
Direct Probabilistic Semantics
A Contextualist Formal Semantic Model

master thesis Cognitive Artificial Intelligence
Universiteit Utrecht

45 ECTS

Jan Kanis
student number

0339954

Tuesday 27th August, 2013

primary supervisor:
Albert Visser

secondary supervisors:
Vincent van Oostrom

Rick Nouwen

Abstract

This thesis should be viewed in the context of the debate that is currently
going on in the field of philosophy of language: the debate on the question
of how much influence the context in which a sentence is used has on the
meaning of that sentence. Closely related to this is the question of whether a
sentence can have a meaning on its own, or if a sentence only has a meaning
within the context and circumstances in which it is used.

Simplifying a bit, two approaches can be distinguished: that of literal-
ism and of contextualism. Literalism tries to understand the meaning of
language by representing it as a formula in a symbolic logic. Word mean-
ings are taken from a lexicon as logical formulas, which are then composed
according to the syntactic structure of a sentence to form the meaning of
the whole sentence, which is a larger logical formula. Literalists include sev-
eral mechanisms to introduce contextual information into this process, but
according to contextualists these mechanisms are too limited. According to
the more extreme contextualists, a sentence can be gotten to mean (almost)
anything if it is used in the right context or situation.

I find that the arguments the contextualists make are generally convinc-
ing, and that a more contextual approach is needed. However one of the
main drawbacks of contextualism is that the theories it proposes are not very
well developed in a formal sense. This debate takes place mostly in the field
of philosophy of language, and the theories proposed by contextualists are
also usually formulated in philosophical terms and at a philosophical level
of abstraction. On the other hand, literalists have models that are better
developed and formalized well enough to program into a computer so that
calculations and predictions can be made about them. Contextualist mod-
els usually do not reach this level of formal development, and it is therefore
no surprise that in the field of formal linguistics the theories promoted by
contextualists do not find a large audience.

In this thesis I aim to take a stab at this shortcoming. I have developed a
model of semantics that is based on the ideas defended by contextualism, and
implemented it in a computer program. An important property in which the
model differs from many existing theories is that it is a non-truthconditional
theory of meaning, and instead implements a more internalist approach.
This does not prevent formalization and implementation in a computer, and
in fact helps to answer some common philosophical problems. The resulting
computer program has the ability to interpret and act upon simple sentences
that are about a small scene containing a few geometric objects.

Contents

1 Introduction 4
1.1 Status Quaestionis . 5
1.2 Relevance within Artificial Intelligence 6
1.3 Structure of this thesis . 6

2 Language Philosophical Background 7
2.1 History . 7
2.2 Positions in the Current Debate 8

2.2.1 Minimalism . 9
2.2.2 Indexicalism . 10
2.2.3 Other in-between approaches 11
2.2.4 Contextualism . 11
2.2.5 Relativism . 12

2.3 Important Arguments . 13
2.3.1 Inappropriateness Argument 14
2.3.2 Context Shifting . 14
2.3.3 Arguments against Indexicalism 17
2.3.4 Formal Description of Contextualist Models 18

3 Constraints on a Formal Model of Language 20
3.1 Non-Requirements . 20
3.2 Statistical Linguistic Systems 21
3.3 Neurological Realism . 22
3.4 Evolutionary Realism . 23
3.5 Learnability . 24

4 Overview of the Model 25
4.1 Conceptual Graph . 25
4.2 Parsing . 26
4.3 Name . 26
4.4 Related Proposals in the Literature 27
4.5 Core Differences with Standard Approaches 28

1

5 Detailed Model Description 29
5.1 Concept Graph . 29
5.2 Parser . 35
5.3 Disambiguation . 38

5.3.1 Activation . 38
5.3.2 Applicability Factors 39
5.3.3 Relatedness Weights 39
5.3.4 Contrast Sets . 41
5.3.5 Other Influences on Activation 41
5.3.6 Usage in the Parser 41
5.3.7 Calculation of Weights 43

5.4 An Example . 43
5.4.1 Mowing the Lawn . 45
5.4.2 Cutting Grass Sod . 46
5.4.3 Extending the example 48

6 Implementation 51
6.1 Concept Graph . 52

6.1.1 What the graph represents 54
6.2 Parser Algorithm . 54
6.3 Language Rules . 55
6.4 Disambiguation and Activation 58
6.5 Contextual Capabilities . 61

7 Discussion of Constraints and Possible Objections 63
7.1 Limitations and Possible Objections 63

7.1.1 Limiting Combinatorial Explosion 63
7.1.2 Possibility of Communication 64
7.1.3 Complex Language . 66
7.1.4 World Knowledge . 67

7.2 Context Shifting Examples 67
7.2.1 The Cat on the Mat 67
7.2.2 Cut the Grass . 68
7.2.3 Milk in the Fridge . 68

7.3 Recanati’s Contextual Relativism Example 69
7.4 Neurological Realizability . 69
7.5 Evolvability . 71

7.5.1 Concept Graph . 71
7.5.2 Parser . 72
7.5.3 Human Specific Evolutions 72

7.6 Learnability . 72

2

8 Extensions and Future Research 74
8.1 Concept Graph . 74
8.2 Accessibility of Concepts . 75
8.3 Spoken Language Interpretation 76
8.4 Language Production . 76
8.5 World Knowledge . 77

9 Conclusion 78

Bibliography 79

A Program Capabilities 86
A.1 Locations and Demonstratives 86
A.2 Commands and Statements 87
A.3 Limitations on Continuous Values 87
A.4 Program Documentation . 88
About . 88
Name . 88
Theory . 89
Dependencies . 89
Usage . 89
Quick Tutorial . 90
Lexicon . 91
Program Layout . 92
License . 93

B DPSP Parser Productions 95

3

Chapter 1

Introduction

In this master thesis I will address the problem of formally developing a
contextualistic model of the meaning of language.

Contextualism is one of two classes of positions in a debate in the philos-
ophy of language, the other class being ‘literalism’. Both of these terms are
used with different meanings in other fields of linguistic and outside of lin-
guistics, but I will only use them as they are used in the field of philosophy
of language.1

Literalism and contextualism are two broad categories, and more detailed
positions can be identified within them. In the interest of brevity I must
simplify in the here following description of these positions.

Literalism generally tries to uncover the truth conditions of language2
by representing the meaning of sentences as a formula in a symbolic logic.
Word meanings are taken from a lexicon as logical formulas, which are then
composed according to the syntactic structure of a sentence to form the
meaning of the whole sentence, which is a larger logical formula. Since not
all information on which the meaning of a sentence depends is always made
explicit within a sentence, literalists propose several mechanisms to capture
this contextual information. But according to contextualists, these proposed
mechanisms are too limited. Contextualists hold that it is not possible to
assign truth conditions to sentences, but only to a sentence’s use in a specific
context. Contextualism is a varied class of positions that have a common
goal of allowing more contextual influences to play a role in the construction
of the meanings of sentences than the methods that literalism recognizes.
According to the more extreme contextualists, constructing something like a
sentence meaning separately from the context in which the sentence is used
is useless because a sentence can be gotten to mean (almost) anything if it
is used in the right context or situation.

I find that the arguments the contextualists make are generally convinc-
1Specifically, I will follow the usage of [Recanati, 2004].
2 [Recanati, 2004, p. 3]

4

ing, and that a more contextual approach is needed. However one of the
main drawbacks of contextualism is that the theories it proposes are not very
well developed in a formal sense. In this thesis I aim to take a stab at this
shortcoming. I have developed a model that describes what the meanings
of sentences in natural language are, and what kinds of contextual informa-
tion is needed to obtain them. To be sure that the proposed model can be
formalized without running into insurmountable problems, I have written
a proof of concept implementation of the proposed model as a computer
program.

In this thesis I will discuss the positions that make up the contestants
in the debate and I will discuss the most important arguments. Then I will
describe the proposed model and its computer implementation and discuss
whether it can be used as a contextualist model of language meaning. Finally
I will talk about ways to extend both the program and the theory, and then
come to a conclusion.

1.1 Status Quaestionis
The current status of contextualist theory is that there is an active de-
bate going on in the field of philosophy of language with opponents of the
approach.3 Both contextualist and non-contextualist positions are being ac-
tively defended and neither contextualism nor literalism can be said to be
a clearly insignificant minority position. There are a number of theoretical
proposals from the contextualist side, but the position is diverse as there
can be large differences between different proposals that can be classified as
contextualist.4

As far as I am aware none of the existing proposals is developed well
enough in a formal sense that they could be implemented on a computer.
The implementation on a computer is not a primary goal in itself from a
theoretical point of view, but the lack of a good formalization brings with it
a lot of vagueness in the discussion, up to the point where contextualists are
being accused of being internally inconsistent5. The lack of good formally
developed models also hinders the adoption of contextualist approaches in

3Some examples of recent discussions: [Cappelen and Lepore, 2005], which received crit-
icism from a lot of philosophers, which was responded to in [Cappellen, 2006a], [Cappellen,
2006b] (See there for the criticisms); [Recanati, 2007], [Travis, 2008], [Travis, 2000], [Stan-
ley, 2000]; For overview of the discussion see [Recanati, 2004], [Bianchi, 2010].

4In fact, some approaches that would be called ‘literalist’ in the field of philosophy
of language are described as contextualist in some other fields. I will however follow the
terminology from philosophy of language.

5Cappelen and Lepore in [Cappelen and Lepore, 2005, p. 128] argue that contextualism
would be inconsistent because a contextualist should hold that the sentence “contextualism
is true” is false in some contexts. This argument is mistaken because contextualists do
not claim that such a sentence is true in every context, only in those contexts in which a
contextualist makes this claim.

5

the scientific fields of formal and computational linguistics. If contextualism
turns out to be the right approach, and I believe it is, developing more
formal theories for it will help its adoption in those fields of science, and in
the long term it will also be relevant for applied language technology and
the general ability of computers to handle human language.

1.2 Relevance within Artificial Intelligence
This research topic is very much relevant for the field of artificial intelligence.
This thesis directly touches on the subjects of philosophy, linguistics, infor-
mation technology and computational linguistics, and neurology, which are
the four core fields within the program of Cognitive Artificial Intelligence
as it is taught at the University of Utrecht. In this thesis I directly deal
with discussions in the philosophy of language field and therefore also with
linguistic subjects, and I have written a computer program on an artificial
intelligence related topic. The other subjects are touched upon in providing
supportive arguments for the main thesis.

1.3 Structure of this thesis
This thesis starts with an abstract and an introduction, which you are read-
ing now. Chapter 2 gives an overview of the debate between literalism and
contextualism and a description of some of the arguments that are used.
Chapter 3 considers restrictions that a theory of linguistic meaning must
satisfy. Chapter 4 gives a high level description of the proposed model and
compares it with some existing models in the literature. Chapter 5 gives a
detailed description of the model and ends with an example. Chapter 6 dis-
cusses how I have implemented the model in a computer program. Chapter
7 discusses limitations of the model and possible objections, and evaluates in
what way the model satisfies the constraints that were layed out in chapter
3. Chapter 8 discusses ways to extend the given model and discusses further
research possibilities, and chapter 9 concludes.

At the end of this thesis you will also find two appendices that contains
usage instructions and other information regarding the DPSP program that
was developed as part of this thesis, and that reproduce the parse rules as
they are implemented by the program.

6

Chapter 2

Language Philosophical
Background

In this chapter I will give an overview of the debate between contextualism
and literalism in the philosophy of language. I will discuss the history and
the main positions, and then I will discuss the most important arguments
that are made.

2.1 History
The debate on the influence of context has existed in one form or another
at least ever since philosophers starting to use mathematics to describe the
meaning of language. The original debate, which is a predecessor of the
current one, was the debate between the Ideal Language philosophers and
the Ordinary Language philosophers. The Ideal Language camp was mainly
concerned with formal semantics and analyzing natural language as a system
of formal logic. Their main focus was on studying what the truth conditions
of expressions and sentences are. This camp included people like Frege,
Carnap, Tarski and Russell.1 The Ordinary Language philosophers, on the
other hand, thought that analyzing natural language as if it was a formal
logic system was not the right way forward. Instead they advocated the
study of language in everyday human interaction, as that would reveal what
the meaning of an utterance2 of speech was.3 In this camp people like

1These pioneers were not all originally concerned with natural language, but their meth-
ods were applied to natural language by their disciples such as Montague and Davidson.
([Montague, 1970a], [Montague, 1970b], [Montague, 1973], [Montague, 1974], [Davidson,
1984])

2An utterance is taken to be a sentence spoken (or otherwise used) in a certain situation,
so an utterance includes the contextual information from that situation.

3In as far as they wanted to understand language. Some were only interested in showing
that certain metaphysical problems were caused by misunderstanding language.

7

Austin, Strawson, Grice4, and the late Wittgenstein were to be found.5
Nowadays this original debate is not as prevalent anymore, as both camps

recognize each others achievements. Out of the debate arose the disciplines
of ‘semantics’ and ‘pragmatics’, which are now conceived of as complemen-
tary. Semantics is concerned with formal truth conditions of sentences, and
pragmatics with the use of language and what the use of a sentence means
or conveys in a particular context.6

2.2 Positions in the Current Debate
However, the debate on the influence of context continues on in a different
form. The positions of the ideal language and ordinary language camp have
been replaced by the positions of literalism7 and contextualism respectively.
Generally speaking, literalists hold on to the traditional distinction of se-
mantics that deals with mostly context independent truth conditions, and
pragmatics that deals with the broad contextual dependencies. Contextual-
ists hold that such a distinction cannot be made because according to them
truth conditions of sentences are pervasively context dependent. According
to contextualists the carrier of truth conditions is not a sentence8, but a
speech act or utterance.9

Before discussing the positions of literalism and contextualism more thor-
oughly I will say a few words about the ‘context’ the entire debate is about.
In a narrow sense, linguists sometimes use ‘context’ to talk about the lin-
guistic context a certain word or sentence appears in, i.e. the words and
sentences surrounding the linguistic object of interest in the story or dialog
it is part of. ‘Context’ as relevant to the current discussion is context in
its broadest form. It includes everything that can influence the meaning of
language. This extremely broad view of context is in fact in itself one of
the problems in the debate: if the required context that can be relevant to
the interpretation of a sentence is not in any way bounded, and therefore
infinite, how can we ever understand a language utterance? There would
for ever be more context that would need to be processed before we could
come to a conclusion regarding the meaning of the utterance. One of the

4Although Grice is a special case, who has said he has one foot in each camp. [Grice,
1989, “Retrospective Epilogue”, p. 372].

5see also [Austin, 1961].
6For more overview see [Partee, 2008], [Recanati, 2004, specifically the introduction],

see also [Recanati, 2008].
7Also known as ‘semantic minimalism’, but see the rest of this chapter.
8Or more specifically, a disambiguated sentence with the indexicals resolved, as we will

later see.
9Terms such as ‘literalism’ and ‘contextualism’ are used in different ways in different

branches of linguistics. I will only talk about them as they are used in philosophy of
language, specifically I will follow the use of [Recanati, 2004].

8

challenges for contextualists therefore is to limit and specify exactly what
context they regard as relevant. I will come back to this question later on.

‘Literalism’ and ‘contextualism’ are two broad categories. In fact, they
should be seen as the two sides on a continuum, with a lot of highly or a
little bit compromising positions in between. A description of these different
positions can be found for example in my [Kanis, 2011] based on [Recanati,
2004], or in [Bianchi, 2010]. I will give a short description of the most
important positions below.

The most extreme form of literalism, at least theoretically, is the idea
that for every context dependent sentence expressed in a given context,
one can formulate a context independent eternal sentence that expresses
the same thought, or in other words has the same truth conditions. This
position ignores the importance of context dependence altogether. It has
never been seriously defended by anyone, so it is only of theoretical interest.

2.2.1 Minimalism
The accepted form of literalism is known as semantic minimalism. This
is the position that grew from combining the ideas of the ideal language
philosophers and the ordinary language philosophers. This position is de-
fended by e.g. [Borg, 2004], [Cappelen and Lepore, 2005]. According to this
view, there is a class of words and grammatical constructions that is con-
text dependent, which includes indexical words such as “I” or “now”. This
class consists of indexicals, ambiguity, and ellipsis, and perhaps a few other
categories depending on what theory is discussed. If the referents of index-
icals are fixed, and ambiguities and ellipsis are resolved, one can construct
the semantic meaning of a sentence. Indexicality, ambiguity and ellipsis are
understood in a strict sense, so they are taken to be finite classes of words
or grammatical structures, and it is assumed to be straightforward to take
what they refer to from a given context. For example the word “I” always
refers to whoever utters it.

In the more formal variants of minimalism the tool of choice to represent
semantic meaning are formulas of first order logic or some extension thereof.
The meaning of single words is often represented as formulas in lambda
calculus. In the case of lexical ambiguity one has to choose which of two (or
more) formulas is the right one in a certain circumstance. These formulas
are then combined (the exact way in which this combination happens being
dependent on the specific theory) according to the syntactic structure of a
sentence until a single formula remains that represents the meaning of the
sentence. Indexicality is usually modeled by having the formula contain free
variables that are not resolved by the syntactic applications. These free
variables then need to be bound to an element from the context, according
to the rules that apply to the indexical word in question.

The semantic representation that results is the semantic meaning of a

9

sentence, and the formula represents the minimal conditions that must be
met before the sentence can be said to be strictly literally true. Often
there will be further conditions that must be satisfied before a sentence can
be used in a felicitous way. These further conditions are the domain of
pragmatics, where for example Gricean maxims must be taken into account.
However, these further conditions can not contradict the truth conditions of
the semantic representation in normal use10.

2.2.2 Indexicalism
Indexicalists, such as Jason Stanley and Zoltan Szabò ([Stanley, 2000],
[Stanley and Szabò, 2000]), acknowledge that more context dependence is
needed than what minimalism can offer. They propose to solve this prob-
lem by sticking to the general architecture that minimalism proposes, but
by including more indexical elements. They propose that a lot of words and
constructs can have hidden indexical properties, and therefore the seman-
tic representation can include a lot of contextual ingredients. For example,
the word “tall” presumably has a hidden indexical dependency on a ‘refer-
ence class’, against which the tallness of the object in question should be
evaluated.

Such an approach allows indexicalism to incorporate more contextual
information into the semantic representation than minimalism allows, but
this also forces indexicalists to specify what kinds of contextual information
can be relevant and what can not. Allowing the relevant context to be
infinitely large poses several problems, such as that the human mind can not
deal with infinite amounts of information. Different criteria for identifying
the relevant contextual information have been proposed by indexicalists,11
but according to other philosophers they do not work.12

Although the indexicalist approach is theoretically less elegant due to
the number of hidden variables proposed, it is nonetheless often a default
approach taken by linguists who are trying to analyze a specific phenomenon
and who are not necessarily aware of this discussion in the philosophy of
language. When one is only looking at a single phenomenon, that may be
solvable with only one or a few parameters that require contextual values,
but when one tries to combine solutions for several phenomena into a single
model, the number of variables can add up quickly.

10Where ‘normal use’ excludes things like irony or sarcasm. See also [Recanati, 2004,
specifically sections 1.2 and 1.3].

11 [Stanley, 2000, pp. 410–411]
12 [Recanati, 2004, ch. 7]; see also further down in subsection 2.3.3 in this paper, where

I discuss this point some more.

10

2.2.3 Other in-between approaches
It is also possible to define approaches that take some elements both from
literalistic approaches and contextualistic approaches, for example by pos-
tulating that both the semantic representation as defended by literalism
exists, and some other representation that is based on one of the contextu-
alistic approaches. Such approaches are at risk of being vulnerable to the
arguments that are used against both approaches, and of course they are
also less theoretically elegant. I will not go into these positions further,
but [Recanati, 2004, chapter 4] spends some more time on this.

2.2.4 Contextualism
Contextualists in general want to do away with the linguistic framework
as it is proposed by literalism. Contextualists underwrite the idea of se-
mantic underdetermination: that the information encoded in a sentence as
such underdetermines the proposition that is expressed by an utterance of
the sentence. Their attitude towards the semantic representation as de-
fended by minimalists can differ, some contextualists argue that it is merely
a useless abstraction, and others believe that such a minimalist semantic
representation can not exist.

Contextualists therefore believe that there should not be a strict dis-
tinction between a semantic representation that is only mildly context de-
pendent and pragmatic mechanisms that can not influence the core truth
conditions. Exactly how they do this can differ. As an illustrating example,
take the sentence “I’ve had breakfast”. In most circumstances, what some-
one who utters this wants to express is “I’ve had breakfast this morning”,
rather than “I’ve had breakfast at some time in my life”. According to the
minimalist position, the semantic representation and thus the literal truth
conditions for the sentence would correspond to the latter interpretation,
because the sentence does not specify a time period. The interpretation of
having had breakfast this morning is then derived pragmatically from the
semantic representation. Contextualists argue that the utterer of such a
sentence never intends to say anything like the minimalist semantic inter-
pretation, and so they offer models that allow contextual information to
be included in the semantic interpretation of the sentence. For a more de-
tailed explanation and reasons for why these intuitions matter I will refer
to [Recanati, 2004], especially chapter 1, and I will also touch on this in
subsection 2.3.1.

One of the challenges for contextualism is to describe how context influ-
ences the semantic representation without letting context define everything,
and thereby making the actual words that are used irrelevant. Recanati
in [Recanati, 2004, ch. 9] describes the process of modulation, whereby a
given interpretation of a phrase is adapted to the context at hand. This is

11

not so different from what happens at the pragmatic level according to lit-
eralists, but Recanati proposes that this process also takes place during the
semantic stage: every time after the representations of two words or con-
stituents are combined according to the syntactic structure of a sentence,
modulation is applied to the resulting combined representation. Then, at
the next step up in the syntactic tree where more constituent combination
happens, the best fitting modulated interpretations are selected for further
processing. This results in a final representation of the sentence meaning
that should be able to incorporate the required contextual information.

Jonathan Cohen gives a more figurative description. Based on the in-
sulationist view as he describes it (the idea that words have a mostly fixed
meaning and are not malleable) words can be seen as bricks used to build
a wall. Each brick keeps exactly the same shape independent of where in
a wall it is used. The interactionist view (that words can influence each
other’s meanings) is compared to building a wall from sand bags. Although
the bag and the sand in it has restrictions on what shapes it can adopt, the
final shape for each bag depends on the shape of the bags around it. If a
bag is used in a different wall it will adapt a different shape based on its
new sand bag environment. Similarly, the meanings of words adapt to the
meanings of the words around it.13

Like indexicalism, contextual approaches also need to describe what
kinds of context are relevant to the meaning of language. Again, different
authors give different solutions. Recanati offers the availability principle:
that ‘what is said’ (Grice’s alternative for semantic representation and also
used by Recanati, representing the truth conditions of a sentence) must be
intuitively available to the conversation participants. Some conditions ap-
ply in that the participants must be countable as ‘normal interpreters’, and
there are several ways to interpret ‘intuitively available’, which Recanati
also discusses.14

Other scholars that fall into the category of contextualism are John
Searle and Charles Travis.15 But I will not discuss this position further
at this point. I will discuss some of the arguments made more extensively
in the next sections.

2.2.5 Relativism
A relatively recent development in the discussion is the development of a
group of positions that claim that one cannot ascribe truth values to an
utterance, but only truth conditions. This group of positions is known
as ‘relativism’ and as ‘nonindexical contextualism’, and can be seen as a

13 [Cohen, 1986, pp. 223-224], quoted in [Recanati, 2004, p. 132].
14 [Recanati, 2004, section 1.7]
15e.g. [Travis, 1989], [Travis, 2000], [Travis, 2008], [Searle, 1978], [Searle, 1979], [Searle,

1980], [Searle, 1992]

12

variant of standard contextualism. Recanati [Recanati, 2007, p. 14] gives
the following example. Take the following sentences:

“I am French.”
“Recanati is French.”

If these sentences are both uttered by Recanati, they should have the
same meaning according to contextualism, since they are both uttered in the
same context.16 However, it is possible that Recanati has become delusional
and has forgotten that he is Recanati. In that case, he could still hold the
first sentence to be true, while believing that ‘Recanati’ is Italian because
of the name. Therefore, the argument goes, although these two sentences
express the same thought, that thought must still be evaluated against a
background knowledge, and therefore the thought representation itself must
still contain indexical elements.

A similar argument is made by MacFarlane ([MacFarlane, 2007], [Mac-
Farlane, 2009]). The mistake, he argues, that both indexicalism and contex-
tualism make is trying to assign truth values to utterances. Rather, what
should be assigned to utterances should be truth conditions, that can be
evaluated against a certain background. According to Recanati these truth
conditions can contain ‘essential indexicals’ that are not resolved merely
from the context of utterance, but depend on the circumstance of evalua-
tion.

