
 Instituut Theoretische Fysica, Universiteit Utrecht 
 

1 
 

Faculteit Betawetenschappen, Universiteit Utrecht 

Influence of Dzyaloshinskii-Moriya interactions on the properties of domain walls in a magnetic 

nanowire 
J.M. van der Ven 

 

Supervised by Dr. R.A. Duine 

20-Jun-13 

 

 

 

  

We study  the influence of the Dzyaloshinkii-Moriya interaction on the structure of  domain walls  in magnetic 

nanowires. Using a variational approach, we show how the type of domain wall changes under the influence of the 

Dzyaloshinkii-Moriya interaction. In paticular, we show how the domain wall gradually transforms from a Bloch to 

Neel wall for increasing strength of the Dzyaloshinkii-Moriya interactios. These results are relevant for the 

development of modern technologies that make use of domain walls, such as the magnetic race-track memory.  
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I. INTRODUCTION 

We consider a conducting magnetic wire. The magnetization is treated classically, so that it can be explicitly 

written as a steradian vector of unit length  ⃗⃗    . The orientation is dependent on the position in the wire; however, 

this dependence on   shall be implied throughout this thesis, and the brackets will be omitted. The steradian  ⃗⃗ , can 

be expanded in polar coordinate  , and azimuthal angle  , via the usual identity  ⃗⃗                          , 

where dependence of   and   on   is also implicit. The nature of this dependence is the main subject of this thesis. 

The approach towards analytically describing the orientation of the electron spins, is mainly mathematical. 

However, a few phenomenological remarks on the physics involved shall be made in this section. 

A. Energy functional 

Like in all physical systems, the energy of a magnetic wire ‘prefer ’ t  be m   m zed. Th   mea   that the 

magnetization is such, that making an arbitrary change would increase the energy. There are numerous physical 

effects that have an impact on the energy of a configuration. The primary effects are described below. 
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1. Exchange interactions 

In ferromagnetic materials, spins of neighbouring particles, prefer to have the same orientation. For two 

electrons the energy due to this effect looks like        ⃗⃗    ⃗⃗   , where    is called the exchange constant. It has 

units    er   d  ta  e  . The continuum limit of the energy due to spin-orbit coupling yields  

∫
  
 

( ⃗⃗     ⃗⃗ )
   

  
 

  

where   is the distance between neighbouring sites, ie. the lattice constant. It has units [d  ta  e]. Rather than writing 

( ⃗⃗     ⃗⃗ ), it is sometimes chosen to write ( ⃗⃗  ⃗⃗ )
 
, in which case a minus sign has to be factored in. 

In antiferromagnetic materials the sign is inverted, and neighbouring spins prefer opposite configurations. 

2. Anisotropy 

Anisotropy, or directional asymmetry, causes certain directions of spin to be preferred over others. Anisotropic 

effects could be induced by applying an external field, or they could be due to the specific crystalline structure of the 

material in which the electrons are located, thus giving the spins a preferred orientation. Anisotropy affects the 

energy like  

∫
  ̂

 
  ⃗⃗   ̂  

   

  
 

. 

Here  ̂ is a unit vector, in the direction of the anisotropy (usually simply  ̂, ̂, or  ̂).   ̂ is called the anisotropy 

constant in the respective direction. It has units    er   . Note that in order to make a certain direction energetically 

advantageous, rather than energetically disadvantageous, a minus sign could be added. 

3. Breaking of inversion symmetry 

The last type of interaction with the spins discussed here is called Dzyaloshinskii-Moriya interaction. (DM-

interaction). It occurs in materials, in which inversion symmetry is broken, and where spint-orbit coupling is present. 

(In practice this is always the case). Usually, these materials are composed from two, or more, different kinds of 

metal. The spins couple with the material. The details of DM-interaction are beyond this thesis; however a crude 

description is given. 

For two particles, the DM-interaction has the form:                            , where    denotes the 

displacement of some ligand from the line connecting the two particles. Note that the way    influences the energy, 

depends completely on the properties of the material, and that there are several distinctive types of    one could 

imagine. Throughout this thesis, it has units    er   d  ta  e . 

