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“If the individual were no longer compelled to prove himself on the market, as a free

economic subject, the disappearance of this kind of freedom would be one of the greatest

achievements of civilization. The technological processes of mechanization and stan-

dardization might release individual energy into a yet uncharted realm of freedom beyond

necessity. The very structure of human existence would be altered; the individual would

be liberated from the work world’s imposing upon him alien needs and alien possibilities.

The individual would be free to exert autonomy over a life that would be his own.”

Herbert Marcuse

“There is no happiness without knowledge. But knowledge of happiness is unhappy; for

knowing ourselves happy is knowing ourselves passing through happiness, and having to,

immediatly at once, leave it behind. To know is to kill, in happiness as in everything.

Not to know, though, is not to exist.”

Fernando Pessoa
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The fundamental scalar Higgs models presents triviality, unnaturalness and vacuum sta-

bility issues, which make them unappealing from a theoretical point of view. In this

work we study a model with an antisymmetric tensor field coupled to fermions via a

”B-Yukawa” term which, in analogy with Technicolor models, can provide a dynami-

cal breaking of electro-weak symmetry through the formation of a fermion-antifermion

condensate, giving masses to gauge bosons and fermions. We introduce a Lagrangian

for the antisymmetric field which is instability free and compute a covariant propagator

for it. Then, we evaluate the relevant Feynman diagrams for the calculation of the β

function for the ”B-Yukawa” coupling, whose value must be negative for the formation of

the fermion-antifermion condensate to be allowed. This value, however, has been found

to be gauge dependent and further work is needed to see if this issue can be overcome

somehow.
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Chapter 1

Introduction

Electroweak symmetry breaking and Higgs mechanism are two of the key ingredients in

the description of the world of subatomic particles physics given in the context of the

Standard Model.

By introducing a scalar field which behaves as a complex doublet under SU(2) and

develops a vacuum expectation value due to its mexican-hat shaped potential, elec-

troweak symmetry SU(2)⊗U(1) gets broken and fermions coupled to this field through

a Yukawa term acquire a mass. Also, as was proved by Glashow-Weinberg and Salam

in 1967, three out of the four gauge bosons become massive as a result of interactions

with the Higgs field, while the photon stays massless. The energy scale at which this

happens is vweak ∼ 100 GeV.

However, it has been argued that this kind of models with a fundamental Higgs suffer

from a series of shortcomings which make them unappealing and unnatural. The most

important of these, perhaps, is the fact that these models lack a dynamical explanation

of the spontaneous symmetry breaking and so they do not answer to the question on

why this breaking happens exactly at the scale vweak.

This, together with others motivations, has led in the last decades of the past century

to the formulation of several alternative ways of reproducing the outcomes of the Higgs

mechanism without introducing any scalar field. One of these, Technicolor, is of par-

ticular interest because tries to give a dynamical explanation of electroweak symmetry

breaking in analogy with what happens in QCD for the breaking of the chiral symmetry

SU(2)L ⊗ SU(2)R, around ΛQCD ∼ 100 MeV. There, the breaking of the symmetry is

just a consequence of the strong fermions dynamics, which is responsible for the forma-

tion of a composite fermion-antifermion bound state 〈Ψ̄Ψ〉, which in turns breaks the

chiral symmetry down to SU(2)V of isospin, without the need of any scalar particle.

So the idea of Technicolor is to postulate the existence of a new strong, asymptotically

free interaction, i.e. with a coupling characterized by a negative beta function, which

1
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binds pairs of new technifermions-antitechnifermions into a condensate whose behavior

mimics that of the Higgs field.

Anyhow, also technicolor models have their drawbacks, such as a problem in the expla-

nation of the correct value of the top quark mass.

There is another model that has been proposed in a paper by Wetterich [1] in 2006

which has not been investigated so much in literature, which attempts to reproduce

Higgs mechanism through the introduction of an antisymmetric tensor field coupled to

fermions with chiral couplings.

The electroweak symmetry breaking again arises as a consequence of the asymptotic

freedom of these couplings and of the emergence of a fermion-antifermion condensate.

We studied the properties of a related model developed in a precedent thesis work [2] in

which such model with an antisymmetric tensor has been modified for the scope of elim-

inating some classical instabilities. The antisymmetric tensor here couples to fermions

via a ”B-Yukawa” term and the formation of 〈Ψ̄Ψ〉 is possible providing that the cou-

pling has a negative beta function. The condensate will play the role of the Higgs and

the resulting effective theory will break the symmetry via an effective potential which

resembles the one of the nonlinear sigma model. It must be said, however, that these

models after the discovery of an Higgs boson with a mass of 126 GeV at LHC [3], if not

completely ruled out, must be reconsidered in order to account for this scalar particle.

Even after the discovery, many questions remain open about this Higgs particle. It is

not yet conclusively known, to this date, if such particle is fundamental or composite,

or if it is a scalar or a pseudoscalar, or if it is a spin 0 or spin 2 particle. Through

measurements of the coupling property, spin and parity, the new particle has so far been

almost consistent with the Higgs boson predicted as a key boson responsible for the

origin of mass in the standard model. One discrepancy from the SM Higgs has been,

however, reported in the diphoton channel H → γγ where the observed signal event is

about two times larger than the SM Higgs prediction [4]. This would imply that the

observed scalar boson is a SM-Higgs impostor concerning the underlying theory beyond

the SM. Attempts to see if this impostor could be a pseudo Goldstone boson, the techni-

dilaton predicted by walking Technicolor, are still in progress [5]. So there is still much

mystery around the scalar particle discovered at LHC, and possible deviations from the

fundamental Higgs scalar are worth to be investigated.

The work is organized as follows: in chapter 2 we give a brief overview of the key as-

pects of the Standard Model and the Higgs mechanism, then we move in chapter 3 to

a description of the basic ideas which have brought to the formulation of Technicolor,

extended Technicolor and walking Technicolor. In chapter 4 the antisymmetric tensor

field is then introduced and quantized in a covariant fashion. We thus proceed to the

definition of the Feynman rules of the theory in chapter 5 with which we will compute

the value of the beta function for the Yukawa coupling, which will present some problems
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because explicitly depends on gauge parameters. In chapter 6, finally, we present the

conclusions and a comment of the results obtained. Further work is needed to see if this

problem can be cured somehow or if the theory is just not viable.



Chapter 2

The Standard Model

In our understandings of the microscopic world of elementary particles and their in-

teractions, the Standard Model (SM), ref. [6–8] is, to this date, the most precise and

complete mathematical tool developed in physics. Such model in fact, has been able to

account for many experimental results obtained in the last few decades, with an aston-

ishing degree of precision, as for instance the measure of the electron gyromagnetic ratio

g [9] . The model consists of 12 elementary fermion particles with half integer spin, six

quarks (up, down, charm, strange, top, bottom) and six leptons (electron, muon, tau,

electron neutrino, muon neutrino, tau neutrino), divided into three generations, each of

which has its own antiparticle.

This classification is based on how different particles interact with other particles, i.e.

by what charges they carry. Each fundamental force has its own charge, and particles

with the same kind of charge may interact with each other via the exchange of a boson

particle.

The three neutrinos only carry weak isospin, so their motion is influenced only by the

weak nuclear force. The remaining leptons even carry electric charge, thus interacting

also electromagnetically. Quarks instead, besides weak isospin and electric charge, carry

a color charge and, hence they interact via the strong interaction among themselves,

whereas both electromagnetically and weakly with other fermions.

The particles responsible for force mediation are the gauge bosons. To each force are

associated one or more bosons, which are said to be the force carriers. The number

of such bosons depends on the gauge symmetry of the Lagrangian that describes the

interacting fields. More precisely, the boson number is exactly the number of generators

of the invariant symmetry group. So, for example, the electromagnetic force has only

one boson, the photon, since QED has a U(1) symmetry, while the weak force is medi-

ated by three massive bosons ,W± and Z0, corresponding to the three generators of the

SU(2) symmetry. The strong force , is carried by 8 gluons, which themselves are color

4
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Figure 2.1: Schematic map of Standard Model interactions

charged, descending from the SU(3) symmetry of QCD. A peculiar feature of this force

is that it gives rise to what is called color confinement, a phenomenon that prevents

quarks from being observed in isolation and forces them to always manifest in bound,

color-neutral states. The reason of this behavior relies in the fact that the binding strong

force between quarks increases with distance and tends to zero when quarks get close to

each other, i.e. the theory has a property known as asymptotic freedom. This property

plays, as we will see, a crucial role in determining some of the most important features

of QCD.

From what we have said, we can already argue that the SM presents an internal sym-

metry U(1)× SU(2)× SU(3), where U(1)× SU(2) is the electro-weak part, and SU(3)

the color part.

The starting point of this field theory is to describe particles wave functions as fields. A

spin-1
2 fermion is then described by a four component spinor field,

Ψα(x) =


Ψ1(x)

Ψ2(x)

Ψ3(x)

Ψ4(x)

 =

(
φ(x)

χ(x)

)
(2.1)

where each component is a function of the space-time coordinate xµ. If the two-

component spinors φ and χ are independent, Ψ is a four-component complex spinor

describing a fermion and its antiparticle, and is called a Dirac fermion. If one imposes

a reality condition χ = ±iσ2φ∗, then Ψ describes a single spin-1
2 particle and is called a

Majorana fermion. One can also define a Dirac conjugate as

Ψ̄ ≡ Ψ†γ0. (2.2)
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Under a Lorentz transformation a spinor behaves as

Ψ→ Ψ′ = exp(
i

4
θµνσ

µν)Ψ (2.3)

where

σµν = − i
2

(γµγν − γνγµ) = −iγ[µγν] and θµν = −θνµ. (2.4)

These θµν are anti-symmetric, real parameters that characterize spatial rotations for

µ, ν = 1, 2, 3, and the Lorentz boosts for µ or ν = 0. With these information it is

possible to write down a Lorentz-invariant Dirac Lagrangian:

L = Ψ̄(i6∂ −m)Ψ (2.5)

where the symbol 6∂ stands for a 4× 4 matrix defined by

( 6∂)αβ = (γµ)αβ
∂

∂xµ
. (2.6)

At this point, interactions with other particles are introduced through a clever mecha-

nism, i.e. gauge invariance. This is implemented by demanding the Lagrangian to be

invariant under spinor transformations of the type

Ψ′(x) = eiqξ(x)Ψ(x) (2.7)

which is a phase transformation that generates the group U(1).

After a brief look at (2.5), one can see that the Lagrangian is invariant under a global

transformation (i.e. ξ(x) = ξ), but not under a local one. Indeed

∂µΨ(x)→ (∂µΨ(x))′ = eiqξ(x)(∂µΨ(x) + iq∂µξ(x)Ψ(x)). (2.8)

To achieve invariance, another field is introduced, called the gauge field, in such a way

that, defining a covariant derivative as

DµΨ(x) = (∂µ + iqAµ(x))Ψ(x) (2.9)

and requiring the new field to transform as

Aµ → A′µ = Aµ − ∂µξ (2.10)

we get rid of the extra term in (2.8) induced by the transformations at neighboring

space-time points, and get

DµΨ(x)→ (DµΨ(x))′ = eiqξ(x)(DµΨ(x)). (2.11)
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If we now replace the normal derivative with this covariant derivative in our original

Lagrangian, we will see that it no longer describes free fermions, but rather interactions

between fermions and the gauge field:

L = Ψ̄(i6D −m)Ψ = iΨ̄6∂Ψ−mΨ̄Ψ− qAµΨ̄γµΨ. (2.12)

It is conventional to assume that Aµ describes some new and independent degrees of

freedom of the system. Actually, it is possible to construct a gauge invariant Lagrangian

for the gauge field itself, moving from the observation that the commutator of two

covariant derivatives is still a covariant object:

[Dµ, Dν ]Ψ = −iqFµνΨ where Fµν = ∂µAν − ∂νAµ. (2.13)

This observation leads to the Lagrangian for the gauge field of the form

L = −1

4
FµνF

µν . (2.14)

This Lagrangian can now be combined with (2.12)

L = LAµ + LΨ = −1

4
FµνF

µν + iΨ̄6∂Ψ−mΨ̄Ψ− qAµΨ̄γµΨ (2.15)

so that we have obtained an interacting theory of a vector field and a fermion field

invariant under the combined local gauge transformations (2.7) and (2.10). Such theory

is Quantum Electro-Dynamics, where the role of the photon is interpreted by the gauge

field Aµ, while Fµν is the electromagnetic field strength.

What we have done so far is to start with a representation of matter particles in terms

of spinors, then derive a Lagrangian from which is possible to construct their equations

of motion, and finally add interactions with bosons imposing a local phase transforma-

tion invariance. We can repeat this procedure to describe also the weak interaction.

However, in this case, we will have to impose an invariance under a different group of

transformation.

In general, groups of transformations that are considered in gauge theories are repre-

sented by matrices that can be parametrized in terms of a finite number of parameters,

i.e. they are Lie groups. Under a generic group transformation the field behaves as

Ψ(x)→ Ψ′(x) = UΨ(x) (2.16)

where U is a matrix that satisfy the multiplication rule of the Lie group and can be

written as U = exp(ξata), with ta the generators of the group. When considering local



Chapter 2. The Standard Model 8

transformation, the derivative of the field will become

∂µΨ(x)→ (∂µΨ(x))′ = U(x)∂µΨ(x) + (∂µU(x))Ψ(x). (2.17)

Again, we can see that this quantity does not transform covariantly, in the sense that

it does not transform according to a representation of the group at the same space-time

point, due to the presence of the second term in the last equation. In analogy with what

we have done in the previous case, we get rid of this term defining a new, covariant

derivative:

DµΨ ≡ ∂µΨ− gWµΨ (2.18)

where Wµ is a matrix of the type generated by an infinitesimal gauge transformation.

This means that Wµ can be decomposed into the generators ta,

Wµ = gW a
µ ta. (2.19)

If we now let Wµ transform as

Wµ →W ′µ = UWµU
−1 + (∂µU)U−1 (2.20)

we obtain that the derivative we previously defined is indeed covariant:

DµΨ(x)→ (DµΨ(x))′ = U(x)DµΨ(x). (2.21)

Now we are ready to define in a similar way as we did for QED the field strength tensor,

but we have to keep in mind that, since this time two group transformations do not

commute, i.e. the group is nonabelian, we will have a commutator of two fields in the

field strength expression:

[Dµ, Dν ]Ψ = −g(∂µWν − ∂νWµ − g[Wµ,Wν ])Ψ = −gGµνΨ. (2.22)

The presence of this commutator term implies interactions between gauge bosons. From

(2.19) it follows that also the field strength takes values in the Lie algebra of the group

Gµν = Gaµνta = (∂µW
a
ν − ∂νW a

µ − gfabcW b
µW

c
ν )ta (2.23)

where fabc are the structure constant defined by the relation between the group generators

[tb, tc] = fabcta. (2.24)
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Now the total Lagrangian will look like

L = −1

4
GµνG

µν + iΨ̄6∂Ψ−mΨ̄Ψ− igΨ̄γµWµΨ (2.25)

With this more abstract picture we can implement more complex interactions just by

requiring the fermion Lagrangian to be invariant under a suitable group of transforma-

tions, which in the case of the weak interaction is SU(2), while in the case of Quantum

Chromo-Dynamics is SU(3). This means that the gauge group of the whole SM, as

we have already anticipated, is the cross product U(1)Y ⊗ SU(2)Iw ⊗ SU(3)c, where

the subscripts stand for the conserved quantum numbers associated with each group,

namely hypercharge Y for U(1), weak isospin Iw for SU(2), and color c for SU(3).

2.1 Mass generation of gauge bosons and fermions

From what we have seen so far, it is clear that a mass term for a gauge boson in the

Lagrangian cannot be allowed since it would explicitly break the gauge symmetry, i.e.

it would be not invariant under a gauge transformation. However, in nature, it appears

that the bosons mediators of the weak force , W± and Z0, are massive, while the

photon and gluons are massless. In other words, the symmetry SU(2)× U(1) is said to

be spontaneously broken. In order to avoid this issue, and to permit to introduce mass

terms for bosons and fermions, a clever and elegant mechanism has been developed

by Brout, Englert and Higgs, which we will briefly discuss in the next section. This

mechanism has led in the subsequent years to the development by Glashow, Weinberg

and Salam, of a unified theory of the Electro-Weak interactions, capable of explaining

why W± and Z0 bosons have a mass, whereas the photon remains massless.

2.1.1 The Brout-Englert-Higgs Mechanism

The key idea of the Brout-Englert-Higgs mechanism is to add to the standard expression

of the Lagrangian a new complex scalar field, the Higgs field φ(x), which will have a

nonvanishing vacuum expectation value 〈φ〉 = v, due to the mexican hat shaped potential

V (|φ|) = −µ2|φ|2 + λ|φ|4. (2.26)

In the case of the SU(2) symmetry, this scalar field behaves as a doublet under the
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Figure 2.2: Form of the Higgs potential

gauge transformation, and it can generally be decomposed into the form

φ(x) =

(
φ1(x)

φ2(x)

)
=

1√
2

Φ(x)

(
0

ρ(x)

)
(2.27)

where Φ(x) is an x-dependent SU(2) matrix, and ρ(x) is a real field that represents the

SU(2) invariant length of the doublet field. Under SU(2) the field Φ(x) transforms as

Φ(x)→ U(x)Φ(x). (2.28)

If we now plug in this decomposition in the total lagrangian and define new gauge fields

which are related to the old ones via

Ŵµ(x) = Φ−1(x)Wµ(x)Φ(x) + g−1[∂µΦ−1(x)]Φ(x), (2.29)

we have constructed a theory with explicitly gauge-invariant gauge fields, in which the

covariant derivative for the Higgs field will be

Dµφ(x) =
1√
2

Φ(x)
[
∂µ −

1

2
igŴ a

µ (x)τa

]( 0

ρ(x)

)
. (2.30)

So now, these new gauge fields can have a mass term and, as we can show, they do. The

total Lagrangian in unitary gauge, i.e. setting Φ = I by means of an appropriate local
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gauge transformation, looks like

L =
1

4
(∂µŴ

a
ν − ∂νŴµ)2 − gεabcŴµaŴ νb∂µŴ

c
ν −

1

4
g2εabcεadeŴ

µbŴ d
µŴ

νcŴ e
ν

− 1

2
(∂µρ)2 +

1

2
µ2ρ2 − 1

4
λρ4 − 1

8
g2ρ2(Ŵ a

µ )2. (2.31)

As we can see from the quadratic terms, expanding the ρ field around the minima of

its potential ρ = v =
√

µ2

λ , both the Higgs particle associated with the field ρ and the

gauge bosons acquire a mass, respectively given by:

m2
ρ = 2λv2, M2

W =
1

4
g2v2. (2.32)

2.1.2 The Glashow-Weinberg-Salam Theory of Weak Interactions

We are now ready to write down the spontaneously broken gauge theory that gives

the experimentally correct description of the weak interaction. The symmetry group

considered is the SU(2)× U(1) part of the whole symmetry group of the SM. The four

gauge fields, three for SU(2) and one for U(1), will be denoted respectively by W a
µ and

Bµ. Initially all gauge fields are massless and have no direct interactions. After the

introduction of the Higgs field and, consequently, the emergence of a mass term, it turns

out that precisely one linear combination of these gauge fields remains massless, and

this will be used to describe the photon.

