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Abstract

As technology advances, artificial agents such as robots are increasingly deployed
to work on tasks in complex and dynamically changing environments. Often these
sophisticated robots work together with human agents in a team. Because of these
developments, the need for research into cooperation in mixed human-robot teams
is increasing. An important aspect of cooperation is task allocation. Static task
allocation is often not sufficient for dynamically changing environments, so dynamic
task allocation is needed.

In this thesis, a high-level framework for dynamic task allocation, aimed at im-
proving team performance in mixed human-robot teams is presented. The frame-
work details how context information can be used to find possible role assignments
for actors and to evaluate these role assignments. The framework describes the im-
portant concepts in context information that influence team performance and can
be used to dynamically allocate tasks. Secondly, the framework details how to use
these role assignments with evaluation to find the optimal task allocation for a team.

One of the important factors in context information is the cognitive task load of a
human agent. Cognitive task load is an important predictor of human performance
and is dependent on the tasks that are assigned to a human. The framework is
used as a base for designing a model for adaptive automation. The model takes
into account the cognitive task load of an operator and the coordination costs of
switching to a new task allocation. Based on these two context factors it finds
the optimal level of autonomy of a robot, separately for all tasks that need to be
executed.

This model is instantiated for a single human agent cooperating with a single
robot in the urban search and rescue domain. A small experiment is conducted aimed
at testing the model. Some encouraging results are found: the cognitive task load
of participants mostly reacted to the model as intended. Furthermore, important
focus points for improving the model are identified such as taking into account more
context information, e.g. capabilities (human vs. robot) and preferences.
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1 Introduction

Teams are an integral part of society. Professional teams, such as firefighters responding
to an emergency, are important in organizations. But also in personal life teams occur
often, for example in sports or when a group of friends helps someone move to a new
place. The importance of teams has been recognized and embraced with enthusiasm
in the last few decades [1]. Teams have proven to be more than the sum of their
parts, meaning a team as a whole can achieve more than its members in isolation.
In teams, a good allocation of tasks is important and helps team performance. Task
allocation can be static, this means all roles are divided before starting the tasks and
do not change during execution of tasks. But when an environment is dynamic or
states1 of team members change, properties of tasks can change and switching the task
allocation could be beneficial. This so-called dynamic task allocation can also benefit
team performance [2].

For example, imagine two people that need to relocate a lot of books. The books
need to be put into boxes per subject, the subject should be written on a label, and then
the boxes should be loaded into a car. One of the persons (Albert) is stronger and thus
more suited to carry boxes, the other (Ben) will pack and label the boxes. After a while
of carrying and packing books, Albert is getting very tired and needs to sit down (change
in state of team member). Ben finds some books on geography, which he knows very
little about (dynamic environment) and has trouble sorting and labeling them. Dynamic
allocation of tasks would now allow Albert (who happens to be a geographer) and Ben
(who is well rested) to switch tasks, which will improve team performance (number of
books getting boxed, correctly labeled and loaded in to the car).

Dynamic task allocation is not only important for human teams, but also for mixed
human-robot teams [3] and robot-only teams [4]. Making a human team member re-
sponsible for dynamically allocating tasks, causes extra workload [5]. If we do not want
to cause extra workload, the dynamic task allocation should be automated. To be able
to implement this, we need to devise models that dynamically allocate tasks. These
models should describe how to improve team performance, using dynamic allocation of
tasks. As to our knowledge, the underlying principles needed to design these models
have not been explicated yet, thus the main research question of the current study is:

How can we use dynamic allocation of tasks to improve team performance?

To answer this question, a framework is needed that describes important general
concepts that are of influence on task allocation as to improve team performance. This
framework can serve as a base for building models that make use of specific concepts,
for specific domains.

The process in which robots2 in a mixed human-robot team operate under automated
dynamic task allocation is called adaptive automation if these robots can be assigned

1For example: cognitive state, affective state or physical state.
2As a shorthand, the word robot is used whenever we mean all non-human mechanical actors. For

example, these could also be a virtual agents.
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different levels of autonomy on tasks. Instead of just assigning a task to either a robot
or a human actor, intermediate levels of autonomy can be defined in which joint effort
by the robot and human (an operator) is needed to complete the task [6]. An example
is the task of navigation of a robot. We can assign the task of navigation fully to
the operator (tele-operation), which means the robot is fully non-autonomous on that
task. We can also give the robot full autonomy in navigation, letting it decide for
itself where it drives and how it gets there. An intermediate level of autonomy could be
navigation through waypoints in which the operator sets waypoints for the robot and the
robot drives autonomously along these points. Recent research shows that dynamically
adapting autonomy levels of robots could help towards optimizing team performance,
when this process is automated [7].

An important challenge in adaptive automation is deciding when to change the level
of autonomy of the robot. A trigger for this could be the cognitive task load of the
operator [8]. Firstly, this is because cognitive task load has an influence on performance
[9, 10]. If the cognitive task load of a human is kept at a moderate level, performance
of this human is optimal [8]. If the cognitive task load of a human is low for some
time, underload might occur, decreasing performance due to boredom. Conversely, high
cognitive task load might mean task overload for the human, decreasing performance
because the human is unable to accomplish all tasks he has been assigned.

Secondly, cognitive task load itself can be influenced by adapting levels of automa-
tion. Adapting the autonomy level of a robot could be used to balance task load for the
operator, as level of autonomy and operator task load are inversely correlated if other
factors remain stable [11, 12]. But the same does not hold for the relation between au-
tonomy levels and operator performance. Setting robot autonomy very high might cause
human-out-of-the-loop problems, which decrease operator performance. Conversely, set-
ting autonomy very low might cause task overload for the operator, decreasing perfor-
mance. We need to devise a model that describes how to adjust autonomy levels of the
robot, triggered by the cognitive task load of the operator, as to improve performance.

Adaptive automation triggered by cognitive task load of the operator is thus likely
to improve the performance of the operator. This does not necessarily imply, however,
that it will also improve team performance. Team performance does not rely solely on
operator performance, but also on performance of the robot team member(s). Further-
more, team performance is not just an addition of the performances of all the team’s
members [2], but likely includes factors that go beyond the individual level, for example
communication. How team performance is defined, depends on the specific task. When
we have a framework for dynamic task allocation, this can be used as a basis for build-
ing a model that describes how to set the levels of autonomy on different tasks for the
robot(s), triggered by the cognitive task load of the human actors. We can evaluate our
model by instantiating it for a specific task, and experimentally validate the effects of
the adaptive autonomy.

We define the following subquestions:

� Can we build a general framework describing the important concepts that influence
team performance, that can be used to dynamically allocate tasks?
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� Can we apply the framework to design a model for adaptive automation, triggered
by cognitive task load?

� Can we validate the effects of our model in an experimental setting?

