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Abstract

A basic version of a one-dimensional numerical model describing a glacier, provided by Prof. Dr.
Oerlemans, was slightly adapted and expanded to describe a well documented glacier. Kongsvegen
(Spitsbergen, Svalbard) is known to be a surging glacier. Though the internal processes causing the
surge were not part of this model, surging behaviour could be simulated by temporarily increasing
the sliding parameter. After approximating the local geometry and establishing the duration of a
necessary initial period in which the glacier builds up a sufficient volume of ice, the current conditions
could be approximated and an artificially induced surge took place. The sliding parameter was
increased with a Gaussian curve, leading to a value at its peak of roughly 20 times that of the
quiescent phase.
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1 Introduction

Svalbard is an archipelago in the Arctic Ocean under Norwegian rule. A large portion of these
islands’ surface is made up of glaciers, many of which are of the surging variety. The largest
island is Spitsbergen and it is on the west coast of this island that one might find the glacier
known as Kongsvegen.

Glaciers can be used as indicators of climate change. Summer temperature, winter pre-
cipitation and front position of glaciers provide us with a statistical relation, enabling us to
observe climate change. For one specific glacier, however, the local geometry can make it
respond quite uniquely.[9] The model described in this thesis concerns only one glacier and
its specific data is taken from observations of Kongsvegen. A problem with this particular
glacier is that it is known to surge.

1.1 Surging glaciers

Glaciers that show non-seasonal, cyclical behaviour of advancement in response to internal
processes are known as surging glaciers. Long periods of time called quiescent phases, which
may last over a century, are interrupted by short periods of a few years up to a decade,
known as surges. During a surge, the glacier front advances swiftly and the glacier length
may increase with several kilometres in a remarkably short period of time. This behaviour
is not to be confused with glaciers simply showing a fast flow which is sustained over long
periods. The surge is but a phase that eventually passes and is followed by a retreating glacier
length as the glacier enters a new quiescent phase. After a number of decades, another surge
occurs and subsequently subsides. Nor is this behaviour to be confused with straightforward
responses to climate change, such as the sudden onset of a glacial period in which glacier
lengths are expected to increase due to declining temperatures. Surging behaviour occurs due
to internal forces within the glacier itself, responding to climate change only indirectly. The
recurrence interval is indeed influenced by climate change, and surging behaviour might be
turned off completely.[10]

The workings of this phenomenon are still not fully understood. Several factors may
contribute to surging behaviour and this might relate to the specific type of surge that takes
place. In the quiescent phase, glaciers move through both shearing (creep) and sliding of the
ice. The latter depends on the lubrication of the glacier bed. There exists a clear divide
between two views on surging glaciers. The hard-bed view hypothesises the surge being
caused by the deterioration of an efficient system of channels in the glacier bed, trapping
water in linked cavities. The subsequent change in water pressure would then lead to an
increase in glacial sliding, causing the rapid advancement. The soft-bed hypothesis states that
deformation of the underlying sediment is the key factor, affecting water pressure through
sediment displacement and stimulating surge behaviour in that way. The latter view was
favoured for explaining Svalbard’s surging glaciers by Jiskoot et al.[4] In between surges, the
glacier flow is insufficient to achieve a steady state and the glacier loses ice below and builds
up in its reservoir(s). For a more detailed description of surging mechanics, see, for example,
the 1986 article by McMeeking and Johnson [5] or the 1989 article by Fowler[2].

Almost a hundred of Svalbard’s glaciers are commonly identified as surging glaciers, the
precise requirements of a surge and identifying its initial phases forming points of discussion.
Estimates range between 13% and a staggering 90% of the archipelago’s glaciers being of
the surging variety. Furthermore, extremely long quiescent phases and changes in climate
conditions might make it difficult to correctly identify surges. Svalbard’s glaciers are notorious
for having relatively slow surges and extremely long quiescent phases of up to 500 years. Due
to these long quiescent phases, many surge events have only been observed once or might
predate scientific observation entirely. Often, these surges have only been studied after the
onset of the event, as surges are difficult to recognise in an early stage. Extensive crevassing
is thought to be a good indication of an upcoming surge. It is usually only after a surge has
been recognised that scientists study sattelite images to investigate its development.[10]

