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Abstract

With a lifetime prevalence of over 16% and spread over all social classes, major
depressive disorder (MDD) is one of the leading causes for psychosocial disabil-
ity. Although there is no established mechanism for depression most drugs used
in pharmacotherapy focus on the monoamine-deficiency hypothesis and inhibit the
reuptake or metabolism of serotonin or norepinephrine in order to raise their plasma-
levels. With over 20% of patients being resistant to treatment, and very low remis-
sion and high relapse rates, new strategies and methods for this treatment-resistant
form of depression are warranted. In recent years the use of N-methyl-D-aspartate
(NMDA) antagonists, and in particular the well known dissociative drug ketamine, in
the treatment of clinical depression has come under increasing interest. This admin-
istration is less rigorous than more invasive treatments like deep brain stimulation.
Recently the mechanism of action of this acute response, at sub-psychotomimetic
doses, has been linked to eukaryotic elongation factor 2 (eEF2) kinase inhibition and
desupression of brain-derived neurotrophic factor (BDNF) translation. This supports
other research implying synaptic plasticity as an important factor in treating MDD.
Chronic administration of ketamine is however linked to impairments of verbal flu-
ency, cognitive processing speed, and verbal learning and its other cognitive effects
are associated with potential abuse. In this report we will outline the molecular
mechanisms involved in NMDA antagonism, the effects on other neurotransmitter-
systems and glutamate signaling and how these relate to the positive effects on
MDD. The major transduction pathways will be outlined and potential related tar-
gets highlighted.
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Acronyms
4E-BP 4E binding protein.

ACC anterior cingulate cortex.

AD antidepressant.

Akt protein kinase B.

ALS amyotrophic lateral sclerosis.

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid.

AMPAR AMPA receptor.

Arc activity-regulated cytoskeleton-associated protein.

BBB blood-brain barrier.

BDNF brain-derived neurotrophic factor.

BPD bipolar disorder.

CaMKII Ca2+/calmodulin-dependent protein kinase.

CBT cognitive behavioral therapy.

CNS central nervous system.

CUS chronic unpredictable stress.

E-LTP early-LTP.

eEF2 eukaryotic elongation factor 2.

EPSC excitatory postsynaptic current.

EPSP excitatory postsynaptic potential.

ERK extracellular signal-regulated kinase.

FST forced swim test.

GNDF glial-derived neurotrophic factor.

GPCR G-protein coupled receptor.

GSK-3 glycogen synthase kinase 3.

ICV intracerebralventricular.

IPT interpersonal psychotherapy.

KA kainate.

KO knockout.

L-LTP late-LTP.

LH learned helplessness.

LTD long-term depression.

LTP long-term potentiation.
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MAOI monoamine oxidase inhibitor.

MDD major depressive disorder.

mGluR metabotropic glutamate receptor.

mTOR mammalian target of rapamycin.

NBQX 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione.

NMDA N-methyl-D-aspartate.

NMDAR NMDA receptor.

NSFT novelty suppressed feeding test.

p70S6K p70S6 kinase.

PFC prefrontal fortex.

PP1 protein phosphatase 1.

PSD-95 postsynaptic density protein 95.

SNRI serotonin-norepinephrine reuptake inhibitor.

SSRI selective serotonin reuptake inhibitor.

TCA tricyclic antidepressants.

TRD treatment-resistant depression.

TREK-1 TWIK-1-related K+ channel.

TrkB Tropomyosin receptor kinase B.

TST tail suspension test.

UCMS unpredictable chronic mild stress.

VDCC voltage-dependent Ca2+ channel.

VEGF vascular endothelial growth factor.

WKY Wistar-Kyoto.

WT wild-type.
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1 Major Depressive Dissorder

Clinical depression, or MDD, is a major cause of disability worldwide. The lifetime
prevalence of this disorder varies widely, but in most countries the percentage of peo-
ple that experience depression during their lives falls within 8-12% [1]. In western coun-
tries, particularly in North American, this number can rise up to nearly 17% and is
spread throughout all demographics, with slightly elevated numbers for low-income
backgrounds [2]. This indicates that MDD is relatively common and widely distributed
among the population with a significant impact on the medical system.

