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Abstract

This thesis explores the effectiveness of different semantic Web page segmentation
algorithms on modern websites. We compare the BlockFusion, PageSegmenter,
VIPS and the novel WebTerrain algorithm, which was developed as part of this
thesis, to each other. We introduce a new testing framework that allows to
selectively run different algorithms on different datasets and that subsequently
automatically compares the generated results to the ground truth. We used it
to run each algorithm in eight different configurations where we varied datasets,
evaluation metric and the type of the input HTML documents for a total of 32
combinations. We found that all algorithms performed better on random pages
on average than on popular pages. The reason for this is most likely the higher
complexity of popular pages. Furthermore the results are better when running
the algorithms on the HTML obtained from the DOM than on the plain HTML.
Of the different algorithms BlockFusion has the lowest F-score on average and
WebTerrain the highest. Overall there is still room for improvement as we find
the best average F-score to be 0.49.



Drum, so wandle nur wehrlos Fort durchs Leben, und firchte nichts!
(Friedrich Holderlin)
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Chapter 1

Introduction

1.1 Topic

In this thesis we explore the problem of algorithmically segmenting Web pages
into so-called semantic blocks. The problem can be described as follows: Humans
can intuitively infer which parts (or blocks) on a Web page belong together
simply by looking at them. It is immediately clear to them what constitutes a
menu, an advertisement, an article, a headline etc. This is even true in most cases
for languages which the reader does not know, by recognizing visual features
such as the positioning of a block, the font size, the styling and the experience
the user has with similar pages.

We are now interested in the question whether it is possible to teach computers
this ability that humans possess naturally. We therefore look at a number of
existing approaches that try to solve this problem in different ways. They can
be divided into vision-based ones, that try to imitate the way humans do the
segmentation by looking at the rendered document, structure-based ones, which
take the underlying structure of Web pages into account, given to them by
the document creators, and language-based ones, which only look at linguistic
features of Web pages to infer the segmentation. We therefore took one algorithm
from each class and compared them systematically on a common dataset using
a testing framework we developed for this thesis. We then used the results from
the evaluation to create a novel algorithm that combines some features of the
algorithms analyzed previously. We present the results of our evaluation and
discuss how well computers currently perform on the segmentation problem and
what remains to be done.

1.2 Relevance

We posit that a robust solution of the segmentation problem would be highly
useful and could be utilized in many different applications. One of the most
intriguing prospects is the application of such a solution to the Semantic Web.
The hype that surrounded the Semantic Web in the early 2000s, promising to
turn the Web into a giant distributed database of all human knowledge, has since
died down. Outside of research projects there have been almost no applications of
semantic technologies such as RDF[2], SPARQL[25] and OWL[21][14]. The only



technique that has gained some popularity with Web designers is the addition
of some semantic tags in HTML5[17] such as <nav>, <article>, <footer>,
<section> and a few more. While some modern websites make use of these, the
vast majority of sites still does not. On those sites a segmentation algorithm
could be helpful to enable some basic reasoning and querying capabilities as
were imagined in the original vision of the Semantic Web.

Another area where a robust segmentation algorithm could be of great use
is the Mobile Web. The number of mobile users is rising rapidly and is poised
to overtake the number of desktop users in the next few years. Especially in
developing countries many people only have access to mobile devices and more
and more are able to access the Internet. The problem one quickly encounters
when looking for information on a mobile device is that most websites have
not been optimized for them, meaning they will either not render properly or
require the user to zoom in and painstakingly hunt for the information she is
searching for. This tedious and inefficient access to information is solved on pages
which have been optimized for mobile viewing and which are easily readable and
navigable by thumb instead of by mouse.

A segmentation algorithm that returns the semantic blocks of a page could
thus be used as the basis for a page adaptation algorithm that arranges the
blocks vertically and puts the menu at the top of the site, to make it easily
navigable. Such a technique could potentially be integrated into a browser and
be triggered by the user, if a page does not offer a mobile-optimized version.

More concretely we believe the relevance of our research lies in the establishing
of a general testing framework that allows to compare different algorithms on a
shared (but exchangeable) dataset using user-defined metrics. This allows for
easier exploration of the problem space of the segmentation problem and also
makes the results of different algorithms comparable and the effect of parameter
changes immediately testable.

1.3 Applications

The applications to the Semantic and the Mobile Web mentioned above seem the
most compelling to us, but there are a number of other fields where segmentation
algorithms can be used. One is search, where a simple classification of blocks into
noise/no-noise can help with directed crawling and improving search results in
general. A crawler could be instructed to only follow links in what are considered
relevant blocks, thus reducing the search space considerably and allowing it to
crawl more pages in the same time, while most likely increasing the quality of
results.

If a more elaborate ontology is used then various information retrieval and
information extraction tasks are possible, like e.g. only getting the main article
from a page and discarding everything else or retrieving all images. Getting the
main content is useful if there is only limited space for displaying results, like on
a mobile device, or when searching for specific information.

Other possible applications are duplicate detection and phishing detection.
Here one would either look for duplicates on the same page or across different
pages or websites. Looking at blocks instead of whole pages has the advantage
that you can make more fine-grained distinctions. As different pages could be
quite different in total but still share a number of blocks with each other.



Finally there are caching and archiving. If some blocks are only rarely
changed, such as e.g. content blocks as opposed to advertisements, they could
be cached to enhance page load times. Similarly if content needs to be archived,
one could only extract the relevant parts and archive those, thus reducing the
required space considerably.

1.4 Thesis structure

In Chapter 2 we give an overview of the research. We discuss the problem and
present the research question. We also introduce the methods we used in our
evaluation. The definitions of the basic concepts are given as well as a more
in-depth overview of the different approaches to page segmentation.

Chapter 3 is a literature review where we give a short summary of the papers
we found the most relevant to our research. We highlight the different approaches
and methodologies used to evaluate the results.

In Chapter 4 we focus on datasets where we look at how other authors chose
their samples, what was included in those samples and how they marked up the
blocks. We then also explain why we had to build our own dataset and how we
approached that.

Chapter 5 introduces the testing framework we developed to compare the
different segmentation algorithms. We talk about the requirements, the architec-
ture and the implementation of the software. It is shown how new algorithms
and metrics can be integrated and how different datasets can be used.

In Chapter 6 we describe the BlockFusion[18], PageSegmenter[30] and VIPS[10]
algorithms. We present the different approaches each of these algorithms take
to tackle the problem and we talk about the implementation of the ones we
implemented ourselves. We also show how they are integrated into the testing
framework. Furthermore we describe the new WebTerrain algorithm which was
developed as part of this thesis.

Chapter 7 is a summary of the empirical results we got for all four algorithms.
These results are discussed in Chapter 8 and we conclude in Chapter 9.



Chapter 2

Research Outline

2.1 Problem discussion

The research on structuring information on Web pages into semantic units goes
back at least to 1997, with a paper from Hammer et al. [16]. In that paper the
authors describe an extraction tool, where the user can declaratively specify
where the data of interest is located and how the extracted data should be turned
into objects. This tool was thus designed to work on specific websites where the
user knew in advance where the information she was looking for was located.
Subsequent authors tried to automate this process, which can be broken into
two distinct steps. The first one is simply recognizing which parts, or blocks, of
a page belong together, without knowing the meaning (or type if we think in
terms of objects) of them. The second step is the labeling of these blocks, i.e.
assigning a classification to them.

The first step can be done independently of the second, since additional
information such as the structure and the visual rendering of the page are
available. This is e.g. done by Cai et al. [10] who first build a content-structure
tree out of the recognized blocks and then attempt to label those blocks. For
the first step one has to decide whether a flat segmentation, i.e. no sub-blocks,
is sufficient or whether a recursive one is wanted. For the latter one has also to
decide on a granularity, since in theory you can have any number of tree levels.
Most authors seem to have decided on a flat segmentation, though.

The labeling step is more ambiguous since it relies on the ontology chosen by
the authors. It depends on the wanted application whether a simple noise/no-
noise classification or a comprehensive one with many different types is required.
This step is typically done using machine-learning techniques which are sometimes
augmented using domain-specific knowledge.

We will only be focusing on the first step in this thesis because it lies at
the foundation of the segmentation problem. If the quality of the recognized
blocks is not sufficient then any subsequent labeling will not make much sense,
because blocks will have been cut in half or different blocks will have been joined
together.

While extensive work has been done in this field as documented by Yesilada
[31], the question remains how well different approaches stand the test of time.
The Web has evolved rapidly in the last 15 years and become much more



sophisticated and complex. While in the beginning you had a simple mapping
from a URL to a static HTML page, this has become more and more dynamic
with the browser now being akin to its own operating system running many
different kinds of applications up to full-blown 3D-games[23]. This dynamism
poses a challenge for any kind of Web page analysis on which we will focus in
the following.

2.2 Research question

Given the problem stated above the research question then becomes:
How well do existing Web page segmentation algorithms work on

modern Web sites and can they be improved?

Sub-questions

The research question leads to a number of sub-questions that need to be
answered in order to answer the question itself:

1. What are the current best-performing algorithms tackling this problem?
2. What assumptions do those algorithms make and are they still valid?
How do they define a “semantic block”?

In which scenarios does their approach work well and in which not?

How can you compare these different approaches effectively?

S

How can these approaches be improved?

2.3 Methods

We first conducted a literature review to find the most promising looking algo-
rithm from each of the three different approaches described in section 2.5. We
consider each one a representative of the class of algorithms which follow that
approach and we contrast the theoretical advantages and disadvantages of them.
From this analysis we have then developed our own segmentation algorithm
which combines some of the features of the others. The main contribution is
then an empirical evaluation of these four algorithms on two different datasets
which we created for this thesis.

One dataset comprises only popular websites taken from 10 different top-
level categories from the Yahoo directory website!. The other one comprises
randomly selected Web pages from the Internet generated by a random website
generator’. We used the different datasets to investigate the question whether
the segmentation algorithms perform differently on popular and on random
pages.

The pages from both datasets were marked up with their semantic blocks by
three volunteers to create the ground truth. This was done with a web-based

Thttp://dir.yahoo.com
2http://www.whatsmyip.org/random-website-machine/random/
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tool which we created for this purpose. They were asked to add two levels of
blocks, i.e. top-level blocks and sub-blocks of those blocks and also to assign a
classification to each block from a predefined ontology. The classification was
ultimately not used in this thesis, but it does increase the usefulness of the
datasets and can be used by others or in future work.

One goal was also that the evaluation of the algorithms on a dataset should
be completely automatic and not require any additional manual work. For this
reason we developed a testing framework described in chapter 5 which simply
takes an algorithm and a dataset as inputs, runs the algorithm on the dataset
and compares the generated results to the ground truth. The framework can
easily be extended with different algorithms and datasets as long as they provide
a mapping that adheres to the framework’s interfaces.

As metrics for the performance of an algorithm we chose precision, recall and
F-score. So we look at how many of the blocks returned by an algorithm are
correct, how many of the correct blocks are recalled and at a combination of
both measures.

We implemented three of the four algorithms ourselves since reference imple-
mentations for all but one were unfortunately not available.

2.4 Definitions

We define a semantic block as follows:

A contiguous HTML fragment which renders as a graphically consistent block
and whose content belongs together semantically.

Note that this definition allows for a hierarchy of blocks, i.e. bigger blocks
can be made up of a collection of smaller blocks (e.g. the main content on a
news website can be made up of a list of articles). In principle there is no limit
to the level of nesting of blocks, but in practice it is rarely more than two or
three levels.

