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Abstract

In this thesis a recent claim by Roger Colbeck and Renato Renner is reviewed
[18]. This claim concerns the completeness of quantum mechanics. Colbeck and
Renner state that no theory can be constructed that is compatible with quantum
mechanics, and gives more detailed predictions through supplemental variables
added to the description of the state of a system. Their only assumption is that
measurement settings can be choosen freely. We will argue that their result is
for the most part valid and interesting, but the freedom assumption is not so
innocent as it is presented, and parts of the result need to be clarified. Therefore,
we will present a reformulation of the result. In our formulation the result is a
no-go theorem for hidden variable theories satisfying Parameter Independence.
This is a generalization of Bell’s theorem.
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Chapter 1

Introduction

1.1 Historical overview

The probabilistic nature of quantum mechanics has puzzled many. Famously,
in a letter sent to Max Born in 1926 Einstein wrote [11]

‘I, in any case, am convinced that He [God] does not play dice’1.

Einstein himself was one of the originators of quantum mechanics: by discov-
ering the photo-electric effect [25] in 1905, he set in motion the development
of quantum mechanics. However, he was unsatisfied with one aspect of the
theory—it gives probabilistic predictions, even if the quantum mechanical state
of a system is completely known. In classical mechanics randomness is always
related to ignorance about a system; at its core the theory is deterministic.
However, in quantum mechanics, randomness is a fundamental part of the the-
ory; it appears in its basic postulates. Einstein did not believe that Nature is
probabilistic at its most fundamental level.

1.1.1 The Einstein-Podolsky-Rosen argument

In 1935 Albert Einstein, Boris Podolsky and Nathan Rosen (EPR) published
an article to show that quantum mechanics is incomplete [26]. They argued
that there are situations in which particles can have real properties (‘elements
of reality’) that are not part of the quantum mechanical description of the state
of the system.

By considering measurements on two entangled particles, performed at space-
like separation, EPR showed that if it is assumed that the real properties of a
particle are independent of what measurement is performed on the other parti-
cle, then the particle must have real properties which determine both the out-
come of a position measurement and the outcome of a momentum measurement.
But the quantum mechanical state of a particle obeys Heisenberg’s uncertainty
principle, which means that if the quantum mechanical state provides a single
value for the position of a particle, it does not provide a value at all for the
momentum. Therefore the quantum mechanical description is incomplete.

1‘Jedenfalls bin ich überzeugt, daßder nicht würfelt.’
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In the final section of the article the authors expressed their belief that a
deterministic completion of quantum mechanics is possible: a theory which does
not give probabilistic predictions for every measurement outcome, but definite
predictions.

1.1.2 Bohm’s nonlocal deterministic theory

In the derivation of the incompleteness of quantum mechanics, Einstein and his
co-authors used a locality assumption:

‘. . . since at the time of measurement the two systems no longer
interact, no real change can take place in the second system in con-
sequence of anything that may be done to the first system. This is,
of course, merely a statement of what is meant by the absence of an
interaction between the two systems.’

Reading the last sentence of this quote, it appears that EPR consider this
as an assumption that can hardly be denied. So, when the belief is expressed
that a completion of quantum mechanics is possible, they aim at a completion
which satisfies this assumption. Einstein was looking for a local deterministic
theory.

That a deterministic theory compatible with quantum mechanics is possible
was shown by David Bohm in 1952 [8]. Bohm found such a theory, which was a
rediscovery of the ‘pilot-wave theory’ discovered in 1927 by Louis de Broglie [10].
It is known as Bohmian mechanics. While John von Neumann thought he had
proven that any deterministic theory is incompatible with quantum mechanics
[51], Bohm’s example proved that this is not the case. Bohm’s theory is however
nonlocal, therefore it is not the kind of theory Einstein dreamt of.

1.1.3 Bell’s no-go theorem

The question remained whether a local deterministic theory was possible. This
was answered in 1964 by John S. Bell [5]. Bell had read about von Neumann’s
no-go theorem, and when he discovered that Bohm provided a counterexample,
he wondered whether nonlocality was a necessary ingredient for deterministic
theories. Using a mathematical argument, he showed this to be the case. Bell
derived an inequality involving outcomes of certain experiments which must be
satisfied by any local deterministic theory underlying quantum mechanics. How-
ever, quantum mechanics predicts that those inequalities are violated. There-
fore, quantum mechanics can not be substituted by a local deterministic theory,
if the quantum mechanical predictions are correct.

Bell’s original inequality was slightly generalized by Clauser, Holt, Shimony
and Horne (CHSH) [16], who derived inequalities that must be satisfied by
any local deterministic theory. These inequalities are now also known as ‘Bell
inequalities’. They have a theory-independent value: if they are violated ex-
perimentally, all local deterministic theories are ruled out, even if quantum me-
chanics is wrong! The most famous experimental violation of a Bell inequality
is the one realized by Aspect et al. in 1982 [2].
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1.1.4 The birth of quantum computation

The work of Bell clearly made visible the peculiar nature of entangled systems.
This raised interest in the question whether entanglement can be used as a
resource to perform tasks.

In 1981, Richard Feynman pondered over the fact that it is very hard to sim-
ulate quantum mechanics using a classical computer [28]. Turning this around
this means that using quantum systems it might be possible to perform calcula-
tions much more efficient than with a classical computer. The idea of quantum
computing was born, as was the challenge of building a quantum computer.

The state spaces of classical and quantum bits

In a classical computer, the fundamental unit of information is a bit that can
have the value 0 or 1. This means that the state space of a classical bit consists
of two points, while the state space of n classical bits consists of 2n points. In a
quantum computer, the fundamental unit is a quantum bit (qubit). A qubit is
a 2-dimensional quantum system which means that the associated state space
is the 2-dimensional Hilbert space C2. For n qubits, the state space is C2n.

It is obvious that the state space of qubits is vastly larger than the state space
of quantum bits. This suggests that quantum bits carry much more information
than classical bits. However, when reading out n quantum bits, the result
consists of only n classical bits. So the accessible information of quantum bits
still equals that of classical bits. There are however some computational tasks
that can be performed much more efficiently using qubits than with classical
bits. In 1993 Peter Shor showed that quantum computers would be able to
factorize large numbers much faster than classical computers [48]. In 1996 Lov
Grover found an efficient search algorithm for quantum computers [34]. Fourier
transformations can also be performed efficiently on quantum computers [35].

While the factorization of big numbers poses a threat to security protocols,
since these are based on such factorizations, at the same time quantum mechan-
ics offers a more secure protocol. Artur Ekert [27] showed in 1991 that quantum
systems can be used to send information which is impossible to intercept with-
out the receiver noticing. This result can be placed in a field of physics which is
closely related to quantum computation, namely quantum information theory.

Practicing quantum foundations

As illustrated above, the promise of a quantum computer has motivated research
in quantum computation and quantum information in the last few decades.
An interesting side-effect is that because these fields are about applications of
fundamental features of quantum mechanics like entanglement and nonlocality,
there has also been an offspring of results in the foundations of quantum theory.
An example is the no-cloning theorem, formulated in 1982 by Dieks [23], and
independently by Wootters and Zurek [52], which states that a quantum state
cannot be cloned. Another example is quantum teleportation [7].

In other lines of research attempts are made to reformulate quantum mechan-
ics in information-theoretic terms and to derive it from information-theoretic
principles [36]. Some have even claimed that ‘information is physical’ [38].

In 2012, Matthew Pusey, Jonathan Barrett and Terry Rudolph (PBR), who
also work in the fields of quantum information and computation, published a
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surprisingly simple result about the relation between the quantum state of a
system and its possible ‘ontic states’ [42]. It was found that if one assumes
that there is some real (‘ontic’) state underlying the quantum state, then it is
not possible to assign two different quantum states to two systems of which the
ontic state is the same. Therefore, it seems that the quantum state is a real
property of a system.

1.2 Overview of the work by Colbeck and Ren-
ner

The work of Roger Colbeck and Renato Renner (CR), which is the focus of this
thesis, is another example of foundational offspring from quantum computation
and information. CR have published results about the completeness of quan-
tum mechanics [18][20], and, like PBR, about the relation between quantum
mechanical states and reality [19].

Colbeck and Renner claim that quantum mechanics is complete: there is
no compatible theory reducing the randomness of its predictions. From this
they also reach a conclusion even stronger than PBR’s: that there is a 1-to-
1 correspondence between quantum states and ontic states. Not only is the
quantum state a real property of a system, it is the whole reality of it!

The claims of Colbeck and Renner are quite strong and therefore interesting.
If correct, this would be an extensive generalization of Bell’s result: not only
local deterministic theories are incompatible with quantum mechanics, but any
extension of it.

Colbeck and Renner have tried to make their argument as general as possible
by trying to derive it from only one assumption: that experimenters are free in
choosing measurement settings. From this assumption they derive a no-signaling
condition which plays a crucial role in their argument. Unfortunately this move
is not so strong, since it appears there are assumptions hidden in their definition
of ‘freedom’. Therefore, almost all reactions to their results have been aimed at
this part. This is at the expense of the more interesting parts of their result.

Another drawback of the results of CR is that they are published only in
short form. The details of their results can not be found in the main articles, but
only in separate supplementary sections. Also, the explanations in these sup-
plementary are hard to follow. Therefore the accessibility of their results could
be a lot better. Not surprisingly, some authors have completely misunderstood
their result: see the quote in the next section and Chapter 5.

1.3 Aim and structure of this thesis

A mathematical proof of a theorem is usually not discovered only by trying out
mathematical relations. Often there is some underlying idea, a story that can be
told in words. However, when a proof is published, a necessary ingredient is the
mathematical proof itself, while the underlying idea can be omitted. Getting
the idea of a proof next to its mathematical form is however of great value for
the insight, and for inspiration for future proofs.

The published versions of the result of Colbeck and Renner regarding pos-
sible extensions of quantum theory are a bit like such a mathematical proof
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without the conceptual context. The only way to appreciate the underlying
idea is to wade through all the mathematical details, which are hidden away
in supplementary sections, spread over multiple publications, and sometimes
missing. Therefore, the accessibility of the result could be improved a lot if the
underlying idea is described more explicitly. Therefore, in this thesis the result
has been reformulated and presented step-by-step. We hope that this makes the
result more accessible, and also that this provides a better insight in the result.

That a better understanding of Colbeck and Renner’s result is necessary is
also manifest in the following quote by Valerio Scarani, who is group leader at
the Centre for Quantum Technologies, National University of Singapore:

‘. . . Beyond the case of the maximally entangled state, which had
been settled in a previous paper, they prove something that I hon-
estly have not fully understood. Indeed, so many other colleagues
have misunderstood this work, that the authors prepared a page
of FAQs (extremely rare for a scientific paper) and a later, clearer
version [20].

Comment: the statement “Colbeck and Renner have proved that
quantum theory cannot be extended” is amazingly frequent in pa-
pers, referee reports and discussions. Often, it comes in the version:
“why are people still working on [whatever][sic], since Colbeck and
Renner have conclusively proved. . . ?” It is pretty obvious however
that many colleagues making that statement are not aware of the
“details” of what Colbeck and Renner have proved: they have simply
memorized the bumper sticker statement [(“No extension of quan-
tum theory can have improved predictive power”)]. I really dont
have a problem with Colbeck and Renner summarizing their work
in a catchy title; what is worrisome is other experts repeat the catchy
title and base decisions solely on it.’

In order to provide conceptual clarity, we start with a ‘pedagogical prelude’ in
Chapter 2.

After that, in Chapter 3 we will present a reformulation of the result of CR.
In our opinion, the reformulated result is what is left when the right assumptions
are made. It includes a compact derivation of the results presented in Chapter
2.

In Chapter 4 we present the main differences between our reformulation
and the original results published by CR, in order to establish a link between
their work and the reformulation. Aside from criticism to CR’s ‘Freedom of
Choice’ assumption, this chapter also treats the subject of assigning probability
distributions to settings, outcomes and hidden variables, which, we argue should
only be done with great care. Also some interesting thoughts regarding no-
collapse interpretations of quantum mechanics are formulated.

An example of a theory which falls under the scope of the CR result will be
given in Chapter 5. This theory belongs to a class of hidden variable models
proposed by Antonio Di Lorenzo [22]. While Di Lorenzo claims that his models
are not in conflict with the CR result, we show this is a misunderstanding: when
correctly applying the CR result, Di Lorenzo’s models are ruled out.

Finally we will summarize the results of this thesis, highlight some difficulties
and propose some ideas for further research in Chapter 6.
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1.4 Preliminaries and notation

1.4.1 Probability

We will distinguish between two kinds of variables: random variables and con-
text variables. A random variable is a variable assigned to the result of some
stochastic process, for example a measurement outcome. A context variable is
a variable which defines the context of a probability distribution. For example,
this can be a measurement setting. Random variables always appear within the
parenthesis of a probability distribution P (. . .) while context variables always
appear outside the parenthesis, as a subscript. In Section 4.1 we will discuss
why we make this distinction.

In this thesis many different probability distributions are discussed. There-
fore we need a notation which is flexible. However, specifying each variable
and each particular value of it every time results in cluttered notation like
P (X = x, Y = y|A = a,B = b, Z = z). The following notation is proposed to
improve readability while remaining flexible.

Uppercase letters are used for both random and context variables. Mostly
we will use X,Y, Z for random variables and U, V,W for context variables. Low-
ercase letters u, v, w, x, y, . . . are used for particular values of the variable of the
corresponding uppercase letter. If these lowercase letters are used, the upper-
case letter is omitted. In some situations we need to use different lowercase
letters.

For example, we write

P (x)v (1.1)

for P (X = x)V=v, which is the probability of X having the value x, given that
the context variable V equals v.

An example of a case where we need to use different lowercase letters is when
we consider the probability of two random variables having the same value. For
example,

P (X = i, Y = i)V=j,W=j (1.2)

is the probability that X and Y both equal i, given that the context variables
V and W both equal j.

Now, we list some further definitions and probability laws:

• Domain of X:

X̃ (1.3)

is the set of values X can take.

• Negation:

P (x) := P (X 6= x) = 1− P (X = x) (1.4)

For dichotomous variables with domain {−1,+1}, we will also write

A := −A. (1.5)
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• Conditional probability:

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
(1.6)

• Law of total probability: ∑
y

P (x, y) = P (x); (1.7)

∑
z

P (x|z)P (z) = P (x); (1.8)∑
z

P (x|y, z)P (z|y) = P (x|y). (1.9)

• Subadditivity

P (x, y) ≤ P (x). (1.10)

Also, sometimes we want to define a new random variables in terms of an existing
one, given a specific context. For this we use a vertical bar. For example, if we
have a probability distribution

P (x)v, (1.11)

we may define

A := X
∣∣
V=1

, (1.12)

B := X
∣∣
V=2

. (1.13)

Then, probability distributions are related in the following way:

P (a) = P (x)V=1, (1.14)

P (b) = P (x)V=2. (1.15)

Note that in this case the joint probability distribution P (a, b) is generally not
well-defined, since it includes variables with different values for V .

1.4.2 Postulates of quantum mechanics

We will present a limited version of the postulates of quantum mechanics, since
only projective measurements on finite-dimensional systems of observables with
non-degenerate eigenvalues are considered in this thesis. This version of the
postulates of Von Neumann [51] is based on [37] and [40].

• State postulate. For each physical system there is a corresponding Hilbert
space H. The state of a system is completely described by a unit vector
in H. A composite physical system corresponds to the tensor product of
the Hilbert spaces of its constituent systems.

• Schrödinger postulate. If no measurement is being performed upon a
system, the evolution of the state of the system in time is described by a
unitary transformation:

|ψ(t)〉 = U(t− t0)|ψ(t0)〉. (1.16)
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• Measurement postulate. A projective measurement on a system in the
state |ψ〉 ∈ H corresponds to a Hermitian operator A on H. The possible
outcomes are the eigenvalues {ai} of A. The probability of obtaining the
outcome ai is

|〈ψ|i〉|2, (1.17)

where |i〉 is a normalized eigenvector corresponding to the eigenvalue ai.
We will also talk about ‘measuring a system S in the basis |i〉S ,’ which
means measuring an observable with eigenvectors |i〉S .