In their 2009 article, Sund et al. suggest a three stage development of surges. Stage 1
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concerns surface lowering in the glacier’s upper parts, while thinning down below defines stage
2. Only in the third stage does the glacier show a prominent acceleration, which is when most
would recognise it as a surge. As suggested by Sund et al., some glaciers may display what
they call ’partial surges’. These are defined as surges which do not pass the second stage.
This can easily be misinterpreted as a response to climate change instead of a response to
internal changes. This misinterpretation may arise due to thinning of the glacier due to mass
displacement up top and ablation at lower elevation, creating the appearance of a climate
response. Partial surges are not to be confused with mini-surges, which are characterised by
being very brief. These small mass displacements might cause the quiescent phase to lengthen,
as the glacier fails to build up its reservoir. And yet, it might also enlarge the coming surge
by allowing a more stable ice build-up through small releases during the process.[10]

Other problems with identifying surges include, for example, problems with the glacier’s
given name. It is not uncommon that a glacier may be fed by several tributaries which might
have different names. Furthermore, these tributaries might surge independently, complicating
the recognition of a surge. It is also more difficult to recognise a surge on a rather small
glacier, adding to the wide range in Svalbard’s surge glacier estimates. Surge intervals can
vary between distinct glaciers and within the same glacier as mass balance is affected by
changing climate conditions. These changes have more effect on long, thin glaciers at low
elevations as they are more exposed to ablation.[10]

1.2 Kongsvegen

Kongsvegen (King’s Road/Highway) is a polythermal glacier on Spitsbergen’s northwestern
coast (78◦51’N, 12◦30’E); the ablation area is frozen to the mountains, but the accumulation
area is known to be temperate. Flowing into Kongsfjorden, its calving front is joined with
that of Kronebreen (Crown Glacier). The two streams meet about 5 km from this calving
front, split along a large moraine. The glacier is fed by several basins, of which the largest
are known as Kongsvegen and Sidevegen. The Kongsvegen basin is estimated at 102 km2,
judging from maps from 1966, and at a length of 25.8 km. Its surface slope was measured in
1990, ranging from 0.5◦ to 2.5◦. Few crevasses have been reported, while large supraglacial
channels have been observed in the ablation area.[6] As already mentioned, surface crevassing
could be a sign of surges. Several of these crevasses seem to have been filled up with subglacial
sediment during Kongsvegen’s surges.[11] The calving front is quite active, in high contrast
with the nearly stationary part of the front where it ends on land. Kongsvegen’s bed is mostly
fine-grained sandstone from the Middle and Upper Carboniferous and Permian age.[6]

The front positions of both Kongsvegen and Kronebreen have been documented in several
studies since 1965, showing that a steady retreat of these glaciers has been interrupted by
rapid advancement in what appear to be glacial surges. Kongsvegen’s last surge ended in
1948 and since then the glacier front has retreated over 4 km to some 25 km. Crevasses
were still visible on air records from 1956. The front position is known to have advanced up
to 2 km from its 1938 position during this surge. Kronebreen or possibly a small tributary
probably surged in 1869. The mass balance for most large glaciers in Svalbard has only been
measured sporadically, but Kongsvegen has been measured every year since 1987 by the Norsk
Polarinstitutt.[3][6]

Surface velocities have been measured by several expeditions in the front area. Surface ve-
locities upstream of the junction with Kronebreen have shown to be roughly one hundred times
as high for Kronebreen (1-3 m/d) compared to Kongsvegen. This is explained by Kronebreen’s
much larger accumulation area and high basal motion. Not surprisingly, Kongsvegen is far
less crevassed in its lower regions than Kronebreen.[6]
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Figure 1: Map of Kongsvegen and the surrounding area, copyright c© Norwegian Polar Institute. An
approximation of the flowline is indicated.
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2 Model Description

In this chapter, some of the model’s relevant theory is explained. The model is based on
similar programs used by J. Oerlemans in his earlier works.[7][8] The reader is referred to
these articles, among others, for a more detailed description.

