UTRECHT UNIVERSITY

From a Monolith to Microservices:
the Effect of Multi-view Clustering

FINAL VERSION
By
Lars M.A. van Asseldonk

6970907

l.m.a.vanasseldonk@students.uu.nl

st Supervisor: Dr. J. (Jurriaan) Hage
2nd Supervisor: Dr. ir. J.M.E.M. (Jan Martijn) van der Werf

Business Informatics

Graduate School of Natural Sciences

September 11, 2021

mailto:l.m.a.vanasseldonk@students.uu.nl

UTRECHT UNIVERSITY

From a Monolith to Microservices:
The Effect of Multi-view Clustering

By
Lars M.A. van Asseldonk

Abstract

In today’s demanding world, many companies migrate their monolithic systems
to a microservices landscape. The most costly task in this process is refactoring
the application into a suitable set of microservices. Decomposition techniques help
the architect to understand better how the intended microservices architecture can
be designed. These techniques take the monolithic system as input and output a
set of candidate microservices. Over the years, many microservice decomposition
techniques have been proposed. Most of these techniques focus on one viewpoint
of the system, such as its static or dynamic behaviour, even though it is perfectly
possible to combine them. To the best of our knowledge, we did not find any re-
search that measures the effect of incorporating multiple viewpoints of the system
on the quality of the microservices decomposition. This thesis studies the effect
of multiple viewpoints based on the rationale that extra information results in a
better decomposition. To do this, we developed a Python tool that extracts static,
semantic, and dynamic dependencies from a monolith and represents them in an
edge-weighted graph. A graph algorithm (Louvain) is then used to find communi-
ties in the graph that are highly connected and loosely coupled. We validate our
approach by applying our tool to seven open-source Python projects. The quality
of the resulting decompositions is then measured and compared in terms of func-
tional independence and structural and conceptual modularity quality. The results
show that incorporating multiple views of the system does not gradually increase the
quality of the decomposition. However, combining static and dynamic information
does result in a better decomposition in terms of modularity quality compared to
the use of static or dynamic information individually. When semantic information
is involved, we noticed that the decomposition quality significantly decreases for
three metrics (IFN, OPN and, SMQ). This pattern could be justified by the fact
that semantic decompositions contain much more dependencies, and therefore tend

to favor semantics while focussing less on static and dynamic dependencies.

Contents

[Abstract] i
[List of Figures| iv
(List of Tables v
1__Introduction| 1
[LT_Problem statement] 2
M27ATml - . o o o 2
(1.3 Research questions| 2
(1.4 Research methodl 3
[2° Background| 7
[2.1 Software clustering| L 7
22 Themonolithl 8
2.3 Microserviced 8
[2.4 Extracting data from the monolith| 9
[2.5 Clustering algorithms/ 12
3__Related work 15
[3.1 Search strategyl 15
[3.2 Justification of qualitative assessment| 16
3.3 [iterature review results L. 17
3.4 Observationsl. 21
[4 Multi-view software clustering] 26
41 Notation] 26
[4.2 Step 1: Code fragment extractionl 27
[4.3 Step 2: Feature extraction| 30
[4.4 Step 3: Graph construction and partitioningl 40
[4.5 Step 4: Quality computation|o 47

i

CONTENTS

B Verificationl

[>.1 PyPetstore[.
[5.2 Metamorphic tests]

6 FEvaluation

[7.1 Interpretations|

[7.2 Limitations and validity threats|

iii

54

............. 54
............. 5}

61

............. 61
............. 64

73

............. 73
............. 5
............. 76

78

List of Figures

[4.1 Simple sample graph.|o 42

[>.1 The static graph of PyPetstore before and atter swapping content.|. . 57

[5.2 T'he static graph of PyPetstore when manually adding a static depen- |

dency| Y

(.3 The semantic graph of PyPetstore before and after swapping content.| 58

[>.4 T'he semantic graph of PyPetstore after adding the term "paper’ five |

‘main’ 0 59

[5.5 The dynamic graph of PyPetstore.| 60
[6.1 The change in SMQ and CMQ when varying the weight of the input |
SOUICES.) . v . v o e e e e e 72

v

List of Tables

(1.1 ~ Overview of research process| 4
(1.2 Experimental design| 0L)
[3.1 List of reviewed papers| L 24
[3.2 Literature review summary|{. 25
[4.1 Analysis of call-graph generators for Python| 32
[4.2 Analysis of clustering algorithm. 44
[4.3 Most used microservice metrics throughout related literaturel 48
[6.1 The effect of the clustering algorithm.|. 63
[6.2 Python project tor experimentation| 65
[6.3 Results of the main experiment in terms of CHD.| 66
[6.4 Results of the main experiment in terms of CHM. 67
[6.5 Results of the main experiment in terms of IFN.| 68
[6.6 Results of the main experiment in terms oft OPN.| 68
[6.7 Results of the main experiment in terms of SMQ.| 69
[6.8 Results of the main experiment in terms of CMQ.| 70
[6.9 Results of the main experiment in terms ot Coverage.| 71
[6.10 Results of main experiment for all metrics.| 71

Chapter 1
Introduction

Over the years, the architecture of many large applications has evolved from mono-
liths to microservices in order to make the I'T environment more flexible and respon-
sive to today’s fast-changing business requirements. The microservices architecture,
inspired by the principles of Service-Oriented Architectures (SOA) [20], consists of
small autonomous applications that communicate together with lightweight mecha-
nisms like HTTP requests. A microservice is a standalone application that can be
independently deployed, scaled, and tested and has a single responsibility [64]. This
means that a microservice should be fully controlled and owned by a single team.
To better understand the fundamentals of microservices, we first discuss the notion
of monolithic systems.

In a monolith, all code is combined into a single executable. A monolith is
relatively easy to build, but when the application gets bigger, it becomes difficult
to understand and maintain the code. Fritzsch et al. [27] researched the intentions,
strategies, and challenges of microservices and found out that the main driver to
migrate from a monolith to microservices is the lack of code maintainability. The
lack of maintainability often occurs when the codebase becomes too big, making it
difficult for developers to keep track of changes. Kalske, Makitalo, and Mikkonen
[34] define three drivers for migrating to microservices, namely: a high number of
teams, a big codebase, and teams geographically located far from each other. When
none of the aforementioned drivers exists, microservices might not be the most
appropriate solution. According to [34], it is preferred to start with a monolith in
order to avoid technical and organisational challenges that microservices bring. For
this reason, most companies start with a monolith and iteratively migrate towards

a microservices architecture when the codebase becomes unmanageable |27, 34].

CHAPTER 1. INTRODUCTION

1.1 Problem statement

Refactoring the monolith into microservices is a daunting and costly task that takes
a lot of time and effort from the organisation [34]. One of the biggest challenges is to
find the right service cuts in the software [27], as many variations are possible. Over
the years, the scientific community has published many decomposition techniques
that help organisations automatically identify microservice boundaries. Most of
these approaches only rely on one viewpoint of the system, such as the source code,
runtime environment, or design elements. Even though it is feasible to combine
different sources of information without any problems. A literature review by Ponce,
Marquez, and Astudillo [53] also states that more evidence of mized proposals is
needed. In this research, we will build upon this observation.

To the best of our knowledge, we have not found any decomposition approach
that collects structural dependencies and semantic information hidden in the source
code and runtime information to identify suitable microservices. This research fills
that gap and contributes to the academic community by building a framework that
combines these three information sources. Furthermore, we want to discover the re-
lationship between the availability of different sources of information and the quality
of the decomposition. In terms of contribution to practice, we give organisations
insights into the use of different information sources incorporated in the decompo-
sition process. For example, if an organisation only has dynamic information at its
disposal, we give an understanding of how this probably will affect the quality of

the decomposition.

1.2 Aim

The goal of this research is to understand the effect of incorporating multiple sources
of information on the quality of the microservice decomposition. The rationale
behind this is that extra information results in a better decomposition. We also
aim to find out which source is most informative and which combinations are most

powerful.

1.3 Research questions

Following the two aforementioned research objectives, we have constructed the fol-
lowing Main Research Question (MRQ). The MRQ is subsequently divided into
several Sub Questions (SQ).

MR What is the effect of combining static, dynamic and semantic sources of in-

formation extracted from monolithic software on the quality of the discovered

CHAPTER 1. INTRODUCTION

microservices?

S(@); What is currently known about static, dynamic and semantic data extracted

from monolithic software?
S()2 What algorithms are commonly used for the task of microservice identification?

S()3 What measures are used in the literature to define the quality of a decompo-

sition?

SQ4 What is the decomposition quality when incorporating only a single source of

information?

S5 How does the quality of the decomposition change when incorporating multiple

sources of information?

1.3.1 Research context

For the reader, it is important to know in which context the research is conducted.
Therefore, we briefly discuss some design decisions that are made throughout this
research.

Firstly, the technology stack in which the approach is implemented. Due to per-
sonal experiences, we have chosen to implement the approach in a Python context.
This means the approach will only be compatible with applications that are written
purely in Python. An advantage of executing the research in a Python context is
that we differentiate ourselves from others, as most of the existing work presented in
the literature review (Section is based on Java applications. However, the down-
side of this decision is that we are not able to compare the results of our approach
to state-of-the-art techniques, as none of them uses Python.

Secondly, we will validate our approach with open-source applications. This way,
everyone has access to the source code leading to results that are easier to replicate.
The risk of this decision is that we only validate the technique on relatively small

applications. Also, the results cannot be validated with expert opinions.

1.4 Research method

The research method that we use throughout this research relies on characteristics
of Design Science (DS). Design science is one of the main research paradigms in the
Information Systems (IS) discipline [30]. The paradigm focuses on the creation and
evaluation of IT artifacts that aim to solve identified organisational problems [30].

There exist many IS design science frameworks in the current literature, and they

CHAPTER 1. INTRODUCTION

all have small adaptations. Offermann et al. [49] conducted a comparison of design
science methodologies and discovered three main phases: (1) problem identification,
(2) solution design, and (3) evaluation.

Throughout this research, we follow the Design Science Research Methodology
(DSRM) introduced by Peffers et al. [50]. There are three reasons for choosing this
methodology. First, the methodology has an objective and scientific nature [65).
This means, e.g., that the problem statement is mostly based on literature and not
derived from subjective opinions from stakeholders. Moreover, the DSRM method
is made for IS research that aims to design artefacts that are tools or techniques
rather than products or processes [65]. In this research, we aim to design such a
technique. At last, the methodology does not consider the designed artefact to be
implemented in the real world [65], which is in line with our research.

The DSRM is synthesised from seven other design science methods and consists
of six activities executed in a nominal sequence. Table [1.1] gives an overview of the

steps and the related research methods and questions. The activities are described

below.
Table 1.1: Overview of the research process and the related research
questions and methods that are used.
Phase by Activities by Peffers

Offerman ot al. et al. Question(s) Research Method

Problem Problem identification

Identification and motivation
Define the objectives
for a solution

SQ1 Literature Study I

SQ2, SQ3 Literature Study II

. . Design and .
Solution Design development - Prototyping
Evaluation Demonstration SQ4, SQ5 Experiment 1

Evaluation MRQ Experiment 1
- Communication MRQ -

e Problem identification and motivation. During the problem investiga-
tion phase, the goal is to specify the research problem and justify the value
of a solution [50]. This is done by conducting a systematic literature review.
This first literature review is needed to collect and review the state-of-the-art
concerning the decomposition techniques. The literature review, presented
in Chapter , results in a problem statement (see Section in which the

importance of the solution is clarified.

e Define the objectives for a solution. In the next phase, the objectives of

the designed artefact are defined. To do this, we perform a second literature

CHAPTER 1. INTRODUCTION

review in which potential solutions are studied in a semi-systematic way. For
instance, we look thoroughly into clustering algorithms that are particularly
used in this domain in order to collect requirements. Furthermore, we define
the context in which the solution is executed. This means, e.g., we examine
tools and libraries to extract data from the monolith and define which appli-
cations are suitable to validate the technique. We also use the results of the

first literature review to get insights into the state-of-the-art.

Design and development. In this phase, we design and develop a prototype
of the multi-view decomposition technique. The prototype is verified on toy
examples in order to prove it works as intended. Chapter 4] describes how the
multi-view clustering tool is developed, and the design decisions that are made

during the process.

Demonstration. In the demonstration step, the multi-view clustering tool
is validated in a more realistic context. The applications found during the
second literature review are used to demonstrate the working of the prototype
on another instance of the problem [50]. To do this, we apply the tool on seven
open-source projects. For each project, the tool extracts static, semantic, and
dynamic dependencies used to decompose the system. As input for the de-
composition, we use three different levels of information: a single data source,
a pair of data sources, and all the data sources. This leads to a total of seven
distinct decompositions. An overview of the experiment is presented in Table
[1.2] The stars (x) in the table indicate which source of information is active
in each group.

Table 1.2: Experimental design. Each star (*) in the table indicates the
appearance of the data source while an empty cell shows the absence of the

data.
Experiments
1123|456 7
Static | * * o
Dynamic * L *
Semantic * G Ol
Single Pair All

Evaluation. In the evaluation step, we analyse the different decompositions
collected from the experiment in order to quantify the quality of the decom-
position. The different decompositions are compared to each other in order
to gain an understanding of the effect of information sources on the quality of
the decomposition. The evaluation is done by microservice specific measures

that are researched and selected during the second literature review.

CHAPTER 1. INTRODUCTION

¢ Communication. In the last phase, we present the research results to in-
terested fellow students and, depending on the quality, made it ready for a

scientific publication.

Chapter 2
Background

Before we dive into related decomposition techniques, it is crucial to have a solid
understanding of the research domain. This section introduces important concepts
that are used throughout the research domain such as software clustering in general,
microservices, the monolith, the kinds of sources of information we can extract from

the monolith and clustering algorithms.

2.1 Software clustering

Decomposing monolithic software into a suitable set of microservices is based on the
idea of software clustering. Software clustering is the general task of grouping soft-
ware entities based on their interrelationships or similarity. These software entities
could represent more detailed functions and their invocations (low-level entities) or
more abstract packages, modules and files (high-level entities), depending on the
level of detail desired in the clustering [3]. Software clustering is an old domain
of research as one of the first papers published [6] dates back to 1981. Over the
years, software clustering has shown its potential in various application areas, for
example, to identify fault proneness or to locate code fragments that implement
related functionality |3]. Another popular software clustering aim is to reduce the
system’s complexity by splitting up the system into smaller independent chunks of
software [66]. This way, the software becomes less complex, allowing developers to
more easily maintain and add new functionality to the software. In this study, we
focus on software clustering techniques that aim to identify microservice boundaries
in monolithic software.

Automatic clustering of software is a challenging task and knows two fundamen-
tal problems. The first problem indicates that there are too many unique ways of
decomposing software. A paper by Mancoridis et al. [40] shows that the number of
unique decompositions grows exponential with respect to the number of classes in

the source code. This first problem is considered a search problem and is further

7

CHAPTER 2. BACKGROUND

discussed in Section 2.5l The second problem of software clustering is the ambiguity
in measuring the quality of a good decomposition. One of the reasons for this is
that there is no ideal solution that fits every scenario. Instead, the decomposition
quality depends on many factors, such as the organisation structure and the desired
granularity. Over the years, many validation metrics have been introduced that

aim to quantify either specific microservice decompositions [31] or decompositions

in general [44]. We elaborate on this in Section [3.3]

2.2 The monolith

As mentioned in the introduction, a monolith is a software application in which
all the code is combined into a single executable file. Dragoni et al. [20] defines a
monolith as a system whose modules cannot be executed independently. The modules
are dependent on each other because they rely on shared resources such as databases,

files or memory. The monolith suffers from several issues [20]:

e hard to maintain when codebase becomes too big

e "dependency hell”

a small change requires redeploying the whole system

due to conflicting requirements a 'one-size-fits-all’ deployment configuration

limited scalability

e technology lock-in for developers

To cope with these limitations, the Service-Oriented Architectural (SOA) style
has been introduced. In SOAs, software entities interact with other entities via
message passing communication [19]. Microservices are closely related and have
been introduced by the industry due to the fact that the service-oriented paradigm
did not give clear requirements on how to design them well [20]. There was a lack of
consensus on how to get a well-defined SOA [47]. For this reason, some practitioners
argue that microservices are a particular way of implementing of SOAs [71], and
therefore do not represent a new architectural style. We can say that microservices
are a way of designing service-oriented architectures. In this study, we focus on

microservices.

2.3 Microservices

Microservices are described by Newman [47] as ”"small autonomous services that work

together, modelled around a business domain”. Microservices work independently

CHAPTER 2. BACKGROUND

from each other to ensure that a change in one service can be made without affecting
other services. Dragoni et al. [19] defines a microservice as a cohesive, independent
process interacting via messages. The term cohesive indicates that the service only
implements functionalities that are strongly related to each other. The microservices

architecture is built around a few basic principles |19]:

e Bounded context. The bounded context, introduced by Evans and Evans
[22], says that each microservice should implement a single business capability.

This way, the system structure and business are perfectly aligned.

e Size. The microservices have to be small-sized. The small size brings major
benefits in terms of maintainability and extendability. However, determining
the right level of granularity appears to be a complicated issue [17, 34, 47]. In
[47,163], they refer to the small size as the single responsibility principle (SRP).

The SRP states that each service should be focused only on one functionality.

e Independency. Microservices have to operate independently from each other.
Independence between microservices is achieved by following the loose coupling
and high cohesion principle. Furthermore, communication between microser-
vices should only be through published interfaces. In [63], each microservice

should also maintain its own database.

Notice that more microservice principles exist such as being technology neutral
or automatically deployable [63]. However, these are not related to the structure and

behaviour of microservices and therefore considered irrelevant for this study.

2.4 Extracting data from the monolith

To make a proper decomposition of the monolith, we must have a sufficient amount
of information about the monolith. We need to know its structure and how it be-
haves to define good microservice boundaries. There are various ways to collect
relevant information. A literature study by Ponce, Marquez, and Astudillo on de-
composition techniques outlines three categories: model-driven, static analysis and
dynamic analysis. Next to this, we also consider a fourth category called evolution-
ary analysis. The static analysis is divided into dependency analysis and semantic

analysis. This section is structured according to this division.

2.4.1 Model analysis

Model-driven approaches use system design elements as input for the decomposi-

tion. System design elements provide documentation about the system and can be

CHAPTER 2. BACKGROUND

represented in many different ways, e.g., domain entities, use-case diagrams or data
flow diagrams. The existence of design elements is not guaranteed as it depends
on the company. Different companies might use different modelling techniques. For
this reason, Gysel et al. [29] developed a technique that allows nine different rep-
resentations of the system as input. If multiple design elements are available, it is
also possible to combine them. To illustrate this better, we give an example based
on class diagrams. Class diagrams represent both the structural and behavioral fea-
tures of the system. A simple association relationship between two classes tells us
there is some dependence. This dependence is described as semantic proximity by
[29] as the two have a semantic connection given the business domain. Two classes
that have strong semantic proximity should be modelled in the same microservice.
In the end, the resulting information extracted from the chosen design elements
is represented in an undirected weighted graph. To automate the approach, they
require the design elements to be in a machine-readable format.

Another design element that can be used is a data-flow diagram (DFD). Data-
flow diagrams give a good representation of the business processes of the monolith
[11]. A DFD shows how the data flows through the system. Having this knowl-
edge, we can discover, e.g. functions that make use of the same datastore and thus
have some relation. Two approaches that use data-flow diagrams for deriving mi-
croservices are |11}, 62]. It is also possible to use business processes as input for the
decomposition. In [13] business processes modelled in BPMN notation are used to
extract control (execution order), semantic (functional similarity), data (information
sharing) and organisational (cross-functional operations) dependencies.