• Projection postulate. If a measurement is performed on a physical system
in the state |ψ〉 of an observable A, and the outcome is ai, then directly
after the measurement the system is in the eigenstate

|ψ〉 |i〉〈i|ψ〉∣∣∣∣|i〉〈i|ψ〉∣∣∣∣ = |i〉. (1.18)

1.4.3 Other language and notation

Aside from using P for probability distributions, we will also write P (|φ〉) for
the one-dimensional projector |φ〉〈φ|. Since the argument of this P is always
a vector in the Dirac notation, no confusion will arise between projectors and
probability distributions.

When we write down the state of a system, we include the label of the
system as a subscript. Because of this, we can change the order of taking tensor
products. For example, if system A is in the state |i〉A and system B is in the
state |j〉B , we have

|i〉A ⊗ |j〉B ≡ |j〉B ⊗ |i〉A. (1.19)

We will also use the subscripts when writing down unitary operators to make
clear on what part of Hilbert space the operator acts. Because of this we can
write down expressions like

(UAA′ ⊗ UBB′) (|ψ〉AB ⊗ |φ〉A′B′) . (1.20)

We also often omit the symbol ‘⊗’ when taking tensor products:

|i〉A ⊗ |j〉B = |i〉A|j〉B . (1.21)

For definitions, we use ‘:=’ when the object to be defined is at the left, and
‘=:’ when it is at the right. For example,

f(x) := 5x;

N2 − sin(π/N) =: JN . (1.22)
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Chapter 2

Pedagogical prelude: using
chained Bell inequalities

This section is meant to be a pedagogical introduction into the subject. The
aim is to provide a conceptually clear story which makes it easier to understand
the rest of this thesis. In this section, I will show how the so-called ‘chained Bell
inequalities’ lead to a strategy which rules out a bigger class of hidden variable
theories than just local hidden variable theories. Large parts and notation of
this section are inspired from [13] and [20].

2.1 Hidden variable theories

First we clarify what we mean with a hidden variable theory. A ‘hidden variable
theory’ is a theory which assigns, in addition to the quantum mechanical state,
supplemental variables to a system. These supplemental variables may give
more information about the measurement outcomes. For example, if quantum
mechanics predicts the probability 1/2 for an outcome of a certain measurement,
then, given the supplemental variables, this probability might be 1 or 0. The
supplemental variables are called ‘hidden’ because they are not part of quantum
mechanics, so from the viewpoint of this theory they are hidden. We do not
make a commitment on the accessibility or the controllability of the hidden
variables. If indeed it would turn out that there is a hidden variable theory
underlying quantum mechanics, it is conceivable that the additional variables
can be known, and are not hidden anymore. Nor do we assume realism or
determinism when talking about hidden variable theories, unless this is clearly
specified.

A hidden variable is said to be compatible with quantum mechanics or QM-
compatible if, when averaging over the supplemental variables, the predictions
are the same as the predictions of quantum mechanics. When discussing hidden
variable theories the usual strategy is to impose constraints on such theories and
see if hidden variable theories satisfying such constraints can still be compatible
with quantum mechanics.

A hidden variable is said to be trivial if the supplemental variables are un-
correlated with the measurement outcomes, and therefore, given those variables,
the probabilities of measurement outcomes are the same as in quantum mechan-
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ics. In such a theory the supplemental variables might as well be thrown away
so that we are left with ordinary quantum mechanics.

Throughout this thesis, when we write down probability distributions for
outcomes of measurements, we take the quantum state of the system to be
measured as a given, also when discussing hidden variable theories. So, the
hidden variable is not a replacement for the quantum state, but an addition to
it.

2.2 Measurements on a Bell state

In the context of hidden variable theories usually the EPRB (EPR-Bohm)
thought experiment is discussed [9], which is a modified version of the mea-
surement described by EPR (Section 1.1.1). Instead of measuring the position
or momentum of a particle, the spin of electrons is measured. Since this exper-
iment is hard to perform in practice, the first real measurements of this type
have been measurements of the polarization of photons [16].

In the field of quantum computation, quantum mechanical systems are usu-
ally discussed without referring to how such a system could be implemented in
the real world. In the context of Bell inequalities this means that there is no talk
of electron spins or photon polarizations, but just of qubits. We will follow this
practice and talk about measurements on qubits without specifying a specific
implementation. The measurements we describe below are of the EPR type, so
we can keep in mind they can be implemented using photons.

We will just focus on a simple system. This system consists of subsystems
A and B. Each subsystem is a qubit: a two-level system associated with a
two-dimensional Hilbert space. Let {|0〉A, |1〉A} and {|0〉B , |1〉B} be bases of
the Hilbert spaces associated with qubits A and B, respectively. We will just
focus on a single state of this system:

|Ψ〉AB =
1√
2

(|0〉A|0〉B + |1〉A|1〉B) . (2.1)

This state is called a Bell state [40]. Note that it is entangled: it cannot be
written as a single tensor product of states of A and B.

We will discuss projective measurements performed on the individual qubits.
A projective measurement is characterized by an observable (for details, see
Section 1.4.2). In order to define the relevant observables, we first define the
qubit states

|θ〉 = cos
θ

2
|0〉+ sin

θ

2
|1〉. (2.2)

for both qubits. On the Bloch sphere (see Appendix A.3), the state |θ〉 is
obtained by rotating the unit vector in the z-direction by an angle θ around the
y-axis, in the direction of the positive x-axis.

Now, the observables we consider are

Oθ = −1 · |θ〉〈θ|+ 1 · |θ + π〉〈θ + π|. (2.3)

This means that measuring the observable Ov on a qubit in the state |v〉 results
in the outcome −1 with certainty, while measuring the same observable on a
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qubit in the state |v+ π〉, which is orthogonal to |v〉, results in the outcome +1
with certainty.

For qubit A, we associate the measurement setting v with the observable
Ov. Similarly, for B we associate w with Ow. The measurements settings V
and W are context variables, not random variables. Now, we consider a joint
measurement of |Ψ〉AB which consists of two local measurements of A and B
with settings v and w. Associating random variables X and Y with the outcome
of the measurement on A and B respectively, we can write down the quantum
mechanical prediction for the outcome of this joint measurement, and for the
individual measurements. The calculation is done in Section 2.7.

PQM (x, y)v,w =
1

4
(1 + x · y · cos(v − w));

PQM (x)v = PQM (y)w =
1

2
. (2.4)

As discussed in Section 1.4.1, we can also associate random variables with mea-
surement outcomes for fixed settings. In this way, we define the following ran-
dom variables

A = X
∣∣
V=0

; B = Y
∣∣
W=π/4

;

A′ = X
∣∣
V=2π/4

; B′ = Y
∣∣
W=3π/4

. (2.5)

Now we have, for example,

PQM (a, b) = PQM (x, y)V=0,W=π/4 =
1

2
+
a · b
2
√

2
. (2.6)

.

2.3 Alternative derivation of the CHSH inequal-
ities

Let us now look at hidden variable theories. For simplicity we consider theories
which provide, for the measurement on |Ψ〉AB (see (2.1)), a single random hid-
den variable Z which can take a finite amount of possible values. It is assumed
that given the value of the hidden variable Z and the measurement settings V
and W there is a well-defined joint probability distribution of the outcomes

P (x, y|z)v,w. (2.7)

We also assume that the hidden variable is independent of the measurement
settings. This is called Source Independence (SI):

P (z)v,w = P (z). (2.8)

As noted in Section 2.1, given a particular value for the variable Z the distri-
bution over measurement outcomes may differ from the quantum mechanical
distribution, but when averaging over Z, the quantum mechanical prediction
should be recovered, if the hidden variable theory is to be compatible with
quantum mechanics:∑

z

P (z)P (x, y|z)v,w = P (x, y)v,w = PQM (x, y)v,w. (2.9)
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Let us now turn to local hidden variable theories for this measurement. Follow-
ing Shimony [47] we define such theories as theories obeying the following two
conditions:

• Parameter Independence1:

∀w′, w′′ : P (x|z)v,w′ = P (x|z)v,w′′ =: P (x|z)v;
∀v′, v′′ : P (y|z)v′,w = P (y|z)v′′,w =: P (y|z)w. (2.10)

• Outcome Independence:

P (x|y, z)v,w = P (x|z)v,w;

P (y|x, z)v,w = P (y|z)v,w. (2.11)

From these two conditions we can derive

P (x, y|z)v,w = P (x|y, z)v,wP (y|z)v,w = P (x|z)v,wP (y|z)v,w
= P (x|z)vP (y|z)w, (2.12)

which is called Factorizability [46]. Factorizability is similar to what Bell has
called ‘local causality’ [6].

A violation of Parameter Independence means that the probabilities of mea-
surement outcomes at one subsystem depend on a freely chosen setting at the
other subsystem. This means that there is a casual influence from the setting
to the probabilities. However, the settings and measurements can be spacelike
separated, and therefore this would imply faster-than-light causation. Usually
this is regarded as being in conflict with the special theory of relativity.

A violation of Outcome Independence can be a sign that the supplemen-
tal variables do not give a complete description. If the outcomes are causally
unrelated then, according to Reichenbach’s common cause principle [43] any
correlation between them can be screened of by a common cause. In this case
this would mean there are additional hidden variables such that Outcome Inde-
pendence holds. However, the use of Reichenbach’s common cause principle for
these type of correlations is controversial [1].

In terms of the random variables A,A′, B,B′ defined in (2.5), Factorizability
means

P (a, b|z) = P (a|z)P (b|z);
P (a, b′|z) = P (a|z)P (b′|z);
P (a′, b|z) = P (a′|z)P (b|z);
P (a′, b′|z) = P (a′|z)P (b′|z). (2.13)

If a hidden variable theory obeys the Factorizability condition, then the joint
probability distributions P (a, b), P (a′, b), P (a, b′) and P (a′, b′) can be derived
from a common probability distribution P (a, a′, b, b′) [29] if we define the com-
mon distribution as follows:

P (a, a′, b, b′) :=
∑
z

P (z)P (a|z)P (a′|z)P (b|z)P (b′|z). (2.14)

1At the beginning of Chapter 3 we will slightly extend the definition of Parameter Inde-
pendence.
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Each of the four distributions can now be obtained by summing P (a, a′, b, b′)
over a/a′ and b/b′. This imposes constraints on these distributions. We will
now derive some of these constraints.

2.3.1 Inequalities from joint distributions

We prove a simple relation involving three random variables A,B,C which share
a common probability distribution, which is similar to a triangle inequality:

P (A 6= C) ≤ P (A 6= B) + P (B 6= C). (2.15)

The proof goes as follows. We assume that there is a common probability
distribution P (A,B,C).

P (A 6= B) = P (A 6= B,A 6= C,B 6= C)

+ P (A 6= B,A = C,B 6= C)

+ P (A 6= B,A 6= C,B = C); (2.16)

P (B 6= C) = P (A 6= B,A 6= C,B 6= C)

+ P (A 6= B,A = C,B 6= C)

+ P (A = B,A 6= C,B 6= C); (2.17)

P (A 6= C) = P (A 6= B,A 6= C,B 6= C)

+ P (A = B,A 6= C,B 6= C)

+ P (A 6= B,A 6= C,B = C). (2.18)

Adding (2.16) and (2.17),

P (A 6= B) + P (B 6= C) = 2(P (A 6= B,A 6= C,B 6= C) + P (A 6= B,A = C,B 6= C))

+ P (A 6= B,A 6= C,B = C) + P (A 6= B,A 6= C,B = C)

= P (A 6= C) + P (A 6= B,A 6= C,B 6= C)

+ 2P (A 6= B,A = C,B 6= C)

≥ P (A 6= C).� (2.19)

We can now apply this inequality to the random variables A,A′, B and B′,
which take values ±1. Because any three of these share a common probability
distribution we have

P (A 6= B′) ≤ P (A 6= B) + P (B 6= B′),

P (B 6= B′) ≤ P (B 6= A′) + P (A′ 6= B′). (2.20)

Combining these,

P (A 6= B′) ≤ P (A 6= B) + P (B 6= A′) + P (A′ 6= B′). (2.21)

Instead of using probabilities like P (A 6= B′) we can use the expectation value
of the product of the variables:

E(A,B) :=
∑

a,b∈{−1,+1}

a · b · P (a, b)

= P (A = B)− P (A 6= B)

= 1− 2P (A 6= B) (2.22)
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Rewriting (2.21), we then get

E(A,B) + E(A′, B)− E(A,B′) + E(A′, B′) ≤ 2, (2.23)

which is the well-known CHSH inequality [16]. We see that the CHSH inequality
is equivalent to an inequality about random variables which share a common
probability distribution.

Using the definitions (2.5), quantum mechanics yields 2
√

2 for the left-hand
side, hence it violates this inequality. Since any local deterministic theory obeys
Factorizability, there is no such theory compatible with quantum mechanics.

It is also known that the settings for the random variables A,A′, B,B′ we
have chosen in (2.5) give the maximum violation of this inequality. In other
words, there are no settings which give a bigger value for the left-hand side of
(2.23) than 2

√
2 [15]. Therefore, in the context of discussions of the Bell inequal-

ities, usually the focus is on these measurement settings, where the difference
between the settings are multiples of π/4.

However, let us go back to the representation of the inequality using proba-
bilities:

P (A 6= B′) ≤ P (A 6= B) + P (B 6= A′) + P (A′ 6= B′). (2.24)

Evaluating this expression using the quantum mechanical prediction, we get
approximately

0.85 ≤ 0.44. (2.25)

What would now be a good way to quantify the amount of violation? We define
this, admittedly rather arbitrary, to be the ratio between the left-hand side
and the right-hand side. A violation means that this ratio is greater than 1.
In the above case, it equals approximately 1.94. Can we find settings which
make this ratio larger? Instead of the values of V and W used in the definition
of A,A′, B,B′ (see (2.5)), let us consider other settings with equal angular
separation. We define

A = X
∣∣
V=0

; B = Y
∣∣
W=θ

;

A′ = X
∣∣
V=2θ

; B′ = Y
∣∣
W=3θ

. (2.26)

Then the inequality becomes

sin2 3θ

2
≤ 3 sin2 θ

2
. (2.27)

The ratio becomes larger in the limit of θ going to zero. For small θ we have
sin θ ≈ θ, so then we approximately get

9θ2

4
≤ 3θ2

4
, (2.28)

which gives a ratio 3. This suggests that it might be interesting to look at a
small separation of settings.
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A0
A2

B1

B3

B2N-1

A2N-2

π
2N

Figure 2.1: Graphical representation of the settings corresponding to the ran-
dom variables Ai and Bj defined in (2.29).

2.4 Chaining CHSH inequalities

To further explore violations at such small separations, we are going to ‘chain’
the CHSH inequality. This was first done by Pearle [41], and more extensively
by Braunstein and Caves [13]. Let N be a positive integer. We define the
following random variables:

Ai = X
∣∣
v=i· π2N

i ∈ {0, 2, . . . , 2N − 2}

Bj = Y
∣∣
w=j· π2N

j ∈ {1, 3, . . . , 2N − 1} (2.29)

Interpreting the settings as angles, they can be graphically represented on a unit
circle, as in Figure 2.1. Note that the separation between the settings becomes
smaller as N becomes larger.

Because of the way the random variables {Ai} and {Bj} are defined, the
joint distribution of a pair {Ak, Bl} is automatically well-defined:

P (ak, bl) = P (x, y)V=k· π2N ,W=l· π2N . (2.30)

Furthermore, if Factorizability holds, then we can define a joint distribution of
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all the {Ai} and {Bj} from which any distribution P (ak, bl) can be derived:

P (a0, b1, a2, . . . , a2n−2, b2n−1) :=
∑
z

P (z)P (a0|z)P (b1|z) . . . P (b2n−1|z);

(2.31)

P (ak, bl) =
∑

{ai|i 6=k}

∑
{bj |j 6=l}

P (a0, b1, . . . , b2n−1). (2.32)

Now consider the following inequality

1 = P (A0 6= A0) ≤ P (A0 6= B1) + P (B1 6= A0). (2.33)

Here A0 = −A0, as defined in (1.5). This inequality is satisfied trivially, since
by definition it says

1 ≤ P (A0 6= B1) + (1− P (A0 6= B1)) = 1. (2.34)

Now we consider the following CHSH inequalities:

P (B1 6= A0) ≤ P (B1 6= A2) + P (A2 6= B3) + P (B3 6= A0)

P (B3 6= A0) ≤ P (B3 6= A4) + P (A4 6= B5) + P (B5 6= A0)

...