The focus of the current study is directed at designing and formalizing the general
framework and the model for adaptive automation. The model will be instantiated for an
experimental setting and a small experiment testing the model will be conducted. This
is the first step towards experimentally validating that the model improves performance.

The remainder of this thesis is structured as follows: We will start by giving a review
of the previous work done in relevant fields in Section 2. The general framework that
describes the components for deciding on an allocation of tasks will be described in
Section 3. After this, we give an example of how the framework can be applied, building
a model for adaptive automation, triggered by cognitive task load in Section 5. Next,
we describe an experiment validating the model, instantiated in the urban search and
rescue domain in Section 5. Some points for discussion and directions for future research
are mentioned in Section 6 and lastly conclusions are given in Section 7. If any concepts
seem unclear or ambiguous, the reader is encouraged to check the glossary in Appendix
1.
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2 Previous Work

In this section, previous work is discussed. Firstly, some general work on teams is
discussed in Section 2.1. After this, as we aim to improve team performance using
dynamic task allocation, previous work on team performance is discussed in Section 2.2.
One important influence on performance is cognitive task load [9,10]. Previous work on
this is discussed in Section 2.3. In Section 2.4 we will discuss previous work on dynamic
task allocation, specifically how tasks are reallocated (for example based on cognitive
task load). If we want dynamic task allocation to not cause higher task load for a
human team member, we should automate the process [5]. Previous work on adaptive
automation, the process in which robots in a mixed human-robot team operate under
automated dynamic task allocation, is discussed in Section 2.5.

2.1 Teams

Teams are groups consisting of two or more actors that set out to achieve a common goal.
Furthermore, to achieve this goal, several different tasks need to be done or different roles
need to be fulfilled. These different tasks1 enforce the actors to coordinate their plans.
The coordination process in which the different tasks that a team needs to get done are
assigned to the different actors in the team is called task allocation. In human teams,
dynamically adjusting the allocation of tasks, facilitated by backing-up behavior2, is a
critical component of team behavior and helps performance [2].

As technology advanced, the possibility for virtual agents (and robots) to work in
teams on complex tasks arose. The area of work associated to this is called multi-agent
systems. Multi-agent systems research involves building autonomous agents that can
cooperate, coordinate and negotiate with other agents [13]. When a team sets out to
work in complex and dynamic environments, they need some general notions of how
a team works, so that they can monitor the team’s performance and reorganize when
necessary [14]. This need for explicit models of teamwork inspired a surge of research.

An early and very influential framework for teamwork was put forward by Cohen &
Levesque: the joint-intentions framework [15]. Cohen & Levesque argue that teamwork
is work performed by individuals sharing certain mental properties, which leads them to
jointly intend to perform a collective action. This joint intention affects and is affected
by properties of individual team members, such as individual intentions and individual
commitment. The benefit of teamwork, according to Cohen & Levesque, is that a goal
can be achieved in a more robust way as the load is shared.

Another influential step in teamwork research is the model introduced by Tambe
called STEAM [16]. STEAM is an implemented, general model of teamwork. STEAM
uses the notion of Cohen & Levesque’s joint intention as a basic building block; teamwork
consists of agents building a hierarchy of joint intentions. STEAM supports a team’s
communication, performance monitoring, and reorganization when necessary, driven by

1We do not talk about roles, because tasks are the more specific concept as roles can be seen as sets
of tasks.

2Backing-up behavior (or back-up behavior) involves helping other team members perform their tasks.
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their joint intentions. As the model is general (vs. domain specific) the teamwork behav-
ior supported is flexible, allowing teams to deal with novel and unexpected situations.

The above framework and model explicitly describe how teams work, namely how
agents (come to) work together to achieve some goal. They do not specify however, what
constitutes a successful team which performs well on achieving their goal1. In other
words, they do not explicitly describe what factors exist that influence the teamwork
process in such a way, that the performance on achieving the common goal is affected.
The next section aims to find out which factors influence team performance.

2.2 Team Performance

In this section, we will discuss some frameworks that describe how team performance
arises. Team performance is a measure of how well the common goal is achieved. This
relies not only on individual performance, but also largely on team level concepts like
communication between actors and task allocation [2].

Early frameworks describing team performance commonly follow the Input-Process-
Output structure, for example the framework proposed by McGrath [17, 18]. McGrath
describes three input concepts in his framework: individual level factors (e.g. cognitive
ability), group level factors (e.g. cohesiveness) and environmental factors (e.g. resource
availability, task difficulty). These three factors are input for the team’s interaction
processes and the output concept is team performance. Many empirical studies have
been based on this framework, but recently the supposition that Input-Process-Output
frameworks like McGrath’s are an insufficient way to represent influences on team per-
formance is gaining support [19]. Several reasons are summarized by Ilgen et al. [19]:
Firstly, the term interaction process excludes emergent properties, for example cohe-
siveness of a team. These sort of emergent properties have an influence on interaction
processes, but can also be influenced by them and they are not processes themselves.
Secondly, feedback loops should not be excluded. For example, team performance itself
can serve as an input for interaction processes, as it can have an influence on these.
Thirdly, the Input-Process-Output structure suggests linear progression, but interac-
tions between various inputs and processes or between different processes should also be
considered possible.

Kozlowski and DeShon [20] propose a framework for team performance that focuses
on adaptive performance. Adaptive performance is the ability to react to changing de-
mands, which is needed in dynamic environments. Their framework can be seen in Figure
1. The concepts Kozlowski and DeShon use are quite similar to the concepts used by
McGrath. The antecedents in Kozlowski and DeShon’s framework are almost the same
as the input concepts in McGrath’s framework. These antecedents are individual differ-
ences, team characteristics, and situational demands. The processes are specified into
team regulation and individual regulation. Regulatory processes aim to detect whether
there are any discrepancies between expected outcomes and actual outcomes. What sort
of relations exists between antecedents, regulatory processes and adaptive performance

1A team performs well on achieving their goal if, for example, they achieve it efficiently and effectively.
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is not specified. For this reason, the framework does not suffer from the same downsides
as frameworks following the Input-Process-Output structure. However, the fact that the
relations are not detailed is a downside in itself as it makes the framework hard to use
as a base for empirical research.

Figure 1: A framework for adaptive team performance, as proposed by Kozlowski [20].

In human teams, dynamic task allocation is triggered when regulatory processes re-
veal discrepancies between expected outcomes and actual outcomes (either at the team or
individual level). Dynamic task allocation aims at solving the discrepancy by reallocating
certain tasks to different actors. Dynamic task allocation benefits team performance [2].

A specific discrepancy between expected and actual outcomes that can occur is indi-
vidual performance degradation. The individual performance of team members has an
influence on team performance [2]. To improve team performance, it would be beneficial
to prevent individual performance degradation rather than to wait for regulatory pro-
cesses to detect it.1 We thus need to find out what circumstances cause the degradation
and trigger reallocation of tasks when these circumstances arise.

