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Abstract

Chemotaxis is the ability of cells to sense their chemical environment
and adjust their movement accordingly. In Escherichia coli, it has been
extensively studied and has become a paradigm for signal transduction
in biology. Despite its simplicity, it possesses many interesting network
phenomena, most notably cooperative signal ampli�cation and precise
adaptation via a negative feedback. A �uorescence microscopy technique,
Förster Resonance Energy Transfer (FRET), has proven to be a very
e�ective experimental tool in characterizing the transfer functions of the
signalling pathway in ensemble averaged measurements. While these func-
tions provide a useful coarse-grained description in considering functional
aspects, many open questions remain on the underlying molecular and
cellular mechanisms. Therefore, we tailored the FRET technique to ap-
plication at the single-cell level. We used this technique to characterise two
di�erent E. coli genotypes. First, in wild-type E. coli cells we measured
the steady state kinase activity as well as the adaptation time scales to
both repellent and attractant response. These parameters revealed earlier
unnoticed di�erences between individual bacterial cells. Second, in E. coli

cells lacking the genes necessary for adaptation we described the transfer
functions of the receptor-ligand binding for individual cells. Counter-
intuitively, we found that the parameters of the function describing this
response varied signi�cantly from cell to cell. This work forms a solid
foundation for further investigations into cellular non-genetic variability
in order to relate it to (i) heterogeneity of the motile behaviour of bacteria
and (ii) di�erences in structural properties of cells.
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1 Introduction

As George Orwell noted, some animals are more equal than others. Though they
are not animals, the same adage goes for bacteria, albeit in a rather di�erent
fashion. Within one bacterial colony, inequality between cells is not due to any
genetic di�erences, but to random processes. As bacteria are so small, their
constitutions are very noisy. This causes variability in the chemical networks
that govern a cell's life.

In this thesis, I will describe our work on investigating cell-to-cell variability
in such a chemical signalling network. Before I will describe the research that has
been part of my internship, I will give a general introduction to the topic. I will
give a detailed description of the chemotaxis network in the bacterial species
Escherichia coli and of Förster Resonance Energy Transfer, the �uorescence
microscopy technique that we used. After this introduction, I will describe what
work we have done in the past year. Firstly I shall explain the new experimental
methods that we have developed. Then I will report on our �ndings when we
apply these methods to the chemotaxis system.

1.1 Cellular signal processing

We humans spend most of our time awake doing the following: we observe our
environment, we process these signals and then we act according to the out-
come of this calculations. This same procedure holds for a single cell, but the
way in which it is implemented obviously varies. Instead of in neural networks,
the cellular signal processing takes place via chemical networks. One network
usually consists of several proteins, which undergo conformational changes and
chemical reactions such as phosphorylation and methylation (addition of PO4-
and CH3-groups, respectively). These reactions are catalysed by the same pro-
teins that make up the system. The e�ciency of the catalysis depends on the
conformational and chemical state of the enzyme (catalyst protein). We see
that in such a chemical system, intricate positive and negative feedback loops
may exist. Input to the system is usually given by a protein that has the abil-
ity to change under an outside in�uence. The output consists of one or more
proteins that are sensed by some functional protein that can modify the cell or
its environment, such as a molecular motor. We see that intricate systems have
evolved, that can respond in very di�erent ways to di�erent stimuli.

1.1.1 Standard cell: E. coli

When studying properties of biological signalling networks, scientists have one
model that stands out: Escherichia coli (E. coli). This bacterium is abun-
dantly present in the intestines of humans and other mammals. It will grow
under various circumstances, so it can be used in many di�erent experiments.
Furthermore, E. coli is not pathogenic. Also, it is relatively easy to modify the
genome of bacteria (as opposed to more complex organisms). Therefore, these
cells are ideal to study biological systems, as genetic modi�cations make it pos-
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sible to investigate the individual components of the systems. For these reasons,
E. coli has been developed into the "standard ruler" of cellular biology[6].

E. coli cells have a spherocylindrical shape, they are roughly 2 microns long
and 0.5 micron wide. When they are grown in a rich medium, with lots of
nutrients, they divide roughly once in 20 minutes. Most strains can swim: they
can reach speeds of more than 20 microns per second, which is ten times their
own length. At any given moment, about half of the cells dry weight is made up
of proteins. There are more than 2 million protein molecules in one bacterium.

(a) (b)

Figure 1: a) Scanning electron microscopy image of an Escherichia coli bac-
terium, taken at a magni�cation of 12,800x. The scale bar is 2 micron. Image
by CDC/Evangeline Sowers, Janice Carr. b) Map of the trajectory of an E. coli

cell. Image by H.C. Berg, retrieved from http://www.rowland.harvard.edu/

labs/bacteria/index.php, June 6, 2013.

1.1.2 E. coli 's strategy for �nding food

One of the longest-studied biological systems is the one which bacteria (es-
pecially E. coli) use to �nd food and swim away from toxins: the so-called
chemotaxis system. At �rst, this system was studied on a behavioural level.
When one observes swimming bacteria under a microscope, one sees that they
appear to follow a random walk. When studied more closely, one can see that
the way they propel themselves is via long helicoidal �agella, about ten per
organism, which the cells can rotate in two directions. When all �agella rotate
in the same direction, they bundle together due to their helicoidality and the
cell moves straightly. We call this a "run". When a �agellum starts spinning
the other way, the cell gets stopped in its way due to friction. It will then
rotationally di�use. Hence, a cell gets a new orientation during this "tumble"
event. When all �agella form again a bundle, the organism runs in a straight
line, etcetera. This explains how bacteria exhibit a random walk.
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The following question now raises itself: how can a bacterium use this appar-
ently random mechanism to swim towards food? Nature has found an ingenious
answer: a cell can extend the average length of the runs when it is swimming
up a food gradient. The random walk is thus biased in the direction in which
the food concentration is increasing.

The way a cell can in�uence the duration of the runs, is by varying the
probability that a �agellum will spin in the correct direction . When the proba-
bility for a �agellum to spin in the correct direction is high, the runs will extend
longer. Obviously, a cell wants to extend the runs when it is swimming in the
direction where life is getting better. To do this, it has to be able to sense spatial
gradients. A bacterium is too small to sense spatial gradients though. Typical
chemical gradients are too small to vary signi�cantly over the typical length of
a cell. To overcome this problem, E. coli senses temporal gradients. As the
swimming speed during a run is constant, this temporal gradient corresponds
to a spatial gradient. This way, the bacterium may sense the direction in which
conditions are improving, and act accordingly.

1.1.3 Cell-to-cell variability

The number of identical protein molecules in E. coli varies signi�cantly between
di�erent protein species. In the system that governs chemotaxis in E. coli, the
messenger protein CheY is quite abundant at (8.2± 0.3) · 103 copies per cell in
rich medium. One bacterium has far fewer copies of the methylation enzyme
CheR, only 140± 10[4]. We may expect quite some random noise in such small
quantities. A simple model assumes that proteins are produced in some sort of
Poisson process: the probability that a molecule will be produced in a given time
interval is constant. Then the standard deviation of the number N of protein
molecules of a given type will be

√
N . If N ≈ 100, we get typical �uctuations

of 10% of the protein number. This can have quite an impact on the system
which the protein is part of.

This cell-to-cell variability may have certain bene�ts for the population.
E. coli reproduces asexually: therefore all cells in a colony will have the same
genome. This makes the colony vulnerable to environmental changes. When not
all cells have the same phenotype though, some cells may have the possibility
to adapt to the new circumstances.