We make the distinction between two types of DM-interaction. Bulk DM-interaction, and interface-induced DM-

interaction. The former has continuum limit 

∫     ⃗⃗  ( ⃗⃗   ⃗⃗ )
   

  
 

   

and the latter has 

∫     ̂   ⃗⃗  (  ⃗⃗ )
   

  
 

  

for a one-dimensional wire along the  -axis, and with the  ̂ the direction of the interface normal. 

B. Motivation 

In magnetic wires, some or all of the above interactions play a part in the magnetization, depending on the 

material. Now, if we take a ferromagnetic wire, and create boundary conditions so that the magnetization has 

opposite direction, ie.   ̂, and   ̂, at either end of the wire; at some point the magnetization will have to switch. It has 

been found that this switch actually takes place at a small interval. This interval is called the domain wall. 

One of practical applications of these domain walls is currently under development; an attempt is made to create 

circumstances on a wire, such that at regular intervals, there is either a domain wall, or not. The idea is to use this as a 

data point, ie. whether or not there is a change in magnetic orientation at a certain point in the wire, will signifiy a ‘ ’  

 r a ‘ ’.  Th   e v     ed    tem     alled ‘ra etra k mem r ’. A  reat be ef t  f th   k  d  f data  t ra e     that    ver  

small; an even better one still, is that the data can be moved through the wire by applying an external field; hence no 

more vulnerable moving parts! 
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A system with many adjacent domain walls, is only realizable if domain walls can remain stable    ea h  ther’  

proximity. Since across two domain walls the magnetization is back to where it came from, they have to be far enough 

apart so as not to affect each other. Knowing how various properties of materials influence the magnitude of the 

domain wall length is therefore crucial to creating the desire configuration. 

One of the systems subject to experimental research uses a cobalt wire, with platinum layers on the bottom and 

top of the wire. It has properties such that the domain walls are relatively small; the nature and behaviour of domain 

walls where the main components that make up the energy are exchange interactions, and anisotropy, are well 

understood. However, since the material has broken inversion symmetry, Dzyaloshinkii-Moriya interaction occurs 

within the material. In this thesis the influence of DM-interaction on the properties of domain walls shall be 

investigated. 

II. A MAGNETIC NANOWIRE WITHOUT DM-INTERACTION 

In this section we consider a magnetic nanowire without DM-interactions and determine the domain-wall 

configuration. The preferred direction of magnetization is chosen to be the  ̂ direction, modeled by writing a positive 

anisotropy term in the  -direction, and a negative one in the  -direction. DM-interaction is considered negligible for 

now. The wire is assumed to be along the  -axis. Hence, the energy of this system is modeled as 

 
 [ ⃗⃗ ]  ∫

   

  
[
  
 

( ⃗⃗     ⃗⃗ )  
  

 
  

  
  

 
  

 ]. 
(1) 

The wire in considered to have a small enough  -, and  -width, typically in the region of nanometers, so that the 

gradient  ⃗⃗  can be reduced to   , ie.    ⃗⃗   ,    ⃗⃗   . Also, by this assumption, the  , and   component can be 

explicitly integrated; yielding section     , where    and    are the respective widths of the wire in the  , and  -

direction. The both have units  d  ta  e . The energy can now be rewritten in terms of the polar angle   and the 

azimuthal angle   , as 

 
       

    

  ∫  { 
  
 

                     
  

 
           

  

 
     }. 

(2) 

In order to achieve a physical solution for the spin configuration, the energy must be minimized, under the 

appropriate boundary conditions. Note that the expression for the energy (2) becomes trivial when a solution of the 

form {         }, is chosen, where   and   are arbitrary integers; for all terms are minimized by these 

solutions. The solution we are interested in, however, has an upward pointing orientation on the one side, and a 

downward pointing orientation on the other, ie 

 
l m

    
 ⃗⃗  (

  
 
 

). 
(3) 

These shall be the boundary conditions used in this section. The lowest-energy configuration obeying these boundary 

condition corresponds to a domain wall. 

