to the legs and head (skin colour).

3. In video 3, the upper and lower arms are similar in appearance to each other but di�erent from

the other body parts.

4. In videos 1 and 2 one arm is clearly visible and the second arm is fully occluded at all times. In

video 3, both arms are clearly visible at all times.

5. The arms are far away from the rest of the body, such that the arm candidates laying on other

areas of the body are not taken into account as false positives.

Table 6.1 only contains candidates that were found on the body. Those candidates found in the back-

ground (only in the case of the second video) were removed, so that we focus our results on the arm

colour - body colour relationship.

For upper arms in videos 1 and 2, where the sleeve has the same colour as the suit, we �nd close precision

percentages. For upper arms in video 3, where the sleeve has a di�erent colour than the suit, we obtain

high precision.

For the lower arms in videos 2 and 3, we chose the Φlower_arm(xlower_arm) thresholds in order to obtain

a correct �nal full body pose. For the lower arms in video 1, which proved to be the most challenging to

�nd, we lowered the Φlower_arm(xlower_arm) threshold to obtain some correct candidates. However, the

strong (high score) candidates were found on the body, instead of on the arms, and due to the fact that

they also lie within the kinematic constraints, they were included in the �nal body pose.

Head For each video, we found heads with a better precision than that of the lower arms. While

the lengths of the head and lower arms are close, the di�erence between the widths seems to make the

di�erence in the overall quality of the detection.

Full pose detection We observed that, to obtain a successful full body pose detection, the score of

the correct detections is more important than their number with respect to the total number of retrieved

candidates. For video 1 we were unable to �nd more than one correct full body pose, due to the low

scores of the correct lower arm candidates. In videos 2 and 3, even though the precision for lower arms
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was small, we found the correct body pose in all tested frames, due to the high score of the few correct

candidates. All body poses from the three sequences contained correct torsos and legs.

Conclusion

We found that the results were in agreement with our hypothesis. However, as the size of the body part

becomes smaller, we consider that the degree to which the part is similar to other parts in the body is

also a factor that in�uences the search precision. We illustrated this case for the lower and upper arms.

For challenging situations, like video 3, where the lower arm was covered in a long sleeve of the same

colour as the suit, we recommend raising the score threshold for the lower arms, such that incorrect

candidates that lay elsewhere on the body, but have good scores, will not be encountered in the �nal

pose.

6.1.2 Robustness

In this section, we analyse the robustness with respect to input parameters of the model building module,

responsible for �nding an accurate lateral walking pose. We wish to verify if we can �nd one set of

parameters to �t our input videos, similarly to [Ramanan et al., 2007]. As the correctness of the lateral

walking pose is crucial for the success of the detection module, we assume that chamfer score thresholds

in detecting candidate body parts need to be accurately set for di�erent videos.

In this experiment, we refer to the body part candidate search using rectangular �lters, described in

Section 4.1.

Experiment setup

We choose one frame from three distinct videos, with the following properties:

� the image depicts a lateral walking pose

� our system is able to clearly detect the lateral walking pose

We use the second property to determine the ground truth. For each of the three frames, we determine

by trial and error a set of parameters that results in a successful full body pose detection. Then, for

each di�erent frame, we vary the chamfer score thresholds in the same way. In our implementation, we

use three thresholds: one for the torso, one for the legs (same for upper/lower legs) and one for the arms

(same for upper/lower arms).

For each value of the chamfer score thresholds and their corresponding body parts, we count the number

of correct detections, as well as the total number of detections. We consider a detection to be correct if

its centre deviates less than 10% of the body part diagonal length from the ground truth. We restrict

this error to only 10% because is it essential that the appearance models are learnt from correct body

part detections.

Results For each tested frame, we list in Table 6.2 the following: the known size, the singleton potential

Φi(xi) threshold for a candidate to be considered valid, the total number of retrieved candidates (which
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Table 6.2: Search precision for candidate body parts using rectangular templates

(a) Search results for torso

(b) Search results for legs

(c) Search results for arms
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scored better than the threshold), the number of correctly retrieved candidates (as explained before) and

the search precision.

Torso Table 6.2 shows that 100% detection precision for the torso is possible. However, this does occur

at di�erent chamfer score thresholds, for the three di�erent frames.

Legs and arms For the legs and arms we look at the maximum number of correct candidates (high-

lighted in green). We see that the green stripes do not coincide for the three distinct frames.

