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In this article we investigate skyrmions in a thin layer of magnetic material with perpendicular
magnetic anisotropy and Dzyaloshinskii-Moriya interactions induced by the interfaces with non-
magnetic materials. In particular, we determine the azimuthal angle of the magnetization vectors
of the skyrmion that minimizes the energy. Also, we investigate the motion of a skyrmion under the
influence of spin-current injection resulting from the spin Hall effect. We determine the equations
of motion for the skyrmion in this situation analytically.

I. INTRODUCTION

Topological excitations play an important role in mod-
ern physics. They come in all different types and forms,
such as cosmic strings, vortices in superfluids and super-
conductors, domain walls and skyrmions in ferromagnets.
The latter two can exist in thin layers of magnetic ma-
terial, sandwiched between layers of non-magnetic ma-
terial. The Dzyaloshinskii-Moriya interaction induced
by the interfaces between the materials stabilizes the
skyrmions or domain walls. It has been shown that in
Pt/CoFe/MgO and Ta/CoFe/MgO these domain walls
are driven by currents as a result of the spin Hall effect.1

In other experiments, with MnSi, is has been shown
that skyrmions move under the influence of spin transfer
torques, induced by relatively small currents through the
material.2

In this article, we look at skyrmions in a magnetic
material, namely a thin layer of cobalt, sandwiched be-
tween two layers of platinum. A skyrmion can be seen
as an area in the material where the magnetization vec-
tors are standing in a spiral-like configuration. The mag-
netization vectorfield Ω(x) describes this profile of the
skyrmion. It has rotational symmetry and the azimuthal
angle of the magnetization vectors, which we will call φ0,
is fixed (see Fig. (1)). In Ref. 3, the differential equation
for the polar angle θ is determined analytically. From
that, the actual angle as a function of the cylindrical
coordinate ρ can be determined numerically (and hence
the magnetization vector Ω is determined). In Ref. 3 the
angle φ0 is taken to be 0. In part II we will numerically
determine the value of φ0 which minimizes the energy of
the skyrmion, as a function of the physical parameters.
To do so, we use the same method as in Ref. 3 to de-
termine θ, only we take φ0 arbitrary. Then, for several
values of φ0 we can calculate the corresponding θ and the
energy E[θ] that is associated with that specific angle θ.
In this way we get an insight in what value of φ0 yields
the smallest energy. It appears that for typical values
of the parameters, φ0 = 0 is actually minimizing the en-
ergy. In part III we will look at the dynamics of a moving
skyrmion under the influence of spin-current induced by
the spin Hall effect. This effect arises due to an electric
current which is sent through the platinum layer. We

FIG. 1: Two different configurations illustrating the angle
φ0. The left skyrmion has φ0 = 0 and the right skyrmion has
φ0 = π

2
, so that the magnetizations vectors are parallel resp.

perpendicular to ρ̂4.

will determine the equations of motion for the skyrmion
mostly analytical, only in the last step we have to make
a numerical calculation.

II. SKYRMION PROFILES

We consider the position vector in cylindrical coordi-
nates, such that x = (ρ, ϕ, z) and the magnetization vec-
tor Ω parametrized as follows: Ω(x) = sin θ(ρ) cosφ0 ρ̂+
sin θ(ρ) sinφ0 ϕ̂ + cos θ(ρ) ẑ. We want to determine the
profile of a skyrmion in a thin layer of magnetic material,
which we can consider to be two dimensional. Analogous
to Ref. 3, but with arbitrary φ0, we derive for the energy
density of the configuration of the magnetization:

ε[θ(ρ̃)] =
Js
2

∫ {(
dθ

dρ̃

)2

+
sin 2θ

ρ̃2
+ 2C2(1− cos θ)

+ cosφ0

(
dθ

dρ̃
+

sin θ cos θ

ρ̃

)
+(C1 + C3 cos 2φ0) sin 2θ

}
ρ̃dρ̃,

(1)

where C1 = 2JsK
C2 , C2 = µ0JsHM

C2 and C3 = 2µ0JsM
2

C2

are dimensionless constants and ρ̃ = C
Js
ρ is the dimen-

sionless radial position. Here, Js is the spin stiffness,
C the Dzyaloshinskii-Moriya interaction constant, K the
anisotropy constant and µ0 the vacuum permeability.
Furthermore, H is the strength of the external magnetic
field that is applied in the ẑ-direction and M the satura-
tion magnetization. By varying this energy with respect
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FIG. 2: Energy density scaled by Js for different values of φ0,
with C3 = 1.