Relativism can be seen either as an extreme form of contextualism or as
a moderate one. On the one hand relativists are willing to assign the same
meaning (denoted by truth conditions) to a sentence evaluated in different
circumstances of which standard contextualist would argue that they have
two meanings, and on the other hand they want to use additional information
in calculating the truth value of a sentence beyond only the context in which
it was uttered.

2.3 Important Arguments
I will now describe the most important arguments that play a role in the
discussion. The first two arguments, the ‘Inappropriateness Argument’ and
the ‘Context Shifting Argument’ are the two main arguments that con-
textualists make against literalists. The arguments apply mostly against
minimalism, and I will describe them as such. Then I will describe how

16For this argument to go through, we must accept that ‘context’ as it is used here
contains only information regarding the circumstances in which the utterance was uttered.
Circumstances in which the judgement of the truth or falsehood is made are apparently
excluded. Since there are a lot of variants of contextualism there are probably some that
disagrees with this assumption.

13

contextualists respond to indexicalism, and then I will discuss an important
argument against contextualism.

It is not my goal to give a completely thorough discussion of all the
arguments that are made, only to describe the ones that are important in
light of my thesis.

2.3.1 Inappropriateness Argument
This argument is simple: the semantic representation according to minimal-
ism is often not what we intuitively think we are saying, and it does not
even take part in deriving it, according to our intuitions. Therefore, it is
a mistake to postulate that we actually are saying such a thing. See for
example the treatment of the sentence “I’ve had breakfast” above in sub-
section 2.2.4. Someone who utters that sentence will not be aware of having
said something like “I’ve had breakfast at some time in my life”, rather the
interpretation of being about breakfast this morning comes unconsciously
and without effort, and is usually unproblematic.17 A theory that gives an
unintuitive semantic meaning for such a sentence therefore does not match
with the intuitively available data, according to contextualists.

This argument thus depends on the idea that our intuitions are relevant
for a semantic representation of the kind that minimalism uses. I will not
go further into the reasons of why this is so, but instead refer to Recanati
who says:

“In deciding whether a pragmatically determined aspect of ut-
terance meaning is part of what is said, that is, in making a
decision concerning what is said, we should always try to pre-
serve our pretheoretic intuitions on the matter.”18

2.3.2 Context Shifting
The most important argument contextualists bring to bear against literalists
and specifically minimalism is called the context shifting argument. The
idea is simple: Take a sentence or expression that contains no indexicals,
ambiguity or ellipsis. Now find two contexts in which the sentence has a
different truth value, so one in which it is true and one in which it is false
or not felicitous, as judged by the intuition of native language speakers.
This difference in truth value must then be caused in some way by the
context, and therefore the sentence carries at least one additional contextual
dependency.

17See [Bianchi, 2010, section 4.3]. Further discussion can be found in [Carston, 2002,
ch. 5], [Recanati, 2004, p. 14], [Recanati, 2001, p. 79–80]. Searle and Travis have similar
views concerning intuitive truth-conditions, cf. [Searle, 1992] and [Travis, 1997].

18 [Recanati, 1993, p. 248]

14

I will give some instances of this argument as they are applied against
minimalism. Their use in the debate between contextualists and indexical-
ists will be discussed in subsection 2.3.3.

Cat on the Mat

A lot of example sentences have been used to demonstrate this behavior. I
will describe three of them. The first is by Searle ([Searle, 1978]).

Take the following sentence:

“The cat is on the mat”

It seems like a simple sentence at first. It is true when the cat we are referring
to is on the mat we are referring to. But this simplicity depends (among
other things) on the background fact of us being on earth and experiencing
its gravitational pull. If we were in space, even though the cat and the mat
would be in exactly the same configuration relative to each other, we can
question if the sentence is still true.

The sentence can again be made usable by extending the context a bit
more. Assume we are in a spaceship strapped to our seat and somehow we
see cats and mats floating about outside through the spaceships window.
Strangely enough, they come in only exactly two configurations: one where
the cat is on the mat relative to the up and down of the spaceship chair
we are sitting in, and the other where the cat and the mat are in the same
configuration relative to each other, but upside down from our point of view
inside the spaceship chair. Now, if these cat-mat pairs are drifting by at
regular intervals, and you asked “which attitude is it now?”, it would be
felicitous to answer with “the cat is on the mat”.

The sentence contains no indexical words, and we can assume there are
no ambiguities either. This is a problem for minimalists because according
to them, such a sentence has only one semantic representation and it is the
same in all situations. If for this semantic representation only the cat and
the mat in question are important, and perhaps something like the presence
of a world or a gravitational field, this sentence should have the same truth
value in the case where cat-mat pairs are floating about in space in isolation
and the described situation in which we are watching the cat-mat pairs from
our spaceship.

Indexicalists, in turn, answer to this challenge by positing that a con-
struction such as “is on” has a hidden indexical variable that contains a
reference to the thing relative to which the ‘on’-ness is to be interpreted, or
more precisely what background we use to determine what is up and down.
In the normal case of a cat and a mat here on earth, this background would
be the earth itself. If the cat-mat pairs were floating about in space in iso-
lation there would be no felicitous way to resolve the indexicality, but there
would be again in the case where we are watching from our spaceship.

15

Cut the Grass

A second example also comes from Searle, and has also been widely reused
by many others. In the two sentences

“John cut the cake”
“John cut the grass”

the two uses of “cut” have a different meaning. In the first it means some-
thing related to cutting a thing into pieces with a knife, in the second sen-
tence we are talking about mowing the lawn. But the small piece of contex-
tual information provided by the words “cake” and “grass” is not enough to
fix the meaning of “cut”. Take the following situation:

Suppose you and I run a sod farm where we sell strips of grass
turf to people who want a lawn in a hurry. Suppose I say to you:
“Cut half an acre of grass for this customer”. I might mean not
that you should mow it, but that you should slice it into strips
as you could cut a cake or a loaf of bread19.

In the context set up here, “cut” again has a meaning that is very close to
that in “cut the cake”, rather than to “mowing the lawn”.

As in the previous example, the sentence contains no indexicals or other
constructions that according to minimalism should be context dependent.
Therefore the sentence of “John cut the grass” should only have one semantic
representation, and therefore should have the same truth conditions in the
case where it is used to talk about cutting the lawn and in the case of the
grass sod farm. However if, in the context of the sod farm where a request
was made to you to cut a grass sod to size, and what you actually did was
mow the piece of grass, you would not have fulfilled the request. And in the
same way, if you were asked to “cut the grass” in the lawn mowing sense
and you actually cut some pieces of grass sod out of the lawn, you would
not have fulfilled the request.

Indexicalists respond to this in the same way as with the previous ex-
ample. They propose that the semantic representation of ‘cut’ contains a
hidden indexical, that refers to the ‘mode of cutting’ that is to be consid-
ered. This mode of cutting then differs for the normal case of mowing the
lawn and when cutting grass sod.

Milk in the Fridge

A third example of such a context shifting argument comes from Charles
Travis in [Travis, 1989, p. 18, 19] (also treated in [Cappelen and Lepore,
2005]). Imagine the fridge in the house has only a small puddle of milk on
its floor, but no other milk in it. Now take the following two contexts:

19 [Searle, 1980, pp. 224–225], quoted in [Recanati, 2004, p. 133]

16

• Hugo is dejectedly stirring a cup of black coffee. Noticing this Odile
says “There is milk in the fridge”.

• Hugo has been cleaning the fridge. Odile opens the fridge door and
says “There is milk in the fridge”.

Although what was spoken was the same on both occasions, intuitively
Odile has spoken truth in the second context, but not in the first. The word
“milk” must therefore refer to something like “milk in a bottle usable for
coffee” in the first context, but not in the second, where it refers to any kind
of milk, or maybe “milk not properly located in a container”.

The argument applies against minimalism in the same way as the two
earlier ones: “There is milk in the fridge” contains no indexicals or ambi-
guities, and so should have only one semantic representation and one set
of truth conditions. Yet in the two situations in the example, in one Odile
can be said to have spoken truthful but not in the other. Indexicalists also
respond similarly, by proposing a hidden indexical for the kind of milk that
is to be considered.

2.3.3 Arguments against Indexicalism
The two arguments above do not apply as cleanly against indexicalism as
against minimalism. For every concrete example, indexicalism can posit that
there is a hidden indexical dependency and thus come up with a semantic
representation that conforms to our intuitions.

A contextualist can respond to this move by constructing a different
context shifting situation that is not covered by the indexicalist’s definition
of what words and constructs contain hidden indexicals. The indexicalist in
turn can extend his theory to cover these new cases. But the indexicalist
has a big disadvantage in this game, because he has to make sure his theory
covers all possible cases, while a contextualist only has to find one exception.

An indexicalist cannot postulate an infinite number of hidden indexicals
that work in the way that minimalism proposes, because each indexical
requires a description of how it influences the semantic representation of a
sentence. An infinite number of such indexicals would therefore imply an
infinitely large theory, and that would prohibit any systematic theorizing
about the meaning of language.

What is therefore needed are general rules that can apply to whole classes
of perceived context dependence at once. The first task indexicalism there-
fore has is deciding which kinds of context dependence are instances of hid-
den indexicals or other minimalist mechanisms, and which ones are caused
by pragmatic effects. The kinds of context dependence that are caused by
pragmatic effects should then not have an influence on the underlying seman-
tic representation and thus on the sentence’s truth conditions. According to
Recanati, the proposals for such general rules that have been made do not

17

hold up on closer inspection.20 As this is an argument that is internal to
the workings of indexicalism and is not directly related to contextualism, I
will not discuss it here but refer to the literature.

2.3.4 Formal Description of Contextualist Models
After having described the main arguments made by contextualists, I will
now turn to discuss some of the arguments made by literalists against them.

Literalism originated out of the tradition of ideal language philosophy,
which was originally based not on attempting to understand natural lan-
guage, but on understanding different kinds of logic. The logic tools de-
veloped there were then applied to natural language, most famously by
Montague and those following in his tradition.21 As a result formalizing the
theories that were developed has always been an important branch of the
research that is being done in this tradition.

For contextualism this is not so much so. While for example the Gricean
maxims that came out of the ordinary language philosophy program can be
very useful, to formalize them would require some way of formalizing a large
enough part of the context and the dialog that is taking place, and having
a way do decide which parts of contextual information are relevant in what
cases. A general problem that all context related theories suffer from has
always been that there is just too much contextual information that could be
relevant, and that it is impossible to describe it all in mathematical terms.

If a theory of meaning is to give a full description of the ‘meaning’ (for
some sense of ‘meaning’) of natural language, it will ultimately need to be
computable. A theory of meaning should be able to tell us what a certain
sentence (possibly used in a certain context) means. The only way to do
that without relying on the subjective judgment of a human interpreter is
by using math.

Such a complete, and as of yet hypothetical, theory of language should
also be able to explain the intuitive judgments people make regarding the
meaning of language, otherwise it is nothing but an arbitrary artificial lan-
guage that happens to look like a natural language, but that does not in
fact have the same meaning. Or in other words, a Luftgebäude22.

20In [Recanati, 2004, section 6.2], Recanati makes an argument similar to what I have
made above. In chapter 7 of idem Recanati attacks general criteria for deciding what
kinds of context dependence are caused by hidden indexicals, as defended by Stanley and
Szabó ([Stanley and Szabò, 2000]) who are the most important defenders of indexicalism.

21see [Montague, 1970a], [Montague, 1970b], [Montague, 1973], [Montague, 1974].
22Kripke writes the following: “I find myself torn between two conflicting feelings—a

‘Chomskyan’ feeling that deep regularities in natural language must be discoverable by
an appropriate combination of formal, empirical, and intuitive techniques, and a contrary
(late) ‘Wittgensteinian’ feeling that many of the ‘deep structures’, ‘logical forms’, ‘un-
derlying semantics’ and ‘ontological commitments’, etc., which philosophers have claimed
to discover by such techniques are Luftgebäude.” ([Kripke, 1976, 412 n. 56], quoted

18

The debate between literalism and contextualism takes place mainly in
the field of philosophy of language. As such the arguments made are mostly
of philosophical origin, and the proposals for contextualist models are usu-
ally descriptions at a philosophical level. While defenders of contextualism
do try to give rigid descriptions for their models they are still much vaguer
than what researchers in more formal branches of linguistics use.

There are also more sceptically inclined people who would argue that a
model that properly describes the meaning of natural language will neces-
sarily also be about as complex as the human brain. Obviously I disagree
with them and I think that while a model that gives exactly the same re-
sults as the human brain may need to be equally complex, it is possible to
define relatively simple and manageable models that can answer a lot of the
important questions.23

in [Pietrosky, 2005, p. 239]).
23For example see [Madsen, 2009]. Although he is talking about machine translation,

the same arguments also apply to formalizing the meaning of language

19

Chapter 3

Constraints on a Formal
Model of Language

The central goal of this thesis can be found in the argument described pre-
viously that there are no good ways to formalize contextualist approaches.
My goal with this thesis is to attack this argument head-on, and give a de-
scription of a contextualist model that can be implemented in a computer,
while not jeopardizing the other pro-contextualism arguments. I will also
provide such a computer implementation as a proof-of-concept.

In this chapter I will consider some weaker and stronger constraints for
both a theoretical model of the meaning of language and for a program
that implements such a model. I will start by laying out a specific non-
requirement, and also discuss some soft constraints that should be seen
more as sources of inspiration, and then move on to stricter constraints.

3.1 Non-Requirements
Since one of the things I have done is to build a computer program, I will
specifically look at some issues related to the computational side.

There have been lots of attempts to implement natural language seman-
tic systems in limited domains. Some examples are SHRDLU ([Winograd,
1971], [Charniak, 1972]), and a more recent one is Dipper ([Bos et al.,
2003]). Both of these are based on literalistic traditions, in the case of Dip-
per the system makes use of Discourse Representation Theory1 and proof
systems that try to rule out inconsistent or uninformative interpretations of
sentences. SHRDLU is based on the formal linguistic ideas from the 70s.
Both of these systems are limited by a small knowledge domain and both
can only handle a relatively strict subset of English.

The program I have implemented does not attempt or succeed in im-
1 [Geurts and Beaver, 2011], [Kamp, 1981], [Heim, 1982]

20

proving on these systems on these practical measures, it only tries to do
something superficially similar but based on a different theoretical footing.

3.2 Statistical Linguistic Systems
Besides linguistic systems that come out of academia as research tools there
is also a lot of generally usable applied language technology in existence.
Examples are speech recognizer systems or automatic translation systems
such as Google Translate2. What these systems have in common is that they
do not actually deal with semantics or meaning of the sort that linguistics is
traditionally interested in. What they do is transform one form of language
into another form of language. In the case of speech recognition this is from
sounds into text, and in the case of translation from text in one language to
text in another language. How that transformation is made is determined by
a statistical model that calculates the most likely target representation. The
reason why they do not do ‘real’ semantics is simple: it works better without
it. A well known quote on this is the one by Frederick Jelinek, who worked
on language technology systems for IBM: “Every time I fire a linguist, the
performance of the speech recognizer goes up”3. Google engineers have also
tried different linguistic approaches without much succes.4

The success of these statistic methods in language processing, and other
general considerations regarding information theory, have led some to pro-
pose that the brain can be seen as a statistical inference engine.5

The statistical linguistics approach in general is very different from the
approaches taken by traditional linguistics. To bridge this gap, there have
been attempts at developing statistical techniques that include a semantic

2http://translate.google.com (accessed Aug. 2013) For an academic publication on
which it is based see e.g. [Och et al., 1999].

3From http://en.wikipedia.org/wiki/Frederick_Jelinek. (accessed Aug. 2013)
The exact context of the quote is unclear, but wikipedia notes “Although its fame and
iconic status are undisputed (it was for example used as the title of a 1998 speech by Julia
Hirschberg),[1] its context is unknown and its specific wording and dating are unclear.
According to Daniel Jurafsky and James H. Martin, Jelinek himself recalled the quote
as “Anytime a linguist leaves the group the recognition rate goes up” and dated it to
December 1988 (Wayne, Pennsylvania), further noting that the quote did not appear in
the published proceeding,[2][3] whereas Roger K. Moore gave the wording as “Every time
we fire a phonetician/linguist, the performance of our system goes up” and dated it to
an IEEE Automatic Speech Recognition and Understanding workshop held in 1985.[4]
According to Steve Young, “the story goes that one day one of his linguists resigned, and
Fred decided to replace him not by another linguist but by an engineer. A little while later,
Fred noticed that the performance of his system improved significantly. So he encouraged
another linguist to find alternative employment, and sure enough performance improved
again. The rest as they say is history.”[5]” (see wikipedia for the applicable references).

4Unfortunately I am unable to find the reference, but I remember seeing it in a Google
TechTalk video online. See http://www.youtube.com/user/GoogleTechTalks (accessed
Aug. 2013).

5See e.g. [Doya et al., 2007].

21

http://translate.google.com
http://en.wikipedia.org/wiki/Frederick_Jelinek
http://www.youtube.com/user/GoogleTechTalks

representation. One such approach is to use as the semantic representation
of a word of interest, the bag of words that surround it.6 This results in
a semantic representation that can be used for some things—for example
the different meanings of the word “bank” would show a very different set
of surrounding words, with one containing words related to finance and the
other to furniture—but it is still a very much impoverished representation
compared to logical formulas. Making complicated derivations based on
bag-of-words representations is a whole lot harder than doing the same with
logical formulas.

While using statistical approaches is not a strict requirement, the success
of this approach argues in favor of using it for the kinds of problems it is good
at. For my project of developing a formalizable model of contextualism I
have taken this information as an additional guide, and I have come up with
a model that allows, at least in principle, for the use of statistical/bayesian
techniques, but that still has a rich representation of meaning that can be
used for example for making logical derivations.

3.3 Neurological Realism
A stricter constraint that any theory of language must meet is that it must
be possible to implement such a theory in architectures similar to the hu-
man brain, and provide performance comparable to the actual performance
humans have on linguistic tasks. Of course a theory that does not meet this
criterion can still be useful from a theoretical perspective, but it cannot be
the correct theory of what actually happens in someones head.

What the human brain is and is not capable of is not easy to say in
detail, but one thing that is known is that it is a massively parallel system
with very slow sequential performance, at least compared to contemporary
computers. Most brain neurons can fire at a rate of a few hundred hertz,7
so that is orders of magnitudes slower than current computer chips that run
at speeds measured in gigahertz. Since humans are capable of acting on a
linguistic stimulus within a few hundred microseconds, that only leaves a
few dozen linear steps at most that the brain has to parse and interpret the
language input. On the other hand, the brain is massively parallel, with
billions of neurons and trillions of synapses operating in parallel.

The implication of this for any theory on natural language processing
that tries to describe what humans actually do, is that the theory must be
implementable on a massively parallel system.

6 [Manning and Schütze, 1999, ch. 14]
7 [Coon, 1989]

22

3.4 Evolutionary Realism
Any model that purports to model a system in the body or brain has to ad-
here to another restriction: the system has to have evolved somehow, so the
model must allow for an evolutionary origin. What exactly can have evolved
and what cannot is hard to say for something so general as the human lin-
guistic capability, so I will limit myself to the most general evolutionary
constraints.

Biological changes start with mutations. The most likely mutations are
small mutations8. These small mutations can over time accumulate to pro-
duce larger collective changes. But for natural selection to promote a specific
mutation to a higher frequency within a population, that specific mutation
by itself must provide an increase in the probability that an individual will
successfully procreate (also known as ‘fitness’). What does not happen is
that one mutation rises in frequency in a population because it will later
on be beneficial when it is combined with a second mutation that does not
yet exist. Evolution is not directed at a goal and evolution does not plan
ahead. This means that any complex system that has evolved by accumu-
lating small mutations must have shown a gradual increase in utility, the
more of the mutations accumulated.

Larger mutations can also happen, for example pieces of DNA can ‘jump’
from one location in the DNA string to a different location, which can give
them a new function in a different protein. Sometimes small mutations in a
regulatory area in the genome can have very large effects, such as disabling
an entire gene or cutting the protein the gene codes for in half. Other large
changes can happen through viruses, which can transplant DNA matter
from one organism into a different unrelated organism.

All these mechanisms have one thing in common: they take existing
pieces of DNA with existing functionality and allow it to be used for a dif-
ferent function. However, the pieces must first have come into existence for
their original functional purpose. In general it can therefore be said that
evolution does not allow complex systems to arise out of nothing. Simpler,
yet functional, systems must have preceded it, or parts must have had a dif-
ferent function in some other system before they were re-used in the system
in question.

Applied to the brain, these restrictions apply to those systems and struc-
tures that are coded for in our DNA, so the ones which we are born with.
Knowledge that we learn has not evolved, so it does not need to abide by
this restriction, however the capacity to learn things does.

In the case of linguistics, then, this restriction applies to the elements of
a system that are postulated to be innate, and it applies especially to those

8Or more technically single nucleotide mutations, mutations which change, insert, or
delete a single letter from the DNA code.

23

elements that are supposed to be unique to humans. Systems and parts of
systems that are shared with different species probably also existed in our
shared ancestors, so they have had a very long time to evolve. Systems
that are unique to humans can only have started to evolve once the human
lineage split off from our nearest ape relatives, and so have had relatively
little time.

After explaining the linguistic model I have developed, I will also argue
that it is realistic from an evolutionary point of view.9

3.5 Learnability
As a last constraint that I will discuss, a linguistic model must be learnable
in as far as it is not innate. Children are able to learn language relatively
quickly with a limited amount of input. The input usually consists of positive
uses, and not nearly as much of negative examples or corrections. Despite
this, children learn language without apparent difficulty.10

A lot of studies have been done regarding how children learn language
and what kinds of language they can and cannot learn. There is a lot more
to say on this constraint than what I will discuss in this thesis due to time
limitations.

9Arguments of a similar type have been used before in the literature to question lin-
guistic models, for example [Parker, March 2006], who argues that Chomskyan syntactic
minimalism does not fit evolutionary restrictions.

10For some of the literature on this subject, see [Bertolo, 2001], [Fletcher and MacWhin-
ney, 1995] and [Ritchie and Bhatia, 1999].

24

Chapter 4

Overview of the Model

A core principle behind the model I have developed is that the human mind
contains a conceptual representation of the world around it. This conceptual
structure is not specific for language processing, but is the general purpose
representation that minds use to reason about the world around them. It is
stipulated to contain at least all declarative knowledge that someone has. A
meaning of a sentence, then, is some kind of datastructure that is part of or
is embedded in this conceptual representation. Parsing a natural language
sentence or expression becomes equivalent to finding the right mapping from
the input to the conceptual structure.

In this chapter I will start with a broad overview of the model and
compare it to some related proposals in the literature. The next chapter
contains a much more detailed description of the model.

4.1 Conceptual Graph
For my conceptual structure I have chosen a graph representation. Nodes in
the graph are concepts, and there can be all kinds of relations between them.1
The concepts represent (among other things) objects in the environment,
and in that way the conceptual graph models the external world.

The choice for the graph I have made is in part arbitrary. I have chosen
this representation mainly because it is simple and it works well enough, but
I do not defend the position that the graph structure as represented here is
a highly accurate model of how the brain represents information. What we
know about the brain in fact makes it likely that different kinds of represen-
tations are used in different parts of the brain, for instance there are a lot
of differences in the behavior of the short term working memory and long
term memory, so it seems likely that they also use different representations
for the information they deal with. What I will defend is that the brain has

1These relations themselves also correspond to concepts. The exact structure I use will
become more clear when we come to the actual implementation.

25

within it an encoded representation of the world around it, that thought
processes operate on this representation, and that ‘meanings’ of sentences
should be seen as structures within this representation.

The brain is finite, and therefore any kind of structure within it also has
to be finite. I therefore take the concept graph to be finite as well, encoding
a finite amount of information. However I propose that the graph can be
extended when needed, for example in response to linguistic input, but also
in response to sense data or just due to thought processes. For example
we know there are infinitely many numbers, but in this model only a finite
number of them can be represented as individual concepts at any one time.
But we can think of new numbers as we please, so such thoughts cause new
concepts to be inserted into the graph as needed.

4.2 Parsing
The parser is a relatively thin layer that tries to map input words and sen-
tences onto concepts in a recursive fashion. The choice of which concepts
is in part determined by which concepts exist in the graph and what rela-
tions they have. This means that the parser automatically takes contextual
information into account as that contextual and situational information is
also represented in the concept graph. All information that is present in the
concept graph is in principle available to the parser.2 This construction also
provides a natural limitation on what contextual information is relevant:
only information that is represented in the conceptual graph (i.e. the brain)
can influence the interpretation.