We will call the number of levels of the block hierarchy the granularity of
the segmentation. In the following we will use the words semantic blocks and
segments interchangeably. A segmentation with a granularity of one is a flat
segmentation, since there are no blocks that are subsets of other blocks (all
blocks are disjoint).

When referring to the ground truth, we mean the set of semantic blocks on
a page that have been manually marked up by our assessors. These are consid-
ered the true blocks to which the results of the algorithms are compared.

We use the term Web page or simply page when referring to a single HTML
document. The term website is used for a collection of Web pages found under
the same top-level URL.

The acronym DOM stands for the Document Object Model, which is a tree-
like representation of XML and HTML documents as objects. It allows to query

and manipulate the tree via a standardized application programming interface
(API).



2.5 Overview of approaches to Web page seg-
mentation

We give a short overview of the three main approaches to Web page segmen-
tation. We explain the principal ideas behind them and what advantages and
disadvantages each of them has.

2.5.1 DOM-based approaches

In a DOM-based approach one simply looks at the DOM (i.e. the tree built
by parsing the HTML. Note that this does not include the properties added by
potential external CSS files; these will only be present in the render tree) for
cues how to divide a page. The idea behind this is that the HTML structure
should reflect the semantics of the page, but this is of course not always the case.
The quality of these approaches thus depends on the quality of the underlying
HTML. To do the segmentation they rely on detecting recurring patterns, such
as lists and tables, and on heuristics, like e.g. headline tags working as separators
and links being part of the surrounding text.

Advantages

e casy to implement, since one only needs to parse the HTML code and not
render the tree

e efficient to run because no browser engine is involved, thus suitable for
segmenting large numbers of pages

e take the structural information into account

Disadvantages

e based on the assumption that the HTML document reflects the semantics
of the content, which is not necessarily true

e there are many different ways to build the HTML document structure
while the semantics stay the same

e disregard styling and layout information by design

e do not work with pages built via Javascript (or you have to serialize the
DOM in that case first)

2.5.2 Visual approaches

Visual approaches work the most similar to how a human segments a page, i.e.
they operate on the rendered page itself as seen in a browser. They have thus
the most information available but are also computationally the most expensive.
They often divide the page into separators, such as lines, white-space and images,
and content and build a content-structure out of this information. They can
take visual features such as background color, font size and type and location on
the page into account.



Advantages

e take the styling and layout information into account
e work similar to how a human performs the task
e can take implicit separators such as white-space and vertical /horizontal
lines into account
Disadvantages

e more complex because they require a browser engine to render the page
first

e computationally expensive because the page needs to be rendered

e requires external resources such as CSS files and images to work correctly

2.5.3 Text-based approaches

The text-based approaches differ from the other two in that they do not at
all take the tree structure of the HTML into account. They only look at the
text content and analyze certain textual features like e.g. the text-density or
the link-density of parts of a page. These techniques are grounded in results
from quantitative linguistics which indicate that statistically text blocks with
similar features are likely to belong together and can thus be fused together.
The optimal similarity threshold depends on the wanted granularity and needs
to be determined experimentally.

Advantages
e fast, since the DOM does not need to be built

e casier to implement, since no DOM access is necessary

e comparative performance to other approaches

Disadvantages

e do not work with pages built via Javascript (or you have to serialize the
DOM in that case first)

e do not take structural and visual clues into account

e recursive application on sub-blocks requires (arbitrary) changes to the
text-density threshold



Chapter 3

Literature review

In this chapter we take a look at the previous work in the field. We give a
short summary of the papers we consider the most relevant to our research and
point out the many different approaches that have been tried to solve the Web
page segmentation problem. We also focus on whether authors did an empirical
evaluation of their algorithms, on what kind of dataset this was done and what
performance metrics were chosen.

3.1 Related work

In Semantic Partitioning of Web Pages[30] the authors develop an algorithm
that uses the structural and presentation regularities of Web pages to transform
them into hierarchical content structures (i.e. into “semantic blocks”). They then
proceed to tag the blocks automatically using an abstract ontology consisting
of Concepts, Attributes, Values and None (their approach is structural and
requires no learning). Their main idea behind the labeling is that content is
already organized hierarchically in HTML documents, which can be used to
group things. They test their results experimentally against the TAP knowledge
base[15] (which seems to be not available anymore at this time unfortunately)
and with a home-made dataset consisting of CS department websites.

Their approach does not have domain specific engineering requirements
and they do not require Web pages to share a similar presentation template.
Technically their approach can be split into four parts: They first partition Web
pages into flat segments (i.e. disjoint blocks without a hierarchy) by traversing
the DOM[22] and segmenting content at the leaf nodes. They define a block as
a “contiguous set of leaf nodes in a Web page, where the presentation of the
content is uniform.”

The second step is inference of the group hierarchy. They use an interesting
solution here, where they first transform each segment into a sequence of path
identifiers (using the root-to-leaf path of the tree nodes), which are then inter-
preted as a regular expression, in which each Kleene star represents a separate
group. They then proceed to determine labels of groups, where they use the leaf
tag right above a certain group if there is only one or a learning-based approach
if there is more than one.

The final step is the meta-tagging of groups, where a Concept defines the



general context of a group, an Attribute corresponds to a group label and a Value
is an instance of an attribute (i.e. a group member).

In Identifying Primary Content from Web Pages and its Application to Web
Search Ranking[29] the authors also first segment a Web page into semantically
coherent blocks. They then rate the individual blocks by learning a statistical
predictor of segment content quality and use those ratings to improve search
results.

The segmentation is done using a widening approach, that first considers each
DOM node to be its own segment and subsequently joins it with neighboring
nodes according to certain heuristic rules. The classification of blocks relies on
a machine learned approach where the feature space contains both visual and
content properties. The content is simply classified into content segments or
noise segments.

In Recognition of Common Areas in a Web Page Using Visual Information: a
possible application in a page classification[20] the authors present an approach
to extracting semantic blocks from Web pages which is based on heuristics that
take visual information into account. To get access to information such as the
pixel sizes of elements on a virtual screen and their position on the page they
build their own basic browser engine. They make some simplifications such as
not taking style sheets into account and not calculating rendering information
for every node in the HTML tree.

They then define a number of heuristics on the render tree and on the
assumption that the areas of interest on a page are header, footer, left menu, right
menu and center of the page. They partition each page into areas corresponding
to this ontology assuming that each item is to be found at a certain location (e.g.
header on top etc.). One issue with this is that these assumptions do not hold
true any longer in many cases where Web pages are closer to desktop applications
(therefore “Web applications”).

The authors test their algorithm experimentally by first building a dataset
where they manually label areas on 515 different pages, then run their algorithm
on the dataset and subsequently compare the manual and algorithmic results.
Their overall accuracy in recognizing targeted areas is 73%.

In A graph-theoretic approach to webpage segmentation[l2] the authors first
turn the DOM tree of an HTML document into a graph where every DOM node
is also a node in the graph and every node has an edge to every other node in the
graph. Each edge is then assigned a weight that resembles the cost of putting
these two nodes into the same segment. The weights are learned from a dataset
regarded as the ground truth by looking at predefined visual- and context-based
features. Finally they group the nodes into segments by using either a correlation
clustering algorithm or an algorithm based on energy-minimizing cuts, where
the latter is performing considerably better in their empirical evaluation.

Their evaluation is based on manually labeled data (1088 segments on 105
different Web pages). They also test their algorithm by using it for duplicate
detection, where they achieve a considerable improvement over using the full
text of a page for that purpose.

For defining features to determine the likelihood of two nodes belonging to
the same segment they give three contexts in which DOM nodes can be viewed:

10



First each node can be looked at as a sub-tree containing a set of leaf nodes
with certain stylistic and semantic properties. Second the visual dimensions and
location of a node give cues about its semantics and relationship to other nodes.
Third the particular DOM structure used by the content creators also implies
semantic relationships.

In A densitometric approach to web page segmentation[18] the authors use
an approach that makes use of the notion of text-density as their main heuristic.
Instead of analyzing the DOM tree, like many other authors, they instead focus
on discovering patterns in the displayed text itself. Their key observation is that
the density of tokens in a text fragment is a valuable cue for deciding where to
separate the fragment.

In detail, they look at the HTML document itself and first divide it into a
sequence of atomic blocks (text that does not contain HTML tags) separated by
what they call gaps (the HTML tags between text blocks). They then discern
so-called separating gaps from non-separating ones by analyzing the properties
of the two text blocks adjacent to the gap. The deciding property is the text
flow which they characterize by the density of the text in a block (defined by the
number of tokens in a block divided by the number of lines in that block). If the
density between two blocks does not differ significantly (less than a predefined
threshold value) they will then be fused together into a new block by the proposed
BlockFusion algorithm. This is repeated recursively until all further fusions
would be above the threshold.

They evaluate their approach experimentally using a dataset consisting of
111 pages. They achieve a better precision and recall than [72].

In Extracting content structure for web pages based on visual representation/9]
the authors use an approach based on the visual representation of a web page
that is independent of the underlying HTML representation of the page. They
make the observation that content on web pages is generally structured in a way
that makes it easy to read, i.e. where semantically related content is grouped
together and the page is divided into such blocks.

Instead of looking at the DOM tree representation of a web page, like many
other approaches, they develop a recursive vision-based content structure where
they split every page into a set of sub-pages (visual blocks of a page), a set
of separators and a function that describes the relationship between each pair
of blocks of a page in terms of their shared separators. They deduce this
content structure using the VIPS algorithm[10] which goes top-down through the
DOM and takes both the DOM structure and the visual information (position,
color, font size) into account. Specifically they decide for each node whether
it represents a visual block (i.e. the sub-tree hanging on that node) by using
heuristics, such as does a sub-tree contain separators like the <hr> tag (if yes,
subdivide further) or does the background color of the children of a node differ
(if yes, subdivide).

They detect the set of separators visually by splitting the page around the
visual blocks so that no separator intersects with a block. Subsequently they
assign weights to the separators, again according to certain predefined heuristic
rules. From the visual blocks and the separators they can then assemble the
vision-based content structure of the page.

11



The heuristic rules in this paper are determined by common sense. An
interesting addition to this work could be to instead determine the heuristic
rules using machine learning techniques.

They test their algorithm experimentally by sampling 140 pages from different
categories of the Yahoo directory and running their algorithm on it and then
manually assessing whether the segmentation was “Perfect”, “Satisfactory” or
“Failed”.

In Learning block importance models for web pages[27] the authors of the
VIPS algorithm build upon their previous work and they develop an algorithm
to rate Web page blocks according to their importance. To ensure that people
on average have a consistent notion of the importance of different blocks they
first conducted a user study, which confirmed their assumption.

They then develop a learning-based algorithm that takes the position and
size of a block as well as some features of the content itself into account (e.g. link
density) which are then fed into a Support Vector Machine. According to their
experimental results they achieve a quite high accuracy in their predictions.

In Browsing on Small Screens: Recasting Web-Page Segmentation into an
Efficient Machine Learning Framework[3] the author uses a different approach
than most others, because he focuses on the application of optimizing existing
Web pages for mobile phones. He first divides a Web page into a 3x3-grid, where
the user has to choose one grid he would like to see better by clicking on it.
The selected part can then either be zoomed further into or viewed as rendered
HTML or transcoded into a view optimized for the specific device.

Their page segmentation algorithm is based on clues from the DOM combined
with a number of computer vision algorithms. Specifically they use an entropy
measurement to construct a decision tree that determines how to segment the
page. They first recursively segment the page by cutting it based on entropy
(trying to reduce the entropy of split parts). They combine this with a few
heuristics e.g. favoring cuts that result in more equally sized parts or preferably
cutting in nodes which are higher up in the DOM tree.