to θ we obtain a differential equation for θ:

d2θ

dρ̃2
+

1

ρ

dθ

dρ̃
− sin θ cos θ

ρ̃2
+ cosφ0

sin 2θ

ρ̃

− (C1 + C3 cos 2φ0) sin θ cos θ − C2 sin θ = 0.

(2)

If we look at Eq. (1), we see that there are two con-
tributions to the energy containing φ0. The first is:

cosφ0

(
dθ
dρ̃ + sin θ cos θ

ρ̃

)
. This term is minimized when

φ0 = 0 or φ0 = π. The second is: C3 cos 2φ0 sin 2θ. Be-
cause C3 is always positive, this term is minimized when
φ0 = π

2 . So the value of φ0 for which the energy is min-
imal will depend on the value of C3 and θ(ρ), which in
turn depends on C3 as well. Therefore, we numerically
solve Eq. (2) for various values of φ0 and C3 and plug
the solutions into the energy in Eq. (1). Experimenting
with different values of C1 and C2, we discovered that
these two values have very little influence on the energy
and therefore we can keep them fixed at C1 = C2 = 1. In
Fig. 2 the energy density is plotted as a function of φ0,
for C3 = 1. We see that φ0 = 0 minimizes the energy.
In Fig. 3 the energy density is plotted as a function of
φ0, for C3 = 5000. In this case, φ0 = π

2 minimizes the
energy. This is consistent with what we expected. To
investigate the behaviour of the minimizing values of φ0,
we repeat this process for various values of C3. The result
is shown in Fig. 4. We see that when C3 is in the order
of 102-103, the two terms in the energy that determine
φ0,min are of the same order, and φ0,min is changing con-
tinuously from 0 to π

2 . Typical values for C1, C2 and C3

are C1 = 16, C2 = 0.36, C3 = 9.01, so that is the range
where φ0 = 0. From now on, we shall assume these values
for our calculations.
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FIG. 3: Energy density scaled by Js for different values of φ0,
with C3 = 5000.
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FIG. 4: φ0 which minimizes the energy, as a function of C3.

III. DYNAMICS

So far we have found the vectorfield that describes a
static skyrmion. Now, we would like to investigate the
dynamics of a moving skyrmion under the influence of
the spin Hall effect. To do so, we add time dependence
in the following way: Ω(x)→ Ω(x−xsk(t)). Here, Ω(x)
is the vectorfield describing a static skyrmion and xsk(t)
describes the movement of the skyrmion. The skyrmion
is located in a layer of cobalt, which we can consider to
be two dimensional. It is sandwiched between two layers
of platinum. We are going to investigate what happens
to the equations of motion if we send an electric current
through the platinum layer in the x̂-direction, inducing
the spin Hall effect. There will be a spin current gener-
ated in the cobalt layer in the ẑ-direction. The spins are
polarized in the plane perpendicular to the current, hence
in the xy-plane. The Landau-Lifschitz-Gilbert equation
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describes the dynamics of the skyrmion:

∂Ω

∂t
= −αGΩ× ∂Ω

∂t
+ βΩ× (Is ×Ω) , (3)

with αG > 0 the Gilbert damping constant, Is = Ixx̂ +
Iy ŷ the spin polarization vector and β = γ~θSHJe

2eµ0Mtp
, where

γ is the gyromagnetic ratio, θSH the spin Hall angle, Je
the electric current density and tp the thickness of the
platinum layer. On both sides of Eq. (3) we take the
cross product with Ω and then set it equal to zero. Then,
we take the dot product of this equation and the spacial
derivative of Ω and integrate it over the two dimensional
space. This will give us the following two equations:∫

dx
∂Ω

∂xi
·
(

Ω× ∂Ω

∂t
+ αGΩ×

(
Ω× ∂Ω

∂t

)
−βΩ× (Ω× (Is ×Ω))) = 0 .