Since the system described in this section favours orientations that have an  -component to those that have a  -

component, the spins are expected to gradually change their polar angle   from   to  , within the   -plane, as a 

function of the position   in the wire. As shall be seen later in this section, the major part of the change in orientation 

takes place within a small region. This region is called the domain wall, and has length  , which shall be calculated 

analytically in this section. A domain wall that has     is called a Néel type domain wall, after the French physicist 

Louis Néel. Such a domain wall is depicted in   
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FIG. 1. 
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FIG. 1.  Néel type domain wall. (   ) 

 

An attempt is made to find a solution for this type of system, satisfying the above boundary conditions. The 

integrand in the expression for the energy (2) denotes the energy density   of the system. After filling in     , the 

energy density reduces to 

  
    

  [
  
 

       
  

 
     ]. 

In order to minimize the energy we make use of the Euler-Lagrange equation   (
   

      
)       from which 

differential equation 

 
       ( 

  

   
     )  

(4) 

is obtained. It is solved using a few tricks. First of all, by filling in the boundary conditions, the system is reduced from 

second order to first order. The chain rule for differentiation prescribes that for any continuously differentiable 

function  ,                       , as long as   does not explicitly depend on    , or  . Realizing this, and 

multiplying previous expression by        yields 

               ( 
  

  
     ). 

The preceding step allows for integration along the whole  -axis, producing 

 
         

  

  
       

(5) 

where   is an integration constant, to be determined by applying boundary conditions, (3). 

l m
    

    l m
    

    l m
    

       . 

Plugging these conditions into differential equation (5) gives the solution   
  

  
.  The identity              , 

gives rise to differential equation 

 
       

  

  
     . 

(6) 

To solve (6), note that from the mean value theorem it follows that   will, somewhere along the  -axis, assume the 

value   ⁄ . Define the domain wall position     to be the associated  , ie:          ⁄ . Integrating the square root of 

(6) from the position of the domain wall     leads to 

∫
  

    
 

    

 

 

l ta 
 

 
  √

  

  
       . 



 Instituut Theoretische Fysica, Universiteit Utrecht 
 

7 
 

This expression can be further simplified to obtain the solution 

 
   ar ta ( 

 (     )

 ). 
(7) 

Here   denotes the domain wall width, a measure for the length over which the magnetization changes direction. It 

has the value  

 
  √

  
  

. 
(8) 

 

Parameter      is called the charge, and determines whether the magnetization changes from   ̂ to   ̂ or 

oppositely, when moving in the positive  -direction. The exponent in the argument of the arctangent of the solution 

for  , is a dimensionless term that will occur many times throughout this thesis. Hence we introduce the definition 

  
        

 
. 

III. INFLUENCE OF BULK DM-INTERACTION ON DOMAIN WALL CONFIGURATION 

For now, the above result concludes our investigation on inversion-symmetric materials, such that there is no 

DM-interaction. We have seen that if the boundary conditions are such that the magnetization changes from   ̂ to   ̂, 

the magnetization along the  -axis will show a domain wall. In this section it is investigated what happens when the 

bulk inversion symmetry of the system is broken, and therefore there is a form of DM-interaction, bulk in this case. 

Mathematically, this leads to adding the term 

    ⃗⃗  ( ⃗⃗   ⃗⃗ )  

to the energy density. This term favours a gradient in the configuration. Since we assume the  - and  -direction of the 

wire to be very small, we can take    ⃗⃗  and    ⃗⃗  to be zero. In terms of the polar angle  , and the azimuthal angle  , 

the contribution of this type of Dzyaloshinskii-Moriya interaction then becomes 

   (                           ). 

In the presence of the above DM interactions the energy is given by 

 

       
    

  
∫  {

  
 

                     
  

 
           

  

 
     

    [          
 

 
                 ]} . 

(9) 

A. Configurations for the modified energy density 

For this modified energy, it is again desirable to find solutions for angles   and  . Like in the previous section, we 

start with the Euler-Lagrange equations; which, after a few rearrangements look like so: 

 

{
 

      
 

 
            

  

   
           

  

  
      

    

  
               

                             
  

   
           

    

  
              .

 (10) 

We collect terms; and in the equation for  , dividing by      ; thus excluding solutions     , which we can safely 

do since by our boundary conditions this only happens at infinity. 
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{
 

      
 

 
            

  

   
           

  

  
      

    

  
               

                   t    
  

   
      

    

  
         .