They test their approach on a number of popular websites where they achieve
good results in most cases (they rarely cut through coherent texts).

One artificial limitation of their approach is that it is designed to divide
the page into at most 9 segments (because they assumed that people can then
choose one part by clicking the respective number on their mobile phones), but
it seems possible to adapt it to other grid sizes.

In Vision Based Page Segmentation: Extended and Improved Algorithm/[7]
the authors improve upon the popular VIPS algorithm. They focus on improving
the first part of VIPS, the visual block extraction (part 2 and 3 of VIPS are
visual block separation and content structure construction respectively). They
observe that the original algorithm now has certain deficiencies due to its age (it
is from 2003) and the evolving nature of the Web. They address these issues
by dividing all HTML tags (including the ones introduced by HTML 5) not
into three classes but into nine instead and define new separation rules for these
classes based on visual cues and tag properties of the nodes.

Unfortunately they do not give an empirical evaluation of their updated
algorithm.

12



There is also a review (Web Page Segmentation: A Review[51]) about all
the different approaches to page segmentation attempted so far. The author
systematically goes through the literature and answers the five W’s (Who, What,
Where, When and Why). They look at about 80 papers that are in one way or
another related to page segmentation.

As applications for segmentation they list mobile web, voice web, web page
phishing detection, duplicate deletion, information retrieval, image retrieval,
information extraction, user interest detection, visual quality evaluation, web
page clustering, caching, archiving, semantic annotation and web accessibility.

They also look at the work that tries to figure out the function and the
importance of segments (thus that tries to label blocks). The approaches here
include ones based on heuristics, rules, statistics, machine learning and link
analysis where sometimes ontologies are used (either predefined or inferred) for
mappings.

The approaches for the segmentation itself can be broadly split into bottom-
up vs top-down algorithms. Other differentiators are whether algorithms just
look at the DOM or at the visual representation of the page or both. Some
algorithms attempt to recognize blocks by first looking for separators such as
thin lines or white space. Many algorithms are based on heuristics where the
authors make assumptions about the “general layout” of a page. There is also
one paper where the segmentation algorithm is based on a picture snapshot of
the page[l1].

The review also gives an overview of the assumptions and limitations of the
different algorithms (unfortunately not in a table though).

In the evaluation of the different approaches there is also a wide variance:
Many authors use precision and recall as metrics of effectiveness, others use
success rate or accuracy and some also focus on execution time or output size.

One thing that the review also shows is that there seems to be no easy
way to compare the different approaches to each other. There seems to be no
standardized test for the effectiveness of different page segmentation algorithms.
Each paper seems to use its own datasets and test procedures which often have
different parameters and goals. It is thus no easy task to decide upon one
particular algorithm for a practical purpose at hand.
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Chapter 4

Datasets

Since Web page segmentation is a fairly well-studied problem, many authors
have done an empirical evaluation of their algorithms. The datasets and methods
used for this evaluation vary widely. There appears to be no standard dataset
for this problem, instead every author seems to create their own dataset by first
randomly sampling Web pages (sometimes taken from a directory site such as
http://dmoz.org) and then manually marking up the semantic blocks and often
also labeling the blocks according to a predefined ontology.

It seems important to point out that marking up a semantic block and
subsequently labeling it are two distinct steps. Marking up a semantic block can
be thought of as taking a picture snapshot of a Web page and then drawing a
rectangle around all the areas on the page that belong together semantically.

Labeling is the subsequent step where a label, typically describing the function
of a block, is applied to each one. The labels used depend on the particular
ontology chosen by the authors. These range from a simple noise/no-noise
classification to more involved ones containing e.g. header, footer, right- and
left-menu, advertisements, content, comments etc.

While the first step is certainly less ambiguous there still remains the question
whether there is an intuitive understanding of what constitutes a semantic block
among different persons. [30] indicates that there is indeed one. They report an
overlap of 87.5% between the 8 test subjects who they asked to mark up the
same Web pages. Although this sample is very small we believe it to be evidence
enough since it is usually self-evident what belongs together on a Web page and
what does not. Our own anecdotal experience indicates that people do indeed
mostly agree upon what constitutes a block, but you do have to be specific about
the level of granularity you want (e.g. “the most high-level (i.e. biggest) blocks
and their most high-level sub-blocks”), since there can be many levels.

Another thing to take into account is that semantic blocks can typically be
nested hierarchically. E.g. on a news site there may be a main content area
that itself can be further subdivided into a list of articles where each article then
consists of a headline, a picture and text. While in principle this nesting could
be arbitrarily deep, we find that in practice a block-hierarchy with two levels is
sufficient for applications such as information retrieval, information extraction
and mobile page-adaptation. We will therefore restrict ourselves to hierarchies
of two levels here.
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4.1 Other Datasets

Before building our own dataset we investigated the datasets used by other
authors to find out how they chose their sample pages, sample sizes and whether
they downloaded only the HTML documents themselves or the referenced external
resources as well. Furthermore we wanted to see whether any of these datasets
would be suitable for our analysis as well.

We found five other datasets which are shown in table 4.1. The manually
labeled ones vary in size from 105 to 515, with the exception of the TAP
knowledge base[15] at a size of 9,068 which was a semantically labeled database,
which was used as a test-bed for the Semantic Web but is unfortunately not
available anymore. The Web pages are sampled completely at random in [12],
in [18] they are taken from the Webspam UK-2007 dataset[l3] comprising
over 100 million pages, which is focused on labeling hosts into spam/nonspam,
in [20] they first downloaded 16,000 random pages from the directory site
www.dmoz.org and randomly chose the sample pages from there. In [30] they
make a distinction between template-driven and non-template-driven Web pages
(i.e. pages generated by a Web page authoring system and hand-coded ones)
which is not made by the others.

The labeling of blocks was sometimes done by the authors and sometimes by
volunteers , which is preferable to avoid any biases. It is not always mentioned
what granularity of blocks was used (i.e. whether only top-level blocks were
marked up or sub-blocks as well), but no one specifically mentioned marking up
sub-blocks which leads us to the assumption that no sub-blocks were highlighted.
Since none of these datasets are available online or from the authors directly we
were unable to confirm this though.

One other notable observation is that all datasets seem to consist only of
HTML documents without any of the external resources referenced from the
pages. While this is certainly partly due to the datasets being already up to 11
years old, when Web pages on average were still a lot less complex than they are
now, we will go into more detail why this is suboptimal for our analysis in 4.2.1.
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Size Granularity | HTML only? Type Created by Available
Paper Sample
taken from
Semantic TAP 9, 068 ? yes template-driven external -
Partitioning of knowledge
Web Pages[30] base[15]
CS 240 ? yes non-template-driven | 8 volunteers -
department
websites
515 1 yes all the authors -
Recognition of Random
Common Areas sites from
in a Web Page dmoz.org
Using Visual
Information: a
possible
application in a
page
classification[20]
A densitometric 111 1 yes all external -
approach to web Webspam
page segmenta- UK-2007[13]
tion[18]
105 ? yes all the authors -
A Random
graph-theoretic Web pages
approach to
webpage
segmentation12]

Table 4.1: Datasets used in the literature

4.2 Building our own dataset

We first tried to find an already existing dataset which we could use for our
evaluation, by contacting the authors of previous evaluations, but were ultimately
unsuccessful, because all but one dataset were not available any more. The one
dataset we could obtain was unfortunately unsuitable for our purposes, since it
for one was focused on news websites and only had parts of the pages marked as
blocks (the header and article) and second it only consisted of single HTML files
and was missing all external resources, such as images, CSS files etc.

The latter is a problem in our case, because all algorithms that depend on a
rendered representation of the page will deliver very different results for a page
with all external resources and one without. We want to lay out this point in a
bit more detail, since it is relevant for building a suitable dataset.

4.2.1 External resources in Web pages

Web pages are not only made up of HTML documents but they can reference
a number of external resources that the browser will download in order to
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render the page properly. The most common ones are images, videos, CSS files
(which describe how a page should be styled) and Javascript files (often adding
interactivity and animations to a page) but there are also lesser known ones like
font files, JSON or XML files (providing raw data), favicons and vector graphic
files.

A browser will first download the HTML document itself, parse it into the
DOM tree (i.e. an object representation of the document) and then find all
the referenced resources and download those as well. If there are one or more
external style sheets they will be parsed as well, and the style rules will be
applied to the DOM. Finally if there were Javascript files found they will be
interpreted by the Javascript engine built into the browser and they will apply
arbitrary transformations to the DOM. Finally a render tree can be built from
the DOM which is then painted on the screen.

So it is clear that if you only download the HTML document itself then
its rendered representation will be vastly different from the page including all
resources. For this reason we decided to build a dataset consisting of HTML
documents together with all their external resources (and all links rewritten
accordingly so that they point to the right files).

Note Javascript in general poses a challenge for any kind of Web page analysis
because it makes the Web ever more dynamic. While in the early days of
the Web there was a clear relationship between an HTML document and
the rendered page this is not necessarily true anymore. Since a Javascript
program can modify the DOM arbitrarily and furthermore load in more
data or other Javascript programs from external sources it is possible that
the original HTML document and the rendered page have virtually nothing
in common. There is even a Web design approach called “Single-page
websites” where the entire website is built through DOM manipulation (e.g.
when clicking on a link the browser will not actually make a new request
and rebuild the DOM but instead only the changed data will be loaded and
the current DOM will be manipulated accordingly). While this approach
certainly goes against the design ideas behind HTML, in particular that
an HTML document should describe the structure and content of a page,
it still must be taken into account for any Web page analysis.

4.2.2 Downloading the sample pages

One of our goals for the dataset was that it should contain the complete Web
pages including all external resources. This would allow the pages to be rendered
properly and furthermore it should also increase the lifetime of the dataset
significantly and thus make it potentially useful for others as well. This led us to
the question of how you can actually download a Web page completely. Our first
attempt was a small script that simply parsed the original HTML document and
looked for links to images, CSS files and Javascript files which it would download
as well. This approach turned out to be too simplistic though, as there are a
lot more ways to reference external resources than we originally were aware of.
Some of the difficulties are that e.g. CSS files can reference other CSS files (which
again can reference others as well of course and the references can be circular)
and these references can also be in the HTML document itself since it is possible
to have inline CSS declarations there. Then there are more obscure references

17



to things like font files and background images, which is a CSS feature. Finally
Javascript poses a real challenge since it is a full programming language (unlike
HTML and CSS which are not Turing-complete) that can arbitrarily reference
other resources. In practice this is solved by simply running the Javascript
program. But in theory the question of whether really all resources have been
downloaded is uncomputable (for all possible programs) since it would be akin
to answering the halting problem[28].

Fortunately there are tools that solve this problem satisfactorily in practice.
We have had the best success with the command-line program wget using finely
tuned parameters'. It handles all of the difficulties mentioned above except
references from within Javascript programs, and it also rewrites the links so
that they all point to the right locations. We found that the downloaded pages
rendered identical or nearly identical to the online version in most cases. The
few pages that used Javascript references to an extent that they could not be
properly rendered offline were excluded from the dataset (18 out of 100 for the
random dataset and 30 out of 100 for the popular dataset). Next we will describe
how semantic blocks were added to the downloaded pages.

4.2.3 The Dataset-Builder

We developed a small tool, which we will simply call the Builder, to facilitate
marking up Web pages with semantic blocks (since we could not find an already
existing tool that fulfilled our requirements). For the reasons described in section
4.2.2 it was necessary that the Builder operates on the DOM, since that is what
people see in the end, and it therefore had to be implemented in Javascript and
run in the browser.