P (B2N−3 6= A0) ≤ P (B2N−3 6= A2N−2) + P (A2N−2 6= B2N−1)

+ P (B2N−1 6= A0). (2.35)

By substituting each inequality into the inequality directly above it, and the
first one into (2.33), we get the chained inequality

1 ≤ P (A0 6= B1) + . . .+ P (B2N−1 6= A0) =: IN . (2.36)

This is known as a ‘chained Bell inequality’. Remember that the definition
of the Ai and Bj depends on N . Defining IN as the right-hand side of this
inequality, we see that local hidden variable theories obey 1 ≤ IN , since all
the CHSH inequalities used are satisfied by such theories (remember that in
this case there is a joint distribution (2.31) of all the Ai and Bj). However,
quantum mechanics predicts

IN = 2N sin2 π

4N
, (2.37)

(as calculated in Section 2.7. Noting that

∀x > 0: sinx < x, (2.38)

we have

IN <
π2

8N
. (2.39)

We see that IN can be chosen to be arbitrarily close to 0, just by picking N large
enough. Quantum mechanics violates the inequality (2.36) for N ≥ 2. Looking
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at the amount of violation, i.e. the ratio between the left-hand side and the
right-hand side, we see that this goes to infinity as N goes to infinity. So, in
a sense, we seem to have found an inequality, satisfied by local hidden variable
theories, which in the limit N →∞ is grossly violated by quantum mechanics.
Also note that due to the positivity of probabilities the algebraic minimum of
the right-hand side is 0, and quantum mechanics comes arbitrarily close to that
value.

We should however remember that the chained Bell inequality (2.36) is just
built up from many CHSH inequalities. So a violation of the chained inequality
just means that one or more standard CHSH inequalities are violated. In fact,
in this case, all the CHSH inequalities (2.35) which are used to build up (2.36)
are violated by quantum mechanics. So, the large violation of (2.36) can be seen
as a simultaneous violation of many CHSH inequalities, each corresponding to
different settings. But, of course, any hidden variable theory that obeys (2.24)
for all settings also obeys (2.36). So (2.36) by itself can not be used to rule out
more hidden variable theories than (2.24) can. However, we will see below that
the quantum mechanical prediction for the right-hand side of (2.36), which is
IN , can do this.

2.5 Theories satisfying Parameter Independence

In the previous sections we considered local hidden variable theories, which
satisfy both Parameter Independence and Outcome Independence. We saw that
such theories satisfy Factorizability, and because of that a joint distribution of
all the Ai and Bj could be defined. This in turn allowed the derivation of CHSH
inequalities, which are violated by quantum mechanics.

We are now going to focus on a larger class of hidden variable theories: we
drop the condition of Outcome Independence while still demanding Parameter
Independence. Note that P (x|z)v is well-defined for all measurements by virtue
of this assumption. To show this, suppose that (2.10) is not obeyed, i.e. there
are v, w′, w′′ with P (x|z)v,w′ 6= P (x|z)v,w′′ . The state |Ψ〉AB is prepared 200
times. Upon the first set of 100 states measurements are performed with settings
v and w′, upon the second set of 100 states measurements are performed with
settings v and w′′. In the context of the first set of measurements, we have
P (x|z)v = P (x|z)v,w′ . In the context of the second set of measurements, we
have P (x|z)v = P (x|z)v,w′′ . This means that there is no consistent probability
distribution P (x|z)v for the whole run of 200 experiments.

We again define random variables Ai and Bj according to (2.29). Note that
we use Parameter Independence here: in the definition of the variables Ai no
value of W needs to be specified, and in the definition of the variables Bj no
value of V needs to be specified.

Again, the joint distribution of a pair {Ak, Bl} is automatically well-defined.
But, since Outcome Independence is not assumed, Factorizability generally does
not hold. Therefore, we cannot define a joint distribution of all {Ai} and {Bj},
and the CHSH inequalities cannot be derived. This is a good thing, because
this time we are looking for hidden variable theories that are compatible with
quantum mechanics, and such theories violate the CHSH inequalities. However,
we are going to derive some other interesting inequalities.

Take for example N = 64. In this case, the settings corresponding to the
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random variables A0, B1, A2, B3, . . . are separated by an angle π/128. Now
consider the probabilities P (A0 = +1) and P (B1 = +1). Deriving an inequality
for these probabilities:

|P (A0 = +1)− P (B1 = +1)| =

∣∣∣∣∣∑
b1

P (A0 = +1, b1)−
∑
a0

P (a0, B1 = +1)

∣∣∣∣∣
=
∣∣P (A0 = +1, B1 = −1)− P (A0 = −1, B1 = +1)

∣∣
≤
∣∣P (A0 = +1, B1 = −1)

∣∣+
∣∣P (A0 = −1, B1 = +1)

∣∣
= P (A0 6= B1), (2.40)

where we have used the triangle inequality. The inequality (2.40) looks intuitive:
the difference in probabilities is bounded from above by the probability that the
random variables are different. Note that we use the fact that there is a common
probability distribution for A0 and B1. Also note that this inequality is trivially
satisfied in quantum mechanics (as it should be) because then

P (A0 = +1) = P (B1 = +1) = 1/2, (2.41)

so the left-hand side equals zero, while the calculation in Section 2.7 gives

P (A0 6= B1) = sin2(π/256) ≈ 1.5 · 10−4. (2.42)

But now consider the corresponding inequality for a hidden variable theory
satisfying Parameter Independence. For a specific value z′ of the hidden variable
Z: ∣∣P (A0 = +1|z′)− P (B1 = +1|z′)

∣∣ ≤ P (A0 6= B1|z′) (2.43)

Of course, if we know nothing more about the hidden variable theory, we do not
know what the values of these probabilities are. But, since we assume that there
is a finite set of hidden variables, we know that P (z′) is nonzero. Therefore, we
have

P (A0 6= B1|z′) =
P (A0 6= B1, z

′)

P (z′)
≤ P (A0 6= B1)

P (z′)
. (2.44)

where we used subadditivity (1.10). So, we have

P (z′) > P (A0 6= B1)⇒
1 > P (A0 6= B1|z′) ≥

∣∣P (A0 = +1|z′)− P (B1 = +1|z′)
∣∣. (2.45)

And, since the calculation in Section 2.7 shows

P (A0 6= B1) = sin2 π

4N
<

π2

16N2
, (2.46)

we can always pick an N big enough so that P (z′) > P (A0 6= B1). So, for some
N we have ∣∣P (A0 = +1|z′)− P (B1 = +1|z′)

∣∣ < 1. (2.47)
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This is a nontrivial constraint on some probabilities of the hidden variable the-
ory. We see that the strong correlation at small angles puts some constraints
on hidden variable theories satisfying Parameter Independence.

But that is not all. In a similar way to the derivation of the chained Bell
inequality, we can find another constraint. We start with∣∣P (A0 = +1)− P (A0 = +1)

∣∣ ≤ ∣∣P (A0 = +1)− P (B1 = +1)
∣∣

+
∣∣P (B1 = +1)− P (A2 = +1)

∣∣
+ . . .

+
∣∣P (B2N−1 = +1)− P (A0 = +1)

∣∣. (2.48)

Here we have just used an ordinary triangle inequality. Now using (2.40), we
have∣∣P (A0 = +1)− P (A0 = +1)

∣∣ ≤ P (A0 6= B1) + . . .+ P (B2N−1 6= A0) = IN .
(2.49)

Notice that the right-hand side equals the right-hand side of the chained Bell
inequality (2.36). Again this is trivially satisfied by quantum mechanics, since
the left-hand side vanishes. But, by repeating the steps with probabilities con-
ditioned on z′, the same inequality holds for hidden variable theories satisfying
Parameter Independence:∣∣P (A0 = +1|z′)− P (A0 = +1|z′)

∣∣ ≤
P (A0 6= B1|z′) + . . .+ P (B2N−1 6= A0|z′) =: Iz

′

N . (2.50)

where we have defined Iz
′

N for convenience. Because of (2.44), we have Iz
′

N ≤
IN/P (z′). But this means that also Iz

′

N vanishes in the limit N →∞. In other
words, for every non-zero value on the left-hand side of (2.50), we can find an
N such that the inequality is violated. Therefore, we must have∣∣P (A0 = +1|z′)− P (A0 = +1|z′)

∣∣ = 0

⇒ P (A0 = +1|z′) = P (A0 = +1|z′) = 1− P (A0 = +1|z′) = 1/2 (2.51)

Also note that P (A0 = −1|z′) = 1 − P (A0 = +1|z′) = 1/2. We see that the
probability distribution of A0 given z′ is equal to the quantum mechanical prob-
ability distribution, and independent of z′. So, for this particular measurement
the hidden variable theory gives no better prediction than quantum mechanics:
it is trivial.

Using symmetry arguments it can be shown that this holds for every projec-
tive measurement on qubit A, as well as on qubit B. We will demonstrate this
in Section 3.1. Note that up to this point, we have only talked about projective
measurements on subsystems A and B. Hence, the above argument does not
rule out that a hidden variable theory satisfying Parameter Independence gives
different probability distributions for some projective measurement on the com-
bined system A + B. However, this will be ruled out when we generalize the
result in Chapter 3.

The main ingredient of this argument consists of the very strong correlation
between measurement outcomes on both sides when the separation of settings
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Figure 2.2: Strong correlation at small angles

is small. Each term of Iz
′

N , which we defined in (2.50), is bounded from above
by

1

P (z′)
sin2 π

4N
≤ π2

16N2P (z′)
∝ 1

N2
, (2.52)

and the number of terms is 2N . Hence, the right-hand side has as upper bound
proportional to N/N2 = 1/N . It is the fact that P (Ai 6= Bi±1) is approximately
quadratic in the angle of separation for small angles that indicates that there is
a very strong correlation. This ensures that in the limit N →∞, Iz

′

N vanishes.
See also Figures 2.2 and 2.3.

2.6 Generalization of the result

We will now give an idea how the above result can be extended from measure-
ments on parts of a Bell state to arbitrary measurements on pure states. This
generalization will be discussed in detail in Chapter 3.

Consider some entangled state of the system AB = A + B. According to
Schmidt’s biorthogonal decomposition theorem (see Appendix A.1), this state
can be expressed as

|φ〉AB =

d−1∑
i=0

ci|i〉A|i〉B (2.53)

with ci nonnegative, |i〉A and |i〉B orthonormal bases, and d the Schmidt order of
the state. Now suppose two of the coefficients are equal (and nonzero). Without
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Figure 2.3: Limiting differences between probabilities using the probability of
being different. α equals the separation between measurement settings |v −w|.
We see that by taking N steps where the upper bound of the difference at each
step is proportional to 1/N2, the total difference is proportional to 1/N . Since
this holds for every N ∈ N, the total difference, which is the difference between
P (A0 = +1|z) and P (A0 = −1|z), must be zero.

23



loss of generality we can assume c0 = c1, since the ordering of the basis vectors
is arbitrary. We consider measurements on A and B in the bases |i〉A and |i〉B ,
respectively. We also consider measurements on A and B in the bases where
the first two elements |0〉 and |1〉 are ‘rotated’ as follows:

|0〉 7→ cos
θ

2
|0〉+ sin

θ

2
|1〉;

|1〉 7→ − sin
θ

2
|0〉+ cos

θ

2
|1〉. (2.54)

Now we restrict our attention to the cases that the outcomes are both eigenvalues
corresponding to the two eigenstates (2.54) of the observable; if this is not the
case, we neglect the measurement outcomes. Then, the correlations between the
outcomes are the same as the correlations of the Bell state we have discussed in
Section 2.5. We can then use the same argument to show that the corresponding
probabilities must be equal. The following follows:

Theorem 2. Consider the state of a system A+B, expressed in Schmidt bases
of A and B:

|Φ〉AB =
∑
i

ci|i〉A|i〉B . (2.55)

Consider a projective measurement on subsystem A, in the basis |i〉A. In any
QM-compatible hidden variable theory satisfying Parameter Independence, the
probabilities of the outcomes are equal to the probabilities predicted by quantum
mechanics and independent of any supplemental variables.

This will be proven in Section 3.1.
For the next generalization, which will be discussed in Section 3.2, we again

consider measurements on A and B in the bases |i〉A and |i〉B . Using a set of
special states, called ‘embezzling’ states, it is possible to transform this state to
a state which has all Schmidt coefficients (almost) equal. We can then apply
the above result to show that all probabilities are (almost) equal. Going back
to the original state with unequal Schmidt coefficients, we can then show that
the probabilities are equal to those given by quantum mechanics. The result is:

Theorem 3. Consider the state of a system A+B, expressed in Schmidt bases
of A and B:

|Φ〉AB =
∑
i

ci|i〉A|i〉B . (2.56)

Consider a projective measurement on subsystem A, in the basis |i〉A. In any
QM-compatible hidden variable theory satisfying Parameter Independence, if two
Schmidt coefficients are equal, then the probabilities corresponding to the corre-
sponding Schmidt basis vectors are also equal.

Finally, the measurement scheme of John von Neumann is invoked. In an ideal
projective measurement, at some point the system to be measured S becomes
entangled with (a part of) the measurement apparatus D. The measurement of
S can then at the same time be interpreted as a measurement of D. But this
is a measurement in the Schmidt basis of S+D. Therefore, we can apply the
previous result, and conclude the following:
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Theorem 4. Consider a projective measurement performed on a pure quantum
state. In any QM-compatible hidden variable theory satisfying Parameter Inde-
pendence, the probabilities of the outcomes are independent of any supplemental
variables. Therefore, any such theory is trivial.

This will be shown in Section 3.4.
In this chapter we have seen that strong correlations at small angular sepa-

rations rule out certain hidden variable theories satisfying Parameter Indepen-
dence. In the next chapter we will extensively show and discuss the generaliza-
tions just mentioned.

2.7 Calculation of P (x, y)v,w and IN

First, we calculate P (x, y)v,w. The correspondence between eigenvalues and
eigenvectors is

−1↔ |v〉/|w〉,
+1↔ |v + π〉/|w + π〉. (2.57)

This can be written as

x↔
∣∣∣∣v +

x+ 1

2
π

〉
,

y ↔
∣∣∣∣w +

y + 1

2
π

〉
. (2.58)

Defining

v′ =
v

2
+
x+ 1

4
π,

w′ =
w

2
+
y + 1

4
π, (2.59)

we have

P (x, y)v,w = |AB〈φ| (|2v′〉A ⊗ |2w
′〉B)|2

=

∣∣∣∣ 1√
2

(A〈0|B〈0|+ A〈1|B〈1|) (cos v′|0〉A + sin v′|1〉A)⊗ (cosw′|0〉B + sinw′|1〉B)

∣∣∣∣2
=

1

2
(cos v′ cosw′ + sin v′ sinw′)

2
=

1

2
(cos v′ cos−w′ − sin v′ sin−w′)2

=
1

2
cos2

(
v − w

2
+
x− y

4
π

)
=

{
1
2 cos2

(
v−w
2

)
x = y

1
2 sin2

(
v−w
2

)
x 6= y

=
1

4
(1 + x · y · cos (v − w)) , (2.60)

where in the last line we have used

cos2 θ =
1 + cos 2θ

2
; sin2 θ =

1− cos 2θ

2
. (2.61)

IN is defined as

IN := P (A0 6= B1) + P (B1 6= A2) + . . .+ P (B2N−1 6= A0). (2.62)
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Except for the last term, each term equals

P (Ai 6= Bi±1) = P (X 6= Y )v=i π2N ,w=(i±1) π
2N

= sin2 π

4N
, (2.63)

while the last term equals

P (B2N−1 6= −A0) = P (B2N−1 = A0) = P (X = Y )v=0,w=(2N−1) π
2N

= cos2
(π

2
− π

4N

)
= sin2 π

4N
. (2.64)

Since IN has 2N terms, we have

IN = 2N sin2 π

4N
<

π

8N
, (2.65)

since sinx < x for x > 0.
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Chapter 3

Reformulation of the
Colbeck-Renner result

In this chapter we derive a modified version of the Colbeck-Renner result. While
many steps are similar to those taken by CR, there are also differences, mainly in
the assumptions that are made. A discussion of these differences is the subject
of Chapter 4. In this chapter, we will not refer to CR’s work and just present
our formulation of the result. In this formulation the result is a no-go theorem
for hidden variable theories satisfying Parameter Independence.