From this we see that there is cell-to-cell variability between bacteria of the
same colony. We now wonder how this variability can be seen on the molecular
level. The research that is described in this thesis contributes to answering this
question.

1.2 Chemotaxis protein network

We can split up the chemical network into two constituent parts: the receptor
module and the adaptation module[12, 7]. The �rst one translates the concen-
tration of attractant into something the �agellar motor uses to determine which
way to rotate. The latter rescales the response, so that the system is being
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saturated as little as possible. We will now describe the two modules in E. coli.
Note that di�erent species of bacteria may have slightly di�erent versions of the
chemotaxis network. For a graphical view of the system, see Figure 2.

1.2.1 Receptor module

E. coli senses its chemical environment in the following way. On the cell mem-
brane, there are receptor proteins. These are speci�c for certain chemicals. For
example, Tar receptors sense aspartate and Tsr receptors sense serine. These
receptors are clustered together in trimers of dimers: nearly all receptors are
coupled to another one, and most of those dimers assemble into trimers. The
electrostatic interactions between the receptors makes them change shape when
they are clustered. This causes cooperative behaviour: neighbouring receptors
reinforce each other's stimuli.

The receptors change shape when they sense chemicals, and this in�uences
the kinase CheA (via a sca�olding protein CheW). We denote a cell's kinase
activity by a ∈ [0, 1]. This is the probability that a given kinase molecule in
that cell will be active. It signi�es the response of the bacterium to the given
stimulus. When active, the kinase catalyses the phosphorylation of a messenger
chemical, CheY. This moves the equilibrium of the following reaction to the
right:

CheY + P 
 CheY P (1)

The key output chemical of the signalling network is CheYP, the phospho-
rylated form of CheY. The lower the concentration of CheYP is, the more the
motors will bundle the �agella, which elongates the runs.

The e�ects of the kinase are countered by the enzyme CheZ. This protein
catalyses the dephosphorylation of CheY, so it moves the equilibrium of equa-
tion 1 to the left.

Figure 2: a) Overview of the chemotaxis signalling network in E. coli. b) Typical
response of the system to an addition of attractant and subsequent removal.
Image taken from [8].
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1.2.2 Adaptation module

The chemotaxis system has another important feature: the ability to adapt to
its environment. The proteins responsible for this are CheR and CheB. CheR
adds methyl groups to the receptors, CheB removes them. One receptor has
four methylation sites. When a receptor has more methyl groups attached, it
will need more attractant to make the kinase turn active.

As illustrated in �gure 2b), the adaptation to the addition of attractant
(caused by methylation) goes slower than the adaptation to the removal of
attractant. Both types of adaptation occur much slower than the time scale of
the receptor module, in which the kinase activity reacts to the step changes in
stimulus.

1.2.3 Dose-response curves

A standard way of looking at the signalling network, is by acquiring a dose-
response curve. To get such a curve, one applies varying amounts of stimulus
(usually attractant) and investigates the response of the network as compared
to a baseline in bu�er. This response is characterized by the value of a, which
we recall to be the probability of the kinase to be active. The kinase activity
depends on ligand concentration [L] and the state of methylation m.

When we assume a two-state model, this probability will be given by[12]

a = G([L],m) =
1

1 + ef([L],m)
(2)

where f([L],m) is the di�erence in (dimensionless) free energy between the
active and inactive state.

Now the receptors are clustered in the membrane, and their interactions have
the e�ect of amplifying the response. This is called cooperativity. A Monod-
Wyman-Changeux model[5] can be used to describe the e�ects of cooperativity.
This assumes that N identical receptors form a cluster. Di�erent cluster do not
interact with each other. Using this model, the free energy di�erence can be
written as

f([L],m) = N (fm(m) + fL([L])) = N

(
fm(m) + ln

KI + [L]

KA + [L]
− lnC

)
so the free energy can be separated in a part fm that only depends on the

methylation and a part fL that only depends on the ligand concentration. Here
KI and KA are the dissociation constants1 of the ligand for the inactive and
active state, respectively, and C = KI

KA
� 1. In practice, we apply ligand

concentrations which are too small to occupy active receptors but large enough
to occupy all inactive receptors, so KI � [L] � KA. The free energy then
simpli�es to

1The dissociation constant signi�es the concentration of ligand at which half of the receptors
are occupied by a ligand molecule.
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f([L],m) = N

(
fm(m) + ln

(
[L]

KI

))
which we can insert in equation 2 to obtain

a =

(
KIe

−fm(m)
)
N(

KIe−fm(m)
)
N + [L]N

According to the model, the kinase activity as a function of applied steps in
the ligand concentration [L] is thus given by a Hill curve:

a([L]) =
kH1

2

[L]H + kH1
2

(3)

which is a sigmoid curve that saturates to 1 for [L] small and to 0 when [L] big.
Here k 1

2
is the ligand concentration where the activity is at half its maximum.

The parameter H is called the Hill coe�cient; it signi�es the steepness of the
curve.

Dose-response curves are thus a way to probe the model, the parameters k 1
2

and H relate to the model in the following way:

k 1
2

=KIe
−fm(m)

H =N (4)

1.3 Förster Resonance Energy Transfer

To get information on the network level, we make use of a �uorescence technique
called Förster Resonance Energy Transfer (FRET). This technique enables us to
get quantitative data on the kinase activity as a function of the applied stimulus.
The technique was described thoroughly in[10].

1.3.1 Fluorescence

In biophysics, many experimental techniques make use of �uorescence. This
means that we excite the ground state of a suitable molecule, called a �uo-
rophore, with a photon. The excited state then �rst relaxes non-radiatively.
After this, it relaxes to the ground state by emitting a photon. This emitted
photon has a lower energy than the accepted one. The principle is illustrated
in �gure 3.

Several proteins have been discovered that can be used as �uorophores.
When one studies biological organisms, these �uorescent proteins can be en-
coded onto the DNA of the studied organism. A useful application is, to join
the �uorescent protein to another, biologically interesting one. One can then
follow the �uorescence to discover something about the protein that the �uo-
rophore is joined to.
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Figure 3: Illustration of energy transfer in generic �uorescence(left) and in
FRET (right).

1.3.2 Principle of FRET

The �uorescence technique that we use is called Förster Resonance Energy
Transfer (FRET). It exploits the fact that energy can be transferred non-
radiatively from one �uorophore to another. The way FRET works, is as follows.
One needs two suitable �uorescent proteins: a donor and an acceptor protein.
The donor D is excited at a higher photon energy than the acceptor A. When
both proteins are close enough together, energy may be transferred upon exci-
tation of D from D to A. One then sees �uorescence at a lower frequency than
without this process. The principle is illustrated in �gure 3.

The e�ciency of FRET ηFRET depends strongly on the distance r between
the two proteins, notably in the following way:

ηFRET (r) =
R6

r6 +R6

where R is a �xed parameter (the Förster radius), which depends on the par-
ticular proteins. It is typically about 5 nm.

From this equation we see, that FRET will only occur when the donor and
acceptor are very close together. We can exploit this property when we want to
look at chemical reactions, by ensuring that we see more FRET when a certain
reaction occurs.

We genetically engineer the bacteria in the following way. We co-express a
donor �uorescent protein with CheZ and an acceptor �uorophore with CheY.
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This means, that the cells will produce CheZ proteins with the donor protein
attached at one end of the amino acid sequence, and likewise for CheY. Obvi-
ously, we have to be careful when selecting the �uorescent proteins: we want
that the bacteria's enzymes remain functional.