Full body pose For the �nal detection, we wish to include as many correct torsos as possible and the

maximum number of correct legs and arms. As the message passing from the tree inference algorithm is

quadratic in the number of candidates, we also wish to have a low total number of candidates. From the

three tables in Table 6.2, we select those values that meet the above conditions. The values are bordered

and highlighted (for the torso) in the table. Figure 6.3 shows that these parameters lead to good lateral

walking pose detections.

(d) Video 1 (e) Video 2 (f) Video 3

Figure 6.3: Lateral walking poses obtained with experimentally determined chamfer score tresholds.

Conclusion

We showed that, unlike [Ramanan et al., 2007]'s results, one set of values for the three chamfer score

thresholds does not suit all input videos. We also provided some guidelines for choosing these values -

leaving from a trial and error set of parameters, it is possible to re�ne then by choosing those chamfer

score thresholds that results in 100% precision for the torso and in the highest precision corresponding

to the maximum possible number of correct candidates. Finding a unique set of thresholds could be

possible for videos which share a set of common features, but could come at a cost on computation time,

if the total number of candidates includes a high ratio of incorrect to correct candidates.

6.2 Contributions

6.2.1 Two frame pictorial structure

Motion model implementation

In Section 5.2.2 we described in detail two algorithms in which we introduced the previous body part
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detection (Algorithm 1) or the previously sampled body part candidates (Algorithm 2) as nodes in the

graphical model.

Calculating the motion model prior for the head and the torso is straightforward. But, because we are

implementing [Ramanan et al., 2007]'s single arm, single leg pictorial structure, we have to deal with

left/right ambiguity in the arms and legs. In other words, for a current leg or arm candidate, we cannot

know for sure which is the corresponding detection from the previous frame. So, for the arms and legs,

our implementation of the motion model for Algorithm 1 follows these rules:

1. If no previously detected arms or legs, Ψi,prev_i

(
xi,prev_i

)
= 1.

2. If one arm or one leg was detected, consider that part as xprev_i and calculate Ψi,prev_i

(
xi,prev_i

)
according to the chosen motion model.

3. If two arms or two legs were detected, calculate Ψi,prev_i

(
xi,prev_i

)
for both xprev_i and choose

the highest value.

Step 1 ensures that the current detection is not compromised if the previous detection failed, and makes

the method equivalent to the single frame pictorial structure algorithm described in Section 5.2.1. Step

3 tries to solve the left/right ambiguity by choosing as previous node the detection or candidate that is

closest to the current candidate.

Step 2 covers the case where one arm or one leg is occluded. However, if in the current frame the second

limb becomes visible, it might not validate the motion model, as it is calculated in relationship with the

other limb that was visible in the previous frame. When using the bounded velocity motion model, we

deal with this shortcoming by not setting the motion model prior to zero in equation (3.2.5), which would

discard the candidates entirely. Instead, we set the motion model prior at a small number, such that

the posterior is di�erent from zero and the candidates could still be sampled in the sampling from the

posterior phase. For the Gaussian noise motion model this is not necessary as we do not obtain absolute

zero values for the prior.

For Algorithm 2, where the di�erence is that instead of the previous body part detection (obtained

through the modes �nding procedure over the distribution obtained from the 1000 samples), we marginal-

ize over all previously sampled candidates. This means we calculate P (P it |P it−1) = Ψi,prev_i

(
xi,prev_i

)
for all corresponding previously sampled candidates, and obtain the motion model prior by averaging

with the formula
∑
xit−1

[
P (P it |P it−1)P (It−1|P it−1, Ci)

]
.

Hypothesis For both algorithms shown in Section 5.2.2 and re�ered to as Method 1 and Method 2

below, we expect that both the tracking quality and smoothness would improve, compared to the single

frame pictorial structure algorithm.

Experiment setup

We run our two algorithms and the single frame pictorial structure algorithm on di�erent videos and

determine by trial and error the input parameters that give satisfactory results. The common input

parameters that we need to adjust for all methods are:

� appearance thresholds per body part (see Section 5.1),

� second mode thresholds for arms and legs (see Section 5.3).
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To this set of parameters we add vmax for the bounded velocity motion model. Due to the already large

dimension of the parameter set, we use the same vmax for all body parts.

We use the bounded velocity motion model for Methods 1 and 2. For each comparison of two methods,

we show results obtained with the same set of input parameters.