 (11) 

Since this set of equations is quite difficult to solve; it seems sensible, to treat some special cases, so as to gain insight 

in the behaviour of the system.  

1. Configurations of a system with zero anisotropy. 

When the anisotropy terms are removed, ie.        and     , the system of equations (11) reduces to 

 

{
 

      
 

 
            

    

  
              

                   t   
    

  
         

. (12) 

With no anisotropy, physically we expect the spins to avoid the  -direction, since, due to the DM-interaction, it is no 

longer unfavourable to have such an orientation, thus having    
 

 
    , where   is some integer. Mathematically, 

one can observe that, by assuming this solution for  , the second equation of  (12) is indeed solved, and that the first 

is reduced to:       . This implies the spins have a constantly changing polar angle, (in other words,   has a 

constant derivative), and therefore configure like a helicoid. The solution can be written as          , where  ’ 

and   are constants to be determined. 

Plugging the set of solutions into the energy equation (9), yiels the expression 

                 
    

  ∫[
  
 

                ]   . (13) 

Since the integrand does not depend on  , it is minimized by solving 
  

 
                  , and so  

          (
    

  
). 

Summarizing the above; for           , we have solutions 

 {
               

  
 

 
   

  (14) 

where   (
    

  
). 

Since there is no anisotropy, and since the DM-interaction induces a gradient, the spins form a helix, as seen in 

FIG. 2. Hence   is a measure for the wavelength. As an example, in MnSi   
  

  
 m  . 

FIG. 2. Helicoid magnetization. 

 

2 q
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2. Configurations of a system with different anisotropy. 

So as to expand the results found in the previous paragraph, in this section it will be shown how the separate 

anisotropy terms,     and   , influence the configurations. Recall that the physical interpretation of the anisotropy 

term      the ‘e er      t’ f r the  p    t  be  r e ted    the re pe t ve d re t   .  

From this, one expects    to have no influence on the solution of  . Assuming this solution to be true for nonzero 

  , will lead to Euler-Lagrange equation: 

     
  

   
     . 

Note that this could be rewritten to equation (4), which is solved by (7). So when            , but     , the 

system is solved by: 

{
   ar ta (  )

  
 

 
   

. 

This form of configuration, perpendicular to the   -plane, is called Bloch-type. It is described in detail in section 

IV, and it is depicted in FIG. 3. 

The above result can be interpreted as follows: For nonzero   , the current type of DM-interaction pushes the 

magnetization out of the   -plane. Since the term with    actually favours magnetization within the   -plane, these 

two quantities have opposing interest. It is expected that the magnitude determines which of these two ‘w   ’. A  

exact analytical solution is difficult to obtain, however, by making some justified guesses, an estimation can be made. 

B. Variational approach to approximate the energy 

Now that a few limiting solutions have been explored, the following procedure can be used so as to improve a 

found solution. First, the most suitable (guessed) solution is plugged back into the energy functional. Since the 

dependence of the energy on   is now explicit, the integration can be carried out. After integration, the energy can be 

minimized over some parameter left free, by setting the derivative of the energy with respect to that variable equal to 

zero, and solving. Based on the previous part, the most suitable ansätze seem: 

 {
   ar ta (  )

    
  (15) 

where    is some constant, expected to be 
 

 
 for comparatively small   , and   for large   . When filling in the ansatz 

    , all derivatives of   become zero. Hence the energy equation (9) becomes: 

        
    

  ∫  {
  
 

       
  

 
            

  

 
                   } . (16) 

In order to fill in    ar ta (  ), the following relations from the appendix are used:     
 

 
 e h  , and 

      e h  . This leads to  

       
    

  ∫  ( 
  
 

 e h   
  

 
 e h         

  

 
ta h      

 

 
 e h       ). (17) 

Rather than going into the details of the mathematical steps, we simply present the most important results of the 

approach described above. The same approach is taken, for a slightly different system; in equations (26), through 

(35). There, the mathematics are explained in detail. The resulting energy of the system described above, is 

       
    

  [ 
  
 

  (           )          ]. (18) 

When explicitly filling in   it becomes 

       
    