Since parsing is a task of mapping one set onto another set, it is (at
least in principle) possible to apply probabilistic techniques in the model to
calculate the most likely mapping rather than rule based techniques. This
and the next two chapters give some examples of how this could work, but
other ways may be possible as well.

4.3 Name
I have decided to name the general framework “direct probabilistic seman-
tics” or DPS. Calling it ‘the model’ all the time in this thesis did not seem
like a good idea, so naming it is better. The name emphasizes the direct
interpretation, without going through several intermediate logical or other
forms and which requires the existence of some kind of world representation
in the mind, and the possibility of using probabilistic techniques in making
that interpretation.

2That is in contrast to e.g. [Asher and Pustejovsky, 2005, p. 3], who argue for a ‘glue
logic’ that specifically does not have access to all general purpose semantic knowledge.

26

4.4 Related Proposals in the Literature
The proposal as described here is not is not totally new in the literature.
Proposals have been made before that have quite a bit of similarities with
what I propose here. However as far as I am aware none of them have been
developed formally anywhere.

One of them is the ‘conduit metaphor’, a metaphor described by Michael
J. Reddy [Reddy, 1979]3. He argues that people tend to conceive of language
as a conduit, through which thoughts can be transferred to other people. Ac-
cording to Reddy such a conception is naive. Thoughts cannot be packaged
into language and transmitted to another person.

A better way to look at language, Reddy argues, is the ‘toolmaker
metaphor’. In this metaphor several people who live in very different envi-
ronments and who do not have a shared language can only communicate by
sending drawings to each other. They use this to send each other blueprints
of tools they have built, but since each lives in a different environment where
different materials are available and different problems are important, they
do not always interpret the blue prints as intended by the sender. Each
applies and adapts the blueprints he receives to the problems in their en-
vironment and the materials that are available. The people then also send
their adapted blueprints back to the others, and the process repeats. The
tools each person ends up with are partially similar to each other, but also
different because they exist in different environments.

If language worked like a conduit, the people in the metaphor would be
able to send replicas of the tools themselves to each other. Each would then
be able to see exactly what the tool looks like and what materials it is made
of. But since they are limited to sending blueprints, their communication is
more difficult, yet in no way impossible.

A second similar proposal is expressed in [Pietrosky, 2005], where Piet-
rosky argues against a too close relation between meaning and truth and
in favor of linguistic meaning being something that is internal to the inter-
preter and subject to a massive interaction effect between properties of the
utterance in question and other factors not part of the utterance. Pietrosky
argues within a line of reasoning known as ‘internalist semantics’, a view
that is also argued for by Chomsky in [Chomsky, 2000]. However this idea
apparently also suffers from the vagueness of being a philosophical theory
that started out from disagreeing with other semantic approaches and not
being very well formalized.4 Although my approach does not match exactly
with this form of internalist semantics, I think it is close enough to be helpful

3See also the wikipedia article on the conduit metaphor: http://en.wikipedia.org/
wiki/Conduit_metaphor.

4See also the description in the Stanford Encyclopedia of Philosophy ([Speaks,
2011]): http://plato.stanford.edu/archives/sum2011/entries/meaning/#ChoIntSem,
and [Pietrosky, 2003].

27

http://en.wikipedia.org/wiki/Conduit_metaphor
http://en.wikipedia.org/wiki/Conduit_metaphor
http://plato.stanford.edu/archives/sum2011/entries/meaning/#ChoIntSem

in clearing up some of the vaguenesses involved.

4.5 Core Differences with Standard Approaches
One of the central differences between the above approaches and the DPS
model on the one hand, and most mainline approaches to semantics on the
other hand, is that the “meaning” of language is explicitly described as some-
thing personal rather than a mathematical entity that exists independent of
any subject. A second difference is that (at least in the DPS model) logical
formulas are not used as denotations of meanings, as is common in many
approaches. This implies that the truth conditions of sentences take a much
less central role. For the DPS model, in the case of some sentences such as
predicative sentences, it can be possible to evaluate the conceptual struc-
tures into which these sentences are interpreted to get a truth value, but
this value does not represent some kind of absolute truth value, but rather
whether the sentence is believed to be true by the listener. The actual truth
of a sentence depends on how accurately the conceptual graph models the
external world, which is something that cannot be assessed easily (see for a
more detailed discussion of this point subsection 7.1.2 on page 64).

The DPS model also differs from many existing approaches in that there
is no direct way of defining what the ‘correct’ interpretation of a sentence
is. Communication can be said to have succeeded to the degree in which the
meaning the listener ascribes to an expression is isomorphic to the meaning
that the speaker tried to convey. One can say that the correct interpretation
of an expression is whatever the speaker meant, but there is no primitive
notion of what the correct interpretation for a string of words is according
to the English language, or even of what a language is.

A ‘language’ can only be defined in a statistical sense as the group of
people who all interpret certain word combinations in isomorphic ways, and
the ‘correct’ interpretation for a sentence as used in a specific context then
is what this group says is the correct interpretation. With a language such
as English or other languages that are spoken by large groups of people,
there will be an overwhelmingly large majority that agrees on a specific in-
terpretation for most non-complicated sentences. But there will also always
exist example sentences, likely more complicated or contrived ones, on which
there is no large majority consensus. It is not a failure of linguistics that
it fails to uncover the ‘correct’ interpretation of such sentences, it is just
that the statistical nature of what a ‘language’ is means that for some sen-
tences there is simply no fact of the matter to discover regarding its ‘correct’
English interpretation.5

5Chomsky in [Chomsky, 1986] describes a similar position, but in respect to syntax
rather than semantics.

28

Chapter 5

Detailed Model Description

In this chapter I will describe the details of the DPS model. At the end I
will discuss an example to illustrate how the proposed mechanisms work.

5.1 Concept Graph
The conceptual graph needs to be able to represent any kind of information
that is represented in the human brain. Therefore it needs to be very general.
The graph structure I have chosen consists of a set of nodes and a number
of edges over them. The nodes in the graph correspond to concepts, and as
such they represent (among other things) objects in the environment, but
also more abstract things such as object properties and relations between
objects.

Since there can be different kinds of relations between objects, the graph
needs to be able to represent different kinds of relations. Since not all rela-
tions that need to be represented will be symmetric, we will use a directed
graph. The edges of the graph will be labeled with sets of concepts them-
selves to differentiate different relations.

Figure 5.1 gives a graph description of a simple scene with three objects
in it, a green triangle, a red triangle, and a red square. Note that the names
in the node are only there to identify the nodes to the reader more easily,
they do not form part of the graph structure.

The graph as displayed here only allows for the representation of a single
state of the world (at least if the world is represented as in this example). To
allow for a straightforward description of more than one state of the world,
or more than one world, we can extend the labels on the edges to be sets of
tuples of concepts, where the first element of the tuple is the world, and the
second is the relation. Worlds can be encoded as concepts in the same way
as relations are. So, in Figure 5.2, we see a graph that contains two worlds,
‘t1’ and ‘t2’. If ‘t1’ and ‘t2’ are interpreted as representing two points in
time, this graph represents a scene in which at t1 there are a green triangle,

29

Fi
gu

re
5.

1:
C

on
ce

pt
G

ra
ph bl

ue

gr
ee

n

{i
sc

ol
or

}

{i
sc

ol
or

}

{i
sc

ol
or

}

{i
ns

ta
nc

eo
f}

{i
ns

ta
nc

eo
f}

{i
ns

ta
nc

eo
f}

{i
ns

ta
nc

eo
f}

{i
ns

ta
nc

eo
f}

{i
ns

ta
nc

eo
f}

{s
ub

ty
pe

of
}

{s
ub

ty
pe

of
}

{i
ns

ta
nc

eo
f}

{i
ns

ta
nc

eo
f}

{i
ns

ta
nc

eo
f}

ka
te

go
ry

{i
ns

ta
nc

eo
f}

{i
ns

ta
nc

eo
f}

isc
ol

or

su
bt

yp
e

in
st

an
ce

of

re
la

tio
n

re
d

tr
1

tr
2

sq
1

{i
ns

ta
nc

eo
f}

ob
je

ct

tr
ia

ng
le

sq
ua

re

co
lo

r

30

Fi
gu

re
5.

2:
C

on
ce

pt
G

ra
ph

(m
ul

tip
le

wo
rld

s)

<
t2

,
in

st
an

ce
of

>
}

{<
t1

,
in

st
an

ce
of

>
,

<
t2

,
in

st
an

ce
of

>
}

{<
t1

,
in

st
an

ce
of

>
,

<
t2

,
in

st
an

ce
of

>
}

{<
t1

,
in

st
an

ce
of

>
,

<
t2

,
in

st
an

ce
of

>
}

{<
t1

,
in

st
an

ce
of

>
,

<
t2

,
in

st
an

ce
of

>
}

{<
t1

,
in

st
an

ce
of

>
,

<
t2

,
in

st
an

ce
of

>
}

{<
t1

,
in

st
an

ce
of

>
,

<
t2

,
in

st
an

ce
of

>
}

{<
t1

,
in

st
an

ce
of

>
,

<
t2

,
in

st
an

ce
of

>
}

{<
t1

,
in

st
an

ce
of

>
,

<
t2

,
in

st
an

ce
of

>
}

{<
t1

,
in

st
an

ce
of

>
,

{<
t1

,
su

bt
yp

eo
f>

,
<

t2
,

su
bt

yp
eo

f>
}

{<
t1

,
su

bt
yp

eo
f>

,
<

t2
,

su
bt

yp
eo

f>
}

<
t2

,
in

st
an

ce
of

>
}

{<
t1

,
in

st
an

ce
of

>
,

{<
t1

,
is

co
lo

r>
,

<
t2

,
is

co
lo

r>
}

<
t2

,
in

st
an

ce
of

>
}

{<
t1

,
in

st
an

ce
of

>
,

<
t2

,
in

st
an

ce
of

>
}

{<
t1

,
in

st
an

ce
of

>
,

<
t2

,
in

st
an

ce
of

>
}

{<
t1

,
in

st
an

ce
of

>
,

<
t2

,
in

st
an

ce
of

>
}

{<
t1

,
in

st
an

ce
of

>
,

<
t2

,
in

st
an

ce
of

>
}

{<
t1

,
in

st
an

ce
of

>
,

{<
t1

,
is

co
lo

r>
,

<
t2

,
is

co
lo

r>
}

bl
ue

gr
ee

nka
te

go
ry

isc
ol

or

su
bt

yp
e

in
st

an
ce

of

re
la

tio
n

wo
rld

t1
t2

re
d

tr
1

tr
2

sq
1

ob
je

ct

tr
ia

ng
le

sq
ua

re
{<

t1
,

is
co

lo
r>

}
{<

t2
,

is
co

lo
r>

}

co
lo

r

31

Fi
gu

re
5.

3:
C

on
ce

pt
G

ra
ph

(s
ep

ar
at

e
re

la
tio

ns
in

te
rp

re
ta

tio
n)

is
co

lo
r

(t
1)

bl
ue

gr
ee

nka
te

go
ry

isc
ol

or

su
bt

yp
e

in
st

an
ce

of

re
la

tio
n

wo
rld

t1
t2

re
d

tr
1

tr
2

sq
1

ob
je

ct

tr
ia

ng
le

sq
ua

re

co
lo

r

in
st

an
ce

of
(t

1,
t2

)
is

co
lo

r
(t

2)

32

a red triangle, and a red square, and at t2 the red square has become blue.1
Mathematically, it is possible to use a simpler representation than the

graph with labeled edges as described above. We can represent the graph
as a set of nodes plus a set of relations. The relations can be encoded as
4-tuples

⟨world, type, subject, target⟩

where each of world, type, subject, and target are concepts. World and type
represent the labels that are connected to an edge, and subject and target
represent the nodes that the edge connects. The graph from Figure 5.2 can
thus be represented as the following mathematical object

⟨C, R⟩

where
R ⊆ {⟨w, t, s, g⟩ | w, t, s, g ∈ C}

The set C consists of 18 items, which for the ease of understanding the
graph can be identified with the following names:

kategory2
object
color
relation
world
square

triangle
red
green
blue
subtypeof
instanceof

iscolor
tr1
tr2
sq1
t1
t2

The set of 4-tuples R is the following:

⟨t1, instanceof, kategory, kategory⟩
⟨t1, instanceof, object, kategory⟩
⟨t1, instanceof, color, kategory⟩
⟨t1, instanceof, relation, kategory⟩
⟨t1, instanceof, world, kategory⟩

⟨t1, instanceof, square, object⟩
⟨t1, instanceof, triangle, object⟩

⟨t1, instanceof, red, color⟩
⟨t1, instanceof, green, color⟩

⟨t1, instanceof, blue, color⟩

⟨t1, instanceof, iscolor, relation⟩
⟨t1, instanceof, subtypeof, relation⟩
⟨t1, instanceof, instanceof, relation⟩

⟨t1, instanceof, t1, world⟩
⟨t1, instanceof, t2, world⟩

⟨t1, instanceof, tr1, triangle⟩
⟨t1, instanceof, tr2, triangle⟩

1So, I have chosen to make relations world-relative but concepts themselves absolute.
An intuitive justification for this is that we tend to think of objects as keeping the same
identity over time, rather than each instant in time consisting of different but related
objects. If an object does not exist in every world that is modeled in the graph, this can
be modeled by having an ‘exists-in’ relation between objects and worlds where appropriate.

2The name ‘kategory’ is a pun on ‘Kantian category’.

33

⟨t1, instanceof, sq1, square⟩

⟨t1, iscolor, tr1, green⟩
⟨t1, iscolor, tr2, red⟩
⟨t1, iscolor, sq1, red⟩

⟨t2, instanceof, kategory, kategory⟩
⟨t2, instanceof, object, kategory⟩
⟨t2, instanceof, color, kategory⟩
⟨t2, instanceof, relation, kategory⟩
⟨t2, instanceof, world, kategory⟩

⟨t2, instanceof, square, object⟩
⟨t2, instanceof, triangle, object⟩

⟨t2, instanceof, red, color⟩
⟨t2, instanceof, green, color⟩

⟨t2, instanceof, blue, color⟩

⟨t2, instanceof, iscolor, relation⟩
⟨t2, instanceof, subtypeof, relation⟩
⟨t2, instanceof, instanceof, relation⟩

⟨t2, instanceof, t1, world⟩
⟨t2, instanceof, t2, world⟩

⟨t2, instanceof, tr1, triangle⟩
⟨t2, instanceof, tr2, triangle⟩
⟨t2, instanceof, sq1, square⟩

⟨t2, iscolor, tr1, green⟩
⟨t2, iscolor, tr2, red⟩
⟨t2, iscolor, sq1, blue⟩

There are a few things to note about this representation. First of all,
concepts (the nodes in the graph) can represent very different kinds of things.
What a concept represents depends only on the labels of the relations it has.
There are no further types associated with the concepts apart from those
encoded in their relations. This makes the graph very flexible and allows it
to represent many different things.3

The graph can be interpreted as a graph with labeled edges, but a dif-
ferent and for our purposes simpler interpretation is to see the graph as
a set of nodes on which multiple relations are defined. A relation in this
interpretation consists of all the edges that have a specific tuple in their
label sets. Thus, we can talk about the ‘iscolor’ relation in world ‘t1’, or
the ‘instanceof’ relation in world ‘t2’. Another natural way to talk about a
relation that exists in multiple worlds that represent different points in time
is to talk about for example the ‘iscolor’ relation that changes in time, and
is different at time ‘t1’ and at time ‘t2’. This interpretation is displayed in
Figure 5.3.

From here on I will talk about the graph and the set of tuples R as
containing multiple relations, for example I will talk about ‘sq1’ as having
a ‘iscolor’ relation to ‘blue’ at time ‘t2’. The ‘instanceof’ relation functions
as a description of the types of concepts. As such I will talk about ‘sq1’ as
being a ‘square’.

3If the relations are given the interpretation as suggested by their names in Figure 5.2,
the flexibility of the graph also allows representation of states of the world that cannot
exist, such as a thing being a square triangle. I consider this a feature, since human
thought is not always consistent. However I will not explore this possibility in depth and
I will here only consider “sensible” graphs.

34

The graph as represented here has an implicit restriction that any con-
cepts that appear as the first element of an edge label tuple must be a world,
i.e. must have a relation with an ‘instanceof’ type to the ‘world’ concept,
and similarly a concept that appears as the second element of such a label
must be a relation. In principle it would be possible to define graphs similar
to the ones here that violate such conditions, but I will not consider them
here. Such graphs should be seen as not well formed for the purposes I have
with them here.

Similarly this representation allows for things like the ‘instanceof’ rela-
tion changing from ‘t1’ to ‘t2’ so that e.g. ‘color’ stops being a ‘kategory’. I
will also not consider such changes. All kategories and ‘instanceof’ relations
should be considered to be the same in every world, or, in other words,
immutable.

As the listing of the relation tuples above shows, having multiple worlds
can quickly make for a large number of relation tuples. All but one of the
relation tuples in R above are the same for ‘t1’ and ‘t2’, so clearly this is not
a very efficient representation if there are a large number of worlds. While
this is not a concern for math, any kind of implementation would need to
be more efficient in storing such a graph.

As a last note, one may wonder how this graph structure can represent
the external world if the nodes themselves do not carry any name or meaning
apart from their relations, or if they are not grounded in any way. To model
the external world, some of the nodes should be treated specially, such as
‘kategory’ and instances thereof, and things like colors. It is assumed that
instances of ‘kategory’ have a special status as things that are innately built
into our brain. For sense experiences specific concepts such as colors are
assumed to be innately connected to the sense organs, thus grounding the
model in our sense experiences. The model as presented here does not
implement this in order to make things no more complex than needed.

5.2 Parser
As noted in section 4.2, the parser has the task of mapping input sentences
into concepts. The parser algorithm is based on a standard chart parser.
The input to the parser is a list of words. The parser consists of a set of
pattern matchers. Each matcher looks for a specific pattern in the parse
tree that is being constructed, and if it finds one it creates one or more
new parse tree nodes. (Multiple parse tree nodes can be used to represent
ambiguities.) As such, such pattern matchers corresponds to a production
rules in standard parsing algorithms.

Contrary to most natural language processing systems, a parse tree is
not a self-contained mathematical entity, rather it contains concepts from
the concept graph. Each node of a parse tree consists of a number of items,

35

Figure 5.4: Parse Example (“the square”)

the square

{}
<‘square’>

<‘constraint(square)’>
{"type"=
"constraint_instance"}

<‘sq1’>
{}

the most important one being a concept. Every node contains a concept
which is the meaning of that node. An exception to this is the list of input
words, which is also converted into a series of parse tree nodes to form the
bottom layer of the parse tree.

Besides a concept, each node also contains a set of syntactic features rep-
resented as key-value pairs. Furthermore a node also contains information
on for which input words it is a parse. Lets have a look at an example.

Figure 5.4 contains an example parse tree. I use the notation “<‘square’>”
to indicate that a parse node includes a reference to the concept named
“square” in the concept graph. The curly braces indicate the syntactic fea-
tures carried by a parse node. The parse tree in this figure was generated
by three pattern matchers, against the concept graph of Figure 5.2. The
first one recognizes the word “square” and creates a parse tree node with
the ‘square’ concept in it. A second recognizer recognizes parse tree nodes
that contain instances of ‘kategory’ or concepts that are a subtype of such
instances. If it finds one it creates a new parse tree node that contains a
newly created concept, for this example I have named the new node “con-
straint(square)”. This new concept has in the concept graph an ‘instanceof’
relation with ‘square’, because it represents the constraint of being a square.
Such a concept is a temporary one, that is created by the parser and that
should be removed if it is no longer useful, i.e. after the parse is completed
and the result processed. The role of this concept as a constraint is marked
by the syntactic feature ‘type=constraint_instance’.4

4In a larger concept graph the status of such a concept can also be represented as
e.g. a special kind of ‘istype’ concept relation to a ‘constraint’ concept. In the graph of

36

Figure 5.5: Parse Example (“the triangle”)

the

{}

"constraint_instance"}
{"type"=
<‘constraint(triangle)’>

<‘triangle’>

{} {}
<‘tr1’> <‘tr2’>

triangle

A third recognizer recognizes a definite article and a constraint.5 It
then produces parse nodes for every (non-temporary) concept in the concept
graph that matches this constraint. If there is more than one match, the
parse tree has multiple interpretations, as shown in Figure 5.5.6 How to
disambiguate them will be discussed in the following section.

It may seem unnecessarily complex to use both relations in the graph
and syntactic features to model information. This is needed because a single
concept can be referred to in different ways, and such different expressions
can have different syntactic features, such as gender. For instance, the
Dutch phrases “de driehoek” (“the triangle”) and “het ding” (“the thing”)
may both refer to the same entity, but “driehoek” in dutch has male gender
while “ding” has neutral gender. In the parse tree as described here both
phrases would be interpreted as the same concept, so features such as gender
can not be properties of a concept.

Figure 5.2 this is not implemented, but it is in the implementation described in chapter 6.
5In the implementation program described in chapter 6, which works with Dutch input,

the equivalent pattern matcher also has to ensure the gender of the article and constraint
node match. To allow this the parse nodes carry an extra syntactic feature for “gender”.

6So, the parse ‘tree’ is not in fact strictly a tree, but a directed acyclic graph (DAG).
A DAG such as this one can be seen as a set of trees, where the trees may share nodes.
I will continue referring to the result of the parser as a tree since in the end we are only
interested in one tree contained in the DAG.

37

5.3 Disambiguation
The parsing algorithm as described above does not disambiguate ambiguous
phrases such as Figure 5.5. The way I will do this is by attaching an extra
piece of information to each node in the parse tree, a probability value. This
is a real number between 0 and 1, which indicates how likely it is that the
node it is part of is the best parse for a phrase. The absolute value for a node
probability is not important, only its value relative to other parse nodes that
cover the same set of input words. In other words, the probability is only
used to pick the best node in case of ambiguity.

To calculate such probability values, we need two pieces of information.
The first a prior probability of a certain concept being used, and the second
one is how the words that are used in an input phrase interact with this
prior probability.

The second one, the information on how input words interact with the
prior probability, only plays a role during the parsing of a single sentence,
phrase, or other entity that can be parsed as a whole. The prior probabil-
ity, on the other hand, can depend on a lot of factors. It is in this prior
probability that most contextual information comes in.

5.3.1 Activation
The prior probability can be broken down into at least two factors. The
first one is the probability in isolation that a certain concept will be used in
a parse tree. This value can thus be modeled as a single number for each
concept. Such values can be said to correspond roughly to the salience of
objects in a certain situation. As such, these values differ from one situation
to the next. I will call this value the activation value of a concept.

Both the concept graph and the corresponding activation values are stip-
ulated to be implemented in the brain. Since the probability of certain con-
cepts being used in conversation depends heavily on the situation a person
and thus his brain finds himself in, the activation values should change de-
pending on the context. For example, if there is a conversation going on
about a certain topic, then concepts that correspond to things that are re-
lated to this topic would have a high probability of being used in a parse
tree. If the conversation shifts to a different topic, different concepts would
become more likely. Similar changes should happen depending on the phys-
ical environment someone finds himself in, and probably a number of other
contextual factors can be important as well. I will come back to this in later
sections.

38

5.3.2 Applicability Factors
The second factor is how well certain concepts can be combined in a relation.
Some relations can be applied to certain types of objects, for example the
relation of being a color in the graph from Figure 5.2 can apply to instances
of ‘object’, but not to e.g. points in time ‘t1’ and ‘t2’. In that case this
factor is binary: some concepts can have a color relation and some can not,
but in general this should be modeled as a continuous value. I will call this
value an ‘applicability factor’.

If we look back at the “cut the grass” example from subsection 2.3.2,
we can model the situation as there being two kinds of cutting operations,
both represented as concepts, one for cutting as it is done with grass sods,
and one for mowing grass. We can model ‘grass’ and ‘grass sod’ as two
different concepts, both subtypes of ‘object’. Then, the likelihood of the
‘mow’ operation being applied to instances of ‘grass’ is much higher than the
likelihood of it being applied to instances of ‘grass sod’, so the applicability
factor of ‘mow’ applied to ‘grass’ is larger than that of ‘mow’ applied to
‘grass sod’. Similarly the ‘grass sod cutting’ operation applied to instances
of ‘grass sod’ has a higher applicability factor than it applied to instances
of ‘grass’

Such applicability factors can exist for classes of things in general, such as
‘grass’ and ‘grass sod’ as in the previous paragraph, but it can also apply to
specific objects. For instance, if you know that your car has a large tendency
to stall, the probability of the concept that represents stalling being applied
to the concept that represents your car is higher than that concept of stalling
being applied to other instances of the ‘car’ concept.