A limitation of model-based approaches is that the used artefacts or documen-

tation can be unavailable or not up to date.

2.4.2 Dependency analysis

In a dependency analysis, structural code dependencies are extracted from the source
code. Structural code dependencies capture direct dependencies between two code
entities [5]. An example of such direct dependency is: method A calls method B, or
class X extends class Y. Often, structural dependencies are represented in a directed
graph (also called call graph) |3]. The dependency graph consists of nodes and edges.
The nodes represent the system’s modules (e.g. files, classes, functions) while the
edges represent their relationship (e.g. function calls, inheritance relationship). The
dependency graph is also able to show the strength of the relationship between
two code entities. This strength is expressed in weight terms. In [42] the weights
are calculated by looking at the number of imports and method calls between two

components.

10

CHAPTER 2. BACKGROUND

The structural dependencies might also be valuable to discover indirect relation-
ships among code entities. This can be done by considering the structural depen-
dencies of a code entity (e.g. function) as a feature vector. The rationale behind
this is that the similarity between two feature vectors indicates that the two code
entities have a similar purpose or functionality. These indirect dependencies are also
called the fan-out similarity (FO) [5].

A limitation of techniques that focus on structural dependencies is that they
rely on a strong assumption that the system is well designed according to software

engineering principles. However, for many systems, this is not the case [5§].

2.4.3 Semantic analysis

In semantic analysis, the source code is interpreted as plain text documents [5].
For each code file, a vocabulary is built representing the linguistic information that
is embedded in the source code, such as identifier names and comments. This
information could be relevant, assuming that similar vocabularies indicate some
degree of relation.

Each code file is modelled as a bag-of-words vector that shows the occurrence of
each term in a document. All the documents together represent a term-document
matrix. A successful technique that analyses relationships between documents in
the term-document matrix is Latent Semantic Indexing (LSI). In LSI, the term-
document matrix is weighted to balance out scarce and ubiquitous terms. Next,
singular value decomposition (SVD) is used to reduce the vector space model’s
dimensions. The similarity in a LSI vector space model is typically defined as the
cosine between two vectors. The LSI allows us to compute document-document,
term-document and term-term similarities.

A risk of semantic analysis is that its success heavily depends on the quality of
source code naming [58, 3]. The analysis does not work when developers do not
comply with comments and naming conventions. Some companies even anonymise

identifier names in the source code to deal with security issues.

2.4.4 Dynamic analysis

In dynamic analysis, the system functionalities are analysed at runtime. To analyse
the system at runtime, operational data represented in log files are necessary. A log
(execution) file contains information such as a timestamp, the invocated function
and its arguments and an optional message. The information obtained from the
analysis tells us how the dependencies are exercised during executions and how the
system works in reality. For example, we can discover how frequent two function call

each other and thereby determine the strength of their relationship. Furthermore,

11

CHAPTER 2. BACKGROUND

because of the timestamp in the execution log, we know in which order functions
are executed. We could use this information when assuming that functions executed
close to each other have some relationship. The extracted information from dynamic
analysis could be represented in a weighted dependency graph. It is also possible
to use the information to update the weights in the dependency graph derived from
static analysis [42].

A possible limitation of dynamic analysis is that changes in the source code are
required when operational data is not automatically captured [3]. To let systems
record execution logs, they need to be instrumented and redeployed again. However,
when the new instrumented system could not run for a sufficiently long time, there is
a risk that the log files do not represent all aspects of the system. To cope with this
problem, it is important to have a suitable set of test cases available that simulate

as many aspects of the system as possible.

2.4.5 Evolutionary analysis

Evolutionary analysis aims to extract relevant information that is paired with the
evolution of software [5]. This means that we look at how the software changes over
time. When two code entities appear to frequently change together during develop-
ment, this reveals an implicit relationship. Evolutionary data is often managed by
a version control system (VCS) such as Git. In version control systems, the change
history of a particular project is captured revision logs. A revision log contains
information about the code change, such as the author, date and changed files.

Analysing revision logs gives us important insights into the relationships between
code entities. For example, as mentioned before, we could identify code entities that
frequently change together. Furthermore, since the author who changes the code is
known, we can also look at the ownership of code [5]. When two code entities are
owned by the same author(s), they might be covered by the same expertise and thus
represent some relationship.

A limitation of the evolutionary analysis is that change information is not always
properly documented. Furthermore, to cover all the parts of the system, a huge set of
evolutionary data is necessary [3]. Dealing with this amount of data is a challenging
task.

2.5 Clustering algorithms

Based on the extracted data mentioned in the previous sections, the software has to
be clustered into a set of microservices. Clustering is an unsupervised learning task in

which data points that are closely related to each other are grouped together. In this

12

CHAPTER 2. BACKGROUND

section, we describe three classes of clustering algorithms that are commonly used
in the process of decomposing monolithic software, namely: graph-based clustering,

hierarchical clustering and genetic-based clustering.

2.5.1 Graph-based clustering

Graph-based algorithms partition an undirected graph into sub-graphs. This way,
the algorithm does not start from individual data points but tries to find sub-graphs
according to some algorithm-specific criteria [66]. This means that the sub-graphs
are forming the clusters. In these graphs, each node represents a code entity, and an
edge represents their relationship. Graph-based clustering can be seen as a kind of
partitioning method since it relocates instances from one cluster to another, starting
from an initial partitioning [57].

To achieve global optimisation in graph-based clustering, an exhaustive search
of all possible partitions is required. However, since this is often not feasible due to
the large search space, greedy search heuristics are often used [57].

A widely used graph-based clustering technique is the Girvan-Newman algo-
rithm [28]. This algorithm is often used to identify microservices [29 42]. In [39)],
seven graph-based clustering algorithms are compared on the task of decomposition
the monolith. Another graph-based clustering technique that is used in previous
decomposition studies is the minimal spanning tree (MST) [43]. An advantage of

graph-based algorithms is that they do not require to set the number of clusters.

2.5.2 Hierarchical clustering

Hierarchical clustering is a non-stochastic technique that builds clusters by recur-
sively partitioning instances in either top-down (divisive) or bottom-up (agglomer-
ative) fashion [57]. In agglomerative hierarchical clustering, each data point (code
entity) start with its own cluster (singletons). Then, in each step, the two most
similar clusters are successively merged until the desired cluster structure is ob-
tained. On the other hand, in divisive hierarchical clustering all the data points
are represented in one cluster. In each step, the cluster is divided into suitable
subclusters, until again a desired cluster structure is obtained. The result of a hier-
archical algorithm is typically visualised in a dendrogram. To obtain clusters from
the dendrogram, a cutting point needs to be determined. Note that different cutting
points will lead to different clusters. Agglomerative hierarchical algorithms are more
often used than divisive algorithms. This is because it is infeasible to consider each
possible divisions from the initial cluster. The complexity of hierarchical algorithms
depends linearly on the number of classes in the system [36].

An advantage of hierarchical clustering is that the algorithm reveals a hierarchy

13

CHAPTER 2. BACKGROUND

within the data. This information is often more insightful compared to 2-D clusters.
Furthermore, the algorithm does not need any apriori information regarding the

number of clusters.

2.5.3 Genetic-based clustering

Genetic algorithms (GA) belong to the class of evolutionary algorithms (EA) and are
inspired by concepts of natural selection such as mutation, crossover and selection.
Even though there are many variations of GAs, the overall process stays the same.
Genetic algorithms start with randomly initialising a population of candidate solu-
tions. In GA terminology, a candidate solution is called an individual and the set of
individuals in a particular iteration is considered a generation. After obtaining the
initial generation, an iterative process starts in which the fitness of every individual
is evaluated based on a predefined objective function. A new generation is created
by randomly taking the fittest individuals of previous generations. This selection is
based on evolution theory, in which only the strongest species survive. The selected
individuals for the next generation are modified by applying GA operators such as
crossover and mutation. Typically, the GA stops when a maximum number of gen-
erations is produced or when a satisfactory fitness level has been reached for the
population.

Genetic algorithms are considered beneficial when there is a multi-objective opti-
misation problem. They perform surprisingly good in highly constrained problems,
where the number of good solutions is relatively small compared to the search space
[18].

14

Chapter 3

Related work

In this section we conduct a literature review to analyse techniques that present a
novel way to decompose monolithic software into microservices. This section first
explains the utilised search strategy and justifies the qualitative assessment used
to characterise the discovered papers. After this, we dive into the results of the

literature study.

3.1 Search strategy
To start the search process, we have formed the following search string:

("microservice*” OR "micro-service” OR "micro service”) [AND "monolith”]
[AND ("refactor” OR “transform” OR "migrat*” OR ”decompos*” OR "par-
tition*”)]

This search string is a mix of the ones used in [26] [53] and tells us that the body
of the source needs to contain at least the words ”"microservices” (or one of its
variations), "monolith” and "refactor” (or one of its synonyms).

The search queries are conducted on the three most frequently used computer
science scientific libraries and indexing systems [26]: ACM Digital Library, IEEE
Xplore, and Google Scholar. We have chosen these libraries since they have been
proven to be most relevant for literature reviews in the software engineering domain
[51].

To limit the results, we have created certain selection criteria. At first, the
articles need to be peer-reviewed and written in English. Moreover, the abstract of
the article needs to clearly show that it proposes a novel microservices decomposition
technique with some degree of automation. This means that techniques that aim
to search for candidate microservices manually are excluded from the review. At

last, sources that do not perform static (e.g. dependency or semantic analysis) or

15

CHAPTER 3. RELATED WORK

dynamic analysis to aggregate input data for the decomposition process are filtered
out. This means that model-driven techniques that only take design elements as
input are excluded from the literature review. Also, techniques that exclusively
focus on evolutionary data are not selected in the literature review.

We also have employed snowballing to make sure all the relevant articles are
found. The snowballing procedure is recommended by Wohlin [67] for literature
reviews and has two variants. The first one, forward snowballing, identifies new
papers that have cited the examined paper. The other one, backward snowballing,
finds older papers that are referred by the examined paper. The literature review
was conducted on the first of March 2021, and the results are described in section
3.3

3.2 Justification of qualitative assessment

During the search process, we have discovered 14 relevant articles that satisfy the
selection requirements. An overview of the selected articles is given in Table
on page [24. To differentiate between the decomposition techniques, we performed
a qualitative assessment. In this assessment, we aim to identify certain character-
istics in each decomposition technique, such as the input data that is used. The

characteristics on which the articles are reviewed are justified below:

e Input data. This describes the kind of input data that is used to guide
the decomposition. The raw input data is used to aggregate certain coupling

information.

e Coupling data. The coupling data, aggregated from the raw input data,
describes how closely related code entities are. The different types of coupling
data are explained in Section [2.4] Due to limited space in the table, we use
the following acronyms:

— SD: Structural Dependencies
— FO: Fan-Out similarity
— EC: Evolutionary Coupling
— CO: Code Ownership
— SS: Semantic Similarity
— DC: Dynamic Coupling
e Decomposition method. The decomposition method describes which clus-

tering technique (algorithm) is used to decompose the monolith into a suitable

set of microservices

16

CHAPTER 3. RELATED WORK

e Validation type. This shows how the effects of the implemented techniques
are investigated. It validates the quality of the approach. There are vari-
ous validation types that can be used, such as measuring the quality with
microservice (MS) metrics, comparing the result to an expert decomposition,

comparisons to state-of-the-art methods, etc.

e Supported language. This explains the programming languages the tech-
nique supports. We assume that a programming language is supported when

it is used on at least one application during validation.

In Table 3.2 on page 25, a summary of the qualitative assessment is given. The

results of the qualitative assessment are given in the next section.

3.3 Literature review results

As mentioned before, we have discovered 14 papers that relate to the process of
identifying microservices from monolithic software. In this section, each paper is
discussed.

Al-Debagy and Martinek [16] used static analysis to extract methods from classes
in the source code of the monolith and subsequently convert them into code embed-
dings using the code2vec model [2]. These code embeddings represent the source
code as a bag of weighted abstract syntax tree (AST) paths and have the ability
to capture the semantics of the source code. The code embeddings are fed to the
Affinity Propagation clustering algorithm to generate suitable microservices. The
quality of the decomposition is examined by applying microservice specific measures
and subsequently comparing them to [31} 59].

Brito, Cunha, and Saraiva [9] recently proposed a technique to decompose Java
systems based on structural dependencies and semantic similarity. The structural
dependencies are aggregated at class-level and used to derive an undirected graph.
The semantic information embedded in the system’s source code is used to get a
topic probability distribution for each identified class. The cosine similarity between
the topic distributions determines the weight of association between classes in the
graph. The weighted graph is then clustered according to the Louvain algorithm
introduced by Blondel et al. [7]. The quality of the resulting candidate services is
determined by measuring the independence of functionality. Also the Structural
Modularity Quality (SMQ) and Conceptual Modularity Quality (CMQ) metrics are
used to quantify the quality of the decomposition. The approach is validated on 200
Java Spring applications collected from GitHub.

De Alwis et al. [14] analyses the source code and database structure in order

to discover structural dependencies. More specifically, they analyse Create-Read-

17

CHAPTER 3. RELATED WORK

Update-Delete (CRUD) operations to obtain relationships between database tables.
The obtained information from that static analyser is merged with dynamic infor-
mation into a weighted dependency graph. They used a graph-based clustering
algorithm to find cohesive clusters. The resulting microservices are actually im-
plemented on two test applications to evaluate the execution efficiency in terms of
scalability and availability.

Eski and Buzluca [21] parses the codebase to obtain AST paths and perform
evolutionary analysis over the version control system (VCS) to detect changes be-
tween two consecutive commits. The two extracted features are merged together
into a software relation graph. This graph is clustered by applying the Fast Com-
munity graph clustering algorithm. The quality of the decomposition is determined
by computing the MoJo similarity between the identified candidate microservices
and an expert decomposition.

Kamimura et al. [35] extracts program call and data access dependencies by
analysing the source code. They specify how important code elements like entry
points, data, program calls, and read /write access can be detected in Java and Cobol
programs. For example, entry points in Java are detected by classes with ”@Con-
trol” annotations, while data elements are recognised by classes with ”@QEntity”
annotations. The extracted information is represented in a graph that is clustered
according to the Software Architecture Finder (SArF) algorithm. To validate the
approach, the Spring Boot Pet Clinic application that has both a monolith and mi-
croservice version is used. The microservices identified by the SArF algorithm are
manually compared to the ones in the microservice version. The approach is also
evaluated on an industry application.

The approach by Léhnertz and Oprescu [39] uses an algorithm that recursively
walks down the classes and methods in the program to build a dependency graph.
The weights between classes are calculated through the Response For a Class (RFC)
metric. They also extract semantic information by parsing domain-specific terms
from the source code. This results in a document-term matrix and is used to sup-
plement the dependency graph. At last, they mine the VCS in order to understand
code changes that are made during the project. The information extracted from this
analysis is also merged into the dependency graph. The graph is constructed for 14
Java application and then clustered with seven different graph-based clustering algo-
rithms. The quality of the decomposition is measured by a set of metrics consisting
of input fidelity, general clustering quality, mean cluster factor and modularity.

Mazlami, Cito, and Leitner [43] introduces the Microservice Extraction Model
(MEM) that is based on three extraction strategies: logical coupling, semantic cou-
pling, and contributor coupling. The logical coupling strategy analyses the revision

history to discover which classes change together. The semantic strategy looks to

18

CHAPTER 3. RELATED WORK

the vocabulary of classes and the contributor strategy focuses on the ownership of
code fragments from the monolith. The code ownership is also extracted from the
revision history controlled by the VCS. The ownership of code reveals information
about team structures and communication patterns between teams. This informa-
tion is interesting when an organisation wants to follow the microservice principle
of having cross-functional teams organised around domain and business capabilities.
The three information sources are combined in an undirected weighted graph and
are clustered according to the Minimum Spanning Tree (MST) algorithm. They
validated their approach on 19 application written in Java, Python and Ruby. The
quality of the decomposition is measured by two custom metrics: the team size
reduction ratio (TSR) and the average domain redundancy (ADR).

The decomposition technique introduced by Matias et al. [42] combines static
code analysis and runtime analysis. At first, the source code is analysed to obtain the
dependency graph. The static analyser also computes weights, which is a function
of the number and quality of connections between two code entities. The static
analysers subsequently update the weights according to the interaction between two
entities. The graph is constructed for an industry Python application built with the
Django framework. The Girvan-Newman algorithm is used to cluster the weighted
graph. The resulting candidate microservices are compared to the ones obtained by
the model-driven ServiceCutter [29] approach. They also performed a survey with
experts to test the applicability of the approach.

Saidani et al. [59] introduces a novel decomposition technique, called MSEx-
tractor, by considering the microservice extraction problem as a multi-objective
combinatorial optimisation problem. They aim to minimise coupling and maximise
cohesion by extracting structural dependencies embodied in the source code. The
Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used to find the most
optimal microservice candidates. The approach leverages four specific microservice
metrics conceived by |31]. These metrics are then used to compare the resulting
decomposition with the ones obtained by FoME [31], MEM [43], and LIMBO [4].

The approach by Selmadji et al. [63] focuses on information derived from static
analysis. They aim to cluster classes from object-oriented source code based on
their dependencies. However, the approach differentiates itself from others by intro-
ducing a set of well-defined functions to measure the quality of microservices. This
function is based on the ”focused on one function” characteristic, structural and be-
havioural autonomy and data autonomy of the microservice. These metrics are used
to validate the approach on three Java applications. Another proposed technique
by Selmadji et al. [62] tries to enhance the clustering result by incorporating expert
recommendations. Recommendations can be made about the number of microser-

vices or about the main class of the microservice. This main class represents the

19

CHAPTER 3. RELATED WORK

functional core of the microservice. The quality of the resulting decomposition is
determined by a qualitative assessment. In this assessment, experts have to classify
each microservice as ”excellent”, ”good’, or "bad”.

Nunes, Santos, and Silva [48] proposes an approach that focuses itself around
the transactional context rather than the structural domain of domain entities (e.g.
classes). The static analysis is used to get insights into the domain entities that are
accessed by the controllers. A controller corresponds to the execution of a function-
ality. The approach computes the weights between two entities in terms of similarity.
This means that pairs of entities that are assessed by the same controller obtain a
higher weight. The data is represented in a call graph and clustered with a hierarchi-
cal clustering algorithm. The resulting dendrogram is cut on four different points to
get four distinct decompositions. The quality is of each decomposition determined
by applying certain internal measures and by comparing it to an external decompo-
sition obtained by StructurelO1. The approach restricts itself to applications that
follow the model-view-controller (MVC) architectural style.

There are also two approaches that only focus on extracting information from
the monolith at runtime.

Jin et al. [31] exclusively uses dynamic analysis to extract features from the sys-
tem. They use two types of log traces: method-level and class-level execution traces.
A method-level log trace presents the method-calling relation and invocation order.
The class-level log trace shows which classes contribute to the same functional exe-
cution. The extracted traces are used in a self-designed execution trace algorithm to
discover microservice candidates. The approach also defines five quality metrics that
express the functional independence of the decomposition. They used these metrics
to compare their approach to three state-of-the-art methods: LIMBO [4], WCA
[10], MEM [43]. The proposed approach is called Functionality-oriented Microserice
Extraction (FOME).