(4)

with xi ∈ {x, y}. Next, we consider Eq. (4) in cylindrical
coordinates and obtain:

εij4ẋi − αGẋjA+ εijIxiβB = 0 , (5)

with

A =

∫ (
ρ

(
dθ

dρ

)2

+
sin2 θ

ρ

)
dρ = 4.003 (6a)

B =

∫ (
ρ

dθ

dρ
+ sin θ cos θ

)
dρ = −0.032 m. (6b)

The integrals A and B can only be calculated numeri-
cally. Hence, for the equations of motion we obtain:

ẋi =
−βB(4Ixi

+ εijαGAIxj
)

16 + (αGA)2
. (7)

If we take Ix = 0.5, Iy = 0, αG = 0.2 and β = 8.1 ·
102 s−11, we get: ẋ = 3 ms−1, ẏ = −0.6 ms−1. So the
speed of the skyrmion is 3 ms−1.

IV. CONCLUSIONS

In this article we have determined numerically that
the azimuthal angle φ0 that minimizes the energy of
the configuration of the skyrmion depends mostly on
the values of the spin stiffness Js, the Dzyaloshinskii-
Moriya interaction constant C and the saturation magne-
tization M . For experimental values of these parameters
we found that φ0 = 0. Only if the dimensionless con-

stant C3 = 2JsM
2

C2 becomes very large (i.e. in the range

102 − 104), φ0 tends to π
2 . From Eq. (1) it is clear that

for even larger values of C3, π
2 is the limiting value for

φ0. However, for very small values of C1, C2 and C3, our
numerical method was not accurate enough to determine
φ0 properly. Hence we can not conclude anything about
φ0 if C3 would be much smaller than 1.

After determining the profile of the skyrmion, we have
investigated what happens if we send an electric current
through the material. This current induces the spin Hall
effect, causing the skyrmion to move. The velocity of the
skyrmion depends on the current and the values of the
external parameters. Here, we tried to do most of the
calculations analytically so we could get as an insight of
the form of the equations of motion. However, to deter-
mine the actual value of the velocity of the skyrmion, we
need numerical methods. Therefore, we do not have a
direct relationship between the values of the parameters
and the velocity of the skyrmion.

Possible directions for future research are to study
the skyrmion dynamics beyond the variational approx-
imation used here, and to include the effects of pin-
ning. Moreover, for these systems different forms of spin
torques have been predicted, and their effect on skyrmion
dynamics is subject of future research.

APPENDIX

SKYRMION PROFILES

We start by investigating what a skyrmion actually
looks like. In a magnetic material, skyrmions are regions
where the magnetization vectors are standing in a spiral-
like configuration. So we want to know how exactly the
magnetization vector depends on the position in space.
The unit magnetization vector at a point x in space, is
given by the vector Ω(x). We parametrize Ω(x) in the
following way:

Ω(x) = sin θ cosφρ̂+ sin θ sinφϕ̂+ cos θẑ, (8)

where θ and φ depend on x, which we consider in cylin-
drical coordinates, so that x = (ρ, ϕ, z). Given a certain
Ω(x), the energy of this configuration is given by:

E[Ω(x)] =

∫ {
−Js

2
Ω · ∇2Ω +

C

2
Ω · (∇×Ω) +K(1− Ω2

z)

+µ0HM(1− Ωz)− µ0MΩ ·Hd} dx,

(9)

with Js the spin stiffness, C the Dzyaloshinskii-
Moriya interaction constant, K the anisotropy constant
and µ0 the vacuum permeability. Furthermore, H > 0 is
the strength of the external magnetic field that is applied
in the ẑ-direction, Hd is the demagnetizing field and M
the saturation magnetization. The saturation magneti-
zation is the length of the actual magnetization vector
M, so that M(x) = MΩ(x). Using the parametrization
in Eq. (8), we get:

Ω · ∇2Ω = −(∇θ)2 − sin 2θ(∇φ)2 − sin 2θ

ρ2
− 2 sin 2θ

ρ2
∂φ

∂ϕ
;
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FIG. 5: Two different configurations illustrating the angle
φ0. The left skyrmion has φ0 = 0 and the right skyrmion has
φ0 = π

2
, so that the magnetizations vectors are parallel resp.

perpendicular to ρ̂4.