To see this we notice that the complete gauge transformation acts on the Higgs field as

φ(x)→ φ′(x) = eiα
aτaeiβ/2φ(x). (2.33)

Then we assume that the potential is such that it acquires a minimum for φ 6= 0. In

this case it is possible to decompose φ according to (2.27), which in the unitary gauge

is equivalent to put

φ(x) =
1√
2

(
0

ρ(x)

)
. (2.34)

It is clear then from this form that a gauge transformation with

α1 = α2 = 0 and α3 = β (2.35)

leaves the scalar field invariant. Thus, the theory will contain one massless gauge boson,

corresponding to this particular combination of generators. The remaining three gauge

fields instead, will acquire a mass through the usual BEH mechanism. To work out
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quantitatively the mass spectrum we focus on the covariant derivative of φ:

Dµφ = (∂µ − igW a
µτ

a − ig
′

2
Bµ)φ. (2.36)

The gauge boson mass terms come from the square of this expression, evaluated at the

scalar field vacuum expectation value 〈φ〉 = v. The quadratic terms are:

∆L =
1

2
(0 v)

(
gW a

µτ
a +

1

2
g′Bµ

)(
gWµbτ b +

1

2
g′Bµ

)(0

v

)
=

=
1

2

v2

4
[g2(W 1

µ)2 + g2(W 2
µ)2 + (−gW 3

µ + g′Bµ)2]. (2.37)

Defining

W±µ =
1√
2

(W 1
µ∓iW 2

µ) , Z0
µ =

1√
g2 + g′2

(gW 3
µ−g′Bµ) , Aµ =

1√
g2 + g′2

(g′W 3
µ+gBµ)

(2.38)

it’s easy to see that these fields get the masses mW = gv
2 , mZ =

√
g2 + g′2 v2 and mA = 0.

For a fermion field belonging to a general SU(2) representation, with U(1) charge Y ,

the covariant derivative takes the form:

Dµ = ∂µ − igW a
µ − ig′Y Bµ (2.39)

which in terms of the fields defined in (2.38) is

Dµ = ∂µ − i
g√
2

(W+
µ T

+ +W−µ T
−)− i 1√

g2 + g′2
Z0
µ(g2T 3 − g′2Y )

− i gg′√
g2 + g′2

Aµ(T 3 + Y ) (2.40)

where T± = (T 1± iT 2) = 1
2(σ1± iσ2). We stress the fact that the field Aµ couples to the

gauge generator (T 3 + Y ), which is exactly the one generating the symmetry operation

(2.35). Since this field is interpreted to be the electromagnetic vector potential, it is

straightforward to define the electric charge e as

e =
gg′√
g2 + g′2

(2.41)

and the electric charge quantum number

Q = T 3 + Y. (2.42)

One can further simplify the expression for the fermion covariant derivative by introduc-

ing a new parameter, the weak mixing angle θw, which define the change of basis from
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(W 3, B) to (Z0,A): (
Z0

A

)
=

(
cosθw −sinθw

sinθw cosθw

)(
W 3

B

)
(2.43)

that implies

cosθw =
g√

g2 + g′2
, sinθw =

g′√
g2 + g′2

. (2.44)

The covariant derivative can be now rewritten as

Dµ = ∂µ − i
g√
2

(W+
µ T

+ +W−µ T
−)− i g

cosθw
Z0
µ(T 3 − sin2θwQ)− ieAµQ (2.45)

where we can finally recognize the usual interaction term for the photon in QED.

Also, it is worth noting that the masses of the gauge fields with this new notation satisfy:

mW = mZ cosθw (2.46)

2.1.3 Fermion mass terms

Let us now look more closely to the fermion content of the theory. It is common to

decompose a fermion field into chiral components using the projections operators P± =
1
2(I ± γ5) that satisfy:

P 2
± = P±, P+P− = P−P+ = 0. (2.47)

Thus that is possible to write

Ψ = P+Ψ + P−Ψ = ΨR + ΨL (2.48)

The important feature of this decomposition is that ΨR and ΨL can now independently

be assigned to representations of the gauge group. We can exploit this result to ensure

that only left-handed components of the fermions fields couple to the W bosons, as it

is suggested by experimental evidence. The left-handed fermion fields are assigned to a

doublet representation of SU(2), and their right-handed counterparts are SU(2) singlets,

i.e.

EL =

(
νe

e−

)
L

; eR; νR; (2.49)

This fact amounts to choose the value T 3 = 0 for right-handed fields, and a value

T 3 = ±1
2 for left-handed ones. Notice that, once a value for the generator T 3 is chosen,

it automatically implies a value for the hypercharge Y from (2.42). These assignments

can be seen to reproduce the correct electric charge values.
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However, the drawback of this choice is that it forbids the presence of fermion mass

terms. This is the case because such terms would have the form

mΨ(Ψ̄LΨR + Ψ̄RΨL) (2.50)

and therefore, since the fields ΨL and ΨR belong to different SU(2) representations and

have different U(1) charges, would be not gauge invariant. The only way for the fermions

to acquire masses is then via a Yukawa coupling to the scalar doublet φ. For instance,

for the electron we can add to the Lagrangian a term like:

∆L = −λeĒL · φeR + h.c. (2.51)

To obtain the size of the masses we just have to replace φ by its vacuum expectation

value :

∆L = − 1√
2
λevēLeR + h.c.+ · · · (2.52)

to get

me =
1√
2
λev (2.53)

In a completely analogous fashion it is possible to implement mass terms also for quark

fields, which will depend on similar constants λd, λu.

A further possibility would be to consider a Majorana mass. This comes from defining

a four component Majorana spinor ΨM , which in the chiral representation is

ΨM =

(
ψL

iσ2ψ∗L

)
, (2.54)

and which satisfies

(i 6∂ −m)ΨM = 0. (2.55)

However,since left-handed and right-handed Majorana spinors are not independent, this

Majorana equation is not invariant under global U(1) symmetries. This means that a

spin 1/2 particle which carries a U(1) conserved charge cannot have a Majorana mass.

So the only possible candidate which could have a Majorana mass is the neutrino. A

Dirac mass for the neutrino would imply that, together with the left-handed neutrino,

there exists also a right-handed neutrino, which combines with the left-handed one to

produce the Dirac mass. However, these hypothetical right-handed neutrinos are not

seen in weak interactions, and therefore, if they exist, they must be sterile, which means

that they do not participate in weak interactions, or at least they participate much

more weakly than the left-handed neutrinos. The other possibility is that neutrinos are

described by purely left-handed fields and have Majorana masses. In this case the lepton
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number symmetry is violated. Experiments on neutrino-less double beta decay aim at

detecting these violations.



Chapter 3

A Hint About The Technicolor

Model

This chapter is intended to give a short but, if possible, complete introduction to the

Technicolor model. We will mainly refer to concepts and formulas derived in [6, 10–18].

3.1 The Higgs Sector

We have seen how, in the context of the SM, the W± and Z0 bosons may acquire a mass

via the BEH mechanism with a single scalar field. However, it is worth asking whether

the same result could be obtained through a more complicated mechanism. In principle,

the breaking of SU(2)×U(1) might be the result of the dynamics of a complicated new

set of particles and interactions, known as the Higgs sector.

There are a few constraints on this new sector, imposed by experiments. First, it must

generate the masses of quarks and leptons. Second, it must generate the masses of

the W± and Z0 bosons as well. And last, it must reproduce in a natural way the

relation between bosons masses (2.46), which is satisfied experimentally to better than

1% accuracy. It is possible to show that this relation follows from the much more

general assumption of an unbroken global SU(2) symmetry of the Higgs sector, often

called custodial SU(2) symmetry. For the case of a single scalar field, the custodial

symmetry arises in the following way: if we write the field φ in terms of its four real

components, its Lagrangian has O(4) global symmetry. The vacuum expectation value

of φ breaks this symmetry down to O(3), which has a universal covering group, SU(2).

However, there are many other quantum field theories that break SU(2) spontaneously

while leaving another global SU(2) symmetry unbroken. One example is given by QCD

16
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with massless flavors. The Lagrangian in this case reads:

L =− 1

4
GAµνG

Aµν − 1

4
W a
µνW

aµν − 1

4
W 0
µνW

0µν

+

nG∑
i=1

(
q̄iαLiγµD

µ
αβqiβL + ūiαRiγµD

µ
αβuiβR + d̄iαRiγµD

µ
αβdiβR

+ L̄iLiγµD
µLiL + l̄iRiγµD

µliR

)
. (3.1)

where there are nG generations of quarks and leptons, the SU(3) colors for the quark

are labeled by α = 1, 2, 3, and the electroweak gauge bosons are W a with a = 1, 2, 3

for SU(2)EW and W 0 for U(1)EW . It’s easy to see that possesses a global SU(2nG)L ⊗
SU(2nG)R chiral symmetry, i.e. it is invariant for transformations (in the case of nG = 1)(

u

d

)
L

→ UL

(
u

d

)
L

,

(
u

d

)
R

→ UR

(
u

d

)
R

. (3.2)

The chiral nature of quark and lepton transformation laws under the electroweak gauge

group forbid bare mass terms for these fermions. Let us ignore for the moment the small

electroweak couplings of quarks. When the running QCD coupling constant becomes

large, the strong interactions bind quark anti-quark pairs into a composite 0+ field

Ψ̄Ψ. This can be understood thinking that, when massless quarks and antiquarks have

strong attractive interactions, the energy cost of creating an extra quark-antiquark pair

is small. Thus we expect that the vacuum of QCD will contain a condensate of quark-

antiquark pairs. These fermion pairs must have zero total momentum and angular

Figure 3.1: A quark-antiquark pair with zero total momentum and angular momen-
tum

momentum. Thus, they must contain net chiral charge, pairing left-handed quarks

with the antiparticles of right-handed quarks. This fact develops a non-zero vacuum

expectation value for the scalar operator

〈0|Ψ̄Ψ|0〉 = 〈0|Ψ̄LΨR + Ψ̄RΨL|0〉 6= 0 (3.3)

This vacuum expectation value signals the spontaneous breaking of the full symme-

try group (3.2) down to the subgroup of vector symmetries with UL = UR. In other
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words, the original chiral symmetry SU(2nG)L ⊗ SU(2nG)R breaks down to its diag-

onal subgroup SU(2nG)V of isospin. The resulting 4n2
G − 1 Nambu-Goldstone bosons

(the pions) will then be coupled to the appropriately defined axial-vector currents with

strength fπ = 93 MeV .

This also allows the quarks to acquire effective masses as they move through the vacuum.

In fact, if we follow these lines a step further and switch off the Higgs mechanism of the

electroweak interactions, then we would have unbroken electroweak gauge fields coupled

to identically massless quarks and leptons. However, it is apparent that the QCD-driven

condensate 〈Ψ̄Ψ〉 6= 0 will then spontaneously break the electroweak interactions at a

scale of order ΛQCD.

This statement will be clear when we restore the electroweak interactions. The quark

parts of the SU(2) ⊗ U(1) currents couple to a normalized linear combination of these

Goldstone bosons with strength
√
nGfπ. These massless states appear as poles in the

polarization tensors, Πab
µν(q) of the electroweak gauge bosons. Near q2 = 0 these take

the form

Πab
µν(q) = (qµqν − q2ηµν)

(gagbnGf2
π

4q2

)
+ nonpole terms. (3.4)

Here a, b = 0, 1, 2, 3; g0 = g′ and g1,2,3 = −g. At this stage it appears that the

electroweak symmetry SU(2) ⊗ U(1) has broken down to U(1)EM and the bosons W±

and Z0 as defined in (2.38) have acquired mass

mW =
1

2
g
√
nGfπ, mZ =

1

2

√
g2 + g′2

√
nGfπ (3.5)

while the photon stays massless. The three Goldstone bosons coupling to the electroweak

currents now appear in the physical spectrum only as the longitudinal components of

the W± and Z0. This is the dynamical Higgs mechanism.

Unfortunately, such picture is phenomenologically unacceptable since it yields, for nG =

3, wrong estimates of the gauge bosons masses

mW
∼= 53 MeV, mZ

∼= 60 MeV (3.6)

in contrast to observed experimental values

mW = 80.22± 0.26 GeV, mZ = 91.173± 0.020 GeV (3.7)

Because fπ ≈ 93 MeV is so small compared to vweak ∼ 175 GeV, the familiar hadronic

strong interactions cannot be the source of EWSB in nature. However, it is clear that

EWSB could well involve a new strong dynamics similar to QCD, with a higher-energy-

scale, ∼ vweak, with chiral symmetry breaking, and pions that become the longitudinal
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W± and Z0 modes. This kind of hypothetical new dynamics, known as Technicolor, was

proposed in 1979 by Weinberg and Susskind.

3.2 Technicolor

Before introducing the model it is worth investigating some issues of the elementary

Higgs models which have led to the quest for alternative solution to the EWSB problem.

The first thing is that such models are not dynamical and there is no explanation of why

EWSB occurs and why it has the scale vweak.

Secondly, they are unnatural in the sense that the Higgs boson’s mass is subject to

large additive renormalizations, i.e. radiative corrections generally induce a mass even

if the mass is ab initio set to zero. This makes fundamental scalars unappealing and

unnatural.

A further problem is triviality. The self coupling λ(M) of the minimal one-doublet

Higgs boson runs with the energy scale M ,

M
d

dM
= βλ, (3.8)

and at one loop order this βλ is given by [19]

βλ =
1

(4π)2

[
24λ2 − 6y4

t +
3

8

(
2g4 + (g2 + g′2)2

)
+ (−9g2 − 3g′2 + 12y2

t )λ
]
, (3.9)

Figure 3.2: RG evolution of the Higgs self coupling, for different Higgs masses for the
central value of the top mass mt and αS , as well as for ±2σ variations of mt (dashed

lines) and αS (dotted lines).
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where the term 24λ2 comes from the Higgs self-interaction’s contribution, −6y4
t from

the top quarks loop, 3
8

(
2g4 + (g2 + g′2)2

)
from the gauge boson loop and the last term

from Higgs field renormalization. If we neglect for a moment fermion and gauge bosons

terms in (3.9), λ(M) is determined by

λ(M) ∼=
λ(Λ)

1 + (24/16π2)λ(Λ)log(Λ/M)
, (3.10)

where Λ is the cutoff. This implies that λ → 0 for all M as Λ → ∞. So elementary-

Higgs Lagrangians can be regarded as effective theories, valid until some energy cutoff

Λ∞ after which new physics sets in.

If we now investigate the fermion’s effect, just considering the only term in βλ

βλ =
1

(4π)2
[−6y4

f ]. (3.11)

One can solve λ(M) analitically when neglecting the running for the yf to get

λ(M) = λ(Λ)− 6y4
f log

λ

Λ
. (3.12)

For a complete and consistent investigation, one should solve all the coupled RG equa-

Figure 3.3: The scale at which the SM Higgs potential becomes negative as a function
of the Higgs mass for the central value of mt and αS (plain red), as well as for ±2σ
variations of mt (dashed red) and αS (dotted red). The blue lines on the left are
the metastability bounds (plain blue: central values of mt and αS ; dashed blue: ±2σ

variations of mt).
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tions, but just for showing the physical effect of yf this simplification is enough. It is

clear that at some energy scale, λ can become negative. This implies that the potential

is unbounded and the electroweak vacuum may be unstable due to quantum tunneling.

This problem is known as vacuum instability problem, and the scale at which λ(M)

crosses zero depends on the mass of the Higgs boson . Another problem is the hierarchy

problem. This problem arises when the standard model is embedded into some larger

structure involving a mass scale M much larger than the electroweak scale characterised

by the v.e.v. v. For example M might be identified with a scale of grand unification

with M ≈ 1016 GeV. In such a framework the Higgs sector responsible for breaking

the larger gauge symmetry at the scale M and the Higgs sector responsible for breaking

electroweak symmetry at the scale v cannot be kept distinct, and communicate through

one-loop radiative corrections. The hierarchy of mass scales can then only be main-

tained at the one-loop level by fine- tuning the basic Higgs parameters of the theory to

an accuracy of about 24 decimal places in this example. Such fine-tuning arises because

of the quadratic nature of the scalar divergences. Furthermore the fine-tuning must be

re-done at every order of perturbation theory.

Finally, elementary Higgs models have shed no light on the problem of flavor symmetry

and its breaking, since Yukawa couplings of Higgs bosons to fermions are arbitrary free

parameters, put in by hand.

In response to these shortcomings of the SM, the dynamical approach to electroweak

and flavor symmetry breaking (Technicolor, TC) emerged in analogy with the dynamical

Higgs mechanism described in the previous section. The basic idea is to assume that

there exists a new, asymptotically free, gauge interaction, the technicolor interaction,

with gauge group GTC , and gauge coupling αTC that becomes strong around ΛTC ∼ 500

GeV. A new set of technicolor interacting particles, ND doublets of left and right handed

technifermions TiL,R = (Ui, Di)L,R, are also introduced and assigned to equivalent com-

plex irreducible representations of GTC . Namely, TL are assigned to electroweak SU(2)

as doublets and the TR as singlets. These technifermions are then massless and have the

chiral flavor group

Gχ = SU(2ND)L ⊗ SU(2ND)R ⊃ SU(2)L ⊗ SU(2)R. (3.13)

Basically Technicolor is just a scaled-up version of QCD, so when αTC becomes strong,

technifermion condensates form in analogy with (3.3):

〈0|ŪiLUjR|0〉 = 〈0|D̄iLDjR|0〉 = −δij∆T . (3.14)

The chiral symmetry breaks down to Sχ = SU(2ND) ⊃ SU(2)V and 4N2
D − 1 massless

Goldstone bosons appear, with decay constant FπT . Some linear combination of three of
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these will be eaten by the W±, Z0 bosons, and become their longitudinal components.

Their masses will read

mW =
1

2
g
√
NDFπT , mZ =

1

2

√
g2 + g′2

√
NDFπT = mW /cos θW (3.15)

In order to achieve the correct experimental magnitudes for these masses, we just have

to identify Fπ =
√
NDFπT with the vacuum expectation value of the Higgs field, i.e

Fπ = v = 246 GeV.

In this way we solved the problems that affected the Higgs mechanism. In particular the

triviality problem has now vanished, since asymptotically free theories are nontrivial. A

minus sign in the denominator of the analog of eq. (3.10) for αTC(µ) prevents one from

concluding that it tends to zero for all µ as the cutoff is taken to infinity.