In Jin et al. [32] the FOME technique is extended by taking into account both
syntactic information (dependencies) and semantic information embedded in the
execution traces. This new technique is called the Functionality-oriented Service
Candidate Identification (FoSCI) framework and is code-free, meaning that it only
relies on execution traces gathered from the running system. Based on the syntactic
and semantic information, the approach identifies functional atoms, each being a
coherent and minimal functional unit. These functional atoms are then clustered by
optimising four objective functions - maximising the intra-connectivity (cohesion)
and minimising the inter-connectivity (coupling) for both structural and semantic
information - by applying the Non-dominated Sorting Genetic Algorithm II. After
this, each identified candidate microservices is further analysed to detect potential

interface classes and operations that can be published. The quality of the decom-

20

CHAPTER 3. RELATED WORK

position is measured by eight metrics assessing three aspects: the independence of
functionality, the modularity, and the independence of evolvability. The approach
is validated on six Java web applications and compared to LIMBO [4], WCA [10],
MEM [43].

Zhang et al. |[70] also uses runnable programs as only required information source.
They collaboratively analyse both the collected execution logs and performance-
monitoring log. The execution logs are required to identify code entities and invo-
cations between them. The performance logs are used to aggregate the average data
used by each class. This information is merged together into a class-to-class rela-
tion evaluation matrix. The matrix is used as input for the genetic-based clustering
algorithm. They use a genetic algorithm in order to optimise three objective func-
tions simultaneously. The approach is validated by comparing it to an authoritative

decomposition and a decomposition made by FoSCT [32].

3.4 Observations

In the previous section, we analysed and described the characteristics of several
related decomposition techniques. When examining this work, the following obser-

vations are made:

e The most utilised source of information is the system’s source code. Some of
them use source code exclusively [16] 9, [35, 48, 59, |63] while others extend it
with other sources of information like log files |14} 42|, the revision history 21,
39, 43| or expert recommendations [62]. In contrast, only three approaches
[31}, 32, |70] restrict themselves to the use of only execution traces obtained

from the running system.

e The majority of the researchers focuses on hierarchical [31, 35, 48, |63 [62]
or graph-based clustering algorithms |16} (9, |14, |21} [39, 42, 43]. There are
only three techniques that employ genetic algorithms [32, 59, [70] to search
for suitable microservices. They all make use of the Non-dominated Sorting
Genetic Algorithm IT (NSGA-II) introduced by Deb et al. [15].

e We can distinguish three ways of measuring the quality of the derived microser-
vice decomposition. At first, the quality can be monitored by computing the
similarity to an expert decomposition. This expert decomposition (also called
authoritative decomposition or golden standard) is mostly obtained manually
from experts working with the software. Another option is to take an ap-
plication that has both a monolith and microservice version. The monolith

version is then processed, and the results are compared to the microservice

21

CHAPTER 3. RELATED WORK

version. These first two are considered external since a comparison is made
to an external decomposition. A third way to measure the quality of the de-
composition is by computing the internal structure of the microservices. To
quantify the internal quality, researchers have proposed various microservice

specific metrics.

e Although many microservice specific metrics to measure the internal quality of
the microservices have been proposed, there does not seem to be a consistent
use among them in the community. Below we summarise a few metrics that

have been introduced:

— Number of Singleton Clusters (NSC), and Maximum Cluster Size (MCS)
by [48].

— The Modularity Quality (MQ) introduced by Mancoridis et al. [40]. This
metric is extended by [32] to get the Structural Modularity Quality
(SMQ) and Conceptual Modularity Quality (CMQ).

— The functional independence of microservices is measured by five met-
rics [31]: cohesion at domain level (CHD), cohesion at message level
(CHM), interface numbers (IFN), operation numbers (OPN), and inter-
action numbers (IRN). The CHD and CHM measure the functional co-
hesion of microservices while IFN, OPN and IRN measure the coupling

between microservices.

— Independence of evolvability, quantified by three metrics [32]: internal co-
change frequency (ICF), external co-change frequency (ECF), and ratio
to ECF and ICF (REI).

— In [39], the input fidelity is used to measure the percentage of classes that

are covered given an input.

e Even though there is not a consistent use, the functional independence mea-
sures (or a subset thereof) are utilised the most throughout the related work
[16, 31}, 132, 59, 9.

e To quality of the decomposition is most frequently measured externally in
which the results are compared to a golden standard (expert decomposition)
[21}, 135, 163, 62, [70] or to comparative techniques [16] 31}, |32} |42} [59] or both
[48, 70]. The most frequently used comparative technique is the Microservice
Extraction Model (MEM) proposed by Mazlami et al. [43].

e Most of the techniques validate their approach on Java written applications.

22

CHAPTER 3. RELATED WORK

JPetstordT] and SpringBlogE] are two open-source applications written in Java
that are in particular often used in the community [16, |9} [31, 59]. Only two

decomposition techniques are validated on non-Java applications [42, 43].

thttps://github.com/mybatis/jpetstore-6
2https://github.com/Raysmond /SpringBlog

23

CHAPTER 3. RELATED WORK

Table 3.1: List of reviewed papers.

Author(s) Year Title
Al-Debagy and 2021 A Microservice Decomposition Method Through
Martinek [16] Using Distributed Representations of Source Code
Brito, Cunha, Identification of microservices from monolithic
. 2021 L . .
and Saraiva [9] applications through topic modelling
De Alwis et al. 2018 Function-splitting heuristics for discovery of
[14] microservices in enterprise systems
Eski and An automatic extraction approach: Transition to
2018
Buzluca [21] microservices architecture from monolith application
Jin et al. (3] 2018 Functlona.hty—orlented microservice extraction based
on execution trace clustering
Jin et al. [32] 2019 Service Candidate Identlﬁcatlon from Monolithic
Systems based on Execution Traces
Kamimura et al. 2018 Extraction Candidates of Microservices from
[35] Monolith Application Code
Lohnertz and Steinmetz: Toward automatic decomposition of
2020
Oprescu [39] monolith software into microservices
. Determining Microservice Boundaries: A Case
Matias et al. [42) 2020 Study Using Static and Dynamic Software Analysis
Mazlami, Cito, 2017 Extraction of microservices from monolithic
and Leitner [43] software architectures
Nunes, Santos, 2019 From a Monolith to a Microservices Architecture:
and Silva [48] An Approach Based on Transactional Contexts
Saidani et al. Towards automated microservices extraction using
2019 S .
[59] multi objective evolutionary search
1 ji 1. o . . .
lS6eglmad31 et a 2018 Re-architecting oo software into microservices
Selmadji et al. From monolithic architecture style to microservice
2020 . .
[62] one based on semi-automatic approach
Automated Microservice Identification in Legacy
Zhang et al. |[70] 2020 Systems with Functional and Non-Functional

Metrics

24

CHAPTER 3. RELATED WORK

Table 3.2: Literature review summary.

Coupling Decomposition . . Supported
Input data method Validation type languages
Graph clustering with MS metrics & compared
Source code SD, FO Affinity Propagation to Java
@ Source code SD, SS Graph(clustering with MS metrics Java
Louvain
Source code, Performance comparison Laneuage
Database & Log SD, DC Graph clustering of old and new . suag
. independent
files architecture
Source code & Graph clustering with Compared to expert
Commits SD, EC Fast Community decomposition Java
. . . MS metrics & compared
Log files SD, DC Hierarchical clustering to Java
33] Exccution traces SD, SS, Genetic search algorithm 8 MS metrics & Java
DC (NSGA-II) compared to EI
Graph clustering with Compared to expert
Source code SD SArF decomposition Java, Cobol
Source code & SD, EC, 7 graph clustering .
Version control SS algorithms MS metrics Java
Source code & Graph clustering with Python
Log files SD, DC Girvan-Newman Compared to (Django)
Source code & SD, EC, Minimal Spanning Tree MS metrics ;a‘ﬁ{on &
Version control CO, SSs (MST) clustering Y
Ruby
Metrics & compared to
Source code SD Hierarchical clustering expert decomposition Java
(StructurelOl)
Genetic search algorithm MS metrics and .
Source code SD (NSGA-II) compared to . Java
Source code SD Hierarchical clustering Compareq tAO expert Java
decomposition
Source code & Hierarchical clustering Compared to expert
Expert recom- SD decomposition Java
mendations
Log files SD, DC Genetic search algorithm Compared to and Java

(NSGA-II)

expert decomposition

25

Chapter 4
Multi-view software clustering

This chapter describes the multi-view clustering approach proposed by this thesis.
The approach consists of four main steps. First, we extract the code fragments that
we intend to cluster. Next, these code fragments are enriched with static, semantic
and dynamic information and used to construct a graph. In this graph, the edges
and their weight are determined by the information streams we consider. The graph
is subsequently partitioned into a suitable set of clusters. The final step measures
the quality of the resulting decomposition. In the next sections, we further discuss

each step of the approach.

4.1 Notation

Before diving into the details of the approach, we introduce some notation to help

the reader navigate through the sections.

M A monolithic project is a quadruple M = (CFy, Sy, Las, Dag), where CFy
is the set of code fragments, Sy, the set of static dependencies, L, the set of
lexical dependencieq’] and Dj; the set of dynamic dependencies. The lexical
dependencies are often referred to as semantic dependencies. The terms have

the same meaning and are used interchangeably in this report.

CFy A CF)y is the set of code fragments extracted from the code base of monolith
M. Each code fragment cf, € C'Fy; implements some functionality and has
the following properties: name (namey), type (typey), file path (pathy), source
code (codey,), and a boolean (clusteredy) that decides whether the code frag-

ment is clustered. These properties are further discussed in Section Each

T A lexical dependency indicates that two code fragments embed similar domain terms in their
source code and therefore are related to each other. Since this does not mean that they directly
depend on each other, one could argue to call it a dependency. However, for simplicity, we decided
to refer to this relationship as a dependency in the rest of this thesis.

26

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

code fragment is also enriched static dependencies s, € Sy, lexical dependen-

cies lp € Lj; and dynamic dependencies dy € D).

Sy The set of static dependencies extracted from monolith M. Each static depen-
dency sy € Sy is represented as a triple s, = (caller, callee, weight), where
the caller calls the callee. The caller and callee represent top-level code frag-
ments. The weight of a static dependency from cf; to cf; is determined by
taking the union over the set of static dependencies from all its descendants.
E.g. if two nested methods defined inside cf; have a static dependency to cf;,

we obtain the following static dependency: s = (cfi, cf;,2).

Lj; The set of lexical dependencies [, € Ly, extracted from monolith M. Each
lexical dependency represents a triple [, = (cf;, cf;, weight) where cf; and cf;
are top-level code fragments that share at least one lexical term. The lexical
terms are extracted from the source code of the corresponding code fragment.
The weight is determined by the tf-idf weight of each pair of overlapping terms.
This is further explained in Section [4.3.2]

Dy The set of dynamic dependencies belonging to monolith M. Like with static
dependencies, each dynamic dependency d, € D, is a triple where the first
element is the caller, the second element the callee, and the third element the
weight. The weight in the dynamic dependency is determined by the frequency

of the calling relation.

Serviceyp; The set of microservices obtained from monolith M where each service con-

tains a subset of the top-level code fragments service, C C'F)y.

4.2 Step 1: Code fragment extraction

The first step of our approach is to extract the set of code fragments C'Fj; that
are available in monolithic project M. As mentioned before, a code fragment can
represent a module, class, method or function. In order to collect code fragments,
we first collect the set of .py’ files related to monolith M. We do this by recursively
walking over the main source (often called ’src’) folder of the project. Each ’.py’
file that we find, we parse into an Abstract Syntax Tree (AST). The AST is a tree
representing the syntactic structure of code. To obtain the AST, we use Python’s
standard astﬂ library, which makes it easy to parse code into an AST and analyse it.
We then walk over each of the elements in the AST and when the element represents
a ‘'method’, "function’, 'class’, or 'module’, we create a new code fragment cf. The

discovered code fragments are enriched with the following information.

Zhttps://docs.python.org/3/library /ast.html

27

https://docs.python.org/3/library/ast.html

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

e Id. The id of the code fragment. The id is a composed of ’cf’ and a global

counter. For example, the first discovered code fragment gets the id ’cf1’.

e Name. The name of code fragment cf; is constructed by taking its fully
qualified name. The fully qualified name is unambiguous in the sense that it
includes all names of the hierarchical sequence above the given element and
the name of the element itself. This way we can always identify the location
of the code fragment. For example, the name of class Person defined inside
module person.py that is located in the src folder of the program becomes:
src.person.Person. The name always starts with the main folder in which all

the source files are located.

e Type. The type of the code fragment, where the type is either a module, class,
function or method. Methods are similar to functions but are defined inside
classes while functions are not. The type of a code fragment is determined
by looking at the abstract syntax derived from the AST. Since functions and
methods are both classified under the same abstract syntax, we distinguish
them by looking at the ’self’ input parameter. The ’self’ input parameters
indicates the definitions uses an instance of the object, which means that the
code fragment has to be a method. We are aware that this is not a watertight
implementation, as 'self’ is only a widely used naming convention and can be
called differently. For this reason, we also look if the code fragment is defined

in a class or not. This because methods have to be defined inside a class.

e File path. The file path (pathy) of the file in which the code fragment is
defined.

e Code. The source code (codey) of the code fragment in the form of text. The
code is necessary to extract lexicons and determine semantic dependencies

between code fragments.

e Start lineno. This is an integer value that represents the line number at

which the code fragment starts.

¢ End lineno. Similar as the one before, but then indicating the end of a code
fragment. This start and end line number of the code fragment are important
in a later stadium where we want to identify code fragments based on the file

path and line number.

e Input params. The set input parameters of the code fragments represented.
The input parameters are represented by its name, and thus not the type.
The input parameters are necessary to compute the quality metric Cohesion
at Message level (CHM), which is further explained in Section [4.5]

28

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

e Output params. The names of the returning parameters of the code frag-

ment. Also this property is necessary for the computation of CHM.

e Defined in. This property shows the top-level code fragment to which a
lower-level code fragment belongs. For top-level code fragments, this property
will be empty. To illustrate this better, suppose we have a method X (cf;)
defined inside class Y (cf;). The 'defined in’ property for code fragment cf;
will refer to code fragment cf;. This information is necessary to cluster on the

right level of granularity.

e Nested code fragments. This last property gives all nested code fragments,

where each code fragment is represented by its 'name’ property.

The set of code fragments C'F); together with its properties extracted from
monolith M are exported to a JSON file. We do this for two reasons. At first,
intermediate results make it easier to reproduce the results of the research. In
addition, the exported data eased the process of verifying the correctness of the
tool. The tool is verified in Chapter [9| of this thesis.

4.2.1 Level of cluster abstraction

There are different levels of abstraction in which we can cluster the code base. Most
of the related approaches found in the literature review work with Java systems and
cluster on class level. However, unlike Java, Python files can also contain definitions
that are defined outside the scope of a class (like functions). This means that
when we cluster on class-level, definitions defined outside classes are not considered.
To deal with this, we could either incorporate each individual function into the
clustering or group functions to its member module.

Clustering each individual function results in a very fine grained clustering. How-
ever, being this fine grained brings some additional challenges. At first, it will in-
crease the number of possible decompositions which makes the search process for
the optimal decomposition harder. Secondly, when clustering individual functions,
it is more likely that we obtain no information about the function. For example,
when a function does not have any structural dependencies, we are unable to cluster
it when only employing static analysis. However, when the function is grouped to
its member module, it can still be clustered when other functions in its module do
have some static dependencies.

As a solution, we could choose to assign functions to its member module. This
is similar to linking methods to its member classes. Methods are linked to classes
since they have some relation with each other. The same holds for functions that

are written in the same module. The developer groups functions in the same module

29

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

with the rationale that the code is related to each other. Grouping code into modules
makes the code logically organised and is therefore easier to understand and use.
We decided to group functions to its member module in our approach. The reason
for this is based on the assumption that the functions inside a module implement
related code and therefore should never be split from each other. This is the same

rationale as related approaches use for grouping member methods with their classes.

4.3 Step 2: Feature extraction

After we obtain the set of code fragments C'F); of monolith M, we enrich them
with static (Sys), semantic (Lys) and dynamic (Dj) edges that describe relations

between code fragments. Each dependency is further explained in the next sections.

4.3.1 Static dependencies

The static dependencies Sy, are obtained by performing static analysis over monolith
M. Static analysis means that the code is analysed as it is, and thus, without
actually executing it. To collect the static dependencies, we generate a call graph
in which calling relationships between code fragments are depicted. The creation of
call graphs is out of context for this thesis and therefore we looked for a tool that

has already been implemented.

Selecting a call graph generator

Python is a dynamic language which makes it hard to obtain certain dependencies.
In dynamically typed languages, the type of objects (such as variables) are only
known at runtime. This means that analysing plain source code does not reveal the
types of objects. Let’s illustrate this behaviour by an example. Suppose we have
created a variable a which represents an instance of the class Customer. When
we use a as input for an imaginary function X, we have to define a dependency
from z to a without knowing what the type of a is. This property among others
makes it challenging for tools to get a complete picture of the existing structural
dependencies.

To select the most appropriate call graph generator, we analysed each tool against
a set of Static-analysis Criteria (SC). Each criterion is ordered by its priority. This
means we start with the most important criteria and end with the least important

ones.

SC1 Freely available. The tool must be open source and be freely in use. This

means that commercial tools will not be considered.

30

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

SC2 Not deprecated. It is important to us that the tool is not deprecated. This
gives us a higher chance that the tool works considering that packages the tool

is build upon might change.

SC3 Support of higher-order functions. One of Python’s features is its sup-
port of higher-order functions. This means that functions can be assigned to
variables, passed as parameters to other functions, or serve as return values
[60]. Supporting higher-order functions is a challenging task in which many
tools do not succeed. For this reason, we think it is a good discriminating

criterion for selecting an appropriate call graph generator tool.

Despite Python’s increased popularity, surprisingly few tools have been intro-
duced that generate call graphs [60]. A study by Yu [68] compared three widely
used static call graph tools to six open source projects. These tools are all fre-
quently mentioned in developers communities and are Pyan [24], Code2flow [56]
and Understand [61]. Pyan parses the Abstract Syntax Tree (AST) to construct the
call graph while Code2flow constructs the call graph at lexical level [68]. Under-
stand is a commercial tool to generate call graphs. A recent paper by Salis et al.
[60] introduced a new technique, named PyCG, to generate call graphs that relies
on inter-procedural analysis. The tool compared itself with Pyan [24] and Depends
[69]. Depends is another call graph generator that infers syntactical relations among
source code entities, such as files and methods. However, both Pyan and Depends
do not perform well with higher-order languages such as Python as functions that
are assigned to variables or passed to other functions are not captured [60].

The tools that are analysed in Table are found by an extensive search on
the internet. All the considered call graph generators are implemented for Python
code. We also looked into call graph generators used by related approaches found
during the literature review (see Table[3.1)). There is only one related technique that
analyses the structural dependencies specific for Python application. This is the
approach proposed by Matias et al. [42]. However, their approach does not rely on a
call graph generator tool as they collect the structural dependencies themselves by
analysing the abstract syntax tree. The code they used for this is publicly available
on their Github, but not applicable for us since it limits itself to applications that
use the Django web framework.

The analysis shows that PyCG [60] is the most suitable tool. The author of
PyCG also compared the tool to Depends and Pyan [60] and shows that PyCG
outperforms them both in terms of completeness and soundness. A call graph is
complete when it does not contain any edges that do not actually exists. This
means that an incomplete call graph contains edges that should not be there. A

sound call graph is realised when it contains every actual call edge. A call graph

31

1

2

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

Table 4.1: Analysis of call-graph generators for Python. Each column
in the table represents a Static-analysis Criteria (SC) explained in Section
A cross (x) indicates that the criteria is meet while a stripe (-)
indicates the opposite. When the information is not available we put N/A.

Call-generator SC1 SC2 SC3
Understand [61] - X N/A
PyCG [60] X X X
Depends [69] X X -
Pyan [24] X - -

Code2flow [56]

"
1
»

is unsound when it misses edges that should actually be there. Note that in our

approach, being unsound is worse than being incomplete.