The Builder is run by clicking a bookmarklet which will load and run the
Javascript program from our server. It then works by highlighting the DOM
node the user is hovering over with the mouse, allowing her to select that block
and showing her a menu where she can choose what type of block it is. The
possible choices to classify a block were:

High-level-blocks Header, Footer, Content, Sidebar

Sub-level-blocks Logo, Menu, Title, Link-list, Table, Comments, Ad, Image,
Video, Article, Searchbar

This block ontology was chosen with the goal of being comprehensive and it
was divided into High-level blocks and Sub-level blocks (or level 1 and level 2
blocks) since Web pages can be segmented on different levels of granularity. E.g.
a content-block can have a title, an image and an article as sub-blocks. While in
principle there is no upper limit to how many levels of granularity you can have
on a page, we found two levels to be sufficient in the majority of cases and have
thus restricted ourselves to that.

When selecting a block (which maps to a node in the underlying DOM tree)
it is possible for the user to expand the selection (i.e. move up one or more levels
in the tree) and also to group together multiple siblings on the same level in the
tree. The latter is important because there is not always a one-to-one mapping

1The magic incantation is: wget -U user_agent -E -H -k -K -p -x -P folder_ name -e
robots=off the_ url
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from DOM nodes to semantic blocks (although in most of the cases there is, as
we found).

Technically the Builder adds a new data-block attribute to a selected
DOM node whose value is either 1 or 2, depending on the level of the block. It
also adds a new data-block-type attribute whose value is the chosen type of
block like e.g. “Content”. If multiple nodes were chosen as a block they will be
wrapped in an additional div node with the new attributes added. The user can
thus use the Builder to mark up all blocks on a page and when she is satisfied
with the result send it off to the server.

The server can then save the version of the page with the added blocks
and the one without. This client-server architecture was originally intended to
allow multiple people to work on the dataset at the same time and not having
to install anything on their computers (save the bookmarklet). The builder
would then send change-sets, consisting of Xpaths mapping to blocks, to the
server which would download the respective page and apply the blocks to it. We
had to abandon this approach though as it turned out that the original HTML
document and the DOM tree were in many cases so different that the Xpaths
would not map onto the tree any more.

Instead we employed a more robust solution, requiring client and server to be
on the same machine, where we would first make the full page available offline
using wget, then open that page in a browser, load in the Builder, and add all
the blocks and finally serialize the changed DOM to disk again. This proved
to be a solid approach to marking up semantic blocks on Web pages. If one
subsequently wants to get out all the blocks of a page one can do so using a
simple Xpath query?.

4.2.4 Selecting the sample pages

We built two different datasets, one containing only popular pages and one
containing randomly selected pages. This was done to see if the algorithms
performed differently on random and on popular pages on average. For the
popular dataset we took the top 10 pages from the 10 top-level categories
from the directory site http://dir.yahoo.com/. The chosen categories were Arts
& Humanities, Business & Economy, Computer & Internet, Entertainment,
Government, Health, News & Media, Science and Social Science. We believe this
gives us a representative sample of popular websites, although not of websites in
general. We manually checked all websites whether they still rendered properly
after having been downloaded and removed the ones that were broken, which
left us with a total of 70 popular pages in the dataset.

For the random websites we made use of the web service from
http://www.whatsmyip.org/random-website-machine/ to generate 100 links,
which we then downloaded. The service boasts over 4 million pages in its database
and the only filtering is done for adult content, which makes it sufficiently
representative for the Internet as a whole. After removing pages that did not
render properly offline we ended up with a random dataset consisting of 82
pages.

The marking up of the semantic blocks on these pages was done by three
volunteers. They were instructed to first mark up all the level-1 block they could

2Xpath query to get all blocks: ’//*[@data-block]’

19


http://dir.yahoo.com/
http://www.whatsmyip.org/random-website-machine/

find and subsequently all the level-2 blocks.
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Chapter 5

Testing Framework

We give an overview of the testing framework which we developed to enable us
to compare different segmentation algorithms on different datasets. The require-
ments of the system are described as well as its architecture and implementation.

5.1 Overview

The main idea behind the testing framework is that it allows the user to easily
run different page segmentation algorithms on a number of different datasets in
one unified setting. Conceptually the framework takes a segmentation algorithm
and a dataset as input and produces statistical results as output. The statistics
are computed by running the given algorithm on each item of the dataset and
comparing the resulting segmentation to the ground truth given in the dataset.
The concrete metrics used are Precision, Recall and F-Score of the segmentation.

One design goal of the framework was that it should be flexible enough to
handle algorithms implemented by others in potentially other programming
languages. Also it should be possible to run these algorithms on varying datasets
with different structures and features. We therefore tried to define a minimal
interface which would still allow all required operations. In essence, all a
segmentation algorithm should need as its input is the HTML of the page (and
the external resources referenced from the HTML) it is supposed to analyze.
It will then return the recognized blocks in some form which will then have
to be normalized to a common structure that can be easily compared to the
reference dataset. For the framework we defined the expected outcome as a
HTML document which contains the blocks marked up with the additional CSS
attributes data-block and data-block-type whose value is the block level (1
or 2) and the block type respectively.

It is thus necessary to provide a mapping function for each algorithm, that
takes the output of the algorithm and maps it to the expected format. Fur-
thermore it can be necessary to provide a small driver function if an algorithm
is written in a different language or is a Web service for example. The driver
takes the original HTML as input and needs to interface with the algorithm and
return the segmentation result.

The result, together with the ground truth, is then fed to the statistics
component which calculates the evaluation result, which is then presented to
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the user.

5.2 Architecture

The testing framework uses a pipeline as its main design pattern as pictured in
Figure 5.2. As inputs it takes the algorithm and the dataset specified by the
user and it generates a statistical evaluation of the performance of the algorithm
on that dataset as output. The pipeline has four distinct components which
have clearly defined interfaces (Figure 5.1).

The first component is the DatasetGenerator which is simply a function that
knows how to retrieve the original HTML documents and the HTML documents
with the manually highlighted blocks (the ground truth). In our dataset this
information is e.g. provided by a mapping.tzt file which simply provides a url
: filepath mapping. If such a file does not exist (and cannot be generated) for
another dataset the user would need to provide her own DatasetGenerator, since
the layout is not known in advance.

The original HTML document is then fed to the AlgorithmDriver, which is a
small function unique to each algorithm, that knows how to apply the specified
algorithm to the given document. This function needs to be specific to each
algorithm since algorithms can be implemented as libraries, executables or Web
services, which is unknown in advance. The driver can then interface with the
algorithm by some means like e.g. a sub-process or an HTTP request and return
the extracted blocks.

Since there again is no unified format for semantic blocks and different
algorithms return different formats it is necessary to normalize the data rep-
resentation of the blocks. The BlockMapper component takes care of this. It
takes the raw blocks, which can for example be only the textual content that
has been extracted or fragments of the HTML, and maps them back onto the
original HTML document to produce our standard format. For this standard we
decided to use the original HTML where the semantic blocks have been marked
up with the two additional attributes data-block and data-block-type. These
attributes are either added to already existing elements in the document or if
multiple elements need to be grouped together we wrap them in an additional
div element and add the attributes there. Attributes with a “data-” prefix
have the advantage of being valid HTML 5 and were added as a means to
attach private data to elements, which does not affect the layout or presentation.
Furthermore storing the algorithm results as HTML has the advantage that you
can still render the page and see the highlighted blocks (with an appropriate
CSS rule added) and they are also easy to query via Xpath or CSS selectors.
This component is again needed for each individual algorithm as the formats of
the returned semantic blocks differ widely.

Finally there is the Fvaluator component that takes the normalized Block
HTML and the HTML ground truth as inputs and does the statistical evaluation
of the algorithm results. It calculates Precision, Recall and F-score by getting
the blocks from both documents and checking which match. It also returns the
number of blocks retrieved by an algorithm, the number of correctly found blocks
(the hits) and the total number of relevant blocks on a page. The equality of
blocks is tested with two different metrics: an exact match metric and a fuzzy
match metric. For both metrics the blocks are first serialized to text-only (i.e.
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DatasetGenerator :: Dataset — Iterator (HTML Pages, HTML Ground truth)
AlgorithmDriver :: HTML Page — Algorithm — Blocks

BlockMapper :: HTML Page — Blocks — Block HTML

FEvaluator 2 HTML Ground truth — Block HTML — Statistical Results

Figure 5.1: The pipeline components and their interfaces

all tags are ignored) and white-space and newline characters are removed as they
just add noise. The exact match metric then does a string equality check to find
matching blocks (the intersection of the set of found blocks and the ground truth
is taken). The fuzzy match metric does a fuzzy string comparison using the
SequenceMatcher algorithm in the Python difflib library'. We consider strings
with a matching ratio > 0.8 as equal for the fuzzy match metric. We believe that
the results using the fuzzy match metric are more valuable for most applications
as the quality of blocks will still be sufficient for them.

Dataset

Algorithm iterate run mapping metrics
[ ] »| HTML [— | Raw blocks |——| Block HTML —>

Figure 5.2: The data pipeline

5.3 Implementation

The implementation of the testing framework was done in the Python program-
ming language. Mostly due to the personal preference of the author but one
additional reason was that we knew that there is a Python library[6] providing
complete DOM bindings, thus making Python a full peer of Javascript, which
was a necessary requirement for implementing segmentation algorithms that
need to query the DOM. Also there are robust libraries for parsing[3] (often
invalid) HTML documents and querying[4] them via Xpath. Furthermore Python
programs, which are (typically) interpreted, can easily be modified and extended,
making Python a good choice for prototyping and problem exploration.

The DatasetGenerator was also implemented as a Python generator (i.e. a
lazily evaluated iterator) that reads in HTML documents from disk and yields
them when needed. By default files are assumed to be UTF-8 encoded (in our
datasets we took care of this when saving the pages) and only in the case of
decoding errors we try to guess the character encoding (using the chardet library).
We do not do it by default as it turned out to be rather slow in practice.

The specific AlgorithmDriver and BlockMapper functions for the individual
algorithms are described in chapter 6. The Fwvaluator parses both the Block

Thttp://docs.python.org/2/library /difflib.html
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HTML and the HTML ground truth into a so-called ElementTree AST, which
supports Xpath queries and (recursive) serialization of nodes to plain text. This
is used to first retrieve the blocks via an Xpath query and subsequently serialize
them to plain text. We remove white-space and line-break characters from the
strings as they just add noise. For our exact match metric we then take the
intersection of the set of ground truth strings and the set of algorithm-generated
strings to get perfect matches. The perfect matches are then compared to the
retrieved and the relevant results to get Precision and Recall respectively. The
F-score is then calculated as the harmonic mean of precision and recall.

The results for each page are written to a CSV file with the columns Filepath,
Algorithm, Precision, Recall, F-score, number of retrieved results, number of
accurate hits and number of relevant results. The results can then be analyzed
and visualized with common spreadsheet software.
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Chapter 6

Segmentation Algorithms

Here we give a short overview of the other algorithms which we use in our
comparison.

6.1 BlockFusion (Boilerpipe)

The BlockFusion algorithm was introduced by Kohlschiitter and Nejdl in 2008 [18].
It is thus a relatively recent algorithm which is distinctive in that it is completely
text-based. It does not rely on the DOM tree and can be implemented very
efficiently, making it potentially useful for the segmentation of a large number
of pages. It was included in the comparison as a representative for text-based
algorithms.