1.1 Symptoms and Treatment

MDD is characterized by a distinct change of mood, distinguished by sadness or ir-
ritability and associated with at least several psychophysiological changes such as
disturbances in sleep, appetite, or reduced sex drive. Other symptoms may include
constipation, general anhedonia (inability to experience pleasure in work or other ac-
tivities), and suicidal thoughts [3]. These changes have to persist for several weeks and
interfere substantially with work and social relations. Sometimes other related disor-
ders are misdiagnosed such as dysthymia, which has milder symptoms, but is of a
chronic variety. Some patients with MDD may encounter manic episodes that consist
of additional symptoms such as hyperactivity, euphoria and an increase in pleasure-
seeking behavior. Patients experiencing these episodes are diagnosed with a distinct
illness termed bipolar disorder (BPD) [4].

The response to MDD treatment is generally inconsistent and there is no estab-
lished mechanism [3]. The typical treatments for MDD are psychotherapy and pharma-
cotherapy. Both psychotherapy and medication have been shown to be viable treat-
ments for MDD [5]. However where psychotherapy can be used more successfully in
preventive follow-up care, pharmacotherapy is somewhat more successful in the treat-
ment of dysthymia [6]. The combination of psychotherapy and pharmacotherapy is more
effective than either of these therapies alone [7;8].

Psychotherapeutic treatments usually employed are cognitive behavioral therapy
(CBT), interpersonal psychotherapy (IPT), psychodynamic therapy, and upportive coun-
selling, but will depend on the background and judgment of the treating psychothera-
pist. For mild depression psychotherapy is the first line of treatment [9]. Pharmacothera-
peutic treatments typically focus on the monoamine-deficiency hypothesis where sup-
posed deficiencies of endogenous mood-regulatory neurotransmitters such as sero-
tonin, dopamine or norepinephrine are enhanced using selective serotonin reuptake in-
hibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs) or monoamine
oxidase inhibitors (MAOIs) [3].

In some acute depressive treatments the classical tricyclic antidepressantss (TCAs)
are used, although their current application is limited because of their general side-
effects and limited specificity [10;11]. Some melatonergic agonists, such as agomelatine,
are reported to have antidepressant (AD) effects or may treat sleep disorders associ-
ated with MDD and are marketed as such [12]. MDD may occasionally be treated using
lithium, although this is more common in BPD alongside an anticonvulsant or atypical
antipsychotic. One of the major shortcomings of current antidepressant drugs is that

6



several weeks or months of treatment are needed before improvements are observed.

1.2 Animal-models and behavioral tests

In order to study the behavioral effects of treatments under controlled circumstances,
a variation of translational animal-models are used to simulate the physical and psy-
chological states associated with MDD. Most of these models focus on manipulating
induced stress and behavioral despair and may use either mice or rats in their method-
ology [13;14]. These stress-based models can be categorized as either acute or chronic
stress. Sucrose consumption is sometimes used as an inverse behavioral read-out for
anhedonia, although its reproducibility has been criticized because it often depends on
whether treatment with AD-medication is chronic or acute [14].

Acute stress-based tests - There are several acute tests employing behavioral de-
spair that are used to indicate the efficacy of anti-depressant drugs and treatments.
The most commonly used are the forced swim test (FST) and tail suspension test
(TST). The performance in these tests has been used as a quantification of AD-effects
for many decades and still counts as the ’gold standard’ in AD research [15;16]. Other
related tests are the learned helplessness (LH) and novelty suppressed feeding test
(NSFT) in which the behavior of the animal is observed in either a conditioned environ-
ment where the animal has been taught to be helpless, or a completely new environ-
ment where the animal shows a delayed feeding response, respectively.

Chronic stress-based models - A wide variety of models have been developed us-
ing chronic stress to induce a semi-permanent state of depression in animal subjects.
These stressors are typically randomly selected from a variety of methods such as wa-
ter or food deprivation, 45 degrees cage tilt, exposure to rat faeces, cage overcrowding,
wet bedding, overnight illumination, dark exposure during normal light cycle, cold bed-
ding, acoustic disturbance (120 dB), strobe lights, or cagemate rotation and may last
for an arbitrary length of 1 up to 12 hours [17]. These methods are also referred to
as unpredictable chronic mild stress (UCMS) or chronic unpredictable stress (CUS).
Some models for dysfunctional parenting, such as maternal deprivation during early
postnatal life, may also be used as a chronic stress model.