When now CheZ and CheY form a complex, the donor and acceptor will
be close together. This induces FRET. Hence, we see FRET when CheZ is
dephosphorylating CheYP. But in equilibrium, this goes at the same rate as the
phosphorylation of CheY by CheA, and this is precisely the kinase activity.

1.3.3 FRET is proportional to kinase activity

When D0 is the intensity of our donor in the absence of FRET, and ∆D the
change in intensity, we can de�ne our FRET signal as

∆D

D0
= ηFRET

[CheY P · CheZ]

[CheZ]tot

where [CheY P ·CheZ] is the concentration of CheZ that forms a complex with
CheYP and [CheZ]totis the total concentration of CheZ in the cell, including
both bound and unbound molecules. As ηFRET is a constant that only depends
on the construct and [CheZ]tot is constant for each cell, we �nd

∆D

D0
∝ [CheY P · CheZ] ∝ a (5)

1.3.4 Ratio of red to green signal

In practice, it is rather hard to monitor the intensity of the donor protein.
The noise in the signal is very high and we also have the problem, that the
�uorophores are destroyed by the laser light (see next section). To reduce the
noise, we can look at the ratio of intensities in the acceptor and the donor
channel, in the following way.

De�ne r as the ratio of intensities from acceptor and donor, so r = A
D . When

we observe FRET, the acceptor and donor intensities change from their baseline
levels A0 and D0 by amounts ∆A and ∆D, respectively. As ∆A is positive when
∆D is negative (energy is transferred from donor to acceptor), and the amount
of transferred energy is constant for a given set-up, we can de�ne the positive
constant α = −∆A

∆D . De�ne r0 = A0

D0
. Now the change in the ratio will be

∆r = A0+∆A
D0+∆D − r0. We can now rewrite the FRET signal as

∆D

D0
= − ∆r

α+ r0 + ∆r
(6)

We therefore see that the FRET signal will be proportional to the change
in the ratio of donor and acceptor intensities, when α + r0 is much greater
than ∆r. This ratio is more robust than the change in donor intensity, because
some sources of noise will work equally on the donor and acceptor. Because the
FRET signal is proportional to the kinase activity, we now have a robust way
of measuring the kinase activity a.
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1.3.5 Application of FRET to E. coli chemotaxis

FRET techniques have been successfully used to probe E. coli 's chemotaxis
network on a population level. In �gure 4, taken from[10], we see an acquired
dose-response curve on a population of cells that did not express CheR and
CheB, so they did not adapt to their environment. The FRET pair used was
CFP/YFP.

Figure 4: A) Plot of the ratio between acceptor and donor signal as a function
of time, measured in a population of non-adapting cells. At the arrows, concen-
trations of the amino acid methylaspartate (MeAsp) were added and removed
after some time . B) Dose-response curve calculated from the ratio signal in A).

It is of course also possible to apply FRET to adapting cells. A way to
examine the adaptation dynamics is the following. When we give a saturating
amount of attractant to the bacteria, the kinase activity will drop to zero. Then
CheR will start methylating the receptor, but the system will remain saturated
for some time. At some time, the methylation will take the system out of
saturation, and the kinase activity will climb back to a new steady-state level.
This level does not need to be the same as the initial steady-state activity,
but for populations of E. coli in MeAsp, it comes quite close. Now we can
remove the attractant. This will induce a repellent response: the kinase activity
will increase rapidly. However, a concentration that saturates the attractant
response does not necessarily saturate the removal response. When we choose a
high enough concentration of attractant, the system will get saturated in both
cases. When the kinase activity is at its maximum, CheB will demethylate the
receptors and a will fall down again to the steady-state level. As the methylation
and demethylation is governed by di�erent enzymes, it is to be expected that
adaptation to attractant and repellent will be di�erent from one another. Indeed
this is the case: the bacteria adapt much faster to the removal response. On a
population level, the kinase activity during this kind of experiments looks like
what is shown in �gure 5.

13



Figure 5: Ratio of red to green intensities in a population experiment as a
function of time in seconds. Four di�erent concentrations of MeAsp were added
and subsequently removed, namely 0.01, 0.1, 0.5 and 1 mM.
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2 Methods

Now I will go on to describe our recent work on the application of FRET at
a single-cell level. Firstly, I will discuss our work on the experimental set-up.
Then I will describe what we have measured with this assay.

To apply single-cell FRET, one works with very small numbers. As noted,
a typical E. coli cell contains only several thousand copies of CheY and CheZ.
This means that each cell has only this small amount of �uorescent proteins. To
get enough signal for each cell, we make use of a very sensitive camera, capable
of measuring almost single photons. Additionally, we use laser light with high
excitation intensity. Problematically, blue light has a toxic e�ect on bacteria[11].
This problem has induced us to use YFP-mRFP as our FRET pair, instead of
CFP-YFP which is used for population-FRET[1]. Because of this, we can use
laser light with a higher wavelength. This reduces the destructive e�ects of the
laser.

We ended up using a 515 nm laser. It had a total illumination power of 15
mW. The bundle had a Gaussian shape, the full width at half maximum was 40
microns. Therefore, the maximal intensity was 5.5·108 W m-2.

2.1 Photobleaching and baseline correction

When we acquire FRET measurements on single cells, we observe a signi�cant
drift in the signal, as seen in �gure 7. This drift makes it hard to compare the
kinase activities over an extended period of time. We therefore want to �nd a
way to correct for this drift and �nd a constant baseline against which we can
compare the responses.

If we look at the measured light intensities, we see that these fall o�, approx-
imately exponentially. The way we understand this, is the following. When a
�uorescent protein molecule is being excited by light, it enters an excited state.
The chemistry of this excited state may very well be di�erent than that of the
ground state. For instance, the �uorophore may be completely ionized by the
laser light. Hence, when a �uorophore is being excited, there is a chance that
it degrades by some chemical reaction. We call this e�ect photobleaching. This
e�ect is not completely understood. Furthermore, it varies between di�erent
�uorophores.

When at any time there is a constant probability that a �uorophore will
bleach, we are dealing with a Poisson process. This would mean that the signal
would decrease exponentially over the measurement length. As there might be
several of these processes going on at the same time, the picture gets more com-
plicated. In practice, the decreasing signal is well �tted by a double exponential
function If (t) = A1 exp(−λ1t) +A2 exp(−λ2t) +B. An example can be seen in
�gure 6.
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Figure 6: Plots showing the measured intensities in photon units and the �tted
baseline for both light channels in one cell.

2.1.1 Auto�uorescence

One thing to be careful of, is the �uorescence that we may observe due to
�uorescence of proteins di�erent from our FRET pair, that may be around in
the cell. When we take the ratio of red to green light, we assume that all the
light we observe is actually coming from our FRET pair. It appears that we
may neglect this for the following reason.

In a strain of cells that did not express �uorophores, we measured the aut-
o�uorescence directly. We found this to be only of the order of 1% of the signal
observed in cells with �uorophores. Additionally, we could still see FRET re-
sponses in the cells that did express the FRET pair, even when the �uorophores
were bleached until the point where the intensities were approximately constant.
Hence, we neglect the e�ect of auto�uorescence.