6.1.1 Algorithm

The BlockFusion algorithm is grounded in the observation, coming from the field
of Quantitative Linguistics, that the so-called token density can be a valuable
heuristic to segment text documents. The token density of a text can simply
be calculated by taking the number of words in the text and dividing it by the
number of lines, where a line is capped to 80 characters. A HTML document is
then first preprocessed into a list of atomic text blocks, by splitting on so-called
separating gaps, which are HTML tags other than the <a> tag. For each atomic
block the token density can then be computed.

The authors then employ a merge strategy adapted from a Computer Vision
algorithm which merges adjacent pixels, but instead they merge neighboring
text blocks. They compare the token density of each atomic block to the density
of its successor and if the difference between the two (the slope delta) is below a
certain threshold value ¥,,,, they are merged into a bigger block. This merge
strategy is done recursively until no more blocks can be merged. Due to this
design this algorithm does not support multiple levels of blocks by default, but
a different block granularity can of course be achieved by changing the merge
threshold value. A possible extension of this algorithm to support sub-blocks is
to introduce a second smaller threshold value ¢,,4, and then call the BlockFusion
algorithm on each (already merged) block. ty,4, needs to be smaller than ¢4,
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because otherwise the sub-blocks would be merged until they are identical to
the main blocks.

Algorithm 6.1 The BlockFusion algorithm

# Input: textBlocks <— set of atomic blocks which partition the lines
# Output: Set of Text blocks

thetaMax = 0.38 # Empirically determined slope threshold

def blockFusion (textBlocks):
if len (textBlocks) < 2:
return textBlocks

notDone = True

# merge blocks until no more can be merged
while notDone:

notDone = False

blockl = textBlocks [0]

for block2 in textBlocks [1:]:

if slopeDelta(blockl, block2) <= thetaMax:
blockl.mergeWith(block2) # merge block2 into blockl
block2.remove () # remove block2 from textBlocks
notDone = True

else:
blockl = block2

return textBlocks

# The text density difference between two blocks
def slopeDelta(blockl, block2):

dl = blockl.getTextDensity ()

d2 = block2.getTextDensity ()

return abs(dl — d2) / max(dl, d2)

6.1.2 Implementation

While there is no reference implementation of the BlockFusion algorithm as it
is given in [18], there is a related open source library from the same author,
called boilerpipe[l], which is described in [19]. We implemented the BlockFusion
algorithm (specifically the BF-plain variant as described in [19]) on top of this
library, since this allowed us to stay as close to the original implementation as
possible because we could reuse many functions needed for the algorithm. For
example the function that generates the atomic text blocks, which are later
merged, is taken unmodified from the boilerpipe library as well as the block
merging function and the function to calculate the text density of a block. We
also used a text density threshold value of 9,,,4, = 0.38, which the authors found
to be the optimal value in their experimental evaluation.

The boilerpipe library itself is focused on retrieving the main content, like for
example an article, from a Web page by removing all so called “boilerplate”; i.e.
everything that is not the main content, from Web pages. It provides different
extractors (strategies) to accomplish this, based on the specific extraction goal.
We could therefore simply extend the library with a new BlockEztractor that
implements the BlockFusion algorithm and returns the extracted text blocks.
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We used an existing (minimally modified) Python wrapper for the library to
interface with the algorithm[5]. As the blocks are returned as a list of strings
they then still need to be mapped back onto the original HTML document. We
therefore walk through the parsed HTML tree and search (fuzzily) for the text
fragments. When a block is found we add the block CSS attributes (and a
wrapping div element, if necessary). The thus marked up page is then passed
on to the Fvaluator.

6.2 PageSegmenter

The PageSegmenter algorithm is an example of a DOM-based segmentation
algorithm. It works solely on the structural information embedded in the tree
structure of a document.

It was introduced by Vadrevu et al. [30] in 2005.

6.2.1 Algorithm

The main idea behind the PageSegmenter algorithm is that the root-to-leaf paths
of leaf nodes can be analyzed for similarities to find nodes which likely belong
to the same semantic block. An example for a root-to-leaf path would e.g be:
/html/body/p/ul/li. If multiple adjacent siblings now share this root-to-leaf
path it is a pretty safe assumption that they also semantically belong together,
as they are structurally part of the same list.

The authors formalized this notion of similarity of paths of leaf nodes as the
path entropy:

Definition The path entropy Hp(N) of a node N in the DOM tree can be
k

defined as Hp(N) = —>_p(i)logp(i) where p(i) is the probability of path
i=1

i=
P; appearing under the node N and k is the number of root-to-leaf paths
under N.

Thus one needs to first build a dictionary D which maps all root-to-leaf paths in
the tree to their probability of occurrence. For a given node N the path entropy
Hp(N) can then be computed by first getting all of the root-to-leaf paths below
that node, looking up their probabilities in D and plugging that into Hp.

The algorithm is then described to go breadth-first through the tree and
to check for every subset of nodes whether its path entropy is lower than the
median path entropy of all nodes. If this is the case then this node is marked as
a new segment, else the algorithm recurses into the children of that subset.

We found the original description as given in Algorithm 6.2 to be unclear in
two points unfortunately. We tried to get a clarification from the authors but,
alas, could not elicit a response. Point one is the formulation “for each Subset S
of Nodes[]”, which is problematic in two ways: For one, if literally each subset is
meant, then the algorithm becomes non-deterministic as the order in a set is not
defined. Second it conceptually makes little sense to go through each subset, as
that also includes non-contiguous sets of nodes, which - by definition - cannot
be segments.

The second point is related, as it also pertains to the question of which
subsets are meant. It is the recursion into the children of S which is unclear,
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since literally taking all of the children of the different nodes in S and then
running the PageSegmenter on that set could lead to the detection of blocks,
consisting of non-contiguous nodes (when their parents are different for example).

Algorithm 6.2 The original PageSegmenter algorithm

# Input: Nodes[], a node in the DOM tree
# Output: A set of segments

for Each Subset S of Nodes[] do
H(S) := Average Path Entropy of all nodes in S
if H(S) <= MedianEntropy then
Output all the leaf nodes under S as a new segment PS
else
PageSegmenter (Children (S))
end if
end for

We therefore took the freedom to interpret the algorithm as we think the
authors probably meant it, but could not confirm this with them. We will call
our interpretation PageSegmenter’ as outlined in Algorithm 6.3. Firstly we will
refer to a list of nodes, as the siblings in a HTML tree have a clearly defined
order. Instead of each subset it seems logical to look at each range of contiguous
nodes, so for three nodes the possible ranges would be [[1, 2], [2, 3], [1], [2], [3]].
We exclude the whole range [1,2,3] as that has already been checked for the
parent of those nodes. We start with the largest ranges since we want to find
the main blocks first and then later recurse into them to find the sub-blocks.

If a block is found (i.e. when the average entropy of the nodes in a range is
smaller or equal to the median entropy), it is added to the result list and we
recursively call the PageSegmenter’ on the sibling before and after the block.
So if we have n nodes and we recognize a block from nodes ¢ to k then we would
recursively call PageSegmenter’([1..i — 1]) and PageSegmenter’([k + 1..n]) to
make sure that we find all contiguous blocks of nodes.
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Algorithm 6.3 Our modified PageSegmenter’ algorithm

# Input: nodes <— A list of nodes

#

median <— the median path entropy of all nodes

# Output: A list of segments

def

def

def

page_segmenter (nodes, median):
if not nodes: return []

result = []
for subset in ranges(nodes):
average = sum ([node.entropy for node in subset]) / float (len(subset))

# Check if we have a segment

if average <= median:
result .append(subset)
result .extend (split_recursion (subset, nodes, median))
return result

# Recurse into children of single nodes

elif len(subset) = 1:
result .extend (page segmenter(subset [0]. childNodes , median))
result .extend (split_recursion (subset, nodes, median))
return result

split_recursion (subset, nodes, median):
""" We recurse into the left and right siblings of a subset.
# Get the positions of the first and last element of the subset in nodes

nonn

first = (i for i, x in enumerate(nodes) if x = subset [0]). next ()
last = (i for i, x in enumerate(nodes) if x = subset[—1]).next ()
result = []

# Get the elements before and after the subset in nodes
before = nodes[: first]
after = nodes[last + 1:]

# Recurse into them
result .extend (page_segmenter (before, median))
result .extend (page_segmenter(after , median))

return result

ranges (elements ):

"o

A generator for all possible ranges of a list (excluding the list itself).

Starts with the longest ranges, so e.g. for the
list [1,2,8] it would generate:
[[1.2], [2,3], [1], [2], [3]].
length = len (elements)
if length > O:
for i in (range(length, 0, —1)):
for x in range(length — i + 1):
if length — 1:
yield elements[x:x+i]
elif len(elements|[x:x+i]) < length:
yield elements [x:x+i]
else:
yield []
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6.2.2 Implementation

First we parse the pages into a DOM-like tree (minidom). It is important to
choose a tree type which has explicit text nodes, since they need to be leaves in
the tree, because the assumption is that all content lies at the leaves. If a tree
type like e.g. Ixml.etree is chosen where text is simply an attribute of a generic
node type this assumption is violated. The next step is to get the root-to-leaf
paths of all leaf nodes and calculate the path weights (i.e. how often one path
occurs relative to all paths). This information is then used to calculate the path
entropy of all nodes, from which we can then get the median path entropy.

Given this information we can then implement the recursive PageSegmenter’
algorithm. Since the algorithm returns sets of tree elements comprising blocks
it is then easy to map these elements back onto the original HTML tree and
mark those sets as blocks by adding the data-block attribute to the element
encompassing the set.

A final note: In their paper the authors mention that they exclude text
nodes from the tree where the text contains modal verbs (such as could, should,
would...) in order to decrease noise. We are not doing that in our implementation
as we are not sure how they implemented this and because this would make the
algorithm language-specific, which is something we would like to avoid.

6.2.3 Complexity Analysis

This algorithm turned out to be very slow on large pages, which have a lot
of nodes on the same tree level. For this reason we evaluated its worst-case
run-time complexity and found it to be O(n?®). We will give a short proof in the
following.

Assume we have a tree with n + 1 nodes. In the worst case n nodes will be
direct children of the root node and every single node will be its own block. In
that case we will have to first generate all possible ranges for these n nodes and
walk through them from the longest ranges to the shortest ones consisting of
just one node. The “ranges” in this case are all well-ordered subsets of the n
nodes we are looking at. Thus 1 for size n, 2 for size n — 1 etc. giving %
ranges. For each range another n calculations are necessary in the worst-case to
calculate the average node entropy of that range. Thus giving us a worst-case
complexity of O(n?).

6.3 VIPS

The VIPS algorithm[10] (Vision-based Page Segmentation) appears to be the most
popular Web page segmentation algorithm since many other papers reference it
or compare their results to it. As indicated by the name this algorithm is based
on the rendered representation of a Web page. So it not only takes the DOM
structure into account but rendered properties such as dimensions on the screen,
background color etc. as well. The algorithm is from 2003 and thus the oldest
in our comparison.
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6.3.1 Algorithm

The VIPS algorithm was designed to segment Web pages similarly to how humans
do it. It thus analyzes the DOM after all the styling information from CSS
rules have been applied and after Javascript files were executed (and potentially
modified the tree). It is tightly integrated with a browser rendering engine since
it needs to query for information such as the dimensions on screen of a given
element. One thus has to decide on a fixed viewport size in advance on which
the page should be rendered.

Concretely the algorithm first develops a vision-based content structure,
which is independent of the underlying HTML document. This structure is built
by splitting a page into a 3-tuple consisting of a set of visual blocks, a set of
separators and a function that describes the relationship between each pair of
blocks of a page in terms of their shared separators. Separators are for example
vertical and horizontal lines, images similar to lines, headers and white-space.