Genetic models for depression - A number of genetic animal models have been
developed that show endophenotypes related to depression. Wistar-Kyoto (WKY) rats
were developed using selective inbreeding based on poor FST performance and show
enhanced susceptibility to depressed states and resistance to a number of antidepres-
sants, thus possibly providing a genetic base for treatment-resistent forms of depres-
sion [18;19]. The TWIK-1-related K+ channel (TREK-1) knockout mouse-model on the
other hand shows increased resilience to depression in FST and TST, implicating an
ion channel in depression-like animal behavior [20].
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2 Synaptic Plasticity in Depression

Moving beyond the monoamine hypothesis of depression, the past 10 years we have
seen many molecular and cellular studies of stress, depression and antidepressants
demonstrating opposing actions on the expression of particular neurotrophic factors in
limbic brain regions that regulate mood and cognition. These neurotrophic proteins are
growth factors that are neurodevelopmentally expressed and regulate neuroplasticity
and cellular resistance in the brain [21]. During homeostasis in the differentiated adult
brain, the contacts between neurons are continuously being replaced and renewed.
The presynaptic site may undergo formation of new synapses due to enhanced axonal
growth, likewise terminal degeneration may eliminate existing ones. The size on the
dendritic tree, or its spine density, and changes in the organization of glial cells, which
maintain homeostasis in the brain, may cause the number of postsynaptic sites to in-
crease or decrease. Depression has been associated with hypocampal neuronal atro-
phy and synaptic loss [22]. After chronic treatment with AD drugs however, an increase
in neurotrophic factor expression and enhanced synaptic plasticity is observed [23;24].

Two forms of synaptic plasticity that are well understood are long-term potentiation
(LTP) and long-term depression (LTD), which are enhancement and reduction of sig-
nal transmission between neurons respectively, thus LTP and LTD are an indication of
synaptic strength and dendritic spine growth and retraction respectively [25]. Changes
in synaptic strength are established through both pre- and postsynaptic mechanisms
such as synthesis and movement of synaptic receptors and other proteins. Rapid
changes, during early-LTP (E-LTP) for instance, depend on the movement of pre-
existing proteins [26], while RNA translation and changes in gene expression are a factor
in late-LTP (L-LTP) [27]. LTD similarly involves, likely oppositional, adaptations to gene
expression and protein metabolism.

During synaptic plasticity many signaling systems are involved in unison between
neurons. Some intracellular signal transduction pathways are crucial in this regard and
central to synaptic plasticity initiation is calcium influx through several ion channels.
This is particularly mediated by a number of glutamate related receptors and release
mechanisms that are thus deeply involved in brain plasticity.

2.1 Glutamate and Neural Plasticity

Glutamate is the most abundant and important excitatory neurotransmitter in the brain.
It is released by exocytosis and is present at very high concentrations in synaptic vesi-
cles [28]. It is a non-essential amino acid that can be synthesized via a number of routes
and as such plays an important role in many metabolic pathways [29]. Abnormalities in
its metabolism have long been understood to play an important role in degenerative
neurological disorders [30;31].

Glutamatergic receptors in the central nervous system (CNS) consist of two major
subtypes, ionotropic and metabotropic. The G-protein coupled receptors (GPCRs) of
the metabotropic glutamate receptor (mGluR) subtype consist of eight identified pro-
teins that can be divided in to three subgroups, which are based on their signaling path-
ways. The ionotropic subtype of glutamatergic receptors consists of three ligand-gated
ion channels that each are formed from multiple, and varying, subunits. These are
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the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainate (KA) and
NMDA receptors respectively, which may be found pre-, post-and extra-synaptically.
Post-synaptically these receptors are anchored in a scaffolding complex with postsy-
naptic density protein 95 (PSD-95), which is a potent regulator of synaptic strength
through its control over AMPA receptor (AMPAR) concentrations [32].

These receptors are known to play an important role in synaptic plasticity. Expres-
sion of AMPARs is one of the best studied molecular correlates of synaptic strength at
excitatory synapses and increases in this expression under LTP is related to dendritic
spine growth and spine-head size [33]. During LTP, AMPARs containing the long-tailed
subunits GluR1, GluR4 and GluR2L are added, while during the constitutive cycling
of LTD the short-tailed GluR2, GluR3 and GluR4c subunits participate in AMPAR re-
moval [34]. Similarly, following LTP and LTD, NMDA receptors (NMDARs) undergo traf-
ficking and changes to GluN2 subunit ratios and it has been found that NMDAR synap-
tic response consistently decreases during LTD [35;36].