We choose to evaluate our results by comparing sequences of images that contain the pose detections.

We compare Method 1 and Method 2 to the single frame pictorial structure algorithm, in turns. We

consider this form of evaluation suitable to our purpose, because it allows us to identify the situations

in which our method exceeds or fails, and it also gives the reader the chance to observe the di�erences

between the detections obtained with the distinct methods. We choose relevant sequences which show

both the advantages and disadvantages of each method.

For each sequence obtained with the motion model prior using Method 1, we manually labelled the initial

frame. For each sequence obtained with the motion model prior using Method 2, the candidates from the

initial frame were obtained using the single frame pictorial structure algorithm. The initialised frames

are not shown in our result �gures.

Method 1: adding the previous body part detection as a parent node to the current body

part node

Results

Video 1 We �rst show our results on a clear and simple setting: the background is not cluttered, the

body parts are distinctly coloured and the person occupies a large space in the image (torso area to frame

area ratio is 1:80).

(a) Tracking sequence obtained without a motion model.

(b) Tracking sequence obtained with a motion model.

Figure 6.4

Figure 6.4 shows a challenging sequence: the movement is fast, blurred and the head is partially occluded

by the arms. We found that, with the same set of input parameters for both methods, the motion model

helps to maintain the torso and head track (in the middle two frames), unlike the single frame pictorial

structure algorithm.
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(a) Tracking sequence obtained without a motion model.

(b) Tracking sequence obtained with a motion model.

Figure 6.5

Figure 6.5 shows that both tracks are equally precise, due to the fact that the person is clearly visible

such that the appearance model performs well. While the single pictorial structure algorithm �nds both

arms in the middle two frames, the motion model fails to do so, due to the shortcoming of Step 2 in the

motion model implementation. In other words, the right arm in the sequence shown in Figure 6.5(b) is

not detected because the motion model prior is calculated with respect to the left arm instead, which

was previously detected.

Video 2 Second, we show our results on a more challenging setting: the person is smaller compared

to the frame size (torso area to frame area ratio is 1:107) and the upper arms are coloured similarly as

the torso.

The motion model helps to prevent wrong arm detection which occurs due to appearance model similarity

with the rest of the body (upper arm with torso and lower arm with the leg), as can be seen in the �rst

and last frames in Figure 6.6.

(a) Tracking sequence obtained without a motion model.

(b) Tracking sequence obtained with a motion model.

Figure 6.6
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First and last frame in sequence 6.6(a) Appearance thresholds

threshtor = exp(−2.5)
threshua = exp(−1.5)
threshla = exp(−1.0)
threshul = exp(−2.0)
threshll = exp(−2.0)
threshh = exp(−1.2)

threshtor = exp(−2.5)
threshua = exp(−1.0)
threshla = exp(−0.5)
threshul = exp(−2.0)
threshll = exp(−2.0)
threshh = exp(−1.2)

Table 6.2: Example of parameter adjustment to obtain correct detections with the single frame
pictorial structure algorithm.

We also show the middle three frames with correct body pose detections, in Figure 6.6(a), to illustrate

the following often encountered situation: even within a short sequence of consecutive frames (�ve frames

in this case), a single set of input parameters does not always produce the correct body pose detection,

which makes the robustness of the method with respect to input parameters again debatable.

We illustrate the method's sensitivity to input parameters in Table 6.2. The �rst row contains the �rst

and last frame in Figure 6.6(a), together with the appearance thresholds used to obtain this sequence.

The second row shows an example of how these parameters can be adjusted in order to obtain the correct

detections. The motion model prior automatically removes the necessity for these manual adjustments

(as illustrated in Figure 6.6(b) obtained with a single set of appearance thresholds).

We also found in our experiments that the motion model might propagate wrong detections, if they

strongly resemble the learnt appearance model. For both this situation and the one seen in Figure

6.6(a), the solution would be to enforce stronger appearance similarity thresholds (as exempli�ed in the

second row of Table 6.2).

Figure 6.7 shows a situation similar to Figure 6.4: fast motion with a partly occluded head. As above,

the motion model successfully manages to maintain the head track (in the middle frames).

Video 3 Figure 6.8 shows our results on a short sequence from a third video. In Figure 6.8(a) we

notice that the left upper legs tends to drift from the correct position, also in�uencing the position of

the left lower leg (due to kinematic constraints). This occurs due to di�erences in the colour appearance

between the current frames and the frame from which the appearance model was learnt (the frame where

the lateral walking pose was detected). The motion model prior compensates for this inaccuracy and

maintains the upper leg track consistent from one frame to the other, as shown in Figure 6.8(b).