2.1.2 Fitting and rescaling

Our scheme to deal with photobleaching is the following. We �t a double expo-
nential function If (t) to both the red and the green intensity2. We then take
the di�erence of the measured values for the intensity Im and If at all time
points t. Then we rescale everything by adding up If (0) to all data points. The
formula for the rescaled intensity Ir becomes

Ir(t) = Im(t)− If (t) + If (0)

This procedure ensures that the baseline ratio is constant for all cells. In �gure 7,
we see the result of this rescaling procedure.

2We use only those data points for which the chemical stimulus was the same, as de�ned
by our speci�c protocol for that day.
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Figure 7: Time series of the ratio of red to green light for the same cell as used for
�gure 6. In blue we see the original ratio, in red we have the bleaching-corrected
one.

2.2 Phototoxicity

As we have seen, laser light has the ability to induce chemical reactions that
involve proteins (such as the �uorophores that we use). When these chemical
reactions happen inside the cells, we may be disturbing the chemotaxis network.
In this section, I will explain the experiment that we have done to characterise
how much our measurement strategy perturbs the system.

We have studied this issue, by measuring the kinase activity at the same
chemical stimulus but with various laser powers. We performed two di�erent
experiments. In the �rst, we changed the intensity of the excitation light di-
rectly. In the second, we varied the length of the time interval between the laser
pulses.

Because we need to decrease the laser power, our signal quality decreases.
Therefore we cannot measure the responses of single cells. These measurements
were thus performed on populations of cells.

2.2.1 In�uence of laser power

The �rst way that we changed the laser intensity was by putting di�erent neutral
density �lters (ND's) in the light path, between the laser and the cells. As our
reference, we used two �lters, which let through only 9.2% of the laser light.
This was the lowest laser power used. The highest power we investigated was
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our usual one (15 mW of total illumination power). We also checked a medium
power, for which we used only one of the two �lters. This transmitted 25% of
the light. We calibrated the �lters using a photo-diode and oscilloscope, which
lead to the stated numbers.

An important feature of non-adapting cells is the following. Their steady-
state kinase activity in bu�er is close to 1. This means that it is not possible
to measure repellent responses when the cells are exposed to MotM only, as a
repellent response would mean an increase in kinase activity. Therefore, we used
a baseline stimulus of 0.05 mM L-serine in MotM. This way, both attractant
and repellent responses could be seen.

To look at the range of possible kinase activities, we gave two stimuli: �rst
we removed the 0.05 mM L-serine, so the stimulus was just MotM. Then we
applied a saturating amount of L-serine: 0.5 mM. We repeated this procedure
�ve times: �rst for low power, then for high, then low, then medium and then
low power again. The acquired time series is shown in �gure 8. This data was
acquired on the same population of cells, only changing the �lters in between.
The signal is not corrected for bleaching.

At the �rst run at low power, we see that the kinase activity �rst goes up
(to 1), this is the response to the removal of the 0.05 mM. Then it drops down
(to 0) when we apply the saturating concentration of 0.5 mM. The other runs
show an extra drop in the kinase activity before the removal response. This is
caused by the small amount of saturating stimulus which was still in the tubing.

An interesting feature of this test is the following. We see that the baseline
ratio depends on the applied laser power. This means that the amount of FRET
we observe does not depend linearly on the intensity of the light that we apply.
There are several contributions, among others the background varies with the
intensity and we are dealing with leakage from the green to the red channel. It
is thus di�cult to relate the ratio as measured at di�erent powers directly to
changes in the kinase activity. For each laser power separately, we can look at
how the kinase activity changes due to chemical stimuli.

We can qualitatively see from the picture, that the response of the cells to
the chemical stimulus does not appear to vary signi�cantly when we change the
laser power. This has been made quantitative in the following way. For each
laser power, we did the following. To correct the ratio for bleaching, we �tted
a straight line to the ratio, using the points where 0.05 mM serine was applied.
We then calculated the di�erence from this baseline for each point. We took
the average of this di�erence both in bu�er and in saturating concentration.
The result of this is plotted in �gure 9a. As can be seen, the overall size of
the responses is indeed very similar. Application of high laser power seems to
permanently lower the amplitude of the response somewhat, but this e�ect is
not so large as to invalidate the usage of this high power.

Furthermore, we investigated if the laser power a�ects the chemotaxis system
as follows. We calculated the fraction ∆r+

∆r−
, where ∆r+ is the change in ratio

upon going from 0.05 mM to 0.5 mM serine, and ∆r− is the change in ratio
when removing the 0.05 mM stimulus. As can be seen in �gure 9b, the system
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Figure 8: Plot of the FRET ratio in the experiment where we varied the laser
power directly. No background correction was applied. The large discontinuities
arise when we switch between the di�erent laser powers. The smaller features
are caused by the cellular response to chemical stimuli.
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might be a�ected by the high laser power, as this fraction is higher with higher
laser power. However, it is highly non-linear, as the aberration is far greater
with medium power than with high power. Also, the high power does not seem
to have a permanent harmful e�ect on the cells, as the calculated fraction at
low power restores to its original value after application of high power.

From the previous discussion, we conclude that it is safe to use this high a
laser power.
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Figure 9: a) Plot of the changes in the ratio for the given stimuli at each laser
power, chronologically ordered. In blue we see the di�erence between the ratio
in 0.05 mM and 0.5 mM serine, which we call ∆r+. In red we see the di�erence
between the ratio in MotM and in 0.5 mM serine, which we call ∆r+ + ∆r−.
b) This plot shows the ratio between ∆r− and ∆r+ at each laser power, in
chronological order. For these plots, the uncertainty in the data points, as
calculated by taking the standard error of the mean, was smaller than the point
size.

2.2.2 Timing strategy

When we want to investigate processes that occur on di�erent time scales, it
would be useful to be able to vary the rate at which we acquire data. In this
way, we could get more data in a shorter window of time, which would increase
the signal-to-noise ratio. This would for instance be useful when we look at the
adaptations after addition and removal of attractant.

However, the increased laser exposure might disturb the network. To test
this, we performed the following experiment. We used adapting cells, and put
them in bu�er. Because they adapt, their steady-state kinase activity is close to
neither end of the scale, so we are able to see both an attractant and a repellent
response. We now exposed the cells to varying sampling frequencies. As a
baseline, we took a picture every 10 seconds. We alternated this with higher
frame rates of 0.5, 1.5, 2.5 and 5 seconds per frame consecutively.

To analyse the data, we did the following. Firstly, we noted that the e�ect
observed in single cells was of the order of the noise. We therefore decided
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to look at the population average. The bleaching correction was done in a
di�erent way than for single cells. Namely, we directly �tted a function of the
form A−B1 exp(−λ1x)−B2 exp(−λ2x) to the ratio of red to green intensities.
Also, we noted that at the end of the measurement, the ratio deviates from
this, which we can not explain. We therefore only �tted to the �rst four periods
where the time per frame was 10 s. The result of this can be see in �gure 10.
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Figure 10: Plot of the FRET ratio in the experiment where we varied the
acquisition rate. No chemical stimuli were applied.

We now note, that the ratio changes signi�cantly when the sampling fre-
quency is varied. We therefore conclude that it is not a good idea to use a tim-
ing strategy where the sampling rate changes during the measurement. There
seems to be not much di�erence between the timing that we normally use (5 s)
and the 10 second one. This is consistent with what we found in the previous
section, where we saw that there is no need to lower the laser power. From
this experiment we can conclude that it is not wise to increase the laser power,
certainly not by more than a factor of 2.
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3 Results

In this section, I will describe what we have done to characterize the cell-to-cell
variability in E. coli 's chemotaxis network.