There is increasing evidence that alterations in the glutamatergic ion-channels AM-
PAR and NMDAR are involved in mood disorders such as MDD and BPD as their
expression levels seem to be decreased in such patients [37]. Most AMPA receptors
are heterotetrameric and primarily consist of the GluR2 subunit coupled as a ’dimer of
dimers’ with GluR1, Glur3 or Glur4 [38]. Sodium and potassium are the principal ions
for which AMPARs are permeable. This in contrast to NMDARs which primarily gate
sodium and calcium ions, although potassium may be transferred out of the cell in a
voltage dependent manner [39]. NMDARs form heterotetramers consisting of two GluN1
and two GluN2 subunits. Where AMPARs are activated at four glutamate binding sites,
one at each subunit, the NMDARs have a glutumate and a glycine binding site and
require co-activation.

After glutamate binds to postsynaptic AMPARs and NMDARs, Na+ flows in to the
postsynaptic cell, which results in excitatory postsynaptic potential (EPSP), or depolar-
ization of the membrane. At resting membrane potential however, NMDAR channels
are blocked by Mg2+ and can only open when AMPAR activation has led to depolar-
ization, causing repulsion of Mg2+ cations. This then allows the NMDARs to permeate
Ca2+ in to the cell which subsequently triggers AMPAR upregulation and a further in-
crease in EPSP size, an indicator of LTP. The Ca2+ influx also results in phosphorylated
Ca2+/calmodulin-dependent protein kinase (CaMKII) which phosphorylates AMPARs
and enhances their conductance [40]. CaMKII is known to be an important requirement
for LTP initiation [41].

2.2 Glutamatergic Drugs

A significant number of patients do not respond to the normal treatments for MDD and
develop treatment-resistant depression (TRD). It is estimated that nearly 50% of pa-
tients will not reach full remission with their first AD treatment [42] while nearly half of
that (20-30%) will be completely non-responsive, even after subsequent adaptations
to their treatment [43;44]. The medium and long term outcomes for patients that develop
TRD are very serious as they are associated with a high rate of relapse, significant
disability and mortality and residual symptoms leading to this high relapse and long
term disability [45;46]. TRD patients may be more likely to suffer from comorbid physical
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and mental disorders [47;48]. In general, patients with TRD have a significantly higher
disease burden and cost of burden than other patients [43;48]. Therefore new treatments
and medications for this treatment-resistant form of depression are needed. Ever since
NMDA-receptors and the glutamatergic system were implied in the mechanics of de-
pression and anti-depressants in the 1990s their potential role as a target in the treat-
ment of depression has increased [49–51]. This has resulted in a number of compounds
that modulate the glutamate system, particularly ketamine which is a well-known dis-
sociative anesthetic.

Ketamine - After many animal studies the first placebo-controlled, double-blinded trial
with single dose ketamine, an NMDA antagonist, was published in 2000 [52]. This
showed the feasibility of NMDA-receptor modulation as a possible treatment for pa-
tients with MDD. Since then a number of randomized and open label trials have been
conducted that support the claims of feasibility and show that the effects may last for
days if not weeks in patients with TRD [53–57]. Treatment with ketamine also seems to
reduce suicidality in this patient population [58]. Due to its long history of medicinal use
and efficacy in TRD treatment, ketamine currently has a high interest as a potent med-
ication for MDD.

Other glutamate modulators - Among the variety of glutamatergic compounds the
glutamate uptake enhancer and amyotrophic lateral sclerosis (ALS) medication Rilu-
zole was explored in an open-label trial for TRD [59]. GLYX-13, a NMDAR glycine-site
partial agonist, has been described to induce AD-like effects without the psychoac-
tive side effects of ketamine [60]. Likewise the low-trapping and non-selective NMDA
channel blocker AZD6765 (Lanicemine) has shown rapid, albeit short-lived, AD effects
in patients with TRD [61]. The NR2B subunit selective NMDA antagonist CP-101,606
(Traxoprodil) has also shown efficacy in MDD treatment, without producing any of the
dissociative reactions associated with most NMDA antagonists [62].

Proposed - A number of NMDA antagonists and functional analogs of ketamine have
been hypothesized to elicit similar AD effects and may be explored in future clinical
research. These include the well known antitussive dextromethorphan [63] and the rel-
atively new structural analogue of ketamine, methoxetamine [64]. It may or may not be
warranted that these compounds are explored in future clinical studies.