A vast amount of research has focused on the factors that influence individual perfor-
mance. Examples of factors include attention, workload, skill, stress, fatigue, lifestyle,
personality, age and mood [22]. Another important influence on individual performance
for humans is cognitive task load [8].

1Also, team performance is usually not (yet) measurable in real time [21].
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2.3 Cognitive Task Load

An important factor for dynamic task allocation in human teams is cognitive task load
[1]. A model of cognitive task load was proposed by Neerincx [23]. The model describes
how task characteristics are of influence on individual performance and mental effort.
According to Neerincx, cognitive task load can be described as a function over three
metrics. Firstly, the percentage of time that a person is occupied by his/her tasks.
Secondly, the number of task-set switches which is the number of times that a person
has to switch between different tasks. Thirdly, the level of information processing that
is needed for the current tasks the person is doing. The level of information processing
is a metric based on the skill-rule-knowledge framework described by Rasmussen [24].
Skill-based tasks, such as riding a bike require almost no cognitive resources as they rely
on well-learned skills. Rule-based tasks require the application of rules or instructions to
accomplish a task and thus impose some cognitive load. Knowledge-based tasks impose
the most cognitive load as no specific rules can be followed and thus higher level reasoning
is needed to accomplish the task.

The influence of the three cognitive task load metrics on performance is visualized in
Figure 2. Based on the three metrics, Neerincx defined four problem regions where per-
formance degradation might occur, as represented by the gray areas in Figure 2. Firstly,
when the percentage of time occupied is high but the level of information processing
and the number of task-set switches are low problems related to vigilance can occur.
Performance degrades because alertness decreases as the task1 is boring: it continually
needs attention, but no cognitively demanding actions are required. Secondly, when all
three metrics have a low value underload might occur. Thirdly, when all three metrics
have a high value overload might occur. Fourthly, when the percentage of time occupied
and the number of task-set switches are high, but the level of information processing is
medium or low, cognitive lock-up can occur. Cognitive lock-up is a state in which people
are reluctant to switch tasks. Performance could decrease if other tasks need attention
but do not get this due to the reluctance to switch.

The longer a person’s cognitive task load is in a problem region, the more negative
the effect on performance will be. Typically, vigilance and underload problems occur
only after some time, while overload and cognitive lock-up problems can occur even if
the cognitive task load has only been in the problem region for a short time [8].

The cognitive task load model of Neerincx has been experimentally validated in the
naval domain [23]. Furthermore, the model was used to design interfaces providing
cognitive support. These interfaces are shown to increase performance [25]. Lastly, the
model was used to predict performance in the naval domain using a classifier. Accuracies
of up to 86% were achieved [9, 10].

Since cognitive task load is based on characteristics of the tasks a person is currently
doing, it can be influenced by changing these tasks. Also, cognitive task load has an
influence on performance. Combining these two facts yields that cognitive task load is
a factor that can be used for dynamic task allocation aimed at improving performance.

1Or a small set of tasks.
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Figure 2: The 3D Cognitive Load Space, as proposed by Neerincx [8], which is a visualization of the
influence of the three cognitive task load metrics on performance. Four general problem regions where
performance degradation is likely to occur are depicted (shown in gray).

2.4 Dynamic Task Allocation

Dynamic task allocation benefits team performance [2]. Dynamic task allocation can be
effectuated in numerous ways. Two of the questions that are of importance in distin-
guishing different dynamic task allocation strategies are discussed in this section.

Firstly, who has the responsibility to dynamically allocate tasks? This responsibility
includes deciding whether a task allocation is needed, and if it is needed, deciding on
a reallocation. Responsibility can be distributed (over the whole team), or it can be
centralized. Distributed responsibility for dynamic task allocation has the disadvantage
that it causes extra workload for (human) team members [5]. Centralized coordination
in which the dynamic allocation of tasks is fully automated does not have this problem.
Automated centralized coordination implies there is a system, for example a virtual
agent, that is the only one that decides when a task allocation is needed and decides on
a reallocation of the tasks. A problem with centralized coordination could be that it is
unfeasible to implement for very large teams. Also, human team members could have
issues if task reallocations are not clearly communicated or if it is unclear why they are
made.

The second question concerns what influences exist on the decision for a specific
reallocation of tasks. Inagaki [26] argues that a dynamic form of comparison allocation
is the best strategy for task allocation. Comparison allocation means tasks are allocated
based on capabilities of actors. This as opposed to leftover allocation (automating all
tasks that can be automated) or economic allocation (automating all tasks that costs
less to automate than hiring a human operator) which do not focus on improving team
performance.
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How capable an actor is to do a certain task can differ statically, for example due to
whether the actor is a human or robot or depending on the actor’s individual properties
such as intelligence. It can also differ dynamically, as environmental changes might
occur changing the capabilities needed for a task or the state of an actor [26]. Below
we provide a summation of the general factors that influence the capability of an actor
to do a task (and thus influence task allocation), with a non-extensive list of specific
examples used in relevant studies1 for each general factor. The influences on team
performance are usually divided into three categories, as we have seen in Section 2.2:
individual level factors, team level factors and environmental factors. Individual level
factors are important for task allocation and so are environmental factors. For clarity, we
separate task level factors from environmental factors as they are both important, but
very different, factors influencing task allocation. Group level factors are an important
influence on team performance, but can not directly be used to allocate tasks, as tasks
are allocated over individuals (or small sets of individuals).2

Influences on task allocation:

� Individual level factors, which can be both static or dynamic. Static individual
factors are cognitive, emotional and physical properties and abilities. Dynamic in-
dividual factors are cognitive, emotional and physical states. For example (grouped
per study):

– Skills [27] (cognitive ability)

– Self-regulation [20] (cognitive/emotional ability)

– Conscientiousness, agreeableness, extraversion, emotional stability [28] (cog-
nitive/emotional ability)

– Cognitive task load [8] (cognitive state)

– Current location, availability (specifically whether the actor is doing a task
and if so, the priority of this task) [29] (cognitive/physical state)

– Current tasks [5] (cognitive/physical state)

– Experience (quality, quantity, success rate), ability (resources, training, han-
dling, damage), individual state (personality, emotion, fatigue) [30] (cogni-
tive/emotional/physical ability/state)

– Location, tiredness of the person, specialty [31] (cognitive/physical ability/state)

– Trust [32] (emotional state)

� Environmental factors, which are usually dynamic. For example (grouped per
study):

1Specific examples are gathered from studies about task allocation in either all human, mixed human-
robot or all robot/agent teams.