However, this theory is unacceptable because still lacks an explanation for quark and

lepton flavor symmetries and their breaking. The quarks and leptons in this context

remain massless. Tackling this issue is the motivation for an extended Technicolor model.

3.2.1 The Extended Technicolor Model

We have seen that TC leaves too much chiral symmetry, and, as a consequence, quarks

and leptons have no hard masses. The general strategy of the extended Technicolor

model (ETC) to avoid this problem is simple: introduce new interactions that break the

unwanted symmetries. To do so, one embeds the TC gauge group GTC into a larger

ETC gauge group GETC which is broken somehow at a scale ΛETC � ΛTC down to

GTC , i.e.

GETC → GTC ⊗ SU(3)⊗ · · · . (3.16)

After the breaking, there are heavy ETC gauge bosons corresponding to the broken

ETC generators, with mass METC ∼ gETCΛETC , where gETC is just a renormalized

ETC gauge coupling. Such bosons can in general couple fermions to technifermions,

which allows the generation of masses for quarks and leptons via a radiative process in

which a fermion turns into a technifermion and back into a fermion, as is illustrated in

figure. The typical mass is of order

mf w
g2
ETC〈T̄ T 〉ETC
M2
ETC

, (3.17)
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f

T

π

(a)

f

METC

T f

(b)

Figure 3.4: (a) Coupling between boson, fermion and technifermion. (b) Radiative
process giving mass to fermions.

where the condensate 〈T̄ T 〉ETC is related to the one renormalized at ΛTC by the expo-

nential scaling

〈T̄ T 〉ETC = 〈T̄ T 〉TC exp

(∫ METC

ΛTC

dµ

µ
γm(µ)

)
, (3.18)

where

γm(µ) ≈ 3C2(R)

2π
αTC(µ) (3.19)

is the anomalous dimension of the operator T̄ T and C2(R) is the quadratic Casimir of

the technifermion GTC representation R. These are the fundamental ingredients of ETC.

With the use of these equations one can estimate most quantities of phenomenological

interest, such as ΛETC and the typical mass of technipions:

ΛETC ≡
METC

gETC
'
√

4πF 3
π

mfN
3/2
D

' 14

√
1 GeV

mfN
3/2
D

TeV. (3.20)

Mπ '
〈T̄ T 〉TC√
2ΛETCFT

' 40

N
1/4
D

GeV. (3.21)

Despite some success in solving the problem of generating fermions masses in the orig-

inal TC model, ETC suffers a series of flaws, which are the presence of flavor-changing

neutral current interactions, precision measurements of electroweak quantities and the

large mass of the top quark.

At an energy scale under ΛETC the massive bosons corresponding to the broken sym-

metries generators will produce three kinds of interactions between fermions and tech-

nifermions:

αab
Q̄T aQQ̄T bQ

Λ2
ETC

+ βab
Q̄LT

aQRΨ̄RT
bΨL

Λ2
ETC

+ γab
Ψ̄LT

aΨRΨ̄RT
bΨL

Λ2
ETC

(3.22)

Here we can see that the α term induces four technifermions interactions, and can
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elevate the mass of some Goldstone bosons, fundamental to reproduce some experimental

results. The β term essentially gives masses to the ordinary quarks and leptons. The

γ term, on the other hand, produces four fermion contact interactions which leads to

flavor changing neutral currents and lepton number violation. Because ETC must couple

differently to fermions of identical Standard Model gauge charges in order to provide the

observed range of fermion masses, flavor-changing neutral current interactions amongst

quarks and leptons generally result. Processes like:

(s̄γ5d)(s̄γ5d)

Λ2
ETC

+
(µ̄γ5e)(ēγ5e)

Λ2
ETC

(3.23)

are induced, and give new contributions to experimentally well constrained quantities,

e.g. the KLKS mass difference.

Another issue are the precision electroweak measurements. The SM has been tested

with a high degree of accuracy, and its parameters are known very precisely, so that can

be used to limit new physics above a scale of 100 GeV. The quantities most sensitive to

the presence of new physics, the so called oblique correction functions S, T and U , are

defined in terms of the correlation functions of electroweak currents:∫
d4x e−iq·x〈0|T (jµi (x)jνj (0))|0〉 = iηµνΠij(q

2) + qµqν terms. (3.24)

The S parameters is a measure of the splitting between mW and mZ induced by

weak isospin conserving effects. The T parameter is given by the relation 1 + αT =

m2
W /m

2
Z cos2θW . The U parameter measures weak isospin breaking in the W and Z

mass splitting. The most troubling fact is that, scaling the value from QCD, S ' 1,

approximately four standard deviations away from experimental values.

Finally, to obtain the correct value for the top quark mass of mt = 175 GeV one should

have ΛETC ≈ 1.0 TeV/N
3/4
D , a value very close to ΛTC itself. TC gets strong and ETC

broken at the same energy and the representation of broken ETC as contacts operators

is wrong and mass estimates are questionable. It would be possible to raise ETC scale,

but then the problem of fine tuning of ETC coupling gETC would arise.

3.2.2 Walking Technicolor

One way to get rid of the FCNC and precision electroweak measurements of ETC is the

formulation of a walking Technicolor. Normal Technicolor is nothing but a scaled-up

version of QCD, a fact that is the root of both these problems. This assumption indeed

implies that asymptotic freedom sets in quickly above ΛTC and 〈T̄ T 〉ETC ' 〈T̄ T 〉TC ,

which in turn implies that fermions and technipions mass estimates are some order of
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magnitudes away from the correct values. Also, the QCD scaling means that the tech-

nihadron spectrum is just a magnified version of that of QCD and that the value of the

S parameter is too large.

Therefore, it may be possible to cure at the same time both these difficulties by in-

troducing a new Technicolor theory whose gauge dynamics are not QCD-like. The

simplest realization of this is a theory in which the gauge coupling αTC(µ) has no dra-

matic increases and instead, runs slowly, hence the name ”walking”, over the scale range

ΛTC . µ . ΛETC .

Thus far the condesates 〈T̄ T 〉ETC and 〈T̄ T 〉TC have been approximately equal because

we have assumed that the anomalous dimension γm(µ) ≈ 3C2(R)αTC(µ)/2π � 1 when

µ > ΛTC . In the extreme walking limit in which αTC(µ) can be regarded as constant,

it is possible to get a nonperturbative approximation:

γm(µ) = 1−
√

1− αTC(µ)/α∗TC where α∗TC =
π

3C2(R)
. (3.25)

In this context the chiral symmetry breaking scale ΛTC is defined by the condition

αTC(ΛTC) = α∗TC ⇐⇒ γm(ΛTC) = 1. (3.26)

Such large value of γm allows quarks masses to be enhanced in eq. (3.18) to give the

correct values up to the charm. For the top quark this still does not work, but it can be

accounted for in other models, e.g. TC2.

More recently, after the discovery by LHC of a Higgs boson with mass 125 GeV, all of

the minimal technicolor models have been conclusively ruled out. There still are, how-

ever, attempts to build some new models in which a scalar doublet is present together

with a strong new dynamics which contributes in part to the breaking of electroweak

symmetry.

These theories include both a Higgs doublet φ and a technicolor sector. Typically, the

φ squared mass is assumed positive at the weak scale; the φ field develops a vacuum

expectation value due to a linear term in the Higgs potential that is induced when the

technifermions condense. In this sense, technicolor would still be the trigger of elec-

troweak symmetry breaking. Yukawa couplings between φ and the quarks and leptons

lead to fermion masses in the usual way. More analysis on the properties of the Higgs

particle are needed to conclusively prove these new models right or wrong.



Chapter 4

The Antisymmetric Tensor Field

Let us now focus on the antysimmetric tensor field Bµν(x) = −Bνµ(x). It is this field

that, in our model, is supposed to interact with fermions and gauge bosons of the SM

via a B-Yukawa type of term and, if proved to have an asyptotically free coupling, can

lead to the formation of a top-antitop condensate 〈φt〉 6= 0 [1, 20] which, in analogy with

Technicolor, may replace the fundamental Higgs scalar of the SM, and produce the mass

terms for fermions and gauge bosons in a dynamical way.

Classically, a massless antisymmetric tensor field is described by the free Lagrangian:

LB = − 1

12
(∂µBνλ+∂νBλµ+∂λBµν)(∂µBνλ+∂νBλµ+∂λBµν) ≡ − 1

12
HµνλH

µνλ, (4.1)

and it can be seen that it possesses the gauge invariance

δBµν = ∂µθν − ∂νθµ. (4.2)

A four dimensional antisymmetric tensor has six components, which we can label by

writing Bµν as

Bµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 (4.3)

These six components can be decomposed into two inequivalent ((3,1) and (1,3)) irre-

ducible representations of the Lorentz group [21]:

B±µν =
1

2
Bµν ±

i

4
εµν

ρσBρσ, (4.4)

26
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with εµνρσ the totally antisymmetric tensor.

The equation of motion is easily computed and reads:

∂µ∂
[µBνλ] = 0. (4.5)

In order to write down a B-Yukawa type of interaction term with fermions, one should

work with a complex Bµν field which transform as a doublet under weak SU(2) inter-

actions, exactly as the Higgs, and carry the same hypercharge Y = 1.

The B-Yukawa type of interaction term we will consider is

∆L = yBµνΨ̄β
Lσ

µν
αβΨα

R + h.c., (4.6)

with α, β spinor indices, which we, from now on, will suppress.

We can already see that such term is Lorentz invariant, but we can also check that it

also is invariant under a parity transformation. To see this, we first look how the Bµν

alone transforms under parity:

Bµν → Bµν forµ, ν 6= 0 or µ = ν = 0; (4.7)

Bµν → −Bµν forµ ∨ ν = 0, (4.8)

and then see how the Ψ̄σµνΨ piece behaves under the same parity transformation:

Ψ̄(t, ~x)σµνΨ(t, ~x)→η∗Ψ̄(t,−~x)γ0σµνγ0Ψ(t,−~x)η =

=Ψ̄(t,−~x)σµνΨ(t,−~x) for µ, ν 6= 0 or µ = ν = 0;

=− Ψ̄(t,−~x)σµνΨ(t,−~x) for µ ∨ ν = 0.

Thus it is clear that the whole term BµνΨ̄σµνΨ is parity invariant.

In principle, other possible B-Yukawa terms would include the dual tensor:

B̃αβ = εαβµνB
µν =


0 −B1 −B2 −B3

B1 0 −E3 E2

B2 E3 0 −E1

B3 −E2 E1 0

 (4.9)

but, since the Levi-Civita tensor is a pseudo-tensor, this object would have parity prop-

erties inverted with respect to the normal antisymmetric tensor, hence the B-Yukawa

terms

yB̃µνΨ̄Lσ
µνΨR + y∗B̃†µνΨ̄Rσ

µνΨL (4.10)

would not be parity even. This is the reason why we will disregard such terms in our
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model.

The full Lagrangian at this stage will then read:

L =LΨ + LW + LA + LB + ∆Lint =

=i
3∑

n=1

[ēnLγ
µDµe

n
L + q̄nLγ

µDµq
n
L + ēnRγ

µDµe
n
R + ūnRγ

µDµu
n
R + d̄nRγ

µDµd
n
R]

− 1

4
GµνG

µν − 1

4
FµνF

µν − 1

12
H†µνλH

µνλ

+

3∑
i,j=1

(yiju q̄
i
LB̂µνσ

µνujR + yijd q̄
i
LBµνσ

µνdjR + yije ē
i
LBµνσ

µνejR), (4.11)

where Dµ is the usual SM covariant derivative and B̂µν = iσ2Bµν .

From this Lagrangian it is possible to derive in the usual manner through variation with

respect to the different fields the equation of motion for Ψ̄,Ψ, Aµ,Wµ,Bµν . This work

has already been done in [2] and here we can just quote the results. Varying with respect

to Ψ̄ yields:

i
−→
Dµγ

µ + yBµνσ
µνΨ + yB̂µνσ

µνΨ = 0, (4.12)

and a similar equation holds for Ψ̄. The variation with respect to Bµν instead leads to

∂µD
[µBνρ] + 6yΨ̄σνρΨ− (igA[µ +

ig′

2
W[µaτa)(igA[µ+

ig′

2
W a[µτa)B

νρ] = 0, (4.13)

which can be split in two equations, one for the E field and one for the B:

∂0D
[jEi] − (igA[j +

ig′

2
W a

[jτa)(igA
[j +

ig′

2
W a[jτa)E

i] = 0 (4.14)

∂0D
0εijmBm + ∂kD

[kεij]mBm − (igA[k +
ig′

2
W a

[kτa)(igA
[k +

ig′

2
W a[kτa)ε

ij]mBm

+ (igA0 +
ig′

2
W a

0 τa)(igA
0 +

ig′

2
W a0τa)ε

ijmBm − 6yΨ̄σijΨ− i6yσ2Ψ̄σijΨ = 0. (4.15)

4.1 Kinetic Term

We will now focus on the kinetic term for the antisymmetric field. We can easily read

it off the Lagrangian (4.11):

LB = − 1

12
H†µνλH

µνλ = − 1

12
(D[µBνλ])†D[µBνλ]. (4.16)
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We will work in what follows with a metric choice (-,+,+,+) and a notation for the

antisymmetric tensor field components as

Bµν =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 (4.17)

B0i = Ei Bi0 = −Ei Bij = −εijlBl

B†0i = Ei B†i0 = −Ei B†ij = εijkBk

B0i = −Ei Bi0 = Ei Bij = −εijkBk. (4.18)

It is worth to stress the fact that the possibility of a kinetic term with non-antiymmetrized

indeces is not forbidden, but it has brought in the literature [20], to the manifestation

of classical instabilities, which could be corrected by some non-perturbative effect that

generates a mass term for the antisymmetric field. For this reason we will keep the

antiymmetrized version. Let us now write the kinetic term explicitly in terms of the B

and E fields. We have, with a bit of algebra,

1

12
(D[µBνλ])†D[µBνλ] =(DµBνλ)†(DµBνλ +DλBµν +DνBλµ) =

=(DµBνλ)†DµBνλ + 2(DµBνλ)†DνBλµ =

=2(DiEjD
iEj −DjEiD

iEj −D0BiD
0Bi −DlBlD

mBm),

(4.19)

which, making use of the identity:

(D×E)2 = εijlDjElεDmEn = DjEnDjEn −DjElDlEj (4.20)

boils down to

− 1

12
H†µνρH

µνρ = (D×E)2 − (D ·B)2 + (D0B)2. (4.21)

With this expression we can compute the equation of motion directly for the E and B

fields to get

D2
l Ej −DlDjEl = −2yΨ̄σ0iΨ (4.22)

D2
0Bi −Di(D ·B) = yεijlΨ̄σjlΨ, (4.23)

from which we can conclude that the truly dynamical information is encoded in the B

field, while the E field is not dynamical. In fact, one can rewrite the equation of motion
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for the free
−→
E and

−→
B fields as:

∂2−→B + ∂0

(−→
∇ ×

−→
E
)
−
−→
∇ ×

−→
∇ ×

−→
B = 0 (4.24)

∇2−→E −
−→
∇(
−→
∇ ·
−→
E )− ∂0(

−→
∇ ×

−→
B ) = 0, (4.25)

which in terms of the longitudinal and transverse components can be reduced to

∂2BL = 0 (4.26)

∇× ET − ∂0B
T = 0. (4.27)

So we see that the longitudinal component EL has decoupled from the theory and can

be just set to zero, while the two transverse components can be combined into a gauge

invariant quantity that satisfies

ETg.i. = 0. (4.28)

This implies that the theory has only one dynamical degree of freedom, encoded in BL.

A similar analysis can be done also in d dimensions. The e.o.m. in this case are

∂2Ei − ∂i(∇ ·
−→
E ) + ∂2

0E
i − ∂0∂jB

ij = 0 (4.29)

∂2Bij − ∂0∂iE
j + ∂l∂iB

jl + ∂0∂jE
i + ∂l∂

jBli = 0, (4.30)

where this time Ei is a d−1 vector and Bij is a d−1 rank antisymmetric tensor. Writing

the equations in terms of longitudinal components leads to the classical wave equation:

∂2(∇ ·B)L = 0 (4.31)

and a condition between the two transverse components

∇2ET − ∂0(∇ ·B)T = 0, (4.32)

which again can be brought into a gauge invariant quantity that may be set to zero.

Then, in d dimensions, our antisymmetric tensor has (d−2)(d−3)
2 dynamical degrees of

freedom. With this analysis we can work with dimensional regularization when comput-

ing Feynman diagrams in chapter 5.

Finally, we will check that our kinetic term is invariant under SU(2)× U(1) SM trans-

formation. One can prove this by writing Hµνλ as the dual of the derivative of a scalar:

Hµνρ = εµνρα∇ασ, (4.33)
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so that

− 1

2(d− 1)!
HµνρH†µνρ = − 1

2(d− 1)!
εµνραεµνρβDασ(Dβσ)† = −1

2
Dασ(Dβσ)†. (4.34)

We can then transform back, and get

Dασ = εαµνρD
[µBνρ]. (4.35)

Since we know how a scalar field transforms under a SU(2) × U(1) transformation

(σ → σ′ = exp(− ig′

2 Λ− ig
2 ξ

aτa)σ), we then also know how the Bµν transforms, and it is

easy to prove

D′µB
′
νρ = DµBνρ, (4.36)

that is, invariance under SU(2)× U(1).

Other accidental invariances of this term have been searched but not found. A covariant

version of the symmetry of the free antisymmetric field (4.2), for instance, does not hold.

Other attempts have been made to see if the interaction term between the antisymmetric

tensor and the fermions could be generated from a symmetry of the fermion Lagrangian,

as it is usually done in local gauge theories. A generic transformation on the fermions

can be written as

Ψ→ Ψ′ = SΨ. (4.37)

Such transformation S should belong to some Lie group. We could see how the generators

of this group should look like in order to reproduce the correct interaction term by

imposing:

γµT ν = σµν . (4.38)

This leads to

T ν = 2γν − 2ηµν(γµ)−1. (4.39)

However we can already argue that this is not a proper Lie group since the generators

do not respect the associated Lie algebra:

[T ν , T ρ] 6= ifνρσ T σ. (4.40)

We can conclude then that there are no other manifest symmetries in our Lagrangian.

4.2 Covariant Quantization

Clearly, our symmetric tensor is redundant, i.e. the free theory has spurious degrees of

freedom that need to be fixed somehow. This can be seen from the invariance (4.2),
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which is an analogous of the gauge invariance of the photon field Aµ → A′µ = Aµ + ∂µξ.

When it comes to quantization of the field, this redundancy can be overcome by using

Dirac quantization [22], a generalization of canonical quantization to systems of fields

with constraints. The price to pay is the lost of manifest Lorentz invariance. This

procedure has been used in the preceding work [2], but it has brought to cumbersome

calculations in coordinate space and therefore, has been abandoned in our approach.