3 Ketamine and NMDA Antagonism

Because NMDARs need agonism on both the glutamate and glycine binding site to
open the ion channel, there are several methods by which they can be prevented from
activation. There are competitive antagonists that inhibit glutamate binding; glycine
antagonists which act at the glycine binding-site; uncompetitive channel blockers that
prevent ions from passing the receptor; and finally there are non-competitive antago-
nists that bind to an allosteric site. Ketamine belongs to this final group of antagonists
and although NMDARs may have several subunit compositions, ketamine does not ap-
pear to have a particular selectivity for these in its binding [65].

Although post-synaptic NMDARs are primarily involved in gating sodium and cal-
cium ions, presynaptic NMDARs have been shown to modulate glutamate release [66].
Low dose NMDA antagonism by ketamine in particular increases glutamate outflow
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Figure 1: Schematic representation of the synaptogenic model of depression and subsequent
ketamine induced recovery. Stress induces LTD-like synapse morphology to neuronal spines
with decreased BDNF activity and AMPAR internalization. This results in neuronal atrophy in its
depressed state. Ketamine then induces a glutamate burst that stimulates BDNF exocytosis and
subsequent mammalian target of rapamycin (mTOR) activation which restores AMPAR signaling
functionality reminiscent of LTP.

in the prefrontal fortex (PFC), which suggests that ketamine may thus increase glu-
tamatergic neurotransmission at non-NMDA glutamate receptors [67]. While normally
NMDAR activation directly leads to an influx of Ca2+ ions and subsequent CaMKII
phosphorylation, this increase of glutamatergic neurotransmission may cause Ca2+

influx through hyperpolarization caused by AMPAR activation and resulting voltage-
dependent Ca2+ channel (VDCC) opening.

Extra-synaptic NMDARs which, like the pre-synaptic receptors [68], contain NR2B
subunits [69], are involved in a number of processes. ExNMDARs activation is particu-
larly implicated in excitotoxicity and neuroprotection as part of LTD [70;71]. When extra-
synaptic NR2B-containing NMDARs are excited under normal conditions they activate
protein phosphatase 1 (PP1) and induce a feedback loop between glycogen synthase
kinase 3 (GSK-3) and PP1 [72]. Inhibition of these receptors conversely results in lower
PP1 and GSK-3 deactivation, which in turn increases NR2B subunit levels [71]. This
subunit increase has been observed in the antagonism by GLYX-13 and ketamine,
which both led to increases in NR2B and GluR1 protein levels and a persistent en-
hancement of LTP [60].

3.1 Signaling Pathways

A number of signaling pathways have emerged that are modulated by NMDA antago-
nism and support the synaptogenic hypothesis of its fast acting and long lasting antide-
pressant effects. The AD effects of ketamine at least seem to be dependent on AMPAR
throughput, as these effects are attenuated by the AMPAR antagonist 2,3-dihydroxy-6-
nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) [73;74]. Likewise, the long-lasting
AD-effects of both ketamine and GLYX-13 treatment are partially abolished by NBQX
pretreatment in either LH, TST or FST [60;74]. Further more, chronic treatment of WKY
rats with low dose ketamine induced marked changes in the hippocampal AMPA/NMDA
receptor ratio in favor of AMPAR, showing the importance of AMPAR in the long-lasting
AD-effects of ketamine [75].

The two major pathways currently under investigation are mediated by BDNF and
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Figure 2: Schematic representation of the pathways involved in ketamine mediated synaptic
plasticity. Antagonism of pre-synaptic NMDARs leads to glutamate release while post-synaptic
suppression of NMDARs results in inhibition of eEF2 kinase and dephosphorylation of eEF2.
This augments BDNF translation while the aforementioned glutamate release activates AMPARs
which hyperpolarize the membrane and activate VDCCs. Calcium subsequently promotes BDNF
release which may then activate Tropomyosin receptor kinase B (TrkB) receptors resulting in a
signaling cascade that in turn activates protein kinase B (Akt) and extracellular signal-regulated
kinase (ERK). Akt and ERK then activate mTOR which enables further translation of synaptic
proteins, including BDNF, GluR1 (AMPA) and PSD-95, by activating p70S6 kinase (p70S6K)
and inhibiting 4E binding proteins (4E-BPs). GSK-3, which inhibits BDNF expression, may be
suppressed through phosphorylation by Akt or p70S6K. Likewise, stimulation of GSK-3 is sup-
pressed by deregulation of phosphatases from extra-synaptic NMDAR antagonism, which may
also result in mTOR mediation. Finally, eEF2 kinase is also suppressed by p70S6K, feeding in
to the previously mentioned BDNF translation.
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mTOR. In the following parts the role of these proteins and their relation in the overall
pathway of synaptogenesis in NMDA antagonism will be highlighted. In fig. 1 a general
overview of synaptic homeostasis, degerenation and genesis is presented culminating
in the signaling pathway presented in fig. 2.