2.1 The relevant relations

As mentioned in the 1997 article[8], the relevant equations include:

V ertically integrated continuity :
∂H

∂t
= −∂UH

∂x
− ∂UH

∂y
+ ḃ− ḃb (1)

Here the flowline is represented by the x-axis and y is the vertical coordinate. H is ice
thickness, U is the vertical mean horizontal ice velocity, ḃ is the specific net balance and ḃb is
the smelt at the base. The latter does not play any role in the model. The specific net balance
incorporates all accumulation and ablation, but not calving at the front where Kongsvegen
meets the fjord. The altitude above sea level for which accumulation equals ablation, and
thus for which ḃ = 0, is known as the equilibrium line altitude and this plays a central role in
the model as it is defined directly.

Glacier width at the surface : ws = w0 + λwH (2)

The glacier’s cross-section is represented by a trapezoid. The actual width at the surface
of the glacier is ws while the width at the bed is w0. The factor λw represents the steepness
of the trapezoid. For lack of a better description, this factor is taken to be 0 and therefore
the trapezoidal shape is essentially an oblong shape.

Figure 2: This figure illustrates the flowline and the trapezoidal cross sections centered on this line. The
figure was taken from lecture notes provided by Dr. Oerlemans, which are not available online.
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Evolution of glacier cross section :
∂S

∂t
=
∂ŪH

∂x
+ ḃ (3)

Integrating over y results in equation (3). S is the area of the cross section and Ū is the
ice velocity in the flow direction averaged over this cross section. Naturally, this means S is
defined as in (4).

Surface of glacier cross section : S = H(w0 +
1

2
λH) (4)

By means of substitution of (4) into (3), this leads to a relation for ∂H
∂t .

Change in ice thickness :
∂H

∂t
=

−1

w0 + λwH

∂

∂x
[(w0 +

1

2
λwH)HŪ ] + ḃ (5)

Using a Weertman sliding law, an expression can be found for deformation and sliding
speeds using flow parameters, ice thickness and the driving stress. This is based on the
assumption that the right-hand relation holds for the average velocity as well.

Horizontal ice velocity : Ū = Ud + Us = fdHτ
3
d + fs

τ3d
H

(6)

The flow parameters fd and fs absorb the relevant parameters for deformation and sliding,
respectively. The exact values of the flow parameters are not known. If enough historical data
of the glacier’s velocities were available and a steady state could be achieved, a more advanced
model might be able to deduce both fd and fs. The current model does not produce a steady
state when all parameters are free to evolve in time, preventing this model from obtaining
these values. Since there is, however, no obvious reason to doubt these parameters as being
substantially different from other glaciers’, the values were taken from those found at Nigards-
breen (fd = 1.9·10−24Pa−3s−1 and fs = 5.7·10−20Pa−3m2s−1).[8] The model requires slightly
altered dimensions, resulting in fd = 6.0 · 10−17Pa−3yr−1 and fs = 1.8 · 10−12Pa−3m2yr−1.
Expression (7) was used for the driving stress, with density ρ, gravitational acceleration g and
surface elevation h.

Driving stress : τd = ρgH

∣∣∣∣∂h∂x
∣∣∣∣ (7)

Using this expression, the change in ice thickness can be expressed as in (8).

Change in ice thickness :
∂H

∂t
=

−1

w0 + λwH

∂

∂x
[D
∂h

∂x
] + ḃ (8)

The parameter D in this expression is the diffusivity, which understandably depends on
width, ice thickness and surface slope. Effects like viscosity, drag and lateral variations in H
have been absorbed in fd. The diffusivity, as calculated with λ = 0, is then defined as in (9).

Diffusivity : D = w0τ
3(fdH

2 + fsH) (9)

2.2 The procedure

This is a vertically integrated flowline model programmed in Fortran-90, calculating ice flow
along a one-dimensional flowline (essentially the x-axis). Grid-points are placed 100 metres
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apart, to provide a sufficiently sound resolution. A time loop is performed, calculating for each
grid point the driving stress, diffusivity, ice thickness, etc. Derivatives are approximated using
central finite differences. Weighted averages are taken for the driving stress and diffusivity to
smoothen their gradient and thereby stabilise the calculations. When the domain limit, 40
km or grid point i = 400, is reached, the model performs a time step of one thousandth of a
year. This continues for a specified number of years and parameters such as ice volume and
glacier length are calculated for each year.