Obtaining static dependencies

The analysis of the call graph generators made us decide to work with PyCG. PyCGE|
is implemented in Python and is freely available on GitHub. After executing PyCG
on the selected monolith M project, call edges s € Sy are derived from it and linked
to its corresponding code fragment identified in the previous step (see Section .
A limitation that we discovered when implementing PyCG in our tool is that it
does not take into account the frequency of calls. This means, for example, when
function X calls for function Y three times, only a single dependency will be noted.
Counting the frequency of calls would be valuable information for our analysis, as
it says something about the strength of a dependency, where a higher frequency
indicates a stronger dependency. However, since we found this out after analysing
the call graph generator tools, we did not consider it as a selection criteria.

The static dependencies for top-level code fragments represent the sum of its
member code fragments together with its own dependencies. When looking at List-
ing this means that Class Z contains the dependencies of method X and Y:
funcl and func2. The same applies for modules. Considering that Listing 4.1
implements a module, then the dependencies of this module are the call edges in
funcl, func2, and its own. This means the call edges of the functions in the module

are a subset of the total set of call edges of the module.

Listing 4.1: A top-level code fragment contains the call edges of its mem-
bers.

func1 () :

pass

3https://github.com /vitsalis/PyCG

32

https://github.com/vitsalis/PyCG

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

func2 () :

pass

class Z:
def X():
funci ()

def Y(Q):
func2 ()

To get some intermediate results, we export the extracted static dependencies to
a JSON (JavaScript Object Notation) file. JSON is a lightweight data-interchange
format and easy for humans to read and write and for machines to parse and gen-
erate. In the JSON file, a list of code fragments is given where each code fragment

is supplemented with the following properties:

e Destinations. A list of destinations the code fragment calls to. This can be

3rd party libraries calls, internal calls, etc.

e Internal destinations. This list is a subset of the ’destinations’ list in which
only calls to other code fragments in the project are selected. This means that,

e.g., 3rd party library calls as well as build-in calls are excluded.

e Outgoing edges. A set of 3-tuples where each tuple represents a static
dependency s, € Sy;. The weight of the static dependency is determined by
taking the union over the set of static dependencies from all its descendants

(inner code fragments).

Even though the frequency of calls within individual code fragments are not
measured, we still can have frequencies for static dependencies at top-level. When
we have a static call edge from class X to class Y with frequency 3, this means that
three individual code fragments (methods) nested in top-level class X make at least
one call to class Y. We will use this frequency to determine the weight of the static

dependencies.

k
w(ez) € Estatic = | an| (41)
s=1

Where £ is the number of inner code fragments of top-level code fragment cf; that
contain a static dependency to code fragment cf;. The cardinality of the resulting

set determines the strength of the dependency.

33

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

Normalising

In order to combine different sources of information, it is important to normalise
the weight of the edges so each information source has the same order of magnitude.
For this reason, we use the following normalisation function that bounds the edge

weights between a range of [0 — 1].

w(e;)

i Es atic —
wles) € Botasie = e (Bos))

(4.2)

In this formula, Fgg. is the set of static edges, w(e;) the weight of edge e;, and
max(w(Fgqae)) the maximum static edge weight available. This way, the edge with
the maximum weight gets a normalised weight of 1 while all others are lower than
1.

4.3.2 Semantic dependencies

The second information source that our multi-view clustering tool incorporates are
semantic edges (Ljys), where a semantic edge represents overlapping terms. The
extraction of semantic data requires the source code to be human-readable, and

therefore, not being compiled yet since semantics are mostly lost in compiled code.

The associated microservice principle

When the decomposition is made with semantic dependencies, the design of the
candidate microservices is in accordance with the domain-driven design principles
proposed by Evans and Evans [22]. Domain-driven design is a widely accepted
design rationale for designing microservice architectures. The focus in domain-
driven design is to build microservices around bounded contexts, where a bounded

context is described as:

“a description of a boundary (typically a subsystem, or the work of a particular
team) within which a particular model is defined and applicable.” - Evans and
Evans [22]

Although the size of the microservice should be as small as possible, there is not
a strict notion of the size in domain-driven design. This is because the main focus
is designing microservices around its domain, where the size is less important.

Semantic information embedded in the source code contains valuable information
about its domain. Prior work has shown that identifiers and expressions in code
can be used to identify high-level domain concepts [41]. When code fragments
share similar domain concepts, we assume that they have a semantic dependency.

Multiple related approaches found in the literature make use of this assumption

34

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

when designing microservices [9, 32} [39} |43]. The process of collecting domain terms
from plain source code is based on natural language processing. Each conducted

step in the NLP pipeline is discussed in the next sections.

Preprocessing

At first, we receive the raw source code (codey) as plain text for each code fragment
cfr € CF);. We clean this by removing special characters and lower case each term.
The resulting text is then tokenised. Tokenising is the process of splitting text into
a set of tokens, where in our case, tokens represent terms (words). The tokenising
process is based on white spaces between terms. During tokenisation, English stop
words and Python key words are filtered out. English stop words and Python key
words do not carry any domain specific information and are therefore considered
irrelevant.

After tokenisation, we obtain a set of terms T} for each corresponding code
fragment cf;. These set of terms are then normalised to generalise their semantic
meaning. The rationale behind this step is that different ending of the same term
encapsulate the same semantic meaning. For example, the terms ’organisation’,
‘organiser’, and ’organising’ all are related to the same semantic entity. However,
a pure mathematical approach for determining semantic similarity will not capture
this. There exist two common approaches to normalise terms. The first one is
stemming, in which common endings of words are stripped to receive its stem. The
stem does not need to be a word, for example, the stem of the terms ’argue, argues,
arguing’ becomes ’argu’. The second approach is called lemmatising, where each
term is normalised to each lemma. The lemma of a word is its canonical form, its
base form [52]. For example, the English words ’go, goes, went’ all constitute the
same lemma, namely 'go’. Lemmatising performs better compared to stemming as it
captures the actual base form of the word. This is visible when considering the words
‘go, went’. The lemma of these words are both the same, while the stem differs.
For this reason, we decided to normalise each term to its lemma. The preprocessing

process results in a set of terms T), = {t1, s, ..., ¢, } for each code fragment cf,,.

Relevance weighting with tf-idf

The relevance of each term is determined by term frequency-inverse document fre-
quency (tf-idf). Tf-idf is a commonly used weighting scheme where the weight of
a term increases when it has high term frequency (within the document) and low
inverse document frequency. This means that terms with a high tf-idf imply to have
a strong relationship with the document (in our case code fragment) it appears in.

By doing this, terms that appear very frequently and thus are not discriminative

35

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

will be cancelled out.
The computation of the tf-idf score consists of two steps. At first, we start by

computing the relative frequency of the terms occurring in the code fragment.

(T = @—j (4.3)

In the equation above, f; s, is the frequency of term ¢ in code fragment cf;, and |T}|
is the total number of terms in code fragment cfp. The next step is to determine
the importance of the term across all documents in the corpus, which is done by
computing the inverse document frequency (idf). Terms that occur rarely in the
corpus have a high idf while common terms have a low idf [55].

idf (t, CFyy) = log WLAA (4.4)

dfy

Here |C'F)| is the total number of code fragments and df; is the frequency of code
fragments that contain term ¢. The last step in order to obtain the tf-idf score is to

combine the tf and idf scores by multiplying them with each other:

tfidf(t, TK, CFM) = tf(t, Tk) X de(t, CFM) (45)

The tf-idf scores are computed for each term appearing in a code fragment. In
next section, we show how the tf-idf scores are used to aggregate semantic depen-

dencies between code fragments.

Obtaining semantic dependencies

The tf-idf weights are then used to determine the existence of semantic edges between
code fragments. A semantic edge between cf; and cf; is defined when the intersection
between the set of terms is not empty: 7; N7; # (. The weight of the semantic
dependency is determined by the tf-idf weight of the overlapping terms.

overlapping_terms(cfi, cf;) =T, N 'T; (4.6)

We cancel out very frequent words by only considering terms that meet a certain
threshold value for the tf-idf score. The final step to calculate the edge weight

between the nodes in the graph is to sum up the tf-idf scores for the overlapping

36

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

terms.

N
w(ez) € Gsemantic = Z tfidf;
= (4.7)

N = |overlapping_terms|

Thus, for every term that meets the tf-idf threshold and occurs in both code frag-
ments, we sum up the tf-idf values. The tf-idf values are different for each code
fragment, and thus we sum up the tf-idf scores from both code fragments. The total
weight of the edge between cf; and cf; will be the sum of two overlapping tf-idf
weights.

Also the extracted semantic dependencies are exported to a JSON file. In this

file, each code fragment is enriched with the following information:

e Raw vocabulary. The raw vocabulary provides the preprocessed sequence
of terms that are embedded in the source code of the corresponding code

fragment.

e Tf-idf vocabulary. Each unique term in the raw vocabulary is used to com-
pute its tf-idf score. The tf-idf vocabulary is a set where each element in the
set of represented as a 2-tuple (ordered pair). The first element in the tuple

represents the term and the second element the tf-idf score.

e Outgoing edges. This property represents a set of 3-tuples where the first
two elements represent the ids of two top-level code fragments. The third

element in the tuple gives the total tf-idf score.

4.3.3 Dynamic dependencies

Dynamic dependencies are structural dependencies discovered during runtime. This
means that it is necessary to actually run the system in order to obtain runtime
dependencies. Next to this, it is important that the program supports logging.
Logging is the process of tracking events that happen when the software runs. This
means that the systems has to write logs to a file or any other output stream. To use
logs obtained from the system it is important that every function that is invocated
at runtime is reported. Since most of the application we found do not have sufficient
logging available, we have to implement this. After implementing the logging, we
have to run the application on several use cases to obtain the actual logs. These
logs are subsequently analysed by our tool and incorporated in the graph as source

of information.

37

N

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

Instrumenting logging

In many open-source software systems, automatic aggregation of logs is not incorpo-
rated. This means that we have to enrich the codebase in order to capture logging.
To fully understand the behaviour of the program, we want to log every function

call. There are two techniques that are often used to capture logging.

1. Aspect-Oriented Programming (AOP). This is a programming paradigm
in which additional behaviour can be added to the existing code without mod-

ifying the code itself.

2. Program transformation. A more general approach in which the code is
directly modified. A drawback compared to AOP is that modification permis-

sion is necessary to apply transformations to the source code.

Due to our lack of experience with respect to aspect-oriented programming, we
decided to instrument logging by applying code transformations. Since we only
experiment with open-source projects, it is perfectly possible to modify the existing
codebase. The code transformations are made by making use of meta-programming.
This means that we made a tool that reads the monolith and transforms it by
injecting the necessary logging. We inject logging into the current codebase by
making use of Python’s higher-order functions. A higher-order functions is a function
that can take another function as input and return the function with or without
extension. This way of wrapping functions is also called decorating a function.
Decorating a function allows the programmer to add behaviour to an object before
or after it is being executed. In this thesis, we use decorators to add functionality
to each function before it is being executed. To better understand the notion of

decorators, Listing shows code of a simple decorator in Python.

Listing 4.2: Logger

def logger (func):
def inner (*args, *xkwargs):
res = func(*args, **kwargs)
print (’function with name’, func.__name__, ’invocated’)
return res

return inner

@logger
def add_1(x):

return x+1
add_1(1)
#> function with name add_1 invocated

#> 2

38

N

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

In the above listing, lines 1-7 define the decorator while lines 9-10 show the
function that is being wrapped by the decorator. Line 8 shows a special Python
syntax for applying a decorator to a function. In line 12, the function is executed.
The result of the function call shows the return value as well as the print statement
listed in line 4. By changing the print statement to a statement that writes the
function being called and additional information such as the time and its caller to
an external file, we are able to create log files. In this example, the caller would be
the module itself since the call to add_1 at line 12 is not declared inside a class.

To log every call that is made in the program, we have to decorate every function.
To do this, we made a small program that parses a module into an AST, and then
recursively walks over each element in the tree. If the element is a function (or
a method), we add the logging decorator to the function. For each module, we
also insert an import from statement that refers to the location where the decorator
function is declared. When all modules are instrumented, we unparse the AST again
to obtain the new instrumented source code.

Each log that is obtained consists of the following attributes:

e Datetime. The datetime when the function is called.

e Callee. The function being called by the caller. To identify the callee function,
we collected its name and filepath. Having these two attributes, we can identify

the corresponding code fragment.

e Caller. The function that calls the callee. The caller is identified by its
filepath and the line number from which its calls the callee. Since each code
fragment contains a start and end line number, we can identify which code

fragments calls the callee.

A snippet of the log file is presented in Listing Each attribute in the file is

separated by a semicolon.

Listing 4.3: Snippet from a log file

2021-07-22 18:46:56.682928; print_orders_menu;C:\PyPetstore\
pypetstore\order.py;<module>;19;C:\PyPetstore\pypetstore\main.py

2021-07-22 18:47:00.459415; print_main_menu;C:\PyPetstore\pypetstore
\util.py;<module>;15;C:\PyPetstore\pypetstore\main.py

2021-07-22 18:47:00.462418;Database.close_connection;C:\PyPetstore\
pypetstore\database.py;<module>;70;C:\PyPetstore\pypetstore\main

- Py

39

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

Running test cases

After instrumenting the application, we have to actually run the application to
obtain the logging information. We do this by running the test scenario’s that are
available for the project. This means that it is important for us that the selected
project has a high test coverage. A high test coverage means that it is more likely
that all the aspects of the system are touched.

The results of the dynamic analysis are exported to a JSON file. In this file,

each code fragment is supplemented with the following information:

e Dynamic destinations. The names of code fragments that are being invo-

cated by the current code fragment.

e Outgoing edges. A set of triples where each triple represents a dependency
relationship. The first two elements again represent a top-level code fragment

while the third element determines the frequency of the relationship.

4.4 Step 3: Graph construction and partitioning

In the next step, the code fragments are represented in an undirected edge weighted
graph G. In the graph G = (E,V), the vertices v; € V correspond to the top-
level code fragments V' = {cfy C CF)y} extracted from the monolithic project
M. Each edge e; € Fj; in the graph represents a dependency between two code
fragments. The rationale of the dependency depends on the information from which
the edge is derived. For example, when the edge is constructed with semantic
information, the edge represents a semantic dependency, which means that the two
code fragments share lexical term(s) in their source code. The dependency can also
be constructed by combining different information sources. We decided to make
the graph undirected as some of the clustering algorithms discussed in Section [4.4.2]
do not support directed graphs. We also observed from the literature review that
most of the related approaches rely on undirected graphs. In total, we consider four
different type of graphs to be constructed. Each graph G differs from each other in
terms of the edges they employ.

Gsiatic In the static graph, the edges e; € Fgqc represent structural dependencies ob-

tained from static analysis. The weight of the edges are normalised according
to the Equation [4.2]

Gsemantic In the semantic graph, the edges e; € Femantic represent a semantic depen-
dency. The strength of the dependency depends on the weights of the over-

lapping terms.

40

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

G aynamic The edges €; € Egynamic in the dynamic graph represents structural dependen-
cies obtained from dynamic analysis. The strength of a dynamic edge depends

on the calling frequency.

Geombinea In the combined graph, the aforementioned edges are combined with each
other to obtain e; € F.ompined- The strength of the combined edge depends on

a defined weighting function.

The weights of the edges are denoted by w(e;) where e; can be an static, semantic
or dynamic edge. The edge weights in G ompineq are obtained by linearly combining
the edges of two or three information sources by a weighting function. The im-
portance of each information source in the weighting function can be adjusted by
parameter p, where the value of p ranges between [0 — 1]. The weighting function

for combining two sources of information is as follows:

w(e;) € Eeompineda = p X w(er) + (1 — p) x w(ez) (4.8)

Where w(e;) is the weight of the first information source and w(ey) the weight
of the second information source. A similar weighting function is constructed when
combining three sources of information. The only difference is that we now add a

second parameter to adjust the importance of second information source:

w(ez) € Ecombined =p1 X w(estatic)+ (49)

P2 X w(esemantic) + (1 —DP1— p2) * w(edynamic)

In this equation, w(egqsic) is the static weight, w(€semantic) the semantic weight,
and w(egynamic) the dynamic weight. p; determines the importance of the static
weight and p, the importance of the semantic weight. The values for p; and ps
together determine the dynamic weight: 1 — p; — po. Note that the sum of p; and

p2 may never exceed the value of 1.

4.4.1 Adjacency matrices

To construct the graphs, we first transform the static Sy;, dynamic D,,, and seman-
tic Lj; dependencies into an adjacency matrix. An adjacency matrix is a square
matrix where the elements of the matrix indicate whether pairs of vertices (read
code fragments) are adjacent or not in the graph. To illustrate this better, we
provide a simple example. Suppose we have identified the following set of static
dependencies Sy = {(cfi1,cfa, 1), (cf1,cfs, 1), (cf2,cf3, 1)} from monolith M. To
construct graph Ggaue, we first transform this set Sy, into an adjacency matrix

which results in the following:

41

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

Adjy =

_ = O
—_ O
S =

In this adjacency matrix, the row and column indices refer to the code fragments.
The elements in the matrix indicate whether an edge between two code fragments
is present. Since the graph is undirected, the adjacency matrix is symmetric. When
looking to the first row in the matrix, we see that code fragment cf; has an edge
to code fragments cf, and cf;. Both edges have a weight of 1. The matrix also
represents an edge from cfs to cfs with a weight of 1. These edges are in line with
the set of static dependencies S, presented earlier.

Now let’s assume that we also want to incorporate the set of dynamic depen-
dencies D), into the graph, resulting in G ompinea- The dynamic dependencies that
we discovered are as follows: Dy = {(cfi1,cfa,1), (cfa, cfs,0.8)}. When using the
weight function presented earlier in Equation with a value of 0.5 for p, the

adjacency matrix becomes the following:

0 1 05
Adiy=|1 0 09
0.5 0.9 0

Since there is no dynamic dependency between cf; and cf3, the edge weight is
determined by taking 50% of the static weight resulting in a value of 0.5. The edge
between cf, and cf3 gets a weight value of 0.9 since the dynamic dependency weight
is 0.8 and the static dependency weight is 1. The edge weight between cf; and cfs
remains 1 since both the static and dynamic dependency have a weight of 1.

After creating the adjacency matrix, we are able to construct the graph. The

adjacency matrix of Geompineq results in the following graph:

Figure 4.1: Simple sample graph.

4.4.2 Graph community detection algorithms

Now that we have represented the software as a graph, we discover communities
by dividing the graph into groups with dense intra-connections and sparse inter-
connections. In the next section, we discuss the clustering algorithms that we use

in our approach.

42

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

Selection criteria

In order to select a set of suitable clustering algorithms, we defined certain selection

criteria the algorithm has to comply with. The criteria are ordered in accordance to

their importance, which means that the most important ones are given first. Each

Clustering Criterion (CC) has an identifier that is used to present the analysis in
Table 121

CC1

CC2

CC3

CC4

CC5

CCe6

Considers edge weights. In the weighted graphs our approach produces,
edge weights represent the degree to which nodes are similar to each other.
Algorithms that do not take into account edge weights are considered irrelevant
since they do not use any of the information that we computed in previous

stages (static, semantic, dynamic).

Hard clustering. In hard clustering algorithms, nodes can only be assigned
to one cluster. The opposite of hard clustering is soft or fuzzy clustering, in
which nodes can be assigned to multiple clusters. This characteristic of soft
clustering algorithms results in potential clusters that overlap with each other.
In our approach, we desire each code fragment to be assigned to exactly one

microservice, which means that we only consider hard clustering algorithms.