3.1 Dose-responses of non-adapting cells

Our �rst application of the single-cell FRET technique was in determining the
response of individual E. coli cells to serine. This was done in a non-adapting
strain. This means, that the cells did not express CheR and CheB. Therefore,
the methylation of the kinase/receptor is assumed to be constant. Because the
cells do not adapt to their environment, we can give multiple consecutive stimuli
without worry that the system components will change.

We gave the cells di�erent step stimuli, from very small to saturating con-
centrations of L-serine. Before each stimulus, we had the cells in MotM. The
cells were exposed to each stimulus for one minute, after which the stimulus was
removed. After another minute, the new stimulus was applied. In this way, we
get a baseline value for the kinase activity as the value of a when the cells are
emerged in MotM. This value is assumed to be close to 1 for this strain. We
also get a value for a for each concentration of L-serine that we apply.

The measurements were split into two parts. During the �rst half of the
measurement, we increased the stimulus size from zero to saturation. This we
call the forward protocol. After this we decreased the size of the step stimuli,
we call this the reverse protocol.

3.1.1 Data for a single cell

When the cells are exposed to the protocol as noted above, their kinase activities
will indeed change, as evidenced by the ratio of the light intensities measured in
the green and in the red channel. According to equations 5 and 6, the change
in the ratio is proportional to the kinase activity. For each cell, we rescale to
a ∈ [0, 1], where a = 1 is de�ned as r0, the ratio in MotM, and a = 0 as the ratio
in a saturating stimulus. The di�erence in FRET between a = 0 and a = 1 we
call F , this is the maximal stimulus size for a given cell.

Now we can �t the Hill function 3 to the data. This leads to parameters k 1
2

and H for each cell.
This process gives us results like the one illustrated in �gure 11.

3.1.2 Selection criteria

Now we would like to look at the distribution of the parameters that signify the
response, which are k 1

2
and H. However, the signal quality varies greatly from

cell to cell. When we look at the distribution, we therefore investigate also how
strict we should be in selecting the data.

We �rst note that with our experimental strategy, it is only possible to �nd
values for k 1

2
that are somewhere between roughly 0.01 and 0.1 mM. This is due
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Figure 11: a) Typical ratio signal for one non-adapting cell in blue. Also in-
dicated is the applied serine concentration, ranging from 0 to 0.20 mM. b)
Dose-response curve for this cell. The blue points are the data points for the
forward protocol, the purple are for the removal protocol (see section 3.1.5).
The red curve is the �tted Hill function. This �t gives k 1

2
= 0.049± 0.003 mM,

H = 2.5± 0.4. The maximal FRET response is F = 0.026± 0.002.

to the fact that we have used a saturating concentration of 0.2 mM on day 1
and of 0.5 mM on day 2. In both cases, the next greatest concentration was 0.08
mM. It is therefore not possible to see a dose response curve with the halfway
point this high, as there are not enough data points in this region. The same
kind of argument applies to the low side of the curve: our smallest stimulus was
0.01mM. If we do �nd such a value for k 1

2
, we regard this as an artefact. For

instance, the cell may not have responded at all. Then the analysis software tries
to �t a Hill curve to plain noise, which might result in any nonsense. Therefore,
we only look at those cells for which the �tted value of k 1

2
lies between 0.01 and

0.1 mM.
It is also not possible to �nd too large values for H, as the resolution in [L] is

only 0.01 mM. When we take the derivative of formula 3 at [L] = k 1
2
, we �nd it

to be − H
4k 1

2

. As we cannot observe derivatives of a ∈ [0, 1] larger than 1
0.01mM ,

we cannot �nd reliable �ts if H > 400k 1
2
/mM , so we take this as an additional

criterion.
We have also investigated if the distributions depend on the quality of the

�ts. To do this, we selected cells for which the relative error in the �t parameters
met certain criteria. The mean and standard deviation of the distribution did
not depend on the strictness of our criteria. Because of this, we decided to use
all cells for which the relative error in the �t parameters was less than 1.

3.1.3 Dose-response parameters

Now we are ready to investigate how the cell-to-cell variation in the DRC's
looks like. When we select our cells as described in the previous section, we
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end up with 120 bacteria from four di�erent batches, two for each measurement
day. We �tted Hill curves to the data of the forward protocol. This resulted in
distributions for k 1

2
, H and F as in �gures 12a, 12b and 12c. When determining

k 1
2
and H, a subtlety arises due to the usage of only the forward protocol. This

is described in paragraph 3.1.5. It forces us to dismiss 9 additional cells, hence
we have only data for 111 bacteria.
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Figure 12: a)-c) Histograms showing the probability density of dose-response
parameters over 111 non-adapting cells. a) for k 1

2
(mM). b) for H. c) for F .

d) Plot showing the amount of correlation between k 1
2
(mM) and H in 111

non-adapting cells.

Now that we have found distributions of parameters, we might investigate
if there is any correlation between them, especially for the response parameters
k 1

2
and H. This was done in �gure 12d. We �nd a correlation coe�cient of

ρ = −0.19, which is signi�cant at a signi�cance level of 0.05. However, there is
an experimental explanation for this negative correlation. We see that there are
no combinations (k 1

2
, H) where they are both large. This is due to the fact, that

we did not take any measurements at serine concentrations higher than 0.08 mM
(apart from the saturation). If a cell would have a high Hill coe�cient combined
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with a high k 1
2
, that would mean that almost all measured kinase activities for

this cell would be close to 1 except for the saturating one. This cannot be well
�tted. Because of this, we conclude that we do not see enough evidence to say
that the correlation between k 1

2
and H is a property of the system.

3.1.4 Simulated variation

One can wonder if the observed variation in the dose-response parameters is
really due to intercellular variability, or that our �tting protocol might induce
variations. To test this, we �rst need to know the uncertainty in our data
points. For the uncertainty as determined by standard error-propagation (see
appendix A.1), we calculated the mean of the measured uncertainties in the
kinase activity for each cell. Then we made a histogram of this, which can be
seen in �gure 13a.
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Figure 13: Histograms of, for each cell, the mean of a) the propagated errors in
the kinase activity. b) the deviation from the �t.

As this might not re�ect the actual uncertainty in the �tting, for each data
point we calculated the di�erence between the measured value and the �t. Of
this di�erence we took the mean for each cell. A histogram of the result of this
is shown in �gure 13b. We see that for about half of the cells, the kinase activity
is determined within 10% on average.

Now we performed the following simulation. We generated kinase activity
data sets from a Hill curve with k 1

2
= 0.049 and H = 3.9, at the concentrations

we used for the measurement, given �xed values of the standard deviation σ
in a. We looked at σ = 0.1 and σ = 0.2. We then �tted Hill curves like we
did for the measured data. Here we selected according to the same criteria as
for the measured data. This gives histograms of the DRC parameters like in
�gure 14. In table 1 we have summarised the mean and standard deviation of
these histograms. We simulated 1000 cells.

As we can see, the broadness of the simulated histogram for H is of compara-
ble magnitude as the broadness of the measured histogram. The same cannot be
said for the k 1

2
-histogram: even at a tolerant σ = 0.2, the simulated histogram
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is markedly narrower than the measured one.
We also notice that the average Hill coe�cient found is much bigger than

the speci�ed H = 3.9. This is due to the fact that a negative Hill coe�cient is
non-physical, so the distribution is tailed to the right.
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Figure 14: Simulated probability density functions for H (left) and k 1
2
(right),

for an uncertainty σ in the measurements of 0.1 (blue) and 0.2 (red).