The resulting output is split into two files. One describes the calculated parameters for all
grid points after the final iteration of the time loop. The other file concerns evolution through
time in steps of whole years for those parameters describing the entire glacier. The duration
of computation depends on several factors, but typical runs lasted up to five minutes.

2.3 Additions to the model

In order to allow this existing model to approximate the Kongsvegen glacier, several addi-
tions and adaptations had to be implemented. Initially, the glacier bed was described by an
unsuitable function. The glacier’s width was a constant value instead of an approximation
of Kongsvegen actual varying width. The specific net balance against altitude was a simple
function that needed to be replaced with a better fitting one. Equilibrium line altitude (ELA)
was also a constant instead of varying in time. Furthermore, the existing flow parameters
allowed for an emulation of surge behaviour. Most of these approximations were done using
results from the 1998 article by Melvold and Hagen.[6]

These improvements were based on approximations of the Kongsvegen geometry. Other
alterations or implementations would be of little interest to the reader, but they included
additional quantities to be calculated, such as ice volume. This model neither simulates
calving nor incorporates the processes causing surging behaviour. These severe limitations
are obvious points of interest for future work. For an example of a study concerning a self-
surging model, see the 1975 article by Budd.[1]

2.4 Implementing the glacier bed

It is obvious that a good approximation of Kongsvegen’s bed will make the model more
realistic when modelling this particular glacier. Luckily, the 1998 article by Melvold and Hagen
provides us with a more than sufficiently accurate elevation profile of this bed.[6] Because the
model becomes unstable for strong gradients, the elevation is smoothed by taking several data
points from the provided figure and finding a suitable fit for them.

This resulted in function 10, using the least squares method to find the fit as plotted in
figure 3.

bed(i) ∼ 2.189 · 10−10 · (i− 250)4 − 0.131 · 10−5 · (i− 250)3+

0.003 · (i− 250)2 − 0.143 · (i− 250) − 45.275
(10)

The bed was taken to be at −45.0 m after i = 250, that is after 25 km, to simulate the
glacier flowing into the fjord.
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Figure 3: The bed elevation in metres above sea level for Kongsvegen glacier against the horizontal distance
in kilometres. This shows data points taken from the 1998 article by Melvold and Hagen and a subsequent
least square fit to those data points.

2.5 Variable width

At first, the glacier’s width was taken to be a constant and thus irrelevant for changes in ice
thickness. It should be quite obvious that a glacier’s width affects its ice thickness, though.
Again, the aforementioned article provided an overly accurate profile. Kongsvegen flows
through a relatively broad valley, they report.[6] Width was approximated using:

Figure 4: The glacier width in metres for Kongsvegen glacier against the horizontal distance in kilometres.
This shows data points taken from the 1998 article by Melvold and Hagen and a subsequent least square
fit to those data points. The width is kept constant at 3000 m after i = 250 or 25 kilometres.
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Resulting in function 11, again using the least squares method.

width(i) ∼ −3.760 · 10−11 · (i− 250)7 − 3.355 · 10−8 · (i− 250)6−
0.118 · 10−4 · (i− 250)50.002 · (i− 250)4 − 0.193 · (i− 250)3−

8.719 · (i− 250)2 − 143.34 · (i− 250) + 3499.2

(11)

This is kept constant at 3000 m after 14 km. Steepness of the valley’s edges is not taken
into account, meaning the trapezoid shape is essentially an oblong.

2.6 Specific net balance

The specific net balance was first taken to be a simple relation, as expressed in 12, where
β = 0.007.