  (         
√    

√  

      ). (19) 

It is minimized by  
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 ar    (

   √  

   √  
) 

Define    
   √  

 √  
 so that the energy is minimized by: 

    

{
 
 

 
  

 

 
       

 
 

 
 ar    ( 

    

  
) |   |    

 

 
      

. (20) 

The above result signifies a smooth phase transition between Néel-type (    ) domain walls, for zero    , to a 

Bloch-type (     ⁄ ) domain wall. This result is in correspondence to the limits that have been found in the 

preceding paragraphs. We will refrain from going into many details about this solution, but we will refer back to it 

and compare the result to (35) in the next section. 

IV. INTERFACE INDUCED DM-INTERACTION 

In this section we consider layered magnetic systems, where the interface can be shown to lead to DM-

interactions. These materials have perpendicular magnetic anisotropy. This causes the magnetization of the domain 

wall to be perpendicular to the  -axis (in the absence of DM-interactions) It is called a Bloch domain wall, after the 

Swiss physicist Felix Bloch. A domain wall of this type is depicted in FIG. 3. 

FIG. 3. Bloch type domain wall. (    ⁄ ) 

 

The energy associated with this kind of materials, looks like 

Note that the term  
  

 
  

   has been adjusted to  
  

 
     

  , so that the minimal contribution of this term is zero, 

rather than   . Since the wire is set to equal the  -axis; and assumed to be thin enough to neglect contribution of the 

width, the  , and   components can be integrated out. Recall that  ⃗⃗                          , so that 

This leads to Euler-Lagrange equations: 

    [ ⃗⃗ ]  ∫
   

   {
  
 

 ⃗⃗     
  ⃗⃗   

  

 
  

  
  

 
     

       ̂   ⃗⃗      ⃗⃗  }. (21) 

 

             ∫
  

   { 
 

 
                     

  

 
           

  

 
     

                                  }. 
(22) 
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Inspired by the calculations of the previous paragraph, assume the solution to be of the form:  

For reasons that will be clear later on,   is left undefined for now. Ignoring the contribution of the Dzyaloshinskii-

Moriya interaction, ie.      , for now, it will be shown that solutions (24) indeed satisfy (23). First, take the 

derivative of   , ie, 

        ar ta (  ) 

             
 

 
  (

  

     
)  

Which, by the quotient rule results in 

                   
 

  (
  (     )

        
) 

                  
 

   e h   ta h   . 

Realizing that derivatives of  , and     , become zero, the right hand side, using ansätze (24) becomes 

                                                                       
 

 
            

  

   
      

  

   
            

   

  
               

      
 

 
(
     

  
)    [ ar ta (  )].              

using (48) from the appendix 

                        (
     

  
)
  (     )

        
                                   

                      (
     

  
)  e h   ta h   .                           

Hence the equality is satisfied, up to domain wall width   , which, for this type of material, is redefined as 

In the second equation of (23), each term has either a derivative of  , or a term that contains a factor     . Since the 

ansatz for    , all terms of the equality become zero, therefore it is also satisfied.  

A. Inclusion of Dzyaloshinskii-Moriya interaction  

We are now interested in solving the system of equations, where we do not neglect the DM-interaction. Since the 

extra terms make the system of differential equations analytically troublesome to solve, it seems sensible to make 

variations on the solutions found so far. The assumption that the azimuthal angle   is some constant   , independent 

of  , gets rid of all of the terms with derivatives    . This is physically justifiable, by noting that a constant azimuthal 

 

{
 

      
 

 
            

  

  
           

  

  
       

   

 
               

                  t   
  

  
      

   

 
          .

 (23) 

    ar ta       
 

 
   

        

 
. (24) 

     √
     

  
. (25) 
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angle satisfies the boundary solutions, and it is a solution to the Euler Lagrange equations (23), and therefore 

minimizes the energy. 