2If we want to use group levels factors to allocate task, we need to do this indirectly by using the
individual level factors that contribute to these group level factors.
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– Weather conditions, noise [33]

– Traverse-ability [34]

� Task factors, which are usually dynamic. For example (grouped per study):

– Resource requirement of task [30]

– Difficulty of task (Level of information processing, time occupied) [8]

– Required skills for task [27]

– Location of task, priority of task [29]

– Location of task, difficulty of task, specialty needed for task, duration of
task [31]

– Performance feedback [19]

Note that for some of the specific examples mentioned above, the influence on task
allocation is only clear when you see them in relation to other factors. For example, the
location of an actor is only of influence if we know its relation to e.g. the location of the
task (since we can then calculate this distance the operator will need to travel to get
to the task). In this same manner, a very important influence on task allocation is the
cost caused by the reallocation of tasks [5]. These so called coordination costs can be
derived by comparing the current task allocation to the new task allocation.

In most studies using multiple factors, all of the factors and their interrelations are
brought together in some sort of weighing function.1 The weight assigned to each factor
specifies its importance (relative to the other factors) to the capability of the actor to
do a task.

Recent years have shown a surge of studies about automated dynamic task allocation
in mixed human-robot teams.

2.5 Adaptive Automation

Traditionally, tasks in mixed human-robot teams are allocated to either a human or a
robot. Using capability comparison allocation, these allocations are often based on static
lists of human capabilities versus robot capabilities (MABA-MABA2) like the famous
Fitts list [36]. This way of allocating tasks has two main problems [26], which we will
discuss below.

Firstly, allocating a task either fully to a human (robot has no autonomy) or fully to
a robot (robot has full autonomy) is overly coarse. Many different levels of autonomy in
between these two extremes are possible, where the human and robot share control over
the task [37]. Furthermore, a level of autonomy for a robot can be decided on separately
for each subtask [6, 38].

1For an example, see the weighing function in [30,35].
2What men are better at and what machines are better at.
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Secondly, static task allocation is insufficient for dynamic and complex environments,
as capabilities needed for a task could change due to the changing environment (as be-
fore said in Section 2.4). To address these issues, adaptive task allocation was proposed.
Adaptive automation is the process in which a robot operates under adaptive task allo-
cation.

Adaptive automation in the context of single human-single robot teams has received
a lot of attention in the last few years. Numerous studies have shown the positive effects
of adaptive automation in single human-single robot teams. These positive effects of
adaptive automation (level of autonomy of robot changes automatically) were shown
to exist when comparing it to either adaptable automation (level of autonomy of robot
changes when human invokes this) or static automation (level of autonomy of robot does
not change) at different levels of autonomy.

The positive effects of adaptive automation include improved performance [7,39–44],
enhanced situation awareness [7, 45] and reduced cognitive workload [7, 45].1 Adaptive
automation outside single human-single robot context has received much less attention.
A few studies have looked at adaptive automation in the context of single human-multiple
robot teams [46–48]. In these studies however, only the level of autonomy of a single
robot [46] or of a system separate from the robots [47,48] on a single task was adapted.
To our knowledge, no studies have looked into adaptive automation in multiple human-
single robot teams.

In the majority of the research on adaptive automation, measures are taken on the
individual level instead of team level. For example, performance measurements often
compass only operator performance, excluding automation performance and group level
factors while these also influence team performance.

Different techniques for triggering reallocation are possible [41]. Techniques can be
either performance-based [7,43,44], psychophysiological measure-based [39,45], operator
cognition-based [44,49], environment-based [42,50] or hybrid techniques [40,41].2 Perfor-
mance based techniques are used quite often, using either performance on the main or a
secondary task. The downside of performance-based measurements is that not all tasks
allow for real-time performance measurement [21]. Techniques using psychophysiological
measures are not suitable for many domains, as the measuring devices often restrict the
subject’s movements. Environment based techniques in isolation fail to capture changing
states of team members that could point to a need for task allocations. As De Greef [41]
argues, hybrid techniques are more robust as multiple independent factors can be used.
If multiple independent factors (as opposed to a single factor) point to a need for task
reallocation, then this need is more likely to be real or urgent. Only a limited amount
of studies so far have used hybrid techniques [41].

Most of the studies referenced in this section used one task with a varying level of
autonomy (with usually only two, but sometimes up to five different levels). The trigger
for reallocation signaled either a need for the level of autonomy of the robot to increase
on this task (e.g. when the workload of the operator is too high), or to decrease (e.g.

1The list of studies referenced after each effect is non-extensive.
2The list of studies referenced after each technique is non-extensive.
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workload operator too low). In response to this, the level of autonomy of the automation
was either increased or decreased one level. This approach cannot be used when multiple
tasks can have separate levels of autonomy. In this case, we need a way of deciding on
which tasks the level of autonomy should be changed. An overarching model/framework
could help in devising ways for deciding on specific levels of autonomy on the different
tasks.
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3 Framework for Dynamic Task Allocation

In this section, a framework is presented for dynamic task allocation that aims to improve
team performance. The framework describes the important concepts that influence team
performance and can be used to dynamically allocate tasks. It is designed to work
in complex and dynamic environments. The framework should be able to serve as a
guidance for devising models that dynamically allocate tasks and hereby improve team
performance. It does not make assumptions about the team composition (e.g. human
or robot members) and therefore does not assume a team member can only do a single
task at a time. As our framework should work in dynamic environments, and teams
could include both humans and robots, we use a dynamic form of comparison allocation
(as argued in Section 2.5). We do not want to cause extra workload for human team
members. To achieve this, we use automated centralized coordination (as argued in
Section 2.4).

Some topics are, although important, outside the scope of the research. We do not
focus on planning tasks that are expected to start some time in the future, but only
on instantaneous assignment of tasks to actors. Furthermore, we do not focus on task
decomposition and cooperation, we assume tasks are already decomposed into subtasks
that can be executed by a single agent.

This section is structured as follows. Firstly we detail how our proposed framework
relates to and builds on previous work in Section 3.1. An overview of the components of
the proposed framework is given in Section 3.2, followed by a formal description of the
different components and their relations in Section 3.3.

3.1 Relation to Previous Work

A starting point for our framework is the taxonomy and analysis of dynamic task al-
location problems in the multi-robot domain by Gerkey and Matarić [51]. Gerkey and
Matarić’s work is very relevant as it describes the important concepts in dynamic task
allocation problems. In this section, firstly Gerkey’s1 taxonomy and its relation to the
proposed framework is detailed. After this, Gerkey’s analysis of dynamic task allocation
problems is explained and we describe how the proposed framework builds on his work.

Gerkey [51] provides a taxonomy that characterizes dynamic task allocation problems
in the multi-robot domain along three axes. A visualization of this taxonomy is shown in
Figure 3. Firstly Gerkey distinguishes between single-task robots and multi-task robots,
describing whether a robot can execute one or more tasks simultaneously. Secondly, he
distinguishes between tasks requiring a single robot and tasks requiring multiple robots at
a time to be executed: single-robot tasks versus multi-robot tasks. Thirdly, a distinction
is made based on time: instantaneous task assignment (we can only allocate currently
active tasks) versus time-extended assignment (we can plan tasks that are expected to
start some time in the future).