Python implementation available. In order to utilise the algorithm, it
is necessary that an implementation of the algorithm is provided. Without

implementation, we are not able to apply the algorithm in our approach.

Deterministic. It is desirable for our research that the algorithm is deter-
ministic. Deterministic algorithms do not involve randomness, which means
that the same input will always result in the same output. This way the out-
come of the algorithm is reproducible. It is important to us that the results
of the algorithm do not depend on some uncontrollable factors so that we can

be sure that changes in the result depend on different input data.

Successfully applied by related papers. Knowing that the algorithm is
successfully applied in similar techniques will increase the probability that it

will provide appropriate results in our approach.

A minimum number of adjustable parameters. This is not a strict
criterion but desirable since otherwise additional work to search for the best
parameters setting can be avoided. A common parameter is, for example, the

required number of clusters.

Table gives the results of the analysed clustering algorithms. We only anal-
ysed algorithms that are used by related approaches given in Table This is

43

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

because the algorithms have proven their success within the domain of clustering
microservices. For Lohnertz and Oprescu [39], which compared seven clustering al-
gorithms, we selected the two top-performing ones together with label propagation.
Approaches that developed their own clustering algorithm are not considered in the
analysis. Examples of these are Mazlami, Cito, and Leitner [43] clustering algorithm
based on Kruskal’s Minimal Spanning Tree (MST) [38] and the algorithms proposed
by Jin et al. [31] and Selmadji et al. [62] that are based on hierarchical clustering.

Table 4.2: Analysis of clustering algorithm. Each column in the table
represents a Clustering Criteria (CC) explained in Section[d.4.2] A cross (x)
indicates that the criteria is meet while a stripe (-) indicates the opposite.
When the information is unknown we put N/A.

Algorithm CCl1 CC2 CC3 CC4 CCh CC6
Label Propagation [54] X X X - [39] 0
Girvan-Newman [46] X X X b'e 2221|7 29, 1
Louvain (7] X X X X [7,39] 1
Genetic Algorithm (NSGA-II) [32, 59,

5] X X - - 70) N/A
H1erar§hlcal agglomerative < < < 4863 2
clustering

Clauset-Newman-Moore [12] X X X X [39] 1
Affinity Propagation [25)| X X X X [16] 3

Out of the above analysis of clustering algorithms, we conclude that Girvan-
Newman, Louvain, and Clauset-Newman-Moore are the most favourable algorithms
to use. This decision is based on the minimal number of parameters the algorithms

require. The selected algorithms are discussed in the next sections.

Louvain algorithm

Louvain, proposed by Blondel et al. |7], is a non-deterministic algorithm that finds
high modularity partitions of large networks. The algorithm is successfully used by
Lohnertz and Oprescu [39] and Brito, Cunha, and Saraiva [9] to derive microservice
boundaries. The algorithm is based on maximising Newman’s modularity [45] and

consists of two phases iteratively.

1. First, the algorithm assigns a unique community to each node in the network.
Then, for each neighbour j of node ¢ they compute the modularity chance
that would take place when moving node ¢ to community j. Only when the

modularity increases, the node is moved. This step is repeated for all nodes

44

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

in sequential order and repeated until no improvements in modularity can be

achieved.

2. The network is built where the nodes are placed in the communities found

during the first phase.

The two steps are executed iteratively until the modularity of the resulting net-
work does not increase anymore, which means that maximum modularity is reached.

A well-known problem for algorithms that use modularity optimisation as their
base is that communities smaller than a certain scale cannot be identified [23]. In
order to avoid this limitation, a resolution parameter can be manipulated allowing
the user to identify communities at different scales [23]. Increasing the resolution pa-
rameter results in more iterations of the algorithm and thus less but bigger clusters.
The opposite happens when decreasing the resolution parameter.

To get the optimal value for resolution parameter, Brito, Cunha, and Saraiva
[9] experimented with different arbitrary set of values. They observe that most
applications can be handled with a resolution value ranging between 0.3 and 1. A
resolution of 0.3 should identify smaller clusters in large applications, while a value

of 1 identifies larger clusters in small applications.

Girvan-Newman

The Girvan-Newman algorithm, proposed by Newman and Girvan [46], aims to find
natural divisions of networks into groups based on metrics that measure the strength
of connections between vertices. The algorithm is based on hierarchical clustering
and has a divisive character. Divisive methods start with all nodes represented in
a single cluster and make subgroups by iteratively removing edges with the least
similar connected pairs of vertices in the graph. The Girvan-Newman is based on
this, but instead of looking to weakly connected pairs of vertices, it looks to edges
that are most 'between’ other vertices. Edges with the highest 'betweenness’ are
removed from the graph. The betweenness measurement of edges that favors edges
between clusters and disfavors edges within clusters can be calculated in different
ways. All these functions rely on the same idea. When two communities are joined
by only a few inter-community edges, then all the paths from one community to the
other community have to pass by these edges. The betweenness is then calculated
by counting how many go along each edge given a suitable set of paths, expecting
that the inter-edge will have the highest ratio. To summarise, the general form of

the Girvan-Newman algorithm results in the following steps:
1. Calculate for all edges in the network the betweenness scores

2. Find the edge with the highest score and and remove it from the network

45

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

3. Recalculate betweenness for all remaining edges

4. Repeat from step 2

Girvan-Newman requires us to set the number of clusters beforehand. Requiring
the number of clusters as an input parameter has the advantage that we can analyse
the decomposition for each possible number of clusters. However, since the goal of
our research is to understand the effect of multi-view clustering, it is not necessary
to analyse each possible number of clusters. For this reason, we take a fixed number
of clusters as input for the algorithm for each different information setting. This
way, we make sure that the changes in the results do not depend on the parameter
setting. The optimal number of clusters depends on the size of the project and is
found by considering different values.

The measurement used for calculating the betweenness scores appears to be the
most important feature to the algorithm [46]. The used function may influence the
outcome of the algorithm. However, since all the betweenness functions rely on the
same idea, we assume that different functions do not influence the change of results.
When making this assumption, we are able to take a random betweenness function
as it is not necessary for us to get the most optimal clustering results. Our aim is to
measure the change in the results. For this reason, we decided to take the default
betweenness function that is implemented, introduced by Brandes [8]. The same

betweenness function is used by Matias et al. [42].

Clauset-Newman-Moore

The third algorithm we consider is the one proposed by Clauset, Newman, and
Moore [12]. The Clauset-Newman-Moore algorithm finds communities in a graph
by maximising Newman’s [46] modularity. Similar to the previous algorithm of
Girvan-Newman, this algorithm is also based on hierarchical clustering. However,
instead of the divisive character of Girvan-Newman, this algorithm is agglomerative
based and starts with each node being in its own clusters. The pair of communities
that most increases modularity are then merged together. The process repeats itself
until there are no pairs of communities anymore that increase the modularity.

The Clauset-Newman-Moore algorithm has the same parameter as Louvain,
namely the resolution. The optimal resolution value is determined by running the
algorithm on different resolution values ranging between 0.3 and 1. The best value
is then selected, fixed, and used to run the algorithm with the other sources of

information.

46

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

4.5 Step 4: Quality computation

The last step is to determine whether the results of the partitioning are reasonable.
As observed from the literature review (see Section [3.4), there are three ways of
measuring the quality of the derived decomposition. At first, we can compare the
resulting candidate microservices to an authoritative decomposition of which we
know it is good. An authoritative decomposition is mostly derived from experts
that have a solid understanding of the system. A second approach is comparing
the candidate microservices to a system that has already adopted microservices.
This requires the system to have a monolith and microservices version available.
The approaches mentioned above measure the quality externally since they both
rely on an external decomposition. We can also measure the quality by looking at
the internal structure of the microservices. Various metrics have been proposed to
measure the internal structure.

This research is executed independently from any software vendor and is vali-
dated by considering open-source projects. We are not closely in contact with the
experts working on the projects, which makes it more difficult to obtain authorita-
tive decompositions. Also, comparing the results to a microservice version of the
system is not suitable for us since the availability of systems having both a monolith
and microservice version is limited. For this reason, we decided not to measure the
quality of the decomposition externally but focus on the internal structure.

We do this by applying a set of metrics to the results that are designed to measure
the internal quality of microservices and are commonly used in related literature.
In the literature review, we searched for commonly used metrics and found out that
there is currently no consistent use among them. However, we also noticed that
particular metrics are more often used than others. Out of the eight related ap-
proaches that measure the internal structure of the derived microservices, five make
use of the metrics (or a subset of) proposed by Jin et al. [31] that quantify the
functional independence. Functional independence of a decomposition is quantified
by five metrics, which will be explained in Section [4.5.1 Another popular metric is
the Modularity Quality (MQ) proposed by Mancoridis et al. [40]. Even though this
metric derives from the domain of high-level (module-level) software clustering, it
is also successfully used to measure the quality of lower-level (class-level) decompo-
sitions. Table [.3] shows the related works that use the aforementioned metrics. At
last, we also consider some general clustering quality measures such as the number
of singleton clusters and the maximum cluster size.

In the following sections, we explain each measure that we will use to measure

the quality, starting with the functional independence.

47

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

Table 4.3: Most used microservice metrics. This table lists the most popu-
lar metrics used by related works to measure the quality of the microservice
candidates.

Metric Used in

Al-Debagy and Martinek [16], Brito, Cunha, and
Functional independence Saraiva [9] Jin et al. [31], Jin et al. |[32] and Saidani
et al. [H9]

Brito, Cunha, and Saraiva [9], Jin et al. [32] and

Modularity Lohnertz and Oprescu [39)

4.5.1 Functional independence

The functional independence proposed by Jin et al. [31] measures the extent of
independence to which microservices present their own functionalities. This func-
tional independence is quantified according to five metrics: Cohesion at Message
level (CHM), Cohesion at Domain level (CHD), Interface Number (IFN), Operation
Number (OPN), and Interaction Number (IRN). From these metrics, CHM and
CHD measure the functional cohesion within services while IFN, OPN, and IRN
measure the coupling between services [31]. In this thesis, we do not consider the
IRN measure as it requires to have a reliable set of calling frequencies. The IRN
measure is also ignored in [16, 9, 32].

To understand the equations below to compute the metrics, we first explain the
terminology that is used. A (micro)service consists of a set of classes (and modules
in our case). Each service has a potential set of interfaces. An interface is a class that
contains at least one method (but potentially more) that is used by other services.
A method used by another service should be exposed to the public so that other
services can communicate with it. Such an exposable method is called an operation.
In our case, an interface can also be a module that has a function that should be
accessible to the public. Operations are discovered by the structural dependencies

of the project that derive from static and dynamic analysis (see Section .

48

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

Cohesion at message level

The CHM measures the average functional cohesiveness of the decomposition [32].

The equation below shows how to calculate CHM.

Tisini
Yot chimg

7j=1
K
i=1 "

CHM =

St S MO Opm) 311 s

where chm; = alx(I1:1=1)/2 (4.10)
1 if 1] = 1
(|reskﬂresm| |paskﬂpasm|)
fszmM(Opk, Opm) _ |resgpUresm| [paskUpasm|

2

In this equation, n; refers to the number of provided interfaces of microservice
i. K is the number of microservices identified from the monolith. chm; measures
the cohesion of an interface of microservice k at message level. Opy and Op,, are
operations provided by interface I;, where k # m. When the interface I; only
contains a single operation, the interface is considered perfectly cohesive. The simi-
larity between Op,, and Op, is calculated at message level by the similarity function
fsimM. In this function, the res, and res,, represent the input parameters (input
message) while pasy and pas,, represent the returning parameters (output message)
of Op,, and Opy.. The higher the value for CHM, the more functionally cohesive the

candidate microservices are.

49

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

Cohesion at domain level

The CHD metrics measure the cohesiveness of microservices at domain level. The

following formula describes how to compute CHD:

ijffl " chd;

K .
i=1 Tl

CHD =

>k [85MM (Opy,Opm) .
D2 if ;] # 1

1 if || =1

where chm; = (4.11)

_ |Top, N Top,|

simD(Opy, Opy,) = ————
f (;) |TOPk U TOpm|

This equation is very similar to Equation [4.10] the only part that differs is the
similarity metric to compute the similarity between operations. Now the similarity
is calculated at domain level by taking the intersection between the domain terms
Top, and Tp,,, and divide it by the union of both sets. The domain terms 7" are
extracted from the name of operation Op;. The higher the value of CHD, the more

functionally cohesive the candidate microservices are.

Interface number

The third metrics measure the number of interfaces that a service provides. This
is based on the rationale that a service that provides several interfaces may provide
numerous functionalities [1]. Thus, the higher the number of interfaces, the more
functionalities the service implements. For this reason, we aim for the IFN to be as

low as possible.

1 K
IFN = - Zl ifn;
” (4.12)
ifng = 1|

I; is the set of interfaces for of service j.

50

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

Operation number

The OPN measures the number of operations provided by the extracted microser-
vices. An operation is a method or function that should be able to communicate
with the outside. More operations mean more inter-communication between mi-
croservices, which means a higher coupling degree. This means that the lower the
OPN, the better. OPN is measured with the following equation:

K
OPN = Z opn;

j=1
(4.13)
J

opn; = Z |Op;|

=1

In this equation, |Op;| is the number of operations provided by interface i of

service j.

4.5.2 Modularity Quality

Next to the functional independence of microservices, we also measure the quality of
the decomposition in terms of the Modularity Quality (MQ). The MQ proposed by
Mancoridis et al. [40] combines the cohesion and coupling into a single metric. The
modularity of the system can be measured from multiple perspectives. Knowing
this, Jin et al. [32] decided to extend the M(Q metric with structural and conceptual
dependencies. This resulted in two metrics called Structural Modularity Quality
(SMQ) and Conceptual Modularity Quality (CMQ). To compute the SMQ and
CMQ metrics, we first have to define the intra-connectivity and inter-connectivity.
The intra-connectivity measures the (structural or conceptual) cohesiveness, and
the inter-connectivity measures the degree of (structural or conceptual) coupling

between services.

Structural and conceptual cohesion

The cohesiveness, denoted by coh;, measures the connectivity between all code frag-
ments within service ¢. The aim is to get a high degree of cohesiveness, meaning
that the code fragments within a service share many software-level components. On
the contrary, a low degree of cohesion indicates that the service is a poor partition
of the system as the code fragments assigned to the service share few software-level

components [40]. The cohesiveness of service i can be computed from a structural

51

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

perspective scoh; (see Equation [4.14) and from a conceptual perspective ccoh; (see
Equation 4.15)):

scoh; = % (4.14)
ccoh; = % (4.15)

In the equations above, N; is the number of code fragment inside service i.
Taking the square over this number results in the maximum number of edges that
can exist in service 7. p; represents the number of edges that actually exist. For
scoh;, these edges are structural dependencies, while for ccoh; the edges represent
semantic dependencies. The values of the metrics are bounded between the values
0 and 1.

Structural and conceptual coupling

Coupling is a measurement of the connectivity between two distinct services [40].
The aim of microservices is to be loosely coupled. A loosely coupled microservices
has limited communication with other services and thus operates independently
from others. Independence is an important property of microservice architectures,
as explained in Section [2.3] The coupling of a service i to service j is calculated as

follows:

04,5
PV 4.1
sCOp; 2N, x) (4.16)
04,5
=8 4.1
ccop; 2N, %) (4.17)

Where Equation [4.16] measures coupling from a structural point of view and
Equation from a conceptual point of view. o, ; is the number of (structural or
conceptual) edges between service ¢ and service j. N; or N, represent the number

of code fragments inside service ¢ and respectively service j.

SMQ and CMQ

After obtaining the cohesion and coupling of a service, we can compute the structural

and conceptual modularity quality.

SMQ = Z scoh; — Y /2 ; SCOp; ; (4.18)

52

CHAPTER 4. MULTI-VIEW SOFTWARE CLUSTERING

N 1 N

1
CMQ == N Z CCOhZ' — m Z CCOp; ; (4.].9)

i=1 i#£]

Where N represents the number of services.

4.5.3 Coverage

Another important metric (or descriptive statistic) is the coverage of the decompo-
sition. Since isolated nodes in graph G are removed from the graph, there may exist
code fragments (nodes) that will not be considered in any candidate microservice.
The coverage of a specific decomposition describes the percentage of covered code
fragments, considering all available code fragments. The coverage is a descriptive

statistics that helps to understand the reliability of a decomposition.

53

Chapter 5
Verification

In this chapter, we verify whether the developed multi-view clustering tool works as
intended. It is important to show this to the reader in order to enhance the reliability
of the results. To do this, we developed a sample application called PyPetstore.
Since we are the experts of this application, we know what our multi-view clustering
tool should output. Knowing this, we can verify the tool by comparing the expected
outcome with the actual outcome. We also make small variations in PyPetstore, to
see how the tool responds to it. This kind of test is called metamorphic testing in the
domain of software engineering. In the next section, we first explain the structure
and rationale behind PyPetstore. After this, we present the results when applying

the multi-view clustering tool on different variations of PyPetstore.

5.1 PyPetstore

PyPetstordl] is a very simple command-line tool written in Python that helps man-
aging the process of selling pets. The application is inspired by JPetstord? a Java
application that is often used in related papers to validate the working of their
approach [16], 31, 32, [59, [70]. In PyPetstore, users are able to create orders, add
products to it, manage the availability of products, and get an overview of its cus-
tomer base. The data acquired by the application is save into a SQLite database.
The application is implemented in seven modules, where each module implements

the following functionality.

1. Customer. The customer module allows users to create, update, delete, view,

and search for customers in the database.

2. Database. The database module initialises the database and its correspond-

ing tables and is responsible for the database connection.

Thttps://github.com /larsvasseldonk /PyPetstore
Zhttps://github.com/mybatis/jpetstore-6

o4

https://github.com/larsvasseldonk/PyPetstore
https://github.com/mybatis/jpetstore-6

CHAPTER 5. VERIFICATION

3. Order. The order module enables users to create, view and search for orders

in the database.

4. Orderdetail. The orderdetail module assures that products can be added to

an order. It is able to create and view order details.

5. Product. The product module manages the product entities in the database.

The module is able to create, delete, view and search for products.

6. Util. This module contains some utility functions like the menu printing

function.

7. Main. The main module holds the application together. The main imple-

ments the workflow of the application.

In total, PyPetstore consists of 8 modules, 5 classes, 18 functions and 40 methods
and has 556 Lines of Code (LoC), comments excluded.

5.2 Metamorphic tests

To test whether our multi-view clustering tool works, we apply the tool on differ-
ent variations of PyPetstore. The resulting decompositions are then analysed and
compared to the decomposition resulting from the original PyPetstore version. The

following variation of PyPetstore are made.

e Swapping content. In the first variation of PyPetstore, the original appli-
cation is changed by swapping two top-level code fragments with each other.
The code fragments are only swapped, and thus the content of the two code
fragments stays the same. This means that also the static, semantic, and dy-
namic dependency should be identical. In addition, this also means that the
resulting decomposition should be exactly the same as the one resulting from

the orginal PyPetstore version.

e Adding dependencies. To verify if the tool resembles the correct top-level
code fragments dependencies, we change the original PyPetstore version in a
way the tool is forced discover new dependencies. These new dependencies
that we manually instrumented in PyPetstore, should also be reflected in the

new decomposition.

In the next sections, we discuss the results of the tests regarding the static,

semantic and dynamic dependencies.