Ω · (∇×Ω) = sin θ cos θ

(
cosφ

∂φ

∂ρ
+

sinφ

ρ

∂φ

∂ϕ

)
− sin 2θ

∂φ

∂z

+ sinφ

(
dθ

dρ
+

sin θ cos θ

ρ

)
− cosφ

ρ

∂θ

∂ϕ
.

We want to find the configuration that minimizes the
energy in Eq. (9). We only look for solutions with
φ = φ0 constant that have rotational symmetry in the
ϕ direction and translational symmetry in the z direc-
tion, so that θ only depends on ρ (see Fig. (5)). There-
fore, Ω(x) will be of the form Ω(x) = sin θ(ρ) cosφ0ρ̂ +
sin θ(ρ) sinφ0ϕ̂+cos θẑ. Then, the equations for Ω ·∇2Ω
and Ω · (∇×Ω) simplify to:

Ω · ∇2Ω = −
(

dθ

dρ

)2

− sin 2θ

ρ2
;

Ω · (∇×Ω) = sinφ0

(
dθ

dρ
+

sin θ cos θ

ρ

)
.

The energy density in this case is:

ε[θ(ρ)] ≡E[θ(ρ)]

2πLz

=

∫ {
Js
2

((
dθ

dρ

)2

+
sin 2θ

ρ2

)

+
C

2
sinφ0

(
dθ

dρ
+

sin θ cos θ

ρ

)
+K sin 2θ

+µ0HM(1− cos θ)− µ0MΩ ·Hd} ρ dρ,

where the 2π and the Lz account for integration in the
ϕ and z direction respectively. We can calculate the last
term in the energy by noting that the demagnetizing field
Hd must satisfy Maxwell’s equations in matter:

∇×Hd = 0 ; (10a)

∇ ·Hd = −M(∇ ·Ω) . (10b)

Eq.(10a) implies that we can write Hd as the gradient of
a scalar potential U , so that Hd = ∇U . From Eq.(10b)
and from the fact that Ω only depends on ρ we can see
that Hd as well as U also only depend on ρ. Therefore
Hd(ρ) = ∇U(ρ) = dU

dρ ρ̂, so Hd only has a ρ component.

Using Eq.(10b) we derive:

M(∇ ·Ω) = M cosφ0

(
cos θ

dθ

dρ
+

sin θ

ρ

)
= −∇ ·Hd = −∇2U = −d2U

dρ2
− 1

ρ

dU

dρ
.

(11)

From Eq. (11) it follows that dU
dρ = −M cosφ0 sin θ, so

that we obtain the following expression for Hd:

Hd = −M cosφ0 sin θρ̂.

This gives us the following contribution to the energy:

−MΩ ·Hd = M2 cos 2φ0 sin 2θ. (12)

Eventually, we see that in Eq. (9), φ0 appears
in two terms: the Dzyaloshinskii-Moriya interaction
C
2 sinφ0

(
∂θ
∂ρ + sin θ cos θ

ρ

)
and the energy of the demag-

netizing field M2 cos 2φ0 sin 2θ. It is clear that this last
energy term is minimized when cosφ0 = 0 and the first
term is minimized when sinφ0 = ±1, depending on the

sign of C2

(
∂θ
∂ρ + sin θ cos θ

ρ

)
. This is exactly the case when

φ0 = ±π2 . So eventually, we can write for the energy
density:

ε[θ(ρ)] =

∫ {
Js
2

((
dθ

dρ

)2

+
sin 2θ

ρ2

)

+
C

2

(
dθ

dρ
+

sin θ cos θ

ρ

)
+K sin 2θ + µ0HM(1− cos θ)

}
ρ dρ.

In order to minimize the energy, we vary it with respect
to θ and set it equal to zero:

−Js
(

d2θ

dρ2
+

1

ρ

dθ

dρ
− sin θ cos θ

ρ2

)
− C sin 2θ

ρ

+2K sin θ cos θ + µ0HM sin θ = 0.