< H > ±σH < k 1
2
> ±σk 1

2

(mM)

σ = 0.1 4.1± 1.1 0.049± 0.003
σ = 0.2 4.8± 2.9 0.050± 0.007

Table 1: Overview of the found dose-response parameters in the simulation from
�gure 14.

To get more insight in how the broadness of the found histograms depends
on σ, we now repeated the simulation for di�erent values of σ. The result of this
is shown in �gure 15. We see that the wideness of the simulated distributions
does not increase too much when σ > 0.2. We do see that the �t procedure

26



begins to fail sometimes when σ = 0.15, and that we need to apply our selection
criteria quite often for σ > 0.2.
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Figure 15: Left: standard deviation of simulated probability density for H as a
function of σ. Middle: standard deviation of simulated probability density for
k 1

2
as a function of σ. Right: percentage of simulated data sets that was �ltered

out by our selection criteria.

From this analysis we conclude that the variation that we observe in the Hill
coe�cient can be mostly attributed to the �tting procedure, as the standard
deviations of the measured and the simulated distributions are comparable.
However, the variability in k 1

2
in our data is much larger than the variability in

the simulation. This leads us to conclude that the variability that we observe
in this parameter is really due to cell-to-cell heterogeneity.

3.1.5 Increasing and decreasing stimulus size

To check whether our stimuli change the cells in some way, we split up the
experiment in a forward and a reverse protocol. During the forward protocol,
we kept increasing the stimulus size until saturation. After this, we applied the
same stimuli in reverse order until they were decreased to the starting point.

On the �rst day of experimenting, we used 0.2 mM of L-serine as our maxi-
mum stimulus. As a preliminary analysis showed that this concentration might
be slightly too low to saturate all cells, we used a maximum [Ser] of 0.5 mM on
the second day.

When we compare the kinase activities in the forward protocol with those in
the reverse protocol, we see that a appears to be higher in the reverse protocol.
This was especially pronounced in the data with [Ser]max = 0.5 mM. To check
this, we �tted a Hill curve to both the forward and reverse data sets individually.
This resulted in the following: the average k 1

2
of the forward protocol is lower

than that of the reverse protocol. This agrees with our �ndings about the ratios
between kinase activities. In the Hill coe�cient we do not see much di�erence.
However, an important point now rises: when we �t a Hill curve to both data
sets combined, we will �nd a k 1

2
that lies somewhere in the middle, but the Hill

coe�cient will be lower. This is illustrated in �gure 16.
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Hence, when we analysed the distributions of dose-response parameters in
section 3.1.3, we did not consider the reverse protocol.
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Figure 16: Data and �ts for the forward and reverse protocols. In blue we see
the forward protocol, in red the reverse. The purple �t uses all data points.

data used for �t forward reverse both

k 1
2
(mM) 0.041± 0.003 0.063± 0.005 0.053± 0.004

H 6.2± 2.3 5.4± 2.2 4.0± 1.4

Figure 17: Dose-response parameters for this cell with �ts using only data from
the forward protocol, only from the reverse protocol, and both.

We have also used the two protocols to analyse how our signal quality evolves
over time. For each stimulus size, we did the following. We calculated the signal-
to-noise ratio STNR = a

σa
for each cell. We then compared the STNR for the

forward and reverse protocol by taking the ratio STNR1

STNR2
where STNR1 is the

signal-to-noise ratio as measured in the forward protocol for a given stimulus
and STNR2 that in the reverse protocol. We now calculated the distributions
of this ratio. The means and standard deviations of those distributions are
illustrated in �gure 18.

This measurement was done twice, with slightly di�erent conditions. On
day 1 the highest serine concentration that we applied was 0.2 mM, on day 2 it
was 0.5 mM. The other concentrations were identical. Furthermore, on day 1
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the time between the forward and reverse protocols was 2 minutes longer than
on day 2, because we applied the saturating concentration for a longer time.

When we look at the data, we notice three things. Firstly, the ratio of the
signal-to-noise ratios is pretty constant throughout the measurement. Note that
the time between the applications of the smallest stimulus was much longer than
the time between the applications of the largest non-saturating stimulus. This
indicates that our signal quality remains approximately constant over time.
Because the intensity signals are much larger than zero throughout the mea-
surement, the ratio of red to green intensity remains well-determined. This is
encouraging if we want to extend the measurements to longer durations.

Secondly, we see that the standard deviation is larger for higher concen-
trations. This is easily explained: when the concentration is high, the kinase
activity approaches zero for many cells. Then the signal-to-noise ratio STNR2

goes to zero, hence the ratio of STNR's diverges.
Finally, we see that the ratio of signal-to-noise ratios is smaller than 1. This

e�ect is strongest in the data of the second day. What this means, is that
the signal-to-noise ratio is larger for the reverse protocol. However, we did not
change the acquisition method with the protocol, so the only variable in time is
photobleaching. But decreasing intensities mean more �uctuations in the FRET
ratio, so we would expect that photobleaching decreases the signal quality. As
there is no apparent experimental reason why the signal quality is higher in
the reverse protocol, we suspect that it might be a property of the chemotaxis
network.

3.1.6 Discussion

From the found distribution for k 1
2
, it is clear that there is variability between

cells. We also discovered that the k 1
2
may be changing during the measure-

ment. As was stated in equations 4, k 1
2
depends on two things: the dissociation

constant KI of ligand for inactive receptors and the free energy fm(m) due to
the methylation state of the receptor. As we are working with cells that do
not express CheR and CheB, the methylation level of the receptors is assumed
to be constant, for all receptors are created in the same way and there are no
enzymes to methylate or demethylate. This makes us think that the value of
KI might be di�erent from cell to cell. Maybe it can even change when stimuli
are applied.

As was shown in a recent paper[2], application of a stimulus can alter the
way in which the receptors are clustered. We can imagine that this can have
an in�uence on KI , as the receptors will change shape due to their interactions.
When the shape of a receptor changes, its a�nity for ligand also changes.

We have also seen that our signal quality does not change in time, but it
might increase after applying large stimuli. In [3], we can read that the signalling
network causes non-stimulated cells to exhibit behavioural �uctuations on much
larger time scales than statistically expected. This indicates that a large part
of the noise in the measured kinase activity might actually be due to noise in
the cells, as opposed to noise from the measurement apparatus. If the signalling
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Figure 18: Plot of the ratio of the signal-to-noise ratios measured at di�erent
serine concentrations in the forward and reverse protocol. The blue squares
give the data for the �rst measurement day, the red squares for the second. The
non-saturating concentrations that we used did not vary between the days. On
day 1 we used a highest concentration of 0.2 mM L-serine, on day 2 of 0.5 mM.
Error bars signify the standard deviation of the measured distributions of the
ratio of signal-to-noise ratios.
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network is disturbed by the application of a stimulus, this can also in�uence the
temporal noise in the system. The changing signal quality might therefore be
explained by the same e�ect as the variability in k 1

2
.

3.2 Adapting cells

Now we know that we can perform FRET measurements on a single-cell level
to get the distributions of response parameters, we would like to apply this
technique to cells that are closer to wild-type: adapting cells. These cells do
express the proteins CheR and CheB. This means, that they will adapt to their
environment by changing the methylation state of the receptors. An important
feature of the system is, that a typical E. coli cell has only a couple of hundreds
of copies of CheR and CheB (as opposed to several thousands for CheY and
CheZ). This means, that we expect a lot of variability in the adaptation system
between cells.