55

CHAPTER 5. VERIFICATION

5.2.1 Verifying static dependencies

Figure [5.1al shows the graph constructed from the original PyPetstore version with
only static dependencies. Each node in the graph represents a top-level code frag-
ments, and the color shows to which service it belongs. The decomposition made
with only static information results in four services. The decomposition seems ap-
propriate to us, as it binds code fragments together that are related to each other.
The module ’order’, e.g., contains functionalities to create, view and delete orders
and therefore makes several invocations to the 'Order’ class. To create an order,
it is also necessary to link a ’Customer’ object to it. For this reason, we see in
the static graph a dependency between the 'order’ and 'Customer’ code fragments.
We also observe that this dependency is less strong, which makes sense since ’or-
der’ only invocates one time the 'Customer’ class while it invocates three times the
'Order’ class. For this reason, the edge weight between ’Order’ and ’order’ is much
higher than the edge weight between ’order’ and ’Customer’. Another important
observation is that the graph gives high edge weights for edges within a service and
low edges weights for edges between services. This is desirable as it increases the

structural modularity quality (SMQ) of the decomposition.

Swapping content As mentioned before, we swap the ’Order’ class with the
'Orderdetail” class and verify how our tools responds to it in terms of its static
decomposition. Figure [5.1b] shows the new decomposition, and we can directly see
it is slightly different than the decomposition of the original PyPetstore version.
Instead of four candidate microservices, the application is now divided into three
services. A potential reason for this could be the decreased dependency strength
between the 'orderdetail’ module and the ’Orderdetail” class, something that should
not be possible. When looking into this, we notice that the ’orderdetail’ module
only makes two calls to the 'Orderdetail’ class, while before there were four. We
think the reason for this is that objects assigned to variables and then invoked
are not considered by the call graph generator when the object is not defined in
the same module. This way, the 'Orderdetail’ class which is assigned to the variable
‘orderdetail” and then called with 'orderdetail.printNicely’ and 'orderdetail.toDb” are
not discovered by the call graph generator, unless the 'Orderdetail’ class is defined
in the same module. This is a limitation of the call graph generator and is outside
our control.

Despite this change, the other services of the new decomposition show a similar
pattern as the original decomposition. The ’customer’ module and "Customer’ class
still have a high dependency, and the same is true for the 'product’ and ’Product’
code fragments. For this reason, even though the decomposition of the manipulated

version is slightly different than before, we mark this test as completed.

56

CHAPTER 5. VERIFICATION

Figure 5.1: The static graph of PyPetstore (a) before and (b) after swap-
ping the top-level code fragments ’Order’ and ’Orderdetail’.

(a) The original PyPetstore version (b) The adjusted PyPetstore version

product.Product product.Product

.07
orderdetail. Orderdetaul % orderdetail.Orderde?ail 1‘0

q product (/ product

order

orderdetall
order ,m/ N orderdetall
Km 07

07 . 29
order Order

customer.Customer) CUStomer.Customer\
/O/ /O\ order.Order
customer cust51;_86 ,07\'

.86

Figure 5.2: The static graph of PyPetstore when an extra call is added
from ’order’ to 'Product’. The left graph (a) only reflects one call between
‘order’ and 'Product’ while the right graph (b) represents two calls.

(a) The adjusted PyPetstore version with one ex- (b) The adjusted PyPetstore version with two
tra dependency. extra dependencies.

product.Product product.Product

.07 .07
e
orderdetail.Orderdetail orderdetail.Orderdetail

07

.07 : product 14 . product
.29 .29
orderdetail _.07 “orderdetail
order order
.07 .07
07 R o 71
order.Order order.Order
customer.Customer customer.Customer
.07 .07
customer o customer 4.

Adding extra dependencies In the second verification test, we adjust the code-
base by making a call from the ’order’ module to the 'Product’ class. The original
PyPetstore version does not contain this dependency, and thus we should see a
change in the resulting graph. The new decomposition is given in Figure [5.2a]
When observing this new graph, we notice that indeed a new edge is added between
the ’order’ module and the 'Product’ class. To see how the weight of the edge is
determined, we made another variation of PyPetstore where a second call from the
‘order’ module to the 'Product’ graph is added. The resulting graph, shown in
Figure |5.2b] is similar as before, but the weight between 'order’ and 'Product’ is
increased from a value of 0.7 to 0.14. This is as expected and verifies that the tool

works as intended.

57

CHAPTER 5. VERIFICATION

Figure 5.3: The dynamic graph of the original and swapped versions of
PyPetstore. We only show one graph because both appear to be identical.

database.Database product.Product

database /O

.59

24
orderdetail.Orderdetail

product

R 39
orderdetail .21~

customer

order.Order

customer.Custome|
.22

5.2.2 Verifying semantic dependencies

The decomposition that results from the original PyPetstore application is given in
Figure The figure shows that our tool generates four candidate microservices
when only semantic dependencies are included. When comparing it to previous
graphs, we see that the semantic graphs contains three additional code fragments,
the "database’ module, 'Database’ class and the 'main’ module. This is possible since
code fragments do not necessary need to be invocated by others. The semantic
decomposition of the original PyPetstore version is reasonable since we see that
semantic related code fragments, such as ’customer’ and 'Customer’ and "product’

and "Product’, are clustered together.

Swapping content To verify the semantic analyser, we obtain again the decom-
position of the adjusted PyPetstore version where the ’Order’ and ’Orderdetail’ code
fragments are swapped. The resulting decomposition appears to be identical to the
one in Figure [5.3| and is for this reason not visualised again. This means that swap-
ping code fragments does not influence the result and thus increases the reliability
of the tool.

Adding extra terms The second test we run is to see how the tool deals with
new domain terms. For this reason, we add five times the word ’database’ to the
‘"database’ and the 'main’ module. With these new terms, we would expect that
a new edge arises between the 'main’ module and the 'database’ module. When
observing the new decomposition, we notice that adding the term ’database’ does

not result in a new semantic dependency. This is because the word database appears

58

CHAPTER 5. VERIFICATION

Figure 5.4: The semantic graph of PyPetstore after adding the term
'paper’ five times in ‘'main’ and ’database’.

product.Product

order.Orderdetail

product

.32

\ .39
orderdetail .21~

order .38

A7 I database.Database

main P

.59

.26
X datgba
orderdetail.Order

very frequently in the program since every module relies on the database. This high

customer k
\

customer.Custome

term frequency in the program results in a low tf-idf score and therefore does not
exceed the threshold value of 0.05.

Now, let’s try the same, but then with a more discriminate term like "paper’.
Figure [5.4] shows that indeed a new edge is created now, with a weight of 0.26. This

is as expected and thus the test has succeeded.

5.2.3 Verifying dynamic dependencies

The decomposition of the original PyPetstore version constructed with dynamic
dependencies is given in Figure [5.5] The dynamic decomposition results in four

services and is the only decomposition that also included the "util’ module.

Swapping content Also for the dynamic dependency graph, we verify how it
copes with code fragments that are swapped. Important for this test is that both
the manipulated and the original PyPetstore versions are ran on the same test
scenarios. This way, they both have the same logs and thus should make the same
decomposition. The results, given in Figure|5.5, show that both decompositions are
identical. Since both decompositions are identical, we only visualised one in Figure
5.5l

Adding extra test scenarios For the last verification test, we give the adjusted

PyPetstore version two times the log files. This means that the expected outcome

59

CHAPTER 5. VERIFICATION

Figure 5.5: The dynamic graph of the original and manipulated versions
of PyPetstore.

database product product.Product

database Database / z ;

orderdeta|l Orderdetail

util 101 orderdetaﬂ ,__——O
‘\ \main 24

order.Order
.28

1.0 .04
2 \ /
“““~customer.Customer

would be the exact same decomposition. This is because the strength of the edges
are normalised, and thus a higher frequency cannot be seen from the graph. The

result decomposition when adding twice the log files are identical to the one given
in Figure [5.5

60

Chapter 6
Evaluation

This chapter presents the results of the main experiment and is structured as follows.
At first, we describe the design of the experiment. This is done by discussing the
different groups that are tested against each other, the algorithm that is used to
obtain the decomposition, and the input projects used for experimentation. After

the experimental design, we present the results of the experiment.

6.1 Experimental design

To understand the effect of the utilised information stream on the microservice
decomposition, we make seven different decompositions of the system with our pro-
posed tool. Each decomposition is constructed with a unique stream of data. The
different input data streams are listed below. Each input stream gets an identifier
of three letters based on the data it incorporates. The first letter S represents static
data, the second one L lexical data, and the third one D dynamic data. When a

data source is not included, the letter X is given.

SXX Static. The candidate microservices that are obtained by only considering

static dependencies as input.

XLX Lexical. The decompositions obtained when only considering semantic infor-

mation. This means the graph only consists of semantic edges.
X XD Dynamic. The decompositions constructed with only dynamic dependencies.

SXD Static and dynamic. These decompositions are constructed with static and
dynamic data as input. This means that both the static and dynamic edges are
given in the graph. When an edge has both a static and a dynamic dependency,
the edge weights are combined by taking 50 percent of each weight.

61

CHAPTER 6. EVALUATION

SLX Static and semantic. The fifth group of decompositions combines static
with semantic information as input. The edges are combined the same way as

before.

XLD Dynamic and semantic. These decompositions are constructed with dy-

namic and semantic information as input.

SLD Static, dynamic and semantic. This group of decompositions takes all
three streams of data as input. This means, the edges in the graph can either
represent a static, semantic or dynamic edge, or a combination of those. When
an edge is combined, each information source counts for 33 percent. This way

the maximum weight of the combined edge can never exceed a value of 1.

6.1.1 Algorithm and parameters

The aim of this thesis is the understand how the quality of the microservices changes
when different streams of data are used. To make sure the change in the quality
of the decomposition is caused by the selected stream of data, it is important to
understand how the clustering algorithm influences the result. In the next section,
we therefore analyse the impact of the clustering algorithm on the quality of the

resulting decomposition.

The effect of the clustering algorithm

To measure the effect of the clustering algorithm, we apply the three clustering algo-
rithms selected in Section [4.4] on three graphs created with static, semantic and the
two combined as input. Since the Clauset-Newman-Moore algorithm gave strange
results for the CHM and CHD metric, we incorporated a fourth clustering algorithm
called Label Propogation. The Label Propogation algorithm (LPA), introduced by
Raghavan, Albert, and Kumara [54], is hierarchical based and has an agglomerative
character.

The three graphs are constructed for two monolithic projects of different sizes.
We then observe the change in the results in terms of CHD, CHM, SMQ, and CMQ.
When the change in the results are the same direction (all positive or negative) for
each clustering algorithm, we assume the algorithm does not affect the change of
the results. The results of this experiment are given in Table 6.1}

The Louvain algorithm is tested with different resolution parameters ranging
between the values 0.3 and 1. The resolution value with the best performance is
chosen and given in the table. The same applies for the input parameter for the
Girvan-Newman algorithm. We tried different cutting values ranging between 0 and

5 and selected the best performing one.

62

CHAPTER 6. EVALUATION

Table 6.1: Results on the effect of the clustering algorithm.

Mono Algo CHM CHD SMQ CMQ
SXX XLX SLX SXX XLX SLX SXX XLX SLX SXX XLX SLX
Louvain 0.667 0.609 0.750 0.701 0.742 0.813 0.124 0.033 0.048 0.060 0.226 0.137
M Girvan-Newman 0.498 0.586 0.619 0.562 0.753 0.754 0.092 0.021 0.012 0.039 0.199 0.197
2 Clauset 0.440 0O 0 0.519 0 0 0.090 0.009 0.019 0.033 0.050 0.043
LPA 0.667 0.620 0.657 0.695 0.745 0.783 0.170 0.039 0.056 0.081 0.254 0.188
Change - 3)>)< -)< B)< - 4)> < - DH< “@)>
Louvain 0.762 0.600 0.661 0.792 0.665 0.708 0.180 0.032 0.039 0.160 0.225 0.221
M Girvan-Newman 0.619 0.788 0.812 0.613 0.846 0.886 0.160 0.015 0.010 0.148 0.266 0.199
4 Clauset 1 0 0 1 0 0 0.204 0.009 0.012 0.202 0.083 0.079
LPA 0.799 0.712 0.814 0.792 0.733 0.798 0.211 0.069 0.076 0.162 0.232 0.228
Change - 3)> B)< - 3)>)< - 4)>)< - B)< “@)>

The row under the double line shows the most frequent type of change that
occurs in the results when comparing it to previous column. The greater than (>)
symbol indicates that the value of the former is bigger than the latter and the less
than (<) symbol the opposite. The number in the brackets shows how many times
the change happens. When the change is equal, the = symbol is used.

The table above (Table shows that most of the times the change in the
results is the same for the algorithms. From the 106 observed changes, 96 appear to
have the same direction. This means that 91 percent of the changes are the same
regardless of the clustering algorithm. For this reason, we decided to select only one
algorithm for the main experiment. We decided to go for the Louvain algorithm with
a resolution parameter of 1, as it gave the most satisfying and consistent results. For
the tf-idf threshold value, we selected a value of 0.05. Increasing this value results in
a lower coverage of the semantic constructed graph. A value of 0.05 gave satisfying

results during verification and will therefore be used in the remaining experiment.

6.1.2 Project collection

Table shows the projects that are used for experimentation. Each monolithic
project M is enriched with some descriptive statistics, such as the source lines of
code (SLOC) and the number of classes, modules, methods and functions. Below, we
give a short description of each project. The projects are ordered by its complexity

(in terms of SLOC), starting with the smallest project.

M, PyPystore. PyPetstoreH is a minimal working command-line tool, inspired
by JPetstore, that supports the process of selling pets. PyPetstore serves as an

"toy’ example in which we can verify the working of our proposed technique.

Thttps://github.com/larsvasseldonk /PyPetstore

63

https://github.com/larsvasseldonk/PyPetstore

CHAPTER 6. EVALUATION

Ms

twitter The twitterﬂ project includes a set of Python tools such as a Twitter
API, command-line tool, and IRC bot. The command-line tool allows you to,
e.g., get friends’ tweets and setting your own tweet. The IRC bot announces

Twitter updates to an IRC channel.

ChatterBot. ChatterBotf]is a machine-learning based conversational dialog
engine build in Python which makes it possible to generate responses based

on collections of known conversations.

asreview. ASReviewﬂ (Active learning for Systematic Reviews) implements
machine learning algorithms that interactively query the researcher. The
project is developed and maintained by Utrecht University and is designed
to accelerate the step of screening abstracts and titles with a minimum of

papers to be read by a human.

beets. Beetf] is the media library management system for obsessive music
geeks. The project enables users manage music collections by, e.g., automat-
ically improving metadata. It also provides a set of tools to manipulate and

access music.

Picard. MusicBrainz Picard¥ is a cross-platform (Linux/Mac OS X/Win-
dows) application written in Python and is the official MusicBrainz tagger.
The project’s public facing website is https://picard.musicbrainz.org/. Mu-
sicBrainz is an open music encyclopedia that collects music metadata and

makes it available to the public.

mu. Mis a simple code editor for beginner programmers based on extensive
feedback from teachers and learners. The project’s public facing website is
https://codewith.mu/.

6.2 Results

Each of the aforementioned project is analysed with our multi-view clustering tool.

Out of this tool, a set of static, semantic and dynamic edges derives. These edges

are then used to construct seven different graphs. Subsequently, the Louvain al-

gorithm is used to find communities (microservices) in the graph such that nodes

2https://github.com /python-twitter-tools /twitter
3https://github.com/gunthercox/ChatterBot
4https://github.com/asreview /asreview
Shttps://github.com/beetbox /beets
Shttps://github.com /metabrainz/picard
"https://github.com /mu-editor /mu

64

https://picard.musicbrainz.org/
https://codewith.mu/
https://github.com/python-twitter-tools/twitter
https://github.com/gunthercox/ChatterBot
https://github.com/asreview/asreview
https://github.com/beetbox/beets
https://github.com/metabrainz/picard
https://github.com/mu-editor/mu

CHAPTER 6. EVALUATION

Table 6.2: Python projects for experimentation. For each project, we have
collected the number of modules, classes, methods and functions available
in the code base. The SLOC resembles the number of Python lines of code.

Project SLOC Files Classes Methods Functions
PyPetstore 556 8) 40 18

twitter 3510 17 66 117 64
Chatterbot 10297 39 46 124 30
asreview 11947 101 58 256 280

beets 44829 29 134 575 290
picard 62559 196 352 2027 465

mu 78628 45 71 524 70

within a community are highly connected, and nodes between communities have
low connections. The nodes in the graph represent top-level code fragments, where
each top-level code fragment can either be a module (with its inner functions) or a
class (with its inner methods). The quality of the candidate micoservices are then
measured with the functional independence and modularity metrics. To understand
what the effect of the input data is, we rigorously test if the quality of a decompo-
sition resulting from a given information stream outperforms another. We use the
paired t-test to validate whether the quality of two decomposition made with differ-
ent streams of information are significantly different. Two groups are significantly
different when the paired t-test results in a p-value lower than 0.05. In the next

sections, we give the results of the experiment for each quality metric.

6.2.1 Functional independence

As described in Section 4.5, we measure the quality of the resulting candidate mi-
croservices in terms of its functional independence. The functional independence is
measured according to four metrics, namely, CHD, CHM, IFN and OPN. Table 6.3]
6.4 [6.5, and [6.6] show the result of each metric respectively when applying our tool
with different input data. The last row of each table gives the mean value of each
experiment. The experiment with the best mean score is marked with a grey cell

colour.

Cohesion at domain level The CHD metrics aims to measure the cohesiveness
of services at domain level. The higher the CHD, the more functional cohesive the
services are [31]. Table[6.3|shows the CHD scores for each input information stream.
On average, the highest score for CHD is achieved when all three information streams

are used for the decomposition (SLD). This makes sense since the algorithm has

65

CHAPTER 6. EVALUATION

more information to make a suitable decomposition. However, it is not always
that more information results in higher CHD scores. When static and dynamic is
combined as input (SX D), the average CHD score lies somewhere between the two
CHD scores achieved when both streams are used individually (SXX and XXD).
However, this is on average. When we look at the data again, we note that bigger
applications (Ms, Mg, and M7) always get a higher CHD score when static and
dynamic data are combined as input than when they are used individually. The same
pattern applies when static and lexical data streams (SLX) are combined as input.
On average, this again results in a higher CHD score (0.615) than when only static
(0.544) or only lexical (0.598) are used. This pattern is in line with our expectations
that more views of the system result in a higher quality of the decomposition. When
lexical and dynamic information (XLD) are combined as input, we see a small
decrease in the average CHD score (0.591) compared to the average CHD score
achieved when lexical data (XLX) is used only (0.598). However, the score is
still higher than only using dynamic information (XX D) as input (0.537). Each
combination of input streams is tested with a paired t-test, but none of them are

significantly different.

Table 6.3: Results of the main experiment in terms of CHD.

Mono CHD
SXX XLX XXD SXD SLX XLD SLD

M, 0.511 0.479 0.528 0.479 0.417 0.479 0.479
M, 0.375 0.641 0.633 0.375 0.595 0.624 0.632
Ms 0.500 0.494 0.567 0.457 0.557 0.562 0.485
My 0.755 0.688 0.579 0.655 0.693 0.681 0.706
Ms 0.452 0.496 0.336 0.506 0.506 0.451 0.509
Mg 0.770 0.746 0.631 0.810 0.748 0.734 0.771
My 0.448 0.642 0.484 0.501 0.791 0.605 0.786

avg 0.544 0.598 0.537 0.540 0.615 0.591 | 0.624

Cohesion at message level The cohesion at message level (CHM) metric, ex-
plained in Section [£.5.1] measures how cohesive services are based on the similarity
of the input and output parameters of the operations in a service that communicate
with other services. A higher score for CHM means a more cohesive decomposition
and is preferred. Table gives the CHM results of the main experiment. The
highest average CHM value is reached when static and lexical (SLX) information
are combined as input (0.663). When also dynamic information is included (SLD),
the CHM slightly decreases to a value of 0.643. However, the score of SLD is for
all projects at least as good as the worst performing individual score. For the big-
ger projects Ms, Mg and My, the CHM score always outperforms two individual

streams of data. Another pattern that we observe in the CHM results is that on

66

CHAPTER 6. EVALUATION

average the CHM value increases when static (SX X) and dynamic graphs (XX D)
are supplemented with semantic data (SLX and XLD). Moreover, we see that
combining static and dynamic (SX D) data streams does not result in an increase in
score when comparing it to their individual scores. On average, the result of SX D
(0.574) appears to be lower than the two individual scores of SXX (0.643) and
XXD (0.578). The changes in the score are small and after running the statistical

tests it appears that there is not a significant difference between them.