Conclusion

Our results con�rmed the hypothesis in very speci�c situations, enumerated below. We consider that

indeed the appearance model can perform well in clear scenarios, where the person moves at a steady

pace and the body parts are clearly de�ned, both in shape and in colour.
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(a) Tracking sequence obtained without a motion model.

(b) Tracking sequence obtained with a motion model.

Figure 6.7

(a) Tracking sequence obtained without a motion model.

(b) Tracking sequence obtained with a motion model.

Figure 6.8

Additionally, we showed that the motion model can improve tracking in more challenging situations, like

the following:

� partially occluded head;

� fast, blurred motion;

� limbs detected on other parts of the body due to the similarity in colour appearance (for example,

arms on torso);

� drifting body parts due to di�erences between learnt colour appearance model from the stylized

pictorial structure frame and the colour appearance in the current frame.

The main weakness of the motion model, as currently implemented, is that it needs to be readjusted,

depending on the movement. For example, for (moderate pace) equilibrium exercises performed at the

balance beam, lower values for the bounded velocity parameter vmax resulted in more accurate detections,

while for the swift movements (like the jumps shown in some of the sequences above), larger values for
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vmax were required. As such, the bounded velocity motion model requires precise tuning for the vmax

parameter value.

Method 2: adding the previously sampled body part candidates as a parent node to the

current body part node

We use the same video sequences as before, to demonstrate our results of Method 2 compared to the

single frame pictorial structure algorithm. Second to this, we also make comments, where relevant, about

the results obtained with Method 2 compared to Method 1, with no intention to extensively compare

these two methods.

Results

Video 1 Figure 6.9 shows the challenging scenario for Video 1 that we described before (see Video 1

in the results for Method 1). Just as Method 1, our current method manages to maintain the head track

stable (and with it, the rest of the body), unlike the single frame pictorial structure algorithm.

(a) Tracking sequence obtained without a motion model.

(b) Tracking sequence obtained with a motion model.

Figure 6.9

(a) Tracking sequence obtained without a motion model.

(b) Tracking sequence obtained with a motion model.

Figure 6.10
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The quality of the two tracks in Figure 6.10 is similar, with the observation that the motion model prior

maintains a more stable head track. Figure 6.10(b) shows that the algorithm is able to recover the right

arm in the second frame. This is due to the fact that, even though the system sampled a low number of

right arms which did not su�ce to constitute a second mode (or a second limb detection) in the �rst frame,

the right arm samples did weight in the arm motion model prior
(∑

xit−1

[
P (P it |P it−1)P (It−1|P it−1, Ci)

])
for the next frame with a high probability, which led to the right arm detection in the second frame. We

consider this an advantage of Method 2 over Method 1 (comparing the track in Figure 6.10(b) with the

one in Figure 6.5(b)).

(a) Tracking sequence obtained without a motion model.

(b) Tracking sequence obtained with a motion model.

Figure 6.11

Video 2 For the second video (of a gymnast wearing a uniformly coloured suit, with elbow-length

sleeves of the same colour as the torso), Figure 6.11(b) shows a similar result to Figure 6.6(b): the motion

model maintains only the correct arm detection, while the single frame pictorial structure algorithm

(Figure 6.11(a)) �nds a wrong upper arm on the torso and a wrong lower arm on the leg in the �rst and

last frames. This occurs due to the colour appearance similarity between the upper arm and the torso

(clothing colour) and the lower arm and the leg (skin colour). The motion model prevents the wrong

arm detection, as there is no corresponding arm in a similar position in the previous frame.

The second sequence from Video 2 (in Figure 6.12) also shows that, unlike the single frame pictorial

structure, Method 2 is able to maintain a stable head track, in a sequence where the head is partially

occluded. The incorrect positioning of the head also leads to a displacement of the torso (due to kinematic

constraints), which makes the track from one frame to another even more inconsistent.

Video 3 Unlike in the previous two examples, the results obtained in the third video (Figure 6.13)

show that Method 2 adds no value, compared to the single frame pictorial structure algorithm. The legs

drift in an equal manner, towards the areas that comply with the learnt appearance model.

Conclusion

Most of our conclusions for Method 1 also stand for Method 2. The results con�rmed our hypothesis for
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(a) Tracking sequence obtained without a motion model.