(13)

We want to make Eq. (13) dimensionless, so we introduce
the dimensionless variable ρ̃ = C

Js
ρ. We substitute this

into Eq. (13) and divide by C2

Js
to obtain:

d2θ

dρ̃2
+

1

ρ̃

dθ

dρ̃
− sin θ cos θ

ρ̃2
+

sin 2θ

ρ̃
−C1 sin θ cos θ−C2 sin θ = 0,

(14)

with C1 = 2JsK
C2 and C2 = µ0JsHM

C2 dimensionless
constants.

We want to solve Eq. (14) for θ(ρ̃). This cannot be
done analytically, so we solve it numerically with the
boundary conditions: θ(0) = π, θ(ρ̃ → ∞) = 0. Note
that these boundary conditions depend on the sign of H.
If H would be negative, the boundary conditions would
be interchanged. In Fig. 6, θ(ρ̃) is plotted for different
values of C1 and C2.



5

C1 = 1

C1 = 2

C1 = 3

a)

1 2 3 4 5 6
Ρ�0

Π

2

Π
ΘHΡ� L

C1 = 1

C1 = 2

C1 = 3

b)

1 2 3 4 5 6
Ρ�0

Π

2

Π
ΘHΡ� L

C1 = 1

C1 = 2

C1 = 3

c)

1 2 3 4 5 6
Ρ�0

Π

2

Π
ΘHΡ� L

FIG. 6: Plots of θ(ρ̃) for different values of the parameters C1

and C2. a) C2 = 0, b) C2 = 1, c) C2 = 2

TWO DIMENSIONAL CASE

In the previous section we looked at skyrmions in three
dimensional space with rotational and translational sym-
metry. Now, we consider a skyrmion located in a layer
of cobalt, where its position is two dimensional. The
layer of cobalt is sandwiched between two layers of plat-
inum. The skyrmion has the same rotational symmetry
as in the previous section. This case differs only slightly
from the situation described in the previous section. The
parametrization for Ω(x) is the same as in Eq. (8), ex-
cept that now x = (ρ, ϕ). The energy in this case is given

by:

E[Ω(x)] = tc

∫ {
−Js

2
Ω · ∇2Ω+

C

2

(
ŷ ·
(

Ω× ∂Ω

∂x

)
− x̂ ·

(
Ω× ∂Ω

∂y

))
+K(1− Ω2

z) + µ0HM(1− Ωz)− µ0MΩ ·Hd

}
dx,

where tc is the thickness of the cobalt layer. So
basically the only difference is in the Dzyaloshinskii-
Moriya interaction. With the given parametrization for
Ω, this term simplifies to:

ŷ·
(

Ω× ∂Ω

∂x

)
−x̂·

(
Ω× ∂Ω

∂y

)
= cosφ0

(
dθ

dρ
+

sin θ cos θ

ρ

)
.

The term MΩ ·Hd is given by Eq. (12), so we can write
for the energy density:

ε[θ(ρ)] ≡ E[θ(ρ)]

tc2π
=

∫ {
Js
2

((
dθ

dρ

)2

+
sin 2θ

ρ2

)

+
C

2
cosφ0

(
dθ

dρ
+

sin θ cos θ

ρ

)
+K sin 2θ

+µ0HM(1− cos θ) + µ0M
2 cos 2φ0 sin 2θ

}
ρdρ.

(15)

So this time, the term contributing to the energy con-
taining φ0 is:

cosφ0

∫
C

2

(
ρ

dθ

dρ
+ sin θ cos θ

)
dρ

+ cos 2φ0

∫
µ0M

2ρ sin 2θdρ.

We write this equation more compactly as:

A cosφ0 +B cos 2φ0, (16)

where B is positive and A can be either positive of neg-
ative. In order to find the minimum of this equation we
set its derivative with respect to φ0 equal to zero:

sinφ0(−A− 2B cosφ0) = 0,

which gives us three stationary points: cosφ0 = ±1, and
cosφ0 = − A

2B . The second derivative of Eq. (16) is:

d2

dφ0
(A cosφ0+B cos 2φ0) = −A cosφ0−2B(cos 2φ0−sin 2φ0).