We would like to do get probability distributions of adaptation parameters
on a single-cell level. The �rst parameter that we are interested in is a0, the
value of the steady-state kinase activity. Also interesting are τAdd and τRem,
the time it takes the kinase activity to recover to half its original value after the
addition or removal of stimulus, respectively.

A problem with the single-cell FRET technique is, that we cannot look at the
data in real-time. Hence, we want to �nd a good protocol using the knowledge of
adapting cells. We have performed the experiment as explained in section 1.3.5
with di�erent amounts of attractant, to decide on a good strategy: the used
concentration must be large enough to saturate both responses, but as small as
possible to minimize the time we have to wait before the attractant adaptation
begins. Namely, this time in which the system is at saturation is a drain on our
photon budget. We have found that the removal response saturates at a MeAsp
concentration of about 0.5 mM, so we decided to use this value. Furthermore,
with this protocol, we have found a population average for a0 of 0.305, which
agrees with what is in the literature[9] for a slightly di�erent strain. For graphs
of the results, see �gure 19.

The experiments on adapting cells were done on one day, on two di�erent
cover slips with cells from the same culture.

3.2.1 Overview of the data

When we use this protocol on the single-cell, we get results as in �gure 20. As
the raw data is very noisy, we take a moving average of it to get insight in
the data. As we can see, we are able to acquire data for single cells that show
adaptation to both addition and removal of saturating stimulus.

An interesting feature can be seen: the adaptation seems to occur on a
quicker time scale than observed in a population. Single cells switch rather
quickly from a = 0 to a = a0, but the length of time that the bacterium stays
at a = 0 varies from cell to cell. This causes the population adaptation time
scale to be more spread out.
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(a) (b)

Figure 19: a) Plot of the total FRET response of a population of adapting cells,
as a function of the used concentration of MeAsp. b) Plot of the data acquired
to get the mean steady-state kinase activity.

In the following sections I will explain what we have done to extract the
steady-state kinase activity and the adaptation time scales from this data.

3.2.2 Steady-state kinase activity

In order to get the steady-state kinase activity for each cell, we need two vari-
ables: the maximal change in the ratio and the ratio at steady-state. To get the
latter, we take the mean of the red-to-green ratio before addition of stimulus
and of that well after the adaptation to the removal of the stimulus. This yields
the steady-state ratior0. For ∆rmax, the maximal change in ratio, we need the
ratio where a = 0, which is attained directly after addition of attractant, and
the ratio where a = 1, which is attained directly after the removal of attrac-
tant (provided that the attractant saturates both responses, which we ensured
it did). We took the mean of frames 6-20 after addition to get the ratio rAdd
for a = 0 and of frames 3-7 after removal to get the ratio rRem for a = 1.

Now we �nd ∆rmax = rRem − rAdd and a0 = r0−rAdd

∆rmax
.

To remove non-physical results, we selected only those cells with −0.1 <
a0 < 1.1, 98 cells out of 121 detected ones ful�lled this requirement. We included
values slightly below 0 and above 1 as some noise may induce such a seemingly
impossible result. We then found a distribution of a0 as in �gure 21a.

Like we did for the non-adapting cells, we also determined the maximal
FRET response F = ∆rmax

r0+α , the distribution that we found is shown in �g-
ure 21b. The general shape is similar to the result on non-adapting cells. We
do see that the average FRET response in the adapting cells is only about half
of what we saw for the non-adapting cells.

We also investigated possible correlations between a0 and F . As can be seen
in �gure 22a, we �nd a negative correlation with a linear correlation coe�cient
of ρ = −0.27. As we had 98 cells, this is signi�cant at a signi�cance level of 0.05.
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Figure 20: Graphs of the measured ratio for di�erent cells that �rst adapt to
an attractant addition and then to the subsequent removal of that attractant.
The blue points give the raw data. The purple line is a moving average of the
data, using a window of 7 points. Also indicated are the values for r0, rAdd and
rRem in black, green and red, respectively.
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A possible experimental explanation for this might be the following. When a
cell has a very small FRET signal, the noise in the data is much larger than
the response to stimulus. We can thus determine a0 less precisely. This means
that, for lower F , the distribution for a0 will get broader. Because the mean
of a0 is closer to 0 than to 1, this e�ect will be more pronounced towards the
high end of the distribution as we throw away negative values for a0. We could
therefore try to select only cells with a high enough FRET response, however
this has the drawback that we might throw away too many cells.
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Figure 21: Histograms showing the probability density of a) the steady-state
kinase activity of 98 adapting cells. b) the maximal FRET response of 98
adapting cells. c) the addition adaptation time scale of 39 adapting cells. 38
Cells gave Indeterminate, 21 In�nity. d) the removal adaptation time scale of
74 adapting cells. 14 Cells gave Indeterminate, 9 In�nity.

3.2.3 Recovery time

Another interesting parameter of the adaptation, is the time which it takes for
a given cell to reach its steady-state. For the addition recovery, we would like
to know when the kinase activity recovers to a = 1

2a0, and for the removal
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Figure 22: Plots showing the amount of correlation between a) a0 and F in 98
adapting cells. b) τAdd(s) and τRem(s) in 30 adapting cells.

recovery likewise to a = 1
2 + 1

2a0. To get this, we �rst applied a moving average
to the data as otherwise it is too noisy. If we found no crossings of the values
stated, we concluded that the cell had not adapted yet. We associate to this a
recovery time of In�nity. If we found multiple crossings, we checked �rst if the
crossings were close together. If they are, we take the mean of the crossings, if
not, we conclude that either the data is too noisy or we are dealing with bistable
behaviour. In the latter two cases, we do not further consider the data and call
the recovery time Indeterminate. We only considered cells for which a0 could
be determined.

Typically, the addition adaptation takes a longer time and is noisier, because,
as we have seen, the steady-state kinase activity is usually below 1

2 . Therefore,
we analysed both adaptations in a di�erent way. To �nd the addition adaptation
τAdd, we took a moving average with a window of 41 data points. For the removal
adaptation time τRem, we took 5 data points. Also, we took the mean of the
crossings if they were all within 10 frames for the addition and within 4 frames
for the removal. Note here that 1 frame corresponds to 5 seconds. The total
length in which we checked the addition adaptation was 1200 seconds, for the
removal adaptation this was 120 s.

The distribution that we found for the addition response can be found in
�gure 21c. We found 39 cells of which we could determine τAdd, 21 had not
adapted before we removed the attractant and for 38 cells, it was not possible
to �nd a value for τAdd in the manner described. A similar distribution was
found for τRem, see �gure 21d. We succeeded in �nding τRem for 74 cells. Now
we had 9 cells which had not yet adapted and 14 cells for which we could not
determine the removal adaptation time.

Because CheR and CheB are expressed from the same operon, we expect that
there is a positive correlation between the concentrations of CheR and CheB
in the cell. As more CheR means more methylation so a faster adaptation to
addition of attractant, and more CheB means more demethylation so a faster
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adaptation to removal of attractant, we expect a positive correlation between
τAdd and τRem. To check this hypothesis, we made a scatter plot. The result of
this is shown in �gure 22b. Surprisingly, we do not see a signi�cant correlation
and what we see, is of opposite sign. We could determine both τAdd and τRem
for only 30 cells. To be more con�dent on this issue, we thus need more cells
for which both recovery times can be determined.
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4 Conclusion

This research has shown that one can use Förster Resonance Energy Transfer
to probe the chemotaxis network of Escherichia coli at a single-cell level. We
have developed methods to deal with photobleaching and characterized the toxic
e�ect of the laser light.