1From now on, as shorthand, we use only Gerkey’s name when referring to Gerkey and Matarić’s
work on the taxonomy and analysis of dynamic task allocation problems in the multi-robot domain [51].
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Figure 3: Overview of Gerkey’s taxonomy [51] of dynamic task allocation problems in multi-robot
systems. The area highlighted in dark green shows the focus of the proposed framework. The area
highlighted in lighter green shows problems that are not focused on, but that can be modeled within the
proposed framework. We do not actually exclude the possibility of multi-robot tasks, but assume these
tasks are decomposed into multiple single-robot tasks. The same holds for single-task robots, they are
not excluded but can be modeled as multi-task actors with a restriction.

If we want to categorize the problems our framework should cover according to
Gerkey’s taxonomy, we must first generalize his notions. Instead of talking only about
robots, we use the more general term actor. We can now categorize the problems our
framework should cover as multiple-task actor, single-actor task, instantaneous assign-
ment problems (as visualized in Figure 3). As we want to include the possibility of having
human (or sophisticated robotic) actors in the team, we should not restrict ourselves to
single-task actors, as human (and sophisticated robotic) actors can do multiple tasks at
a time. Furthermore, single-task actors can be seen as a special case of multi-task ac-
tors. Our framework will focus on single-actor tasks; multi-actor tasks are only possible
if defined as separate subtasks for each actor. The problem of decomposing multi-actor
tasks into single-actor tasks is outside the scope of this research. We restrict ourself to
instantaneous assignment of tasks as time-extended assignment includes scheduling or
planning and is outside the scope of this research.

The proposed framework for dynamic task allocation is based on the formal analysis
of (multiple-task actor, single-actor task, instantaneous assignment) dynamic task allo-
cation problems proposed by Gerkey [51]. A high level overview of this analysis is seen
in Figure 4. Gerkey proposes the following steps to solve the dynamic task allocation
problem: Firstly, possible role assignments and their evaluation can be generated from
context information. Role assignments are a combination of a robot and a set of tasks
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this robot could execute. These role assignments can be evaluated using context infor-
mation relevant to how well the robot is able to execute the set of tasks. Secondly, we
can construct possible task allocations by combining role assignments. A task allocation
is a set of role assignments for all robots. The evaluation of a task allocation is a combi-
nation of the evaluation of all role assignments it contains. The third step is to choose
one of these possible task allocations.

Context information

Possible

role assignments

and evaluation

Possible

task allocations

and evaluation

Task allocation

Figure 4: A high level overview of Gerkey’s analysis [51] of dynamic task allocation problems for multi-
task robots, single-robot tasks and instantaneous assignment.

How Gerkey details his approach can be seen in the more technical overview in Fig-
ure 5. Gerkey argues that dynamic task allocation can be seen as optimizing a utility
function. Firstly, all options of allocations of sets of tasks to a robot (role assignments)
should be generated and this set of options should be pruned. Secondly, a function that
assigns a utility value to the options (evaluation) should be defined. An optimization al-
gorithm can then be applied, which finds the collection of options which has the highest
utility and allocates every task to a robot. Gerkey defines the utility of a task alloca-
tion (a set of options/role assignments) as the sum of the utilities of all options/role
assignments it contains.

Robot state

Environment state

Option

generation

and pruning

Utility

calculation

Determining

optimal

task

allocation

*Options are combinations of an actor and a set of tasks (allocated to that actor), i.e. a role assignment.

Set of actors

Set of tasks
Set of options*

Set of options*
with utility

Optimal

task allocation

Figure 5: Gerkey’s analysis [51] of dynamic task allocation problems for multi-task robots, single-robot
tasks and instantaneous assignment. Colored boxes denote processes, arrows represent flow of infor-
mation. Gerkey focuses on the process of optimization (green box) and less on the processes of option
generation and pruning and calculating the utility (blue boxes).

Gerkey defines a utility measure that, based on a single robot and single task (a
robot-task pair), gives back a utility value. This utility measure gives back the value
zero if the robot is unable to execute the task, otherwise it returns the expected quality
of the robot executing the task minus the expected cost. Gerkey does not specify the
quality and cost functions, but he does state that all relevant aspects of the state of the
robots and their environment should be included in the calculations. What the relevant
aspects are, or how they should be included in the calculations is not specified.

Gerkey makes some assumptions about interrelations between utilities measures. He
assumes that the utility measure of a robot-task pair is not influenced by any other
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tasks the robot might be allocated to. This implies the overall utility of a set of tasks
allocated to a robot (a robot-task set pair) is an addition of all utility measures for the
separate robot-task pairs for each task included in the task set. Gerkey assumes that
the utility measure of a robot-task pair is influenced by which other robots are allocated
to the same task. This implies the overall utility of a set of robots allocated to a task
cannot be seen as an addition of all utility measures for separate robot-task pairs (for
each robot in the set of robots).

Gerkey’s analysis has some limitations. These limitations include the assumption
that the utility of a robot-task pair is not influenced by other tasks the robot might
be doing. Also, Gerkey’s analysis does not include mixed human-robot teams. More
importantly, Gerkey casts multi-robot task allocation problems to instances of optimiza-
tion problems, but fails to describe some important steps that are needed to realize
this casting. Firstly, the problem of how to generate feasible options of allocation of
tasks to robots is not discussed. Secondly, the utility functions (quality and cost) are
underspecified as to what aspects they should take into account and how.

How does the proposed framework relate to Gerkey’s analysis? The structure of
Gerkey’s analysis is used as a base for our framework. This includes some sort of utility
measure that needs to be optimized. The proposed framework extends Gerkey’s analysis
to fit our requirements. We specifically address the issues of option generation and
utility calculation. Our framework explicates that the utility measure is built up out of
different factors. These factors could be related to the actor, the environment, the task
and combinations of these three. Independence of utilities is not assumed, the utility of
actor-task pair can depend on which other tasks actor is allocated to.