This structure is built by going top-down through the DOM tree and taking
both the DOM structure and the visual information (position, color, font size)
into account. Specifically they decide for each node whether it represents a
visual block (i.e. the sub-tree hanging on that node) or whether it should be
subdivided further by using a number of heuristics:

e if a sub-tree contains separators like the <hr> tag, subdivide

e if the background color of the children of a node differ, subdivide
e if most of the children are text nodes, do not divide

e if the size of the children differs substantially, subdivide

They detect the set of separators visually by splitting the page around the
visual blocks so that no separator intersects with a block. Subsequently they
assign weights to the separators, again according to certain predefined heuristic
rules. From the visual blocks and the separators they can then assemble the
vision-based content structure of the page.

6.3.2 Implementation

We have not implemented this algorithm ourselves, since we could use an existing
implementation from Tomas Popela instead[24] (The original implementation
is not available any more). He implemented the VIPS algorithm as part of his
Master’s thesis in Java using the CSSBox' rendering engine. Since our testing
framework is written in Python, we wrote a small driver function in Java, which
we could then call as a sub-process from within Python. The sub-process runs
the VIPS algorithm on the given HTML document and writes its result back on
stdout.

The result of the used VIPS implementation is an XML file which contains
amongst others the information about the recognized blocks. These blocks are
given as plain text, i.e. they are stripped of all tags. We therefore wrote a
mapping function which maps the found texts back onto the original HTML
document, which is the format we need to be able to automatically apply the
different evaluation metrics to the result.

Lhttp://cssbox.sourceforge.net/
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Algorithm 6.4 The VIPS algorithm

# Input: node <— Render tree (DOM tree with rendering information)
# level <— 0
# Output: Vision—based Content Structure

[l

def divideDomtree (node, level):
if isDividable (node, level):
for child in node.children ():
divideDomtree (child , level+1)

blocks

else:
blocks .append (node)

def isDividable(node, level):
if node.isRoot ():
return True
elif:
# Check all the heuristic rules for separators
else:
return False

One thing to note here is that, since we only have the plain text of the blocks,
we need to check both the text content of each single node in the tree as well as
the serialized plain text of the entire sub-tree of which the current element is
the root. If a text node has been marked as a block we wrap it in an additional
div-element containing the data-block attribute, which marks it as a block.
Otherwise we just extend the tag of the found element with the block attribute.

We also do a fuzzy comparison on the strings, to account for slight text
anomalies due to white space and line breaks for example. As a performance
optimization we walk through the tree only once when mapping the text back,
since we know that the texts returned by the algorithm are in document-order
(i.e. depth-first pre-order).

6.4 WebTerrain

The WebTerrain algorithm was developed as our own contribution to the seg-
mentation problem. The main idea was to see if we can combine the different
approaches from the other algorithms in order to improve upon the end result.
We were interested in the question whether the approaches can complement each
other in the sense that they work better on different sub-tasks of the segmenta-
tion problem. As an example: It seemed likely that a structure-based algorithm
would do better detecting blocks which inherently have a lot of structure, like
tables and list-based menus, than a text-based one.

Additionally we developed a novel heuristic which inspired the name of the
algorithm and is described in more detail in the following.
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6.4.1 Algorithm

The Firefox web browser has a little known feature which allows the user to see
a 3D-rendered version of any website?. The result looks similar to a geographic
terrain map. This feature works by assigning an additional depth-value to each
visible element on top of the common width- and height-values, which are already
used in the normal 2D-representation of the page. The depth-value is simply
the tree-level of the element. The <html> element, which is at the root of each
HTML document, would have a depth of 1 for example, and the <body> element,
as a child of the <html> element, a depth of 2 and so forth.

We experimented with this feature on a number of different sites and made
the observation that the elevation profile seemed to map pretty well to what we
would consider the semantic blocks of a Web page. We formulated the hypothesis
that a distinct elevation is a strong indicator for a semantic block. This heuristic
has the interesting property that it combines a plain structural approach with a
rendering-based approach into one, since it not only takes the DOM tree into
account but also the visibility and dimensions of each element. It is not possible
to tell by simply looking at the original HTML document how it will ultimately
be rendered. One does not know how much space each child of an element will
take up on the screen, or if it will be visible at all. For this, one needs to actually
render the page (although it does not need to be painted to the screen, of course)
using a layout engine like e.g. WebKit?.

The algorithm is initialized with the root node of the tree and it then goes
top-down through the tree, looking at all the children on each level. If there is
one child which covers over 90% of the visible area it is considered dominant
and the algorithm recurses into that child directly. For each child a number of
heuristics are applied to find all the visible elements.

Visible in this case excludes children which are literally invisible, but also
separator tags, such as <hr>, and most importantly a merge step is executed
merging headers with subsequent text elements. The merge step first checks
heuristically whether an element is a header, based on either its tag or its
computed font size, and if yes, merges it (i.e. wraps the elements in an additional
<div>) with all subsequent elements up to the next separator. Separators are
again heuristically determined and include headers, <hr> elements, multiple <br>
elements and images that have the dimensions of a horizontal line.

If after applying these heuristics more than one child is left, we consider them
to be semantic blocks, otherwise we recurse into the single child and repeat these
steps (unless we have a leaf node, which is by definition a block, if we actually
reach it). If the high-level blocks have been found we call the WebTerrain
algorithm again on each of those blocks to find all the sub-blocks. If finer levels
of granularity are wanted it is of course possible to recurse more times.

The found blocks are then returned and can then be mapped back onto the
input HTML.

2To activate 3D View, right-click on the page and click on “Inspect Element”, then click on
the little cube icon in the lower-right corner of the Inspector pane
Shttp://www.webkit.org/
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6.4.2 Implementation

Since the algorithm is based on the rendered representation of a page we needed
a way to get such a rendering and interact with it. In browsers this is done by a
layout engine which first parses the HT'ML into a DOM-like representation, and
updates this tree with all the additional information from external resources,
such as style rules from CSS files and other DOM manipulations via Javascript,
and subsequently builds a render tree from it which is then drawn on the screen.
Rendering relies on a given device size, which specifies the size of the canvas. In
our case we set the viewport dimensions to 1024 * 768 pixels.

In order to get programmatic access to a layout engine we employed the
Python Webkit DOM Bindings®*(short: pythonwebkit) library. This library
is a virtually complete implementation of the DOM standard in Python, thus
allowing all the same queries and manipulations of the tree that have historically
only been available in Javascript running directly in a browser.

One drawback of the bindings library is that it is cumbersome to install
as it has a lot of specific dependencies which need to be satisfied and it must
be compiled from source, which in our case required us to make some small
modifications to build scripts and source files to get it to work. Another point of
confusion is that there is also a library called pywebkitgtk which also provides
basic access to Webkit, but it is not to be confused with pythonwebkit, as it
does not provide full access to the DOM!

Once installed, a so-called WebView object can be initialized with a url and
the viewport dimensions. This will trigger the loading of the page and display it
in an interactive graphical window, similar to a browser window (except without
any menus). Currently there is unfortunately no way to prevent the library from
opening a window. As a workaround we simply let the program close the window
again immediately after loading it, alternatively it also seems to be possible to
open the window in a virtual frame-buffer if one needs fully headless execution.
Another quirk of the library is that it does not support URLs using a file://
protocol. We worked around that by setting up a local web server to serve the
dataset files.

The WebView object supports callbacks, such as the documentLoaded call-
back, which is triggered when the DOM is fully loaded, i.e. when all external
resources have also been downloaded and applied to the DOM. We start the
page segmentation after this callback fired to ensure all elements of the page are
available. The algorithm is then implemented as outlined in Algorithm 6.5.

One difficulty implementing the algorithm was caused due to the mismatch
of the asynchronous callback-based nature of a WebView and the synchronous
implementation of the rest of the framework. Concretely there was no way in the
library to trigger a callback after the algorithm finished running. We solved this
by running the whole WebView in a sub-process which would write the output
HTML as a side-effect to stdout. The framework process would simply block
while the algorithm was running and only continue its execution after all data
was received.

4http://www.gnu.org/software/pythonwebkit /
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Algorithm 6.5 The WebTerrain algorithm

# Input: node <— Render tree (DOM tree with rendering information)
# Output: blocks <— list of nodes which are semantic blocks

def webTerrain(node):
result = []
blocks = highlightBlocks (node)
result .extend (blocks)

for block in blocks:
subblocks = highlightBlocks (block)
result .extend (subblocks)

return result

def highlightBlocks (node):
# Get the children of body
real children = self.getVisibleChildren (node, merge)

# A leaf is automatically also a block if we reach it
if len(real children) = O0:

self . highlight (node, level)

return [node]

# Recurse into single children
elif len(real_children) = 1:
return self.highlight blocks(real_ children[0], level, merge)

# If we have siblings , we make them blocks
else:
# Highlight them
for child in real children:
self.highlight (child, level)
return real children

def getVisibleChildren (node, merge):
real_children = []

for child in node.children ():
height = child.offsetHeight
width = child . offsetWidth

# Heuristic: Filter out invisible ones
if height = 0 and width = 0:
continue

# Heuristic: Filter out separator tags
elif el.tagName.lower () in [’ hr’]:
continue

# Heuristic: merge headers with subsequent texts
elif self.is_header(el):

div = self.heuristic_merge_header(el)

real children.append(div)

# Heuristic: If one child covers more than 90% of the area, recurse into it
elif node.offsetHeight * node.offsetWidth % 0.9 < height % width:

return [el]

else:
real children .append(el)

return real children
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Chapter 7

Results

In this chapter we present the results of our evaluation of the four different
segmentation algorithms described in chapter 6. We tested all algorithms in
a number of different configurations using the testing framework presented in
Chapter 5. First, we tested them on the two different datasets which we created
for this purpose: The randomly selected dataset and the popular dataset. The
first one consists of 82 random pages and the second one of 70 popular pages,
marked up by our assessors. We chose these two types of datasets to test whether
the algorithms perform differently on random and on popular pages on average.

As a second variable we ran the algorithms on both the original HTML,
i.e. the HTML document downloaded from the source URL via a single GET
request, and the DOM HTML, i.e. the HTML document obtained by waiting for
all external resources to load and then serializing the DOM. As there appears to
be a trend to build pages dynamically on the client-side using Javascript, we
were interested to see whether our results would reflect this. It is also of note
that our tool to mark up blocks manually was browser-based and thus operated
on the DOM, making the DOM HTML the true basis of our ground truth. We
believe this is a more sensible basis than the original HTML, since it is what the
user ultimately sees when viewing a page, and it also is what the creator of the
page intended as the final result.

Finally we used two metrics to compare the generated results to the ground
truth, the exact match metric and the fuzzy match metric. Both of them compare
the string contents of the blocks to each other. Each block is serialized to only
text with all HTML tags removed and white-space and newlines removed as well.
For the exact match metric it then simply checks for string equality. This is of
course a very strong criterion, as a minimally different string would be counted
as false, while for most applications it would likely be perfectly sufficient. For
this reason we also do a fuzzy string comparison using the Python difflib library’.
Concretely we use the SequenceMatcher class to check for a similarity ratio of
better than 0.8 between strings. This class implements an algorithm similar to
the “gestalt pattern matching” approach in [26].

So all together there are four testing variables: algorithms, datasets, HTML-
type and metrics. This yielded 32 test runs in total, the results of which are
presented in the 8 tables below (each algorithm is in each table to facilitate direct

Thttp://docs.python.org/2/library /difflib.html
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comparisons). For each algorithm we show the average Precision, Recall and
F-Score values. Precision is a measure of quality that is defined as the number
of relevant results out of all retrieved results. Recall is a measure of quantity
that is defined as the number of retrieved results out of all relevant results. The
F-Score is a combination of the two, defined as F' = 2 % g_’:%. Additionally we
also show the average number of retrieved blocks, valid hits (i.e. the number
of relevant results returned by the algorithm) and the total number of relevant
results (determined by the ground truth). The latter is interesting as it shows the
difference in the average number of retrieved blocks and it also shows differences
between the two datasets.