After filling in     , the energy (22) becomes 

As for the polar angle of the magnetization  , it seems appropriate to start with the solution from the ansätze (24), ie. 

   ar ta   . Using identities       e h  , and     
 

 
 e h  ; from the appendix, we can write 

Since all terms explicitly depend on  , the integration can be performed, to obtain 

Here we have used standard integrals, to be found in the appendix. Note that l m    ta h      , and that 

l m    ar ta (  )    (
 

 
 

 

 
). This allows for evaluation of the integration limits, so as to acquire energy 

Finally, using     , the expression for the energy becomes 

At this point, it seems suitable to fill in   explicitly, from (25), so as to obtain the final expression for the energy as 

a function of azimuthal angle   . By using the identity              , the expression becomes 

1. Minimzation of the obtained energy with respect to the azimuthal angle 

Now that an expression for the energy has been found, an expression for the azimuthal angle    can be found, 

such that the energy is minimized. To find the minimal energy, first take the derivative of (31) with respect to   : 

Setting this derivative to zero gives rise to three classes of solutions. Note that, since it concerns an angle, each of the 

solutions could have an arbitrary integer multiple of    added to them. The solutions are 

The last solutions has brackets, to signify the dependence on    . In order to find out which of these three solutions 

will manifest itself, the energy of each of the solutions will be written. The lowest of the three will be the global 

minimum. Plugging both solutions back into the expression for the energy (30) yields: 

               ∫
  

   { 
  
 

       
  

 
            

  

 
                   }. (26) 

             ∫
  

   {( 
  
 

  

   
           

 
)  e h   

 

 
         e h  }. (27) 

          
    

  [( 
  
 

 

 
 

 

 

           

 
) ta h             ar ta (  ) ]

    

 

. (28) 

          
    

  [( 
  
 

 

 
 

 

 

           

 
)               (

 

 
 )]. (29) 

          
    

  [ 
  
 

                           ]. (30) 

          
    

  (           
√          

√     

). (31) 

    
         

    

  
     (      

 √         

√     

). (32) 

                    ar    ( 
 √         

 √    

). (33) 
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Now, since all solutions for the energy depend on the DM-interaction, the global minimum can be found in terms 

of    . Setting the above energies equal, quite simply solved by noting that ar          and ar          , 

results in the critical interaction parameter: 

so that the azimuthal angle for which the energy is minimized as a function of    is obtained: 

   

{
 

 
        

 ar    ( 
    

  
) |   |    

       

. 

The above result can be interpreted as a phase transition, from a mixed-type system, for low values of |   |, to a 

Néel type-system, for        . It is a second order phase transition, because the global minimum energy changes 

continuously, ie. there are no jumps. In the limit       the system is a pure Bloch-type system. Plots of the 

dimensionless energy as a function of    are presented in FIG. 4. The energy has been made dimensionless through 

dividing it by          ⁄ . 

 

           
         

  

              
    

  
√          (

  

     
 

     
 

     
)

            
         

  

  (34) 

    
 √    

√      
  (35) 

FIG. 4. Plots of the dimensionless energy, for various values of        ⁄   . Plotted are   (solid),    (dash-dotted),    ⁄ , 
and   , (both dotted). Dark grey lines have positive value, light grey lines have negative value. The dashed black line marks 
position of the global minimum. 
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As a final remark on this, not the similarity between this solution and (20). The plot for that system will look the 

same, with the only differences being a different expression for the respective critical DM-interaction parameters, 

and a shift of the origin, from   ⁄  to  . 

B. Refinement of the expression for the domain wall width 

In the previous section, a local solution has been found for the azimuthal angle   under which the energy of a 

Bloch-type material with subcritical DM-interaction is minimized. The obtained solution, ie. the third solution from 

(33), can be used to as a new ansatz. This allows for an attempt of solving the Euler-Lagrange equations for this 

system, with a stronger ansatz. The solution for the polar angle  , is expected to be the same; however, with the 

newly achieved information about the local behaviour of        , a refinement could be made on the expression for 

the domain wall width. Starting with the energy equation (26), along with the solution from (33),         

ar            ⁄    the energy equation can be rewritten as 

It is once again only dependent on  . Recall that the Euler-Lagrange equation on   reads   (
   

      
)     , where   in 

this case in the integrand from (36). After dividing by    , it reads 

        [(
     

 

     
  

  

   
)      ]. 