Throughout this chapter, Source Independence is assumed, so that the same
probability distribution P (z) can be used for the hidden variable, independent
of the measurement settings.

Furthermore, we extend the definition of Parameter Independence slightly.
Let A+B be a composite system, where the systems A and B do not interact.
In (2.10) we defined Parameter Independence as stating that probabilities at
A are independent of settings at B and vice versa. We now also assume that
probabilities at A are independent of any transformation performed at B. Just
like with the initial definition, this can be motivated by the fact that a viola-
tion of this allows superluminal signaling if the transformation at B and the
measurement at A are spacelike separated events.

3.1 Compact rederivation of the triviality result
for Bell states

In Chapter 2 we explained at length how strong correlations at small separations
of settings rule out more hidden variable theories than the standard Bell inequal-
ity does. In this section we will present the result completely and compactly.
That is, we will prove the following:

Theorem 1. Consider the following Bell state:

|Ψ〉AB =
1√
2

(|0′〉A|0′〉B + |1′〉A|1′〉B) . (3.1)

Consider a projective measurement on subsystem A. In any QM-compatible hid-
den variable theory satisfying Parameter Independence, the probabilities of the
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outcomes are 1/2, i.e. equal to the probabilities predicted by quantum mechanics
and independent of any hidden variables.

Defining X as the outcome of the measurement and Z as the hidden variable,
we have to show that

∀x, z : P (x|z) = P (x) =
1

2
. (3.2)

We define the basis in which the measurement on A is performed as {|0〉A, |1〉A},
and we label the corresponding outcomes −1,+1. Then, the measurement is
represented by the observable

O = −1 · |0〉〈0|+ 1 · |1〉〈1|. (3.3)

According to the symmetry property for this Bell state (Section A.2), there is
a basis {|0〉B , |1〉B} of HB such that

|Ψ〉AB =
1√
2

(|0〉A|0〉B + |1〉A|1〉B). (3.4)

We see that, when expressed in the measurement basis {|0〉A, |1〉A}, |Ψ〉AB has
the same form as in (3.1).

To prove (3.2), we have to show that for any z

P (X = +1|z) = P (X = −1|z) =
1

2
. (3.5)

We start by considering different measurements on A and B. First, we define

|θ〉 = cos
θ

2
|0〉+ sin

θ

2
|1〉 (3.6)

and the observables

Oθ = −1 · |θ〉〈θ|+ 1 · |θ + π〉〈θ + π|. (3.7)

For qubit A, we associate the measurement setting v with the observable Ov.
Similarly, for B we associate w with Ow. Note that the original measurement
on A of the observable O (see (3.3)) is equal to a measurement on A of the
observable OV=0.

Let N ∈ N. We define the following random variables:

Ai = X
∣∣
V=i· π2N

, i ∈ {0, 2, . . . , 2N − 2}; (3.8)

Bj = Y
∣∣
W=j· π2N

, j ∈ {1, 3, . . . , 2N − 1}. (3.9)

We now prove a lemma which states that the difference between the proba-
bilities of two random variables taking some value w is bounded from above by
the probability that the random variables take different values.

Lemma 1. Let X and Y be random variables with joint probability distribution
P (x, y), and let w be a possible value of both X and Y . Then the following
inequality holds:

|P (X = w)− P (Y = w)| ≤ P (X 6= Y ). (3.10)
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Proof :

|P (X = w)− P (Y = w)| =

∣∣∣∣∣∑
y

P (X = w, y)−
∑
x

P (x, Y = w)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
y 6=w

P (X = w, y)−
∑
x6=w

P (x, Y = w)

∣∣∣∣∣∣
≤
∑
y 6=w

P (X = w, y) +
∑
x6=w

P (x, Y = w)

≤ P (X 6= Y ).� (3.11)

We now consider probabilities in the hidden variable theory. We have, for any
z,

|P (X = +1|z)− P (X = −1|z)| = |P (X = +1|z)− P (X = +1|z)|
= |P (A0 = +1|z)− P (A0 = +1|z)|
≤ |P (A0 = +1|z)− P (B1 = +1|z)|

+|P (B1 = +1|z)− P (A2 = +1|z)|+ . . .+ |P (B2N−1 = +1|z)− P (A0 = +1|z)|.
(3.12)

Now, applying Lemma 1 we have

|P (X = +1|z)− P (X = −1|z)|
≤ P (A0 6= B1|z) + . . .+ P (B2N−1 6= A0|z) =: IzN . (3.13)

Averaging both sides over Z, we have∑
z

P (z)|P (X = +1|z)− P (X = −1|z)|

≤ P (A0 6= B1) + P (B1 6= A2) + . . .+ P (B2N−1 6= −A0)

= IN <
π2

8N
. (3.14)

Implicitly we have used Source Independence here, since the same distribution
P (z) is used for each term on the right-hand side of the inequality, independently
of the settings V and W . The calculation of IN is done in Section 2.7. Since
(3.14) holds for every N , we get∑

z

P (z)|P (X = +1|z)− P (X = −1|z)| = 0. (3.15)

For every z ∈ Z̃, P (z) > 0, and therefore

|P (X = +1|z)− P (X = −1|z)| = 0

⇒ P (X = +1|z) = P (X = −1|z) =
1

2
.� (3.16)
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3.2 Extension to states with equal Schmidt co-
efficients

We now extend Theorem 1 to probabilities of measurement outcomes corre-
sponding to equal Schmidt coefficients:

Theorem 2. Consider the state of a system A+B, expressed in Schmidt bases
of A and B:

|Φ〉AB =
∑
i

ci|i〉A|i〉B . (3.17)

Consider a projective measurement on subsystem A, in the basis |i〉A. In any
QM-compatible hidden variable theory satisfying Parameter Independence, if two
Schmidt coefficients are equal, then the probabilities corresponding to the corre-
sponding Schmidt basis vectors are also equal.

The strategy of this proof is as follows. Like in Section 3.1 we consider additional
measurements on A and B with the measurement bases ‘rotated’. Then, we
consider the probability distribution of measurement outcomes, only focussing
on the probabilities of the outcomes corresponding to the two equal Schmidt
coefficients. It turns out that we then obtain probability distributions equal to
those of Section 3.1. Therefore we can apply the same derivation.

Assume that two coefficients of (3.17) are equal. Since the ordering of basis
elements is arbitrary, we can without loss of generality assume c0 = c1. The
measurement on A corresponds to an observable:

O = −1 · |0〉〈0|+ 1 · |1〉〈1|+
∑
i

i · |i〉〈i|. (3.18)

We want to prove that, for any z,

P (X = +1|z) = P (X = −1|z). (3.19)

Again we define

|θ〉 = cos
θ

2
|0〉+ sin

θ

2
|1〉, (3.20)

and observables

Oθ = −1 · |θ〉〈θ|+ 1 · |θ + π〉〈θ + π|+
∑
i

i|i〉〈i|. (3.21)

For A(B), we associate the setting v(w) with the observable Ov(Ow). The
original measurement of O on A is equal to a measurement of OV=0.

We focus only on cases where the outcomes are ±1. Therefore, we define,
for x, y ∈ {−1,+1},

P|1|(x, y)v,w = P (x, y||X| = |Y | = 1)v,w. (3.22)

As we will show in Section 3.2.1, a similar calculation as in Section 2.7 gives

P|1|(x, y)v,w =
1

4
(1 + x · y · cos (v − w)) , (3.23)
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which is equal to the probability distribution P (x, y)v,w of the measurement
outcomes for the Bell state discussed in Section 3.1. Therefore, we can apply
the same steps (3.8)-(3.16), giving, for any z,

P|1|(X = +1|z)V=0 = P|1|(X = −1|z)V=0 =
1

2
. (3.24)

Since

P (X = +1|z)v = P|1|(X = +1|z)v · P (|X| = |Y | = 1|z)v, (3.25)

we have

P (X = +1|z) = P|1|(X = +1|z)V=0 · P (|X| = |Y | = 1|z)V=0

= P|1|(X = −1|z)V=0 · P (|X| = |Y | = 1|z)V=0

= P (X = −1|z).� (3.26)

Note that this result does not say that the two probabilities are independent of
Z, only that they are equal for any value of Z. However, in the case that all
Schmidt coefficients are equal, applying the result says that all probabilities are
equal. Because for any measurement the probabilities of different outcomes add
up to 1, every probability equals 1/d, where d is the Schmidt order of the state.
Therefore, in this case, the probabilities are independent of Z:

Corollary 1. Consider a system A+B of dimension d× d in the state:

|Φ〉AB =

d−1∑
i=0

1√
d
|i〉A|i〉B . (3.27)

Consider a projective measurement on subsystem A in the basis |i〉A. In any
QM-compatible hidden variable theory satisfying Parameter Independence the
probabilities of the outcomes are 1/d where d is the Schmidt order of |Φ〉AB,
i.e. equal to the probabilities predicted by quantum mechanics and independent
of any supplemental variables.

A state with Schmidt order d ≥ 2 and all Schmidt coefficients equal is called a
maximally entangled state.

3.2.1 Calculation of P|1|(x, y)v,w

We want to calculate

P|1|(x, y)v,w =
P (x, y, |X| = |Y | = 1)v,w
P (|X| = |Y | = 1)v,w

. (3.28)

where the state to be measured is

|Φ〉AB = c0(|0〉A|0〉B + |1〉A|1〉B) +
∑
i≥2

ci|i〉A|i〉B . (3.29)

and the settings v and w correspond to observables Ov for A and Ow for B with

Oθ = −1 · |θ〉〈θ|+ 1 · |θ + π〉〈θ + π|+
∑
i

i|i〉〈i|. (3.30)
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First we concentrate on the numerator of (3.28). We only have to consider
probabilities of outcomes ±1, because for the other outcomes |X| = |Y | = 1
does not hold, and therefore the probability is zero.

The calculation is almost exactly the same as in Section 2.7. Using the same
definitions, instead of (2.60) we have

P (x, y||X| = |Y | = 1)v,w = |AB〈φ| (|2v′〉A ⊗ |2w
′〉B)|2

= |c0 (A〈0|B〈0|+ A〈1|B〈1|) (cos v′|0〉A + sin v′|1〉A)⊗ (cosw′|0〉B + sinw′|1〉B)|2

= . . . . (3.31)

The only difference is that 1/
√

2 is replaced by c0. Repeating the rest of the
steps of (2.60), we get

P (x, y||X| = |Y | = 1)v,w =
c20
2

(1 + x · y · cos (v − w)) . (3.32)

For the denominator of (3.28), we have

P (|X| = |Y | = 1)v,w =
∑

x,y=±1
P (x, y, |X| = |Y | = 1)v,w = 2 · c20. (3.33)

Therefore,

P|1|(x, y)v,w =
1

4
(1 + x · y · cos (v − w)) . (3.34)

3.3 Extension to states with unequal Schmidt
coefficients

The next step is to extend Theorem 2 further, to all probabilities of outcomes
of measurements in the Schmidt basis, even if the corresponding Schmidt coeffi-
cients are unequal. The idea is to first convert the entangled state to an (almost)
maximally entangled state, by splitting up the terms, so that all Schmidt coeffi-
cients of the state become approximately equal. This is done using ‘embezzling
states’ [50][21], which are states from which any entangled state can be extracted
with arbitrary precision, using only local unitary operations on each subsystem.
Then, Theorem 2 can be applied to this (almost) maximally entangled state,
which means that the probabilities of measurement outcomes on this state are
independent of Z.

Finally, the probabilities of the outcomes of measurements on the (almost)
maximally entangled state can be related to the probabilities of outcomes of
measurements on the original state, which has unequal Schmidt coefficients.

Theorem 3. Consider the state of a system A+B, expressed in Schmidt bases
of A and B:

|Φ〉AB =

d−1∑
i=0

ci|i〉A|i〉B . (3.35)

Consider a projective measurement on subsystem A, in the basis |i〉A. In any
QM-compatible hidden variable theory satisfying Parameter Independence, the
probabilities of the outcomes are equal to the probabilities predicted by quantum
mechanics and independent of any supplemental variables.
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For this proof, we need embezzling states. The family of embezzling states is de-
noted as {|µ(n)〉A′′B′′ |n ∈ N}. An embezzling state is a bipartite state that can
be used to transform some initial state |0〉A′ |0〉B′ to any desired entangled state∑
i ci|i〉A′ |i〉B′ , using only local transformations, which correspond to unitary

operators on HA′′ ⊗HA′ and HB′′ ⊗HB′ . The transformation is generally not
exact, but can be chosen to be of arbitrary precision, by picking a state from the
family with n big enough. We will elaborate on the details of the transformation
and its precision in Sections 3.3.2 and 3.3.3.

We will use an embezzling state to create maximally entangled states. There
exist unitary operators U(n)mA′′A, U(n)mB′′B and an embezzling state |µ(n)〉A′′B′′ ,
such that

(U(n)mA′′A′ ⊗ U(n)mB′′B′) (|µ(n)〉A′′B′′ ⊗ |0〉A′ |0〉B′)

≈ |µ(n)〉A′′B′′ ⊗ 1√
m

m−1∑
j=0

|j〉A′ |j〉B′ , (3.36)

where |0〉A′ |0〉B′ is some initial state. Of course, the systems A′ and B′ should
both have at least dimension m in order to contain the maximally entangled
state with Schmidt order m.

As mentioned at the beginning of this section, we want to convert |Φ〉AB
to a state which is almost maximally entangled. This can be done by coupling
each term to a maximally entangled state with the Schmidt order proportional
to the square of the coefficient of the term. More formally, we associate with
each coefficient ci an integer mi, such that

c20
m0
≈ c21
m1
≈ . . . ≈

c2d−1
md−1

≈ 1

g
, (3.37)

where g =
∑
imi. Now we define the unitary operators

UA′′A′A :=

d−1∑
i=0

U(n)miA′′A′ ⊗ |i〉〈i|A;

UB′′B′B :=

d−1∑
i=0

U(n)miB′′B′ ⊗ |i〉〈i|B . (3.38)

Applying these operators, we get

UA′′A′A ⊗UB′′B′B(|µ(n)〉A′′B′′ ⊗ |0〉A′B′ ⊗ |Φ〉AB)

≈ |µ(n)〉A′′B′′ ⊗
d−1∑
i=0

mi−1∑
j=0

ci√
mi
|j〉A′ |i〉A|j〉B′ |i〉B

≈ |µ(n)〉A′′B′′ ⊗
d−1∑
i=0

mi−1∑
j=0

1
√
g
|j, i〉A′A|j, i〉B′B ,

(3.39)

where |j, i〉A′A := |j〉A′ |i〉A.
This is approximately a maximally entangled state. For simplicity, we now

assume that these transformations can be performed perfectly; we postpone a
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discussion of the approximations involved to Section 3.3.1. According to Theo-
rem 2, when performing a measurement on B +B′ in the |j, i〉 basis, the prob-
ability for every outcome is then 1/g, in any hidden variable theory satisfying
Paramater Independence.

Now consider the situation where the embezzlement transformation has been
performed only on system B+B′+B′′. This means that the transformation
corresponding to UB′′B′B has been performed, but not the one corresponding
to UA′′A′A. Now there is still a perfect correlation between a measurement on
A and a measurement on B+B′: at A the measurement produces an eigenvalue
corresponding to |i〉A if and only if the measurement at B+B′ produces an
eigenvalue corresponding to one of the eigenvectors {|j, i〉B′B |0 ≤ j ≤ mi − 1}.