I should also note that while in the “cutting the grass” example only the
direct object of the cutting verb is discussed, in general applicability factors
can also be about the subject or combinations of subject, operation, and
object.

5.3.3 Relatedness Weights
In subsection 5.3.1 I have discussed what activation is supposed to represent,
and noted that it should change depending on the situation. I will now have
a look at some ways in which this activation can change.

The simplest way is that if a certain concept is used in a conversation,
it is likely to be used again. So, after a concept is used as part of the inter-
pretation that is selected as the best parse of an input phrase, its activation
should be boosted. But the same holds true for objects that are in our sur-
roundings, so if a particular object is seen or sensed in some other way the
concept that represents it should receive some extra activation.

A concept is also more likely to be used in a conversation if it is closely
related to a concept that has just been used. So, concepts should receive

39

Figure 5.6: Spreading of Activation Example

0,81,0 0,24 0,072
0,30,30,8

0,5

C

A D EB
0,5

Activated

extra activation if a concept they are closely related to gets a higher acti-
vation. For example, if we talk about boats, the chance of sails coming up
in the conversation is much larger than if we are talking about mountain
climbing.

This can be modeled by having weights associated with pairs of concepts.
Pairs of concepts that are closely related have high such weights, and con-
cepts that are not have low weights. These weights can also be represented
as real numbers between 0 and 1. I will name these weights ‘relatedness
weights’. If one concept is activated, other concepts receive an amount of
activation relative to the value of the relatedness weight they have with the
activated concept. These concepts that receive such secondary activation
then again cause extra activation in concepts that are related to them, and
so on. So the activation spreads through the concept nodes. Since the
weights are numbers between 0 and 1 and the activation a node receives is
proportional to the weight, the activation a related concept receives is al-
ways smaller than that what the first concept received. As such, the amount
of activation that is added dies out the further it spreads through indirectly
related concepts.7

Figure 5.6 displays a simple example of how a simple case of activation
spreading works. The nodes in this example are nodes in the concept graph,
the edges that are displayed are not concept relations, but indicate that there
is a relatedness weight between the two concepts. Concept A is activated to
a value of 1.0, this activation is spread through the network multiplied by
the weights that are displayed next to the edges. As the nodes are further
away from the originally activated node, their activation dies out quickly.8

7Supporting evidence that the brain does something like this can be found in priming
effects, for instance when a test subject is exposed to the word “table” he or she will be
able to identify the word “chair” more quickly. See also [Reisberg, 2007, p. 255, 517].

8This example does not deal with the case where a circular path exists in the graph.
In such a case one node can receive activation from several nodes with which it has a
relatedness weight higher than 0. There are different ways in which details such as this
could be handled, the best choice would need to be a matter of additional research. In

40

Modeled in this way, relatedness of concepts for the purpose of activa-
tion spreading can be modeled independently of the concept relations these
concepts have in the concept graph. Most of the time pairs of concepts
that have a relatedness weight of more than 0 will also have some kind of
relation in the concept graph, but these two things should be distinguished
conceptually and they do not necessarily need to coincide.

If a concept is not used again in a conversation for some time, or if an
object that a concept represents is no longer present in ones surrounding,
the activation of these concepts should be lowered again. This can be im-
plemented by having the activation of concepts fall gradually over time. If
the concepts often receive new activation by being used or because they
have high relation weights to concepts that are used, they will on average
maintain a higher activation value than concepts that are not used often.

5.3.4 Contrast Sets
One final factor that can influences the salience of specifically relations is the
contrast set of things that are currently under consideration.9 If people are
presented with a group of items, they will focus on the things in which they
differ and tend to ignore ways in which they are equal. Such behavior can
be implemented in the current model by boosting the activation of relation
concepts if a number of objects with high activations all have this type of
relation with another concept, and if the targets of these relations tend to
differ.

If we go back to the graph in Figure 5.2, if there would be more instances
of squares and triangles, and if many of them had a high activation, and if
those with high activation had many different colors, the ‘iscolor’ concept
would be activated more. If, on the other hand, most such objects with a
high activation had the same color, the ‘iscolor’ concept would not receive
extra activation.

5.3.5 Other Influences on Activation
It could be that there are other factors important in how the activation
changes that can not be captured by the mechanisms described above. If
so, that may be topics for future research. The mechanisms described here
seem to be sufficient for many often used examples.

5.3.6 Usage in the Parser
Now that I have given a description of what mechanisms should determine
the brain’s model of the prior probability of a given concept being used in
section 6.4, where I describe the implemented program, I give a more detailed algorithm
for one way to handle this.

9 [Tversky, 1997]

41

Figure 5.7: A parse tree being built

greenthe

{} {}

"constraint_instance"} "constraint_instance"}
{"type"=

<‘green’> <‘square’>

<‘constraint(square)’>
{"type"=

<‘constraint(
iscolor=green)’>

square

iscolor=green)’>
<‘constraint(square,

...

language, we will move to how this information can be used to disambiguate
multiple possible parses.

As stated before, each parse node in the parse tree (or DAG) contains
among other things a probability value between 0 and 1. This probability
value is calculated based on the activation values and other weights discussed
above. The exact way in which such variables influence the probability value
of a parse node depends on the pattern matcher that generates the node. In
general, the probability value of a parse node corresponds to the activation
value of the concept in the node. If a parse node has two parents that
both contain concepts, the activation value of the node will also take the
probabilities of the parent nodes into account. For pattern matchers that
for example construct constraint concepts in which a certain property is
applied to an instance of a certain object type, the probability depends on
the previous factors and also on the applicability factor of the property.

I will illustrate that last case with an example. In Figure 5.7 we see a
parse tree being built for the phrase “the green square”. Nodes have been
constructed that represent the constraint of having the ‘iscolor’ relation
to the ‘green’ concept, and the constraint of being an instance of ‘square’.
The probability values of these two nodes depend on the activations of the
‘iscolor’ and ‘green’ concepts and ‘instanceof’ and ‘square’ concepts respec-
tively. The next thing that will be done is constructing a parse node that
contains a combined constraint of being a green square. The probability
of this node will be calculated based on the probabilities of the other two

42

constraint nodes, which become its children, and the applicability factor of
having an ‘iscolor’ relation between instances of ‘square’ and instances of
‘color’. (Unless there is a more specific applicability factor for having the
‘iscolor’ relation between the concepts of ‘green’ and instances of ‘square’,
but we will suppose there are not.) While this example shows the combina-
tion of an adjective and a noun, the same thing happens if a verb is applied
to a (phrase denoting an) object.

5.3.7 Calculation of Weights
In the above description I have not specified any concrete formulas for how
to combine different values or weights. The simplest way to do that is to
just multiply the values together. Since all values are real numbers between
0 and 1, the result will also be a number between 0 and 1. This may seem
to have the disadvantage that the resulting probability values can get very
small if they are the result of a large number of multiplications, but since
the value of these probabilities only matters in relation to the probabilities
of other parse nodes this should not matter because the other values should
be the result of a similar number of multiplications.

The choice for doing simple multiplication is a bit tentative. Given a
lack of specific evidence for a specific kind of combination function multi-
plication wins on grounds of simplicity, but if evidence for a specific kind
of combination function became available this model should probably be
updated accordingly.

5.4 An Example
I will now consider a more complex example in more detail, the example of
“cut the grass” that has been discussed before in subsection 2.3.2 as part of
the context shifting argument.

Any kind of relevant context will need to be represented in the concept
graph. We will suppose a concept graph that contains at least concepts
for ‘grass field’, ‘grass sod’, ‘mow’, ‘grass-sod-cut’, and instances of ‘grass
field’ and ‘grass sod’. I will name the instances of ‘grass field’ and ‘grass
sod’ as ‘f1’, ‘f2’, etc. for the fields and ‘s1’, ‘s2’, etc. for the sods. The
graph additionally contains concepts of ‘imperative-action’ and two rela-
tions ‘action-type’ and ‘action-target’. The concept graph is stipulated to
represent everything that someone knows (at least explicitly), therefore ev-
erything that someone knows about grass fields and grass sod should also be
encoded in the concept graph. Real world things like grass are very compli-
cated to describe completely in a mathematical sense, so it is not possible to
specify a full conceptual graph of everything that is related to ‘grass field’ or
‘grass sod’ in some way in a paper like this. So for this example we will focus

43

on only a small subset of this hypothetical graph, which are the concepts I
just mentioned.

We also need a few pattern matchers to form a parser for this example
we will use:

• A pattern matcher that matches the verb “cut”. It produces two
parse nodes (as far as we care about in this example), one containing
the ‘mow’ concept and another containing the ‘grass-sod-cut’ concept.
Both nodes contain syntactic features to indicate that they are imper-
atives. The probability of both parse nodes is equal to the activation
of the contained concepts.

• A pattern matcher that matches the word “grass”. Like the one for
“cut”, this matcher produces two nodes we care about. The concepts
in both nodes are new temporary concepts that encode the constraints
of being an instance of ‘grass field’ and ‘grass sod’ respectively. Both
nodes have a syntactic feature to mark them as constraints. The prob-
ability of the nodes equals the activation of the ‘grass field’ and ‘grass
sod’ concepts.10

• A pattern matcher that matches the word “the”, and a constraint con-
cept. The results produced by this pattern matcher are nodes for all
concepts in the concept graph that match the constraint. The proba-
bility of the node is the activation of the contained concept multiplied
by the probability of the matched constraint node.

• A pattern matcher that matches first a node that contain an action
concept and that has the syntactic feature indicating it is an imper-
ative, and second a node that contains a kind of concept to which
the action in its first match can be applied. Whether an action is
applicable is determined from the set of applicability factors. The ap-
plicability factor of the action to the concept must be larger than 0, or
the applicability factor of the action to something that is of the type
that the concept has (as indicated by its ‘instanceof’ relation) must be
larger than 0.
The output node contains a newly constructed concept that is an in-
stance of ‘imperative-action’. It has relation ‘action-type’ with the
concept in the matcher’s left match, and ‘action-target’ with the con-
cept in the matcher’s right match. The probability is the product of
the applicability factor and the probabilities of both child parse nodes.

10Compared to the parse in Figure 5.4 and Figure 5.5 on page 37, I have contracted
the matchers that first recognize an instance of ‘kategory’ and then produce a constraint
concept from it into a single matcher, to be a bit simpler. What choice is made depends
on the exact definition of the grammar that should be recognized.

44

If we also wanted to model something about who an imperative sen-
tence is spoken to, we would need to extend the concepts we are in-
terested in to include concepts that represent persons, and a ‘action-
subject’ relation. This pattern matcher should then also create an
‘action-subject’ relation for the newly created ‘imperative-action’ in-
stance, that has the person spoken to as target. In the interest of
simplicity we will skip over this part and only discuss the grass and
the cutting.

To access any relations within the conceptual graph, it needs to be known
which instance of ‘world’ needs to be searched. By default, this will be
the present actual world. Since we are always in the actual world we can
assume that the actual world usually has the highest activation of all worlds.
Exceptions can occur if for example we are specifically talking about the past
or about a fictional world. In the “cut the grass” example, there is no such
special context, so all analysis can be done on the subgraph that encodes
the relations for the actual world.

Lastly, we will also need to assume some values for applicability factors.
We will assume that the applicability of ‘mow’ to instances of ‘grass field’ is
high, and so is that of ‘grass-sod-cut’ to instances of ‘grass sod’, let us value
them at 0.9. The actions can not easily be applied the other way around,
but we will assume that it is possible to use a lawn mower to mow pieces of
grass sod, so we will give the applicability of ‘mow’ to instances of ‘grass sod’
a value 0.1. Cutting a grass field into slices seems much more impossible so
we will set the applicability factor of ‘grass-sod-cut’ to instances of ‘grass
field’ to 0.

In the same way, we can suppose that the relatedness weights between
the ‘mow’ concept and the ‘grass field’ concept is relatively high, just as the
one between ‘grass-sod-cut’ and ‘grass sod’, while those between ‘mow’ and
‘grass sod’ and ‘grass-sod-cut’ and ‘grass field’ are zero or very low.

5.4.1 Mowing the Lawn
We will now look at two contexts separately. The difference between both
contexts, as far as this model is concerned, is in the activation of concepts.
In the first case we will assume that the sentence is spoken as part of a
conversation in which the garden has been featured. Because of this the
concept in the listeners mind that represents the garden at hand has a
high activation. There is a lawn in this garden, that is also represented in
the listeners mind as the concept ‘f1’ and that is an instance of the ‘grass
field’ concept. Since this lawn is part of the garden, we can assume that
the relatedness weight between the two corresponding concepts also has a
large value. Because of this the concept that represents the lawn and is an
instance of ‘grass field’ also receives some activation. This in turn activates

45

the concept of ‘grass field’ a bit, and this the concept of ‘mow’, although it
is an even smaller amount of activation. However, it is still more than the
‘grass-sod-cut’ concept received.11.

In the situation as described here, there is no grass sod as such present.
We can still assume that the listener knows about a piece of grass sod some-
where not directly related to the current conversation, so there can still be
an ‘s1’ concept in the listeners mind, but this concept would have a negligible
activation value.

So, let us assume the following activation values in this context:

‘grass field’: 0.4
‘grass sod’: 0.2
‘mow’: 0.2
‘grass-sod-cut’: 0.05
‘f1’: 0.5
‘s1’: 0.001

Figure 5.8 shows the parse tree that results. The nodes in the tree also
contain information on which words are covered by them, so only the nodes
that cover the whole input sentence are considered as a final interpretation.
Since the applicability factor of ‘grass-sod-cut’ to ‘f1’ is zero, no correspond-
ing action concept and parse node is generated for that combination. The
interpretation of mowing the lawn has a final probability value of 0,036,
which is 2000 times larger than that of the next most probable interpreta-
tion of cutting the grass sod.

5.4.2 Cutting Grass Sod
Now let us look at the other situation, the one in the grass sod farm. We
will suppose the listener is an employee who regularly cuts grass sod for
customers. In this case, we can assume that the listener knows the piece of
grass sod that the farm uses to takes slices of for customers. The grass sod
farm itself would also be represented in the listeners mind with a relatively
high activation because the listener is in it, and the relatedness of this farm
and the piece of grass sod ‘s1’ would also be relatively high. Similarly, any
lawns that the listener knows about would not have a very high activation
value.

Let us assume the following activation values:
11The activation will also spread in other ways, for example the concept ‘garden’ (the

concept itself, not the instance of ‘garden’ that represents the garden at hand) will also
have a relatively large relatedness to the concept of ‘grass field’. For now we will not go
into this in detail.

46

Fi
gu

re
5.

8:
La

w
n

M
ow

er
Pa

rs
e

<
‘m

ow
’>

cu
t

gr
as

s<
‘c

on
st

ra
in

t(
gr

as
s

fie
ld

)’
>

<
‘a

ct
io

n(
m

ow
f1

)’
>

<
‘f1

’>
<

‘s
1’

>

<
‘a

ct
io

n(
gr

as
s-

so
d-

cu
t

s1
)’

>

{"
ty

pe
"=

"i
mp

er
at

iv
e"

}
{"

ty
pe

"=
"c

on
st

ra
in

t_
in

st
an

ce
"}

<
‘g

ra
ss

-s
od

-c
ut

’>
{"

ty
pe

"=
"i

mp
er

at
iv

e"
}

{"
ty

pe
"=

"c
on

st
ra

in
t_

in
st

an
ce

"}
<

‘c
on

st
ra

in
t(

gr
as

s
fie

ld
)’

>

p=
0,

00
00

18
p=

0,
00

00
04

p=
0,

03
6

p=
0,

2
p=

0,
00

02

p=
0,

4
p=

0,
1

p=
0,

2
p=

0,
2

<
‘a

ct
io

n(
m

ow
f1

)’
>

th
e

47

‘grass field’: 0.2
‘grass sod’: 0.4
‘mow’: 0.1
‘grass-sod-cut’: 0.4
‘f1’: 0.01
‘s1’: 0.4

The resulting parse tree with probability values is shown in Figure 5.9.
As can be seen, the most likely interpretation in this case is the one of the
cutting-in-the-grass-sod-sense of the piece of grass sod ‘s1’.

5.4.3 Extending the example
The example as shown here works, but it could be extended to make the
resulting interpretations more robust.

For one thing, if the listener in the second situation is not an employee,
but e.g. the customer, he would not know about the piece of grass sod
the speaker is referring to. In other words, he would not have concept ‘s1’
in his mind. In such a case we would need to extend the third pattern
matcher so that if no suitable object that fits the matched constraint is
found, where “suitable” means that it has an activation value higher than
a certain minimum, the pattern matcher will create such an instance that
matches the constraints itself. This instance would need to carry additional
information either as syntactic features or as conceptual relations to indicate
that it is an “indefinite” concept, that could still be unified with a different
concept if the listener learns which piece of grass sod was being talked about.
So at a higher level, what could happen in such a case is that the listener
assumes that a piece of grass sod exists and that the sentence in question
was referring to it.

Another way to make the example more robust is to include goals of
different people in the concept graph. We could extend the concept graph
with a ‘goal’ concept and a ‘hasgoal’ relation. Then, in the first situation,
if the listener has inferred that the speaker has the intention of having his
lawn mowed, this would be represented as a concept that is an instance
of ‘goal’, and that has suitable relations with the concept representing the
speaker and the concept representing the lawn12. Since theory of mind is
an important part of human interaction13, we can presume that instances
of ‘goal’ have strong relatedness weights with the concepts they have rela-
tions with. Therefore, since the concept representing the speaker has a high
activation, so will his goals and thus the concept representing the lawn. In

12A “suitable relation” in this case would probably not be just a single relation in the
conceptual graph. This would require some representation of the desired state of the lawn,
and a concept relation from the goal instance concept to this representation.

13Background on “theory of mind”: [Meltzoff, 2002], [Samsom, 2013]

48

Fi
gu

re
5.

9:
G

ra
ss

So
d

Fa
rm

Pa
rs

e

<
‘m

ow
’>

cu
t

gr
as

s<
‘c

on
st

ra
in

t(
gr

as
s

fie
ld

)’
>

<
‘a

ct
io

n(
m

ow
f1

)’
>

<
‘f1

’>
<

‘s
1’

>

<
‘a

ct
io

n(
gr

as
s-

so
d-

cu
t

s1
)’

>

{"
ty

pe
"=

"i
mp

er
at

iv
e"

}
{"

ty
pe

"=
"c

on
st

ra
in

t_
in

st
an

ce
"}

<
‘g

ra
ss

-s
od

-c
ut

’>
{"

ty
pe

"=
"i

mp
er

at
iv

e"
}

{"
ty

pe
"=

"c
on

st
ra

in
t_

in
st

an
ce

"}
<

‘c
on

st
ra

in
t(

gr
as

s
fie

ld
)’

>

<
‘a

ct
io

n(
m

ow
f1

)’
>

th
e

p=
0,

1
p=

0,
4

p=
0,

00
2

p=
0,

00
00

18
p=

0,
00

16

p=
0,

16

p=
0,

2
p=

0,
4

p=
0,

05
76

49

the case where the sentence is used within the sod farm, the listener would
know that the speaker has a goal of giving the customer a piece of grass sod.
Therefore, like in the mowing the lawn case, the concept representing the
speaker in the listener’s mind will have a high activation, and so will the
concept representing this goal, and thus the concept of ‘grass sod’.

50

Chapter 6

Implementation

In order to confirm that the DPS model as described previously can actually
work I have written a program that implements the DPS model. The pro-
gram also serves to explore possible ways in which aspects of the DPS model
that were not defined in complete detail above could be implemented. The
program is a proof of concept. It is named (rather uncreatively) ‘DPSP’, for
‘Direct Probabilistic Semantic Parser’.

The program does not implement the full DPS model due to time limi-
tations. For the conceptual graph, the program does not implement world-
relative relations. As such, the program can only represent a single state of
the world at a time.

The concept graph that the program contains has concepts that allow
it to describe a small 2-dimensional scene with geometric objects in it. The
program displays the state of this scene on the computer screen as it is
described by its concept graph. It is also possible to input sentences, and the
program will parse them into concepts of its concept graph. If the sentences
are of certain recognized imperative forms, the program will respond to them
by changing the conceptual graph in the way that is asked. However, since
the concept graph of the program only represents one state of the world,
it does not remember any such changes that were made. It can therefore
not interpret sentences that are about any past or any actions it has done.
Because of this, we can say that the program only understands the present
of its virtual world.

While the program is written in English, the input sentences it under-
stands are in Dutch. I will provide English translations of any example
inputs I use in this document.

The program also does not implement all disambiguation mechanisms
that are described in the previous chapter. It implements activation of
concepts and relatedness weights, but not applicability factors or contrast
sets. Since the program has no senses, or any notion of an “outside world”,
the only way in which concept activation is increased is if a concept is used

51

Figure 6.1: The scene when the program starts up, containing only two
shapes

in the interpretation of an input sentence.
This chapter only describes how the DPS model is implemented in the

program. For more details on the kinds of commands the program can
interpret and other capabilities see Appendix A.

6.1 Concept Graph
The DPSP program contains a graph of concepts. The concepts themselves
are the nodes in the graph. They are taken to be atoms that do not carry any
information other than their identity and the relations they have with other
concepts. The relations are encoded in a set of 3-tuples, which is in contrast
to the graph in the DPS model above that uses 4-tuples. The tuples are
⟨type, subject, target⟩, where each of type, subject, and target are concepts.
Thus, the concept graph only represents a single state of the world. The
concept graph can be defined as

⟨C, R⟩

where
R ⊆ {⟨t, s, g⟩ | t, s, g ∈ C}

Similar to the description of the DPS model, each concept in the program
can carry a text name. This name is not used in any algorithm but only
serves to make the program easier to understand and debug.

52

Since the program does not have any sensors to observe the world around
it, I have implemented an internal virtual world that consists of a simple two
dimensional scene on which a few simple geometric objects are placed. We
could say metaphorically that the scene that the program displays shows a
world that the program is thinking about, an imaginary world that exists
in the programs imagination. The default scene the program starts with is
shown in figure 6.1.

Some concepts that are currently created at program startup include
ones with the following names:

object
kategory
square
triangle
location
color

red
green
yellow
blue
subtypeof
instanceof

property
iscolor
isat
vk1
dr1

The following tuples are part of the concept graph:

⟨subtypeof, square, object⟩
⟨subtypeof, triangle, object⟩

⟨instanceof, object, kategory⟩
⟨instanceof, square, kategory⟩
⟨instanceof, triangle, kategory⟩
⟨instanceof, property, kategory⟩
⟨instanceof, kategory, kategory⟩
⟨instanceof, color, kategory⟩
⟨instanceof, location, kategory⟩

⟨instanceof, vk1, square⟩
⟨instanceof, dr1, triangle⟩

⟨instanceof, red, color⟩
⟨instanceof, green, color⟩
⟨instanceof, yellow, color⟩
⟨instanceof, blue, color⟩

⟨instanceof, iscolor, property⟩
⟨instanceof, isat, property⟩
⟨instanceof, subtypeof, property⟩
⟨instanceof, instanceof, property⟩

⟨iscolor, vk1, green⟩
⟨iscolor, dr1, red⟩

The set of tuples encodes multiple relations, indicated by the first element of
the tuple. The above list contains the ‘subtypeof’ relation, the ‘instanceof’
relation and the ‘iscolor’ relation. The relations themselves are thus iden-
tified with concepts. In the rest of this chapter I will speak of the set of
3-tuples R as containing the relations of the concept graph, and I will speak
of concepts that appear as the first element in such a tuple as being a rela-
tion, in the same way as I described the DPS graph model.

Every concept that is also a relation is an instance of ‘property’ or a
subtype of ‘property’,1 as indicated by the ‘instanceof’ and ‘subtypeof’ re-
lations, and every concept that is an instance of ‘property‘ or one of its

1This is a slight change in terminology from the DPS model, where I used the name

53

subtypes is a relation. The above list therefore contains a fourth relation,
‘isat‘, that is empty according to this list.

In the above list it can be seen that ‘vk1’ is in the ‘instanceof’ relation
with the ‘square’ concept. I will refer to this as ‘vk1’ being a ‘square’ or as
‘vk1’ being an instance of ‘square’.