The stationary points are minima if the second derivative
is positive, so plug in the stationary points and find:

cosφ0 = ±1 is a minimum when |A| > 2B;

cosφ0 = − A

2B
is a minimum when |A| < 2B.

If |A| > 2B we have cosφ0 ± 1 and the energy density
can be written as:

ε[θ(ρ)] =

∫ {
Js
2

((
dθ

dρ

)2

+
sin 2θ

ρ2

)
+
C

2

(
dθ

dρ
+

sin θ cos θ

ρ

)
+(K + µ0M

2) sin 2θ + µ0HM(1− cos θ)
}
ρdρ.
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Again, we vary this energy with respect to θ and make it
dimensionless to obtain the differential equation for θ:

d2θ

dρ̃2
+

1

ρ

dθ

dρ̃
− sin θ cos θ

ρ̃2
+

sin 2θ

ρ̃

− (C1 + C3) sin θ cos θ − C2 sin θ = 0,

(17)

with C1 = 2JsK
C2 , C2 = µ0JsHM

C2 and C3 = 2µ0JsM
2

C2 di-
mensionless constants. If we compare this to Eq. (14)
in the previous section, we see that they are essentially
the same. The only difference is the extra parameter C3.
Hence the solution of this equation will also be similar to
the one in Fig. 6.

In order to find a more general solution for θ(ρ̃) we
will investigate the energy for different values of φ0 to
find out which values yields the lowest energy. First we
make the substitution ρ̃ = C

Js
ρ in Eq. (15):

ε[θ(ρ̃)] =
Js
2

∫ {(
dθ

dρ̃

)2

+
sin 2θ

ρ̃2

+ cosφ0

(
dθ

dρ̃
+

sin θ cos θ

ρ̃

)
+(C1 + C3 cos 2φ0) sin 2θ + 2C2(1− cos θ)

}
ρ̃dρ̃.

(18)

Then, we derive the general differential equation for θ(ρ̃):

d2θ

dρ̃2
+

1

ρ

dθ

dρ̃
− sin θ cos θ

ρ̃2
+ cosφ0

sin 2θ

ρ̃

− (C1 + C3 cos 2φ0) sin θ cos θ − C2 sin θ = 0.

(19)

If we look at Eq. (18), we see that there are two con-
tributions to the energy containing φ0. The first is:

cosφ0

(
dθ
dρ̃ + sin θ cos θ

ρ̃

)
. This term is minimized when

cosφ0 ± 1, or φ0 = 0, π. The second is: C3 cos 2φ0 sin 2θ.
Because C3 is always positive, this term is minimized
when cosφ0 = 0, or φ0 = π

2 . So the value of φ0 for which
the energy is minimal will depend on the value of C3.
Therefore, we numerically solve Eq.(19) for various val-
ues of φ0 and C3 and plug the solutions into the energy
in Eq.(18). We keep C1 and C2 fixed at C1 = C2 = 1.
In Fig. 7 the energy density is plotted as a function of
φ0, for C3 = 1. We see that φ0 = 0 minimizes the energy.
In Fig. 8 the energy density is plotted as a function of
φ0, for C3 = 5000. In this case, φ0 = π

2 minimizes the
energy. This is consistent with what we expected. To
investigate the behaviour of the minimizing values of φ0,
we repeat this process for various values of C3. The result
is shown in Fig. 9. We see that when C3 is in the order
of 102-103, the two terms in the energy that determine
φ0,min are of the same order, and φ0,min is changing con-
tinuously from 0 to π

2 . Typical values for C1, C2 and C3

are C1 = 16, C2 = 0.36, C3 = 9.0
1
, so that is the range

where φ0 = 0. From now on, we shall assume these values
for our calculations.
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FIG. 7: Energy density scaled by Js for different values of φ0,
with C3 = 1.
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FIG. 8: Energy density scaled by Js for different values of φ0,
with C3 = 5000.
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FIG. 9: φ0 which minimizes the energy, as a function of C3.
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DYNAMICS