(b) Tracking sequence obtained with a motion model.

Figure 6.12

(a) Tracking sequence obtained without a motion model.

(b) Tracking sequence obtained with a motion model.

Figure 6.13

Method 2 in very speci�c situations, but in less examples than for Method 1. We consider that Method

2 can improve the detection results, as compared to the single frame pictorial structure, in the following

cases:

� partially occluded head;

� fast, blurred motion;

� limbs detected on other parts of the body due to the similarity in colour appearance (for example,

arms on torso).

6.2.2 Motion models: bounded velocity and Gaussian noise

We analyse the tracking results obtained when implementing the motion model prior P (P it |P it−1) accord-

ing to either the bounded velocity motion model (see equation 3.2.5) or the Gaussian noise motion model

(see equation 3.2.8). The di�erences between these two motion models are:
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1. The bounded velocity motion model discards candidates that are positioned outside the imposed

distance with respect to the detection from the previous frame and assigns the same probability for

the candidates positioned within the distance limit. The Gaussian noise motion model expresses

a preference for those candidates which are positioned closer to the detection from the previous

frame. Closer candidates will be assigned a higher probability, while farther candidates will be

assigned a lower probability.

2. The bounded velocity motion model considers the distance between the centre coordinates of the

previous detection and the current candidate. Aside from the centre coordinates, the Gaussian noise

motion model also includes the von Mises distribution that takes into account the angle variation.

Note: In our implementation of the bounded velocity motion model we do not fully discard the candidates

that lie outside the distance limit. Instead of assigning P (P it |P it−1) = 0, we assign a very small number,

std :: numeric_limits<double>::epsilon(), for the motion model prior. This is motivated by the fact that

the value for vmax needs to be determined experimentally because there is no a priori knowledge about the

motion in the video. We determine this value by trial and error. This might lead to one of the following

situations: either the vmax value is inadequate (too low) for the entire video sequence, which might lead

to all candidates being discarded with respect to the previous detection, or the vmax value is appropriate

for a part of the sequence but not for other parts, where the motion could suddenly accelerate. Assigning

a very small motion model prior for candidates outside the vmax limit solves both these cases at the same

time, as follows: for the �rst case, the two frame pictorial structure algorithm becomes equivalent to the

single frame pictorial structure algorithm, while for the second case, the two frame algorithm applies for

those video parts where the bounded velocity distinguishes plausible from implausible candidates, and

becomes equivalent to the single frame pictorial structure algorithm for those video parts where it would

normally discard all candidates.

Hypothesis We expect the Gaussian noise motion model to successfully remove those candidates which

have a sudden shift in orientation with respect to the previous frame detection, but whose centre position

is close to the previous detection, as imposed by vmax.

Experiment setup

For this comparison, we use the baseball pitch sequence that [Ramanan et al., 2007] have also reported

detailed results on. As stated in our hypothesis, we try to address the case where candidates with im-

plausible orientation, but plausible centre coordinates, negatively in�uence the �nal body part detection,

resulting in sudden orientation shifts. We explain later in this section why this situation occurs in the

baseball sequence and not in the gymnasts videos that we used to exemplify our results before.

We use Algorithm 1 of the two frame pictorial structure algorithm. We set the bounded velocity motion

model at vmax = 8, because it results in good detections for the sequences of frames where there are no

premises (discussed below) for sudden shifts in orientation. For the sequences where this occurs (relevant

for our experiment and illustrated in the comparative �gures), we �nd this parameter value suitable for

comparison between the two motion models. For the Gaussian noise motion model, we varied σx and

σy between 7 and 14 simultaneously and we chose between 1 and 4 as values for k. For these values we

have obtained similar results relative to the problem that we are studying (sudden shifts in orientation).

For each sequence that we show in the Results section, we mention the correspondent parameter values
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(a) Tracking sequence obtained with the bounded velocity motion model, vmax = 8.

(b) Tracking sequence obtained with the Gaussian noise motion model, (σx, σy, k) = (8, 8, 4).

Figure 6.14

in the �gure description. All other parameters (body part sizes, appearance thresholds, second mode

thresholds) are the same for both cases.

Results

The second frame in Figure 6.14(a) shows that the bounded velocity motion model allows for the torso

detection to rotate to the left, although in the �rst frame the torso detection is approximately vertical.

(a) Torso mask.