The above lists of concepts and relations is not the full concept graph
as currently implemented. Among other things, the program also contains
a number of instances of ‘location’, each of which represents a point in a 2d
space. Both ‘vk1’ and ‘dr1’ have an ‘isat’ relation with one of these instances
of ‘location’.

The program also contains recursive versions of the ‘subtypeof’ and ‘in-
stanceof’ relations, so that for example ‘vk1’ and ‘dr1’ are in this recursive
instanceof relation with ‘object’.

The concept graph is implemented in the file dpsp.py.

6.1.1 What the graph represents
The concept graph in the DPS model as it is postulated to exist in the brain
represents the model the brain has of its surrounding environment. As such
a concept graph should be able to represent positive facts, but also negative
ones or facts where a certain variable is known to have one of a set of values,
but not others. Ideally the graph should also encode things like how certain
or reliable a piece of information is.

The concept graph as implemented in this program does not do all of
this. It can only encode positive relations, but no negations or other kinds
of facts. In the current implementation this is not a problem, the program
simply does not understand any kind of negated language. Knowledge of
which relations can only be instantiated once per object is built in, so for
example changing the color of an object simply replaces the relation tuple
which encodes the color for that object with a different one. (The current
program only allows an object to have one color.)

6.2 Parser Algorithm
The parser is based on a standard bottom up chart parser. The input to the
parser is a list of words. The parser creates a table of size n ∗ n, where n is
the length of the input list. Each cell in the table at height h will contain
the parse tree nodes that represent a possible parse of the next h words.

Like in the DPS model, the parse tree contains references to concepts.
Each node of a parse tree has as data members a concept and a number of
syntactical features stored as key-value pairs.

“relation” for this concept.

54

Table 6.1 shows an example of a simple parse of the phrase “het vierkant”
(“the square”).

2 <“vk1”> {gender=n}
<“newinstance”> {gender=n,

constraint_instance=True}
1 <“square”> {}

het vierkant

Table 6.1: Simple parse example

The height of each cell indicates for how many consecutive words it con-
tains possible interpretations. So the cells on the bottom row contain inter-
pretations for just the single word over which they are placed, and the cell
with height two over “het” contains interpretations for the word over which
it is positioned and the next word. (So in this example that is the entire
phrase). The lower right cell, which contains interpretations for the word
“vierkant”, has two concepts in it so there are two possible interpretations.
The notation <“square”> indicates the concept named “square”. This is the
concept ‘square’ from the conceptual graph described above, and represents
an interpretation where the word “vierkant” is interpreted to refer to the
shape ‘square’, i.e. not to a specific square object.

The second concept is named “newinstance”. It is not listed in the con-
ceptual graph above, as it is created by the parsing algorithm and added
to the concept graph as a temporary concept. Although I have not dis-
played it in the figure, this concept has an ‘instanceof’ relation to ‘square’
that was also created by the parsing algorithm. This concept represents an
as of yet unknown reference to something that as a constraint must have
an ‘instanceof’ relation to ‘square’. The parse node consists of this new
concept and a set of syntactic features that indicate the gender that this
concept has here (neutral), and that it is an as of yet undefined reference
with constraints.

In the upper left cell we find the concept ‘vk1’, which is again a concept
from the conceptual graph above. As this cell is at height two, it contains
interpretations for the whole two-word phrase. As there is only one square
(i.e. instance of the ‘square’ concept) in the conceptual graph there is only
one possible interpretation for this phrase.

6.3 Language Rules
The language is described by a set of rules similar to production rules in a
BNF grammar. Each rule takes one or more elements as input and produces
one or more outputs. The inputs are either parse tree nodes that contain

55

a concept and syntax features, or words from the input (possibly enriched
with syntax features). The outputs are parse nodes consisting of a concept
and optionally syntactic features. Each parser rule specifies a set of features
that its inputs are required to have. These features can be either syntactic
features or conceptual relations. The current implementation uses program
code to calculate the output(s) based on the input and the concept graph.
The program code is not very difficult so I have just printed it here rather
than using a formalism such as lambda calculus.

The parser rules that are involved in the example from Table 6.1 are
shown in listing 6.1 on this page.

Listing 6.1: Language rules for the example in Table 6.1.
1 @parser ({ ’ word ’ : ’ v i e r k a n t ’ })
2 def SquareRec (pcontext) :
3 y i e l d C. square , { ’ gender ’ : ’ o ’ }
4
5 @parser ({ i n s t a n c e o f : ka tegory })
6 def KategoryConst ra intRec (pcontext) :
7 kat = pcontext . match [0] . concept
8 y i e l d pcontext . t r a n s i e n t c on c ep t (
9 ” c o n s t r a i n t ({}) ” . format (kat) ,

10 { i n s t a n c e o f : kat , i s t y p e : i nde t e rm ina t e }) ,
11 d i c t (pcontext . match [0] . f e a t u r e s ,
12 c on s t r a i n t_ i n s t a n c e=True)
13
14 @parser ({ ’ de te rm ine r ’ : True , ’ d e f i n i t e ’ : True , ’ i n d e x i c a l ’ : None} ,
15 { ’ c on s t r a i n t_ i n s t a n c e ’ : True })
16 def I n s tanceRec (pcontext) :
17 g1 , g2 = (m. f e a t u r e s [’ gender ’] f o r m i n pcontext . match)
18 i f g1 != g2 and g1 != None :
19 return
20 f o r c i n
21 pcontext . match [1] . concept . i n s t a n c e o f . f u l l e x t e n s i o n () :
22 i f not c . t e s t r e l (i s t yp e , i nde t e rm ina t e)
23 and cons t ra in tmatch (c ,
24 c o n s t r a i n t=pcontext . match [1] . concept) :
25 y i e l d c , {} , a c t i v a t i o n [c]

Each rule consists of a specification of the input that matches it and a
function that produces the output. The input specification is described in
the decorator @parser(...). Each dictionary denoted by {...} specifies
conditions for one input. String keys (surrounded by quote marks) are
syntactical features, keys that are not strings describe concept relations.
So in listing 6.1 we see that SquareRec requires one input with a syntactic
feature ‘word’ to have the value ‘vierkant’. The syntactic feature ‘word’
denotes a word from the input list of words. KategoryConstraintRec takes
one input that has to be a concept that is an instance of ‘kategory’. The
InstanceRec rule takes two inputs, the first having a number of syntactic

56

features such as being a definite determiner but not a demonstrative, and
the second one as being a constraint representation.

The output functions (signified by the def keyword) in each of the rules
are quite simple too. Each function has a pcontext argument, which is
an object that contains all required information about the current parse.
pcontext.match contains a list with the matched input parse nodes.

The first parse rule unconditionally returns the ‘square’ concept with the
syntactic feature of having neutral gender. The KategoryConstraintRec
creates a temporary concept that represents a constraint. The expression
"constraint({})".format(kat) on line 9 creates the name for this new
concept and is not of algorithmic importance. The new concept gets the
relations of being an instance of the input concept, and gets an ‘istype’
relation ‘indeterminate’. ‘istype’ and ‘indeterminate’ are concepts that were
not listed previously, they are used to describe special concepts such as
constraints which do not in themselves represent existing things. The output
also has the syntactic feature "constraint_instance" set to true.

The InstanceRec rule first checks that the genders of its two inputs
match and then outputs all existing concepts that match the constraint in
its second input. The activation return value will be discussed later.

These parser elements together form a hierarchical parser. In the exam-
ple, the word “vierkant” is parsed into the concept ‘square’ by SquareRec.
This concept is recognized by KategoryConstraintRec which produces a
constraint concept. As both of these concepts represent an interpretation
for only the single word “vierkant” they both end up in the same cell of
the table. Finally the InstanceRec rule matches the determiner “het” and
the constraint concept produced by KategoryConstraintRec, producing the
final output for this example.

One loose end that this description does not cover is how input words
are given their respective syntactic features. What happens is that as a
parsing run is initialised each input word is transformed into a syntactic
parse node, which is a parse node that does not contain a concept but just
contains some syntactic features. This first parse node only has one feature
word which has the input word as value. Next, the program also defines
a few syntactic parsing rules that take such a syntactic node as input and
produce another syntactic node that has additional syntactic features, such
as `determiner':True. All these syntactic parse rules only take one input
and produce one output, so they do not take part in any composition or
other interesting things during the parse. The syntactic parse nodes are
also stored in the table and are processed by the parsing algorithm in the
same manner as the full parse nodes that contain concepts. The full table
for the example in Table 6.1 therefore contains two additional nodes in the
lower left cell, one containing just `word':`het' and the second containing
additionally `determiner':True and some similar features, and one extra

57

node in the lower right cell that contains only `word':`vierkant'.
As this description shows, this implementation does not make a qualita-

tive distinction between lexicon and grammar. The lexicon is just a set of
grammar rules that take a single word as their only input.

In the implementation parse nodes carry some more information that is
not shown here. This information includes references to the parser rule by
which they were generated and the inputs used, and information needed to
manage the used computer resources.

Table 6.2 contains the parse grid for a larger example. This table also
includes descriptions of the child nodes for each parse node, which were not
shown in the smaller example in Table 6.1. These relations are displayed as
a list of co-ordinates surrounded by square brackets. The co-ordinates are
in columnno.–height format. If there are multiple parse nodes in one cell,
the number of the intended parse node is appended to the co-ordinates with
a colon. This number is counted starting from the bottom node as printed
in the graph.

6.4 Disambiguation and Activation
The program implements some of the disambiguation methods as described
in the previous chapter. The first one is concept activation. Each concept
in the concept graph has an associated activation, which is a real number
between 0 and 1. Every time a concept is “used”, its activation is raised,
and so is the activation of concepts that are closely related to it. Over time
this activation decays again towards zero.

The parse nodes that the parser generates also carry a probability value,
like in the DPS model. This probability represents the relative likelihood
of that interpretation being the right one. The probability of each node
depends on the probability of its children in the parse tree, and of the acti-
vation of the concept that it references. If there is more than one candidate
for the final interpretation of a sentence the program chooses the one with
the highest probability.

The decay of activation is exponential and based on wall clock time. The
current implementation uses a decay factor so that an activation is down to
one percent of its original value after three minutes.

A concept is considered to be “used” if it is the interpretation with
the highest probability for an input sentence. This concept’s activation
is increased to 1.0 immediately when the parse is finished. The program
then uses a spreading activation algorithm2 to spread this activation to

2For references on spreading activation algorithms see e.g. [Aswath et al., 2005], [An-
derson, 1983] and [Collins and Loftus, 1975]. See also http://en.wikipedia.org/wiki/
Spreading_activation (accessed july 2013). Other choices for the details of such an al-
gorithm could be made, but the one I use here seems to be sufficient. For other choices I

58

http://en.wikipedia.org/wiki/Spreading_activation
http://en.wikipedia.org/wiki/Spreading_activation

Ta
bl

e
6.

2:
La

rg
er

pa
rs

in
g

ex
am

pl
e

5

<
“c

ha
ng

ec
ol

or
(v

k1
,y

el
-

lo
w

)”
>

[(1
,1

)
(2

,3
)

(5
,1

:3
)]

{}
4 3

<
“v

k1
”>

[(2
,1

:2
)

(3
,2

)]
{}

2

<
“c

om
bi

ne
d_

co
n-

st
ra

in
t(

sq
ua

re
,

co
lo

r=
gr

ee
n)

”>
[(3

,1
:2

)
(4

,1
:2

)]
{'

co
ns

tr
ai

nt
_-

in
st

an
ce

'=
Tr

ue
,

'g
en

de
r'

=
'o

'}

1
Sy

nt
ax

N
od

e
{'

wo
rd

'=
'm

aa
k'

}

Sy
nt

ax
N

od
e

[(2
,1

:1
)]

{'
or

ig
wo

rd
'=

'h
et

',
'd

et
er

mi
ne

r'
=

Tr
ue

,
'd

ef
in

it
e'

=
Tr

ue
,

'g
en

de
r'

=
'o

'}
Sy

nt
ax

(’h
et

’)
{'

wo
rd

'=
'h

et
'}

<
“c

on
st

ra
in

t(
co

lo
r=

gr
ee

n)
”>

[(3
,1

:1
)]

{'
ad

je
ct

iv
al

'=
Tr

ue
}

Sy
nt

ax
N

od
e

{'
wo

rd
'=

'g
ro

en
e'

}

<
“c

on
st

ra
in

t(
sq

ua
re

)”
>

[(4
,1

:2
)]

{'
co

ns
tr

ai
nt

_-
in

st
an

ce
'=

Tr
ue

,
'g

en
de

r'
=

'o
'}

<
“s

qu
ar

e”
>

[(4
,1

:1
)]

{}
Sy

nt
ax

N
od

e
{'

wo
rd

'=
'v

ie
rk

an
t'

}

<
“c

ol
or

(y
el

lo
w

)”
>

[(5
,1

:1
)]

{'
ad

je
ct

iv
al

'=
Tr

ue
}

<
“y

el
lo

w
”>

[(5
,1

)]
{'

de
te

rm
in

ed
'=

Tr
ue

}
Sy

nt
ax

N
od

e
{'

wo
rd

'=
'g

ee
l'

}
m

aa
k

he
t

gr
oe

ne
vi

er
ka

nt
ge

el

59

Algorithm 1 The activation algorithm pseudocode
▷ c is the concept, a the additional activation, path is used to prevent

following loops in the graph and is the empty set on the first call.
procedure activate(c, a, path)

if c ∈ path or |path| > recursionlimit then
return ▷ check for loops and recursion depth

end if
a← a ∗ conceptweight[c] ▷ apply per-concept weight
activation[c]← activation[c] + a− activation[c] ∗ a ▷ update activation

for t ∈ {t | ⟨t, c, _⟩ ∈ R ∨ ⟨t, _, c⟩ ∈ R} do
▷ activate the relation concepts

activate(t, a ∗ relationweight[t], path ∪ {c})
end for
for ⟨t, g⟩ ∈ {⟨t, g⟩ | ⟨t, c, g⟩ ∈ R} do ▷ activate related concepts

activate(g, a ∗ targetweight[t], path ∪ {c})
end for
for ⟨t, s⟩ ∈ {⟨t, s⟩ | ⟨t, s, c⟩ ∈ R} do ▷ activate reverse related concepts

activate(s, a ∗ subjectweight[t], path ∪ {c})
end for

end procedure

other related concepts. New and existing activations are combined using
the formula for non-mutually exclusive ‘or’ of two probabilities a1 and a2:
activation = a1 + a2 − a1 ∗ a2, where a1 is the activation a concept already
has, and a2 the added activation. The activation spreading algorithm uses a
set of weights per relation type, these correspond to the relatedness weights
as described by the DPS model. Each weight is a value between 0 and 1.
For each relation type, there is a weight for spreading from subject to target,
one for spreading from target to subject, and one for activating the relation
type concept itself. Additionally, there is a weight for every concept that
allows for dampening the activation that is spread through that concept.
This weight is 1 by default, and a lower value for some builtin concepts such
as ‘kategory’, because as it is the top of the type hierarchy a relation through
‘kategory’ does not intuitively indicate relatedness. The ‘location’ concept
also has a very low weight, mainly because spreading activation through
‘location’ is not currently used but creates a big computational burden as
there are so many instances of ‘location’ in the current implementation. In
a better optimized implementation such a concept with a lot of instances
might not be a problem. The algorithm is described as algorithm 1 on the
current page. Note that the actual implementation does not loop over the

will refer to the literature.

60

entire set R but uses a more efficient implementation.
As this description shows, the weights used here are not entirely the same

as those used in the DPS model. Some changes were necessary in order to
ensure that propagating the activation would not take too much computing
time. The program does not implement relatedness weights as entirely sepa-
rate from concept relations as the DPS description does. Rather weights are
associated with concept relations. Therefore activation can only be spread
from one concept to another if there is a concept relation between the two.
In order to compensate for this decrease in flexibility the program splits the
weights into two, one weight for each direction in which the activation can
spread. There is also a third weight that determines how much activation
is spread to the relation concept itself.

The values of the weights would be a good target to apply machine
learning algorithms to, were it not that that requires an existing training
set of conversations and correct interpretations, which does not exist. The
current weights were chosen based on a trial and error procedure. This can
be done as long as the total concept graph is small enough. For the current
implementation this seems to work.

6.5 Contextual Capabilities
The current program shows a limited amount of context dependent behav-
ior. For example, if a specific object is referred to in an input sentence,
using the word “hem” (“it”) will correctly refer to that same object as long
as the necessary syntactic features match. Demonstrative “die” can be used
to indicate a location, an object, or an object property and the right inter-
pretation will be selected depending on what makes sense.

A bit more advanced context sensitivity can also be handled: Assume a
scene that contains multiple objects of different colors and shapes, but only
one red and one green triangle. Now, if the following inputs are issued in
sequence: “zet de rode driehoek daar”, “zet de groene daar” (“put the red
triangle there”, “put the green one there”), the referential expression in the
last input will be correctly interpreted as the green triangle, even though
there may be other green objects in the scene.

These contextual dependencies are implemented through the activation
framework as described in the previous section. Using concepts in sentences
activates them and the concepts they are directly or indirectly related to.
This causes interpretations of later sentences that use these activated con-
cepts to have a higher probability. In the example above, the phrase “zet de
rode driehoek daar” would activate among other things the ‘triangle’ con-
cept, and through it all other instances of ‘triangle’. This causes the green
triangle interpretation to have the highest probability in the phrase that
follows. The concepts that identify other objects would be activated as well,

61

but they would be activated to a lesser extent since the relations through
which they are connected to the red triangle concept have lower activation
weights.

While these capabilities are still far away from the example discussed in
the previous chapter, I hope it helps to show how the DPS model can be
implemented, and that such a system can in principle handle the required
contextual information.

62

Chapter 7

Discussion of Constraints
and Possible Objections

In this chapter I will evaluate the constraints that the DPS model should
satisfy. These constraints include those that were described explicitly in
chapter 3, but I will also show how the model allows existing contextualist
examples to function, and how it deals with some examples that are put
forward by other positions. In addition to those I will also discuss a number
of potential objections that could be made against the model.

7.1 Limitations and Possible Objections
I will start by discussing some objections that could be made against this
model. For some of them I can offer ways in which they could be solved, and
for some I do not, but I believe these are not strong enough to disqualify
the DPS model as a whole.

7.1.1 Limiting Combinatorial Explosion
The parser as currently described and implemented is a pure bottom up
parser that computes every possible interpretation. While this works, it has
as a disadvantage that a lot of parse nodes may be generated that have a
very low probability value and that are never used for the final interpretation
of the entire sentence. Since every combination of patterns is tried the total
number of parse nodes may become very large and result in a combinatorial
explosion.

The simplest way to handle this is to stop constructing all possible parses
of an input. Instead the parser could stop matching on nodes that have a
probability that is much lower than other nodes at the same level of the
tree structure. In this way the interpretations for the full sentence with

63

the highest probabilities could be found without calculating the entire DAG
with alternative interpretations.

The parser could start by always considering the nodes that had the
highest probability and try to pattern match on those. If no more matches
were found it could move on to nodes with a slightly lower probability value.
Newly generated nodes would wait until the probability threshold was low-
ered enough so that they could be considered. This could continue until a
parse was found that provided an interpretation for the entire input. This
approach could fail to find the interpretation with the highest probability if
it had child nodes with a very low probability, in that case the parser would
not attempt to pattern match on these low probability nodes and thus fail
to find the interpretation. Such a situation can be prevented if parent nodes
always have a lower probability value than the child nodes they are a parent
of. In that case a high probability parse of the full input could not have
lower probability children. If the probability of a node is always the prod-
uct of a number of values that are no larger than 1.0 and that include the
probability values of its children, this requirement is always satisfied.

The pattern matchers in the example from section 5.4 and in the imple-
mented program in fact meet this requirement, although the program does
not implement a parsing strategy as described here.

If there would be a need to use pattern matchers in the parser that do
not satisfy this condition, it would need to be considered if it would be a
problem if the parser did not always manage to find the most likely parse.
After all, human language interpreters are not perfect either.

By using this strategy a combinatorial explosion of parse nodes could be
prevented.

7.1.2 Possibility of Communication
A language philosophical question might be how concepts in the brain relate
to the external world, and related to this how people are able to communicate
with each other if they cannot share “meanings”, which are taken to be
conceptual structures private to ones mind.

I will argue first of all that there is not necessarily a simple relation
between the concepts in ones brain and things in the real world. The con-
ceptual representation of the world that one carries in his mind is formed
through the information we get from our senses, and by thought processes.
Sometimes we are mistaken about what the world is like, in such a case we
have a conceptual representation of a part of the world that does not map
directly onto the external world as it actually is. I would argue that since
humans have no infallible way of knowing what the world is like, a theory
of language must allow for someone to be mistaken about his beliefs about
the world while still allowing him to use language successfully. Acquiring
an accurate representation of the world is very non trivial, and it is the goal

64

that the entire enterprise of ‘science’ has tasked itself to do. To paraphrase
Immanuel Kant, the world as it truly is (the Ding an sich) is unknowable,
and we can only interpret the world through the categories that our brain
bestows upon it.1

This view also implies that the notion of ‘reference’ is more problematic
than in some other language philosophical models. Concepts may fail to
properly refer to anything, and we may not even know it. If we follow this
interpretation of Kant, we can never be absolutely sure about whether a
concept successfully refers to something in the real world.

But the good news is that this unknowability of the world does not pre-
vent communication. All people live in the same world, and all people share
the same basic sensory and cognitive capabilities, in other words we have
mostly the same hardware. Therefore people normally come up with similar
conceptual representations for their surroundings, at least for the more sim-
ple parts of it. The similarity in the conceptual graph that two people have
in their minds allow them to communicate successfully. While full sharing
of thoughts is impossible, if a speaker speaks a thought in the form of a
sentence, that sentence can be interpreted by the listener into a conceptual
structure that is isomorphic to the conceptual structure that was the speak-
ers original thought. It should be emphasized that this isomorphism is not
absolute and only up to a degree, absolutely correct and reliable transmis-
sion of thoughts is impossible because conceptual graphs are never exactly
the same between two people.2

Communication is impossible if the speaker and listener do not share
enough of a conceptual structure relevant to the topic of communication.

1This paraphrasing is taken far out of the context in which Kant originally used it,
so construing it to say that Kant agrees with this interpretation is far fetched. Still,
the expression can be re-purposed as a concise formulation of what I want to express.
(see [Rohlf, 2010] for what Kant did mean).

2As a corollary, this property that it is impossible to convey thoughts exactly but it
is possible to convey thoughts mostly accurately makes one think of language meaning
as something analog. One might then wonder what it would be like to form a digital
equivalent of human language.

Similar to what happens when the switch was made from analog to digital communi-
cation technology, one might try to replace the large or nearly infinite set of concepts,
which are sometimes hard to differentiate—analogous to the infinite set of symbols that
can be used in analog communication—by a very small set of very simple concepts, so
that it is easy to recognize which concept was meant. If these concepts then only have a
very small number of simple ways in which they can combined, larger structures can be
built up from them, and it would still be possible to convey the structure that one has
built up in ones mind without error.

This is in fact exactly what happens when we use mathematical language. There are
only a small number of basic concepts in math which can only be combined in a small
number of ways and which are predictable. From this basis we can then build more
complex combinations that we can use to do more advanced things, but it is still possible
to convey thoughts about them to other people without loss of fidelity as long as the ideas
are transferred in the form of math.

65

Therefore it may be impossible for a theoretical physicist to explain what
he is working on to someone who does not have the necessary background
knowledge, unless the physicist takes the time to also explain all the required
background knowledge. Doing the latter will allow the listener to extend his
conceptual graph so that the original topic of communication can then be
discussed.

7.1.3 Complex Language
The examples discussed in this paper thus far all have a very simple sentence
structure, usually consisting of only a main clause with a single transitive
verb, and only having singular noun phrases. One might wonder how more
complex sentences could be handled.

One limitation is that in the current description of the model there is a
strict separation between calculation of the activation of concepts and the
parsing of input. In reality, if we use sentences longer than a few words it is
likely that the first constituents of the sentence influence the probabilities
of specific concepts being used in the interpretation of later sentence con-
stituents. Therefore the interpretation of the earlier sentence constituents
needs to be able to update the activation values of concepts.

Defining pattern matchers in the parser that can interpret more complex
sentences would require a lot of extension of the base model as it is presented
in this paper. For plurals the concept graph would probably need to have a
way to represent groups of things, and at this point we would probably also
require representation of vague relations. It is not always clear which things
belong to a group if we use a plural noun phrase, so it could be useful to
represent such a group as a probability distribution over the set of objects
that could belong to the group. So that would require concept relations in
the concept graph that are not binary but are weighted.