Another solution to the problem at hand would be to introduce the missing (gauge)

degrees of freedom via a gauge fixing term in the Lagrangian to keep track of manifest

Lorentz invariance. This term would formally spoil the gauge invariance, but it would

make the quadratic term invertible, so that it is possible to compute a covariant propa-

gator for the Bµν field.

The degrees of freedom introduced will not affect the interactions of the theory,and the

effect of this procedure can still be separated from the true gauge invariant part of the

theory, so that the physical consequences remain unchanged.

To proceed to the computation of the propagator the first thing to do is to find a good

candidate for the gauge fixing term. Of course, this new term should not modify the

physics of our model, which means that it should not modify the equation of motion of

the dynamical degrees of freedom, which are encoded in BL, the longitudinal compo-

nents of the B field.

Bearing this in mind we tried to add a term like 2
ξ (∂µBµν)†(∂ρB

ρν) and see what changes

in the equation of motion for the fields B and E.

First let us compute this term in terms of the fields.

(∂µBµν)†(∂ρB
ρν) = ∂0B†0i∂0B

0i + ∂iB†i0∂jB
j0 + ∂iB†ij∂kB

kj

= −∂0Ei∂0Ei − ∂iEi∂jEj − ∂iεijlBl∂kεkjmBm

= −(∂0Ei)
2 + (∇ ·E)2 + (−δikδml + δilδmk)∂

iBm∂kBl

= −(∂0Ei)
2 + (∇ ·E)2 + (∇×B)2. (4.41)

Since this kind of term only adds a contribution to the equation of motion of the B field

in the form of (∇×B)2, it does not affect the longitudinal component BL, the dynamical

degree of freedom, and its equation of motion.

We can explicitly check this by computing the modified e.o.m. to get

∂2Bνρ +
(

1− 1

ξ

)
[∂µ∂

ρBµν − ∂µ∂νBµρ] = 0, (4.42)

and rewriting it as

∇2Ei −
1

ξ
∂2

0Ei +
(

1− 1

ξ

)
[∂0(∇×B)−

−→
∇(
−→
∇ ·
−→
E )] = 0 (4.43)
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− ∂2−→B −
(

1− 1

ξ

)
[∂0(
−→
∇ ×

−→
E ) +

−→
∇ × (

−→
∇ ×

−→
B )] = 0, (4.44)

which again yields

∂2BL = 0. (4.45)

This proves that is a suitable gauge fixing term to add to the Lagrangian. Besides,

this is the only type of term one can add, since all the other possible contractions of

the derivative with the B field either give zero or are already present in the original

Lagrangian. However, in the end of our calculations we want to send ξ to zero, in order

to restore the correct number of degrees of freedom of the antisymmetric tensor field.

With this result we can then proceed to the calculation of the antisymmetric tensor field

covariant propagator.

4.2.1 The Covariant Propagator

The following calculation that leads to an expression for the time-ordered (Feynman)

covariant propagator has been done in analogy with what can be found in [23].

The first step is to look at the modified equation of motion. The get modified E.o.m.

for the Bµν field we just have to vary the modified quadratic part of the Lagrangian

with respect to B†µν :

Lξ = (∂µBνρ)
†(∂µBνρ + ∂ρBµν + ∂νBρµ) +

2

ξ
(∂µBµν)†(∂ρB

ρν)

δLξ

δB†νρ
=
δ(H†µνρ)Hµνρ

δB†νρ
+

1

ξ

δ

δB†νρ
(∂νB†νρ)∂µB

µρ +
1

ξ

δ

δB†νρ
(∂ρB†ρν)∂µB

µν =

= ∂2Bνρ + ∂µ∂
ρBµν − ∂µ∂νBµρ +

1

ξ
(∂µ∂

νBµρ − ∂µ∂ρBµν) =

= ∂2Bνρ +

(
1− 1

ξ

)
[∂µ∂

ρBµν − ∂µ∂νBµρ] = 0. (4.46)

Next thing we can compute is the canonical momentum

Πνρ =
δL

δ(∂0B
†
νρ)

= ∂0Bνρ + ∂ρB0ν − ∂νB0ρ − 1

ξ
δν0∂µB

µρ +
1

ξ
δρ0∂µB

µν . (4.47)

To calculate the propagator then we have to invert the operator Lνραβ which is:

[
∂2ην[αη

ρ
β] + 2

(
1− 1

ξ

)
∂[α∂

[ρη
ν]
β]

]
Bαβ = LνραβB

αβ = 0. (4.48)
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The time ordered propagator would then satisfy

Lνραβi[νρ∆
++
γδ ](x, x′) =αβ Pγδ × i~δD(x− x′), (4.49)

for some unknown tensor structure αβPγδ. To find it, we make use of the canonical

commutator:

[Bµν(~x, t),Πρσ(~x′, t)] = i~δ[ρ
µ δ

σ]
ν δ

D−1(~x− ~x′) (4.50)

and of the fact that the time ordered propagator can be written as:

iρσ∆++
αβ (x, x′) = θ(t− t′)i[ρσ∆+−

αβ ](x, x′) + θ(t′ − t)i[ρσ∆−+
αβ ](x, x′), (4.51)

where

iρσ∆−+
αβ (x, x′) = 〈Bρσ(x)Bαβ(x′)〉, iρσ∆+−

αβ (x, x′) = 〈Bαβ(x′)Bρσ(x)〉 (4.52)

are the two Wightman functions.

The Lagrangian implies that the Wigthman functions obey the equations:

Lρσµνi[ρσ∆+−
αβ ](x, x′) = 0, Lρσµνi[ρσ∆−+

αβ ](x, x′) = 0. (4.53)

So, when the operator Lρσµν acts on the whole time ordered propagator, one gets a non-

vanishing contribution only when one time derivative hits a Whigtman function and one

a θ function. The result is:

Lνραβ[θ(t− t′)i[νρ∆+−
γσ ](x, x′) + θ(t′ − t)i[νρ∆−+

γσ ](x, x′)] =

Lνραβ[θ(t− t′)〈Bρσ(x)Bαβ(x′)〉+ θ(t′ − t)〈Bρσ(x)Bαβ(x′)〉] =

= −δ(t− t′)
[
−ην[αη

ρ
β]Ḃνρ(x) +

(
1− 1

ξ

)(
δ0

[αδ
ρ
0η
ν
β]Ḃνρ(x)− δ0

[αδ
ν
0η

ρ
β]Ḃνρ(x)

)
, Bγσ(x′)

]
=

= −δ(t− t′)
[
−Ḃαβ(x) +

(
1− 1

ξ

)(
δ0

[αḂβ]0(x)
)
, Bγσ(x′)

]
=

= δ(t− t′)
[
−Παβ(x, t), Bγσ(x′, t)

]
= δ(t− t′)× ηα[γησ]βi~δD−1(~x− ~x′). (4.54)

From which we infer that:

αβPγσ = ηα[γησ]β. (4.55)

The passage between the last lines can be obtained by realising that spatial derivatives

do not contribute to the commutator.

Hence, the equation we need to solve for the Keldysh propagator is

Lρσµνi[ρσ∆ab
αβ](x, x′) = ηµ[αηβ]ν(σ3)abi~δD(x− x′), (4.56)
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where a, b = ±.

If we now insert the Ansatz

[ρσ∆ab
αβ](x, x′) = ηρ[αηβ]σA

ab(x, x′) + ∂[ρησ][α∂β]B
ab(x, x′) (4.57)

into equation (4.56) we get

∂2Aab(x, x′) = i~(σ3)abδD(x− x′) (4.58)(
−1

ξ

)
∂2Bab(x, x′)− 2

(
1− 1

ξ

)
Aab(x, x′) = 0. (4.59)

Which are solved by

Aab(x, x′) =i~∆ab
0 (x, x′) (4.60)

Bab(x, x′) =2(1− ξ)~
∫
dDzi∆ac

0 (x, z)(σ3)cd∆db
0 (z, x′), (4.61)

where

i∆ab
0 (x, x′) =

Γ(D−2
2 )

4πD/2
1

(∆x2
ab)

(D−2)/2
(4.62)

is the Keldysh propagator for a massless scalar field in Minkowski space.

Eventually, we can write the propagator for the antisymmetric tensor field as

i[ρσ∆ab
αβ](x, x′) =~ηρ[αηβ]σi∆

ab
0 (x, x′)

+ 2 (1− ξ) ~∂[ρησ][α∂β]

∫
dDzi∆ac

0 (x, z)(σ3)cd∆db
0 (z, x′). (4.63)

To obtain the expression of the propagator in momentum space we just have to plug

into last equation the expression for the propagator for the scalar field in momentum

space (see Appendix A). Doing this we have, for the Feynman propagator:

i[ρσ∆̃++
αβ ](k) = ~ηρ[αηβ]σ

−i
kµkµ − iε

+ 2 (1− ξ) i~
k[ρησ][αkβ]

(kµkµ − iε)2
. (4.64)

This is the expression we will use in what follows. We will keep manifest track of the

gauge parameter ξ and let it go to 0 at the end of the calculations, in order to restore

the exact (transverse) gauge ∂µB
µν = 0 in which the antisymmetric field has only one

degree of freedom and the propagator has the correct transversality properties.



Chapter 5

Computation of the Beta

Function for the B-Yukawa Type

Interaction

The key idea of this work is to provide the antisymmetric tensor field with a B-Yukawa

coupling to the fermions, in order to have some condensate to play the role of the Higgs

and give mass to fermions and gauge bosons. The only way for this to be possible is to

have an asymptotically free coupling constant. So our task will be to check that this is

indeed the case.

5.1 The Callan-Symanzik Equation

In this section we will refer to [6] to have an idea about the meaning of the beta function

and how it is computed in quantum field theories.

Basically, the beta function of a coupling constant is a measure of the variation of the

magnitude of the coupling as a function of the energy scale M at which the theory is

renormalized. To better understand this concept we will use the example of the scalar

field theory with a quartic interaction term λφ4 in four dimensions.

To properly define this theory, i.e. to regulate divergences coming from some Feynman

diagrams, it is customary to impose some renormalization conditions which will lead

to the introduction of counterterms in the original Lagrangian. The function of these

counterterms is only to cancel divergences and they will not affect the theory in any

other way. For this example the renormalization conditions at a spacelike momentum p

with p2 = −M2 are:

36
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• The vanishing of the self energy diagram at p2 = −M2

• The vanishing of the derivative with respect to p2 of the self energy diagram at

p2 = −M2

• The vertex correction at (p1 + p2)2 = (p1 + p3)2 = (p1 + p4)2 = −M2 has to be

equal to −iλ.

One can then rescale the bare field φ0 by

φ = Z−
1
2φ0, (5.1)

where the factor Z comes from the bare two-point Green’s function at the renormaliza-

tion scale:

〈Ω|φ0(p)φ0(−p)|Ω〉 =
iZ

p2
at p2 = −M2. (5.2)

The Lagrangian can be rewritten, defining the counterterms δZ = Z − 1 and δλ =

λ0Z
2 − λ, as

Lφ =
1

2
(∂µφ)2 − λ

4!
φ4 +

1

2
δZ(∂µφ)2 − δλ

4!
φ4. (5.3)

We can see that this theory appears to have new interactions with respect to the original

one. This is just fictitious because all we have done has been to split each term of the

starting Lagrangian in terms of the physical field and coupling. The counterterms can

now be adjusted to provide the renormalization conditions above.

An important observation to make is that the energy scale M is completely arbitrary

in the renormalization conditions. In fact, the bare Green’s functions are not affected

at all by this scale. What is influenced by M are the renormalized Green’s functions,

which are proportional to the bare ones: Gn = Z−
n
2Gn0 . Thus, as long as to each change

in M there is a corresponding adjustment to Z, we are equally well describing the same

bare theory.

When an infinitesimal change to M is performed, another one is induced on the renor-

malized n-point Green’s function. Quantitatively, for a change

M →M + δM ; λ→ λ+ δλ; φ→ (1 + δη)φ; (5.4)

corresponds

δGn =
∂Gn

∂M
δM +

∂Gn

∂λ
δλ = nδηGn. (5.5)
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The rearrangement of this equation in terms of

β ≡ M

δM
δλ; γ ≡ − M

δM
δη, (5.6)

is generally known as the Callan-Symanzik equation:[
M

∂

∂M
+ β(λ)

∂

∂λ
+ nγ(λ)

]
Gn({xi};M,λ) = 0 (5.7)

The parameters β and γ are independent of n. Besides, since Gn is the renormalized

Green’s function,i.e. it cannot depend on the cutoff Λ, neither can β and γ depend on

the cutoff and hence, by dimensional analysis, on the scale M .

The two parameters are then only functions of the coupling λ, and they are related to

the shifts in the coupling constant and field strength. The β function, in particular,

is of fundamental importance because tells us how the coupling strength varies with

the scale M and therefore, clarifies the conditions under which perturbation analysis is

applicable.

To explicitly compute these functions one should implement a set of renormalized con-

ditions, together with the introduction of counterterms, and then impose that the con-

veniently chosen renormalized Green’s functions satisfy the Callan-Symanzik equation.

The expressions for β and γ will of course depend on these counterterms and on the

particular choice for the renormalization conditions. Luckily however, to one-loop order,

their expressions will be unambiguous.

In a general theory with dimensionless coupling the M dependence of the Green’s func-

tions enters through the field strength and vertex counterterms, which are used to sub-

tract the divergent logarithms. This means that the β and γ functions can be computed

only by knowing the counterterms1. This will be more clear if we write the generic

n-point Green function for the coupling g associated with an n-point vertex. To one

loop order we have:

Gn =
(∏

i

i

p2

)[
−ig − iBlog

Λ2

−p2
− iδg + (−ig)

∑
i

(
Ailog

Λ2

−p2
− δZi

)]
+ finite (5.8)

where δg is the counterterm for the vertex, δZi are the counterterms for the external legs,

Λ is the cutoff and B and Ai are the coefficients of the divergent part of the relevant

Feynman diagrams.

Imposing that this Green’s function satisfies the Callan-Symanzik equation we find:

β(g) = M
∂

∂M

(
−δg +

1

2
g
∑
i

δZi

)
. (5.9)

1This statement is only true for flat background spaces. In the general case of curved backgrounds
in fact, there will be extra terms which in principle could modify the expression of the Green function
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But, since to cancel divergences one imposes δg = −Blog Λ2

M2 +finite; and δZi = Ailog Λ2

M2 ,

we have that the β function, to lowest order, is just a combination of the coefficients of

the divergent logarithms in the counterterms:

β(g) = −2B − g
∑
i

Ai. (5.10)

Such arguments can be applied to more complex theories like QED or theories with

Yukawa couplings, which is the case that interests us.

The meaning of the β function

Our definition (5.6) of the β function can be rewritten in terms of the bare coupling λ0

and the cutoff Λ as

β(λ) = M
∂

∂M
λ|λ0,Λ (5.11)

which basically means that it is the rate of change of the renormalized coupling at the

scale M needed to maintain a fixed bare coupling. It is possible to show that the running

coupling constant λ̄(p, λ), that depends on the momentum p and equals the renormalized

coupling at the reference scale M , i.e. λ̄(M,λ) = λ, satisfy

d

dlog(p/M)
λ̄(p, λ) = β(λ̄). (5.12)

Thus the β function contains the basic information on the behavior of the running cou-

pling as a function of momentum. Of particular importance is the sign of this function,

since different signs describe very different theories.

If β > 0 the running coupling becomes smaller and smaller as p→ 0, which means that

is possible to use perturbation theory to make predictions about the small momentum

behavior of the theory. On the other hand, in the region p→∞ one can no longer use

perturbation theory as a valid tool to study the theory. So Feynman diagrams are only

useful to analyze macroscopic behavior.

When β = 0 the coupling does not flow with momentum and therefore remains equal to

the bare coupling at all scales. There are no ultraviolet divergences and for this reason

such theories are called finite quantum field theories.

For β < 0 the running coupling has an opposite behavior respect to the first case. In-

teractions become stronger at large distances (or p → 0), while are weaker for large

momenta (or short distances). These theories are called asymptotically free and the

most important example is QCD, where quarks are confined in bound states due to the

the strong interaction that grows with distance. In this case Feynman diagrams can

only be relied on for computation on the short distance behavior. This is also the case
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that we want to prove for the B-Yukawa coupling introduced between fermions and the

antisymmetric field. So our next task will be to compute the β function for this coupling

and check that it has a negative sign.

5.2 Feynman rules

In order to proceed with calculations we first briefly present the Feynman rules of the the-

ory in momentum space, needed for the computation of the various Feynman diagrams

of interest. In chapter 4 we already computed what will be our covariant propagator

for the antisymmetric field. We will use expression (4.64) in all of the following calcu-

lations. Also, to render notation simpler, we will omit the iε prescription and take it as

understood.

The Gauge Fields Covariant Propagators

The standard procedure to find the expression for the propagator of a field is to look

at the quadratic terms in the free Lagrangian and then try to invert it. In the case of

gauge fields, however, this procedure encounters a problem in the fact that, due to gauge

invariance and the presence of spurious degrees of freedom, this term is not invertible

since it has a zero eigenvalue. Also in this case the solution lies in the introduction

of gauge fixing terms to make these operators invertible. We will work with covariant

propagators for both Wµ and Aµ fields, with their gauge parameters being, respectively,

ξW and ξA.

For the Aµ field we will use an explicitly covariant propagator in analogy with what has

been done for the antisymmetric tensor field. The formal expression is

iµ∆++
ν (k) = −i~ ηµν

kµkµ − iε
+ i~(1− ξA)

kµkν
(kµkµ − iε)2

. (5.13)

The propagator for the Wµ is almost identical to this latter expression, except for the

presence of the identity matrix in SU(2) space:

iµ,a∆
++
b,ν (k) =

[
−i~ ηµν

kµkµ − iε
+ i~(1− ξW )

kµkν
(kµkµ − iε)2

]
Iab (5.14)

The Fermion Propagator

Also for fermions, the propagator can be found by inverting the quadratic part of the

free Lagrangian and this is done in any good QFT book. In our case we will look at
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massless fermions, since it is the scope of our model to give mass to them after the

formation of some condensate. The action in momentum space is

S[Ψ, Ψ̄] =

∫
d4pΨ̄α(i 6p)αβΨβ(p). (5.15)

The propagator is defined as the inverse of this integrand and it can be shown to be :

iaSb(k) =
ipµγ

µ
ab

pµpµ − iε
(5.16)

Vertices

To find the interaction vertices of our model we write the explicit interaction part of the

Lagrangian:

Lint =− yBµνΨ̄σµνΨ− 1

12

(
−ig∂[µB

†
νρ]A

[µBνρ] + igB†[νρAµ]∂
[µBνρ]+

− ig′∂[µB
†
νρW

b[µτ bBνρ] + ig′B†[νρτ
aW a

µ]∂
[µBνρ]+

+ gg′B†[νρAµ]W
b[µτ bBνρ] + gg′B†[νρτ

aW a
µ]A

[µBνρ]+

+ g2B†[νρAµ]A
[µBνρ] + g2B†[νρτ

aW a
µ]W

b[µτ bBνρ]
)

+

+ iΨ̄(−igAµ −
ig′

2
W a
µτa)γ

µΨ. (5.17)

From this we can read off the relevant interaction vertices of the theory. The first term

is the B-Yukawa type coupling which give rise to the vertex depicted in the following

figure

Bµν
Ψ

Ψ̄

= −iyσµν . (5.18)

Then there is the interaction vertex between two Bµν and one Aµ which is

p

p′

α

βγ

νρ

= −g
[
(p+p′)αην[βηγ]ρ+2p[βηγ][νηρ]α+2p′[νηρ][βηγ]α

]
.