So far we have found the vectorfield that describes a
static skyrmion. Now, we would like to investigate the
dynamics of a moving skyrmion. To do so, we add time
dependence in the following way: Ω(x)→ Ω(x−xsk(t)).
Here, Ω(x) is the vectorfield describing a static skyrmion
and xsk(t) is the position of the skyrmion, which can de-
pend on time. The equation that describes the dynamics
of the skyrmion is the Landau-Lifschitz-Gilbert equation:

∂Ω(x, t)

∂t
= Ω(x, t)×

(
−1

~
δE[Ω(x, t)]

δΩ(x, t)

)
−αGΩ(x, t)×∂Ω(x, t)

∂t
,

(20)
with αG > 0 the Gilbert damping constant. On both
sides of the equation we take the cross product with Ω
and then set it equal to zero to obtain:

Ω×∂Ω

∂t
−Ω×

(
Ω×

(
−1

~
δE[Ω]

δΩ

))
+αGΩ×

(
Ω× ∂Ω

∂t

)
= 0 .

(21)

We note that the term δE[Ω]
δΩ must be equal to zero be-

cause Ω is the solution of the equations of motion, so Ω
is the solution that minimizes the energy and therefore
δE[Ω]
δΩ = 0. To determine ẋ and ẏ we take the dot product

of this equation and the spacial derivative of Ω and in-
tegrate it over the two dimensional space. This will give
us the following two equations:∫

dx
∂Ω

∂xi
·
(

Ω× ∂Ω

∂t
+ αGΩ×

(
Ω× ∂Ω

∂t

))
= 0 .

(22)
with xi ∈ {x, y}. We will calculate the two terms in the
equation separately, beginning with Ω× ∂Ω

∂t . Firstly, we

look at ∂Ω
∂t . This is simply:

∂Ω

∂t
=

(
∂Ωx
∂x

ẋ+
∂Ωx
∂y

ẏ

)
x̂+

(
∂Ωy
∂x

ẋ+
∂Ωy
∂y

ẏ

)
ŷ+(

∂Ωz
∂x

ẋ+
∂Ωz
∂y

ẏ

)
ẑ

=
∂Ω

∂x
ẋ+

∂Ω

∂y
ẏ .

(23)

Now we take the cross product with Ω:

Ω× ∂Ω

∂t
=

(
Ω× ∂Ω

∂x

)
ẋ+

(
Ω× ∂Ω

∂y

)
ẏ , (24)

and then, we take the dot product of this term and the
spacial derivatives to obtain the two equations:

∂Ω

∂xi
·
(

Ω× ∂Ω

∂t

)
=
∂Ω

∂xi
·
(

Ω× ∂Ω

∂x

)
ẋ+

∂Ω

∂xi
·
(

Ω× ∂Ω

∂y

)
ẏ

=
∂Ω

∂xi
·
(

Ω× ∂Ω

∂xj

)
ẋj .

(25)

To be able to calculate these terms properly, we now con-
sider this term in cylindrical coordinates again, so that
Ω = sin θρ̂ + cos θẑ. The Cartesian spacial derivatives
transform to:

∂

∂x
= cosϕ

∂

∂ρ
− 1

ρ
sinϕ

∂

∂ϕ
;

∂

∂y
= sinϕ

∂

∂ρ
+

1

ρ
cosϕ

∂

∂ϕ
.

If we plug this all into Eq. (25), we get:

∂Ω

∂xi
·
(

Ω× ∂Ω

∂t

)
= −εij

sin θ

ρ

dθ

dρ
ẋj , (26)

with εij the two dimensional Levi-Civita symbol, so that:

εij =


1 if xi = x, xj = y

−1 if xi = y, xj = x

0 otherwise

Because we made the substitution Ω(x)→ Ω(x−xsk(t)),
the θ in Eq. (26) has a time dependence in the same way
as Ω does, so that θ = θ(x − xsk(t)). But because we
have to integrate these expressions over the whole two
dimensional space, we can translate θ by xsk(t) such that
the time dependence drops out. Then, integrating this
over two dimensional space gives us:∫ 2π

0

∫ ∞
0

sin θ

ρ

dθ

dρ
ρ dρ dϕ = 2π

∫ π

0

sin θ dθ = 4π .