The procedure followed here, to decrease the order of the differential equation from second, to first order, is just as in 

part II, eqs. (4) through (6). First, the above equation is multiplied on both sides by      . Then, by integrating over 

 , the following relation of obtained: 

       (
     

 

     
  

  

  
)          

where   is the integration constant, which should satisfy boundary conditions (3). Since at infinity both     and      

equal zero,    . As will be seen later, choosing  , so as to invert the sign of the sine, makes sure the solution for   

becomes 0 at minus infinity, and   at plus infinity, rather than vice versa. Taking the square root yields first order 

differential equation: 

    √
     

 

     
  

  

  
    . 

It is solved by      ar ta [e p (
        

 
)] . Here     √

     
 

     
  

  

  
, is the refined expression for the domain wall 

width, for small values of     in a Bloch-type system. After explicitly filling in    from equation (35) it reads 

Observe that for small    , it is just the same as the previously achieved  , as written in (8). 

C. Further refinement by using domain wall width depending on the azimuthal angle 

Thus far, the domain wall width   was assumed to be independent of   . In this paragraph, a more general 

expression for the domain wall width is suggested, dependent on   , denoted        . In order to find an 

appropriate formula, we once again assume a constant   . Thus obtaining (26), 

The corresponding Euler-Lagrange equation for   is 

                    ∫
  

   [ 
  
 

       
     

 

   
       

  

 
      

   
 

   

     ]. (36) 

     √
  

  
 

   
          

  
   

 . (37) 

               ∫
  

   { 
  
 

       
  

 
            

  

 
                   }.  
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       (
           

   
)      . 

Note that this can be rewritten to resemble (4) up to terms that are constant with respect to  . It is solved using the 

procedure introduced in II, leading to     ar ta [e p
        

       
]  where 

Note that it indeed depends on the azimuthal angle   . Also note that when    is taken to be zero, the domain wall 

width reduces to (25), which is quite desirable. The energy is now expressed in terms of   ; since         is 

independent of  , the exact same steps from (26) through (30) can be taken, so as to obtain 

When taking the derivative with respect to    the dependence of         has to be taken into account. Notice 

that all the terms cancel (!), so that the above expression reduces to 

Setting its derivative with respect to    equal to zero in order to minimize gives a sine, solved by the set of solutions 

       or           . Their respective energy is 

and so the azimuthal angle    for which the energy is minimized depends solely on the sign of       . The solutions 

are all Néel-type domain walls, except when      , when all values for    are permitted. This is at the very least an 

odd solution. We previously found that the type of system treated in this section has Bloch-type domain walls, 

however even for infinitesimal    , the system exhibits Néel-type domain walls.  

A way to get an even better expression for the energy, is keeping the same ansätze, whilst improving the equation 

for the energy. An attempt is made in the next section. 

V. INCLUSION OF HIGHER ORDER TERMS 

 It seems suitable to reapply the above procedure on the energy with higher other terms. Starting from (21), 

along with the extra anisotropy term 
  

  
  

  one obtains expression for the energy 

 
 [ ⃗⃗ ]  

    

  ∫
  
 

  ⃗⃗      ⃗⃗   
  

 
  

  
  

  
  

  
  

 
     

      ̂  ( ⃗⃗     ⃗⃗ )    . (41) 

In terms of the polar angle  , and azimuthal angle  ,  the term +
  

  
  

  becomes  
  

  
          . 

The same procedure as before is being followed; by taking the azimuthal angle to be constant, ie.       and the 

polar angle    ar    (  )  where                  ⁄ , so that the domain wall width explicitly depends on 

   as in equation (38): 

   
       √

  

  
       

  

  
. 

    
       √

           

  
. (38) 

          
    

  [ 
  

       
                                ].  

          
    

  
          . (39) 

 {
               

    

  
     

                   
    

       

  (40) 
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We can once again, plug our ansätze into the equation for the energy, and integrate. However, since this has 

already been done in the previous section for all terms but 
  

  
  

 , in this section the integration will be limited to that 

term. Using from the appendix       e h   we obtain 

 
∫  

  

  
       e h    (42) 

Note that   , and therefore        , are independent of  , so that we can integrate (42), finding 

 
[
    

  
      ta h      e h   ]

    

 

. (43) 

Note that ta h    is an odd function, and that  e h    is an even function, so that we can take out   of the argument. 