3.1.1 mammalian target of rapamycin

mTOR, a serine/threonine protein kinase, is a regulatory protein involved in cell growth,
proliferation, motility, survival, and protein synthesis [76]. The regulation of translation
initiation by mTOR is exerted through a number of downstream proteins: p70S6K,
eIF4E and eIF4B. Administration of rapamycin, the principal inhibitor of mTOR, dis-
rupts the mTOR signaling pathway leading to reduced L-LTP [26]. It has been shown
that patients with MDD have a marked deficit of mTOR and its downstream compo-
nents which could contribute to the observed molecular pathology of this disorder [77].

Rats exposed to CUS show these same deficits in synaptic proteins, as shown by
immunoblotting of their phosphorylated activation states [77–80]. Exposure to CUS for
a period of 3 weeks decreased spine density in layer V pyramidal neurons and de-
creased excitatory postsynaptic currents (EPSCs) and thus EPSPs [79]. Subsequently,
administration of NMDA-antagonists (ketamine and Ro 25-6981) in these rats rapidly
decreased the observed anhedonic and anxiogenic behavior and resulted in increased
levels of these signaling proteins and increased numbers of new spine synapses in the
PFC [78;79]. Other proteins influenced by mTOR are PSD-95, GluR1 and synapsin I,
underlining its role in synaptogenic translation. These effects were completely blocked
by pretreatment of the mTOR-inhibitor rapamycin, further supporting the role of mTOR
in the synaptogenic pathway of ketamine administration.

Interestingly pretreatment with the selective AMPA inhibitor NBQX, 10 minutes be-
fore ketamine administration, resulted in complete blockade of induction of phosphory-
lated 4E-BP1, p70S6K and mTOR in the PFC [78]. These results underline the important
role of AMPAR transmission in synaptogenesis, which is emphasized by the translation
of the AMPA subunit GluR1 via the mTOR pathway.

3.1.2 ketamine mediated BDNF release

BDNF, which is critical for axonal growth and neuronal survival, has been shown to
be a significant biomarker in stress models and depressed patients [81]. Hippocam-
pal levels of BDNF are decreased in animal models using immobilization [82–84], social
isolation [85], maternal deprivation [86], and swim stress [87]. Postmortem hippocampal
levels of depressed suicide victims have also been found to be decreased [88–90]. And
where serum levels of BDNF in depressed patients are lowered [90–92] these same lev-
els increase during AD treatment [88;92–94], showing that ADs influence this same neu-
rotrophic mechanism.

Although no changes in BDNF could be detected in plasma levels of patients dur-
ing the initial and rapid AD response of ketamine administration [95], BDNF serum levels
were in fact increased in chronic ketamine users [96]. Furthermore, mice with inducible
BDNF knockout (KO) do not show the fast-acting, 30 minutes, AD-response of ke-
tamine as seen in wild-types (WTs) [17]. This suggests that this AD-response relies on
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fast BDNF expression. Finally there are clear signs that BDNF-release is involved both
pre-and post-LTP [97;98]

BDNF primarily acts by binding to TrkB which is its main receptor. This results in
phosphorylation, and thus activation, of Akt and ERK which are both involved in the
regulation of synaptic protein synthesis [99]. It has also been found that TrkB KOs result
in ketamine-insensitive fenotypes in both FST and NSFT [17]. One striking discovery
is that ketamine NMDAR antagonism can lead to inhibition of eEF2 kinase, which re-
sults in dephosphorylation of eEF2 and desupression of BDNF translation [17]. The
aforementioned AMPAR and VDCC regulated calcium influx may finally result in BDNF
exocytosis where it can activate TrkB [100]. The glutamate modulator riluzole likewise
enhances BDNF, together with other signaling proteins like vascular endothelial growth
factor (VEGF) and glial-derived neurotrophic factor (GNDF) [101].