We now invoke Parameter Independence: the probabilities at B+B′ are in-
dependent of what local transformations are performed on A+A′+A′′. If the em-
bezzlement transformation is performed at both sides, the system A+A′+B+B′

is approximately in a maximally entangled state of Schmidt order g, and there-
fore the probability corresponding to any eigenvector |j, i〉B′B is 1/g. But this
should then also be true when the embezzlement transformation is only per-
formed at B+B′+B′′ and not at A+A′+A′′. Therefore, also in this case the
probability corresponding to a single |j, i〉B′B is 1/g, and the sum of probabili-
ties corresponding to the eigenvectors {|j, i〉B′B |0 ≤ j ≤ mi − 1} is mi/g. But
then the probability at A to get the eigenvector corresponding to |i〉A is also
mi/g.

Now we again invoke Parameter Independence: because the probabilities
at A do not depend on any transformation performed on systems at B, the
probability associated to |i〉A is always mi/g, also without any embezzlement
operation performed at B+B′+B′′. Since this probability equals c2i , we see
indeed that the probabilities are equal to the quantum mechanical ones, and
independent of any hidden variables.�

3.3.1 About the approximations involved

There are two approximations that we have neglected. First, the states created
using embezzling states are not exactly the desired states. Second, not all sets
of coefficients allow a transformation to a maximally entangled state: when, for
two coefficients ci, cj the ratio c2i /c

2
j is irrational, there are no integers mi and mj

such that c2i /mi = c2j/mj . Thus in general (3.37) can only hold approximately.

Embezzlement

To discuss the precision of the embezzlement transformation, we introduce a
distance measure between two quantum states called the fidelity [40]. For pure
states, the fidelity is simply

F (|ψ〉, |ξ〉) = |〈ξ|ψ〉|. (3.40)

The fidelity of a transformation is then defined as the fidelity between the desired
state and the actual state after the transformation. A fidelity close to 1 means
that the two states are ‘close’ to each other. In Section 3.3.3 we show that the
fidelity of the embezzlement transformation can be as close to 1 as desired. It

is also easy to see that if the fidelity of each of the transformations U(n)
m(k)
A′′A′ ⊗

34



U(n)
m(k)
B′′B′ is greater than 1− ε, then also the fidelity of the total transformation

UA′′A′A ⊗UB′′B′B is greater than 1− ε.
However, we need to know how this relates to probabilities of outcomes. We

will now show how the fidelity relates to differences between probabilities.
For a non-degenerate projective measurement on a state |ψ〉, the probability

of the outcome corresponding to the eigenvector |i〉 is |〈ψ|i〉|2. Now, let |φ〉 be
another state such that

F (|φ〉, |ψ〉) > 1− ε (3.41)

for some ε > 0. We are going to derive an upper bound for the difference in the
probabilities |〈ψ|i〉|2 and |〈φ|i〉|2. By the triangle inequality, for y, z ∈ C,

|y| = |y − z + z| ≤ |y − z|+ |z| ⇒ |y| − |z| ≤ |y − z|
|z| = |z − y + y| ≤ |z − y|+ |y| ⇒ |z| − |y| ≤ |y − z|

}
⇒ ||y| − |z|| ≤ |y − z|.

(3.42)

Since the probabilities |〈ψ|i〉|2 are independent of the phase of |ψ〉, we can
redefine |ψ〉 such that |〈φ|ψ〉| = 〈φ|ψ〉 > 1− ε. Now∣∣|〈φ|i〉|2 − |〈ψ|i〉|2∣∣ =

∣∣|〈φ|i〉|+ |〈ψ|i〉|∣∣ · ∣∣|〈φ|i〉| − |〈ψ|i〉|∣∣
≤ 2 · |〈φ|i〉 − 〈ψ|i〉| = 2 · |〈φ− ψ|i〉| ≤ 2 · ||φ− ψ||, (3.43)

where we used the Cauchy-Schwarz inequality [40]

|〈i|j〉| ≤ ||i|| · ||j||, (3.44)

where ||i|| =
√
〈i|i〉 is the norm of |i〉. Now,

||φ− ψ|| =
√
〈φ− ψ|φ− ψ〉 =

√
2− 2Re(〈φ|ψ〉) <

√
2ε. (3.45)

So, ∣∣|〈φ|i〉|2 − |〈ψ|i〉|2∣∣ < 2
√

2ε =: δ. (3.46)

Therefore, we can make the probability of φ and ψ as close to each other as we
want: if we want the difference to be no more than δ, we choose

ε =
δ2

8
. (3.47)

Creating a maximally entangled state

Even when the embezzling transformation would be perfect, still not always a
maximally entangled state can be created from an entangled state with unequal
Schmidt coefficients. As already mentioned, this is the case when the ratio
between the squares of two coefficients is irrational. Let ci and cj be such
coefficients. We want to find integers mi and mj such that

c2i
mi
≈

c2j
mj
⇔ c2i /mi

c2j/mj
≈ 1. (3.48)
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By picking integers mi and mj big enough, the above ratio can be made arbi-
trarily close to 1. This also means that the probabilities P|1| defined in (3.22)
can be made arbitrarily close to its desired values.

How do the above considerations help in justifying Theorem 3? Assume
that Theorem 3 does not hold. Then there is some hidden variable theory
satisfying Parameter Independence for which some probabilities are dependent
on a hidden variable. Call this ‘theory M ’. We can roughly say that by choosing
a high enough fidelity for the embezzlement, as well as choosing high enough
integers to create the almost maximally entangled state, all the probabilities
involved can be as close as we want to the desired ones. But this means that we
can derive bounds as tight as we want on how much the probabilities depend
on hidden variables. By making the bounds tight enough, it can be shown that
theory M cannot be correct. So, for every such theory M we can derive a
contradiction, and therefore Theorem 3 holds.

While not being mathematically rigorous here, we think that we have made
it plausible that Theorem 3 holds. A mathematically complete proof of this
would be welcome, but falls outside the scope of this thesis.

3.3.2 Embezzlement Explained

Embezzling states are a family of states defined as1

|µ(n)〉A′B′ :=
1√
C(n)

n∑
j=1

1√
j
|j〉A′ |j〉B′ , (3.49)

where C(n) =
∑n
j=1 1/j is a normalization constant. The higher n, the more

accurately entangled states can be extracted. So, how are states extracted from
this state? Suppose we want to extract an entangled state with Schmidt order
m:

|φ〉AB =

m∑
i=1

vi|i〉A|i〉B ; vi ∈ R+. (3.50)

Consider the tensor product of this state and |µ(n)〉A′B′ ,

|µ(n)〉A′B′ ⊗ |φ〉AB =

m∑
i=1

n∑
j=1

1√
C(n)

vi√
j
|i, j〉AA′ |i, j〉BB′ . (3.51)

where we have defined |i, j〉 = |i〉|j〉. Now the idea is to only keep the n terms
with the largest coefficients, and replace the values of the coefficients with the
values {1/j|j = 1, . . . , n}. We define the pairs {(i1, j1), (i2, j2), . . .} of values of
i and j where the value of vi√

j
is ordered from high to low, i.e.

vi1√
j1
≥ vi2√

j2
≥ vi3√

j3
≥ . . . . (3.52)

Now consider the vector

1√
C(n)

n∑
r=1

vir√
jr
|ir, jr〉AA′ |ir, jr〉BB′ . (3.53)

1In this section we let the basis vectors start at |1〉 instead of |0〉, since this simplifies the
expressions considerably.
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and replace the coefficients as follows:

1√
C(n)

vir√
jr
7→ 1√

C(n)

1√
r
, (3.54)

resulting in the state

|λ(n)〉 =
1√
C(n)

n∑
r=1

1√
r
|ir, jr〉AA′ |ir, jr〉BB′ . (3.55)

It seems that we have botched up the desired state (3.51) quite a lot by throwing
away and changing coefficients. However, it turns out that for n large enough,
(3.55) is arbitrarily close to (3.51), i.e.: for every ε > 0 there is a N such that
for all n > N , 〈λ(n)|(|µ(n)〉⊗|φ〉AB) > 1−ε, which we show in the next section.
Also note that (3.55) has the same coefficients as (3.49). Therefore, (3.55) can
be easily obtained from (3.49) by performing only unitary operations on A+A′

and B+B′. This is done as follows.
We start with a bipartite system A+B which is in some initial state |0〉A|0〉B .

The Hilbert space of both systems A and B must have at least m dimensions.
Consider unitary operators UA′A, UB′B which perform the following transfor-
mations:

UA′A|r〉A′ |0〉A = |jr〉A′ |ir〉A;

UB′B |r〉B′ |0〉B = |jr〉B′ |ir〉B . (3.56)

Applying UA′A ⊗ UB′B to |µ(n)〉A′B′ ⊗ |0〉A|0〉B :

(UA′A ⊗ UB′B)
1√
C(n)

n∑
r=1

1√
r
|r〉A′ |0〉A|r〉B′ |0〉B

=
1√
C(n)

n∑
r=1

1√
r
|jr〉A′ |ir〉A|jr〉B′ |ir〉B , (3.57)

as desired.

3.3.3 Fidelity of the embezzlement transformation

We will prove that for any ε > 0 the fidelity 1− ε can be achieved, for the case
that is relevant for us: when the state |φ〉AB to be extracted is a maximally
entangled state with Schmidt order f :

|ξ(f)〉AB :=
1√
f

f−1∑
i=0

|i〉A|i〉B . (3.58)

In this case, the desired state after the transformation is

|µ(n)〉A′B′ ⊗ |ξ(f)〉AB =

f−1∑
i=0

n∑
j=1

1√
C(n) · j · f

|j〉A′ |i〉A|j〉B′ |i〉B (3.59)
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The n highest coefficients are, in decreasing order:

1√
C(n)


1√
f
, . . . ,

1√
f︸ ︷︷ ︸

f numbers

,
1√
2f
, . . . ,

1√
2f︸ ︷︷ ︸

f numbers

, . . . ,
1√
bnf c · f

, . . . ,
1√
bnf c · f︸ ︷︷ ︸

f numbers

,

1√(
1 + bnf c

)
· f
, . . . ,

1√(
1 + bnf c

)
· f︸ ︷︷ ︸

n mod f = f ·
(
n
f − b

n
f c

)
numbers


, (3.60)

where bzc is the floor of z: the largest integer not greater than z. The coefficients
of the actual state after the transformation |λ(n)〉 are

1√
C(n)

{
1

1
,

1

2
,

1

2
, . . . ,

1

n

}
. (3.61)

So, for the inner product we have

〈λ(n)| (|µ(n)〉A′B′ ⊗ |ξ(f)〉AB) =
1

C(n)

(
1√
1f

+
1√
2f

+ . . .+
1√
f · f

+
1√

(f + 1)2f
+

1√
(f + 2)2f

+ . . .+
1√

2f · 2f
+ . . .

+
1√((

bnf c − 1
)
f + 1

)
bnf cf

+ . . .+
1√

bnf cfb
n
f cf

+
1√(

bnf cf + 1
)(
bnf c+ 1

)
f

+ . . .+
1√

n
(
bnf c+ 1

)
f


≥ 1

C(n)

f ·
 1

f
+

1

2f
+ . . .+

1

bnf cf
+

(
n

f
− bn

f
c
)
· 1(
bnf c+ 1

)
f


=

1

C(n)

(
1

1
+

1

2
+ . . .+

1

bnf c
+

(
n

f
− bn

f
c
)
· 1

bnf c+ 1

)
. (3.62)

Now we will need some bounds involving C(n), which is also known als the n-th
harmonic number. Note that C(n) equals the grey area between x = 0 and
x = n in Figure 3.1. We now define D(z) for z ≥ 1 which is the area of the bars
between x = 0 and x = z. Unlike C(n), D(z) is also defined for non-integers.
For integers we have D(n) = C(n). For non-integers we have

D(z) =
1

1
+

1

2
+ . . .+

1

bzc
+ (z − bzc) 1

bzc+ 1
. (3.63)
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Figure 3.1: Using the two plotted graphs, bounds for the grey area can be
derived.

In Figure 3.1 we have also plotted the graphs 1/x and 1/(x + 1). Comparing
the areas, we can deduce the following inequalities

D(z) ≤ 1 +

∫ z

1

1

x
dx = 1 + lnx (3.64)

D(z) ≥
∫ z

0

1

x+ 1
dx = ln(x+ 1) (3.65)

D(z2)−D(z1) ≤
∫ z2

z1

1

x
dx = ln z2 − ln z1. (3.66)

Now, the right-hand side of (3.62) can be written as

D(n/f)

D(n)
= 1− D(n)−D(n/f)

D(n)
. (3.67)

Using

D(n) ≥ ln(1 + n) > lnn (3.68)

and

D(n)−D(n/f) ≤ lnn− ln(n/f) = ln f, (3.69)

we have

〈λ(n)| (|µ(n)〉A′B′ ⊗ |ξ(f)〉AB) > 1− ln f

lnn
. (3.70)

So, for any f and ε > 0, if n > f1/ε, then the fidelity is greater than 1− ε.
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3.4 Extension to arbitrary projective measure-
ments

We will now perform the final step which extends Theorem 3 to arbitrary pro-
jective measurements:

Theorem 4. Consider a projective measurement performed on a pure quantum
state. In any QM-compatible hidden variable theory satisfying Parameter Inde-
pendence, the probabilities of the outcomes are independent of any supplemental
variables. Therefore, any such theory is trivial.

3.4.1 Von Neumann standard description of measurement

For this last step we use the standard measurement scheme of quantum mechan-
ics, first presented by Von Neumann in 1932 [51]. In this treatment, not only
the object to be measured but also the measuring device is treated as a quan-
tum mechanical system. A measurement involves a unitary interaction between
the system to be measured and the measurement device, where eigenstates of
the observable are coupled to orthogonal states of the measurement device. To
illustrate this, consider a quantum system in the state∑

i

ci|i〉S , (3.71)

which is expressed in the eigenbasis of the observable corresponding to the
projective measurement to be performed. Suppose that the measurement device
is initially in the state |0〉D. Now, the unitary interaction that couples the object
to the measurement device acts like

U

(∑
i

ci|i〉S |0〉D

)
=
∑
i

ci|i〉S |i〉D. (3.72)

If more than one of the ci are nonzero, this interaction results in an entangled
state of the system and the measuring device. This state contains multiple
terms, corresponding to multiple outcomes. However, in reality there is only a
single outcome. Therefore it is usually supposed that the following transition
occurs: ∑

i

ci|i〉S |i〉D  |i〉S |i〉D with probability |ci|2. (3.73)

The nature of this transition is unclear. How this problem is dealt with depends
on the interpretation of quantum mechanics. We can at least say that the
measurement yields as an outcome the eigenvalue corresponding to |i〉S with
probability |ci|2. Also, directly after the measurement, to the system can be
assigned the eigenstate corresponding to the outcome.

3.4.2 Measuring D is measuring S

According to the ideal measurement scheme presented above, when a measure-
ment is performed on S at some stage the following state is produced:∑

i

ci|i〉S ⊗ |i〉D. (3.74)

40



In fact, this coupling can be extended. Assume D is only a small part of the
measurement device, which first interacts with S, and D′ is the next part which
is involved in the interaction. Then, we have∑

i

ci|i〉S 7→
∑
i

ci|i〉S |i〉D 7→
∑
i

ci|i〉S |i〉D|i〉D′ 7→ . . .

7→ |i〉S |i〉D|i〉D′ with probability |ci|2 (3.75)

Here we can see that a measurement performed on D is in fact by definition a
measurement performed on S. Starting from the second step, (3.75) describes
a measurement on D. Starting from the first step, it describes a measurement
on S. However, this is a single measurement with a single outcome, which
is therefore a measurement of S and of D simultaneously. In other words:
every ideal projective measurement performed on a system is in fact also a
measurement performed on a small part of the measurement device.

The measurement on D is a measurement on a part of an entangled state,
in the Schmidt basis. Therefore, Theorem 3 applies. This means that the
probabilities of the outcomes of the measurement on D are independent of any
hidden variables. But we have just seen that the measurement on S is actually
at the same time such a measurement on D. Therefore, for any projective
measurement on a pure state, the outcomes are independent of any hidden
variables. This concludes the proof.