ḃ(i) = β · (ht(i) − ELA) (12)

Obviously, this is not ideal when studying a specific glacier. A more accurate picture can
be achieved by fitting a function for ḃ based on, again, the article by Melvold and Hagen.[6]
They reported the specific net balance for the years ’86 -’87 and ’92 -’93, together with a
mean for the entire 9 year period of observations (’87-’94). A least squares fit based on the
latter would give expression 13, with a and b parameters determined by the fit.

ḃ(i) = a · arctan(
ht(i)

b
) (13)

There is, however, a problem with this function. All dependence on the equilibrium line
altitude, and thus on climate conditions, has been removed from the relation for ḃ. To alter
this, function 14 was implemented:

ḃ(i) = 2.32641 · arctan(
ht(i) − ELA

508.987
) (14)

The function now equals the fit above for an ELA of 490 m, which is the average ELA
that was measured and thus the ELA for which the fit must have been established.[6] Thanks
to this expression, ḃ responds to changes in ELA by shifting the graph up and down.
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Figure 5: The specific net balance ḃ as water equivalent in metres against altitude above sea level in meters
for Kongsvegen glacier. This shows data points taken from the 1998 article by Melvold and Hagen and a
subsequent least square fit to those data points.
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3 Results

The model starts with no ice at all. There is simply an ice-free valley and a given value for
ELA. This means that the climate might prevent a glacier from appearing in the model, unless
conditions are favourable for ice formation.

3.1 Equilibrium line altitude

The equilibrium line altitude serves as an expression of climate conditions in this model. A
higher value of ELA indicates a higher temperature, or otherwise less favourable climate, since
the glacier’s ablation area is increased. Although the exact conversion between ELA and for
example temperature is unknown, fluctuations in ELA simulate fluctuations in climate. To
illustrate the effect of this altitude on the glacier, see figure 6 for the glacier length and volume
when there is no variation in ELA. Melvold and Hagen report a mean ELA of 490 m above
sea level between 1987 and 1994. The highest measured value was 580 m while the lowest
was only 380 m.[6] Notice how these values do not produce the desired result. Glacier length
ought to be around 25 km and has retreated only a few kilometers in half a century. For
these constant values of ELA, however, the glacier seems either not to exist or to continue
growing until it exceeds the model’s domain. Figure 6 does not actually show the latter, but
increasing the number of time loops has indicated this to be true. A steady state is nowhere
to be seen.

The reader is reminded that the equilibrium line altitude is the altitude above sea level for
which the glacier experiences a specific net balance of zero, meaning the glacier’s ice at that
altitude will have equal ablation and accumulation. Though the elevation of the glacier’s bed
may exceed this altitude, the glacier itself may be too thin to have its surface reach so high.

Figure 6: These figures show the glacier length in kilometres and the ice volume in cubic metres over time
for various constant values of ELA. Note how some lines appear to be missing, these are hidden behind
the continuous zero-value line for ELA=410 at the bottom of both figures. The steps, which are more
pronounced in the length graph but visible in both figures, are due to the model’s precision. A smaller
spacing of the grid points would result in smaller steps while increasing the computation time.

Since climate varies over time, it makes sense to define a function for ELA that allows such
a variation. The effect of climate on the equilibrium line altitude is a complex one as there is
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a role for precipitation, temperature, etc.

ELA = a ∗ sin(
2 ∗ π ∗ year

b
) + c (15)

As is visible in figures 7 and 8, equation (15) with certain parameters a, b, and c, creates a
glacier more similar to the actual conditions than the constant ELA.

Figure 7: Variation of the Equilibrium Line Altitude in time for various sine functions.

Figure 8: These figures show the glacier length in kilometres and the ice volume in cubic metres over time
for several varying values of ELA. Note how some lines appear to be missing, these are hidden behind the
continuous zero-value line for ELA=10*Sin(2*Pi*year/100)+400 at the bottom of both figures. These
are the values of ELA for which the glacier refuses to grow (in both length and volume).