3.1.3 related targets

GSK-3 - As previously mentioned, GSK-3 has an inhibitory effect on NR2B expression,
however it also mediates synaptic stimulation of mTOR [102] and is required in the phos-
phorylation of PSD-95 and its mobilization in LTD [103]. Inhibition of GSK-3 also seems
to be necessary for the rapid antidepressant effect of ketamine in the LH-paradigm
in mice [104], although this regulation of its activity was not detected in subsequent ef-
forts [105]. Thus, GSK-3 inhibition may be a viable target for future anti-depressant
research.

Arc - This activity-regulated cytoskeleton-associated protein (Arc) has involvement in
both LTP and LTD [106] and is an important regulator of AMPAR endocytosis and traffick-
ing [107]. Ketamine induced the expression of Arc in the early stages of its downstream
effects, with a peak after 1 to 2 hours, in a transient time course [78]. Potentially this
identifies it as a component of E-LTP in ketamine’s mechanism of action, mediating its
initial and fast-acting effects.

ERK and Akt - As discussed earlier, these proteins are activated by TrkB stimula-
tion and are involved with synaptic protein synthesis. Rats exposed to CUS show
reduced phosphorylation of these proteins [80]. They are consequently observed to in-
crease in concentration after ketamine administration, but their levels are normalized
with pre-administration of NBQX emphasizing the role of AMPA activation [78]. Fur-
ther more, intracerebralventricular (ICV) administration of selective ERK (U0126) or
Akt (LY294002) inhibitors blocked the AD actions of ketamine in FST and NSFT [78].
Both are also identified in mTOR activation, providing another key route in the overall
pathway [108;109].
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4 Discussion

We have seen that there are several pathways to consider in the short and long-term
anti-depressant effects of ketamine and NMDA-antagonists. There is clear evidence
that glutamatergic dysfunction plays an important role in the pathophysiology of de-
pression and a number of signaling pathways can be considered as major targets.

Within the observed pathways we can see an interdependence emerging between
mTOR and BDNF. Although BDNF clearly activates mTOR and its GluR1 expres-
sion [110] and the initial findings that rapamycin pre-treatment blocks the acute effects
of ketamine could not be replicated [17], which may have come from particular technical
differences in the study [111], there may still be some viable angles to approach mTOR
as a key target.

Considering that the NR2B selective NMDA antagonist Traxoprodil is still effective
in MDD treatment we may conclude that these routes in the pathway, mediated by
this receptor-subtype, are most relevant to the observed outcomes. The equally rapid
response to Traxoprodil, as compared to Ketamine, suggests that the post-synaptic
NR2A pathway, which has been identified to disable eEF2 kinase, is not required for
this result. However, mTOR activated p70S6K regulates eEF2 kinase as well, pro-
viding a different route for its inhibition [112;113]. Likewise we have seen that GSK-3 is
a potential requisite in the observed activities, which may also be attenuated through
NR2B receptors alone. The robust and long-term effects of both ketamine an GLYX-13
may also be a strong indication that they promote enhancement of ’metaplasticity’ [60],
showing changes in plasticity that last much longer than their initial triggering mecha-
nism, where again we see that NR2B containing NMDARs play a critical role [114].

However, observing some of the potential long-term effects of mTOR modulation,
we may consider its potential role in Alzheimers progression [115–117]. Although re-
peated ketamine use may cause impairment to cognitive processing speed and verbal
fluency, no such specific effects have become apparent as of yet [118]. Concerns have
previously been raised about ketamine’s well known cognitive side-effects which oc-
cur during typical IV administration [119]. These concerns may be mediated by the fact
that ketamine’s robust AD-effects are equally effective at sub-psychotomimetic doses.
Similarly the route of administration may be augmented to include oral delivery, which
still has moderate bioavailability [120]. Making the drug more suitable for outpatient and
nonprocedural psychiatric care.

Although many other molecules which act at some of the proposed targets show
AD-like properties, the antagonist action on the NMDA receptor is currently the only
clinically validated target [51]. However the current developments around this subject
are continuously evolving with many clinical studies being conducted with related com-
pounds. Primarily the elaboration of these mechanisms may result in novel directions
for the development of fast-acting antidepressants and potential involvement of other
neuropsychiatric disorders.
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