(5.19)



Chapter 5. The Beta Function 42

And an analogous expression holds for the interaction between two Bµν and one Wµ.

Finally there is also a quartic interaction between two Bµν and two Aµ/Wµ:

νρ

βγ

α

µ

= −ig2[ηµαηβ[νηρ]γ + 2ηµ[βηγ][νηρ]α].
(5.20)

These rules are all we need to compute the Feynman diagrams and their divergences,

which will lead us to the final evaluation of the β function. So now, without further ado,

let us begin the computation.

5.3 Computation In Momentum Space

In what follows we will explicitly evaluate all Feynman diagrams of interest in the evalu-

ation of the β function. These include three type of corrections to the B-Yukawa vertex:

corrections to the external Bµν leg, corrections to the vertex, and corrections to the

external fermionic leg. We will perform calculations with a massive fermion propagator

but let m→ 0 in the end.

5.3.1 Corrections to the Bµν leg

The corrections Bµν propagator at 1 loop are given by the following sum of diagrams:

p p
=

p

Ψ

p

Ψ̄

+
p

Aµ/Wµ

p
+

p p

Aµ/Wµ

Figure 5.1: 1 loop corrections to the Bµν propagator.

We begin the calculations for the beta function by computing the amplitude for the

amputated diagram in figure 5.2, contributing to the corrections to theB field propagator

coming from the interaction term with the fermions yBµνΨ̄σµνΨ:
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p

Ψ, k

p

Ψ̄, p+ k

Figure 5.2: 1 loop vacuum polarization of Bµν propagator

The amplitude is, in momentum space, following the Feynman rules defined before and

recalling that the fermion propagator is

iSab(p) =
i(pµγ

µ
ab +m)

p2 −m2
,

we get for the one-loop vacuum polarization diagram of Bµν

Πµναβ(p) = (−iy)2

∫
ddk

(2π)d
Tr

[
σµν

i(6k +m)

k2 −m2
σαβ

i(6p+ 6k +m)

(p+ k)2 −m2

]
=

= y2

∫
ddk

(2π)d
Tr

[
σµν(6k +m)σαβ( 6p+ 6k +m)

(k2 −m2)((p+ k)2 −m2)

]
=

= y2

∫
ddk

(2π)d
Tr[σµν 6kσαβ 6p+ σµν 6kσαβ 6k +m2σµνσαβ]

(k2 −m2)((p+ k)2 −m2)

= y2

∫
ddk

(2π)d

Tr[σµν 6kσαβ 6k − 1

4
σµν 6pσαβ 6p+m2σµνσαβ]

((k + p/2)2 −m2)((k − p/2)2 −m2)
, (5.21)

where for the third equality we used the fact that the trace of an odd number of γ is 0,

while in the last we shifted the integration variable k → k − p/2 and got rid of terms

linear in k.

Now we focus on the trace and try to get terms with 4 γ’s:

Tr[σµν 6kσαβ 6k] = Tr[γµγν 6kγαγβ 6k − γνγµ 6kγαγβ 6k − γµγν 6kγβγα 6k + γνγµ 6kγβγα 6k] (5.22)

Tr[γµγν 6kγαγβ 6k] = −1

2
Tr[γµγν 6kγα 6kγβ] + kβTr[γµγν 6kγα]− 1

2
Tr[γµγνγα 6kγβ 6k] + kαTr[γµγνγβ 6k] =

=k2Tr[γµγνγαγβ]− kαTr[γµγν 6kγβ] + kβTr[γµγν 6kγα] + kαTr[6kγµγνγβ]− kβTr[6kγµγνγα] =

=4k2(ηµνηαβ − ηµαηνβ + ηµβηνα)− 4kα(kβηµν − kµηνβ + kνηµβ)+

+ 4kβ(kαηµν − kµηνα + kνηµα) + 4kα(kµηνβ − kνηµβ + kβηµν)+

− 4kβ(kµηνα − kνηµα + kαηµν) =

=4k2(ηµνηαβ − ηµαηνβ + ηµβηνα) + 8(−kβkµηνα + kβkνηµα + kµkαηνβ − kνkαηµβ).
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Combining with the other terms of (5.22), which differs only for the change (µ ↔ ν),

(α↔ β) and (µ↔ ν, α↔ β) we get:

Tr[σµν 6kσαβ 6k] =16k2[ηµβηνα − ηµαηνβ ] + 32[kβkνηµα − kβkµηνα + kµkαηνβ − kνkαηµβ].

(5.23)

And, in a completely analogous fashion:

Tr[σµν 6pσαβ 6p] =16p2[ηµβηνα − ηµαηνβ ] + 32[pβpνηµα − pβpµηνα + pµpαηνβ − pνpαηµβ].

(5.24)

And finally:

Tr[σµνσαβ] = 16(ηµβηνα − ηµαηνβ). (5.25)

Putting these terms altogether we have then:

Πµναβ(p) =16y2

∫
ddk

(2π)d
{[k2 − p2/4 +m2][ηµβηνα − ηµαηνβ ] + 2[kβkνηµα − kβkµηνα+

kµkαηνβ − kνkαηµβ] +
1

2

[
−pβpνηµα + pβpµηνα − pµpαηνβ + pνpαηµβ

]
× 1

[(k + p/2)2 −m2][(k − p/2)2 −m2]
. (5.26)

We now consider one of the integrals of the type:

Iµν =

∫
ddkf(k, p)kµkν , (5.27)

where f(k, p) is a Lorentz-invariant function. Since the answer must be a second rank

Lorentz-invariant tensor it must be expressible in terms of ηµν and pµpν . This observa-

tion implies ∫
ddkf(k, p)kµkν = aηµν + bpµpν .

We can find a and b by solving the two algebraic equations formed by contracting with

ηµν and pµpν : ∫
ddkf(k, p)k2 =da+ bp2∫

ddkf(k, p)(k · p)2 =ap2 + bp4,
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implying that

=⇒ b =

∫
ddkf(k, p)

1

d− 1

[
−k2 +

d(k · p)2

p2

]
1

p2

a =

∫
ddkf(k, p)

1

d− 1

[
k2 − (k · p)2

p2

]
.

So that we can make the replacement:

Iµν =

∫
ddkf(k, p)

1

d− 1

[(
k2 − (k · p)2

p2

)
ηµν −

(
k2 − d(k · p)2

p2

)
pµpν
p2

]
. (5.28)

We can now use this result to collect all terms like kµkν in (5.26):

32y2

∫
ddk

(2π)d
kβkνηµα − kβkµηνα + kµkαηνβ − kνkαηµβ

[(k + p/2)2 −m2][(k − p/2)2 −m2]
=

=32y2

∫
ddk

(2π)d
1

d− 1

[(
k2 − (k · p)2

p2

)(
ηνβηµα − ηµβηνα + ηµαηνβ − ηναηµβ

)]
+

+
1

d− 1

1

p2

[(
k2 − d(k · p)2

p2

)
(−pβpνηµα + pβpµηνα − pµpαηνβ + pνpαηµβ)

]
×

× 1

[(k + p/2)2 −m2][(k − p/2)2 −m2]
=

=
32y2

d− 1

∫
ddk

(2π)d
[2

(
k2 − (k · p)2

p2

)(
ηµαηνβ − ηµβηνα

)
+

+
1

p2

(
k2 − d(k · p)2

p2

)
(−pβpνηµα + pβpµηνα − pµpαηνβ + pνpαηµβ)]×

× 1

[(k + p/2)2 −m2][(k − p/2)2 −m2]
. (5.29)

Plugging (5.29) into (5.26) we get:

Πµναβ(p) =16y2

∫
ddk

(2π)d

k2 − p2/4 +m2 + 4
d−1

(
k2 − (k·p)2

p2

)
[(k + p/2)2 −m2][(k − p/2)2 −m2]

(ηµαηνβ − ηµβηνα)+

+ 32y2 1

p2

∫
ddk

(2π)d

1
d−1

(
k2 − d (k·p)2

p2

)
− p2/4

[(k + p/2)2 −m2][(k − p/2)2 −m2]
(−pβpνηµα + pβpµηνα+

− pµpαηνβ + pνpαηµβ). (5.30)

Now we focus on the first integral. As regards the numerator we have

k2 − p2/4 +m2 +
4k2

d− 1
− 4(k · p)2

p2(d− 1)
=
d+ 3

d− 1
k2 − p2/4 +m2 − 4(k · p)2

p2(d− 1)
. (5.31)
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Looking at an integral of the type∫
ddk

(2π)d
(k · p)2

[(k + p/2)2 −m2][(k − p/2)2 −m2]
=

=

∫
ddk

(2π)d

[
−1 +

1

2

k2 + p2/4−m2

(k + p/2)2 −m2
+

1

2

k2 + p2/4−m2

(k − p/2)2 −m2

]
=

=

∫
ddk

(2π)d

[
−1 +

1

2

(k − p/2)2 + p2/4−m2

k2 −m2
+

1

2

(k + p/2)2 + p2/4−m2

k2 −m2

]
=

=

∫
ddk

(2π)d

[
−1 +

k2 + p2/2−m2

k2 −m2

]
=

∫
ddk

(2π)d
p2/2

k2 −m2
, (5.32)

where we shifted the integration variable separately for the last two terms in the second

line. Whereas, for the other type we have:∫
ddk

(2π)d
k2

[(k + p/2)2 −m2][(k − p/2)2 −m2]
=

=

∫
ddk

(2π)d
k2 + p2/4± (k · p) +m2 − p2/4−m2

[(k + p/2)2 −m2][(k − p/2)2 −m2]
=

=

∫
ddk

(2π)d
(k ± p/2)2 +m2 − p2/4−m2

[(k + p/2)2 −m2][(k − p/2)2 −m2]
=

=

∫
ddk

(2π)d
1

k2 −m2
− p2

4

∫
ddk

(2π)d

(
−4m2

p2
+ 1
)

[(k + p/2)2 −m2][(k − p/2)2 −m2]
. (5.33)

Using these relations for (5.31) one gets

d+ 3

d− 1

∫
ddk

(2π)d
k2

[(k + p/2)2 −m2][(k − p/2)2 −m2]
=

=
d+ 3

d− 1

∫
ddk

(2π)d
1

k2 −m2
− d+ 3

d− 1

p2

4

∫
ddk

(2π)d

(
−4m2

p2
+ 1
)

[(k + p/2)2 −m2][(k − p/2)2 −m2]
,

(5.34)

and

− 4

p2(d− 1)

∫
ddk

(2π)d
(k · p)2

[(k + p/2)2 −m2][(k − p/2)2 −m2]
= − 2

d− 1

∫
ddk

(2π)d
1

k2 −m2
.
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Recollecting all terms in (5.31):(
d+ 3

d− 1
− 2

d− 1

)∫
ddk

(2π)d
1

k2 −m2
+

+

(
−p2/4 +m2 − d+ 3

d− 1

(
−m2 + p2/4

))∫ ddk

(2π)d
1

[(k + p/2)2 −m2][(k − p/2)2 −m2]
=

=
d+ 1

d− 1

∫
ddk

(2π)d
1

k2 −m2
+

+

(
−4

d− 1
m2 − d+ 1

d− 1

p2

2

)∫
ddk

(2π)d
1

[(k + p/2)2 −m2][(k − p/2)2 −m2]
. (5.35)

Focusing now on the second term of (5.30) we have that the numerator is

k2

d− 1
− d

d− 1

(k · p)2

p2
− p2

4
. (5.36)

Again we can rewrite these integrals as

1

d− 1

∫
ddk

(2π)d
k2

[(k + p/2)2 −m2][(k − p/2)2 −m2]
=

=
1

d− 1

∫
ddk

(2π)d
1

k2 −m2
− p2

4(d− 1)

∫
ddk

(2π)d

(
4m2

p2
+ 1
)

[(k + p/2)2 −m2][(k − p/2)2 −m2]
,

and

− d

d− 1

1

p2

∫
ddk

(2π)d
(k · p)2

[(k + p/2)2 −m2][(k − p/2)2 −m2]
= − d

2(d− 1)

∫
ddk

(2π)d
1

k2 −m2
.

Which adds up to

1

2

2− d
d− 1

∫
ddk

(2π)d
1

k2 −m2
−
d+ 4m2

p2

d− 1

∫
ddk

(2π)d
1

[(k + p/2)2 −m2][(k − p/2)2 −m2]
.

(5.37)

Now the integrals

I(d, α) =

∫
ddk

(2π)d
1

(k2 −m2)α
(5.38)

and

I(p2,m2,m2) =

∫
ddk

(2π)d
1

[(k + p/2)2 −m2][(k − p/2)2 −m2]
(5.39)

are well known and their result is [7]

I(d, 1) = i(4π)−d/2Γ(1− d/2)(m2)d/2−1 (5.40)

I(p2,m2,m2) = i(4π)−d/2Γ(2− d/2)

∫ 1

0

dx

(m2 + p2x(1− x))2−d/2 , (5.41)
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which for d→ 4 take the form

I(p2,m2,m2) =
1

(4π)2

{2

ε
− γE − log[m2 − x(1− x)p2] + log(4π) +O(ε)

}
, (5.42)

where ε = 4 − d. So the total contribution of the vacuum polarization diagram near

d = 4 is finally given by

Πµναβ(p2) =
2iy2~2

π2

{[
5

3
Γ(1− d/2)m2 − 8m2/p2 + 5

6
Γ(2− d/2)

∫ 1

0

dx

(m2 + p2x(1− x))2−d/2

]
ηµ[αηβ]ν+

+
4

p2

[
−1

3
Γ(1− d/2)m2 − 4 + 4m2/p2

3
Γ(2− d/2)

∫ 1

0

dx

(m2 + p2x(1− x))2−d/2

]
p[µην][αpβ]

}
=

=
2iy2~2

π2

{[
5

3
Γ(1− d/2)m2 − 8m2/p2 + 5

6

(2

ε
− γE − log[m2 − x(1− x)p2] + log(4π) +O(ε)

)]
ηµ[αηβ]ν+

+
4

p2

[
−1

3
Γ(1− d/2)m2 − 4 + 4m2/p2

3

(2

ε
− γE − log[m2 − x(1− x)p2] + log(4π) +O(ε)

)]
p[µην][αpβ]

}
.

(5.43)

In the case of massless fermions this expression reduces to

Πµναβ(p2) =− 2iy2~2

π2

{[
5

6

(2

ε
− γE − log[x(x− 1)p2] + log(4π) +O(ε)

)]
ηµ[αηβ]ν+

+
4

p2

[
4

3

(2

ε
− γE − log[x(x− 1)p2] + log(4π) +O(ε)

)]
p[µην][αpβ]

}
. (5.44)

Alternatively, for massless fermions,we could have done the following,:

y2

∫
ddk

(2π)d
1

k2(p+ k)2
Tr[σµν 6kσαβ( 6p+ 6k)] = y2

∫
ddk

(2π)d
1

k2(p+ k)2
Tr[σµν 6kσαβ 6k + σµν 6kσαβ 6p].

(5.45)

Then introduce Feynman parameters as follows

1

k2(p+ k)2
=

∫ 1

0
dx dy

1

D2
δ(x+ y − 1), (5.46)

where D = l2 −∆, with l = k + xp and ∆ = x(x − 1)p2. After this we can change the

integration variable k → l and substitute k = l − xp in the trace to get

Tr[σµν 6kσαβ 6k + σµν 6kσαβ 6p] = Tr[σµν 6lσαβ 6l + x(x− 1)σµν 6pσαβ 6p], (5.47)
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where we dropped out linear terms in l.Then we can rewrite traces in order to reduce

the number of γ matrices in them. For instance

Tr[σµν 6pσαβ 6p] =4Tr[γ[µγν] 6pγ[αγβ] 6p] = −4Tr[γ[µγν] 6pγ[α 6pγβ]] + 8Tr[γ[µγν] 6pγ[αpβ]] =

=4p2Tr[γ[µγν]γ[αγβ]]− 8Tr[γ[µγν]p[αγβ]] + 8Tr[γ[µγν]γ[αpβ]] =

=32p2ηµ[βηα]ν + 128p[µην][βpα], (5.48)

so that our total trace will yield

Tr[σµν 6kσαβ 6k+σµν 6kσαβ 6p] = 32[ηµ[βηα]ν l2+4l[µην][βlα]+x(x−1)ηµ[βηα]νp2+4x(x−1)p[µην][βpα]].

(5.49)

Then, substituting lµlν → l2/d ηµν , we get the final result

32ηµ[βηα]ν [l2 + x(x− 1)p2 − 4
l2

d
] + 128x(x− 1)p[µην][βpα]. (5.50)

Notice that in d = 4 limit there is only a logarithmic divergence. The final expression

for the divergent part of the amplitude of this bubble diagram is then

32p2

∫ 1

0
dxx(x− 1)

∫
ddl

(2π)d
1

(l2 −∆)2
ηµ[βηα]ν =

32ip2 Γ(2− d
2)

(4π)2

∫ 1

0
dxx(x− 1)

( 1

∆

)2− d
2
ηµ[βηα]ν (5.51)

and

128

∫ 1

0
dxx(x− 1)

∫
ddl

(2π)d
1

(l2 −∆)2
p[µην][βpα] =

128i
Γ(2− d

2)

(4π)2

∫ 1

0
dxx(x− 1)

( 1

∆

)2− d
2
p[µην][βpα]. (5.52)

So the total divergent part of this diagram is

Πµναβ(p2) = 32ip2 Γ(2− d
2)

(4π)2

∫ 1

0
dxx(x− 1)

( 1

∆

)2− d
2
[
p2ηµ[βηα]ν + 4p[µην][βpα]

]
. (5.53)

Self Energy

Interaction with Aµ

Next thing we want to compute is a second order correction to the antisymmetric field

propagator in figure. The expression for the self-energy diagram is:
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p

k

p− k p
αβ µν

Figure 5.3: Self energy diagram for Bµν propagator.