Equations (43) becomes 

 
[
   

  
      ta h

 

 
(   e h 

 

 
)]

    

 

  (44) 

where it is used that     . This gives rise to the integration limit 
√          

  √           

, leading to the final expression for 

the energy: 

 
  

    

  (           
√          

  √           

). (45) 

A. Minimization of the energy 

An attempt is made to minimize the energy found in the above paragraph. Taking the derivative of (45) leads to 

   

   
 

    

  
(           

√                              

               
  ⁄

). (46) 

Setting it to zero, it can immediately be seen that         is a solution, which implies      , where   is an 

arbitrary integer. To find any further extremes, the equality 

 
√                                            

  ⁄    (47) 

needs be solved. Substituting          lead  t  polynomial 

        
             

            
    

            
   

         
               

    
       

   
   . 

Using    ar    √ , numerical procedures can be used to find the roots of the above polynomial, and therefore the 

minimum energy.  

 

 

 

 

 
  

FIG. 5. Various plots of the domain wall angle   , as a 

function of the strength of the DM-interaction     for 

different values of the anisotropy constant   . 
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FIG. 6 A numerical sketch of the energy as a function of the azimuthal angle   , for different values of    , in multiples  , 

(solid),     and  , (dotted) , of      .       (dash-dotted). The fourth-order anisotropy constant is taken as     .    . All other 

parameters in this plot are taken as    . 

 
 

 

VI. CONCLUSIONS AND OUTLOOK 

In the preceding parts, two types of systems, namely, with bulk and interface induced Dzyaloshinkii-Moria 

interactions, have been investigated, satisfying the desired boundary conditions, so that they exhibit a domain wall. 

Inclusion of different types of Dzyaloshinkii-Moriya interaction in the energy equation for the respective systems, has 

led to a transition between Néel-, and Bloch-type domain walls. In most cases, an analytic expression for the critical 

strength of the DM-interaction has been found. 

The results achieved throughout this thesis can be further improved, by refining the expression for the energy, for 

example by including higher order terms, or by iteratively improving the expressions for variable parameters   and 

   within the assumed set of solutions, by minimizing their associated energy. 

In addition to improving the stationary solution, future analysis can provide a dynamical solution for the 

magnetization. Taking into account time-dependence, allows for an even better grip on domain wall properties, so 

that the behaviour of domain walls in materials with non-negligible Dzyaloshinkii-Moriya interaction is better 

understood. This allows for the application of the found results on systems with changing magnetic fields, as is useful 

in the development of race-track memory. 
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VII. APPENDICES 

A. Appendix 1: Identities 

1. Hyperbolic functions 

This section contains relations between 

hyperbolic functions and the exponential function. 

   h   
      

 
 

 

   h  
 

   h   
      

 
 

 

 e h 
 

ta h   
   h  

   h  
 

An extra note is made:  e h  is often written as 
   

     
. 

2. Sine of the arctangent 

This section contains expressions for the sine of 

various multiples of the inverse tangent function. The 

sine of the arctangent is given by 

    ar ta    
 

√     
. 

From the half-tangent relation ta 
 

 
 

    

      
  one 

obtains  

ar       ar ta 
 

  √    
. 

Combining these two relations yields the desired 

relation 

     ar ta    
  

    
. 

Repeating above procedure grants 

 
     ar ta      

      

       . (48) 

3. Derivatives 

This section contains some derivatives. 

  ar ta      
     

       
 

∫  
      

       
 ar ta       

and 

∫      e h       d  ∫     (
      

        
)

 

d  

                         
            

            
 

                 ta h       

4. Some explicit relations 

In this section some relations are explicitly 

 h w   where  t d e  ’t  eem appr  pr ate t  d        

the main part of this thesis. 

The sine of  : 

        [ ar ta (  )] 

 
   

     
         

  e h  .                    

The cosine of  : 

        [ ar ta (  )] 

 
 

√     
    

  ta h  .      

The derivative of   

      [ ar ta (  )] 

 
       

 

       
     

 
 

 
(

   

     
) 

 
 

 
 e h  .       

 