In general, the fuzzy match metric will give better or equal results to the
exact match metric and we also expected the DOM HTML to do better on
average than the original HTML.

Note When studying the results closely one might notice that in some cases the
F-Score for an algorithm is lower than the minimum of its Precision and
Recall values. This is not due to a mistake on our part, but is caused by the
fact that we are looking at averages of all three values. It is indeed possible
that for each individual result the invariant F'(P, R) > min(P, R) holds,
but still avg(F1..F,) < min(avg(Py..Py),avg(Py..Py,)) as the following
example illustrates:

If P, =1,P =0.1,R = 0.1, Ro = 1 then F(1,0.1) ~ 0.18 and F»(0.1,1) ~ 0.18
with avg(Py, P2) = avg(Ry, R2) = 0.55 and avg(Fy, Fa) = 0.18.

7.1 The random dataset

Here we present the results of running the four different algorithms on the dataset
consisting of 82 random pages. On average we have 12.24 relevant blocks on a
random page.

7.1.1 Original HTML input

BlockFusion returns on average about twice as many blocks as there are relevant
blocks, but recall is still very low (i.e. retrieved and relevant results hardly
overlap). PageSegmenter returns about four times as many blocks as there are
relevant blocks and manages thus to get the highest recall scores but rather low
precision. VIPS returns too few blocks on average and has therefore low recall,
but precision is higher (for the fuzzy match metric). Finally WebTerrain is the
closest in the number of retrieved results to relevant results. Of the retrieved
results of WebTerrain about half were actual blocks using the fuzzy match metric.

Comparing the exact to the fuzzy match metric it can be seen that results
are considerably better for the fuzzy match metric.

Exact match metric

Precision and Recall are generally very low. BlockFusion and VIPS recognize
hardly anything. Precision is highest for WebTerrain and Recall is highest for
PageSegmenter.
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’ Algorithm \ Precision \ Recall \ F-Score \ Retrieved \ Hits \ Relevant ‘

BlockFusion 0.03 0.06 0.04 25.99 0.77 12.24
PageSegmenter 0.11 0.27 0.14 46.96 2.97 12.24
VIPS 0.07 0.06 0.06 7.42 0.91 12.24
WebTerrain 0.25 0.22 0.21 10.9 2.23 12.24

Table 7.1: Random-HTML-Exact

Fuzzy match metric

Precision and Recall are clearly better for the fuzzy match metric with the number
of hits roughly doubling. Especially VIPS improves substantially, indicating that
a number of its blocks were only slightly off from the ground truth. The best
F-Score (0.42, WebTerrain) is still rather low.

’ Algorithm \ Precision \ Recall \ F-Score \ Retrieved \ Hits \ Relevant

BlockFusion 0.06 0.11 0.07 25.99 1.51 12.24
PageSegmenter 0.19 0.45 0.24 46.96 5.24 12.24
VIPS 0.28 0.16 0.17 7.42 1.99 12.24
WebTerrain 0.48 0.43 0.42 10.9 4.5 12.24

Table 7.2: Random-HTML-Fuzzy

7.1.2 DOM HTML input

We can still see a notable improvement when comparing the exact to the fuzzy
match metric, but not quite as dramatic as for the original HTML.

The number of retrieved blocks is generally higher (WebTerrain minimally
lower), reflecting the observation that the DOM HTML is typically more complex
(as mostly things are added, rather than removed).

Exact match metric

BlockFusion is performing poorly, but better than on the original HTML. Page-
Segmenter again exhibits low precision and high recall. VIPS has the best
precision and lower recall, while WebTerrain does similarly on both, giving it
the best F-Score.

’ Algorithm \ Precision \ Recall \ F-Score \ Retrieved \ Hits \ Relevant ‘

BlockFusion 0.08 0.14 0.09 30.96 1.79 12.24
PageSegmenter 0.11 0.39 0.16 65.04 4.47 12.24
VIPS 0.36 0.21 0.24 9.24 2.73 12.24
WebTerrain 0.34 0.29 0.29 10.58 3.04 12.24

Table 7.3: Random-DOM-Exact

Fuzzy match metric

We see about a 50% improvement compared to the exact match metric. WebTer-
rain and VIPS have the highest precision, and PageSegmenter and WebTerrain
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have the highest recall. Compared to the original HTML we see some improve-
ments as well, especially for the VIPS algorithm. Overall we see the highest
scores here out of all benchmarks.

’ Algorithm \ Precision \ Recall \ F-Score \ Retrieved \ Hits \ Relevant ‘

BlockFusion 0.1 0.17 0.12 30.96 2.35 12.24
PageSegmenter 0.15 0.51 0.2 65.04 6.12 12.24
VIPS 0.51 0.26 0.3 9.24 3.33 12.24
WebTerrain 0.57 0.49 0.49 10.58 5.33 12.24

Table 7.4: Random-DOM-Fuzzy

7.2 The popular dataset

Here we present the results of running the four different algorithms on the dataset
consisting of 70 popular pages. On average we have 16.1 relevant blocks on a
page. The slight variation in relevant blocks is because we had to exclude a
few (no more than four) pages for some of the algorithms, as they would not
be handled properly due to issues in their implementation (e.g. a GTK window
would simply keep hanging).

Between the original HTML and the DOM HTML one can see that the
number of retrieved blocks universally goes up, giving another sign that the
DOM HTML generally contains more content. Overall the results are again
better for the DOM HTML, questioning the use of the original HTML in page
analysis algorithms.

7.2.1 Original HTML input

The pattern seen in the random dataset repeats: results for the fuzzy match
metric are about twice better than for the exact match metric. Both BlockFusion
and PageSegmenter return decidedly too many blocks on average, but only
PageSegmenter can translate this into high recall scores. VIPS and WebTerrain
are fairly close to the relevant number of blocks.

Exact match metric

The results are generally poor with WebTerrain having the best precision and
PageSegmenter having the best recall.

’ Algorithm \ Precision \ Recall \ F-Score \ Retrieved \ Hits \ Relevant ‘

BlockFusion 0.03 0.06 0.03 72.85 1.07 16.15
PageSegmenter 0.05 0.24 0.08 124.43 4.05 16.22
VIPS 0.07 0.09 0.07 16.72 1.17 16.11
WebTerrain 0.18 0.17 0.16 13.86 2.19 16.09

Table 7.5: Popular-HTML-Exact
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Fuzzy match metric

The results are relatively better than with the exact match metric, but overall
still not convincing. Again WebTerrain and PageSegmenter are the best for
precision and recall respectively.

’ Algorithm \ Precision \ Recall \ F-Score \ Retrieved \ Hits \ Relevant ‘

BlockFusion 0.05 0.12 0.06 72.85 2.07 16.15
PageSegmenter 0.09 0.42 0.13 124.43 6.74 16.22
VIPS 0.13 0.15 0.12 16.72 2.23 16.11
WebTerrain 0.37 0.35 0.33 13.86 4.81 16.09

Table 7.6: Popular-HTML-Fuzzy

7.2.2 DOM HTML input

Similar to what we saw in the random dataset the improvement from exact to
fuzzy matches is smaller than it was for the original HTML, but still substantial.

Exact match metric

The results are overall better than for original HTML with the biggest gains
for VIPS and WebTerrain. WebTerrain has both the highest precision and the
highest recall in this test.

’ Algorithm \ Precision \ Recall \ F-Score \ Retrieved \ Hits \ Relevant

BlockFusion 0.03 0.08 0.04 81.75 1.34 16.15
PageSegmenter 0.05 0.27 0.07 163.71 4.56 16.3
VIPS 0.13 0.14 0.12 19.51 2.25 16.11
WebTerrain 0.27 0.28 0.26 14.75 3.77 16.09

Table 7.7: Popular-DOM-Exact

Fuzzy match metric

The results for the popular dataset are the best again, as in the random dataset,
when running on the DOM HTML and using the fuzzy match metric. The results
for BlockFusion are again the worst. PageSegmenter has again low precision
and high recall. Noticeably different is VIPS, as it does not exhibit a high
precision, as it did for the random dataset. Recall is similar, though slightly
lower. WebTerrain exhibits the highest precision and recall, but precision is 0.1
points lower and recall 0.03 points lower than for the random dataset.

’ Algorithm \ Precision \ Recall \ F-Score \ Retrieved \ Hits \ Relevant ‘

BlockFusion 0.04 0.12 0.06 81.75 2.13 16.15
PageSegmenter 0.07 0.41 0.11 164 6.68 16.22
VIPS 0.19 0.21 0.17 19.51 3.29 16.11
WebTerrain 0.47 0.46 0.42 14.74 6.43 16.09

Table 7.8: Popular-DOM-Fuzzy
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Chapter 8

Discussion

We discuss our findings by comparing the different testing variables and talking
about each algorithm in detail. We point out the differences in the evaluation
methodologies used by different authors which make direct comparisons difficult.
And we mention some of the challenges we encountered during the creation of
this thesis. Finally we speculate about how the vision of the Semantic Web
could ultimately be realized.

Contrasting the testing variables

As we ran each algorithm in eight different combinations where we varied datasets,
evaluation metrics and the type of the input HTML, we can compare and contrast
the differences we found.

Random and popular datasets

We created one dataset consisting of random pages and one consisting of popular
pages to see whether the segmentation algorithms perform differently on them.
As can be seen from our results all algorithms perform virtually always better
on the random pages than on the popular pages. We believe this is due to the
increased complexity of popular pages, which can be seen from the fact that
they on average had 32% more blocks than a random page. Furthermore we also
found that a popular page on average consists of 196.2 files in total (this number
includes all the external resources referenced from a page), while a random page
only consists of 79.4 files on average.

The number of retrieved blocks are also universally higher for all algorithms
on the popular pages. But while the number of blocks in the ground truth was
only 32% higher, the numbers for the algorithms increased by (much) more than
that: BlockFusion 164.1%, PageSegmenter 152.1%, VIPS 111.1%, WebTerrain
39.3%. It thus seems that the algorithms do not scale well with increasing
complexity. This could also partly explain why our results are generally less
favorable than what has been found in earlier publications, as they are up to
10 years old, and the Web has become much more complex since then. It also
shows the need for new techniques that deal well with this increased complexity.
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Exact and fuzzy match metric

We found that the number of recognized blocks improved significantly when
using the fuzzy match metric as opposed to the exact match metric, as was
to be expected. We believe that the results from the fuzzy match metric are
generally more valuable since the quality of blocks will still be sufficient for most
applications. Furthermore it can easily be adjusted to find more or less precise
matches by adjusting the matching ratio.

Original HTML and DOM HTML

Comparing the original and the DOM HTML we found that the results of the
segmentation for the DOM HTML are virtually always better, which is true
for all algorithms on both datasets. This is due to the fact that the DOM
HTML is what the user ultimately sees in the browser, it is thus the final result
of the rendering process. While in the past it might have been sufficient to
analyze only the original HTML, this is not true any more. As the Web becomes
more dynamic and the use of Javascript to manipulate the page becomes more
prevalent, there is not necessarily a link between original and DOM HTML any
more. This also implies that one cited advantage of text-based segmentation
algorithms, namely that they do not require the DOM to be built and are thus
very fast, is not true any longer, as even for these algorithms it is necessary to
obtain the final HTML for optimal results.