Table 6.4: Results of the main experiment in terms of CHM.

Mono CHM
SXX XLX XXD SXD SLX XLD SLD

M, 0.756 0.250 0.369 0.250 0.333 0.250 0.250
M, 0.189 0.700 0.428 0.189 0.592 0.638 0.567
Ms 0.524 0.531 0.724 0.586 0.579 0.579 0.529
My 0792 0.770 0.658 0.703 0.732 0.765 0.754
Ms 0.683 0.669 0.562 0.657 0.701 0.621 0.691
Ms 0.858 0.794 0.722 0.873 0.798 0.795 0.810
M; 0.696 0.803 0.645 0.758 0.898 0.733 0.899

avg 0.643 0.645 0.587 0.574 0.662 0.626 0.643

Number of interfaces The third metric to measure how functional independent
the decomposition is, is the average number of interfaces a service provides. The
aim is to get the lowest IFN rate as possible. Table shows that the lowest
average IFN rate (3.06) is achieved for graphs that only include static dependencies
while the highest average IFN rate (10.26) is achieved for graphs that only include
lexical data. We also observe that whenever lexical information is added to a static
or dynamic graph, the IFN rate increases compared to using static or dynamic
information individually. When a static graph is supplemented with semantic data,
the IFN rate increases from 3.06 to 8.75 on average. The IFN rate of the dynamic
graph increases from 3.99 to 9.31 on average when semantic data is added. In
general, we observe that whenever semantic information is included as input for
the decomposition (XLX, SLX, XLD, and SLD), the IFN rate is much higher
compared to decomposition made with static and/or dynamic information. The
differences between the input streams are not statistically different according to the

paired t-test.

Number of operations The number of operations should be as low as possible,
as it indicates how loosely coupled services are. A higher OPN means that more
communication between services is required, which is not desirable. Table gives
the results of the OPN scores on the different input data streams. The table shows a

similar pattern as the IFN scores. This because again the lowest average OPN value

67

CHAPTER 6. EVALUATION

Table 6.5: Results of the main experiment in terms of IFN.

Mono IFN

SXX XLX XXD SXD SLX XLD SLD
M, 1.25 133 200 133 150 133 1.33
M, 2.67 3.14 500 267 340 3.50 3.20
M5 1.75 433 1.80 262 420 5.40 5.00
My 471 9.00 4.29 4.00 6.00 880 7.33
M 3.25 13.50 840 6.62 12.17 1250 11.67
Mg 5.43 35.67 3.64 5.73 29.57 27.62 31.67
M, 233 483 283 238 443 6.00 4.29
avg 3.06 1026 3.99 362 875 931 9.21

(52.6) is achieved in graphs that only have static edges (SXX) while the highest
is score (135.7) is given to decompositions that take only semantic information as
input (XLX). We also observe that whenever semantic data is used as input for
the decomposition, the number of operations is much higher than when only static
and/or dynamic information is used as input. A potential reason for this could be
that the semantic input results in much more dependencies in the graph. Since the
dependencies do not only reflect calling relations anymore, the algorithm cannot
consider this for the decomposition. This way, classes that have a very different
lexicon but invoke each other are easier clustered in different services than when
only the calling relationships are used.

After running the statistical tests, no combination of input streams appear to be

statistically different from each other.

Table 6.6: Results of the main experiment in terms of OPN.

Mono OPN

SXX XLX XXD SXD SLX XLD SLD
M, 15 10 19 10 19 10 10
My 20 38 20 20 33 41 32
M5 11 60 17 42 48 61 47
M, 76 101 79 80 99 100 101
M5 82 294 161 155 221 246 193
Mg 125 389 125 126 362 392 303
My 39 58 38 49 58 72 58
avg 52.6 135.7 65.6 689 120.0 131.7 106.3

6.2.2 Modularity

The modularity of the decompositions is measured by two metrics: the structural
modularity quality (SMQ) and the conceptual modularity quality (CMQ). The two

metrics are explained in Section [4.5.2]

68

CHAPTER 6. EVALUATION

Structural modularity quality The structural modularity quality values ob-
tained for the different input streams are given in Table The highest average
SMQ value (0.164) is obtained for the decompositions that are made with static
and dynamic information (SX D). The table also shows that the involvement of
semantic information decreases the value of SMQ, which is inline with the results
that we see for the IFN and the OPN scores. We can see this by comparing the
results of the decompositions made with static and/or dynamic data (SXX, XX D,
and SX D) to the remaining ones. These three decompositions do not rely on se-
mantic information and all have a higher SMQ value on average. This statement
is also supported by a paired t-test. The decompositions SXX, XX D and SXD
all significantly outperform the decomposition made with semantic information as
input (XLX, SLX, XLD and SLD) with a p-value lower than 0.05. This means
that we can say that including semantic information as input for the decomposition

significantly decreases the structural modularity quality of the decomposition.

Table 6.7: Results of the main experiment in terms of SMQ.

Mono SMQ
SXX XLX XXD SXD SLX XLD SLD

M,y 0.125 0.221 0.175 0.204 0.189 0.204 0.204
Mo 0.141 0.021 0.089 0.133 0.035 0.034 0.050
Ms; 0.190 0.015 0.151 0.188 0.041 0.008 0.017
My 0.180 0.020 0.178 0.192 0.039 0.021 0.032
Ms 0.144 0.028 0.078 0.135 0.045 0.033 0.048
Mg 0.128 0.004 0.161 0.132 0.006 0.006 0.006
M 0.156 0.034 0.157 0.161 0.060 0.022 0.053

avg 0.152 0.049 0.141 0.164 0.059 0.047 0.059

Conceptual modularity quality The conceptual modularity quality (CMQ)
measures the modularity of a graph based on semantic edges. The higher the CMQ),
the better the decomposition is. The highest average CMQ score (0.229) is achieved
for the decomposition made with only semantic data (XLX). The decompositions
made with only dynamic data (X X D) as input show the lowest rate of SMQ (0.096).
When comparing the CMQ scores with the SMQ scores, we see an opposite pattern.
Where in terms of SMQ), the static and dynamic input streams outperform the ones
with semantic involvement, the opposite occurs for the CMQ) score. This means that
whenever semantic information is used as input for the decomposition (X LX, SLX,
XLD and SLD), the CMQ score is significantly higher compared to decompositions
where semantics are not used. This means that the decompositions XL X, SLX,
XLD, and SLD all significantly outperform the others with a p-value lower than
0.05.

69

CHAPTER 6. EVALUATION

To better understand how semantic input affects the SMQ and CMQ rates com-
pared to static or dynamic decompositions, we gradually increase the strength of
the static and dynamic edges when combining them with semantic data (SLX and
XLD). We do the same for the static weight in the SX D decompositions. Figure
6.1, shows the results when gradually increasing the strength of one information
source. Note that when the x-as is zero or one, only a single source of information
is used while with a weight of 0.33 both information sources are used equally. The
CMQ scores are given on the right side of the figure while the SMQ scores on the
left side. In these plots, we see that more involvement of static and dynamic input
streams relates to a lower degree of CMQ for almost all projects. On the other hand,
when we increase the static and dynamic weight, we see a small increase in the SMQ
score, except for PyPetstore.

Figure [6.1] also shows how the SMQ and CMQ values changes when static and
dynamic are combined. The plots shows that increasing the weight of the static
data source in SX D results in a better decomposition in terms of SMQ and CMQ.

However, the changes are very small and appear not to be significant.

Table 6.8: Results of the main experiment in terms of CMQ.

Mono CMQ
SXX XLX XXD SXD SLX XLD SLD

M,y 0.146 0.265 0.178 0.206 0.205 0.241 0.241
My 0.098 0.220 0.022 0.093 0.208 0.204 0.184
Ms; 0.109 0.252 0.090 0.114 0.207 0.185 0.203
M,y 0.169 0.252 0.160 0.189 0.273 0.250 0.259
Ms 0.113 0.200 0.036 0.104 0.207 0.193 0.205
Msg 0.105 0.218 0.124 0.104 0.217 0.208 0.214
My 0.067 0.193 0.059 0.072 0.153 0.165 0.122

avg 0.115° 0.229 0.096 0.126 0.210 0.207 0.204

Coverage The coverage is the only metric that follows a clear pattern. The de-
compositions made with semantic data as input give the highest coverage rate on
average (0.971). When combining different graph with each other, the coverage rate
increases. As expected, the highest coverage rate is achieved when all information

sources are combined.

6.2.3 Summary

Table [6.10] gives the mean and standard deviation for each metric applied on the
seven different input streams. The grey cell colour indicates the best value obtained
for a particular metric. The highest coverage and CHD rates are obtained when
incorporating all sources of information (SLD). The highest CHM and CMQ rates

70

CHAPTER 6. EVALUATION

Table 6.9: Results of the main experiment in terms of Coverage.

Mono Coverage

SXX XLX XXD SXD SLX XLD SLD
M, 0.667 0.917 1.000 1.000 0.917 1.000 1.000
M, 0.649 0.987 0.416 0.766 1.000 1.000 1.000
Mz 0.431 0.961 0.647 0.725 0.980 1.000 1.000
M, 0.744 1.000 0.648 0.904 1.000 1.000 1.000
Ms 0.628 0.994 0.66 0.859 0.994 1.000 1.000
Mg 0.680 0.996 0.408 0.840 0.996 0.998 0.998
M; 0.756 0.942 0.593 0.826 0.988 1.000 1.000
avg 0.651 0.971 0.625 0.846 0.982 1.000 1.000

are achieved when only semantic data is used as input. Decompositions obtained

with static information as main source obtain the highest IFN and OPN score.

Lastly, the highest SMQ score is achieved for decompositions that combine static

and dynamic sources of information.

Table 6.10: Results of main experiment for all metrics.

Input Metrics

Coverage CHD CHM IFN OPN SMQ CMQ
SXX 0.6514+0.10 0.5444+0.14 0.643£0.21 3.056+1.42 52.571+39.72 0.152+£0.02 0.115+0.03
XLX 0.97140.03 0.5984+0.10 0.6454+0.18 10.258+11.04 135.7144+134.98 0.049+0.07 | 0.229+0.03
XXD 0.625+0.18 0.5374+0.10 0.58740.13 3.995+2.10 65.571+53.70 0.14140.04 0.096+0.06
SXD 0.846+0.08 0.54040.13 0.574+0.24 3.623+1.79 68.857+50.39 0.164+0.03 0.126+0.05
SLX 0.982+0.03 0.6154+0.13 0.662+0.17 8.752+9.05 120.0£117.11 0.059+0.06 0.2140.03
XLD 1.000£0.00 0.591+0.09 0.62640.17 9.308£8.19 131.714£127.29 0.047+0.06 0.20740.030
SLD 1.000£0.00 0.624+0.12 0.643£0.20 9.21249.67 106.286+97.75 0.059+0.06 0.204+0.04

71

CHAPTER 6. EVALUATION

Figure 6.1: The change in SMQ and CMQ when gradually increasing the
weight of the static (for first four plots) or dynamic (for the last two plots)
information sources. In the middle of the plot, both information sources
are used equally.

0.3 0.25

0.25 |

0.1
5.1072
| | | | | | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Static weight in (SX D) Static weight in (SX D)
0.25 T T T T 0.3 T T T T

0.2

0.15
c
=
n
0.1
51072 ‘
f + T o+ 0.1 \ | | | X
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Static weight in (SLX) Static weight in (SLX)
0.25 ‘ ‘ ‘ ‘ 0.3 ‘ ‘ ‘
?P\ﬂ
0.2 — 7 = S\;
0
0.15 |- .
c
=
n
0.1 |- —
5.1072 [~ » A
¥ Y N 4/7/ =9
%\‘J\o S
9 e e i) | | | |
0 0.2 0.4 0.6 0.8 1 01 0 0.2 0.4 0.6 0.8 1
Dynamic weight in (XLD) Dynamic weight in (XLD)

—5— PyPetstore —— Twitter + ChatterBot —s—asreview —+ Beets — Picard =~ Mu

72

Chapter 7
Discussion

This chapter discusses the results and implications made from the results. We first
discuss the results. After this, we discuss validity threats, limitations, and future

directions for research.

7.1 Interpretations

This section is divided into two parts. We first discuss findings related to the use of
individual streams of input data. After this, we discuss the findings regarding the

use of multiple views of the system.

7.1.1 Individual view as input

Regarding the independence of functionality for decompositions made of a single
source of information, the CHD and CHM scores show the most promising results
when only semantic data is involved. The second best CHD and CHM results are
achieved for decompositions constructed with static data. The CHD and CHM
measure the functional cohesion within services based on the rationale that ser-
vices should provide coherent functionality to their external clients. This means
the decompositions made with only semantic information provide the most coherent
functionality to other services when comparing it to static and dynamic decompo-
sitions.

When looking at the functional independence metrics that compute the coupling
of the decomposition, the static decomposition shows the most promising results.
The IFN and the OPN scores are both the lowest for decompositions made with
static data when only using an individual source of information. The results are
close to the ones obtained from dynamic decompositions but very different from the
semantic decompositions. The semantic decomposition shows a significant increase

in the IFN and OPN rate compared to the static and dynamic decompositions.

73

CHAPTER 7. DISCUSSION

However, we think this could be justified by the fact that semantic decompositions
do not take into consideration calling relationships between code fragments. As a
result, code fragments that invocate each other but have a very different lexicon are
likely to be clustered in different services.

The high OPN score for the semantic decompositions also results in a worse SM(Q
score. This makes sense because more operations mean more external connections
between services are made.

Regarding IFN, we observed that decompositions made with semantic informa-
tion have tended to choose less but bigger services resulting in a worse IFN. A worse
IFN means that more interfaces are included in less services, which results in bigger
services. In related papers [9], a higher IFN rate results in bigger services and thus
less communication between services. Less communication between services subse-
quently results in a better SMQ rate. However, in our decomposition made with
semantic information, we do not see this pattern. Even though they have a higher
IFN rate, the SMQ rate is not better. We think that the reason for this is because
code fragments that do not call each other can be clustered in the same service
because of their similar lexicon.

To cope with this, existing approaches [9, 39| always take the structural depen-
dencies as the underlying structure of the graph. The edge weights of the graph are
then updated to account for additional information such as semantic or dynamic
dependencies.

The high OPN and low SMQ score are also reflected by Jin et al. [32]. In their
paper, they compare their proposed technique that is based on dynamic information
with a technique that only incorporates semantic information. In their results, they
indicate that the IFN rates of the decomposition made with semantic information
only are much higher. Even though these tools are different, it still shows the same

pattern as we observe in our data.

7.1.2 Multi-views as input

Regarding the decompositions that incorporate multiple views of the system, there
is not an obvious pattern in the data. Our expected outcome, that multiple views
of the system would result in a better quality of the decomposition is not reflected
by the data. Only the CHD score achieved the highest value on average when all
information streams of the system are included.

The decompositions resulting from static and semantic information as input are
for all quality metrics (on average) at least as good as the worst performing individ-
ual group. This is also true when combining semantic and dynamic data, except for

the SMQ metric. Decompositions constructed with static and dynamic information

74

CHAPTER 7. DISCUSSION

sources perform at least as good as the worst individual source except for the CHM
and OPN metric.

Regarding the CMQ and SMQ results for decomposition constructed with multi-
ple views of information, we observe a much lower SMQ score and much higher CMQ
score when semantic edges are incorporated. In other words, we see the SMQ rate
increasing and the CMQ decreasing when semantic information is left out. How-
ever, we note that the decrease in CMQ is less significant than the increase in SMQ.
Having said this, we state that static and dynamic information sources are able to
create decompositions with reasonable CMQ scores, while semantic data is not able
to create decompositions with high SMQ scores.

Higher values of CMQ compared to SM(Q when semantic information is included
could be justified by the high amount of semantic edges in the graph. The edges that
are present in a combined graph with semantic information are more likely to rep-
resent a semantic edge than a static or dynamic edge. This is because the semantic
analyser touches more aspects of the system and thus creates more dependencies.
This is also reflected by the average coverage rate given in Table [6.9) For this
reason, we think the algorithm will privilege code fragments that are semantically
closer, as more semantic dependencies exist compared to static or dynamic edges.
This also explains the less strong changes in the results for PyPetstore, which is a
relatively small application compared to the others. Since the application is much
smaller, more edges are represented by both information streams, and therefore the
algorithm favors both information sources more equally.

As mentioned before, to cope with this, one could make the underlying structure
of the graph only represent structural dependencies. Additional information is then

added by changing the edge weights of the static edges in the graph.

7.2 Limitations and validity threats

One threat to the validity of the research is the low amount of sample projects used
to validate the work. Due to time constraints, we were able to validate the approach
on only seven different open-source systems. Another reason for this low amount of
input projects is the difficulty of obtaining dynamic data. While semantic and static
data can be relatively easily obtained with our tool, dynamic requires much more
effort. This is because we need to actually run the input application on different test
scenarios. This requires the application to have sufficient test scenarios available,
which is not always the case. To enhance the reliability and generalizability of the
results, we need to validate the approach on more systems.

Moreover, the approach is only tested on open-source Python applications. This

means it is hard to guarantee that the evaluation results can be generalised to

75

CHAPTER 7. DISCUSSION

applications with different technology stacks. Another threat relates to the fact
that we only use open-source projects. It may be possible that results vary for
proprietary software.

Another threat to the internal validity of the research is related to the effect of
the clustering algorithm on the change in the results. Even though this assumption
is verified on a small experiment, we cannot guarantee that the same results are
obtained for every possible clustering algorithm. To generalise the results, more
testing is necessary to understand the real impact of the clustering algorithm on the
resulting microservice decompositions.

Our multi-view clustering tool that generates static, semantic, and dynamic edges
from a Python project will be publicly available. Also, the data that is obtained
for the analysed projects are uploaded to our repositoryf'] This way, the research is
easily reproducible and can be extended if wanted.

Another validity threat is the impact of the coverage on the quality of the de-
composition. The coverage of an information stream might influence changes in the
result. However, during this research, we did not experiment with different degrees
of coverage to understand how it affects the quality of the decomposition.

The log files that are used to construct dynamic dependencies are artificially
created. This means the log files, and thus dynamic dependencies do not reflect
real world behaviour of the system. The reason for this is because we only worked
with open-source projects and therefore did not have access to real-world log files.
The artificial log files are generated by running the test scenarios available for the
project.

Another tread relates to the quality of the resulting microservice decompositions.
This is because it is theoretically possible, however unlikely, to achieve good metrics
that do not necessarily represent good decompositions of the system. The number of
projects used for validation should decrease such possibilities. However, a qualitative
analysis of the candidate microservices by experts is necessary to make any further
conclusions. Bringing experts into the validation process would help to understand
the quality of the decompositions and help identifying possible improvements in the

approach.