13



It would appear from both figures 6 and 8 that the glacier fails to grow below a certain
value for ELA and does, in fact, manage to grow above this value. The only variable ELA for
which the glacier doesn’t completely disappear during the less favourable periods, is ELA =
100 ∗ Sin(2 ∗ Pi ∗ year/100) + 300. Due to the constant 300 term, ELA is constantly above
a certain threshold value. This tipping point seems to be somewhere around ELA = 390 m,
but its exact value was not investigated further. The model seems to respond rather strongly
to deviation from this value and there might not be any steady states due to a lack of calving.
Evidently, the model requires a initial period in which the glacier builds up ice before current
conditions can be applied. At high values of ELA, the entire glacier experiences a negative
net balance and therefore a net melt. Kongsvegen has been reported as retreating while ELA
varies between 380 m and 580 m.[6] So it is not surprising that entering these values into
the model without initially building up sufficient ice volume does not result in any useful
results. The model apparently demands this initial build up. This way, steady states might
be achieved, but the exact function of ELA in the real world remains a mystery. Future
research could therefore be aimed at applying proxy data for past temperature to discover
the most appropriate function for ELA.

For the purposes of this simulation, an ice build-up period of half a millennium is applied
for ELA = 100 m, followed by raising the temperature to the more realistic and actual mean
value of ELA = 490 m. This creates enough ice for the current conditions to be simulated.
The resulting graphs are visible in figure 9.

Figure 9: These two figures show the glacier length in kilometres and the ice volume of the glacier in
cubic metres for an initial period of 500 years at ELA=100 m and a subsequent period of 500 years of
ELA=490 m.

From these figures, it is apparent that the ice volume reacts more quickly to the change
in ELA than the glacier length, which seems to take its time slowing down in comparison.
This leads one to suspect a relatively rapid reaction in ice thickness. Mass conservation would
demand a reaction in ice volume, but the response in glacier length could be a rather slow
one. Therefore, figure 10 was plotted. Figure 10 does indeed show that the ice thickness
reacts relatively sharply to the change in ELA, which should explain the sudden response in
ice volume.
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Figure 10: Variation of the ice thickness in time for an initial period of 500 years at ELA=100 m and a
subsequent period of 500 years of ELA=490 m. Ice thickness was taken at i=10 or 1 km.

3.2 Surges

Since the model does not involve sediment displacement, water drainage or any other factor
directly involved in causing surging behaviour as it is understood, surges can only be enforced
through deliberate intervention. Essentially, the effect of a surge is a dramatic increase in the
sliding parameter fs. In order to show that the model does allow surges, this parameter is
made variable in time. The definition of the sliding parameter was replaced with a Gaussian
curve as described in (16), with certain parameters a,b and c. Naturally, a represents the
factor by which fs increases, b represents the moment in time at which the peak occurs and
c affects the duration.

fs = fs(1 + a · exp (− (year − b)2

2c2
)) (16)

In this way, the Gaussian curve causes an increase in sliding around a predetermined year
for a predetermined duration. The aim is to find an increase in glacier length of approximately
1 − 3 km. Figure 11 shows the increase of the sliding parameter fs in time and figure 12 the
subsequent increase in glacier length and ice volume. Notice how an increase in surge duration
as well as the factor by which the sliding parameter is increased both affect the intensity of
the surge’s effect on length and volume. Without more accurate data of Kongsvegen, the
exact circumstances of a surge like the one in 1948 cannot be implemented.
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Figure 11: This shows the evolution of fs with time in Pa−3m2yr−1 for an initial period of 500 years at
ELA=100 m and a subsequent period of 500 years of ELA=490 m.

Figure 12: These figures show the glacier length in kilometres and the ice volume of the glacier in cubic
metres for an initial period of 500 years at ELA=100 m and a subsequent period of 500 years of ELA=490
m.

To illustrate the surge in more detail, figures 13 and 14 illustrate the surge defined by
a = 15, b = 700 and c = 3. The figures were plotted for the years 685 - 715 in steps of five.
Year 685 is just before the increase in fs, while year 715 marks the return to its previous
value. This illustrates the development of the surge, with the peak in the sliding parameter
at year 700. Additionally, year 783 is plotted, as it is the year when the glacier length has
finally retreated to its value before the surge (25.15 km).
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Figure 13: The surface elevation for several years during a surge and the bed elevation.