Eventually, we get:∫
dx

∂Ω

∂xi
·
(

Ω× ∂Ω

∂t

)
= −εij4πẋj . (27)

Now we proceed to calculate the second term of Eq. (25):

Ω×
(

Ω× ∂Ω

∂t

)
= Ω

(
Ω · ∂Ω

∂t

)
− ∂Ω

∂t
(Ω ·Ω) = −∂Ω

∂t
,

(28)
where the first equality is a property of the cross product
and the second equality comes from the fact that Ω· ∂Ω

∂t =
1
2

d
dt ||Ω|| = 0. Taking again the spacial derivatives in

cylindrical coordinates gives us:

−∂Ω

∂x
· ∂Ω

∂t
= −

(
cos2 ϕ

(
dθ

dρ

)2

+
sin2 θ sin2 ϕ

ρ2

)
ẋ

−

(
sinϕ cosϕ

((
dθ

dρ

)2

− sin2 θ

ρ2

))
ẏ ;

−∂Ω

∂y
· ∂Ω

∂t
= −

(
sin2 ϕ

(
dθ

dρ

)2

− sin2 θ cos2 ϕ

ρ2

)
ẏ

+

(
sinϕ cosϕ

((
dθ

dρ

)2

− sin2 θ

ρ2

))
ẋ .
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Integrating these equations over space gives us:

−
∫

dx
∂Ω

∂xi
· ∂Ω

∂t
= −πẋiA , (29)

with A =
∫ (

ρ
(

dθ
dρ

)2
+ sin2 θ

ρ

)
dρ = 4.003. This integral

can only be calculated numerically. We found that if we
change the values of C1, C2 and C3, the value of the
integral does not change dramatically. Finally, we can
fill in all our results into Eq.(25) and obtain:

εij4ẋi − αGA ẋj = 0 , (30)

implying ẋ = ẏ = 0, which means that the skyrmion is
not moving yet.

Now, we are going to investigate what happens to the
equations of motion if we send an electric current through
the platinum layer in the x̂-direction. The current will
cause spin accumulation at the boundaries of the cobalt
layer. This is the so called spin Hall effect. It is sim-
ilar to the normal Hall effect, but instead of electric
charge accumulating, we have spin with opposite direc-
tions accumulating at the two boundaries of the layer.
Comparable with the normal Hall effect, there is a spin
current generated in the cobalt layer in the ẑ-direction.
The spins are polarized in the plane perpendicular to the
current, hence in the xy-plane. If we want to take this
effect into account, we have to add to the right hand
side of the Landau-Lifschitz-Gilbert equation the term
βΩ× (Is ×Ω), where Is is the spin polarization vector.

In our case, Is lies in the xy-plane and is distributed ho-
mogeneously in space so that Is does not depend on the
spacial coordinates. Hence we can write Is = Ixx̂+ Iy ŷ.

Furthermore, β = γ~θSHJe
2eµ0Mtp

, where γ is the gyromagnetic

ratio, θSH the spin Hall angle, Je the electric current
density and tp the thickness of the platinum layer. We
can repeat the procedure to calculate this term, just like
we did with the original terms in cylindrical coordinates.
After integrating ϕ out, we get:∫

dx
∂Ω

∂xi
· (Ω× (Ω× (Is ×Ω))) = −εijπBIxj

(31)

with B =
∫ (

ρdθ
dρ + sin θ cos θ

)
dρ = −0.032 m. It turns

out that the value of the integral we calculated numeri-
cally depends on the values of C1, C2 and C3. This gives
us the equations for ẋ and ẏ:

εij4ẋi − αGAẋj = −εijβBIxi
. (32)

Hence,

ẋ =
−βB(4Ix + αGAIy)

16 + (αGA)2
; (33a)

ẏ =
−βB(4Iy − αGAIx)

16 + (αGA)2
. (33b)

If we take Ix = 0.5, Iy = 0, αG = 0.2 and β = 8.1 ·
102 s−11, we get: ẋ = 3 ms−1, ẏ = −0.6 ms−1. So the
speed of the skyrmion is 3 ms−1.
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