We have applied FRET �rst to non-adapting cells. We have shown that
there is a signi�cant intercellular variability: k 1

2
di�ers from one cell to another.

We could not establish signi�cant variability in the Hill coe�cient. Also, we
could not say unequivocally if these parameters are correlated.

Secondly, we have used FRET to characterize the adaptation characteristics
of adapting cells. As we have shown that we can use FRET on adapting cells, a
natural continuation of this research would be to acquire dose-response curves
also in adapting cells, and look at how the dose-response parameters correlate
with the adaptation parameters.

Now that we see variability between single cells, we can ask if we can see this
variability also in the cell structure. In our group, François Anquez, Johannes
Keegstra and Jacopo Solari are working on techniques with which they can use
single-molecule imaging to probe the cellular interior. It will be very interesting
to combine the single-cell FRET techniques with their work. This will allow us
to correlate the network parameters with information about the physiology of
the cells, such as the distribution of receptor clusters.

Another interesting question is how to relate molecular noise to temporal
variability on a single-cell level. As previously mentioned, the signalling network
has been shown to in�uence temporal variability on a behavioural level. It would
be interesting to see single-cell FRET applied to this: we can monitor the state
of the chemotaxis network during the stochastic processes inside the cell.
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A Appendix

A.1 Error propagation

For the kinase activity a at some stimulus, a = F
Fmax

where F is the FRET signal
and Fmax is the maximum FRET response. Let σx denote the uncertainty in
variable x. Then σa = σF

Fmax
.

Now we know F = ∆r
α+r0+∆r where r0 is the FRET ratio at saturating

stimulus and ∆r is the di�erence between the measured FRET ratio and r0. α
is a constant, for which we use α = 0.3. Then

σF =

√(
∂F

∂(∆r)
σ∆r

)2

+

(
∂F

∂r0
σr0

)2

=

√(
α+ r0 + ∆r −∆r

(α+ r0 + ∆r)2
σ∆r

)2

+

(
−∆r

(α+ r0 + ∆r)2
σr0

)2

=
1

(α+ r0 + ∆r)2

√
(α+ r0)2σ2

∆r + (∆r)2σ2
r0

Here ∆r = r − r0 for r the measured ratio, so σ∆r =
√
σ2
r + σ2

r0 .

A.2 Strains and plasmids

Three di�erent strains of Escherichia coli were used in this experiment.

� For measuring the background �uorescence, we used strain TSS682, which
is HCB33, wild-type for chemotaxis, transformed with an empty pTRC99
(Amp resistance/IPTG promotor) and pBAD33 (Cam/Arabinose) plas-
mids.

� As our adapting cells, we used TSS966 [RB+], a derivative of VS104, which
is wildtype with CheY and CheZ deleted. This strain was transformed
with a plasmid with a FRET pair expressed in tandem (CheY-mRFP1 /
CheZ-YFP on a pTRC99A plasmid) and an empty pBAD33.

� Our non-adapting cells were TSS919 [RB-] is VS149, which is wildtype
with CheB, CheR, CheY and CheZ deleted. This strain was transformed
with the same plasmids as TSS966.

A.3 Protocols

A.3.1 Growing cells

Stocks of the cells are kept in a -80 °C freezer. From these stocks, we make
overnight cultures. These consist of the cells, with appropriate antibiotics to
which our cells are resistant: 100 µg/ml ampicilline (Amp) and 34 µg/ml chlo-
ramphenicol (Cam), dissolved in TB. This culture is left to saturate overnight
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for about 12-16 hours at a temperature of 30 °C. From the overnight culture we
then make a day culture, which is almost the same as the overnight culture, but
in addition also contains an inducer, IPTG at a concentration of 10 µM. The
day culture is left in an incubator to grow for 4-5 hours at 33.5 °C. Near the end
of growth, we measure the optical density (OD) in a spectroscope at 600 nm.
When the OD is between 0.45 and 0.47, we take the cells out of the incubator.

Now the cells are spun down in a centrifuge for 5 minutes at 5000 rpm.
We then throw away the TB medium and dissolve the cells in MotM at the
same density as in the TB. We centrifuge three times in total, in order to fully
replenish the medium. This stops the growth of the cells. When changing the
medium, we must be careful to dissolve all of the cells in the new medium.
However, no excessive �ow, such as pipetting inside, should be used as this
destroys the �agella.

Now the cells are put in a 4 °C fridge and left for at least 30 minutes. This
is done to get the protein expression levels constant. The bacteria are left in
the fridge for at most 5 hours. During this time, we take cells from this solution
to measure on. The density is still the same: the cells are dissolved in 10 ml of
MotM.

A.3.2 Preparing cover slips

We prepare our samples in the following way. First, we clean both sides of a
glass cover slip with pure ethanol and optical paper. We then apply poly-L-
lysine on one side for 15-20 minutes. After this, we clean three times with water
and three times with MotM. We leave a droplet of MotM resting on the cover
slip.

The cover slip will be placed in a �ow cell (design: Howard Berg), but not
before this is well cleaned with ethanol, water and MotM. It is important to
keep the �ow cell free of air bubbles. To start without bubbles, we can �ow
ethanol through the �ow cell under high pressure, using a syringe, when there is
no cover slip attached. We then attach tubing, being careful not to let a bubble
in.

When the cells are ready, we remove the MotM from the cover slip and apply
some cells to the cover slip. For single-cell imaging, a dilution to an OD of about
0.05-0.10 is necessary. We leave the cells on for at least 15 minutes, after which
we remove the surplus liquid. We then insert the cover slip into the �ow cell,
using vacuum grease.

The cells are stimulated using solutions of L-serine in MotM for non-adapting
cells and of L-methyl-aspartate in MotM for adapting cells.

A.3.3 Data acquisition

When the cells are in the microscopy set-up, we �nd suitable region of interest
under bright-�eld imaging. When we have found one, we take a bright �eld
picture for reference on the attachment. We put the focus slightly o�, such that
well-attached cells look darker than their environment. After this we bring the

40



cells into focus. The cells are then almost indistinguishable from the surround-
ings.

For our camera settings, we have used a gain of 1, a gain multiplication
factor of 100 and a laser power of 30 mW throughout all experiments.

When the camera is not being exposed to light, small amounts of electrical
charge build up on the CCD. This induces noise in the signal. The charge
is wiped away when the frame is read out. When the sampling frequency is
constant, we can set up the camera, so that it takes an unexposed frame shortly
before it takes the exposed one. This cleans the CCD directly before it is being
exposed instead of several seconds earlier. This reduces some noise.

A.4 Chemicals

A.4.1 Motility medium (MotM)

Final concentrations:

� 10 mM potassium phosphate

� 0.1mM EDTA

� 1 µM methionine

� 10 mM lactic acid

� Adjust to pH=7.0 with saturated NaOH.

Stocks:

� 1M potassium phosphate (by mixing 1M K2HPO4 and KH2PO4 until
pH=7.0) (dilute 100x)

� 100 µM L-methionine (100x)

� 1M lactic acid (100x)

� 10 mM EDTA (100x)

A.4.2 Tryptone broth (TB)

� 10g bacto tryptone (1% �nal concentration)

� 5g NaCl (0,5% �nal concentration)

� Fill up to 1l and dissolve the components by stirring and heating.

� Adjust the pH to 7.0

� Autoclave the media
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