Once we have dealt with the issues of option generation and utility generation, we can
cast the task allocation problem to a known optimization problem like Gerkey suggests.
The task allocation problem for multiple-task actor, single-actor task and instantaneous
assignment can be cast as an instance of the well-known set partitioning problem (SPP)
[51]. It involves splitting the set of tasks into actor-specific task sets.1

Definition 1. (Set Partitioning Problem (SPP)) Given a finite set E, a family F of
acceptable subsets of E, and a utility function u : F → R+, find a maximum-utility
family X of elements in F such that X is a partition of E. X is a partition of E if and
only if the elements of X are mutually disjoint2 (∀y, z ∈ X, y 6= z : y

⋂
z = ∅) and their

union is E (
⋃

x∈X = E). [51]

Although the SPP is strongly NP-hard, it has been studied extensively and many
heuristic algorithms that give good approximations have been developed [51]. We can

1The problem of coalition formation is the problem of splitting the set of actors into task-specific
coalitions. This is essentially the same problem with the concept of actors and tasks switched. Coalition
formation has been extensively studied, for an overview see Gerkey’s discussion for single-task robots,
multi-robot task and instantaneous assignment [51].

2If we drop the restriction that all elements of X should be mutually disjoint, we have defined the Set
Covering Problem (SCP), of which the task allocation problem with multiple-actor tasks (and multiple-
task actors and instantaneous assignment) can be cast as an instance.

22



cast the task allocation problem for multiple-task actor, single-actor task and instanta-
neous assignment to an instance of the SPP in the following way: We define E to be
the union of the set of actors and the set of tasks, F the set of all feasible actor-task
set pairs (sets including a single actor and zero or more tasks that are allocated to this
actor) and u a utility estimate function for each actor-task set pair. A more detailed
description of this casting can be found in Appendix 2. As we cast the task allocation
problem to an instance of the SPP, we introduce the assumption that all tasks should
be allocated to an actor, as follows from the definition of a partitioning. In Section 3.2,
we relieve this assumption.

3.2 Overview of the Framework

An overview of the components of the proposed framework is shown in Figure 6 and is
explained in this section.

Situation analysis
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Task
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models
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models

*Options are combinations of an actor and a set of tasks (allocated to that actor), i.e. a role assignment.

Set of actors

Set of tasks
Set of options*

Set of options*
with utility

Optimal

task allocation

Figure 6: Overview of our framework. Colored boxes denote processes, arrows represent flow of infor-
mation. Opposite to Gerkey’s focus (see Figure 5), we focus on the process of pruning generated options
and calculating utility of options (green boxes) and less on the process of optimization (blue box).

The three categories of factors that influence task allocation (individual, environmen-
tal en task factors), as described in Section 2.4, are represented by three input concepts
in our framework. Firstly individual factors are represented by actor models. Actor
models are functions that describe for each actor, their relevant cognitive, emotional
and physical ability and state associated with a certain point in time. Abilities are
static1, so will be the same at every point in time. Actor abilities are for example IQ,
personality traits and skills. The dynamic counterpart of actor abilities are actor states,
for example emotion, location and fatigue. Secondly, environmental factors are repre-
sented by environment models. Environment models are functions that describe states
and properties of the environment, that are dependent on the specific location, at a cer-
tain point in time. Examples of environmental states are resource availability, weather
conditions and noise levels. Thirdly, task factors are represented by task analysis. Task
analysis contains functions from a specific task to its properties and states at a certain

1Note that the dividing line between static and dynamic is dependent on the duration of the teamwork
the framework is applied to.
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point in time. Examples of task properties/state include location, required skills and
resource requirement.1

Some factors influencing task allocation arise from interactions between (two or three
of) the three concepts we introduced above (Section 2.4). These interaction factors are
represented by the concept of situation analysis in our framework. Some examples are:

� The distance from an actor to a task, a function that is influenced by both actor
location (actor state) and task location (task state/property).

� The physical ability of an actor to do a task, a function that is influenced by the
physical abilities of the actor and the physical requirements of the task.

� The possibility of executing a task at a certain location, a function that is influenced
by the resource requirements of the task and the available resources at the location.

As a very important influence on task allocation is the cost caused by the reallocation
of tasks [5](Section 2.4). Therefore our framework includes a feedback loop for the task
allocation itself. The current task allocation itself thus is an actor state.

Now that we have discussed influences on task allocation, the next step is to generate
possible options of allocations and choose the best option. To find the best allocation of
tasks, we need to generate the possible options of actor-task set combinations and use
this as input for applying a SPP solving algorithm [51]. As mentioned by Gerkey [51]
pruning the set of feasible actor-task set pairs is needed as often the amount of options
is very large. Pruning the set of options makes the search for the optimal option2

faster. Inspired by other work [35], we distinguish between two different kinds of factors
that influence task allocations. The first kind of factors are restrictive, the second kind
are preference factors. Restrictive factors put restrictions on the possible actor-task set
pairs and thus prune the set of possibilities. For example, an actor might lack the proper
sensors to execute a task. This could be the case if our team includes a stationary robot
and a patrolling task. Another example is two tasks that cannot be done by the same
actor, for example if the two tasks are spatially located far from each other. Preference
factors do nut prune the set of possible actor-task set pairs, but give some indication as
to how well the task set can be executed by the actor. For example, if an actor has been
assigned a single, but difficult task, he might do better on this task than if he has also
been assigned to do multiple difficult other tasks simultaneously. Another example is
that a very strong actor might be better at a task involving carrying heavy boxes, while
a physically weaker actor could also be able to carry the boxes, but most probably not
as fast as the strong actor.

The next step in our process is defining a utility function that maps remaining
possible actor-task set combinations to a utility value. We define this function to be
some function (Section 2.4) over all the preference factors. With this utility function

1Whether these examples are tasks properties (static) or tasks states (dynamic) depends heavily on
the specific task.

2Or even an approximation of the optimal option.
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and the set of possible actor-task set pairs, we can use a SPP solving algorithm to arrive
at the best task allocation for a specific time.

As mentioned in Section 3.1, solving the task allocation problem by casting it to an
instance of the SPP introduces the assumption that all tasks need to be allocated to
an actor. This excludes the applicability of the framework to scenarios where it might
not be possible to allocate all tasks, or scenarios where a team might perform better
despite not executing one of the tasks. We relieve this assumption by introducing a
placeholder for tasks that are not executed. If we define this placeholder to be a dummy
actor and make him a member of the set of actors that comprises our team, tasks can
be allocated to him. All tasks allocated to the dummy actor in a certain task allocation
are not executed since the set partitioning used to make a task allocation enforces tasks
are allocated to precisely one actor. We can now model mandatory tasks by defining
a restrictive factor that prunes role assignments that allocate a mandatory task to the
dummy actor. Also, the costs of not executing certain tasks can be easily modeled using
a preference factor, since the set of tasks that are not executed is explicit as it is the set
of tasks assigned to the dummy actor.

3.3 Formalization of the Framework

To be a guidance for devising models, the proposed framework should make explicit
what sort of relationships exist between concepts (as stated in Section 2.2). Therefore
the following section provides a formalization of the components of the framework, as
seen in the previous section (3.2). As an example, we construct a simple formalization
of the book reallocation task that was introduced in Section 1. Parts of this example
formalization can be found throughout the section, framed in boxes as Example 1 that
contains a recap of the book reallocation task.