7.3 Future work

In this section, we discuss future research directions.
At first, future work can extend the validation process by applying the tool to
more monolithic systems. It would be valuable to know how the tool performs

on real-world applications that include real log files. Furthermore, the resulting

Thttps://github.com/larsvasseldonk /thesis

76

https://github.com/larsvasseldonk/thesis

CHAPTER 7. DISCUSSION

decompositions should be validated with a qualitative analysis. In future work,
one can incorporate experts into the validation process to even better understand
the differences between the decompositions. Another direction for future research
is to validate the approach with systems that have a monolith and microservices
version available. The monolithic version is then used as input for the approach,
and the resulting decomposition is compared to the decomposition present in the
microservice version. However, to do this, it is necessary for the system to have both
a monolith and microservices version, which we, unfortunately, did not discover.

Future work can also study the impact of different levels of abstraction in the
decomposition. In this thesis, we cluster Python programs at module and class level,
where a module contains functions that are not defined inside a class. However, to
get a finer decomposition, future research can study the impact of decompositions
made at method and function level.

Lastly, additional views of the system can be added to the tool to find out how
it further affects the final decomposition. An example of this is the revision history.
The revision history can be used to compute evolutionary coupling between code
fragments. Furthermore, the tool can be extended with a visualising module to more
easily inspect the resulting decomposition. This also makes it easier to evaluate the
candidate microservice qualitatively. By making the visualisation interactive, one
can also research how experts manually change the achieved decomposition based

on their domain knowledge.

7

Chapter 8
Conclusions

This research studied the effect of different input data streams on the quality of
resulting microservice decompositions. In order to do this, we first conducted a
literature review to analyse related work. Next, we developed a multi-view clustering
tool that takes Python repositories as input, extracts the relevant data, and uses it
to decompose the system into a suitable set of microservices. We then experimented
with different input streams to see how it affects the quality of the decomposition.

This chapter concludes the research by answering the research questions.

8.0.1 Conclusion

In order to answer the main research question, we first answer each of the sub-

questions.

SQ1 What is currently known about static, dynamic and semantic data extracted

from monolithic software?

This sub-question is answered by studying related literature. The literature
review showed that most of the techniques rely on only one source of information
when decomposing the monolith. The most utilised information source is the static
dependencies resulting from the project’s source code. Only a handful of approaches

include multiple views of the system.

SQo What measures are used in the literature to define the quality of a decomposi-

tion?

We continued studying the related approach to find out which measures are
most commonly used for determining the quality of a microservice decomposition.
Although many microservice specific metrics to measure the internal quality of mi-
croservices have been proposed, there does not seem to be a consistent use among

them in the community. For this reason, we decided to choose the metrics that are

78

CHAPTER 8. CONCLUSIONS

most often used throughout the related work. These most commonly used metrics
measure the functional independence and the modularity quality of the microservice

candidates.
SQ3 What algorithms are commonly used for the task of microservice identification?

In the literature review, we also studied the clustering algorithms that are most
commonly used for the task of decomposing software. During this study, we found
out that the majority of the related researches focused on graph-based clustering al-
gorithms. As the name already implies, graph-based clustering algorithms partition
a graph, which means the software needs to be represented as a graph. The study
also showed that there is no consistent use of the clustering algorithms among the

community.

SQ4 What is the decomposition quality when incorporating only a single source of

information?

After we built and verified our novel multi-view clustering technique, we vali-
dated it by executing it on seven open-source Python projects. For each project, we
created a microservice decomposition based on static, semantic and dynamic infor-
mation, respectively. The quality of the resulting decomposition is then measured
with the metrics resulting from S@Q>. The results show that decompositions con-
structed with semantic information provide the most coherent functionality to other
services (measured by CHD and CHM) when comparing it to static and dynamic
decompositions. However, the semantic decomposition also showed a significant
increase in terms of IFN and OPN. The high OPN score for the semantic decompo-
sition also results in a low SMQ score. The static and dynamic based decompositions
appear to be more loosely coupled but also slightly less functionally cohesive than
semantic decompositions. The SMQ metric gave the best results when only static
information is included. The best CMQ) score is achieved when only semantic infor-

mation is included.

SQs How does the quality of the decomposition change when incorporating multiple

sources of information?

Regarding the SMQ and CMQ scores for the decompositions constructed with
multiple views, we observe a significantly lower SMQ score and significantly higher
CMQ score when semantic edges are incorporated. This means that we can say
that including semantic information as input for the decomposition significantly
decreases the structural modularity quality of the decomposition. Moreover, the

decompositions that are constructed with static and semantic information as input

79

CHAPTER 8. CONCLUSIONS

are for all quality metrics (on average) at least as good as the worst performing
individual group. The same applies when semantic and dynamic data are combined,
except for the SM(Q metric. Next to this, the results did not show a consistent
pattern in the quality results when incorporating different views of the system.
This means we did not observe a consistent increase or decrease in terms of the
metrics when multiple views of the system are incorporated. To conclude, this
means that our expectation that decompositions with more information result in

better decompositions is rejected.

MRQ What is the effect of combining static, dynamic and semantic sources of in-
formation extracted from monolithic software on the quality of the discovered

microservices?

In this thesis, we studied the effect of combining static, dynamic, and semantic
sources of information on the resulting microservices decomposition. Before this
study, we would expect that adding more information results in a better decom-
position. However, the results show that the quality of decomposition does not
gradually increase when additional sources of information are included. Using mul-
tiple sources of information could increase the quality, but an obvious pattern in the

quality metrics is not found in this thesis.

80

Bibliography

Seza Adjoyan, Abdelhak-Djamel Seriai, and Anas Shatnawi. “Service iden-
tification based on quality metrics object-oriented legacy system migration
towards soa”. In: SEKE: Software Engineering and Knowledge Engineering.
Knowledge Systems Institute Graduate School. 2014, pp. 1-6.

Uri Alon et al. “code2vec: Learning distributed representations of code”. In:
Proceedings of the ACM on Programming Languages 3.POPL (2019), pp. 1-
29.

Qusay Alsarhan et al. “Software Module Clustering: An In-Depth Literature
Analysis”. In: IEEE Transactions on Software Engineering (2020).

Periklis Andritsos and Vassilios Tzerpos. “Information-theoretic software clus-
tering”. In: IEEE Transactions on Software Engineering 31.2 (2005), pp. 150
165.

Fabian Beck and Stephan Diehl. “On the congruence of modularity and code
coupling”. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering. 2011, pp. 354—
364.

Laszlo A Belady and Carlo J Evangelisti. “System partitioning and its mea-
sure”. In: Journal of Systems and Software 2.1 (1981), pp. 23-29.

Vincent D Blondel et al. “Fast unfolding of communities in large networks”.
In: Journal of statistical mechanics: theory and experiment 2008.10 (2008),
P10008.

Ulrik Brandes. “A faster algorithm for betweenness centrality”. In: Journal of
mathematical sociology 25.2 (2001), pp. 163-177.

Miguel Brito, Jacome Cunha, and Joao Saraiva. “Identification of microser-
vices from monolithic applications through topic modelling”. In: Proceedings
of the 36th Annual ACM Symposium on Applied Computing. 2021, pp. 1409—
1418.

81

BIBLIOGRAPHY

[10]

[11]

[15]

[16]

[17]

[18]

Mainak Chatterjee, Sajal K Das, and Damla Turgut. “WCA: A weighted clus-
tering algorithm for mobile ad hoc networks”. In: Cluster computing 5.2 (2002),
pp- 193-204.

Rui Chen, Shanshan Li, and Zheng Li. “From monolith to microservices: a
dataflow-driven approach”. In: 2017 24th Asia-Pacific Software Engineering
Conference (APSEC). IEEE. 2017, pp. 466-475.

Aaron Clauset, Mark EJ Newman, and Cristopher Moore. “Finding commu-
nity structure in very large networks”. In: Physical review E 70.6 (2004),
p. 066111.

Mohamed Daoud et al. “Towards an Automatic Identification of Microser-
vices from Business Processes”. In: 2020 IEEE 29th International Conference
on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET-
ICE). IEEE. 2020, pp. 42-47.

Adambarage Anuruddha Chathuranga De Alwis et al. “Function-splitting heuris-
tics for discovery of microservices in enterprise systems”. In: International

Conference on Service-Oriented Computing. Springer. 2018, pp. 37-53.

Kalyanmoy Deb et al. “A fast and elitist multiobjective genetic algorithm:
NSGA-II”. In: IEEE transactions on evolutionary computation 6.2 (2002),
pp. 182-197.

Omar Al-Debagy and Peter Martinek. “A Microservice Decomposition Method
Through Using Distributed Representation of Source Code”. In: Scalable Com-
puting: Practice and Ezxperience 22.1 (2021), pp. 39-52.

Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. “Migrating towards
microservice architectures: an industrial survey”. In: 2018 IEEFE International

Conference on Software Architecture (ICSA). IEEE. 2018, pp. 29-2909.

Diego Doval, Spiros Mancoridis, and Brian S Mitchell. “Automatic cluster-
ing of software systems using a genetic algorithm”. In: STEP’99. Proceedings
Ninth International Workshop Software Technology and Engineering Practice.
[EEE. 1999, pp. 73-81.

Nicola Dragoni et al. “Microservices: How to make your application scale”. In:
International Andrei Ershov Memorial Conference on Perspectives of System
Informatics. Springer. 2017, pp. 95-104.

Nicola Dragoni et al. “Microservices: yesterday, today, and tomorrow”. In:

Present and ulterior software engineering (2017), pp. 195-216.

82

BIBLIOGRAPHY

[21]

[22]

[23]

[24]

[25]

[206]

[27]

[28]

[29]

[32]

[33]

Sinan Eski and Feza Buzluca. “An automatic extraction approach: Transition
to microservices architecture from monolithic application”. In: Proceedings of
the 19th International Conference on Agile Software Development: Compan-
ton. 2018, pp. 1-6.

Eric Evans and Eric J Evans. Domain-driven design: tackling complexity in
the heart of software. Addison-Wesley Professional, 2004.

Santo Fortunato and Marc Barthelemy. “Resolution limit in community de-
tection”. In: Proceedings of the national academy of sciences 104.1 (2007),
pp. 36-41.

David Fraser et al. Pyan3: Offline call graph generator for Python 3. 2018.
URL: https://github.com/davidfraser/pyan (visited on 04/21/2021).

Brendan J Frey and Delbert Dueck. “Clustering by passing messages between
data points”. In: science 315.5814 (2007), pp. 972-976.

Jonas Fritzsch et al. “From monolith to microservices: a classification of refac-
toring approaches”. In: International Workshop on Software Engineering As-
pects of Continuous Development and New Paradigms of Software Production

and Deployment. Springer. 2018, pp. 128-141.

Jonas Fritzsch et al. “Microservices migration in industry: intentions, strate-
gies, and challenges”. In: 2019 IEEFE International Conference on Software
Maintenance and Evolution (ICSME). IEEE. 2019, pp. 481-490.

Michelle Girvan and Mark E J Newman. “Community structure in social and
biological networks”. In: Proceedings of the national academy of sciences 99.12
(2002), pp. 7821-7826.

Michael Gysel et al. “Service cutter: A systematic approach to service decom-
position”. In: Furopean Conference on Service-Oriented and Cloud Computing.
Springer. 2016, pp. 185-200.

Alan R Hevner et al. “Design science in information systems research”. In:
MIS quarterly (2004), pp. 75-105.

Wauxia Jin et al. “Functionality-oriented microservice extraction based on ex-
ecution trace clustering”. In: 2018 IEEFE International Conference on Web
Services (ICWS). IEEE. 2018, pp. 211-218.

Wuxia Jin et al. “Service candidate identification from monolithic systems

based on execution traces”. In: IEEE Transactions on Software Engineering
(2019).

Stephen C Johnson. “Hierarchical clustering schemes”. In: Psychometrika 32.3
(1967), pp. 241-254.

83

https://github.com/davidfraser/pyan

BIBLIOGRAPHY

[34]

[35]

[39]

[40]

Miika Kalske, Niko Mékitalo, and Tommi Mikkonen. “Challenges when moving
from monolith to microservice architecture”. In: International Conference on

Web Engineering. Springer. 2017, pp. 32-47.

Manabu Kamimura et al. “Extracting Candidates of Microservices from Mono-
lithic Application Code”. In: 2018 25th Asia-Pacific Software Engineering
Conference (APSEC). IEEE. 2018, pp. 571-580.

Selim Kebir et al. “Comparing and combining genetic and clustering algo-
rithms for software component identification from object-oriented code”. In:
Proceedings of the Fifth International C* Conference on Computer Science

and Software Engineering. 2012, pp. 1-8.

Kenichi Kobayashi et al. “Feature-gathering dependency-based software clus-
tering using dedication and modularity”. In: 2012 28th IEEE International
Conference on Software Maintenance (ICSM). IEEE. 2012, pp. 462-471.

Joseph B Kruskal. “On the shortest spanning subtree of a graph and the
traveling salesman problem”. In: Proceedings of the American Mathematical
society 7.1 (1956), pp. 48-50.

Jakob Lohnertz and Ana Maria Oprescu. “Steinmetz: Toward automatic de-

composition of monolithic software into microservices”. In: (2020).

Spiros Mancoridis et al. “Using automatic clustering to produce high-level sys-
tem organizations of source code”. In: Proceedings. 6th International Workshop
on Program Comprehension. IWPC’98 (Cat. No. 98TB100242). IEEE. 1998,
pp. 45-52.

Andrian Marcus and Jonathan I Maletic. “Identification of high-level concept
clones in source code”. In: Proceedings 16th Annual International Conference

on Automated Software Engineering (ASE 2001). IEEE. 2001, pp. 107-114.

Tiago Matias et al. “Determining Microservice Boundaries: A Case Study
Using Static and Dynamic Software Analysis”. In: Furopean Conference on
Software Architecture. Springer. 2020, pp. 315-332.

Genc Mazlami, Jiirgen Cito, and Philipp Leitner. “Extraction of microservices
from monolithic software architectures”. In: 2017 IEEE International Confer-
ence on Web Services (ICWS). IEEE. 2017, pp. 524-531.

Brian S Mitchell and Spiros Mancoridis. “Craft: a framework for evaluating
software clustering results in the absence of benchmark decompositions [clus-
tering results analysis framework and tools|”. In: Proceedings Fighth Working
Conference on Reverse Engineering. IEEE. 2001, pp. 93-102.

84

BIBLIOGRAPHY

[49]

[50]

[54]

[55]

[56]

[57]

Mark EJ Newman. “Modularity and community structure in networks”. In:
Proceedings of the national academy of sciences 103.23 (2006), pp. 8577-8582.

Mark EJ Newman and Michelle Girvan. “Finding and evaluating community
structure in networks”. In: Physical review E 69.2 (2004), p. 026113.

Sam Newman. Building microservices: designing fine-grained systems.” O’Reilly

Media, Tnc.”, 2015,

Luis Nunes, Nuno Santos, and Anténio Rito Silva. “From a Monolith to a
Microservices Architecture: An Approach Based on Transactional Contexts”.

In: Furopean Conference on Software Architecture. Springer. 2019, pp. 37-52.

Philipp Offermann et al. “Outline of a design science research process”. In:
Proceedings of the 4th International Conference on Design Science Research

in Information Systems and Technology. 2009, pp. 1-11.

Ken Peffers et al. “A design science research methodology for information sys-
tems research”. In: Journal of management information systems 24.3 (2007),
pp. 45-77.

Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. “Guidelines for con-
ducting systematic mapping studies in software engineering: An update”. In:
Information and Software Technology 64 (2015), pp. 1-18.

Joél Plisson, Nada Lavrac, Dunja Mladenic, et al. “A rule based approach to
word lemmatization”. In: Proceedings of 1S. Vol. 3. 2004, pp. 83-86.

Francisco Ponce, Gastén Marquez, and Hernan Astudillo. “Migrating from
monolithic architecture to microservices: A Rapid Review”. In: 2019 38th
International Conference of the Chilean Computer Science Society (SCCC).
IEEE. 2019, pp. 1-7.

Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. “Near linear
time algorithm to detect community structures in large-scale networks”. In:
Physical review E 76.3 (2007), p. 036106.

Juan Ramos et al. “Using tf-idf to determine word relevance in document
queries”. In: Proceedings of the first instructional conference on machine learn-
ing. Vol. 242. 1. Citeseer. 2003, pp. 29-48.

Scott Rogowski. Code2flow generates call graphs for dynamic programming

language. 2021. URL: https://github.com/scottrogowski/code2flow.

Lior Rokach and Oded Maimon. “Clustering methods”. In: Data mining and
knowledge discovery handbook. Springer, 2005, pp. 321-352.

85

https://github.com/scottrogowski/code2flow

BIBLIOGRAPHY

[58]

[59]

[68]

[69]

[70]

Amir M Saeidi et al. “A search-based approach to multi-view clustering of
software systems”. In: 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). IEEE. 2015, pp. 429-438.

Islem Saidani et al. “Towards automated microservices extraction using muti-
objective evolutionary search”. In: International Conference on Service-Oriented

Computing. Springer. 2019, pp. 58-63.

Vitalis Salis et al. “PyCG: Practical Call Graph Generation in Python”. In:
nature 15 (), p. 16.

Scitools. The understand tool. 2021. URL: https://scitools. com/| (visited
on 04/21/2021).

Anfel Selmadji et al. “From monolithic architecture style to microservice one
based on a semi-automatic approach”. In: 2020 IEEFE International Conference
on Software Architecture (ICSA). IEEE. 2020, pp. 157-168.

Anfel Selmadji et al. “Re-architecting oo software into microservices”. In: Eu-
ropean Conference on Service-Oriented and Cloud Computing. Springer. 2018,
pp. 65-73.

Johannes Thones. “Microservices”. In: IEEE software 32.1 (2015), pp. 116
116.

John R Venable, Jan Pries-Heje, and Richard L. Baskerville. “Choosing a de-

sign science research methodology”. In: (2017).

Theo A Wiggerts. “Using clustering algorithms in legacy systems remodular-
ization”. In: Proceedings of the Fourth Working Conference on Reverse Engi-
neering. IEEE. 1997, pp. 33-43.

Claes Wohlin. “Guidelines for snowballing in systematic literature studies and
a replication in software engineering”. In: Proceedings of the 18th international

conference on evaluation and assessment in software engineering. 2014, pp. 1-
10.

Li Yu. “Empirical study of Python call graph”. In: 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE.
2019, pp. 1274-1276.

Gang Zhang and Jin Wuxia. Depends is a fast, comprehensive code dependency
analysis tool. 2018. URL: https://github.com/multilang-depends/depends
(visited on 04/21/2021).

Yukun Zhang et al. “Automated Microservice Identification in Legacy Systems
with Functional and Non-Functional Metrics”. In: 2020 IEEE International
Conference on Software Architecture (ICSA). IEEE. 2020, pp. 135-145.

86

https://scitools.com/
https://github.com/multilang-depends/depends

BIBLIOGRAPHY

[71] Olaf Zimmermann. “Microservices tenets”. In: Computer Science-Research
and Development 32.3 (2017), pp. 301-310.

87

	Abstract
	List of Figures
	List of Tables
	Introduction
	Problem statement
	Aim
	Research questions
	Research method

	Background
	Software clustering
	The monolith
	Microservices
	Extracting data from the monolith
	Clustering algorithms

	Related work
	Search strategy
	Justification of qualitative assessment
	Literature review results
	Observations

	Multi-view software clustering
	Notation
	Step 1: Code fragment extraction
	Step 2: Feature extraction
	Step 3: Graph construction and partitioning
	Step 4: Quality computation

	Verification
	PyPetstore
	Metamorphic tests

	Evaluation
	Experimental design
	Results

	Discussion
	Interpretations
	Limitations and validity threats
	Future work

	Conclusions