The four segmentation algorithms

We found that the four algorithms in our comparison exhibited a widely differing
performance. All together none of them performed well enough to be universally
applicable, as the highest average F-Score was a 0.49 (WebTerrain). Our com-
ments here pertain to the test runs using the fuzzy match metric and the DOM
HTML because we consider those the most relevant. But the general conclusions
hold for the other testing combinations as well.

BlockFusion This algorithm showed the worst performance on both datasets.
Both precision and recall are very low (<0.1 and <0.2 respectively). It
also returns too many blocks on average (2.5x too many for the random
dataset and 5.1x too many for the popular dataset). We could thus not
repeat the results from [18]. We conclude that a solely text-based metric is
not sufficient for a good segmentation, but that it can be used to augment
other approaches.

PageSegmenter This algorithm exhibits low precision and (relatively) high
recall (<0.2 and >0.4 respectively). This is due to the fact that it retrieves
by far the most blocks from all algorithms (5.3x too many for the random
dataset and 10.1x too many for the popular dataset). The number of
false positives is thus very high. It would thus be interesting to see if this
algorithm could be optimized to return fewer blocks while retaining the
good recall rates.

VIPS This algorithm showed the biggest difference between the random and
the popular dataset. Precision was high and recall mediocre for the random
dataset (0.51 and 0.26 respectively), while both were low for the popular
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dataset (0.19 and 0.21 respectively). It is not clear why there is such a
substantial difference. The number of retrieved results is slightly too low
for the random dataset, while it is slightly too high for the popular dataset
(25% too low and 21% too high respectively). In terms of the F-Score the
VIPS algorithm had the second-best result.

WebTerrain This algorithm showed relatively high precision and recall for
both datasets (both >0.4). It retrieved slightly too few blocks for both
datasets (14% too few for the random dataset and 8% too few for the
popular dataset). We thus find that a combination of structural and
rendering-based approaches enhances overall results. Furthermore the
terrain heuristic seems promising. Future work could therefore likely
improve upon these results by using more sophisticated combinations of
different approaches and heuristics.

Analysis of Variance

We did an analysis of variance (ANOVA) of our complete results (i.e. not based
on the averaged data shown in chapter 7, but on our raw results) to test the
impact of the four variables algorithm, html, dataset and metric on the
F-score. We used the statistical language R for the analysis, since it has built-in
functionality for it. The results of the analysis are shown in the following table:

’ \ Df \ Sum Sq \ Mean Sq \ F value \ Pr(>F) \ Significance ‘

algorithm 3 20.59 6.864 319.416 | < 2e-16 ok
html 1 1.58 1.581 73.569 | < 2e-16 ok
dataset 1 2.28 2.280 106.119 | < 2e-16 ok
metric 1 4.44 4.438 206.536 | < 2e-16 ok
algorithm:html 3 1.26 0.419 19.505 | 1.74e-12 ook
algorithm:dataset 3 0.24 0.080 3.731 0.0108 *
algorithm:metric 3 2.19 0.730 33.983 | < 2e-16 ook
html:dataset 1 0.17 0.172 8.006 0.0047 ok
html:metric 1 0.05 0.052 2.401 0.1214
dataset:metric 1 0.10 0.096 4.468 0.0346 *
Residuals 2298 49.38 0.021

Signif. codes: 0 “*** 0.001 “**’ 0.01 *** 0.05 < 0.1’ 1

Table 8.1: ANOVA summary given by R

The significance codes are to be interpreted like this: A significance code of
“¥*% means that the probability of observing an F-score as high or even higher
as the value that we actually observed, assuming that in reality the variable
concerned has no effect on the score, is between 0 and 0.001% (thus, very small).
A significance code of ‘*’ indicates a probability between 0.01 and 0.05, and so
forth. Hence, if we adopt the conventional significance level of o = 0.05, for all
terms except html:metric the null hypothesis of 'no effect’ will be rejected.

We can therefore see in table 8.1 that the four random variables algorithm,
html, dataset and metric are all highly significant. The analysis thus con-
firms our intuition that these factors are relevant for an analysis of Web page
segmentation algorithms.
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We also included interaction terms in the analysis (all the colon-separated
variables, such as algorithm:html and algorithm:dataset). An interaction
term is the product of two variables that can in itself be a significant predictor
of the outcome. A high significance for an interaction term means that the two
variables interact, i.e. the effect on the outcome (in our case the F-score) for
a given variable x is different for different values of a variable y (for a given
interaction term x : y).

In our case we can see that all variables interact with each other with high
probability, except for the term html:metric. The term html:metric not being
significant means that the influence of metric on the F-score is typically similar
for different values of html. We can explain this by looking at the results, where
we found that the fuzzy metric always returns a higher F-score than the exact
metric, regardless of the type of HTML used.

Differences in methodologies

One reason that makes direct comparisons to what has been published in the
original papers[18, 30, 9] difficult is the difference in evaluation methodologies.
In the VIPS publication[9] the authors did not create a dataset containing the
ground truth first, against which they then compared the results of running VIPS
on that dataset. Instead they ran VIPS on their sample pages and then manually
graded whether the segmentation of that page was “perfect”, “satisfactory” or
“failed”. This approach is problematic on two levels: First, there is the obvious
conflict of interest, since the authors themselves are grading the results of their
own algorithm. Second, whether a segmentation is “perfect” or “satisfactory” is
rather subjective and can thus not be repeated by others.

In the BlockFusion paper[18] the authors did not use Precision and Recall, but
instead they used two cluster correlation metrics, namely Adjusted Rand Index
and Normalized Mutual Information to quantify the accuracy of the segmentation.
They created a ground truth first manually, although it is unclear whether this
was done by the authors themselves or by volunteers. The comparison of
segmentation result to ground truth was automated.

In the PageSegmenter publication[30] the authors do use Precision, Recall
and F-Score in their evaluation as we did in our evaluation. But differently to
us they did not do this for all blocks in general on a page, but they divided the
blocks into three classes first (which they call Concept, Attribute and Value)
and applied the metrics to each of these classes. This again prevents a direct
comparison as this division into three classes is specific to their algorithm and
not applicable to other segmentation algorithms.

Encountered problems

We ran into a number of complications and unnecessary inconveniences during
the creation of this thesis which we would like to address briefly. The first
surprising discovery was that there is no de-facto “standard” dataset on which
everybody bases the evaluation of their segmentation algorithm, as is common
in other fields such as spam detection (where there is the WEBSPAM-UK2007*
dataset). This is surprising as it forces every author to create their own dataset,

Lhttp://barcelona.research.yahoo.net /webspam /datasets/uk2007/
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which on the one hand is a lot of work, and on the other hand makes the
comparison of different algorithms much harder. Another surprise was the use
of original HTML without any external resources, as opposed to DOM HTML
with external resources, which we believe to be a much more realistic and robust
choice for the reasons given in section 4.2.1. We have open-sourced our datasets”
and hope that they will be of use to other people.

The second problem was that we could not obtain the original implemen-
tation of any of the three algorithms in our comparison (we could obtain an
implementation of VIPS, but it is not from the original authors). This again
leads to duplication of work, as we had to re-implement these algorithms, and
it makes the results more fragile as it is impossible to prove that they were
implemented exactly according to their specification. This is true as often the
descriptions of algorithms (and in particular of heuristics) are not specific enough
to not require some interpretation of the concrete wording. We described one
particular example of these problems in section 6.2. Especially for publicly
funded research it seems like a sensible requirement to release related code as
open-source software to allow others to repeat results and improve upon that
work.

Lastly a technical point: While people in general have a shared understanding
of what constitutes a semantic block on a particular level (i.e. top-level, sub-block,
sub-sub-block), there can still be a difference in the granularity that a specific
algorithm is targeting. This needs to be taken into account when comparing
different segmentation algorithms.

The future of the Semantic Web

At the current point in time it seems rather unlikely that the Web in general will
become more semantic through an approach like RDF[2], which is the official
W3C? recommendation for Semantic Web data models, as it has not gained
any real traction with Web designers. More lightweight approaches like the
addition of some semantic tags in HTML5 seem to us more likely to become
more popular in the long term as they are starting to appear more and more on
newly developed sites. But this will take time as older sites will typically not be
retro-fitted with newer tags.

In the short- to middle-term we see two promising approaches, as they do
not require the involvement of the original content creators:

1. the algorithmic approach, which we explored in this thesis

2. a crowd-sourced approach, where users manually add semantic meta-
information, similar to how the ground truth was created for our datasets

As seen in our results, there is still more work needed for the algorithmic approach
to reach a universally satisfiable level (which we would put at an average F-Score
of 0.8). But we do think it shows enough promise to warrant more research in
this area. Especially more directed algorithms, that do not try to recover all
semantic blocks on a page, but instead just try to recover the main content for
example, show fairly good results[19]. As the Web keeps evolving and becoming

2https://github.com /rkrzr /dataset-random, https://github.com /rkrzr /dataset-popular
Shttp://www.w3.org/
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more dynamic, these approaches will have to be kept up-to-date and there is
still a lot of room for new ideas.

We imagine the crowd-sourced approach as people using web-based tools to
select parts of a Web page and assigning a semantic type to it. This information
could then be made publicly available and allow other people to confirm or
improve upon these classifications, similar to how Wikipedia* operates. This
approach has the advantages that it is not dependent on the creators of a
website, it is distributed and arbitrary sites can be added by anyone and it
can take advantage of the structural similarities between pages on the same
website (e.g. articles on a news website have all the same structure typically).
Disadvantages are that changes to websites would most likely need manual
updates to the classifications as well and that there is no universal standard
which the classifications would adhere to.

Nevertheless the immediate applicability to tasks like Information Extraction,
Information Retrieval and mobile page adaptation make this a viable option as
well.

4http://en.wikipedia.org
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Chapter 9

Conclusion

Going back to the first part of our research question, how well do existing Web
page segmentation algorithms work on modern websites, we can now conclude that
their performance in general has gotten worse over time. While all three older
algorithms, BlockFusion, PageSegmenter and VIPS, showed a strong performance
in their original publications, this does not hold any more on our dataset using
recent Web pages. As our analysis using one dataset consisting of random
pages and one consisting of popular pages shows, the main reason for this is the
increasing complexity of websites and their ever more dynamic behavior due to
the increasing prevalence of DOM manipulations via Javascript.

Regarding the second part of the research question, whether the existing
approaches can be improved, we showed that this is indeed possible by introducing
the WebTerrain algorithm, which consistently had the highest F-scores in our
benchmarks. As a combination of structural- and vision-based heuristics it serves
as an example that these approaches can be used orthogonally to improve results.

The systematic exploration and testing of the different algorithms was enabled
by the testing framework we developed for this thesis. It allows to exchange
datasets and algorithms and is also easily extensible with more page segmentation
algorithms. It thus forms a solid basis for future work in this field. Promising-
looking directions are more sophisticated combinations of different approaches
and more directed segmentation algorithms that e.g. only focus on certain
segments on a page or that target only specific domains of websites.

As a last word, page segmentation algorithms seem like one possible option
to a more semantic Web, but there still remains a lot of work to be done.
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Acronyms

API
AST
CSv
DOM
HTML
HTTP
1IE

IR

UNIX
URL
VIPS

Application Programming Interface
Abstract Syntax Tree
Comma-Separated Values
Document Object Model
HyperText Markup Language
HyperText Transfer Protocol
Information Extraction

Information Retrieval (e.g. text classification, de-duplication and
full-text search)

From Unics (UNiplexed Information and Computing Services)
Uniform Resource Locator

VlIsion-based Page Segmentation
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