(b) Head mask.

Figure 6.15: Pixels
that match head and
torso appearance models
(second frame in Figure

6.14).

.

Finding candidate torsos in that con�guration is possible due to clothes defor-

mation (the stretched arms elongate the blouse) and the appearance similarity

of the upper arms and the torso, which makes the torso-like coloured image

patch (the white mask in Figure 6.15(a)) fairly wide relative to the length, thus

allowing for torso candidates to rotate in place.

The pictorial structure match in this case is also facilitated by the fact that

the head and the lower sleeve have a similar appearance (both coloured in red).

Figure 6.15(b)) shows the mask that covers the pixels which have the colour

appearance of the head in the second frame from Figure 6.14.

Throughout the sequence shown in Figure 6.14(a), the bounded velocity motion

model propagates the wrong detection of the head on the lower arm connected

to the rotated torso detection. Figure 6.14(b) shows that the Gaussian noise

motion model correctly maintains the orientation of the torso and successfully

tracks the head and the torso throughout the same sequence.

Throughout the sequence shown in Figure 6.14(a), the bounded velocity motion

model propagates the wrong detection of the head on the lower arm connected to the rotated torso

detection. Figure 6.14(b) shows that the Gaussian noise motion model correctly maintains the orientation

of the torso and successfully tracks the head and the torso throughout the same sequence.

Figure 6.16 is a continuation of the sequence shown in Figure 6.14 (ten frames later). It shows that both

motion models perform the same in terms of consistently propagating the detections from the previous

frames. However, due to the faulty detection in the initial frame in Figure 6.16(a), the system tracks

the lower arm instead of the head. It is able to recover the torso con�guration in the �fth frame, but
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(a) Tracking sequence obtained with the bounded velocity motion model, vmax = 8.

(b) Tracking sequence obtained with the Gaussian noise motion model, (σx, σy, k) = (8, 8, 4).

(c) Tracking sequence obtained with the Gaussian noise motion model, (σx, σy, k) = (8, 8, 1).

Figure 6.16

continues to track the arm instead of the head. The head detection is positioned between the lower arm

and the actual head in the last three frames.

Figures 6.16(b) and 6.16(c) show that, with the Gaussian noise motion model and a correct initial

frame, the detection is more stable. The head is correctly tracked and the orientation of the torso

changes smoothly according to the actual motion. Figure 6.16(c) shows an overall better detection for

the legs, due to the more permissive value for parameter k. Both sequences were initialised with the

same detection, where both the legs were present, but only the sequence in Figure 6.16(c) perpetuates

both leg tracks. This indicates that while one set of parameter values (like the one for Figure 6.16(b))

gives good results for some body parts (the head and the torso, in this case), a di�erent set of parameter

values could improve results for other body parts (in this case, the legs).

(a) Tracking sequence obtained with the bounded velocity motion model, vmax = 8.

(b) Tracking sequence obtained with the Gaussian noise motion model, (σx, σy, k) = (8, 8, 1).

Figure 6.17

Figure 6.17 shows a challenging sequence that destabilises both tracks. In this case, the white torso is

occluded by a black baseball glove. The detection in the sequence obtained with the Gaussian noise

motion model is confused for the �rst six frames, but it manages to recover in the last frame (in Figure
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6.17(b)). The bounded velocity motion model is more stable (although mostly incorrect) - it maintains

the (partly incorrect) torso track and the (correct) leg track (in Figure 6.17(a)).

(a) Tracking sequence obtained with the bounded velocity motion model, vmax = 8.

(b) Tracking sequence obtained with the Gaussian noise motion model, (σx, σy, k) = (8, 8, 1).

Figure 6.18

Figure 6.18 is the immediate continuation of the sequence in Figure 6.17. It shows that, due to the

recovery from the last frame in Figure 6.17(b), the tracking algorithm using the Gaussian noise motion

model successfully propagates the torso and the head (in Figure 6.18(b)).

Figures 6.17 and 6.18 show that the Gaussian noise motion model can recover more reliably from a

challenging situation where the torso is occluded by the glove. We focused our observations on the torso

and the head detections because we believe that inaccuracies in these body parts' detections lead to the

most disturbing e�ects on a viewer's perception of the detected body pose.

Conclusion

The results con�rm our hypothesis for the given set of parameters and the selected sequences. We

showed an example video of situations where shifts in orientation of the candidates can occur due to the

deformation of the clothes and the similarity in appearance of the connected body parts (upper arms and

the torso). For this case, the Gaussian noise motion model succeeds in reliably maintaining the correct

detection.