Σαβµν(p) = −g2~2

∫
ddk

(2π)d

[
−ηγ[δηλ]ρ

1

(p− k)2
+ 2(1− ξB)

(p− k)[γηδ][λ(p− k)ρ]

[(p− k)2]2

]
×[

−ητε
k2

+ (1− ξA)
kτkε
(k2)2

]
×
[
(2p− k)τηα[γηδ]β + 2p[γηδ][αηβ]τ + 2(p− k)[αηβ][γηδ]τ

]
×

×
[
(2p− k)εηλ[µην]ρ + 2(p− k)[µην][ληρ]ε + 2p[ληρ][µην]ε

]
=

=− g2~2

∫
ddk

(2π)d

[
−ηγ[δηλ]ρ

1

(p− k)2
+ 2(1− ξB)

(p− k)[γηδ][λ(p− k)ρ]

[(p− k)2]2

]
×

×
[
− 1

k2

(
(2p− k)εη

α[γηδ]β + 2p[γηδ][αηβ]
ε + 2(p− k)[αηβ][γηδ]ε

)
+

+
1− ξA
(k2)2

(
k · (2p− k)kεη

α[γηδ]β + 2p[γηδ][αkβ]kε + 2(p− k)[αηβ][γkδ]kε

)]
×

×
[
(2p− k)εηλ[µην]ρ + 2(p− k)[µην][ληρ]ε + 2p[ληρ][µην]ε

]
=

=− g2~2

∫
ddk

(2π)d

[
−ηγ[δηλ]ρ

1

(p− k)2
+ 2(1− ξB)

(p− k)[γηδ][λ(p− k)ρ]

[(p− k)2]2

]
×

×
{
− 1

k2

[
(2p− k)2ηα[γηδ]βηλ[µην]ρ + 2(p− k)[µην][λ(2p− k)ρ]ηα[γηδ]β+

2p[ληρ][µ(2p− k)ν]ηα[γηδ]β + +2p[γηδ][α(2p− k)β]ηλ[µην]ρ + 4p[γηδ][αηβ][ρηλ][ν(p− k)µ]+

+4p[γηδ][αηβ][νηµ][ρpλ] + 2(p− k)[αηβ][γ(2p− k)δ]ηλ[µην]ρ+

+4(p− k)[αηβ][γηδ][ρηλ][ν(p− k)µ] + 4(p− k)[αηβ][γηδ][νηµ][ρpλ]
]
+

+
1− ξA
(k2)2

{[
k · (2p− k)ηα[γηδ]β + 2p[γηδ][αkβ] + 2(p− k)[αηβ][γkδ]

]
×

×
[
k · (2p− k)ηλ[µην]ρ + 2(p− k)[µην][λkρ] + 2p[ληρ][µkν]

]}
=

=− g2~2

∫
ddk

(2π)d

{
1

k2(p− k)2

[(2p− k)2

2
ηα[νηµ]β + (p− k)[µην][β(2p− k)α]

+ p[βηα][µ(2p− k)ν] + +p[νηµ][α(2p− k)β] + (p− k)[µην][αpβ] + p[αηβ][νpµ]

−p2ηµ[αηβ]ν − (p− k)[αηβ][µ(2p− k)ν] + +(d− 1)(p− k)[αηβ][ν(p− k)µ] + (p− k)[αηβ][µpν]
]
+

+
2(1− ξB)

k2(p− k)4

[
A
]

+
1− ξA

k4(p− k)2

[
B
]

+
2(1− ξB)(1− ξA)

k4(p− k)4

[
C
]
.

As regards the term proportional to 1
k2(p−k)2

we can, as for the case of the vacuum

polarization, symmetrize the denominator by shifting the integration variable as k →



Chapter 5. The Beta Function 51

k + p/2. After rewriting the numerator, we can then get rid of terms linear in k:[1

2

(3

2
p− k

)2
+ p2

]
ηα[νηµ]β +

(p
2
− k
)[µ
ην][β

(3

2
p− k

)α]
+ p[βηα][µ(

3

2
p− k)ν]

+p[νηµ][α(
3

2
p− k)β] + (

p

2
− k)[µην][αpβ] + p[αηβ][νpµ] + · · ·

At the end of this procedure we end up with[17

8
p2 +

1

2
k2
]
ηα[νηµ]β +

d+ 17

4
p[µην][βpα] + (1 + d)k[µην][βkα]. (5.54)

Now we can replace all terms quadratic in k as in (5.28) and get

∫
ddk

(2π)d
k[µην][βkα]

(k + p/2)2(k − p/22)
=

=
1

d− 1

∫
ddk

(2π)d

[(
k2 − (k · p)2

p2

)
ηµ[αηβ]ν +

1

p2

(
k2 − d(k · p)2

p2

)
p[µην][βpα]

]
× 1

(k + p/2)2(k − p/22)
.

So the total expression under the integral will now become

[17

8
p2 +

1

2
k2 − d+ 1

(d− 1)
k2 +

d+ 1

(d− 1)

(k · p)2

p2

]
ηα[νηµ]β+

+
1

p2

[d+ 17

4
p2 +

d+ 1

(d− 1)
k2 − d+ 1

(d− 1)

(k · p)2

p2

]
p[µην][βpα].

At this point we can express the terms proportional to (k · p)2 and k2 in terms of p2 as

we did in the first section. This time however we will have in the denominator only k2.

To avoid that we introduce a parameter ζ which we will approach to zero at the end of

the calculation. We can see that the integral∫
ddk

(2π)d
1

k2 − ζ2
=

Γ(1− d/2)

(4π)d/2

( 1

ζ2

)1−d/2
(5.55)

vanishes for d > 2 in the limit ζ → 0. Since we are interested in the UV divergent part

of this diagram near d = 4, we can disregard contributions coming from this type of

integral. That said, we can do the algebra, remembering (5.32) and (5.33) and get

Σαβµν(p2) =− g2~2

{[
19d− 11

8(d− 1)

∫
ddk

(2π)d
1

(k + p/2)2(k − p/2)2

]
ηµ[αηβ]ν+

+
1

p2

[
(d− 1)(d+ 17)− d+ 1

4(d− 1)

∫
ddk

(2π)d
1

(k + p/2)2(k − p/2)2

]
p[µην][βpα]

}
,
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which near d = 4 is just

Σαβµν(p2) =− i g
2~2

(4π)2

{
65

24

[
Γ(2− d/2)

∫ 1

0

dx

(p2x(1− x))2−d/2

]
ηµ[αηβ]ν+

+
1

p2
5
[
Γ(2− d/2)

∫ 1

0

dx

(p2x(1− x))2−d/2

]
p[µην][βpα]

}
=

=− i g
2~2

(4π)2

{
65

24

[2

ε
− γE − log[x(x− 1)p2] + log(4π) +O(ε)

]
ηµ[αηβ]ν+

+
1

p2
5
[2

ε
− γE − log[x(x− 1)p2] + log(4π) +O(ε)

]
p[µην][βpα]

}
. (5.56)

Alternatively we could have also done the following. Group the terms as

(d+ 6)p[µην][βpα] − (d+ 2)[p[µην][βkα] + k[µην][βpα]] + (d+ 1)k[µην][βkα]

+(3p2 +
k2

2
− 2p · k)ηα[νηµ]β

and then introduce Feynman parameters and shift k = l + xp to get

p[µην][βpα][d+ 6− 2x(d+ 2) + x2] + ηα[νηµ]β[p2(3− 2x+
x2

2
)− d+ 2

d
l2],

which gives the same result for p[µην][βpα] part, while a different answer for the ηα[νηµ]β

term (13
6 instead of 65

24) As regards the gauge-dependent part of the expression we have,



Chapter 5. The Beta Function 53

for the term proportional to 2(1−ξB)
k2(p−k)4

2(1− ξB)

k2(p− k)4

[
(2p− k)2(p− k)[αηβ][µ(p− k)ν] + (p− k) · (2p− k)(p− k)[µην][β(p− k)α]

+p[µkν]p[αkβ] − p · (p− k)(p− k)[αηβ][µ(2p− k)ν]

+p · (p− k)(p− k)[νηµ][α(2p− k)β] − p[νkµ]p[αkβ]

+p · (p− k)(p− k)[βηα][ν(p− k)µ]+

+p · (p− k)
[
(p− k)[µην][βpα] + (p− k)[αηβ][νpµ] − p · (p− k)ηµ[αηβ]ν

]
− p2(p− k)[αηβ][ν(p− k)µ] +−(2p− k) · (p− k)(p− k)[αηβ][µ(p− k)ν]+

(p− k)2(p− k)[αηβ][µ(p− k)ν] + +p · (p− k)(p− k)[αηβ][µ(p− k)ν]
]

=

=
2(1− ξB)

k2(p− k)4

{
(p− k)[αηβ][µ(p− k)ν]

(
3p2
)

+ 2p[µkν]p[αkβ]

+p · (p− k)
[
(p− k)[νηµ][α(2p− k)β] − (p− k)[αηβ][µ(2p− k)ν]

+(p− k)[µην][βpα] + (p− k)[αηβ][νpµ] − p · (p− k)ηµ[αηβ]ν
]}

=

=
2(1− ξB)

k2(p− k)4

{
p[αηβ][µpν][−3p2 + 6(p · k)] + k[αηβ][µpν][p2 − 4(p · k)]

+p[αηβ][µkν][p2 − 4(p · k)] + k[αηβ][µkν][p2 + 2(p · k)]− [p2 − (p · k)]2ηµ[αηβ]ν

+2p[µkν]p[αkβ]
}
.

For this term we will adopt a slightly different strategy as we did before and we will use

the Feynman trick writing

1

k2(p− k)2(p− k)2
=

∫ 1

0
dx dy dz δ(x+ y + z − 1)

2

D3
, (5.57)

where the denominator is just

D = l2 + x(1− x)p2 = l2 −∆; l = k − (1− x)p.

Now, since the integral now only depends on l2 we can drop all linear terms in l and

make the substitution lµlν → 1
dη

µν l2. Rearranging the numerator in terms of l we get,

after some tedious algebra,

p2[(4− x)
l2

d
+ x2p2]ηµ[βηα]ν +

[
(x3 − 2x2 − x− 1)p2 − 2l2

d
(2x+ 3)

]
p[αηβ][µpν]. (5.58)

At this point we can make use of the formulas, valid in Minkowski space,

∫
ddl

(2π)d
1

(l2 −∆)n
=

(−1)ni

(4π)d/2
Γ(n− d

2)

Γ(n)

( 1

∆

)n− d
2

(5.59)
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∫
ddl

(2π)d
l2

(l2 −∆)n
=

(−1)n−1i

(4π)d/2
d

2

Γ(n− d
2 − 1)

Γ(n)

( 1

∆

)n− d
2
−1

(5.60)

∫
ddl

(2π)d
(l2)2

(l2 −∆)n
=

(−1)ni

(4π)d/2

(d
2

)(d
2

+ 1
)Γ(n− d

2 − 2)

Γ(n)

( 1

∆

)n− d
2
−2
. (5.61)

We can already see from the first formula that, since in our case n = 3, terms with no

powers of l2 will give a finite contribution when d→ 4. But we do not need these terms

when calculating the β function. The part proportional to ηµ[αηβ]ν is

2p2

d

∫ 1

0
dx dy (4− x)

∫
ddl

(2π)d
l2

(l2 −∆)3
= i

p2

4

Γ(2− d
2)

(4π)d/2

∫ 1

0
dx dy (4− x)

( 1

∆

)2− d
2
.

As regards the part proportional to p[αηβ][µpν] we get

−4

d

∫ 1

0
dx dy (2x+ 3)

∫
ddl

(2π)d
l2

(l2 −∆)3
= −i1

2

Γ(2− d
2)

(4π)d/2

∫ 1

0
dx dy (2x+ 3)

( 1

∆

)2− d
2
.

Then we have a third piece proportional to 1−ξA
k4(p−k)2

which is:

1− ξA
k4(p− k)2

[
[k · (2p− k)]2ηα[γηδ]βηλ[µην]ρ + 2k · (2p− k)ηα[γηδ]β(p− k)[µην][λkρ]+

+2k · (2p− k)ηα[γηδ]βp[ληρ][µkν] + 2k · (2p− k)ηλ[µην]ρp[γηδ][αkβ]+

+4p[γηδ][αkβ](p− k)[µην][λkρ] + 4p[γηδ][αkβ]p[ληρ][µkν]

+2k · (2p− k)ηλ[µην]ρ(p− k)[αηβ][γkδ]+

+4(p− k)[µην][λkρ](p− k)[αηβ][γkδ] + 4p[ληρ][µkν](p− k)[αηβ][γkδ]
]

×
[
−ηγ[δηλ]ρ

]
=

=
1− ξA

k4(p− k)2

[ [k · (2p− k)]2

2
ηα[µην]β + k · (2p− k)(p− k)[µην][αkβ]

+k · (2p− k)p[αηβ][µkν] + k · (2p− k)p[µην][αkβ] − (p · k)(p− k)[µην][αkβ]

+p2k[νηµ][αkβ] − p[αkβ]p[µkν] + k · (2p− k)(p− k)[αηβ][µkν]

+k2(p− k)[µην][β(p− k)α] − (p− k)[µkν](p− k)[αkβ]+

−(p · k)(p− k)[αηβ][µkν]
]

=

=
1− ξA

k4(p− k)2

[
−k2p[µην][αpβ] + (p[µην][αkβ] + k[µην][αpβ])(3(p · k)− k2)

+k[µην][αkβ](k2 − p2 − 2p · k)+

+
4(p · k)2 + k4 − 4k2(p · k)

2
ηα[µην]β − 2p[αkβ]p[µkν]

]
.

Now again we rewrite the integral using Feynman trick as in (5.57). This time D =
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l2 + x(1− x)p2 with l = k − xp. After rewriting all the numerator in terms of l we end

up with

ηα[µην]β
[d− 2

2d
l4 + p2l2

((6d− 2)x2 + (4− 4d)x+ 6

2d

)
+ x2p4(4 + x2)

]
+

p[µην][αpβ]
[
l2
(−(4 + d)x2 + (8− 2d)x+ 2 + 5d

d

)
+ x2p2(5− x2)

]
. (5.62)

So the result for the part proportional to ηα[µην]β will be

2− d
d

∫ 1

0
dx dy dz δ(x+ y + z − 1)

∫
ddl

(2π)d
l4

(l2 −∆)3
= (5.63)

=i
(d+ 2)(d− 2)

8

Γ(1− d
2)

(4π)2

∫ 1

0
dx dy

( 1

∆

)1− d
2

(5.64)

and the second contribution

p2

d

∫ 1

0
dx dy dz δ(x+ y + z − 1)[(6d− 2)x2 + (4− 4d)x+ 6]

∫
ddl

(2π)d
l2

(l2 −∆)3
=

=i
p2

4

Γ(2− d
2)

(4π)2

∫ 1

0
dx dy [(6d− 2)x2 + (4− 4d)x+ 6]

( 1

∆

)2− d
2
.

(5.65)

For the part proportional to p[µην][αpβ] we get:

2

d

∫ 1

0
dx dy dz δ(x+ y + z − 1)[−(4 + d)x2 + (8− 2d)x+ 2 + 5d]

∫
ddl

(2π)d
l2

(l2 −∆)3
=

=i
Γ(2− d

2)

(4π)2

∫ 1

0
dx dy [−(4 + d)x2 + (8− 2d)x+ 2 + 5d]

( 1

∆

)2− d
2
.

(5.66)
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Finally, we have the last part proportional to 2(1−ξA)(1−ξB)
k4(p−k)4

:

2(1− ξA)(1− ξB)

k4(p− k)4

[
[k · (2p− k)]2ηα[γηδ]βηλ[µην]ρ + 2k · (2p− k)ηα[γηδ]β(p− k)[µην][λkρ]+

+2k · (2p− k)ηα[γηδ]βp[ληρ][µkν] + 2k · (2p− k)ηλ[µην]ρp[γηδ][αkβ]+

+4p[γηδ][αkβ](p− k)[µην][λkρ] + 4p[γηδ][αkβ]p[ληρ][µkν]+

+2k · (2p− k)ηλ[µην]ρ(p− k)[αηβ][γkδ] + 4(p− k)[µην][λkρ](p− k)[αηβ][γkδ]+

+4p[ληρ][µkν](p− k)[αηβ][γkδ]
]
×
[
(p− k)[γηδ][λ(p− k)ρ]

]
=

2(1− ξA)(1− ξB)

k4(p− k)4

{
[k · (2p− k)]2(p− k)[αηβ][µ(p− k)ν]

+ [k · (2p− k)][k · (p− k)](p− k)[αηβ][ν(p− k)µ]+

+k · (2p− k)(p− k)[αpβ](p− k)[µkν]

− [k · (2p− k)][p · (p− k)](p− k)[αηβ][µkν]+

+k · (2p− k)(p− k)[αkβ](p− k)[µpν]

− [k · (2p− k)][p · (p− k)](p− k)[µην][αkβ]+

+k · (p− k)(p− k)[µpν](p− k)[βkα]

− [k · (p− k)][p · (p− k)](p− k)[νηµ][αkβ]+

+p · (p− k)p[αkβ](p− k)[µkν] − [p · (p− k)]2k[βηα][µkν]

− p2(p− k)[µkν](p− k)[αkβ] + p · (p− k)p[µkν](p− k)[αkβ]

− [k · (2p− k)][k · (p− k)](p− k)[αηβ][µ(p− k)ν]

+[k · (p− k)]2(p− k)[µην][α(p− k)β]

+ [k · (p− k)][p · (p− k)](p− k)[αηβ][µkν]+

−k · (p− k)(p− k)[αpβ](p− k)[µkν]
}

Grouping the terms in a convenient manner, many factors simplify and the final expres-

sion reduces to:

2(1− ξA)(1− ξB)

k4(p− k)4

[
(p · k)2p[αηβ][µpν] + p4k[αηβ][µkν] + p2(p · k)

[
p[αηβ][µkν] + k[αηβ][µpν]

]
+

+ p2p[µkν]p[αkβ]
]
. (5.67)

Introducing again some Feynman parameters to rewrite the denominator, we have

1

k4(p− k)4
=

∫ 1

0
dx dy dz dtδ(x+ y + z + t− 1)

6

D4
, (5.68)
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with this time being simply D = l2, where l = k − (x+ y)p. The numerator written in

terms of l will be

p4 l
2

d
ηµ[βηα]ν + 2

[
p2 l

2

d
+ 2(x+ y)2p4

]
p[αηβ][µpν] (5.69)

and as we can see, given that the denominator goes as l8, gives only finite contributes,

which we can neglect for the evaluation of the beta function.

Tadpole diagram

Another contribution to the one loop order corrections to the two point Green function

is given by the following diagram coming from the interaction term −g2B†[νρAµ]A
[µBνρ].

p p

k

αβ µν

Figure 5.4: Tadpole diagram one loop correction to Bµν propagator.