Imagine two people that need to relocate a lot of books. The books need to be put into
boxes per subject, the subject should be written on a label, and then the boxes should
be loaded into a car. One of the persons (Albert) is stronger and thus more suited to
carry boxes, the other (Ben) will pack and label the boxes. After a while of carrying
and packing books, Albert is getting very tired and needs to sit down (change in state
of team member). Ben finds some books on geography, which he knows very little
about (dynamic environment) and has trouble sorting and labeling them. Dynamic
allocation of tasks would now allow Albert (who happens to be a geographer) and Ben
(who is well rested) to switch tasks, which will improve team performance (number of
books getting boxed, correctly labeled and loaded in to the car).

Example 1: A recap of the book reallocation task.
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3.3.1 Environment Models

The first component of our framework we discuss are the environment models. Envi-
ronments models describe environmental factors that could have an influence on the
reallocation of tasks. Some examples of possible relevant environmental concepts are
weather conditions, traversability of terrain, geographical location, resource availability
and noise. We define a set of environments E = {E1, E2, ..., En} and a set of environmen-
tal state concepts SE = {S1, S2, ..., Sm}. Environment models are defined as functions
from environments at a certain time to values of environmental states: fE(Sy, Ex, t)

1

where t stands for time. Note that we do not define the set of environments to be an
input factor. Environments are is always related to either the actor or the task (in which
environment is the actor or task situated) and environments are thus indirect input via
the actor models and/or task analysis.2

For our example, a simple formalization of the book reallocation task, the environment
models could like this:
E = {Utrecht}
SE = {Temperature}
We model the book reallocation task at two different moments, the start at t = 0
and 30 minutes after this at t = 30. For both these points in time, the values for the
environmental factor ‘Temperature’ are given below:
fE(Temperature,Utrecht, 0) = 26◦C
fE(Temperature,Utrecht, 30) = 28◦C
The task allocation in the book reallocation task is not actually influenced by environ-
mental factors, as there is only one environment. We provide the environmental factor
‘Temperature’ here just as an example of how such a factor would be represented in
our framework.

Example 2: Environment models.

3.3.2 Actor Models

Many relevant research defines a collection of states or abilities that an actor has, for
example the vector of actor abilities that Shehory and Kraus use in [52]. Much like
Shehory and Kraus, we define a set of actor states/abilities. We define actor models as
functions from situated actors to values of actor states. Situated actors (Ax) are actors
(Actorx) in relation to the environment (Ey) that they are in, we formalize this as a
pair: Ax = 〈Actorx, Ey〉.

1Note that the type of output of this function is underdefined, and can be different for each enviro-
mental state concept. The environmental state concept (first argument of function) enforces the type of
output.

2This is because the problem of determining in which environment (at which location) an actor should
do some task is outside of the scope of this research.
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To formalize the notion of actor models, we must first formalize some concepts.
Firstly, the set of situated actors of which the team is comprised at time t: A(t) =
{A1, A2, ..., An}. Secondly, the set of actor state concepts, which is the set of cognitive,
emotional and physical abilities and states we deem relevant of the actors in the team:
SA = {S1, S2, ..., Sm}. We can now define functions from situated actors to values of
actor states in the following way: fA(Sy, Ax, t)

1 where t stands for time. Static properties
can be defined as a special case of states, in which case the value of t has no influence
on the output of fA. From now on, when we use the concept actor, this always refers to
a situated actor, thus a pair of an actor and his environment.

1Note that the type of output of this function is underdefined, and can be different for each actor
state concept. The actor state concept (first argument of function) enforces the type of output.
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For our example, a simple formalization of the book reallocation task, the actor
models could look like the following (we do not use a dummy actor, as we want all
tasks to be allocated):
A(0) = {〈Albert,Utrecht〉, 〈Ben,Utrecht〉}
A(30) = {〈Albert,Utrecht〉, 〈Ben,Utrecht〉}
SA = {Geographical knowledge,Physical condition}
The level of an actor’s geographical knowledge is modeled as a static property. This
is because during the book reallocation task, the level of knowledge will not change.
fA(Geographical knowledge, 〈Albert, *〉, *) = 0.8
fA(Geographical knowledge, 〈Ben, *〉, *) = 0.1
where the asterisk denotes a wildcard, meaning the environment and the value of t
have no influence on the output of fA(Geographical knowledge, 〈Actorx, Ey〉, t).

By the physical condition of an actor, we mean the potential physical energy an actor
has to do physical work. The physical condition is modeled as a state. This is because
an actor’s physical condition might decrease if he is carrying heavy books for some
time. Also, environmental factors might matter. For example: if the temperature is
very high in the actors environment, his potential physical energy might decrease.
The function that calculates the physical condition could look like the following:

fA(Physical condition, 〈Actorx, Ey〉, t) =

ffitness(Actorx)
−fused energy(Actorx, t) if fE(Temperature, Ey, t) < 35◦C

(ffitness(Actorx)
−fused energy(Actorx, t)) ∗ 0.5 if 45◦C > fE(Temperature, Ey, t) > 35◦C

0 otherwise

where ffitness is some function describing the fitness level of each actor and fused energy

is some function describing how much physical energy an actor has not yet regained
at a certain point in time.
For now, we will not further detail the function, but just give the output values it
might produce:

fA(Physical condition, 〈Albert,Utrecht〉, 0) = 0.9
fA(Physical condition, 〈Albert,Utrecht〉, 30) = 0.4
fA(Physical condition, 〈Ben,Utrecht〉, 0) = 0.6
fA(Physical condition, 〈Ben,Utrecht〉, 30) = 0.6

Example 3: Actor models.
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3.3.3 Task Analysis

The concept of task analysis is very similar to that of actor models. Situated tasks (Tx)
are tasks (Taskx) in relation to the environment (Ey) that they are in, we formalize
this as a pair: Tx = 〈Taskx, Ey〉. We define the set of situated tasks at time t: T (t) =
{T1, T2, ..., Tn}1 and the set of task state concepts ST = {S1, S2, ..., Sm}2. Task models
are defined as functions from situated tasks to values of task states: fT (Sy, Tx, t)

3 where
t stands for time. From now on, when we use the concept task, this always refers to a
situated task, thus a pair of a task and its environment.

For the simple formalization of the book reallocation task, the task analysis could
look like the following:
T (∗) = {〈Box books,Utrecht〉, 〈Carry boxes,Utrecht〉}
ST = {Knowledge needed,Physical demand, Incompatible tasks}
fT (Knowledge needed, 〈Box books, *〉, 0) = {}
fT (Knowledge needed, 〈Box books, *〉, 30) = {Geographical knowledge}
fT (Knowledge needed, 〈Carry boxes, *〉, 0) = {}
fT (Knowledge needed, 〈Carry boxes, *〉, 30) = {}
fT (Physical demand, 〈Box books, *〉, *) = 0.1
fT (Physical demand, 〈Carry boxes, *〉, *) = 0.8
fT (Incompatible tasks, 〈Box books, *〉, *) = {〈Carry boxes, *〉}
fT (Incompatible tasks, 〈Carry boxes, *〉, *) = {〈Box books, *〉}

Example 4: Task analysis.