Figure 14: The ice thickness plotted for the same years as the previous figure. Surface elevation is simply
the sum of bed elevation and ice thickness.
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Figures 13 and 14 show how the surge develops. With time, the glacier lengthens and
thins out. By the time the sliding parameter fs has returned to its initial value, the glacier is
significantly thinner at higher elevation but also significantly longer (26.55 km to be exact).
By the time the glacier length has returned to its previous value, after 783 years or 95 years
after the onset of the surge, the entire glacier is much thinner overall than it was before. After
this point, the quiescent phase continues as ice builds up, in preparation for another surge at
some point in the distant future.

Another way to look at the surge is through the ice velocities. Figures 15 and 16 show
the sliding and deformation velocities (us and ud). Note how us is small and relatively level
for all years but two. The peak in fs coincides with a dramatic increase in us, as it should
according to (6). This also shows how the surge is relatively short compared to the width of
the Gaussian curve in fs. The sliding velocity us responds quite slowly to the increase in the
sliding parameter, only dramatically increasing near the very peak of the curve in fs.

Figure 15: Sliding velocities against the horizontal distance in kilometres for the same eight snap-shots
in time as figures 13 and 14.
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Figure 16: Deformation velocities and the total velocities, the summation us and ud, against the horizontal
distance in kilometres.

These figures together with figures 13 and 14 successfully describe Kongsvegen’s surging
behaviour within the limits of this model and the available data.
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4 Discussion

The model suffers from several limitations (such as calving not being taken into account) and
unknowns (such as the flow parameters). Future research might improve upon the model’s
present condition.

Since several functions for ELA may satisfy the need for building up ice before actual
conditions can be applied, little can be said about Kongsvegen’s future from this model.
Improving further upon the present model, however, might narrow the gap. Many of the
current functions are based on crude and strongly smoothed fits, which may be imperfect
even within the limitations of the model. For example, the varying width might be improved
by incorporating the slope of the valley sides. Also, if the model could be adapted to accept
more detailed data instead of these smooth fits, reality ought to be approximated more closely.

The most obvious need for improvement lies with climate data. If one could find a relation
between the equilibrium line altitude and the actual local temperature, precipitation, etc.,
combined with proxy data describing that climate, the glacier could be closely examined and
predictions could be made.

A recurring problem with this program is the uncertainty which knobs to turn, as it
were. The specific net balance, bed elevation and glacier width were chosen to be taken from
measurement data. Subsequently, the equilibrium line altitude, an initial ice build-up period
and the flow parameters (or rather the sliding parameter) were adjusted to study the effects.
Though this might seem a rather straightforward combination, other combinations are not
unthinkable and might lead to equally informative results. If only there had been more time
to work on these things.

5 Conclusions

Expanding upon the initial model as if it were a template, several approximating expressions
were implement in order to simulate the Kongsvegen glacier on Spitsbergen, Svalbard. Taking
measurement data from the 1998 article by Melvold and Hagen, three least-square fits were
fed to the model; bed elevation, glacier width and the specific net balance. This did not result
in a steady state for any value of the Equilibrium Line Altitude. Though there might still
be a value of ELA for which there is almost a steady state, the geometry seems to make this
model extremely sensitive to deviations from this value. Calving might be the main issue
here, preventing a steady state from being achieved.

An initial ice build-up period was required before the current value of ELA = 490 metres
could be applied. This was set at 500 years of ELA = 100 metres. This then allowed the
model to approximate Kongsvegen’s actual length of roughly 25 kilometres.

Surging behaviour was successfully simulated in the model by adjusting the sliding para-
meter fs through use of a Gaussian curve for that parameter as a function of time. This
resulted in an increase in the sliding velocity and glacier length in accordance with typical
surges. The glacier does not retreat to its previous length until 95 years after the onset surge,
taken to be 15 years before the peak of the Gaussian curve.

The sliding velocity and thus the glacier length does not respond substantially to the
increase of the sliding parameter unless it is increased by at least a factor of 5. In order for
the surge to satisfy typical advancement of the glacier front, the sliding parameter should peak
at 20 times its original value, or thereabouts. This result implies quite a dramatic increase of
fs during a surge.
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