We recall that the Feynman rule in momentum space for this interaction is :

− ig2[ηµαηβ[νηρ]γ + 2ηµ[βηγ][νηρ]α] (5.70)

So the expression for this diagram is just

g2~
∫

ddk

(2π)d
[
ητε
k2
− (1− ξA)

kτkε
k4

][ητεηα[µην]β + 2ητ [αηβ][µην]ε] (5.71)

However we can already see that the integrand is proportional to 1
k2

.Hence it will give

zero contribution because of (5.55) . So the total contribution of this diagram is actually

zero using dimensional regularization.

Interactions with Wµ

Regarding the Lagrangian one can already see that the interactions between the anti-

symmetric Bµν field and the W a
µ fields are basically the same as those with the Aµ field,

except that this time every term will be a 2 × 2 matrix. The vertex, in particular will

look almost identical to the one with Aµ:
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= −g′
[
(p+ p′)αην[βηγ]ρ + 2p[βηγ][νηρ]α + 2p′[νηρ][βηγ]α

]
ta (5.72)

Then, since the propagator for W a
µ is the same as that of Aµ multiplied by a δab, in

the end everything will be proportional to tata, the Casimir operator that, in the two

dimensional representation of SU(2), is just tata = 3
4 ·1. This means that the calculations

we have done in the previous section can be repeated identically also in this case and

will lead to the same results for both diagrams, except for the substitution ξA → ξW .

5.3.2 Corrections to the vertex

The full vertex to one loop order is the sum of

= + +

Figure 5.5: Full B-Yukawa vertex to one loop order.

We begin the computation with the first topology. This can occur both with the Aµ and

Wµ fields. However we can compute the diagram for the Aµ case and then easily imply

the result for the Wµ interaction.

p

p′

p− kk
q

k′ = k + q

Figure 5.6: First type of one loop correction to the B-Yukawa vertex.

One can easily write the amplitude of this diagram using Feynman rules used so far,

and the result is
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(−iy)(ig)2(−i~)

∫
ddk

(2π)d

[ ηµν
(k − p)2

− (1− ξA)
(p− k)µ(p− k)ν

(k − p)4

]
×

×ū(p′)γµ
[ i( 6k′ +m)

k′2 −m2

]
σαβ

[ i( 6k +m)

k2 −m2

]
γνu(p) = (5.73)

= yg2~
∫

ddk

(2π)d
2ū(p′)[6k′ 6kσαβ − σαβ 6k 6k′ −mσαβ 6k′ −m6kσαβ+

)
]u(p)

(k − p)2(k′2 −m2)(k2 −m2)
(5.74)

+
2εū(p′)[

(
6k′σαβ 6k +m2σαβ −m 6k′σαβ −mσαβ 6k)]u(p)

(k − p)2(k′2 −m2)(k2 −m2)

+
1− ξA

(k − p)4(k′2 −m2)(k2 −m2)
ū(p′)

[
(6p− 6k)(6k′ +m)σαβ(6k +m)(6p− 6k)

]
u(p),

(5.75)

where for the first term there is a part proportional to ε = 4−d coming from the modified

contraction identities of γ’s in d dimensions

γµγνγµ = −(2− ε)γν (5.76)

γµγνγργµ = 4ηνρ − εγνγρ (5.77)

γµγνγργσγµ = −2γσγργν + εγνγργσ (5.78)

γµγλγνγργσγµ = 2γλγσγργν + 2γνγργσγλ − εγλγνγργσ. (5.79)

At this point we may focus on the first term and introduce as usual Feynman parameters

to simplify the denominator. This time is D = l2 − ∆, with l = k + yq − zp and

∆ = −xyq2 + (1− z)2m2. Substituting k = l− yq+ zp and remembering that k′ = k+ q

we get, for the numerator of the gauge independent part and excluding terms of O(ε),

[
l2 + y(y − 1)q2 + z2p2 + z 6q 6p− 2yz(p · q)

]
σαβ − σαβ

[
l2 + y(y − 1)q2 + z2p2 + z 6p6q − 2yz(p · q)

]
+

− 2m(−y 6q + z 6p)σαβ − 2mσαβ((1− y)6q + z 6p) =

=[z 6q 6p+ 2my 6q − 2mz 6p]σαβ + σαβ[−z 6p 6q + 2m(y − 1)6q − 2mz 6p] =

=[2z 6q 6p− 2z(p · q) + 2m(2y − 1)6q − 4mz 6p]σαβ + 8z[γ[βqα] 6p+ γ[αpβ] 6q + p[αqβ]]+

+16myq[αγβ] − 16mzp[αγβ].

We can already see that the term of order l2 dropped out. This means that there will

be no logarithmic divergent part and, ultimately, no contribution to the beta function.

As regards the gauge-dependent part we have

−ū(p′)[(6p 6k′ +m6p− 6k 6k′ −m6k)σαβ(6k 6p− k2 +m6p−m 6k)]u(p),
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Here again we introduce Feynman parameters to reduce the denominator as

1

(k − p)2(k − p)2(k′2 −m2)(k2 −m2)
=

∫ 1

0
dx dy dz dt δ(x+ y + z + t− 1)

6

D4
, (5.80)

where D = l2 −∆ and ∆ = −zq2 + (z + t)(1 − x + y)m2. After rewriting all in terms

of l = k − (x + y)p, we can argue that the only relevant term that contributes to the

evaluation of the beta function is the one of order l4, since now the denominator goes

as l8. The only of such terms is just l4σαβ and the integral gives as result as d→ 4

6(1− ξA)

∫ 1

0
dx dy dz dt δ(x+ y + z + t− 1)

∫
ddl

(2π)d
l4

(l2 −∆)4
=

=6i(1− ξA)
Γ
(
2− d

2

)
(4π)2

∫ 1

0
dx dy dz

( 1

∆

)2− d
2

(5.81)

5.3.2.1 Second diagram

The second possible topology is shown in figure

p

p′

p− k
q

k′ = k + q

k

Figure 5.7: Second type of one loop correction to the B-Yukawa vertex.

This time the amplitude will look rather complicated, because of the presence of various

propagators and vertices. The expression is

(−i~)2(−iy)(−ig)(−g)

∫
ddk

(2π)d

{[ηµν
k2
− (1− ξA)

kµkν
k4

]
×
[ηλ[ρητ ]δ

k′2
− 2(1− ξB)

k′[ληδ][ρk
′
τ ]

k′4

]
×

×ū(p′)γµ
[
i

(6p− 6k +m)

(p− k)2 −m2

]
σρτu(p)×

[
(k + 2q)νηα[ληδ]β + 2q[ληδ][αηβ]ν + 2k′[αηβ][ληδ]ν

]}
=

(5.82)
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=
{ 1

k2

[
(k + 2q)µη

α[ληδ]β + 2q[ληδ][αηβ]
µ + 2k′[αηβ][ληδ]µ

]
− 1− ξA

k4

[
k · (k + 2q)ηα[ληδ]βkµ + 2q[ληδ][αkµ+

+2k′[αηβ][λkµ

]}
× ū(p′)γµ

[
i

(6p− 6k +m)

(p− k)2 −m2

]
σρτu(p)×

[ηλ[ρητ ]δ

k′2
− 2(1− ξB)

k′[ληδ][ρk
′
τ ]

k′4

]
=

=
{ 1

k2[(p− k)2 −m2]
ū(p′)

[
( 6k + 2 6q)(6p− 6k +m)ηα[ληδ]β + 2q[ληδ][αγβ]( 6p− 6k +m)+

+2k′[αηβ][λγδ](6p− 6k +m)
]
σρτu(p)

− 1− ξA
k4[(p− k)2 −m2]

ū(p′)
[
k · (k + 2q) 6k(6p− 6k +m)ηα[ληδ]β+

+2q[ληδ][αkβ] 6k(6p− 6k +m) + 2k′[αηβ][λkδ] 6k(6p− 6k +m)
]
σρτu(p)×

×
[ηλ[ρητ ]δ

k′2
− 2(1− ξB)

k′[ληδ][ρk
′
τ ]

k′4

]}
.

At this point we have four terms, one of which is gauge independent while the other

three will depend on the gauge choice. We will treat the four terms separately, in order

for the calculation to be more clear. For the first, gauge-independent term, we get

1

k2

1

(p− k)2

1

k′2
ū(p′)

[
( 6k 6p− k2 + 2 6q 6p− 2 6q 6k +m6k + 2m6q)ηα[ληδ]βηλ[ρητ ]δ+

+2q[ληδ][αγβ]ηλ[ρητ ]δ(6p− 6k +m) + 2k′[αηβ][λγδ]ηλ[ρητ ]δ( 6p− 6k +m)
]
σρτu(p) =

=
1

k2

1

(p− k)2

1

k′2
ū(p′)

[
( 6k 6p− k2 + 2 6q 6p− 2 6q 6k +m6k + 2m6q)σαβ + 2γ[β(6p− 6k +m)6qγα]

− 2γ[β( 6p− 6k +m)γα] 6q + 2k′[αγτ (6p− 6k +m)γβ]γτ − 2k′[αγτ ( 6p− 6k +m)γτγβ]
]
u(p).

We can already argue that the only terms which will give a logarithmic divergence are

quadratic k terms, namely, the k2 factor in the first term and the last two in brackets.

So we can limit to consider only those terms.

Having a closer look we get

2k′[αγτ ( 6p− 6k +m)γβ]γτ − 2k′[αγτ (6p− 6k +m)γτγβ] =

= 4k′[αγτ (6p− 6k +m)γβ]γτ − 4k′[αγτ ( 6p− 6k +m)ηβ]τ =

4k′[αγτ ( 6p− 6k +m)γβ]γτ − 4k′[αγβ](6p− 6k +m);

Where we have used the anticommutation relation of γ matrices. Now, since we are

always interested in quadratic k terms, we can replace k′ with k and drop all other

terms.

= −4k[αγτ 6kγβ]γτ + 4k[αγβ] 6k = −4l[αlµ(4ηβ]µ − εγµγβ]) + 4l[αγβ] 6l = −2

d
l2σαβ

where in the last equation we subsituted k with l and then plugged in lµlν → l2

d η
µν .
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Summing up with the previous result and rearranging everything in terms of l = k− yp
and ∆ = −(1− x− y)q2 + y2m2 we get that the divergent part is

−2i
d+ 2

d

∫ 1

0
dx dy dzδ(x+ y + z − 1)

∫
ddl

(2π)d
l2

(l2 −∆)3
σαβ =

=
d+ 2

2

Γ(2− d
2)

(4π)2

∫ 1

0
dx dy

( 1

∆

)2− d
2
σαβ. (5.83)

Then we move on to the second term. This time the divergent part will be of order k4.

Having this in mind we have

− 2(1− ξB)

k2[(p− k)2 −m2]k′4
ū(p′)

[
(6k + 2 6q)(6p− 6k +m)(k′[αγβ] 6k′ − 6k′k′[αγβ])+

+2q[ληδ][αγβ](6p− 6k +m)k′[ληδ][ρk
′
τ ]σ

ρτ − k′[αηβ]
[ρ k
′
τ ] 6k
′(6p− 6k +m)σρτ

]
u(p).

Again, we can let k′ = k and then put directly k = l. We can already see that the

second term only has a maximum k order of 3, thus we can drop it. The divergent k4

terms will be just

−k2[k[αγβ]kµγ
µ − kµγµk[αγβ]] + k2[k[αγβ]kµγ

µ − kµγµk[αγβ]] = 0.

So the divergent part of this term accidentally cancels out. Then we have the third

term, which is

− 1− ξA
k4[(p− k)2 −m2]k′2

ū(p′)
[
k · (k + 2q) 6k( 6p− 6k +m)σαβ + 2q[ρη

[α
τ ]k

β] 6k( 6p− 6k +m)σρτ+

−2k2(k[αγβ] 6k − 6kk[αγβ])
]
.

Also here we can drop the second term as long as it has odd powers of k and does not

give a divergent contribute. The divergent part is the sum of the two l4 terms , where

l = k − xp

−l4σαβ + 2
l4

d
σαβ =

2− d
d

l4σαβ.

So the total divergent contribution of this term will be

6i(−1

2
)(1− ξA)

∫ 1

0
dx dy dzδ(x+ y + z + t− 1)

∫
ddl

(2π)d
l4

(l2 −∆)4
σαβ =

=3(1− ξA)
Γ(2− d

2)

(4π)2

∫ 1

0
dx dy dz

( 1

∆

)2− d
2
σαβ, (5.84)
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where ∆ = −x(1− 2x)m2 − yq2.

Finally, we have the fourth term

2(1− ξB)(1− ξA)

k4[(p− k)2 −m2]k′4
ū(p′)

[
k2(−k2)[k[αγβ] 6k − k[α 6kγβ]]− 2k2k′[ληδ][ρk

′
τ ]]k
′[αηβ][λkδ]σρτ

]
,

where for simplicity we have considered only maximum order k term and omitted the

second term because we have already seen it gives no divergent contribution. However,

expanding the last term and substituting k′ = k we get

2k2k′[ληδ][ρk
′
τ ]]k
′[αηβ][λkδ]σρτ = k4k[αη

β]
[ρ kτ ]σ

ρτ = k4[k[αγβ] 6k − 6kk[αγβ]].

This means that even this last term has an accidental cancellation of the divergent

part. Then we have to consider also another diagram, but with interchanged photon

and antisymmetric propagator, as is shown in figure: The amplitude will look somewhat

p

p′

p− k
q

k′ = k + q

k

similar to the previous graph :

(−i~)2(−iy)(−ig)(−g)

∫
ddk

(2π)d

{[ηµν
k′2
− (1− ξA)

k′µk
′
ν

k4

]
×
[ηλ[ρητ ]δ

k2
− 2(1− ξB)

k[ληδ][ρkτ ]

k4

]
×

×ū(p′)σλδ
[
i

(6p− 6k)

(p− k)2

]
γνu(p)×

[
(k − q)µηα[ρητ ]β − 2q[ρητ ][αηβ]µ + 2k[αηβ][ρητ ]µ

]}
=

(5.85)
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= −iy~2g2

∫
ddk

(2π)d

{ 1

k′2

[
(k − q)νηα[ρητ ]β − 2q[ρητ ][αηβ]

ν + 2k[αηβ][ρητ ]
ν

]
+

−1− ξA
k′4

[
k′ · (k − q)ηα[ρητ ]βk′ν − 2q[ρητ ][αk′β]k′ν + 2k[αηβ][ρk′β]k′ν

]}
×

×ū(p′)σλδ
[
i

(6p− 6k)

(p− k)2

]
γνu(p)×

[ηλ[ρητ ]δ

k2
− 2(1− ξB)

k[ληδ][ρkτ ]

k4

]
=

= −iy~2g2

∫
ddk

(2π)d

{ 1

k′2(p− k)2
ū(p′)σλδ

[
(6p− 6k)(6k − 6q)ηα[ρητ ]β − 2(6p− 6k)q[ρητ ][αγβ]+

+2(6p− 6k)k[αηβ][ργτ ]
]
u(p)+

− 1− ξA
k′4(p− k)2

ū(p′)σλδ
[
(6p− 6k)k′ · (k − q)ηα[ρητ ]β 6k′ − 2(6p− 6k)q[ρητ ][αk′β] 6k′+

+2(6p− 6k)k[αηβ][ρk′τ ] 6k′
]
u(p)

}
×
[ηλ[ρητ ]δ

k2
− 2(1− ξB)

k[ληδ][ρkτ ]

k4

]
.

At this point again we split different terms for simplicity. Also, we can omit from the

start terms with odd powers of k since we have already seen that these do not contribute

to the determination of divergences. We will compute only such divergences, so we can

safely use k′ = k and look only at highest powers of k. Bearing this in mind, the gauge

independent part yields

1

k′2(p− k)2k2
ū(p′)[−k2σαβ − 2k[αγβ]γδ 6kγδ + 2k[αγλγβ] 6kγλ]u(p).

The divergent part is then just the same as in the previous graph.

As for the second part we have

− 2(1− ξB)

k′2(p− k)2k4
ū(p′)[−k2 6kγ[αkβ] + k2γ[α 6kkβ] − k2k[α 6kγβ] + k2k[αγβ] 6k] = 0,

so also this time it cancels accidentally.

The third part reads

1− ξA
k′4(p− k)2k2

ū(p′)[−k4σαβ − 2k2γ[βkα] 6k + 2 6kγ[β 6kkα] 6k]u(p) =

1− ξA
k′4(p− k)2k2

ū(p′)[−k4σαβ − 4k2γ[βkα] 6k]u(p),

and again the contribution is equal to the one obtained before. Finally, for the last term

2(1− ξB)(1− ξA)

k′4(p− k)2k4
ū(p′)[−k4 6kγ[αkβ] + k4γ[α 6kkβ] − k4k[α 6kγβ] + k4k[αγβ] 6k] = 0.
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So we can conclude that the divergent part of this diagram is exactly equal to the first

diagram we considered. Also, the contribution from diagrams with Wµ is proportional

to the one just computed.

5.3.3 Corrections to the external fermion leg

As regards the eternal fermion leg, we have the usual corrections due to QED diagrams,

plus a new self-energy kind of diagram coming from the interactions with Bµν . Such

diagram is represented in figure

p

k

p− k p

Figure 5.8: Additional 1-loop correction to the fermion propagator

and its amplitude can be easily written down with the help of Feynman rules:

(−iy)2

∫
ddk

(2π)d
σαβ

[ i(6p− 6k +m)

(p− k)2 −m2

]
σµν ×

[ηα[µην]β

k2
− 2(1− ξB)

k[αηβ][µkν]

k4

]
= (5.86)

=− iy2

∫
ddk

(2π)d

{ 1

k2[(p− k)2 −m2]

[
σµν(6p− 6k +m)σµν

]
+

− 2(1− ξB)

k4[(p− k)2 −m2]

[
σαβ( 6p− 6k +m)σµνk[αηβ][µkν]

]}
.

Focusing on the first term we have

σµν( 6p− 6k +m)σµν = 2γµγν( 6p− 6k +m)γµγν − 2γµγν(6p− 6k +m)γνγµ = −2d(2 + d)m,

where the momentum part vanishes by symmetry. So, in the massless fermion case this

term just cancels out. For the second, gauge dependent, part we have

σαβ( 6p− 6k +m)σµνk[αηβ][µkν] = σαβ( 6p− 6k +m)(k[αγβ] 6k − k[α 6kγβ]) =

=γαγβ(6p− 6k +m)k[αγβ] 6k − γαγβ( 6p− 6k +m)k[α 6kγβ] − γβγα( 6p− 6k +m)k[αγβ] 6k+

+γαγβ( 6p− 6k +m)k[α 6kγβ].
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Now we will look at the terms with 6p and borrow our result for the ones with 6k.