Some kinds of generalized quantifiers would probably also require similar
probability distributions to represent. For example words like “most”, “all”
or “almost all” could be represented as different probability distributions
over some scale. How this scale would be applied to a given situation could
then be decided contextually. The concept graph would thus need to rep-
resent probability distributions as explicit concepts. In this way such words
that do not represent objects or actions from the external world can still be
interpreted as explicit elements in the concept graph.

Structures such as if-then relations can be represented relatively straight
forward in this model. The counterfactual situation described by the if-then
phrase can be modeled as a different world, similar to how different points
in time were modeled in the examples. The same works for fictional stories.

However, more complex language constructions is an area that has not
been explored very far yet, and as such it is still a topic for future research.

66

7.1.4 World Knowledge
Probably the biggest drawback of a model such as the one I present here,
is that it requires a very large number of parameters to be tuned, such as
the specific structure of the concept graph and the values of disambiguation
weights. The DPSP program shows that some success can be had by doing
this parameter tuning by hand using trial and error, but this will become
more difficult if the concept graph becomes larger. At that point automatic
ways of parameter tuning will be needed.

While this is an important problem for building a large scale implemen-
tation of this model, it does not prevent this model from being useful in
analyzing problems in the philosophy of language, or when thinking about
specific problems in linguistics.

But from the point of view of using a model in a computer program, the
DPS model is at a disadvantage compared to other models that depend on
less contextual information. Models based on the literalist tradition only
require a relatively small number of variables to be given a value based on
the context, at least compared to the amount of contextual information that
must be represented in a DPS concept graph. So for the larger goal of giving
a complete description of human language, computer learning techniques will
be indispensable in order to find a good concept graph structure and other
parameter settings.

7.2 Context Shifting Examples
Subsection 2.3.2 shows a number of examples that are used to make context
shifting arguments. These examples, and the argument in general, should
continue to work in the DPS model, otherwise it will have failed to be a
good contextualist model of language meaning.

7.2.1 The Cat on the Mat
For the “cat on the mat” example we will assume that the orientation of
objects is one thing that is represented in the concept graph, with one con-
cept per orientation, and we will also accept that the human mind has a
tendency to categorize experiences.

In both situations that Searle describes where cat-mat pairs are floating
about in space, i.e. one where they are oriented randomly and one where
they are oriented in only two ways, the relation of ‘orientation’ would get a
strong activation because it is highly contrastive for the set of objects under
discussion.

In the situation where cat-mat pairs come in only two attitudes and we
look at them strapped to our seats in our spaceship, our mind would create
a categorization in “cats on mats” and “cats below mats” (or whatever

67

you would call the other category). These categories are, like all other
knowledge, encoded as concepts. Since we are seeing cat-mat pairs that
fit either of those categories all the time, they would get a high activation
value. In this case, we could describe one cat-mat pair with the words “The
cat is on the mat”. A listener would be able to correctly interpret this as
referring to an instance of the specific category, due to the high activation
of the two categories and the high activation of the ‘orientation’ relation.
In fact, because of the high contrast in this specific example we could also
describe the same situation using several different formulations such as “they
are upright” (rather than upside-down) which would still be interpreted as
referring to the same category.

In the case where cats and mats are floating about in space in random
orientations, such a categorization would not be easily formed. Without
some kind of reference orientation it would be difficult to assign a specific
orientation as “up” or “down”. Any orientation would receive approximately
the same activation level because the cat-mat pairs are seen in all orienta-
tions. It would therefore be more difficult to get the interpretation of “cat
on the mat” that is available in the other situation.

7.2.2 Cut the Grass
The “cut the grass” example has already been discussed extensively in sec-
tion 5.4, so I will not discuss it again.

7.2.3 Milk in the Fridge
The “milk in the fridge” example can be treated if we accept that there
are different concepts that “milk” could be interpreted as. “Milk” can refer
to (non-empty) milk bottles, to the substance ‘milk’, or to bodies of this
substance. Probably also to other things, but that is not relevant for now.
To correctly predict which of these is chosen we will also need to consider
the goal structure again. Presumably concepts that represent certain objects
have something like a ‘fit-for’ relation with certain concepts that represent
activities or goals. In the context of putting milk in the coffee, the concept
representing the activity of putting milk in the coffee, or more generally of
consuming milk, would receive a high activation because it is closely related
to the concept that represents Hugo’s goal, and therefore the interpretation
of “milk” as milk bottles (or other similar milk-containing containers) would
also.

For the context of cleaning the fridge we can assume that there is also
some goal-like conceptual structure that represents what things are supposed
to be like, maybe related to a concept of ‘good’. Cleaning involves removing
things that are not supposed to be there, such as milk spills in the fridge.
The context of the utterance indicates that something is not the way it is

68

supposed to be after cleaning the fridge, so this activates concepts represent-
ing things that are not supposed to be in there and lowers the activation of
things that are.

7.3 Recanati’s Contextual Relativism Example
The DPS model has no problems at all with the example from subsec-
tion 2.2.5 Recanati uses to argue for contextual relativism. In the case
where Recanati knows who he is, the word “Recanati” is mapped to the
same concept as the word “I” spoken by Recanati, which is the concept that
represents himself. In the case where Recanati has forgotten his name, the
word “I” is mapped as in the previous case, but the word “Recanati” is no
longer associated with that same concept. It is therefore interpreted as a
new concept which can have different properties from the “I” concept.

The DPS model does not recognize a form of meaning that corresponds
to relativisms unevaluated-utterance form that can still contain certain types
of indexicals. According to relativism, interpreting language starts with a
sentence which is combined with the context of utterance, which results
in some kind of thought form that can still contain indexicals. This last
form is then interpreted by the interpreter to yield a form that has a truth
value. The DPS model does not recognize this distinction. If anything, the
interpreter comes first, and different contexts of utterance can be represented
in the interpreters mind as different worlds or as different parts of his concept
graph.

7.4 Neurological Realizability
In section 3.3 we discussed some minimal constraints that must be met for
a model to be implementable in a computational system such as the human
brain. The primary concern regarding neurological realizability is whether a
model can be executed on a massively parallel computational platform that
has very low sequential performance. For the DPS model, I think it can.

At the parsing stage all recognizers that implement specific production
rules can run in parallel, as long as they do not depend on each others
outputs. So at least every row of the parse chart can be parsed in parallel.
If each parse rule recognizer can run in constant time, the sequential time
complexity of parsing an input sentence is proportional to the height of its
parse tree, which is on average roughly equivalent to the logarithm of the
sentence length. The example sentences that the DPSP program can handle
usually do not have a height of more than 5 or 6, so that should not be a
problem for the ‘at most 30 sequential steps’ neurolinguistical constraint.
But a more firm conclusion either way will probably require a more detailed
model than the simple one I have presented in this paper.

69

But this requires parse rules to operate in constant time. The main
potentially time consuming task for individual parse rules is to find matching
concepts. On a Von Neumann type computer every candidate concepts has
to be examined individually, so the time complexity is at least linear in
the number of concepts examined. On a massively parallel architecture this
search can be done in parallel. If we assume each concept in the graph
is implemented by its own neurons and each concept can track its own
activation, calculation of which concept is the best match can also happen
in parallel.

The activation spreading subsystem is not directly constrained by the
same constraints as language parsing because it does not need to happen
right at the moment that linguistic input is received. The activation algo-
rithm can run in the background, so to say. Having said that, activation can
be implemented in a neural network like model very efficiently. The whole
idea was developed in the context of connexionist neural networks. The
only thing that might be harder to implement in the same way as the DPSP
program does is the check to make sure activation does not flow in a loop
and amplify itself indefinitely, as this requires all the possible flow paths
to be tracked. But with the right tuning of the involved weights maybe
problematic amplification of activation levels could prevent even without a
loop check.

Since we do not know how the brain works exactly it is hard to list all
the requirements that an algorithm that runs on it must satisfy. The above
description is therefore a minimal requirement. There is research available
that shows how some kinds of processing are implemented in the brain. For
example [Werning, 2010], [Werning, 2012] describe how primitive properties
such as color and orientation of lines are implemented by having a group
of neurons for each position in the visual field for each color or orientation.
This requires a lot of neurons, but that appears to be no problem for the
brain. [Werning, 2012] gives evidence on how the composition of these prim-
itive properties can happen in the form of eigenmodes of recursive neural
networks. An eigenmode of a recursive neural network manifests itself as a
repeating temporal firing pattern of the cells that are involved. A recursive
neural network can have a lot of eigenmodes. In Wernings interpretation,
each eigenmode corresponds to a composition of primitive properties into a
complex unit. The primitive properties are represented by individual cells
that take part in the pattern. Given certain initial conditions in the net-
work, the temporal patterns for most eigenmodes are not stable and fade
out over a short time, while one or a few are amplified. Tentatively applied
to the DPS model, such eigenmodes could correspond to complex concepts
that represent objects in the environment, and the eigenmode amplification
is a mechanism by which an appropriate concept is selected or constructed.

70

Representation of Continuous Domains
Other interesting research is on the representation of locations in space in the
brain3. One way in which the brain solves this problem is by having certain
cells represent certain points within the space. The cell fires more rapidly if
the object of interest is closer to the point it represents. Often, the ‘object
of interest’ is the test animal itself whose neurons are being measured, and
the neurons thus represent the location of oneself within a space.

In this case each so-called place cell is not restricted to encoding a single
point in a single space somewhere in the world, the whole bundle of place
cells is reused for each space that the subject animal is in. So every cell can
represent a point in the space the animal currently is in. What point a cell
represents in one space appears to be unrelated to the point it represents in
a different space, and in fact in each space many cells are not used at all,
but which cells differs from space to space.

While this representation of place does not prove a lot regarding how
space should be represented in a conceptual graph, it is certainly inspiring.
In fact I would not be surprised if other continuous domains would also be
represented in a similar way.

7.5 Evolvability
As I discussed in section 3.4, any innate system of the human body or mind
must be explainable by evolution somehow. The language system is special
in this regard because language is unique to humans. Other systems that
are shared with different species have had millions of years to evolve in the
predecessors of humans, but language as such has not.

7.5.1 Concept Graph
In the DPS model, a large part of the complexity is taken up by the concep-
tual graph. The conceptual graph attempts to represent the model of the
external world that minds create within them. It is not language specific
and therefore not unique to humans, although one could probably argue that
humans have a more extensive representation of the world around them than
many other species do. It is plausible to assume that when creatures evolved
better sensory systems and larger brains, an internal representation of their
environment evolved along with that since it is useful for being better able
to understand and predict your environment.

3This information comes from [Muller, 1996]. Newer information can be found e.g. at
Wikipedia and the list of references there: http://en.wikipedia.org/wiki/Place_cell.

71

http://en.wikipedia.org/wiki/Place_cell

7.5.2 Parser
The other part of the DPS model that requires explanation is the mapping
from words (or other symbols) to concepts. The production rules as imple-
mented in the DPSP program are actually quite simple, each of them recog-
nizes a specific configuration of features. As such they are fundamentally not
very different from for example the line orientation detectors from [Werning,
2012]4, that have probably existed as long as eyes have.

Another useful comparison is with the high level analysis of visual scenes.
[Socher et al., 2011] show that a single recursive neural network algorithm
can be used to both analyze images and parse sentences, as both have the
same kind of recursive structure, where larger units are created from smaller
units.

The idea of the ‘grandmother neuron’ is also related to this. It is the
idea that there exist neurons or groups of neurons that respond specifically
to certain very complex objects, such as your grandmother. While this idea
is not uncontroversial, research has been done on it and [Quian Quiroga
et al., 2005] reports on findings of neurons that apparently respond only to
images of specific faces or objects, independent of simpler properties such
as the image size or the direction from which the object is shown.5.

While this evidence is not conclusive, it shows that a point can be made
that a similar kind of feature detection that is done by parse rules already
had a purpose in other systems that existed long before humans evolved,
and so that all that needed to happen was for such detectors to be adapted
to the auditive system.

7.5.3 Human Specific Evolutions
Given the above, one may wonder what element of the linguistic processing
capability humans have is specific to humans. I can not offer much of an
answer. One might speculate that it is the specific kind of application of
feature detectors to auditory or symbolic inputs, or it could be a more
general enlargement of the world representation in the brain, or it could be
something else.

7.6 Learnability
As mentioned in section 3.5, I will spend a few words to discuss whether
language as described by the DPS model can be considered to be learnable

4The line orientation detectors receive input from cells that detect contrast in a specific
part of the visual field. That, in turn, is done by receiving inputs from retina cells in
specific configurations through excitatory and inhibitory connections.

5For more background on the controversy and more research see e.g. http://en.
wikipedia.org/wiki/Grandmother_cell.

72

http://en.wikipedia.org/wiki/Grandmother_cell
http://en.wikipedia.org/wiki/Grandmother_cell

by children. The language specific parts of the DPS model, i.e. the parser,
is relatively easy to learn. Once a concept has formed, all that has to be
done is to associate that concept with a word. If then certain patterns in the
linguistic input can be recognized, that pattern can be linked to a specific
pattern of concepts and relations in the concept graph. Viewed from this
angle, learning a language is just an advanced form of pattern recognition.

The weights for the disambiguation methods also should not pose a prob-
lem in principle. Many of such weights may simply receive a value propor-
tional to how often the concept or concepts in question are used or used
together. If there is not a lot of information available to learn all the re-
quired weights, a less than optimally tuned system of weights will produce
a poorer performance, but the performance should degrade gradually with
more poorly tuned weights. Also, as children have less world knowledge
than grownups, we can assume their conceptual graph is smaller, and so the
total number of weights is smaller as well.

Learning of the conceptual graph itself is more of a challenge to describe.
It requires multiple levels of abstractive capabilities. There are probably
all kinds of innate mechanisms involved in this, such as mechanisms for
interpreting our two dimensional visual input as a space with objects in it
and systems to interpret what other people are thinking and feeling.6 But
regarding how higher levels of abstraction are done I do not have an answer.
However this is not a question that is unique to the DPS model. If we agree
that the mind carries within it some kind of representation of the world
around it, every theory of this will need to explain how one learns it. All
I can say is that at a first glance there are no reasons to assume that the
model I propose would be much more difficult to learn than other proposals.

6 [Frith and Frith, 2010], [Hari and Kujala, 2009], [Levinson, 2006], [Garrod and Pick-
ering, 2004]

73

Chapter 8

Extensions and Future
Research

In section 7.1 a number of shortcomings of the model as described here
were already mentioned, specifically using a parsing algorithm that does
not succumb to a combinatorial explosion, defining parsing strategies and
algorithms for parsing more complex sentences, and the problem of world
knowledge. In this chapter I will discuss some additional topics that also
require more research attention, and also quickly come back to the problem
of world knowledge again.

8.1 Concept Graph
As stated earlier, the current design of the concept graph was chosen be-
cause it is relatively simple and it is good enough for our purposes at the
moment. But I do think that as a model of how the human brain models
its surroundigs, it has a limited accuracy.

First of all, the concept graph is rather discrete: either there is a relation
between two concepts, or there is not. As connections between neurons in
the brain are weighted rather than binary it seems unlikely that the human
brain uses this same discreteness in representing relations between things.
In the current implementation this issue is mitigated a bit by the activation
system, which allows each concept to have a real-valued activation and allows
for real-valued relatedness weights, but this is in all likelihood still a crude
approximation of how the human brain actually works.

One example where this plays a role is that the current design makes a
strict distinction between being an instance of something and having some
property. It seems unlikely that real brains make such a strict distinction,
and it would be nice if this could be made to work more fluidly in some way.

A complicating factor in improving the concept graph is that the brain
most likely does not use one single representation to represent all aspects

74

of its surroundings. Research such as FMRI scanning has shown that dif-
ferent parts of the brain are active when someone is working on different
kinds of tasks.1 Many of these parts have different evolutionary histories
and different behaviors, so it seems to be a safe assumption that these dif-
ferent brain areas are also wired differently, and thus represent their data
in different ways. I think representing all data in the same way such as the
DPS model does can work up to a certain level, but at some point a more
accurate model of human thought will be needed to model the actual human
brain more closely. How the brain actually does its processing and how it
represents the external world in which it lives is ultimately a question for
neurologists and psychologists to answer.

Alternatively, if we do not wish to have a fully accurate model of the
human brain but just want to have a representation that is simple enough
to handle but rich enough to be useful, there are lots of designs possible.
Most likely many designs will work better for some linguistic phenomena and
other designs for other phenomena. How a conceptual representation should
be structured to handle most or all linguistic phenomena is something that
will require a lot more research and experimenting.

8.2 Accessibility of Concepts
It is obvious that in real life, in different situations and contexts some con-
cepts are more easily accessible than others. This is why we do not usually
need to think consciously about which interpretation was meant when an
ambiguous word is used. The DPS model tries to model this by giving ev-
ery concept in the concept graph an activation level, and describes some
mechanisms by which the activation is updated. In the real brain there are
probably other factors involved as well that influence which concepts are
accessible.

One such factor that is not modeled is attention. Attention is certainly
influenced by our environment, but we can also voluntarily choose to focus
our attention on specific things.2 Attention is drawn e.g. by loud sounds
or flashes of light, or by unexpected movement. Ideally an implementation
of activation should also take such factors into account, but especially vol-
untary control of attention will probably be beyond the reach of science for
some time to come.

Associations between concepts do not need to be based on anything
intrinsic to the concepts, they can also be created explicitly. The memory
technique of loci for remembering a list of items is based on this:3 it is
easier to remember a list of items by associating each item with for example

1 [Huettel et al., 2009]
2 [Theeuwes, 1991]
3 [Carlson, 2010, p. 245]

75

a thing in your house. You can then recall the list by mentally walking
through your house past all the things you associated something with. A
similar phenomenon is that some people who study while listening to music
then associate the music they listened to to the subject they studied.

Ideally the method to compute the accessibility of concepts should be
able to take all such mechanisms into account. Unfortunately that may
be difficult to implement just like that. I hope to show with this model
and program that even without implementing all these mechanisms they
can provide some insight in thinking about the semantics of language. The
more of these mechanisms can be identified and described the more useful
an activation system should become for identifying correct interpretations
of language.

8.3 Spoken Language Interpretation
Many current automatic speech recognition systems are based on hidden
markov models4. One property of such systems is that they are inherently
based on probabilities. If the DSP parsing mechanism were adapted to make
predictions on the next expected word, that would open up possibilities to
send information on probabilities all the way from the semantic layer to the
lowest speech recognition layers. Since in general for probabilistic or statistic
applications more data means better results,5 this would potentially allow
improved speech recognition systems to be developed.

The parser as described by the DPS model could be made probabilistic
in relatively straightforward ways. The first step would be to make it parse
input on-line, as each word comes in. This is a relatively straightforward
change as the different pattern matchers that make up the parser operate
independently. The next change would be to see which pattern matchers
could match when the next input word becomes available given the current
state of the partially built parse tree. Based on this a set of words can be
selected that allow at least one recognizer to match. These words could be
given a probability based on the probability values that pattern matchers
would give to the parse nodes they would create if one of such words was
given as input. Depending on the exact implementation of the pattern
matchers such a probability might be more or less simple to calculate.

8.4 Language Production
The current description of DPS and the DPSP program only handle language
understanding, not language production. I think it should be possible to
extend the system to work ‘in reverse’, where certain concepts and relations

4See [Jurafsky and Martin, 2008], specifically chapter 9
5 [Halevy et al., 2009]

76

between them are transformed into symbolic output. However that is also
a topic that will probably require some experimentation to get to work, so
it is a topic for future research.

8.5 World Knowledge
On the practical side and as noted in subsection 7.1.4 before, creating an ac-
tually useful program along the lines of DPSP quickly runs into the problem
of how to create a large conceptual graph that contains a rich representation
of the world, and how to tune the large number of activation weights that
come with such a graph. Formalizing large amounts of world knowledge is
not something that is easy to do. It will probably only become feasible if
we find some way to have the computers learn the required information for
themselves.

However in the medium term it might be possible to program knowledge
about for example 2d or 3d spaces and objects into a concept graph, and
have a program talk about those things in a relatively natural way. Perhaps
building a starting set of information plus a way to extend the concept
graph (though both would be nontrivial tasks in their own right) could be
a beginning from which a program could start to learn more information
about the world around it.

77

Chapter 9

Conclusion

In conclusion, we can say that it is possible to formalize a model of lin-
guistic meaning within the contextualist school of thought. The model that
was presented is named Direct Probabilistic Semantics. It can give inter-
pretations for several examples that have been used in the literature in the
debate of literalism versus contextualism, which agree with the way many
contextualists would want them to be interpreted. In addition, the model,
as far as it has been developed, seems to fit within the constraints that any
computational model that aims to describe how something is done in the
human brain must fit.

In addition, to prove that the model can be made fully precise, and to
aid in experimentation, I have written a proof of concept implementation in
a computer program.

Both the model and the implementation written still miss a lot of desir-
able properties, but as of yet the theoretical problems that were considered
did not appear to be insurmountable. On the practical side there is still the
problem of getting a large amount of world knowledge into a formal system,
but this problem is shared with all other existing theories of language.

Hopefully this result will help clarify the discussion between literalists
and contextualists. We can also hope this result will help the participants
in the discussion to agree on a shared point of view and thus end the discus-
sion, but with discussions in the field of philosophy, such hopes of ending a
discussion are usually idle. Regarding the field of linguistics and computa-
tional linguistics, this result may help promote the acceptance of approaches
that take more contextual information into account.

78

Bibliography

[Anderson, 1983] Anderson, John R., “A spreading activation theory of
memory”, Journal of Verbal Learning and Verbal Behavior, vol. 22:
pp. 261–295 (1983).

[Asher and Pustejovsky, 2005] Asher, Nicolas and James Pustejovsky,
“Word Meaning and Commonsense Metaphysics”, (2005), in course ma-
terials for Type Selection and the Semantics of Local Context, ESS-
LLI 2005, available from http://semanticsarchive.net/Archive/
TgxMDNkM/.

[Aswath et al., 2005] Aswath, Dipti, Syed Toufeeq Ahmed, James D’cunha,
and Hasan Davulcu, “Boosting Item Keyword Search with Spreading
Activation”, in Proceedings of the 2005 IEEE/WIC/ACM International
Conference on Web Intelligence, WI ’05, pp. 704–707, IEEE Computer
Society, Washington, DC, USA (2005), ISBN 0-7695-2415-X, doi:10.
1109/WI.2005.44.

[Austin, 1961] Austin, J., Philosophical Papers, Oxford University Press
(1961), 3rd ed. (1979).

[Bertolo, 2001] Bertolo, S., ed., Language Acquisition and Learnability,
Cambridge University Press (2001).

[Bianchi, 2010] Bianchi, C, “Contextualism”, in Horn, Laurence and Ger-
gory Ward, eds., Handbook of Pragmatics, John Benjamins Publishing
Company (2010).

[Borg, 2004] Borg, Emma, Minimal Semantics, Oxford University Press
(2004).

[Bos et al., 2003] Bos, Johan, Ewan Klein, Oliver Lemon, and Tetsushi Oka,
“DIPPER: Description and Formalisation of an Information-State Up-
date Dialogue System Architecture”, in In 4th SIGdial Workshop on
Discourse and Dialogue, pp. 115–124 (2003).

[Cappelen and Lepore, 2005] Cappelen, Herman and Ernest Lepore, Insen-
sitive Semantics. A Defense of Semantic Minimalism and Speech Act
Pluralism, Blackwell Publishers (2005), ISBN 9781405126755.

79

http://semanticsarchive.net/Archive/TgxMDNkM/
http://semanticsarchive.net/Archive/TgxMDNkM/

[Cappellen, 2006a] Cappellen, Herman, “Reply to Critics”, Philosophy and
Phenomenological Research (2006a).

[Cappellen, 2006b] Cappellen, Herman, “Reply to Critics”, ProtoSociology
(2006b).

[Carlson, 2010] Carlson, Neil R., “Psychology the science of behaviour”,
Pearson Canada Inc (2010).

[Carston, 2002] Carston, R., Thoughts and utterances: the pragmatics of
explicit communication, Blackwell (2002).

[Charniak, 1972] Charniak, E., “Toward A Model Of Children’s Story
Comprehension”, Tech. Rep. AI-TR-266, Artificial Intelligence Lab-
oratory, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts (1972), available at http://dspace.mit.edu/bitstream/
handle/1721.1/6892/AITR-266.pdf?sequence=2.

[Chomsky, 1986] Chomsky, N., Knowledge of language: Its nature, origins,
and use, Greenwood Publishing Group (1986).