We identi�ed the clothes deformation as the issue that can be addressed using the Gaussian noise motion

model. We could not �nd dramatic shifts in torso candidates orientation in the gymnasts videos, where

the torso's shape is constant because the suit is tight�tting. For this reason, we do not consider that the

Gaussian noise motion model would add value to videos where people wear tight�tting clothes and where

the provided body part sizes apply throughout the sequence. For this case we recommend the bounded

velocity motion model.
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We tackled the problem of estimating the pose of an individual in video, by tracking the major body

parts in every frame. We used pictorial structures to represent the human body as a puppet of rectangles.

We coped with the frequent challenges which occured in our test input videos of gymnasts performing

at the balance beam, such as fast motion, resembling body parts and illumination changes, by extending

[Ramanan et al., 2007]'s single frame pictorial structure graphical model. We added nodes containing

temporal information from the previous frame, through connections in the form of motion models.

We implemented two algorithms which calculated the motion model prior in two ways: by considering

that the previous node is represented by the previous body part detection (mode) and by considering that

the previous node is represented by all previously sampled body part candidates. Both methods showed

advantages compared to the single frame pictorial structure algorithm, in terms of accurate detection of

the body parts, especially that of the arms and the head.

We also found that incorporating the body part orientation, aside from the centre position, in the

motion model can help cope with situations where body part candidates are incorrectly localised due

to the mismatch between the part templates and the image patch belonging to the actual part being

deformed by the clothes stretch.

We analysed the original method in terms of robustness and performance with respect to the type of

input videos and we found that the original method is highly dependent on the set of input parameters,

which do not translate across di�erent videos. We also showed situations where one set of parameters

can lead to di�erent results within the same video and found that the motion model can eliminate the

necessity to manually adjust these parameters when processing a single video.

Motion model prior We proposed two methods to include the previous pose detection in the graphical

model of the pictorial structure. These methods are simpli�cations and particularisations of the complete

temporal model that we partly showed in Figure 3.2. In the �rst method we considered that the current

pose detection depends solely on the pose detection from the previous frame. In the second method

we considered that the current pose depends on all previously sampled (single arm, single leg) body

con�gurations. We found that both methods can improve the single frame pictorial structure algorithm

in speci�c situations such as fast motion or similarly coloured body parts. We put forward the �rst

method as being an elegant solution to integrate the temporal dimension into the tracking system, as it

is both e�cient in terms of computation time and it also provides reliable results.

60
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We also compared two variants to calculate the motion model prior: the bounded velocity motion model,

that [Ramanan et al., 2007] suggested as the simplest solution, and the Gaussian noise motion model

which has been used in other research papers. We only identi�ed one situation (refer to Section 6.2.2)

where the bounded velocity motion model did not perform as well as the Gaussian noise motion model.

Thus we conclude that the bounded velocity motion model remains a reliable solution.

Input parameters The original method requires a number of input parameters that must be hand-

picked by the user, as follows:

� 15 parameters for the model building module: 6 body part widths and lengths and 3 chamfer score

thresholds (for the torso, legs and arms),

� 18 parameters for the detection module: 6 body part widths and lengths, 6 appearance similarity

thresholds (for each body part) and 2 second mode thresholds (one for the arms, one for the legs),

to which we added:

� 1 parameter for the bounded velocity motion model (same for all body parts),

� 3 parameters for the Gaussian noise motion model (covariances σx and σy and parameter k for the

von Mises distribution, same for all body parts).

We observed that the performance of the system can change dramatically with the adjustment of these

parameters. The model building module �nds a �xed scale stylised pose, thus it requires exact sizes for

the body parts. We obtained these by visually inspecting the video and measuring the body parts in one

of the frames containing a lateral walking pose.

The detection module performance highly depends on the appearance similarity thresholds. We showed

that one set of such thresholds does not translate across di�erent videos. We also found in our experiments

that one set of thresholds per video does not give optimum results either. The thresholds need �ne tuning

in order to obtain the best results at frame level (we intervened manually when we noticed that the pose

detection became inaccurate). We made an attempt to eliminate this shortcoming by making the system

more precise by implementing a motion model. We showed that, in speci�c situations, the motion

model prior can compensate for inaccuracies in the image likelihood (matching an image patch to the

body part appearance model).