=k[αpµkνγ
αγβγµγβ]γ

ν − k[αpµkνγ
αγβγµγνγβ] + k[αpµkνγ

βγαγµγβ]γ
ν − k[αpµkνγ

βγαγµγνγβ] =

=− [kαpµkνγ
αγµγν + 2kβpµkνη

µβγν + 2kαpµkνη
µνγα + kβpµkνγ

νγµγβ + 2kαpµkνη
µαγν+

+kβpµkνγ
βγµγν + kαpµkνγ

νγµγα + 2kβpµkνη
µνγβ] = −4(6k 6p 6k + 2(p · k) 6k).

This result implies that the part with 6k instead of 6p gives 12k2 6k. Whereas for the part

with m:

m[kαkµγ
αγβγβγ

µ − kβkµγαγβγαγµ − kαkµγαγβγµγβ + kβkµγ
αγβγµγα − kαkµγβγαγβγµ+

+kβkµγ
βγαγαγ

µ + +kαkµγ
βγαγµγβ − kβkµγβγαγµγα] = 2(8 + d)mk2.

So in total we are left with

2[6k2 6k − 2 6k 6p 6k − 4(p · k)6k + (8 + d)mk2)].

Now let us introduce Feynman parameters so that

1

k4[(p− k2)−m2]
=

∫ 1

0
dx dy dz δ(x+ y + z − 1)

2

D3
(5.87)

and in this case D = l2 −∆, where l = k − xp and ∆ = −x(1 − 2x)m2. Next thing to

do is to rewrite all in terms of l and drop odd powers:

12(l2 + x2p2 + 2x(p · l))( 6lx6p)− 46l 6p 6l − x2p2 − 2(p · l)6l + 6m2(l2 + x2p2 + 2x(p · l)) =

=12xl2 6p+ 24x
l2

d
6p− 4 6l 6p6l − 2

l2

d
6p+ 6m2l2 = 3l2 6p(2x+ 1 + 2m2).

So the divergent part for this diagram will be

−12i(1− ξB)

∫ 1

0
dx dy dz δ(x+ y + z − 1)6p(2x+ 1 + 2m2)

∫
ddl

(2π)d
l2

(l2 −∆)3
=

= 12(1− ξB)
Γ(2− d

2)

(4π)2
6p
∫ 1

0
dx dy(2x+ 1 + 2m2)

( 1

∆

)2− d
2

(5.88)

5.3.4 Counterterms

Now we have all the ingredients to evaluate the counterterms, introduced in the original

Lagrangian to get rid of all divergences. To this end we just have to implement the

renormalization conditions, i.e. equate the sum of divergent parts of diagrams plus

the counterterms to zero. So, for δB, the counterterm that cancels divergences of the
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external Bµν leg, we have that the sum of all divergences is{
ηα[µην]βp2

[16

3
y2 − 13

6
g2 − 13

8
g′2 +

7

4
(1− ξB)g2 +

21

16
(1− ξB)g′2 +

19

24
(1− ξA)g2 +

19

32
(1− ξW )g′2

]
+

+p[µην][βpα]
[
−64

3
y2 − 5g2 − 15

4
g′2 + 2(1− ξB)g2 +

3

2
(1− ξB)g′2 − 31

3
(1− ξA)g2+

−31

4
(1− ξW )g′2

]} i~2

(4π)2

Γ(2− d
2)

(M2)
d
2
−2

=

=
{
ηα[µην]βp2

[128y2 + (g2 + 3
4g
′2)(9− 42ξB)− 19ξAg

2 − 57
4 ξW g

′2

24

]
+

+p[µην][βpα]
[−64y2 − (g2 + 3

4g
′2)(40 + 6ξB) + 31ξAg

2 + 93
4 ξW g

′2

3

]} i~2

(4π)2

Γ(2− d
2)

(M2)
d
2
−2
.

We can see that, since there is not a gauge invariance and, hence, the Ward-Takahashi

identity does not hold, the two tensorial structures have different divergent factors.

However we first introduced in our Lagrangian for the antisymmetric tensor a term which

does not affect the only dynamical degree of freedom, BL. So the part proportional to

p[µην][βpα] coming from that choice, even if divergent, has not dynamical influence. This

means that the counterterm we need to introduce has to cancel divergences of the the

first term of the previous equation. This is done by imposing

δB =
128y2 + (g2 + 3

4g
′2)(9− 42ξB)− 19ξAg

2 − 57
4 ξW g

′2

24

~2

(4π)2

Γ(2− d
2)

(M2)2− d
2

. (5.89)

As regards the corrections to the vertex, divergences sum up to

[
4(1− ξA)yg2 +

3

2
(1− ξW )yg′2 + 3y(g2 +

3

8
g′2)
]
σαβ

1

(4π)2

Γ(2− d
2)

(M2)2− d
2

=

=
y

(4π)2
[4(g2 +

3

8
g′2)− 4g2ξA −

3

2
g′2ξW ]

Γ(2− d
2)

(M2)2− d
2

,

which implies

δy =
y2

(4π)2
[4(g2 +

3

8
g′2)− 4g2ξA −

3

2
g′2ξW ]

Γ(2− d
2)

(M2)2− d
2

. (5.90)

Finally, the divergent corrections to the fermion propagator are (computated by imposing

the renormalization conditions, i.e. taking the derivative with respect to 6p in (5.88))

−
g2 + 3

8g
′2

(4π)2

Γ(2− d
2)

(M2)2− d
2

+
10(1− ξB)y2

(4π)2

Γ(2− d
2)

(M2)2− d
2

= −
g2 + 3

8g
′2 − 10(1− ξB)y2

(4π)2

Γ(2− d
2)

(M2)2− d
2

= δΨ.
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We can combine these results to obtain our final goal: the beta function of the theory.

β(y, g, g′) =M
∂

∂M
(−δy +

1

2
y(δB + 2δΨ)) =

y

(4π)2

{
−y
[
4(g2 +

3

8
g′2)− 4g2ξA −

3

2
g′2ξW

]
+ (

22

3
− 5ξB)y2 −

g2 + 3
8g
′2

2

}
.

(5.91)

Obviously this result has no physical meaning because of the dependence on gauge

parameters ξB, ξA and ξW . The beta function, which is supposed to describe the behavior

of the coupling constant at different energy scales, must be an object independent on

gauge choice.

Also, dependence on ξA and ξW implies that somehow SU(2)⊗U(1) symmetry is broken.

This fact is probably a result of the gauge fixing term used to covariant quantize the

antisymmetric tensor field, which formally breaks SU(2)⊗U(1). Further work is needed

to see if implementing a different gauge fixing term with a covariant derivative can restore

the symmetry and provide new interactions which, in turn, can cancel the dependence

on ξA and ξW . Also, the possibility to add ghost fields for the antisymmetric tensor field

should be investigated as a possible cure to this gauge dependence problem.



Chapter 6

Conclusions

In this work we studied a model alternative to the SM in which a fundamental scalar

particle is eliminated from the theory and the breaking of electro-weak symmetry is

achieved through the introduction of an antisymmetric tensor field coupled to fermions

with a ”B-Yukawa” interaction term. The basic idea of dynamical symmetry breaking,

taken in analogy with what happens in Technicolor models, is the key concept of this

model. If the coupling constant of the B-Yukawa term was proven to have a negative

β function, then the strong dynamics of this coupling would generate some fermion-

antifermion condensate 〈Ψ̄Ψ〉 which can play the role of the Higgs particle, generating

masses to gauge bosons W and Z and also to fermions.

This theory does not present typical problems associated with a fundamental scalar,

such as hierarchy, unnaturalness and vacuum stability, and for this reason could be a

more appealing way to explain the mechanism of the electro-weak symmetry breaking.

Even after the discovery of a scalar particle at LHC in 2012, many properties of such

particle are to be unraveled, such as its possible compositeness or its parity properties,

and must still be checked experimentally to prove that it is the fundamental Higgs par-

ticle of the SM. So, these alternative models in which there is no fundamental scalar are

still worth investigating.

Starting from a first model proposed by Wetterich [20], we removed classical instabilities

by modifying the Lagrangian for the antisymmetric tensor field. This new Lagrangian

presents a gauge freedom that, in analogy with what happens with gauge fields, forbids

a straightforward computation of the propagator due to the presence of a null eigenvec-

tor for the quadratic terms. By adding a suitable gauge-fixing term, we constructed a

covariant propagator with which we performed the computation of the relevant Feyn-

man diagrams in momentum space for the evaluation of the β function of the B-Yukawa

coupling, which is expected to be negative to allow the formation of the condensate.

What we found is a gauge dependent value of β, which is obviously unacceptable. The
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dependence on the gauge parameters of the Wµ and Aµ fields, in particular, implies that

somehow the introduction of the B-Yukawa interaction breaks SU(2)⊗U(1) symmetry.

This phenomenon could be a result of the form of gauge fixing term introduced previ-

ously, and a substitution of the usual derivative with a covariant one may be the solution

of this gauge dependence. Also, the introduction of ghost fields should be investigated as

a possible cure to this problem. Further work is needed to complete these analysis and

to see if the gauge independent β function is indeed negative, a necessary condition to

provide the condensate and to give mass to fermions and gauge bosons. A further step

would then be the study of possible experimental signatures of this model at current

experiments at LHC.



Appendix A

Graviton Propagator In

Momentum Space

A.1 Introduction

We know that the propagator for the graviton propagator in covariant gauges is given

by:

i[ρσ∆ab
αβ](x, x′) = −2~κ2

(
ηρ(αηβ)σ −

1

D − 2
ηρσηαβ

)
i∆ab

0 (x, x′)

+ 4(1− ξ)~κ2∂(ρησ)(α∂β)

∫
dDzi∆ac

0 (x, z)(σ3)cd∆db
0 (z, x′). (A.1)

Where

i∆ab
0 (x, x′) =

Γ(D−2
2 )

4πD/2
1

(∆x2
ab)

(D−2)/2
(A.2)

is the Keldysh propagator for a massless scalar field in Minkowski space. So, in order

to calculate the graviton propagator in momentum space, we need to first compute the

scalar propagator in momentum space.

A.2 The massless scalar propagator in momentum space

We want to calculate the Feynman time-ordered propagator in momentum space, i.e.

∆̃++
0 (kµ). In order to do so we have to consider ∆x2

++ = −(|t− t′| − iε)2 + ‖~x− ~x′‖ in
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(1). We also know that it satisfies the equation

∂2i∆++
0 (x, x′) = iδD(x− x′). (A.3)

Now, inserting a Fourier ansatz for the propagator we get:

∂2

∫
dD(x− x′)e−ik·(x−x′)i∆̃++

0 (kµ) =

∫
dD(x− x′)ie−ik·(x−x′) (A.4)

=⇒ −kµkµi∆++
0 (kµ) = i =⇒ i∆++

0 (kµ) = − i

kµkµ
(A.5)

At this point we still don’t know what the exact Feynman prescription is for such prop-

agator. So all we can do is just guess the prescription and verify if it gives us the correct

Feynman propagator in real space after performing an anti Fourier transformation. So,

we can rewrite A.5 as:

i∆̃++
0 (kµ) =

i

2k

[
1

k0 − k + iε
− 1

k0 + k − iε

]
(A.6)

where k = ‖~k‖. Then

i∆++
0 (x− x′) =

∫
dD−1k

(2π)D−1
ei
~k·(~x−~x′)

∫
dk0

2π
i∆̃++

0 (kµ)e−ik0(t−t′) (A.7)

The result of the last integral in the complex k0 plane is (given that the poles are shifted

as in (A.6))

i

2k

1

2π

[
ϑ(t− t′)(−2πi)e−ik(t−t′) − ϑ(t′ − t)(2πi)eik(t−t′)

]
(A.8)

Thus

i∆++
0 (x− x′) =

∫
dD−1k

(2π)D−1
ei
~k·(~x−~x′) 1

2k

[
ϑ(t− t′)e−ik(t−t′) + ϑ(t′ − t)eik(t−t′)

]
(A.9)



Appendix A. Graviton Propagator In Momentum Space 73

=
1

2(2π)D−1

∫ ∞
0

dkkD−2

2k

∫ 2π

0
dϑ1

∫ π

0
dϑ2sinϑ2 · · ·

∫ π

0
dϑD−2sinD−3ϑD−2e

ik‖x−x′‖cosϑD−2×

×
[
ϑ(t− t′)e−ik(t−t′) + ϑ(t′ − t)eik(t−t′)

]
(A.10)

The part with the ϑ functions can be rewritten in terms of the absolute value of the

time difference. Besides, in order to maintain the integral finite we insert a factor e−εk,

which just gives an imaginary shift in the time difference.

=
1

2(2π)D−1

∫ ∞
0

dkkD−2

2k

∫ 2π

0
dϑ1

∫ π

0
dϑ2sinϑ2 · · ·

∫ π

0
dϑD−2sinD−3ϑD−2e

ik‖x−x′‖cosϑD−2×

× e−ik(|t−t′|−iε) (A.11)

The integral over ϑD−2 is

∫ π

0
dϑsinD−3ϑeik‖x−x

′‖cosϑ =

∫ 1

−1
dq(1− q2)

D−4
2 eik‖x−x

′‖q (A.12)

=
√
π Γ

(
D − 2

2

)(
k‖x− x′‖

2

) 3−D
2

JD−3
2

(k‖x− x′‖) (A.13)

At this point we can use the formula for the integral over k of the form∫ ∞
0

e−αxJν(βx)xν =
(2β)νΓ(ν + 1

2)
√
π(α2 + β2)ν+ 1

2

Substituting α = i(|t− t′| − iε), ν = D−3
2 and β = ‖x− x′‖ we get:

(2‖x− x′‖)
D−3
2 Γ(D−2

2 )
√
π(−|t− t′|2 − iε+ ‖x− x′‖2)

D−2
2

(A.14)

that, including the constants comining from (A.13) and from the angular integrations

of (10) finally gives:

2−3Γ(D−2
2 )

(∆x2
++)

D−2
2

Γ(D−2
2 )

πD−1
ΩD−2 =

Γ(D−2
2 )

4πD/2
1

(∆x2
++)

D−2
2

(A.15)

This means that the prescription that we guessed in A.6 is indeed correct since it gives

the original propagator in real space.



Appendix A. Graviton Propagator In Momentum Space 74

A.3 The graviton propagator in momentum space

At this point we are ready to compute the whole graviton propagator in momentum

space. To do so we just have to substitute

i∆++
0 (x− x′) =

∫
dD

(2π)D
ki∆̃++

0 (k)eik·(x−x
′)

in both terms of (1). The first one is trivial and gives:

(−2~κ2)

∫
dDk

(2π)D

(
ηρ(αηβ)σ −

1

D − 2
ηρσηαβ

)
i∆̃++

0 (k)eik·(x−x
′) =

= (−2~κ2)

∫
dDk

(
ηρ(αηβ)σ −

1

D − 2
ηρσηαβ

)
−i
kµkµ

eik·(x−x
′) (A.16)

The second involves a convolution of two scalar Keldysh propagators and gives:

4(1−ξ)~κ2

∫
dDk

∫
dDk′

∫
dDz ∂(ρησ)(α∂β)i[∆̃

++
0 (k)∆̃++

0 (k′)−∆̃+−
0 (k)∆̃−+

0 (k′)]e−ik(x−z)e−ik
′(z−x′) =

= 4(1− ξ)~κ2

∫
dDk ∂(ρησ)(α∂β)i[∆̃

++
0 (k)∆̃++

0 (k)− ∆̃+−
0 (k)∆̃−+

0 (k)]e−ik(x−x′) =

= 4(1− ξ)~κ2

∫
dDk i[−k(ρησ)(αkβ)][∆̃

++
0 (k)∆̃++

0 (k)− ∆̃+−
0 (k)∆̃−+

0 (k)]e−ik(x−x′).

(A.17)

To find the final expression for the propagator in momentum space is just matter to

substitute the expressions for the Keldysh scalar propagators with the correspondent iε

prescriptions. For the ∆̃+−
0 (k) and ∆̃−+

0 (k) of course the prescription is different from

the one for the time ordered propagator, and it corresponds to consider alternatively

only one of the poles in (A.6).

So, namely,

i∆̃+−
0 (~k,∆t) =

1

2k
e−ik∆t

i∆̃−+
0 (~k,∆t) =

1

2k
eik∆t

Which can be expressed, respectively, as:

i∆̃+−
0 (k) =

∫
d(∆t) eik0∆t 1

2k
e−ik∆t =

π

k
δ(k0 + k) = 2πδ(kµk

µ)θ(−k0)

i∆̃−+
0 (k) =

∫
d(∆t) eik0∆t 1

2k
eik∆t =

π

k
δ(k0 − k) = 2πδ(kµk

µ)θ(k0)
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When we take the product of these two terms, we have:

∆̃+−
0 ∆̃−+

0 = 4π2δ(kµk
µ)δ(kµk

µ)θ(−k0)θ(k0) = 0

So the final result for the time ordered graviton propagator in momentum space is:

i[ρσ∆++
αβ ](k) = (−2~κ2)

(
ηρ(αηβ)σ −

1

D − 2
ηρσηαβ

)
−i

kµkµ − iε
−4(1−ξ)i~κ

k(ρησ)(αkβ)

(kµkµ − iε)2

(A.18)

provided that we use the correct iε prescription of (A.6). To obtain the anti-Feynman

graviton propagator and the Wightman functions we only need the anti-Feynman scalar

propagator ∆̃−−0 (kµ). This can be obtained in a completely analogous fashion as it

was done for the time ordered scalar propagator in section 2. The prescription for such

propagator will simply be kµk
µ → kµk

µ+iε i.e. i∆̃−−0 (kµ) = i
kµkµ+iε . Thus, substituting

this expression into A.1, we have:

i[ρσ∆−−αβ ](k) = (−2~κ2)

(
ηρ(αηβ)σ −

1

D − 2
ηρσηαβ

)
i

kµkµ + iε
+4(1−ξ)i~κ

k(ρησ)(αkβ)

(kµkµ + iε)2

(A.19)

For the Wightman function we have to calculate the quantity

[∆̃++
0 (k)∆̃+−

0 (k)− ∆̃+−
0 (k)∆̃−−0 (k)] = −2πδ(kµk

µ)θ(−k0)

[
1

kµkµ − iε
+

1

kµkµ + iε

]
Then we can write the resulting expression:

i∆̃+−(kµ) = 2πδ(kµk
µ)θ(−k0)

{
(−2~κ2)

(
ηρ(αηβ)σ −

1

D − 2
ηρσηαβ

)
+

+ 4(1− ξ)~κ2i[k(ρησ)(αkβ)]
[ 1

kµkµ − iε
+

1

kµkµ + iε

]}
(A.20)

And a similar expression holds for the other one:

i∆̃−+(kµ) = 2πδ(kµk
µ)θ(k0)

{
(−2~κ2)

(
ηρ(αηβ)σ −

1

D − 2
ηρσηαβ

)
+

+ 4(1− ξ)~κ2i[k(ρησ)(αkβ)]
[ 1

kµkµ − iε
+

1

kµkµ + iε

]}
(A.21)
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