Another way to see this is that during a measurement of S, in principle the
entangled state (3.74) can be isolated. Then, D can be spatially separated from
S. Now, the measurement of S can be completed by a measurement of D in
the basis |i〉D. But, for this measurement Theorem 3 holds, for which the main
ingredients are the strong correlations between hypothetical measurements on
S and D.

3.5 Summary

In this chapter we have proved several theorems, each one building on the previ-
ous one. All results apply to QM-compatible hidden variable theories satisfying
Parameter Independence.

First we showed that for projective measurements on parts of Bell states,
such hidden variable theories give the same probabilities as quantum mechanics.
Then we showed that for projective measurements in a Schmidt basis, probabil-
ities corresponding to equal Schmidt coefficients are equal. Then we extended
this to all probabilities of a measurements in the Schmidt basis. Finally, we
extended the result to arbitrary measurements on pure states, by noting that
during an ideal measurement entanglement is created, and therefore any ideal
measurement is at the same time a measurement in the Schmidt basis on a part
of an entangled state.

The result is a no-go theorem for QM-compatible hidden variable theories
satisfying Parameter Independence. In the next chapter we will discuss some
differences between the formulation of the result in this chapter and CR’s orig-
inal formulation of their result.
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Chapter 4

Some differences between
our reformulation and the
original formulation

The version of the Colbeck-Renner result given in the previous chapter differs
from the original result as presented in [18] and [20] on several points. CR’s
statement of their result is ‘No extension of quantum theory can have improved
predictive power’. Instead, we have presented the result as a no-go theorem for
hidden variable theories satisfying Parameter Independence.

In this chapter we will discuss the main differences and defend the choices
we have made in our reformulation. To begin with, we will argue that it is
not a good idea to treat measurement settings as random variables. Instead,
they should be treated as context variables. Also, we will see that Colbeck and
Renner have an operational approach in mind, where all variables discussed are
assumed to be accessible. In our opinion, this approach makes the result less
general. This also relates to the difference between the ‘No-Signaling’ condition
discussed by CR and the ‘Parameter Independence’ condition we have used.
CR’s statement of their result looks stronger than our reformulation, since we
add the condition of Parameter Independence. However, as we will argue in
Section 4.1, such a condition is also implicitly assumed by Colbeck and Renner
by the way they define ‘Freedom of Choice’. Finally, we will discuss how CR
have used the measurement process to realize the generalization to arbitrary
measurements, which in our reformulation is done in Section 3.4.

4.1 Treating measurement settings as random
variables

In Section 1.4.1 we introduced a type of variables called context variables, which
should be distinguished from random variables. We will now explain why this
distinction is made.

When random variables are associated to outcomes of experiments, it is
important that when we talk about probability distributions over such outcomes,
the context is clear, and that all relevant factors are taken into account. This is
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to ensure that the probability distributions are well-defined. This is independent
of whether the probability is interpreted objectively or subjectively.

We explain this using an example. Suppose an experimenter two dice, each
with 4 faces. One die (A) contains only the odd numbers 1, 3, 5 and 7. The
other (B) contains the even numbers 2, 4, 6 and 8. A measurement consists
of throwing a die of choice and writing down the outcome. A single random
variable X is associated to the outcome of this ‘experiment’. We try to define
a probability distribution over the outcomes P (x).

The experimenter may choose only to roll die A, for which a typical set of
outcomes is

{3, 1, 1, 7, 3, 5 . . .}. (4.1)

He may also choose only to roll die B, which might give the outcomes

{2, 4, 8, 6, 6, 4, . . .}. (4.2)

Or, he can alternate between the dies, which might result in the outcomes

{3, 4, 1, 8, 5, 2, . . .}. (4.3)

We see that we cannot consistently associate a single probability distribution to
X which is compatible with each of these three runs of throws. For example,
in the first run we would want a distribution with P (X = 3) = 1/4, in the
second run we want P (X = 3) = 0 and in the final run we want one of these
two distributions, depending on the number of the throw (odd or even). We see
that P (x) is not well-defined.

We now introduce the context variable D, which for each throw gives the
die that is thrown: D = 1 for die A and D = 2 for die B. Now, given a
value of D, there are well-defined probability distributions of X: we can use
P (x)D=1 and P (x)D=2 which are the probability distributions for die A and die
B, respectively.

Now again consider this last game, but now let the experimenter throw a
regular six-face die before each measurement. If this die gives an odd number,
die A will be thrown, otherwise die B will be thrown. The random variable
X will again be associated with the outcome of this last throw. Because the
choice of which die to throw is now itself the result of a stochastic process
(with uniform probability 1/2), we can treat D as a random variable, with
P (D = 1) = P (D = 2) = 1/2. Instead of writing P (x)d, with D a context
variable, we can now write P (x|d). Now, P (x) is well-defined:

∀x : P (x) =
∑
d

P (x|d)P (d) =
1

8
. (4.4)

We see the dangers of assigning a probability distribution to the choice of die
D in the general case. First, there is no reason to assume that this choice is the
result of a stochastic process: the experimenter is free to choose any pattern of
picking dice. Second, it makes the probability distribution P (x) automatically
well-defined, which does not always make sense considering the runs (4.1)-(4.3)
we have considered above. In general, D is a context variable, and only when
a value of D is given, the probability distribution of X is well-defined. There
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is only an exception when it is clear that the context variable D is assigned a
value which results from some stochastic process. In this case, we can treat D
as a random variable. Then, the probability distribution of X is well-defined
also when a value of D is not given.

We connect these considerations to the argument of Colbeck and Renner.
They associate probability distributions P (a) and P (b) to the setting variables
A and B (which correspond to the variables V and W in our formulation,
respectively), thereby treating them as random variables. They use this to
define independence between these variables and other random variables. For
example, the random variable A is independent of the random variable X iff
P (a, x) = P (a)P (x). Instead, we prefer to treat A and B as context variables.
There is no problem defining independence between a random and a context
variable: independence of a context variable A and a random variable X can be
defined as

∀a′, a′′ ∈ Ã : P (x)a′ = P (x)a′′ . (4.5)

An objection might be that it is not clear how to define independence between
two context variables if they cannot be treated as random variables. But we
think it is not needed to define such an independence. If we have two context
variables A and B, it is possible to let them depend on each other in any way.
For example, we can always choose A = B.

There is another unwanted consequence when context variables are treated
as random variables. Suppose we express Parameter Independence (2.10) using
only random variables:

∀w′, w′′ : P (x|z, v, w′) = P (x|z, v, w′′). (4.6)

Suppose this condition is violated:

∃w′, w′′ : P (x|z, v, w′) 6= P (x|z, v, w′′). (4.7)

Now, suppose Z and X are accessible by Alice, V is controllable by Alice, and
W is controllable by Bob. In this case this violation is usually interpreted
as allowing the possibility for Bob to signal to Alice, because the distribution
P (x|z, v) at Alice’s side seems to depend on the value of W . But in fact, since
W is treated as a random variable here, P (x|z, v) is fixed:

P (x|z, v) =
∑
w

P (x|z, v, w)P (w|z, v). (4.8)

It is unclear now how Bob could signal to Alice. This is not too surprising, since
Bob’s ‘free choice’ of a value for W has to obey a fixed probability distribution
P (w). However, if we treat W as a context variable, (4.7) becomes

∃w′, w′′ : P (x|z)v,w′ 6= P (x|z)v,w′′ . (4.9)

Now it is really clear how Bob can signal to Alice: there is not a single distri-
bution P (x|z)v, but there are different ones for different values of W .

The discussion about treating settings as random variables is not seen often
in the literature. Usually settings are implicitly treated as random variables
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because they are used in conditional probabilities. For example, writing down
P (x|a) implies that A is a random variable since

P (x|a) =
P (x, a)

P (a)
. (4.10)

However, in the writings of Colbeck and Renner the treatment of settings as
random variables is very explicit, since distributions over those settings are
defined. We will come back to this in Section 4.1.

We are not the first to criticize the assignment of probability distributions
to measurement settings. In [14], Jeremy Butterfield writes

‘[A]n act of measurement surely need not have a probability.
Why should every proposition or event have a probability? And
since [the setting] a is a feature of a complex apparatus, and is fixed
or at least influenced by the choice of the experimenter, it seems
quite a good candidate for not having a probability.’

4.2 The operational approach of Colbeck and
Renner

In Chapter 3, we have not assumed anything about the accessibility of the hidden
variable Z. Therefore, the class of hidden variable theories we have studied
includes theories where such variables can be accessible, but also theories where
such variables might be inaccessible. Colbeck and Renner, however, emphasize
that their approach is operational. That is, the variables they discuss are all
thought to be accessible. This is especially clear from the following answer,
which can be found at [17]:

‘Q: What about models which provide higher explanation of the
correlations, but for which certain parameters or systems remain
hidden (as a physical principle), either forever or until after the
quantum measurements have been performed?

A: We do not rule out this possibility. However, this does not
contradict our claim since such hidden systems do not provide ad-
ditional predictive power at the level of experimentalists, and hence
are not extensions in our terminology.’

This also explains why we use the expression ‘hidden variable theories’ instead
of ‘extensions of quantum mechanics’. Colbeck and Renner use the latter, and
part of their definition of such theories is that the extra variables in the extended
theory are accessible. The advantage of our choice is that the result then holds
not only for theories in which the supplemental variables are accessible, but also
for theories where these variables are partially accessible, or not accessible at
all.

4.2.1 ‘Spacetime Variables’ and causal structure

The operational approach of Colbeck and Renner also allows them to assign
spacetime coordinates to variables. The coordinates indicate a time and place
at which the corresponding variable is accessible.
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Figure 4.1: The causal order used

Because we want to explain how CR derive their result, we will now follow
their operational approach. Also, we will follow them in assigning indepen-
dent probability distributions over settings. In accordance with the discussion
above, we interpret this as follows: the settings V and W are determined by the
outcome of some stochastic process, for example independent random number
generators.

CR consider an EPRB measurement: a joint measurement on a state of two
maximally entangled qubits. Random variables X and Y are associated with
measurement outcomes, and random variables V and W are assigned to the
respective measurement settings. Z is the supplemental random variable.

The notion of a ‘causal order’ is introduced. Spacetime coordinates are
attached to the random variables, now called ‘Spacetime Variables’ (SV’s), so
that their causal relation can be defined. As mentioned above, these coordinates
refer to the spacetime point at which the variable can be accessed. The causal
order is a preorder relation between variables, denoted with the symbol ‘ ’. A
preorder relation is reflexive (∀X : X  X) and transitive (∀X,Y, Z : X  
Y, Y  Z : X  Z). The relation ‘A  B is defined as ‘B is in the future
lightcone of A’. We write A 6 B if A B is not true.

The local measurements are assumed to take place in spacelike separated
regions of space-time, while Z is assumed to be in the backward lightcone of V
and W . This gives a causal order generated by the relations V  X, W  Y ,
Z  V and Z  W (by transitivity, this means that also Z  X and Z  Y ).
Graphically, this can be represented as in Figure 4.1.

4.3 No-Signaling from Freedom of Choice

In this part the authors attempt to derive a no-signaling condition from an
assumption called ‘Freedom of Choice’ which they present as a very reasonable
assumption. We will follow the argument as presented in [20].
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4.3.1 Freedom of Choice

A random variable A is free if it is independent of the set of random variables
outside of its causal future Γ := {X : A 6 X}:

∀X1, X2, . . . ∈ Γ : P (a, x1, x2, . . .) = P (a)P (x1, x2, . . .). (4.11)

The ‘Freedom of Choice’ (FR) assumption says that the settings V and W are
free variables with respect to the causal order defined above (see Figure 4.1).
This means that

P (y, v, w, z) = P (v)P (y, w, z);

P (x, v, w, z) = P (w)P (x, v, z). (4.12)

Now, a condition called ‘No-Signalling’ is derived from this assumption. No-
Signalling (NS) is defined as

P (x, z|v, w) = P (x, z|v),

P (y, z|v, w) = P (x, z|w). (4.13)

The derivation is simple. We have

P (x, z|v, w) =
P (x, z, v, w)

P (v, w)
=
P (x, z, v)P (w)

P (v)P (w)
= P (x, z|v);

P (y, z|v, w) =
P (y, z, v, w)

P (v, w)
=
P (y, z, w)P (v)

P (w)P (v)
= P (y, z|w). (4.14)

The analogue of Source Independence (2.8), with random variables instead of
context variables, can also be derived:

P (z|v, w) =
P (z, v, w)

P (v, w)
=
P (z, v)P (w)

P (v)P (w)
=
P (z)P (v)

P (v)
= P (z). (4.15)

Then we have also, for any w′, w′′,

P (x|z, v, w′) =
P (x, z|v, w′)
P (z|v, w′)

=
P (x, z|v)

P (z)
=
P (x, z|v, w′′)
P (z|v, w′′)

= P (x|z, v, w′),

(4.16)

and similarly P (y|z, v′, w) = P (y|z, v′′, w). That is, we have

∀w′, w′′ : P (x|z, v, w′) = P (x|z, v, w′′);
∀v′, v′′ : P (y|z, v′, w) = P (y|z, v′′, w). (4.17)

Like (4.6), this is just Parameter Independence (2.10) with random variables.
The fact that CR call this No-Signaling makes sense, given that they follow an
operational approach where all variables, including Z, are accessible. However,
as discussed above, it is confusing to talk about signaling when settings are
treated as random variables and therefore have fixed probability distributions.
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4.3.2 The ‘Freedom of Choice’ assumption

The Freedom of Choice assumption is presented as a mild assumption. For
example in [19] they claim their result is derived ‘only assuming the freedom
of choice of the experimenters’. This makes it sound like an assumption that
can hardly be denied. However, there has been a lot of response to this: many
authors disagree with the way this assumption is defined[31][32][33][39]. We also
think that the assumption is stronger than its name suggests. The problem lies
in the causal order that is implicit in the assumption. Using this specific causal
order, a free variable is defined as ‘independent of all variables not in the future
lightcone’. The motivation of using this causal order is the theory of relativity,
where influences at spacelike distances are usually assumed to be prohibited,
since by using a Lorentz transformation such an influence would in some frame
be an influence backwards in time. In the words of CR [18]:

‘the motivation for assumption FR is that, when interpreted
within the usual relativistic spacetime structure, it is equivalent to
demanding that [V ] can be chosen such that it is uncorrelated with
any pre-existing values in any reference frame. (. . . )

We also remark that Assumption FR is consistent with a notion
of relativistic causality in which an event B cannot be the cause of A
if there exists a reference frame in which A occurs before B. In fact,
our criterion for A to be a free choice is satisfied whenever anything
correlated to A could potentially have been caused by A. However, in
an alternative world with a universal (frame-independent) time, one
might reject assumption FR and replace it with something weaker,
for example, that A is free, if it is uncorrelated with anything in the
past with respect to this universal time. Nevertheless, since experi-
mental observations indicate the existence of relativistic spacetime,
we use a notion of free choice consistent with this.’

If NS would be violated, free variables would have influences to variables at
spacelike separation. But if free variables can not have such influences by defi-
nition, then it is no surprise that NS is satisfied.

It is clear that No-Signaling has more to do with the causal structure that
is assumed than with the assumption that V and W are free variables. From
the above quotation, it is also clear that CR admit that when another causal
structure is assumed, No-Signaling does not follow. However, at other times (for
example in the first quote of this paragraph) they do not mention this causal
structure and only talk about the freedom of the experimenters.

It is especially peculiar that CR justify their use of the relativistic causal
structure by the last sentence of the above quotation. Their result is about
possible extensions of quantum theory, which are theories that include variables
that have never been observed. In such a context it is strange to rule out
beforehand any theory which has a different causal structure than that suggested
by relativity, such as Bohmian mechanics. If we wonder whether quantum
mechanics can be superseded by another theory, why would we rule out theories
which could supersede relativity?

Moreover, there are other reasons why combining causal structures like the
above with classical probability theory is suspect. Adhering to such a causal
structure suggests a common cause principle can be applied to it: that any
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correlation between two events that are not causally related can be screened of
by a common cause. But the violation of the Bell inequality in the EPRB setting
is exactly what prevents a common cause explanation for the correlations.