The entire system, however, remains highly dependent on the input parameters. In order not to increase

the complexity of the parameter adjusting process even more, we opted to provide the same motion

model parameter values for all body parts. We obtained satisfactory results, but there is still room for

improvement that we suggest in Future work.

Appearance and deformable models We explained the complementarity between the appearance

model and the kinematic constraints. When using generic appearance models (via general features

like edges), it is crucial that the deformable model is precisely de�ned (such as for the stylised pose).

When detecting general poses, which require a relaxed set of kinematic constraints, it is crucial that the

appearance model is precisely de�ned (using features such as shape and colour, in the detection module).

We consider that the image likelihood calculated with the colour appearance model gives the strongest
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indication about the person's position and con�guration and that further re�nements of the kinematic

model are not necessary.

Stylised pose We found that rectangular templates are a simple and powerful tool to detect body

parts and we successfully detected lateral walking poses in our videos. However, from our experiments,

we found that the current implementation imposes very strict limitations on the input video. In other

words, a pose that a human would perceive as a lateral walking pose might not always be detected by the

computer, as the implementation requires the following: the torso must be perfectly vertical, the head

must be exactly above the torso, the elbow must display an imposed angle and the overlap between legs

must be at a minimum. Also, one main assumption of learning appearance models from a lateral pose

is that the person's clothes are symmetrical in colour. For this reason we were not able to use videos of

gymnasts whose sport costumes were unevenly coloured.

Prior knowledge and system limitations We found that a great deal of research was dedicated

to tracking pedestrians or upright people. Other papers focused on laboratory controlled settings or

sacri�ced accuracy for a large applicability in terms of video input. We also conclude that to achieve the

(body part level) detailed results and wide applicability (with respect to the video input) from [Ramanan

et al., 2007]'s method, the system requires extensive knowledge about the video. This knowledge can

be gained through observation (person scale as de�ned by body part sizes), or through experimentation

(chamfer score thresholds, appearance similarity thresholds, second mode threshold). Our solution of

implementing a motion model can be seen as a compromise, because we attempt to minimize the manual

intervention on the previously listed parameters, but we also introduce a supplementary set of parameters

for the motion model.

Future work We list here a series of possible improvements and open issues for future work.

1. Illumination invariance

We found that the results notably su�er from illumination changes. Therefore, we believe that �nd-

ing other illumination invariant features to model the appearance of the person would signi�cantly

improve the detection results.

2. Chamfer matching

We found that upper and lower arm detection is di�cult in the model building module because of

their reduced size. At the moment, chamfer matching is used to �nd body part candidates, using

edges as features. Scientists proposed improvements to the classic chamfer matching algorithm,

such as [Borgefors, 1988], which could be a starting point to research further on this detection

procedure.

3. Motion model parameters

With the scope to keep the amount of parameters low, we resumed to only one set of motion

model parameters for all body parts. Without increasing the number of parameters, it would be

interesting to determine if there exist some general dependencies between motions of di�erent body

parts (regardless of the activity performed by the person in the video), such that only one set of

parameters would need to be provided by the user (for the torso, for example) and the rest would

be expressed as functions of this set.
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4. Implementation limitations

The following two features have been solved in previous research and could be included in our

implementation, to expand the system's functionality: tracking more than one person at the same

time and tracking people at various scales.

5. Ground truth comparison

All our experiments could o�er more conclusive results if they were compared with ground truth.

This would require a measure of similarity between body part detections (rectangles) and a dataset

where the same body con�guration (torso, head, upper legs, lower legs, upper arms, lower arms)

would be labelled per body part.

6. Temporal smoothing

[Ramanan et al., 2007] implemented temporal smoothing by inputting the body con�guration sam-

ples from the previous frame, the current frame and the next frame into the modes �nding proce-

dure to obtain the current pose. It would be interesting to compare our results using the two frame

pictorial structure algorithms to the results obtained with the aid of temporal smoothing.

7. Torso template

Aside from the set of input parameters that we discussed, the model building module requires a

torso template which consists of the torso and head edges labelled with the orientation. We obtain

these by looking at a frame containing a lateral walking pose and by running the edge detection

on it, then by selecting that area that corresponds to the torso and the head. We speculate that

it is possible to �nd the torso using a rectangular template (as for the other body parts). Using a

rectangular template instead of the toilsome torso template would be a step further to make the

system fully automatic.
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