[Chomsky, 2000] Chomsky, N., New Horizons in the Study of Language and
Mind, Cambridge University Press (2000).

[Cohen, 1986] Cohen, Jonathan, “How is Conceptual Innovation Possible?”,
Erkenntnis, vol. 25: pp. 221–238 (1986).

[Collins and Loftus, 1975] Collins, Allan M. and Elizabeth F. Loftus, “A
spreading-activation theory of semantic processing”, Psychological Re-
view, vol. 82, no. 6: pp. 407–428 (1975).

[Coon, 1989] Coon, Dennis, Introduction to Psychology, Exploration and
Application, West Publishing Company, St. Paul (1989).

[Davidson, 1984] Davidson, Donald, Inquiries into Truth and Interpretation,
Clarendon Press (1984).

[Doya et al., 2007] Doya, Kenji, Shin Ishii, Alexandre Pouget, and Ra-
jesh P.N. Rao, eds., Bayesian Brain: Probabilistic Approaches to Neural
Coding, The MIT Press (2007), ISBN 9780262042383.

[Fletcher and MacWhinney, 1995] Fletcher, P. and B. MacWhinney, The
Handbook of Child Language, Blackwell, Cambridge, MA (1995).

[Frith and Frith, 2010] Frith, U. and C. Frith, “The social brain: allowing
humans to boldly go where no other species has been”, Philosophical
Transactions of the Royal Society B: Biological Sciences, vol. 365, no.
1537: pp. 165–176 (2010).

80

http://dspace.mit.edu/bitstream/handle/1721.1/6892/AITR-266.pdf?sequence=2
http://dspace.mit.edu/bitstream/handle/1721.1/6892/AITR-266.pdf?sequence=2

[Garrod and Pickering, 2004] Garrod, S and M.J. Pickering, “Why is con-
versation so easy?”, Trends in Cognitive Sciences, vol. 8: pp. 8–11
(2004).

[Geurts and Beaver, 2011] Geurts, Bart and David I. Beaver, “Dis-
course Representation Theory”, in Zalta, Edward N., ed., The
Stanford Encyclopedia of Philosophy, fall 2011 edn. (2011),
http://plato.stanford.edu/archives/fall2011/entries/
discourse-representation-theory/.

[Grice, 1989] Grice, H.P., Studies in the Way of Words, Harvard University
Press (1989), ISBN 9780674852716.

[Halevy et al., 2009] Halevy, Alon, Peter Norvig, and Fernando Pereira,
“The Unreasonable Effectiveness of Data”, IEEE Intelligent Systems,
vol. 24, no. 2: pp. 8–12 (2009), ISSN 1541-1672, doi:10.1109/MIS.2009.
36.

[Hari and Kujala, 2009] Hari, R. and M. V. Kujala, “Brain basis of human
social interaction: from concepts to brain imaging”, Physiological re-
views, vol. 89, no. 2: pp. 453–479 (2009).

[Heim, 1982] Heim, I., “The Semantics of Definite and Indefinite Noun
Phrases”, Ph.D. thesis, University of Massachusetts, Amherst (1982).

[Huettel et al., 2009] Huettel, S. A., Song A. W., and G. McCarthy, Func-
tional Magnetic Resonance Imaging, Sinauer, Massachusetts, second
edn. (2009), ISBN 978-0-87893-286-3.

[Jurafsky and Martin, 2008] Jurafsky, Daniel and James H. Martin, Speech
and Language Processing, Pearson Prentice Hall, second edn. (2008),
ISBN 978-0131873216.

[Kamp, 1981] Kamp, Hans, “A theory of truth and semantic representa-
tion”, in Groenendijk, J. A. G., T. M. V. Janssen, and M. B. J. Stokhof,
eds., Formal Methods in the Study of Language, pp. 277 – 322, Mathe-
matical Centre Tracts, Amsterdam (1981).

[Kanis, 2011] Kanis, Jan, “For and Against Objective Meaning”, Bachelor
thesis, Universiteit Utrecht (2011).

[Kripke, 1976] Kripke, Saul, “Is there a Problem about Substitutional
Quantfication?”, in Evans, Gareth and John McDowell, eds., Truth and
Meaning, Oxford University Press (1976), ISBN 978-0-19-825007-4.

[Levinson, 2006] Levinson, S.C., “Cognition at the heart of human interac-
tion”, Discourse Studies, vol. 8, no. 1: pp. 85–93 (2006).

81

http://plato.stanford.edu/archives/fall2011/entries/discourse-representation-theory/
http://plato.stanford.edu/archives/fall2011/entries/discourse-representation-theory/

[MacFarlane, 2007] MacFarlane, J., “Semantic Minimalism and Nonindex-
ical Contextualism”, in Preyer, G. and G. Peter, eds., Context-
Sensitivity and Semantic Minimalism. New Essays on Semantics and
Pragmatics, pp. 240–250, Oxford University Press (2007).

[MacFarlane, 2009] MacFarlane, J., “Nonindexical Contextualism”, Syn-
these, vol. 66: pp. 231–250 (2009).

[Madsen, 2009] Madsen, Mathias Winter, “The Limits of Machine Transla-
tion”, Master thesis, University of Copenhagen (2009).

[Manning and Schütze, 1999] Manning, Christopher D. and Hinrich
Schütze, Foundations of Statistical natural Language Processing, MIT
Press (1999), ISBN 978-0-262-13360-9.

[Meltzoff, 2002] Meltzoff, A. N., “Imitation as a mechanism of social cog-
nition: Origins of empathy, theory of mind, and the representation of
action”, in Goswami, U., ed., Handbook of childhood cognitive develop-
ment, pp. 6–25, Blackwell Publishers, Oxford (2002).

[Montague, 1970a] Montague, Richard, “English as a Formal Language”, in
et al., Bruno Visentini, ed., Linguaggi nella Società e nella Tecnica, pp.
189–224, Edizioni di Comunità, Milan (1970a), reprinted in Montague
1974, 188-221.

[Montague, 1970b] Montague, Richard, “Universal Grammar”, Theoria,
vol. 36: pp. 373–398 (1970b), reprinted in Montague 1974, 222-246.

[Montague, 1973] Montague, Richard, “The proper treatment of quantifica-
tion in ordinary English”, in Hintikka, K.J.J., J.M.E. Moravcsik, and
P. Suppes, eds., Approaches to Natural Language, pp. 221–242, Reidel,
Dordrecht (1973), reprinted in Montague 1974, 247-270; Reprinted in
Portner and Partee, eds., 2002, 17-34.

[Montague, 1974] Montague, Richard, Formal Philosophy. Selected Papers
of Richard Montague, Yale University Press, New Haven/London
(1974), edited and with an introduction by Richmond H. Thomason.

[Muller, 1996] Muller, Robert, “A Quarter Century of Place Cells”, Neuron,
vol. 17: pp. 979–990 (1996).

[Och et al., 1999] Och, F. J., C. Tillmann, and H. Ney, “Improved align-
ment models for statistical machine translation”, in Proceedings of the
Joint SIGDAT Conference on Empirical Methods in Natural Language
Processing and Very Large Corpora, pp. 20–28 (1999).

[Parker, March 2006] Parker, Anna R., “Evolution as a Constraint on Theo-
ries of Syntax: The Case against Minimalism”, Ph.D. thesis, University
of Edinburgh (March 2006).

82

[Partee, 2008] Partee, Barbara H., “Reflections of a formal semanticist”, in
Partee, Barbara H., ed., Compositionality in Formal Semantics: Se-
lected Papers of Barbara H. Partee, John Wiley & Sons (2008).

[Pietrosky, 2003] Pietrosky, Paul M., “The Character of Natural Language
Semantics”, in Barber, Alex, ed., Epistemology of Language, Oxford
University Press (2003), available at http://www.terpconnect.umd.
edu/~pietro/research/papers/index.html.

[Pietrosky, 2005] Pietrosky, Paul M., “Meaning Before Truth”, in Preyer,
G. and G. Peters, eds., Contextualism in Philosophy, Oxford Uni-
versity Press (2005), available at http://www.terpconnect.umd.edu/
~pietro/research/papers/index.html.

[Quian Quiroga et al., 2005] Quian Quiroga, R., L. Reddy, G. Kreiman,
C. Koch, and I. Fried, “Invariant visual representation by single neu-
rons in the human brain”, Nature, vol. 435: pp. 1102–1107 (2005),
doi:10.1038/nature03687.

[Recanati, 1993] Recanati, F., Direct Reference: From Language to Thought,
Blackwell (1993).

[Recanati, 2001] Recanati, François, “What is Said”, Synthese, vol. 128: p.
75–91 (2001).

[Recanati, 2004] Recanati, François, Literal Meaning, Cambridge University
Press (2004), ISBN 9780521537360.

[Recanati, 2007] Recanati, François, Perspectival Thought: A Plea
for (Moderate) Relativism, Oxford University Press (2007), ISBN
9780199230549.

[Recanati, 2008] Recanati, F., “Pragmatics and Semantics”, in The Hand-
book of Pragmatics, Blackwell Publishing Ltd, Oxford, L. R Horn and
G. Ward (2008), doi:10.1002/9780470756959.ch20.

[Reddy, 1979] Reddy, Michael J., “The conduit metaphor: A case of frame
conflict in our language about language”, in Ortony, Andrew, ed.,
Metaphor and Thought, pp. 284–310, Cambridge University Press
(1979), second edition: 1993.

[Reisberg, 2007] Reisberg, Daniel, Cognition: Exploring the Science of the
Mind, W W Norton & Co. Inc. (2007).

[Ritchie and Bhatia, 1999] Ritchie, W. and T. Bhatia, Handbook of Child
Language Acquisition, Academic Press, San Diego (1999).

83

http://www.terpconnect.umd.edu/~pietro/research/papers/index.html
http://www.terpconnect.umd.edu/~pietro/research/papers/index.html
http://www.terpconnect.umd.edu/~pietro/research/papers/index.html
http://www.terpconnect.umd.edu/~pietro/research/papers/index.html

[Rohlf, 2010] Rohlf, Michael, “Immanuel Kant”, in Zalta, Edward N., ed.,
The Stanford Encyclopedia of Philosophy, fall 2010 edn. (2010), http:
//plato.stanford.edu/archives/fall2010/entries/kant/.

[Samsom, 2013] Samsom, Dana, “Theory of Mind”, in Reisberg, Daniel, ed.,
The Oxford Handbook of Cognitive Psychology, Oxford University Press
(2013).

[Searle, 1978] Searle, John R., “Literal Meaning”, Erkenntnis, vol. 13, no. 1:
pp. 207–224 (1978).

[Searle, 1979] Searle, John R., Expression and Meaning, Cambridge Univer-
sity Press (1979).

[Searle, 1980] Searle, John R., “The Background of Meaning”, in Searle,
John R., Ference Kiefer, and Manfred Bierwisch, eds., Speech Act theory
and Pragmatics, pp. 221–232, Reidel (1980).

[Searle, 1992] Searle, John R., The Rediscovery of Mind, MIT Press (1992).

[Socher et al., 2011] Socher, Richard, Cliff Chiung-Yu Lin, Andrew Y. Ng,
and Christopher D. Manning, “Parsing Natural Scenes and Natural
Language with Recursive Neural Networks”, in Proceedings of the 28th
International Conference on Machine Learning, Bellevue, WA, USA
(2011).

[Speaks, 2011] Speaks, Jeff, “Theories of Meaning”, in Zalta, Edward N.,
ed., The Stanford Encyclopedia of Philosophy, summer 2011 edn.
(2011), http://plato.stanford.edu/archives/sum2011/entries/
meaning/#ChoIntSem, section 2.2.2: Chomskyan Internalist Semantics.

[Stanley and Szabò, 2000] Stanley, Jason and Zoltan Szabò, “On Quantifier
Domain Restrictions”, Mind and Language, vol. 15, no. 2: pp. 219–261
(2000).

[Stanley, 2000] Stanley, Jason, “Context and Logical Form”, Linguistics and
Philosophy, vol. 23: pp. 391–434 (2000).

[Theeuwes, 1991] Theeuwes, J., “Exogenous and endogenous control of at-
tention — the effect of visual onsets and offsets”, Perception & Psy-
chophysics, vol. 49, no. 1: pp. 83–90 (1991).

[Travis, 1989] Travis, Charles, The Use of Sense: Wittgenstein’s Philosophy
of Language, Oxford University Press (1989).

[Travis, 1997] Travis, Charles, “Pragmatics”, in Hale, B. and C. Wright,
eds., A Companion to the Philosophy of Language, p. 87–107, Blackwell
(1997).

84

http://plato.stanford.edu/archives/fall2010/entries/kant/
http://plato.stanford.edu/archives/fall2010/entries/kant/
http://plato.stanford.edu/archives/sum2011/entries/meaning/#ChoIntSem
http://plato.stanford.edu/archives/sum2011/entries/meaning/#ChoIntSem

[Travis, 2000] Travis, Charles, Unshadowed Thoughts, Harvard University
Press (2000).

[Travis, 2008] Travis, Charles, Occasion Sensitivity: selected essays, Oxford
University Press (2008), ISBN 978-0-19-923033-4.

[Tversky, 1997] Tversky, “Features of Similarity”, Psychological Review,
vol. 84: p. 327–52 (1997).

[Werning, 2010] Werning, Markus, “Complex First? On the Evolutionary
and Developmental Priority of Semantically Thick Words”, Philosophy
of Science, vol. 77, no. 5: pp. 1096–1108 (2010).

[Werning, 2012] Werning, Markus, “Non-Symbolic Compositional Repre-
sentation and its Neural Foundation: towards and Emulative Seman-
tics”, in Werning, Markus, Wolfram Hinzen, and Edouard Machery,
eds., The Oxford Handbook of Compositionality, pp. 633–724, Oxford
University Press (2012).

[Wikipedia, a] Wikipedia, “http://en.wikipedia.org/wiki/Conduit_
metaphor”, (a), accessed August 2013.

[Wikipedia, b] Wikipedia, “http://en.wikipedia.org/wiki/Frederick_
Jelinek”, (b), accessed August 2013.

[Wikipedia, c] Wikipedia, “http://en.wikipedia.org/wiki/
Grandmother_cell”, (c), accessed August 2013.

[Wikipedia, d] Wikipedia, “http://en.wikipedia.org/wiki/Place_
cell”, (d), accessed July 2013.

[Wikipedia, e] Wikipedia, “http://en.wikipedia.org/wiki/Spreading_
activation”, (e), accessed July 2013.

[Winograd, 1971] Winograd, Terry, “Procedures as a Representation for
Data in a Computer Program for Understanding Natural Lan-
guage”, Tech. Rep. AI-TR-235, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, Massachusetts
(1971), available at http://dspace.mit.edu/bitstream/handle/
1721.1/7095/AITR-235.pdf?sequence=2.

85

http://en.wikipedia.org/wiki/Conduit_metaphor
http://en.wikipedia.org/wiki/Conduit_metaphor
http://en.wikipedia.org/wiki/Frederick_Jelinek
http://en.wikipedia.org/wiki/Frederick_Jelinek
http://en.wikipedia.org/wiki/Grandmother_cell
http://en.wikipedia.org/wiki/Grandmother_cell
http://en.wikipedia.org/wiki/Place_cell
http://en.wikipedia.org/wiki/Place_cell
http://en.wikipedia.org/wiki/Spreading_activation
http://en.wikipedia.org/wiki/Spreading_activation
http://dspace.mit.edu/bitstream/handle/1721.1/7095/AITR-235.pdf?sequence=2
http://dspace.mit.edu/bitstream/handle/1721.1/7095/AITR-235.pdf?sequence=2

Appendix A

Program Capabilities

This appendix contains descriptions of some of the capabilities of the DPSP
program not mentioned before. The information from the program’s READ-
ME file is also included.

A.1 Locations and Demonstratives
The scene that the concept graph represents is a two-dimensional space, with
each object having a location in that space. The program implements the
demonstratives “die”, “dat” and “daar” (“that” male/female, “that” neutral,
“there”), that can be used to refer to locations in the scene. To represent
the space itself the concept graph contains a set of instances of ‘location’,
which are arranged in a 200 by 200 grid. Each such location concept thus
represents a point in the space. Objects are at a certain location if they
have the ‘isat’ relation with the concept that represents the corresponding
coordinate.

For the interpretation of demonstratives, the program asks the user to
click somewhere on the scene, which is interpreted as pointing to that lo-
cation. The demonstratives “die” and “dat” together with such a pointing
action are interpreted as different things: first of all a set of possible loca-
tions, with the ones closer to the point where the click happened having a
higher probability, secondly as any objects at one of those locations, and
third as any of the properties any objects at that location have. So saying
“die kleur” (“that color”) while pointing at a green object will be interpreted
as the concept ‘green’. The demonstrative “daar” is interpreted similarly but
only as locations, not as objects at those locations.

The interpretation of demonstratives is especially a case in which having
the conceptual world representation available during parsing results in a
much simpler representation compared to approaches in which syntactic
or semantic analysis happens without the availability of such a context,
because indexicals do not need to be propagated through layers of context

86

independent representations but can be resolved immediately.

A.2 Commands and Statements
The program can not only recognize noun phrases as demonstrated in Ta-
ble 6.1. It also recognizes some imperative and some predicative statements.
The imperative statements allow one to create or move objects or to change
their color, using sentences such as “Maak dat vierkant rood” (“Make that
square red”), or “Maak een cirkel” (“Make a circle”). These statements are
implemented by creating temporary concepts that represent the action to
be taken. Temporary concepts do not differ from normal concepts in any
way, except that they are removed again when the program is done with the
parse and the resulting concept.

The execution of the created statement is not something that happens
automatically in the parser subsystem. It is initiated by the driver code in
the graphical interface subsystem. Since the concept representing the action
already has all the necessary information, execution is straight forward to
implement in a program such as this one. As it is not part of how language
works it is not really relevant to discuss here in detail.

The program also interprets simple predicative statements, such as “de
cirkel is rood” (“the circle is red”). The result is a temporary concept that
represents the statement, which can be evaluated in a straightforward way.
The graphical interface will evaluate predicative statements and display the
result along with the interpretation. I have not implemented any kind of
complex predicates or logical operators. Doing so would be possible but I
did not have time for it and it was not relevant for my research.

A.3 Limitations on Continuous Values
The program currently can only handle discrete concepts. This shows up in
for example there only being a small number of colors available and the space
of the scene being represented by a large number of discrete concepts, each
of which represents a point on the grid. The latter already causes a notable
slowdown in parsing when locations are involved. In a neural network type
of underlying architecture, rather than a Von-Neumann type computer, such
concerns could be lessened quite a bit as in many cases concepts could be
processed in parallel. However that does not solve everything. For domains
that contain continuous values and that are unbounded, or that need to be
represented at arbitrary resolution, an infinite number of concepts would be
needed if they are to be represented in the same way as the implementation
currently represents space, so that is obviously untenable.

For the problem of computational efficiency I can think of two ways
to improve the current program. The first would be to use the computer

87

hardware more efficiently. A space could be represented by an efficient
matrix instead of by a set of objects as is currently the case. Using built-in
matrices in many programming languages gives access to operations that are
implemented using specific processor instructions for operating on matrices,
which can process multiple values in parallel. This would therefore give
access to a certain level of parallel processing, and reduce the disadvantage
a Von Neumann architecture has over a neural network.

The second way would be to use a more analytic approach, in which
instances of ‘location’ are created when needed. Activation of a point and
the area around it could be represented by a set of gaussians, in which case
more use could be made of analythic methods to calculate the most probable
interpretation of a set of possible interpretations for an input sentence. In
such an approach an infinite number of concepts could be represented im-
plicitly, while only those that are needed individually need to be explicit.

A.4 Program Documentation
The rest of this appendix contains a copy of the information that is included
in the programs README file. This includes instructions on how to use
the program and a short overview of how it is structured.

About
This program is a proof of concept implementation of a contextualist se-
mantic parsing model. This program was written by Jan Kanis as part of
my master thesis in Cognitive Artificial Intelligence.

The source code for this program will be available at http://bitbucket.
org/JanKanis/DPSP. If it is not there you can try to find it through my
personal webpage at http://www.jankanis.nl.

If you find this program or the thesis it is part of helpful or useful, I
would appreciate it if you could let me know at jan dot code at jankanis dot
nl.

Name
This program is called “Direct Probabilistic Semantic Parser”, or DPSP
for short. The name is based on the name of the implemented theoretic
approach, which I have named “Direct Probabilistic Semantics”.

88

http://bitbucket.org/JanKanis/DPSP
http://bitbucket.org/JanKanis/DPSP
http://www.jankanis.nl

Theory
The goal of this program is to implement a natural language semantics sys-
tem based on the contextualist approach, as it is known in the field of phi-
losophy of language. The primary goals are to interpret language phrases
directly into concepts, without going through symbolic intermediate rep-
resentations based on formal logic like many computational semantic ap-
proaches do. These symbolic intermediate representations normally cannot
represent the rich context that language interpretation depends on.

This program is a proof of concept, its goal is to show that a computa-
tional semantic system according to the ideas of contextualism is possible,
and does not need to run into inconsistencies or hidden problems.

For more information see my master thesis.

Dependencies
This program is written in Python 3, so you will need that installed. You
will also need the numpy library. If you want to use the graphical interface
you will need the Qt 4 libraries and PyQt4. The tests are written against
the py.test framework.

The numpy dependency is not very important but was convenient. You
can remove it by changing the world grid in dpsp.py and the functions that
use in in parser.py.

This program has been developed and tested on Ubuntu Linux 12.04.

Usage
To run the program, start the gui.py file. This will open up a window
containing three areas. The left half of the window displays the scene. The
right lower area is the input area, and the right upper area displays the
output.

You can enter sentences into the input area by typing there. Sentences
can only consist of the words the program understands, separated by whites-
pace. The program currently does not understand punctuation or capital
letters, if you use them the parse will fail.

Although the interface and documentation of this program is in English,
the language the program understands is Dutch.

If you enter a sentence into the input area, the program will attempt to
parse the input and show any interpretations it can come up with. Inputs
need not be fully formed sentences, noun phrases are also acceptable. The
program knows about circles, squares, and triangles, and about the colors
red, yellow, green and blue. The program understands commands to make

89

new objects or to change objects. For the full list of words the program
understands, see the Lexicon section.

Quick Tutorial
When the program starts, the scene contains two objects: a green square
in the left upper quadrant and a red triangle near the center. Input “het
vierkant” (“the square”). The output window will display the input and a
representation of the interpretation, which in this case is

<vk1 (80039)>: 0.1984

This indicates that the result is the concept that carries the name “vk1”
and has id number 40039. The 0.1984 is the probability of this result. This
number is not very relevant by itself, only its relative magnitude compared
to other interpretations matters.

Other phrases such as “het groene ding” or “de driehoek” (“the green
thing”, “the triangle”) result in the same square and the triangle concept,
respectively. The phrase “het ding” (“the thing”) is ambiguous as it can
refer to the square or the triangle. Inputting it will display both results,
with the one with the highest probability first.

The program also supports demonstratives. If you input “dat ding”
(“that thing”) the program will ask you to click on the scene to indicate
where you intend “dat” to point to. The demonstrative word in question
will be highlighted and the status bar will ask you to click on the scene. If
you do so the result will be the object you clicked at, or if you did not click
near an object there will be no interpretation available. Clicking is fuzzy, so
clicking near an object instead of on it will also work.

You can change locations or properties of objects by issuing sentences
such as “maak het vierkant blauw” (“make the square blue”). “zet de
driehoek daar” (“put the triangle there”) also works, after you click on a
location. This last sentence will result in a lot of possible interpretations
due to the fuzziness of demonstratives, all points near the point you clicked
will be interpreted as possible targets, but the one you clicked on will have
the highest probability.

New objects can be created using sentences such as “maak een gele
cirkel” (“make a yellow circle”) or “zet daar een vierkant neer”*
(“put down a square over there”).

In the case of ambiguity, the program will try to choose the most likely
interpretation. This allows for example the following sentences to work as
expected if they are input one after another (if there is at least a red and
a green square): “zet het groene vierkant daar” “zet de rode daar”
(“put the green square there”, “put the red one there”).

*There is currently still a bug that prevents this specific example from working.