To conclude, we think that assuming the relativistic causal structure and
the way Freedom of Choice is defined is too restrictive: it excludes influences
over spacelike distances from the start. At the least it is a controversial move
which makes the result vulnerable to criticism. Indeed, their result has been
mostly criticized for the definition of ‘Freedom of Choice’, while little attention
has been paid to the rest of the result.

Therefore, in our reformulation we have not made such a move, and just
assumed Parameter Independence, which is similar to No-Signaling, from the
beginning. We admit this makes the result less general: it now only applies to
hidden variable theories with Parameter Independence, instead of all ‘extensions
of quantum theory’. However, in our eyes it makes the result stronger, because
it does not rely on the suspicious move of deriving No-Signaling from a freedom
assumption.

4.4 Relation between the measurements on S

and D

In proving Theorem 4 in Section 3.4, we have argued that measurements of
different parts of a system can actually be the same measurement by definition.
Closely reading CR’s work seems to tell a different story. This is most apparent
in the following passage1:

‘For later reference, we also note that, according to quantum
theory, any possible evolution of a quantum system, S, corresponds
to a unitary mapping on a larger state space (that may include the
environment of the system). In the case of a measurement process,
this larger state space includes the measurement device, D. Specifi-
cally, a projective measurement, say {Eax}x, would correspond to a
unitary of the form

|Ψ〉 7→
∑
x

√
Eax |Ψ〉S ⊗ |x〉D, (4.18)

where {|x〉D} are orthonormal states of the measurement device (and
possibly also its environment) that encode the outcome. The out-
come X of the original measurement may then be recovered by a
subsequent projective measurement on D in the basis {|x〉D}.’ (my
emphasis)

Colbeck and Renner seem to talk about consecutive measurements: first the
initial measurement on S is performed (call this ‘measurement 1’), and then an-
other measurement on D may be performed (call this ‘measurement 2’). How-
ever, in order to apply Theorem 3, it is crucial that when measurement 2 is
performed S and D are entangled as in (4.18). Hereby CR seem to adhere to a
no-collapse interpretation of quantum mechanics: states always evolve unitarily
as long as the system considered is big enough so that it is isolated.

1[20], p. 4
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This touches the problem of reconciling the projection postulate with the
Schrödinger postulate (see Section 1.4.2): If there is collapse during a mea-
surement, then which interactions count as measurements? And if there is no
collapse during a measurement, then how can it be justified that the collapse
postulate can still be applied for practical purposes? How this is dealt with
depends on the interpretation of quantum mechanics. Are Colbeck and Renner
correct in stating that the measurement on D gives the same outcome as the
measurement on S? We will now address this question in the context of different
interpretations.

4.4.1 No-collapse interpretations

In so-called no-collapse interpretations it is assumed that any isolated system
always evolves unitarily, even if a measurement has taken place within that sys-
tem. We discuss three variants: Bohmian mechanics, the modal interpretations
and the many-worlds interpretation.

Bohmian mechanics [8] is a deterministic theory, giving the same predic-
tions as ordinary quantum mechanics. It is usually formulated in the context of
non-relativistic particle quantum mechanics. The positions of the particles are
assumed to have definite values at all times. And indeed, if measurement 1 has
been performed on S, then measurement 2 on D will give the same outcome.
However, Bohmian mechanics is an example of a hidden variable theory where,
given values of the hidden variables, the theory does give different probability
distributions over outcomes than quantum mechanics. Therefore it must vio-
late one of the assumptions that has been made, and indeed does: Parameter
Independence is violated. Note however that signaling is still not possible in
Bohmian mechanics because the hidden variables, i.e. the particle positions,
are not directly accessible.

In modal interpretations [24] it is assumed that the state vector assigned
to a system does not give all the properties of the system. Rather, for some
observables, the system has one definite eigenvalue as its property, although the
state vector is a superposition of different eigenstates of the observable. In this
way, the gap between the superposition of the state vector and the definiteness
of observed properties is closed. However, there is no consensus on what the
dynamics is of the properties: how do the properties evolve when the state
vector evolves? Therefore, it is not clear whether the condition of Colbeck and
Renner is obeyed: that a second measurement in the same basis gives the same
outcome as the first measurement.

In the many-worlds interpretation [44] it is assumed that when the combined
system S+D has evolved into a superposition, all the corresponding outcomes
have actually occurred, but in different ‘branches of reality’. Also in this case
it does not follow that the second measurement gives the same outcome, since
the first measurement does not even have a single outcome.

An inconsistency in CR’s derivation?

If we follow CR in saying that after the first measurement there is a single
definite outcome, but on the other hand evolution is always unitary when con-
sidering a system large enough, then there seems to be an inconsistency in their
argument. Since they assume that measurement 2 in the basis |x〉D gives the
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same outcome as measurement 1, a variable X denoting the outcome of this first
experiment is, from the perspective of measurement 2, a supplemental variable
which gives information about the measurement outcome. But should X be
included in the causal structure? Is it a ‘Spacetime Variable’ in CR’s sense? X
is an example of a variable to which there is limited access from the perspective
of measurement 2: the only way to get information about X is to perform mea-
surement 2 in the basis |x〉D. Is is not clear what X says about measurement
outcomes if the second measurement is performed in another basis than |x〉D.
Furthermore, nothing can be known about X before the measurement, unless
the extended theory provides some other mechanism to know something about
X before the measurement was made.

In [18] we read2:

‘assumption FR is that the input, A, of a measurement process
can be chosen such that it is uncorrelated with certain other SVs,
namely all those whose coordinates lie outside the future lightcone
of the coordinates of A. (. . . ) it is equivalent to demanding that
A can be chosen such that it is uncorrelated with any pre-existing
values in any reference frame.’

From the perspective of the experimenter performing measurement 2, X surely
looks like a value which is pre-existing in some reference frame, even stronger:
it is pre-existing in any reference frame.

It is also noteworthy that Colbeck and Renner use their result to show that
a ‘system’s wave function is in one-to-one correspondence with its elements
reality’ [19]. This claim is directly in contradiction with their treatment of the
measurement process quoted at the beginning of Section 4.4, which says that if
a measurement is performed within a closed system, the whole system can on
the one hand be described by a state which is the result of unitary evolution,
but on the other hand the measurement has a definite outcome X. Since in
general multiple outcomes are compatible with the same quantum state, X is
an additional property of the system, and therefore there cannot be a one-to-one
correspondence between quantum state and its elements of reality.

More on modal interpretations

According to modal interpretations, if during a measurement the measurement
device D has interacted with the system to be measured S, as long as S+D
remains isolated, its evolution is unitary. Therefore, the state of S+D will gen-
erally end up in a superposition like (4.18), which has terms corresponding to
different outcomes. However, in modal interpretations, the system S+D has
then an additional property that singles out one of the terms in the superpo-
sition. This property can be interpreted as a hidden variable, since it is not
included in the state of S+D. We define the hidden variable P , of which the
value indicates the term that is singled out. We would now expect that when
the experimenter interacts with S+D to find out the outcome of the measure-
ment, this outcome will be the one corresponding to the term singled out by P .
But this would mean that P is a hidden variable which tells something about
measurement outcomes because the outcome is not independent of P . Follow-
ing the result of Chapter 3, this means that a theory which, in the spirit of

2p. 2
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the modal interpretation, assigns extra values to systems which say something
about measurement outcomes, violates Parameter Independence. It would be
interesting to work out this issue with modal interpretations in more detail, but
for now we leave it at this.

4.4.2 Relation to collapse interpretations

In collapse interpretations, sooner or later the combined system S+D will stop
evolving unitarily, and ‘collapse’ to one of the terms in (4.18). An example of
a collapse interpretation is the GRW interpretation [30], where the Schrödinger
equation is modified such that there is a very high probability of collapse when
number of particles involved in an entangled system becomes large. Another
example is an interpretation where the consciousness of the observer plays a
role: once the measurement outcome is registered by a conscious observer, the
total state collapses. This interpretation is usually attributed to Von Neumann
and Wigner [3].

In such interpretations, at any point in time during a measurement, either
the state has collapsed and there is a single outcome, or the state has evolved
only unitarily. But it cannot be that there is a definite outcome while the
state is still entangled between object and measurement device. So, in this
case, it matters when measurement 2 takes place. If it takes place before the
collapse, then one cannot really speak anymore about the outcome of the initial
measurement, since this measurement has not finalized, and only the second
measurement has an outcome. If the second measurement takes place after the
collapse, then indeed the same outcome is obtained. However, since the state
is not in a superposition anymore, the strong correlations are lost and therefore
Theorem 3 cannot be applied anymore.

4.4.3 Alternative interpretation of the relation between
the two measurements

In the above we have seen that the claim that the outcome of measurement 1
can be recovered by performing measurement 2 is not in agreement with some
of the most common interpretations of quantum mechanics. We have contacted
Roger Colbeck regarding this claim. In his reply, he explained that in the
context of collapse theories measurement 2 should be seen as a measurement on
only a small part of the measurement device, before any collapse has occurred.
Then, measurement 2 is by definition also a measurement on S, and therefore
measurement 1 and measurement 2 become one and the same measurement.
We have used this argument in Section 3.4. However, this explanation seems to
differ a bit from the reasoning in the quotation at the beginning of Section 4.4.

4.5 Summary

In this chapter we have highlighted some differences between our formulation
and the original formulation of CR. The most important point is that CR try
to derive the result from very little assumptions: a no-signaling condition is
derived from an assumption about the freedom of experimenters. Although it is
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an interesting discussion whether such a derivation is justified, it is a step vul-
nerable to criticism. Therefore, in our reformulation we have chosen to assume
a condition similar to No-Signaling, namely Parameter Independence, instead
of trying to derive it. Furthermore, we have not restricted ourselves to an op-
erational approach: we have not assumed anything about the accessibility of
the supplemental variables. Also, we have argued that it is better not to treat
measurement settings, and other circumstances that can be chosen at will by
experimenters, as random variables.

Finally, there is another difference that deserves mentioning. In CR’s work
there is no analogue of Theorem 2. Instead, they only derive a result similar
to Theorem 1, which is about maximally entangled states of Schmidt order
2, and then suggest that this result can be extended to maximally entangled
states of Schmidt order 2n for any n ∈ N, because the tensor product of n
maximally entangled states of Schmidt order 2 equals a maximally entangled
state of Schmidt order 2n [18]3. It is however not made explicit how this follows.
Furthermore, Theorem 2 is more general because it applies to entangled states
of any Schmidt order, not only of Schmidt order 2n.

3Supplementary Information, p. 6
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Chapter 5

Example: Di Lorenzo’s
models are in conflict with
CR’s result

Recently a paper by Antonio Di Lorenzo has appeared [22] in which he defines
a class of hidden variables for spin measurements performed on a system in the
singlet state

|Ψ〉S =
1√
2

(|0〉S1
|1〉S2

− |1〉S1
|0〉S2

). (5.1)

The models in this class satisfy Parameter Independence (Di Lorenzo: ‘setting
independence’), and Source Independence (Di Lorenzo: ‘measurement indepen-
dence’). However, the models are not trivial. Therefore, there seems to be a
conflict with the result of Colbeck and Renner. Di Lorenzo explicitly states that
there is no conflict:

‘. . . , the results presented here show that quantum mechanics
can be extended through the specification of additional parameters
[z], and that this extension has improved predictive power, (. . . ),
and consequently the predicted joint probability for given [z] differs
from the quantum mechanical one:

[P (x, y|z)~a,~b 6= PQM (x, y)~a,~b].

This seems to contradict the findings of [Colbeck and Renner]. How-
ever, in [their work], the impossibility to have an improved predicted
power refers to the marginal probability [P (x|z)~a], not to the joint
probability [P (x, y|z)~a,~b]. The models discussed in the present work

predict marginal probabilities of [P (x|z)~a] = 1/2 and hence do not
contradict [Colbeck and Renner’s work]. In other words, the ap-
parent tension is due to the definition of “extension of quantum
theory.”’

This seems to be wrong. Indeed, a part of Colbeck and Renner’s result is that
the marginal probabilities in this case are 1/2 (as shown in Section 3.1). But

54



the end result is that for every projective measurement the probabilities are
independent of any supplemental variables like Z (as shown in Section 3.4.2).

We will now explicitly show where Di Lorenzo’s result is in conflict with
the result of Colbeck and Renner (or rather: our reformulation of it). We will
consider one simple model from the class presented by Di Lorenzo and show
step-by-step how this model is ruled out. This is a good opportunity to give a
concrete example, which helps in understanding the results of Chapter 3.

The fact that Di Lorenzo considers models for a two-particle spin singlet
state, where the measurement outcomes for both particles are strongly cor-
related, may cause some confusion. Colbeck and Renner’s result is based on
strong correlations for measurements on entangled systems. But we will not
use the strong correlations of the singlet state to disprove Di Lorenzo’s model.
Instead, we consider an entanglement between the whole 2-particle system and
another 2-particle system. The strong correlations between measurements on
both 2-particle systems is what we will use to prove that Di Lorenzo’s model is
in conflict with CR’s result.

The following is a simple model from the class of models presented by Di
Lorenzo1:

|Ψ〉S =
1√
2

(|0〉S1
|1〉S2

− |1〉S1
|0〉S2

);

Z̃ = {−1,+1};
P (Z = +1) = P (Z = −1) = 1/2;

P (x1, x2|z)~a,~b =
1

4

(
1− x1 · x2

(
~a ·~b− (1− (~a ·~b)2) · z

4

))
. (5.2)

Here, the settings ~a and ~b are unit vectors corresponding to observables ~a · ~σ
and ~b · ~σ, where ~σ = (σx, σy, σz) is a vector consisting of Pauli matrices. S1 is a
single-particle system (‘particle 1’) as is S2 (‘particle 2’), and S is the composite
system S1 + S2. Note that we only consider the spins of the particle, not the
positions. X1 and X2 are the outcomes of the measurements on particle 1 and
particle 2, respectively.

We only have to consider a single measurement setting. An easy choice is
~a = ẑ and ~b = x̂, so that ~a ·~b = 0, and the observables are simply σz and σx. In
that case,

P (x1, x2|z) =
1

4

(
1 +

x1 · x2 · z
4

)
=

1

4
+
x1 · x2 · z

16
. (5.3)

The probabilities given a value for Z are 3/16 or 5/16, while the probabilities
when averaging over Z are all 1/4, which is in accordance with the quantum

1This model can be obtained from Di Lorenzo’s class of models by choosing µ(λ) = 1
2

(δ(λ−
1) + δ(λ+ 1)), G(λ) = λ/4 in equation (5) and identifying x1 = σ, x2 = τ .
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mechanical prediction. In particular, we have

P (X1 = +1, X2 = +1|Z = +1) =
5

16
;

P (X1 = +1, X2 = −1|Z = +1) =
3

16
;

P (X1 = +1, X2 = +1|Z = −1) =
3

16
;

P (X1 = +1, X2 = −1|Z = −1) =
5

16
. (5.4)

We will show that these probabilities lead to a contradiction when taking into
account the measuring process.

The joint measurement of particles 1 and 2 can be described as a single
projective measurement. To do this, we define an observable with the following
eigenvectors and eigenvalues:

Outcomes Eigenvector Eigenvalue
X1 = +1, X2 = +1 |0〉S1

|0x〉S2
−1

X1 = +1, X2 = −1 |0〉S1 |1x〉S2 +1
X1 = −1, X2 = +1 |1〉S1 |0x〉S2 +2
X1 = −1, X2 = −1 |1〉S1

|1x〉S2
+3

where

|0x〉 :=
1√
2

(|0〉+ |1〉);

|1x〉 :=
1√
2

(|0〉 − |1〉). (5.5)

We will also write |0z1x〉S for |0〉S1
|1x〉S2

, and similarly for the other combina-
tions. The observable for this projective measurement is then

O = −1 · P (|0z0x〉) + 1 · P (|0z1x〉) + 2 · P (|1z0x〉) + 3 · P (|1z1x〉). (5.6)

Also, the singlet state |Ψ〉S can be written

|Ψ〉S =
1√
2

(
|0〉S1 ⊗

1√
2

(|0x〉S2 − |1x〉S2)− |1〉S1 ⊗
1√
2

(|0x〉S2 + |1x〉S2)

)
=

1

2
(|0z0x〉S − |0z1x〉S − |1z0x〉S − |1z1x〉S). (5.7)

Following the von Neumann measuring scheme (Section 3.4.1), during a mea-
surement of the observable O the following state is created

|φ〉SD =
1

2
(|0z0x〉S |0z0x〉D − |0z1x〉S |0z1x〉D

− |1z0x〉S |1z0x〉D − |1z1x〉S |1z1x〉D). (5.8)

where D is (part of the) measuring device. In order to obtain a Schmidt de-
composition with positive coefficients, we define

|0z0′x〉D := |0z0x〉D;

|0z1′x〉D := −|0z1x〉D;

|1z0′x〉D := −|1z0x〉D;

|1z1′x〉D := −|1z1x〉D.
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so that

|φ〉SD =
1

2
(|0z0x〉S |0z0′x〉D + |0z1x〉S |0z1′x〉D

+ |1z0x〉S |1z0′x〉D + |1z1x〉S |1z1′x〉D). (5.9)

As explained in Section 3.4.2, the measurement on S can also be interpreted as
a measurement on D in the corresponding basis

{|0z0′x〉D, |0z1′x〉D, |1z0′x〉D, |1z1′x〉D}, (5.10)

with corresponding observable

−1 · P (|0z0′x〉) + 1 · P (|0z1′x〉) + 2 · P (|1z0′x〉) + 3 · P (|1z1′x〉). (5.11)

This step can be made more explicit by considering an indirect measurement.
The spin of particle 1 is coupled to another particle (1′) in the z-basis, while
the spin of particle 2 is coupled to another particle (2′) in the x-basis. This
also creates the state |φ〉SD, but now D is simply another system consisting of
two particles. Now, particle 1′ is measured in the z-basis, while particle 2′ is
measured in the x-basis. This is effectively a measurement of particles 1 and 2.

We now consider different measurements on S and D after the state |φ〉SD
has been created as part of the first measurement of S. Note that this first
measurement has not been finished at this point. First defining

|θ(
′)〉 = cos

θ

2
|0z0x(

′)〉+ sin
θ

2
|0z1x(

′)〉, (5.12)

we consider measurements of the observables

Ov = −1 · P (|v〉) + 1 · P (|v + π〉) + 2 · P (|1z0x〉) + 3 · P (|1z1x〉);
Ow = −1 · P (|w′〉) + 1 · P (|w + π′〉) + 2 · P (|1z0′x〉) + 3 · P (|1z1′x〉), (5.13)

on S and D, respectively. The setting v (w) corresponds to the observable Ov
(Ow). To the outcomes we associate random variables X and Y , respectively.
As in Section 3.2, we look at the probability distribution conditioned on the
outcomes being ±1:

P|1|(x, y)v,w = P (x, y||X| = |Y | = 1)v,w =
1

4
(1 + x · y · cos (v − w)) . (5.14)

In the Di Lorenzo model, we have

P|1|(Y = −1|Z = +1)W=0 =
5

8
;

P|1|(Y = +1|Z = +1)W=0 =
3

8
;

P|1|(Y = −1|Z = −1)W=0 =
3

8
;

P|1|(Y = +1|Z = −1)W=0 =
5

8
. (5.15)
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We will show that (5.14) and (5.15) are in contradiction. We define

B0 = Y
∣∣
W=0

; A1 = X
∣∣
V=1· π10

;

B2 = Y
∣∣
W=2· π10

; A3 = X
∣∣
V=3· π10

;

B4 = Y
∣∣
W=4· π10

; A5 = X
∣∣
V=5· π10

;

B6 = Y
∣∣
W=6· π10

; A7 = X
∣∣
V=7· π10

;

B8 = Y
∣∣
W=8· π10

; A9 = X
∣∣
V=9· π10

. (5.16)

Note that P|1|(y)W=0 = P|1|(b0). Now,

1

4
=
∣∣∣P|1|(Y = +1|Z = +1)W=0 − P|1|(Y = −1|Z = +1)W=0

∣∣∣
=
∣∣∣P|1|(B0 = +1|Z = +1)− P|1|(B0 = +1|Z = +1)

∣∣∣
≤
∣∣∣P|1|(B0 = +1|Z = +1)− P|1|(A1 = +1|Z = +1)

∣∣∣
+
∣∣∣P|1|(A1 = +1|Z = +1)− P|1|(B2 = +1|Z = +1)

∣∣∣
+ . . .+

∣∣∣P|1|(A9 = +1|Z = +1)− P|1|(B0 = +1|Z = +1)
∣∣∣

≤ P|1|(B0 6= A1|Z = +1) + . . .+ P|1|(A9 6= B0|Z = +1). (5.17)

Similarly, for Z = −1:

1

4
=
∣∣∣P|1|(Y = +1|Z = −1)W=0 − P|1|(Y = −1|Z = −1)W=0

∣∣∣
≤ P|1|(B0 6= A1|Z = −1) + . . .+ P|1|(A9 6= B0|Z = −1). (5.18)

Averaging over Z, i.e. multiplying (5.17) and (5.18) by P (Z = +1) =
P (Z = −1) = 1/2 and adding the two, we get

1

4
≤ P|1|(B0 6= A1) + . . .+ P|1|(A9 6= B0) = I5 = 10 · sin2 π

10 · 2
≈ 0.245,

(5.19)

which is false.
Starting from a model taken from the class proposed by Di Lorenzo, we

reached a contradiction. Therefore, when taking into account the measurement
scheme, this model cannot be in agreement with quantum mechanics. Although
in this chapter we have just shown the conflict of a single model of Di Lorenzo’s
class, the general result of Chapter 3 shows that all models must be in conflict,
except for trivial ones, in which probabilities are independent of any supple-
mental variables.

We did not need to use embezzlement in this example, because the Schmidt
coefficients of |φ〉SD were already all equal.
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Chapter 6

Conclusion and discussion

In this chapter, the results of this thesis are summarized. Furthermore, we
discuss some possible issues and suggestions for improvement, and some ideas
for further research.

6.1 Overview of results

The main result is that we derived a no-go theorem for non-trivial QM-compatible
hidden variable theories satisfying Parameter Independence. This result is not
really new: it is a reformulation of the work of Colbeck and Renner, who pre-
sented it as a theorem saying that no extension of quantum theory can have
improved predictive power. We have explained step-by-step the most impor-
tant ingredient of the result: the strong correlation in measurements on maxi-
mally entangled states. Furthermore, we have included a complete description
and explanation of the embezzlement transformation, as well as a proof that
this transformation can be done with arbitrary precision. By evaluating criti-
cally the work of Colbeck and Renner, we have stumbled upon some interesting
points. We have seen that in CR’s assumption of ‘Freedom of Choice’, a no-
signaling assumption is hidden in the definition. Another point is that variables
which describe the context of an experiment should generally not be treated
as random variables. Also, we have seen that interesting questions arise when
trying to combine this result with interpretations of quantum mechanics. It
seems that in no-collapse interpretations like the modal interpretation, Param-
eter Independence must somehow be violated if in addition to the state vector
extra properties are assigned to systems which tell something about measure-
ment outcomes. Finally, we have explicitly demonstrated a conflict of recent
work of Antonio Di Lorenzo with the result.

6.2 Possible issues and improvements

6.2.1 Application to more general types of measurement

In this thesis we have only discussed non-degenerate projective measurements.
We have not extended the result to degenerate measurements, although we guess
that this is an easy extension of the result. Another question is whether the

59



result also holds for the more general class of POVM measurements1. According
to CR, this is indeed the case since according to Naimark’s theorem any POVM
measurement can be described as a projective measurement on a larger Hilbert
space2. But, what seems necessary then is that every POVM measurement is
in fact a projective measurement on a larger Hilbert space. This is a point that
deserves further investigation.

Also, in the generalization to arbitrary projective measurements, we have
used the von Neumann measurement scheme. This scheme is highly idealized,
and real measurements are usually only approximations of this. For example, the
object system might be disturbed more by the measurement than is described
by the von Neumann scheme, or even destroyed. Consider the measurement of
a photon: the photon is destroyed when it is detected. There are other issues:
the initial state before the measurement might be something different than a
pure product state of the system to be measured and the apparatus. There is
an extensive literature on this subject, and it would be interesting to investigate
how the result relates to more realistic measurements.

6.2.2 Relation to experimental practice

In the derivations of Theorems 1-4, we have made use of measurements which
are easy to write down, but hard to perform in reality. For example, to get a
value of IN close to zero, measurements are considered for which the separation
between settings is very small. Furthermore, embezzling states have been used,
which have never been created in reality. We have described the embezzlement
transformation using unitary operators, but we have not suggested how such
transformations can be implemented in practice. This is a trait of the field of
quantum computation, where it is usually assumed that any unitary operation
can be performed without worrying about the physical implementation of the
operation. However, if quantum mechanics is correct, all those steps can be
justified by stating that those measurements and transformations are at least
possible in principle.

Knowing one IN means not knowing them all

IN , definined in (2.36), is a quantity that can be measured for any system which
is in a maximally entangled of Schmidt order 2. It imposes a constraint on the
probability distributions of any theory satisfying Parameter Independence, even
if quantum mechanics is not correct. Experiments have been performed to find
an IN as low as possible [49]. However, the power of this theory-independent
approach is limited, since there is no guarantee that IN can be assumed to be
that low in other experimental arrangements, using other systems.

For example, we might do an EPRB-type experiment with photons and find
an upper bound for IN of 0.01. This does not say what the upper bound of IN
applies for an EPRB-type experiment with electrons. While quantum mechanics
predicts that IN goes to zero in the limit N → ∞, this does not mean that in
other theories the value of IN is the same in different types of experiments.

1See for example [40], Section 2.2.6
2[20], p. 4
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6.2.3 Generalization to continuous hidden variables

For simplicity, we limited our class of hidden variable theories to theories which
assign a single discrete hidden variable to a system. However, the generalization
to continuous hidden variables should not be too hard. All probability distri-
butions involving the hidden variable Z would then be replaced by probability
density functions, and sums over Z should be replaced by integrals. The results
would be reformulated a bit: instead of holding for all hidden variables, they
would hold for all hidden variables except a measure-zero set. For example,
Theorem 1 has been proved for continuous hidden variables in [12].

6.3 Outlook on future research

6.3.1 Relation between quantum states and reality

Colbeck and Renner have used their result to derive that there is a one-to-one
correspondence between quantum states and ‘its elements of reality’, which is
supposed to be some real underlying state [19]. We are skeptical about this
result, since this is a claim about ontology, while CR adhere to an operational
approach. Furthermore, something like Parameter Independence might not hold
at the fundamental level of reality. And, the relation between CR’s result and
the different interpretations of quantum mechanics, discussed in Section 4.4, is
also relevant to the question how quantum states relate to reality. Although
we think that a one-to-one correspondence between quantum states and ‘real’
states cannot be derived directly from CR’s result, there is a lot to investigate
here.

6.3.2 Relation to the probabilistic framework

The framework of general probabilistic theories has been used to treat quantum
mechanics as a probabilistic theory in a vast landscape of possible probabilis-
tic theories, which also include classical mechanics and ‘superquantum’ theories
which allow for correlations stronger than those in quantum mechanics (see for
example [4]). Using this framework, the question why quantum theory has this
particular place in the landscape can be investigated. It would be interesting
to connect the result of this thesis to this framework. For example, in this
framework the result might be stated as follows: quantum theory cannot be re-
placed by a non-signaling superquantum theory where the pure quantum states
are mixtures of states in this higher theory. Another interesting question is
whether the result of this thesis can be generalized to arbitrary theories in the
probabilistic framework: can we distinguish between those theories that can be
extended and those that cannot be extended?
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Appendix A

Quantum mechanics

A.1 Schmidt decomposition

Let |φ〉AB ∈ HA ⊗HB be the state of a composite system A+ B. Then |φ〉AB
can be written as

|φ〉AB =
∑
i

λi|i〉A|i〉B , (A.1)

with λi non-negative,
∑
i λ

2
i = 1 and |i〉A, |i〉B orthonormal sets of vectors. This

representation is called the Schmidt decomposition. The numbers λi are called
the Schmidt coefficients. The number of positive λi is called the Schmidt number
of |φ〉AB . |i〉A and |i〉B are called Schmidt bases. The Schmidt basis |i〉A(|i〉B)
may have less elements than the dimension of HA(HB). In that case, it is not
a basis of HA(HB), but of the subspace spanned by it. The set of numbers λi
is unique (except for the number of zeroes), and if all λi are different then the
decomposition is unique (of course, up to ordering of the vectors |i〉A|i〉B).

If at least two λi are equal, then the Schmidt decomposition is not unique.
We can use the symmetry property explained in Section A.2 to find other decom-
positions. Take a set of orthonormal vectors {|j〉A|j〉B} for which the Schmidt
coefficients are equal. Then, for any basis |j′〉A of the subspace spanned by |j〉A,
there is a basis |j′〉B for the subspace spanned by |j〉B such that∑

j

|j〉A|j〉B =
∑
j

|j′〉A|j′〉B . (A.2)

So, we can obtain another Schmidt decomposition by replacing the vectors
|j〉A|j〉B by |j′〉A|j′〉B .

The Schmidt decomposition was first proved in [45]. A modern version can
be found in [40].

A.1.1 Perfect correlation when measuring in Schmidt bases

Suppose Alice and Bob share the state |φ〉AB . Consider the Schmidt decom-
position (A.1). Consider projective measurements on the state, where Alice
performs her measurement in the Schmidt basis |i〉A while Bob performs his in
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the Schmidt basis |i〉B . Calling Alice’s eigenvalues ei and Bob’s eigenvalues fi,
the probability of getting the pair of outcomes (ej , fk) is

|(〈j|〈k|)|φ〉|2 =

∣∣∣∣∣∑
i

λi〈j|i〉〈k|i〉

∣∣∣∣∣
2

= λ2jδjk. (A.3)

We see that there is perfect correlation: Alice obtains the value ej if and only
if Bob obtains the value fj .

A.2 Symmetry property of maximally entangled
states

If |Ψ〉AB ∈ HA⊗HB is a maximally entangled state in a D2-dimensional Hilbert
space of Schmidt order D, then for any basis |i′〉A of HA there is a basis |i′〉B
of HB such that

|Ψ〉AB =
1√
D

D∑
i=1

|i′〉A ⊗ |i′〉B . (A.4)

This guarantees that there is maximal correlation for any projective measure-
ment on A: there is always a measurement on B which gives the same outcome.

Proof
By definition, we have

|Ψ〉AB =
1√
D

D∑
i=1

|i〉A ⊗ |i〉B . (A.5)

Now, let |i′〉A be any basis of HA. Let U be the unitary operator which
transforms the vector |i〉A to |i′〉A. This means Uij |j〉A = |i′〉A. Now define
|i′〉B := U∗ij |j〉B . Note that U∗ is also unitary since U∗†U∗ = (U†U)∗ = I∗ = I.
Therefore, |i′〉B is a basis of HB . Furthermore,

1√
D

D∑
j=1

|j′〉A ⊗ |j′〉B =
1√
D

∑
jkl

Ujk|k〉A ⊗ U∗jl|l〉B (A.6)

=
1√
D

∑
kl

δkl|k〉A ⊗ |l〉B (A.7)

=
1√
D

∑
k

|k〉A ⊗ |k〉B = |Ψ〉AB . (A.8)

Here we have used ∑
j

UjkU
∗
jl = δkl, (A.9)

which follows from the fact that the columns of a unitary matrix form an or-
thonormal basis.
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Figure A.1: The Bloch Sphere

A.3 Bloch Sphere

The Bloch sphere is a convenient representation of the qubit state space. Since
the global phase of a quantum state is not physical, we can write any pure qubit
state as

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉. (A.10)

Such a state corresponds to a point on the surface of a unit sphere with spherical
coordinates θ, φ and r = 1: This sphere is called the Bloch sphere, after Felix
Bloch.

The circle intersecting the xz-plane, which is colored gray, corresponds to
qubit states with real coefficients: the states |θ〉 we defined in equation (2.2).
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