90

Lexicon
The program can understand the following Dutch words:

Dutch English
translation

de the (m/f)
het the (n)
een a
die that (n)
dat that (m/f)
daar there
hem him/it
vierkant square
driehoek triangle
cirkel circle
ding thing
kleur color
plek place
rood red
rode red (adj)
geel yellow
gele yellow (adj)
groen green
groene green (adj)
blauw blue
blauwe blue (adj)
op on
maak make
zet put
neer down
is is

Some example phrases:

“het vierkant” “the square”
“het ding” “the thing”
“de driehoek” “the triangle”
“maak een gele cirkel” “make a yellow circle”

91

“zet het vierkant daar” “put the square there”
“maak dat ding blauw” “make that thing blue”
“die cirkel is geel” “that circle is yellow”

For a full list of recognized concepts, relations, and for the implemented
language grammar rules you will need to consult the source. dpsp.py con-
tains the concepts and relations, parser.py the grammar rules.

Program Layout
The program consists of a number of files:

dpsp.py
dpsp_activation.py
dpsp_actions.py
dpsp_utils.py
parser.py
parser_algorithm.py
dpsp_views.py
guicall.py
gui.py
namespace.py
QtAutoconnect.py

Additionally there are a number of files containing tests:

test_dpsp.py
test_parser.py
test_guicall.py
test_gui.py
test_memoizer.py
test_QtAutoconnect.py
test

There are also some documentation and licensing files.
The files dpsp.py, dpsp_activation.py, dpsp_actions.py, dpsp_utils.py,

parser.py and parser_algorithm.py comprise the core of the program.
dpsp.py contains the classes and functions to manipulate the concept graph
and the core concept and relation definitions. dpsp_activation.py con-
tains the logic to maintain the concept activation. dpsp_actions.py con-
tains the functions that execute imperatives and evaluate propositions. dpsp_-
utils.py contains some utilities that are needed in multiple modules. The
parser is contained in parser.py and parser_algorithm.py as the name
suggests. parser_algorithm.py contains the implementation of the parser

92

algorithm, while parser.py contains the languages production rules. The
latter also contains some tests of the parser, these are not part of test_-
parser.py because they depend on the state of the concept graph to be
unmodified from the program startup default.

The files dpsp_views.py, guicall.py and gui.py comprise the graphi-
cal interface. dpsp_views.py contains the definition for the Qt widget that
displays the scene and updates it automatically if the concept graph changes.
gui.py contains the main gui window and the logic to drive it, calling into
the parser code as needed. guicall.py contains code to make safe calls into
the gui from non-gui threads.

The files starting with test_ contain tests for their respective modules.
All tests can be run by executing the test script. They are run by the
py.test testing framework.

The graphical interface can be run as a multithreaded program, in which
case parsing of sentences happens on a background thread. This is enabled
by setting the variable ENABLE_THREADED_PARSING in gui.py to True.

The gui is decoupled from the parser and concept graph and uses an ob-
server pattern to receive graph updates. It is also possible to use the concept
graph and the parser independently of the graphical interface. They don’t
have their own interface, but it is possible to interact with them through
a python interactive interpreter. The main concept graph consists of the
set of concepts that are contained in dpsp.Cl and dpsp.C (the former is
indexed by concept id, the latter by name). The relations exist in the set
dpsp.relations, however separate indexes are attached to each concept
so manipulating them needs to be done through the provided functions in
dpsp.

For programmatic or interactive interpreter interaction with the parser,
the main function is parser.parse([list-of-words]). It takes a list of
strings as argument and returns a parser.Parse object that contains all
information related to the parse.

License
This program is copyrighted by Jan Kanis © 2013.

This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version, with the additional condition that you must preserve author
attributions. See the LICENSE.txt file for details.

This program is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

93

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

94

http://www.gnu.org/licenses/

Appendix B

DPSP Parser Productions

This appendix contains the full parser definition as it is used in the DPSP
program. This code is taken directly from the parser.py source file.

1 @parser ({ ’ word ’ : ’ het ’ } , name=”LidwoordRec (’ het ’) ”)
2 @parser ({ ’ word ’ : ’ de ’ } , name=”LidwoordRec (’ de ’) ”)
3 def LidwoordRec (pcontext) :
4 f = pcontext . match [0] . f e a t u r e s
5 gender = { ’ de ’ : ’mv ’ , ’ het ’ : ’ o ’ } [f [’ word ’]]
6 y i e l d SyntaxMeaning (”LidWoord (’ {} ’) ” . format (f [’ word ’]) , pcontext

, d i c t (f , de t e rm ine r=True , d e f i n i t e=True , gender=gender ,
word=None))

7
8 @parser ({ ’ word ’ : ’ een ’ } , name=”LidwoordRec (’ een ’) ”)
9 def IndetL idwoordRec (pcontext) :

10 f = pcontext . match [0] . f e a t u r e s
11 y i e l d SyntaxMeaning (”LidWoord (’ {} ’) ” . format (f [’ word ’]) , pcontext

, d i c t (f , de t e rm ine r=True , d e f i n i t e=False , word=None))
12
13
14 @parser ({ ’ word ’ : ’ d i e ’ })
15 @parser ({ ’ word ’ : ’ dat ’ })
16 def I n d e x i c a lR e c (pcontext) :
17 f = pcontext . match [0] . f e a t u r e s
18 word = f [’ word ’]
19 gender = { ’ d i e ’ : ’mv ’ , ’ dat ’ : ’ o ’ } [word]
20 y i e l d I ndex i ca lSyntaxMean ing (” I n d e x i c a l (’ {} ’) ” . format (word) ,

pcontext ,
21 d i c t (f , de t e rm ine r=True , d e f i n i t e=True , i n d e x i c a l=True ,

gender=gender , word=None))
22
23 @parser ({ ’ word ’ : ’ d i e ’ })
24 def D i r e c t I n d e x i c a lR e c (pcontext) :
25 f o r con , p i n pcontext . match [0] . g e t r e f e r e n t s () . i t ems () :
26 # type = con . i s i n s t a n c e
27 i f C. ob j e c t i n con . t ypes () :
28 y i e l d con , {} , prob_or (p , a c t i v a t i o n [p])
29

95

30
31 @parser ({ ’ word ’ : ’ daar ’ })
32 def DaarRec (pcontext) :
33 f o r con , p i n pcontext . match [0] . g e t r e f e r e n t s () . i t ems () :
34 i f con . t e s t r e l (C . i n s t anc eo f , C . l o c a t i o n) :
35 y i e l d con , { ’ p repphrase ’ : True , ’ p reptype ’ : l o c a t i o n } , prob_or

(p , a c t i v a t i o n [p])
36
37 @parser ({ ’ word ’ : ’hem ’ })
38 def HemRec(pcontext) :
39 f o r con i n C. ob j e c t . f u l l e x t e n s i o n () :
40 y i e l d con , {} , a c t i v a t i o n [con]
41
42
43 @parser ({ ’ word ’ : ’ v i e r k a n t ’ })
44 def SquareRec (pcontext) :
45 y i e l d C. square , { ’ gender ’ : ’ o ’ }
46
47 @parser ({ ’ word ’ : ’ d r i ehoek ’ })
48 def Tr iang leRec (pcontext) :
49 y i e l d C. t r i a n g l e , { ’ gender ’ : ’mv ’ }
50
51 @parser ({ ’ word ’ : ’ c i r k e l ’ })
52 def C i r c l eRec (pcontext) :
53 y i e l d C. c i r c l e , { ’ gender ’ : ’mv ’ }
54
55 @parser ({ ’ word ’ : ’ d ing ’ })
56 def DingRec (pcontext) :
57 y i e l d C. ob jec t , { ’ gender ’ : ’ o ’ }
58
59 @parser ({ ’ word ’ : ’ k l e u r ’ })
60 def KleurRec (pcontext) :
61 y i e l d C. co lo r , { ’ gender ’ : ’mv ’ }
62
63 @parser ({ ’ word ’ : ’ p l ek ’ })
64 def PlekRec (pcontext) :
65 y i e l d C. l o c a t i on , { ’ gender ’ : ’mv ’ }
66
67
68 f o r w, con i n { ’ rood rode ’ : C . red , ’ g e e l g e l e ’ : C . ye l low , ’ groen

groene ’ : C . green , ’ blauw blauwe ’ : C . b lue } . i tems () :
69 w1 , w2 = w. s p l i t ()
70 @parser ({ ’ word ’ :w1})
71 def ColorRec (pcontext , con=con , w1=w1) :
72 y i e l d con , { ’ determined ’ : True}
73 y i e l d pcontext . t r a n s i e n t c on c ep t (” c o l o r (’ {} ’) ” . format (w1) , {

i s t y p e : i nde te rm ina te , i s c o l o r : con }) , d i c t (pcontext . match
[0] . f e a t u r e s , a d j e c t i v a l=True , word=None)

74 @parser ({ ’ word ’ :w2})
75 def ColorRec (pcontext , con=con , w2=w2) :
76 y i e l d pcontext . t r a n s i e n t c on c ep t (” c o l o r (’ {} ’) ” . format (w2) , {

i s t y p e : i nde te rm ina te , i s c o l o r : con }) , d i c t (pcontext . match
[0] . f e a t u r e s , a d j e c t i v a l=True , word=None)

77

96

78
79 @parser ({ ’ word ’ : ’ op ’ } , { i n s t anc eo f_ t : l o c a t i o n })
80 def OpPhraseRec (pcontext) :
81 y i e l d pcontext . match [1] . concept , { ’ p repphrase ’ : True , ’ p reptype ’ :

l o c a t i o n }
82
83
84
85 @parser ({ ’ word ’ : ’maak ’ } , { i n s t anc eo f_ t : obj , i s t y p e : None} , {

i n s t a n c e o f : c o l o r })
86 def MaakKleurRec (pcontext) :
87 sub j = pcontext . match [1] . concept
88 co l = pcontext . match [2] . concept
89 y i e l d pcontext . t r a n s i e n t c on c ep t (’ changeco lo r ({} , {}) ’ . format (

subj , c o l) ,
90 { i n s t a n c e o f : changeco lor , s u b j e c t : subj , goa l : c o l })
91
92 v = { ’word ’ : ’ z e t ’ }
93 sub j = { i n s t anc eo f_ t : obj , i s t y p e : None}
94 pp = { i n s t a n c e o f : l o c a t i on , ’ p repphrase ’ : True , ’ p reptype ’ : l o c a t i o n

}
95 @parser (v , subj , pp)
96 @parser (v , subj , pp , { ’ word ’ : ’ nee r ’ })
97 @parser (v , pp , sub j)
98 @parser (v , pp , subj , { ’ word ’ : ’ nee r ’ })
99 def ZetRec (pcontext) :

100 i f pcontext . match [1] . concept . t e s t r e l (i n s t anc eo f , l o c a t i o n) :
101 l o c = pcontext . match [1] . concept
102 sub j = pcontext . match [2] . concept
103 e l s e :
104 a s s e r t pcontext . match [2] . concept . t e s t r e l (i n s t anc eo f , l o c a t i o n)
105 sub j = pcontext . match [1] . concept
106 l o c = pcontext . match [2] . concept
107 y i e l d pcontext . t r a n s i e n t c on c ep t (’ change l o ca t i on ({} , {}) ’ . format (

subj , l o c) ,
108 { i n s t a n c e o f : change loca t i on , s ub j e c t : subj , goa l : l o c })
109
110 @parser ({ ’ word ’ : ’maak ’ } , { i n s t anc eo f_ t : obj , i s t y p e : i nde te rm ina te ,

’ c o n s t r a i n t_ i n s t a n c e ’ : None})
111 @parser ({ ’ word ’ : ’maak ’ } , pp , { i n s t anc eo f_ t : obj , i s t y p e :

i nde te rm ina te , ’ c o n s t r a i n t_ i n s t a n c e ’ : None})
112 @parser ({ ’ word ’ : ’maak ’ } , { i n s t anc eo f_ t : obj , i s t y p e : i nde te rm ina te ,

’ c o n s t r a i n t_ i n s t a n c e ’ : None} , pp)
113 def MaakObjRec (pcontext) :
114 l o c = None
115 sub j = pcontext . match [1] . concept
116 i f l e n (pcontext . match) == 3:
117 i f pcontext . match [1] . concept . i n s t a n c e o f == l o c a t i o n :
118 l o c = pcontext . match [1] . concept
119 sub j = pcontext . match [2] . concept
120 e l s e :
121 sub j = pcontext . match [1] . concept
122 l o c = pcontext . match [2] . concept
123 i f l o c :

97

124 sub j = pcontext . c op y t r a n s i e n t (sub j)
125 t r y _ d e l r e l (i s a t , sub j)
126 r e l (i s a t , subj , l o c)
127
128 y i e l d pcontext . t r a n s i e n t c on c ep t (’ c r e a t e o b j e c t ({}) ’ . format (sub j) ,
129 { i n s t a n c e o f : c r e a t e ob j e c t , s u b j e c t : sub j })
130
131
132
133 @parser ({ i n s t anc eo f_ t : obj , i s t y p e : None} , { ’ word ’ : ’ i s ’ } , {

i n s t anc eo f_ t : { co l o r , l o c a t i o n } , i s t y p e : None})
134 def Pred icateRec (pcontext) :
135 sub j = pcontext . match [0] . concept
136 d i r e c t_ob j = pcontext . match [2] . concept
137 r e l s = []
138 f o r r e l t y p e , t a r g e t s i n sub j . s j i d x . i t ems () :
139 i f d i r e c t_ob j i n t a r g e t s :
140 r e l s . append (r e l t y p e)
141 i f not r e l s :
142 i f d i r e c t_ob j . t e s t r e l (i n s tanceo f_t , c o l o r) :
143 r e l s . append (i s c o l o r)
144 e l i f d i r e c t_ob j . t e s t r e l (i n s tanceo f_t , l o c a t i o n) :
145 r e l s . append (i s a t)
146 f o r r e l t y p e i n r e l s :
147 y i e l d pcontext . t r a n s i e n t c on c ep t (’ pred {}({} , {}) ’ . format (

r e l t y p e , subj , d i r e c t_ob j) ,
148 { i n s t a n c e o f : p r ed i c a t e , s u b j e c t : subj , r e l a t i o n : r e l t y p e ,

t a r g e t : d i r e c t_ob j })
149
150
151 def cons t ra in tmatch (con , c o n s t r a i n t) :
152 a s s e r t c o n s t r a i n t . t e s t r e l (i s t yp e , i nde t e rm ina t e)
153 f o r type , t a r g e t i n c o n s t r a i n t . g e t t a r g e t s () :
154 i f not type == i s t y p e and not type i n t r a n s i t i v e _ r e l a t i o n s and

not con . t e s t r e l (type , t a r g e t) :
155 return Fa l s e
156 return True
157
158 def f indmatches (c o n s t r a i n t) :
159 a s s e r t c o n s t r a i n t . t e s t r e l (i s t yp e , i nde t e rm ina t e)
160 type , t a rg = next ((type , t a rg) f o r type , t a rg i n c o n s t r a i n t .

g e t t a r g e t s ()
161 i f type . t e s t r e l (i n s tanceo f_t , phys i ca l_prop))
162 f o r c i n t a rg . g e t r e v e r s e r e l s (type) :
163 i f not c . t e s t r e l (i s t yp e , i nde t e rm ina t e) and cons t ra in tmatch (c ,

c o n s t r a i n t) :
164 y i e l d c
165
166
167 @parser ({ i n s t a n c e o f : ka tegory })
168 def KategoryConst ra intRec (pcontext) :
169 kat = pcontext . match [0] . concept
170 y i e l d pcontext . t r a n s i e n t c on c ep t (” c o n s t r a i n t ({}) ” . format (kat) , {

i n s t a n c e o f : kat , i s t y p e : i nde t e rm ina t e }) , d i c t (pcontext . match

98

[0] . f e a t u r e s , c on s t r a i n t_ i n s t a n c e=True)
171
172 @parser ({ ’ de te rm ine r ’ : True , ’ d e f i n i t e ’ : True , ’ i n d e x i c a l ’ : None} , { ’

c on s t r a i n t_ i n s t a n c e ’ : True })
173 def I n s tanceRec (pcontext) :
174 g1 , g2 = (m. f e a t u r e s [’ gender ’] f o r m i n pcontext . match)
175 i f g1 != g2 and g1 != None :
176 return
177 f o r c i n pcontext . match [1] . concept . i n s t a n c e o f . f u l l e x t e n s i o n () :
178 i f not c . t e s t r e l (i s t yp e , i nde t e rm ina t e) and cons t ra in tmatch (
179 c , c o n s t r a i n t=pcontext . match [1] . concept) :
180 y i e l d c , {} , a c t i v a t i o n [c]
181
182 @parser ({ ’ de te rm ine r ’ : True , ’ d e f i n i t e ’ : True , ’ i n d e x i c a l ’ : None , ’

gender ’ : ’mv ’ } , { ’ comb ined_ad j ec t i va l ’ : True })
183 @parser ({ ’ de te rm ine r ’ : True , ’ d e f i n i t e ’ : True , ’ i n d e x i c a l ’ : None , ’

gender ’ : ’mv ’ } , { ’ a d j e c t i v a l ’ : True })
184 def Imp l i c i t I n s t a n c eR e c (pcontext) :
185 f o r c i n f indmatches (pcontext . match [1] . concept) :
186 y i e l d c , {} , a c t i v a t i o n [c]
187
188 @parser ({ ’ de te rm ine r ’ : True , ’ d e f i n i t e ’ : True , ’ i n d e x i c a l ’ : True , ’

gender ’ : ’mv ’ } , { ’ comb ined_ad j ec t i va l ’ : True })
189 @parser ({ ’ de te rm ine r ’ : True , ’ d e f i n i t e ’ : True , ’ i n d e x i c a l ’ : True , ’

gender ’ : ’mv ’ } , { ’ a d j e c t i v a l ’ : True })
190 def Im p l i c i t I n d e x i c a l I n s t a n c eR e c (pcontext) :
191 i n d e x i c a l s = pcontext . match [0] . r e f e r e n t s ()
192 f o r c i n f indmatches (pcontext . match [1] . concept) :
193 i f c i n i n d e x i c a l s :
194 y i e l d c , {} , prob_or (i n d e x i c a l s [c] , a c t i v a t i o n [c])
195
196
197 @parser ({ ’ de te rm ine r ’ : True , ’ d e f i n i t e ’ : True , ’ i n d e x i c a l ’ : True } , { ’

c on s t r a i n t_ i n s t a n c e ’ : True })
198 def I n d e x i c a l I n s t a n c eRe c (pcontext) :
199 g1 , g2 = (m. f e a t u r e s [’ gender ’] f o r m i n pcontext . match)
200 i f g1 != g2 and g1 != None :
201 return
202 i n d e x i c a l s = pcontext . match [0] . r e f e r e n t s ()
203 f o r c i n pcontext . match [1] . concept . i n s t a n c e o f . f u l l e x t e n s i o n () :
204 i f c i n i n d e x i c a l s and cons t ra in tmatch (c , pcontext . match [1] .

concept) :
205 y i e l d c , {} , prob_or (i n d e x i c a l s [c] , a c t i v a t i o n [c])
206
207
208 @parser ({ ’ de te rm ine r ’ : True , ’ d e f i n i t e ’ : Fa l s e } , { ’

c on s t r a i n t_ i n s t a n c e ’ : True })
209 def I nde t I n s t anceRec (pcontext) :
210 con = pcontext . c op y t r a n s i e n t (pcontext . match [1] . concept)
211 con . name = ’ newobject ’
212 y i e l d con
213
214

99

215 @parser ({ i n s t anc eo f_ t : obj , i s t y p e : None} , { i n s t a n c e o f : l o c a t i on , ’
p repphrase ’ : True , ’ p reptype ’ : l o c a t i on , i s t y p e : None})

216 def InstancePPCombiner (pcontext) :
217 i f pcontext . match [0] . concept . t e s t r e l (i s a t , pcontext . match [1] .

concept) :
218 y i e l d pcontext . match [0] . concept , pcontext . match [0] . f e a t u r e s ,

pcontext . match [0] . p * pcontext . match [1] . p
219
220 @parser ({ i n s t anc eo f_ t : obj , i s t y p e : i nde te rm ina te , ’

c o n s t r a i n t_ i n s t a n c e ’ : None} , { i n s t a n c e o f : l o c a t i on , ’ p repphrase
’ : True , ’ p reptype ’ : l o c a t i on , i s t y p e : None})

221 def Indet InstancePPCombiner (pcontext) :
222 con = pcontext . c op y t r a n s i e n t (pcontext . match [0] . concept)
223 t r y _ d e l r e l (i s a t , con)
224 r e l (i s a t , con , pcontext . match [1] . concept)
225 y i e l d con , pcontext . match [0] . f e a t u r e s , pcontext . match [0] . p *

pcontext . match [1] . p
226
227 @parser ({ ’ a d j e c t i v a l ’ : True , ’ comb ined_ad jec t i va l ’ : None} , { ’

c on s t r a i n t_ i n s t a n c e ’ : True })
228 def Const ra intCombiner (pcontext) :
229 con = pcontext . t r a n s i e n t c on c ep t (
230 ’ combined_const ra int ({}) ’ . format (pcontext . match [1] .

concept . i n s t a n c e o f) ,
231 { i s t y p e : i nde t e rm ina t e })
232 f o r type , t a r g e t i n cha in (pcontext . match [0] . concept . g e t t a r g e t s ()

,
233 pcontext . match [1] . concept . g e t t a r g e t s ()

) :
234 i f type i n s i n g l e t o n_ r e l a t i o n s and (pcontext . match [0] . concept .

g e t r e l s (type) and
235 pcontext . match [1] . concept .

g e t r e l s (type)) :
236 # Whoops , t h e r e can on ly be one i n s t a n c e o f t h i s type o f

r e l a t i o n , we r e j e c t e . g .
237 # ”Het groene groene v i e r k a n t ” .
238 return
239 i f not type == i s t y p e and not type i n au tomat i c_ r e l a t i on s :
240 r e l (type , con , t a r g e t)
241 y i e l d con , d i c t (pcontext . match [1] . f e a t u r e s , c on s t r a i n t_ i n s t a n c e=

True)
242
243 @parser ({ ’ a d j e c t i v a l ’ : True } , { ’ a d j e c t i v a l ’ : True })
244 def Adjec t i va lComb ine r (pcontext) :
245 m0, m1 = pcontext . match
246 i f m0. f e a t u r e s [’ gender ’] and m0. f e a t u r e s [’ gender ’] != m1.

f e a t u r e s [’ gender ’] :
247 return
248 con = pcontext . c op y t r a n s i e n t (m0. concept)
249 copy_t rans i en t_concept_fea tu re s (m1. concept , con)
250 f = d i c t (m0. f e a t u r e s)
251 f . update (m1. f e a t u r e s , comb ined_ad j ec t i va l=True)
252 y i e l d con , f

100

	Introduction
	Status Quaestionis
	Relevance within Artificial Intelligence
	Structure of this thesis

	Language Philosophical Background
	History
	Positions in the Current Debate
	Minimalism
	Indexicalism
	Other in-between approaches
	Contextualism
	Relativism

	Important Arguments
	Inappropriateness Argument
	Context Shifting
	Arguments against Indexicalism
	Formal Description of Contextualist Models

	Constraints on a Formal Model of Language
	Non-Requirements
	Statistical Linguistic Systems
	Neurological Realism
	Evolutionary Realism
	Learnability

	Overview of the Model
	Conceptual Graph
	Parsing
	Name
	Related Proposals in the Literature
	Core Differences with Standard Approaches

	Detailed Model Description
	Concept Graph
	Parser
	Disambiguation
	Activation
	Applicability Factors
	Relatedness Weights
	Contrast Sets
	Other Influences on Activation
	Usage in the Parser
	Calculation of Weights

	An Example
	Mowing the Lawn
	Cutting Grass Sod
	Extending the example

	Implementation
	Concept Graph
	What the graph represents

	Parser Algorithm
	Language Rules
	Disambiguation and Activation
	Contextual Capabilities

	Discussion of Constraints and Possible Objections
	Limitations and Possible Objections
	Limiting Combinatorial Explosion
	Possibility of Communication
	Complex Language
	World Knowledge

	Context Shifting Examples
	The Cat on the Mat
	Cut the Grass
	Milk in the Fridge

	Recanati's Contextual Relativism Example
	Neurological Realizability
	Evolvability
	Concept Graph
	Parser
	Human Specific Evolutions

	Learnability

	Extensions and Future Research
	Concept Graph
	Accessibility of Concepts
	Spoken Language Interpretation
	Language Production
	World Knowledge

	Conclusion
	Bibliography
	Program Capabilities
	Locations and Demonstratives
	Commands and Statements
	Limitations on Continuous Values
	Program Documentation
	About
	Name
	Theory
	Dependencies
	Usage
	Quick Tutorial
	Lexicon
	Program Layout
	License

	DPSP Parser Productions