3.3.4 Situation Analysis

Some factors arise from combinations of actor, environment and/or task states, we call
these factors situation states. The set of situation state concepts is defined as SU =
{S1, S2, ..., Sm}. Situation analysis contains functions from a role assignment (a pair
containing an actor and a task set for this actor) to values of situation state concepts:
fU (Sx, 〈Ay, T̆ 〉, t) where t is time, T̆ ⊆ T (t) and Sx ∈ SU . Situation analysis functions
are often defined using functions from actor models and/or task analysis. Situation
analysis functions can be quite straightforward, for example checking whether an agent
possesses all capabilities (actor property) needed for a task (task property), as done by
Shehory and Kraus [52]. But functions can also be rather complex, for example the fuzzy

1Note that, when using this notation, it is easy to model multiple tasks that are identical expect
for the environment they are in. For example a task such as ‘Explore Area’, set in a building could be
modeled as: 〈Explore Area,Room 1〉, 〈Explore Area,Room 2〉, ...

2The set of task state concepts is much like the vector of needed abilities for a task in e.g. [52], only
more general.

3Note that the type of output of this function is underdefined, and can be different for each task state
concept. The task state concept (first argument of function) enforces the type of output.

29



logic-based functions used by Tsalatsanis et al. [35]. Note that we defined situation state
functions to take a single actor with a task set instead of a single task as arguments,
this is because we do not assume independent utilities (as explained in Section 3.1).

Continuing our simple formalization of the book reallocation task, the situation
analysis could look like the following:
SU = {Physical match,Knowledge match,No incompatible tasks}

The situation state concept ‘No incompatible tasks’ is true if and only if no two tasks
in a given set of tasks are incompatible:

fU (No incompatible tasks, 〈Av, T̆ 〉, t) =
∀x, y : (Tx ∈ T̆ ∧ Ty ∈ T̆ )→ ¬(Tx ∈ fT (Incompatible tasks, Ty, t))

Physical match is defined as the actor state ‘physical condition’ minus the sum of the
task states ‘physical demand’ with a maximum value of zero.

fU (Physical match, 〈Ay, T̆ 〉, t) =

max(0, fA(Physical condition, Ay, t)−
∑
Tv∈T̆

fT (Physical demand, Tv, t))

Knowledge match is defined as the average value of all actor states concerning relevant
knowledge levels, were relevance is defined by the ‘Knowledge needed’ state of the task:

fU (Knowledge match, 〈Ay, T̆ 〉, t) =

∑
Tv∈T̆

fknow(〈Ay, Tv〉, t)

|T̆ |
where

fknow(〈Ay, Tv〉, t) =


0 if n = 0∑
Sw∈fT (Knowledge needed,Tv ,t)

fA(Sw, Ay, t)

n
otherwise

where n is the number of relevant knowledge domains:
n = |fT (Knowledge needed, Tv, t)|.

Example 5: Situation analysis.

3.3.5 Option Generation and Weighing

Situation state concepts should be defined for all factors influencing the task allocation.
This because we need to estimate the utility of role assignments (pairs of an actor and
a set of tasks), instead of estimating the utility of e.g. a single actor or a single task.
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From now on, we will refer to situation state concepts as state concepts, stressing that
for all other relevant (actor/task/environment) concepts a situation state concept exists
that maps it to a utility estimation for a role assignment.

As explained in Section 3.2 we distinguish between two types of factors influencing
task allocation, thus two types of state concepts. Firstly, the set of all state concepts
that put restrictions on possible task allocations, which is a subset of all state concepts:
SR ⊆ SU . Secondly, the set of all state concepts that put preference orderings on possi-
ble task allocations, these correspond to utility measures and are a subset of the state
concepts that are not restrictive: SP ⊆ SU \ SR

Possible options of actor-task set combinations at time t are generated to be used
as input for applying a SPP solving algorithm [51]. These options are role assignments,
modeled as pairs including a single actor and a task set for this actor: Oi = 〈Ax, T̆ 〉
where Ax ∈ A and T̆ ⊆ T (t).

For our book relocating example, all available actor-task set options are given below.
This set is the same for t = 0 and t = 30. Since our environment is always the
same in our example, from now on we will write just the name of the actor or task
(Actorx or Taskx) in stead of the situated actor or task pair (Ax = 〈Actorx, Ey〉 or
Tx = 〈Taskx, Ey〉).

O1 = 〈Albert, ∅〉,
O2 = 〈Albert, {Box books}〉,
O3 = 〈Albert, {Box books,Carry boxes}〉,
O4 = 〈Albert, {Carry boxes}〉,
O5 = 〈Ben, ∅〉,
O6 = 〈Ben, {Box books}〉,
O7 = 〈Ben, {Box books,Carry boxes}〉,
O8 = 〈Ben, {Carry boxes}〉

Example 6: Option generation.

We use the restricting state concepts to prune the set of available actor-task set
options. Restricting state concepts should always be defined in such a way, that they
return false if and only if an option should be pruned (and true otherwise). Only options
for which all restricting state concepts return true are not pruned. Options for which
the following property holds (at least one of the restricting state concepts returns false)
are pruned:

∃S ∈ SR : ¬fU (S, Oi, t)
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For our book relocating example, the pruning step could be the following:
SR = {No incompatible tasks}

The remaining possible actor-task set options after pruning are (this set is the same
for t = 0 and t = 30):
O1 = 〈Albert, ∅〉,
O2 = 〈Albert, {Box books}〉,
O4 = 〈Albert, {Carry boxes}〉,
O5 = 〈Ben, ∅〉,
O6 = 〈Ben, {Box books}〉,
O8 = 〈Ben, {Carry boxes}〉

Example 7: Pruning the options.

For the remaining set of options, we want to know their utility. The utility of an
option Oi at time t is some function combining all preference state concepts. An example
of this is the work by Feng et al. in [30], in which utility is defined as a weighted sum over
experience, ability and individual state. These three concepts are again weighted sums,
for example individual state is a weighted sum over personality, emotion and fatigue of
an agent.

For our example, the set of preference state concepts is:
SP = {Physical match,Knowledge match}

The utility of an option Oi = 〈Ax, T̆ 〉 at time t can be defined as:

fO
Utility(〈Ax, T̆ 〉, t) =


-1 if T̆ = ∅
fU (Physical match, 〈Ax, T̆ 〉, t)
+fU (Knowledge match, 〈Ax, T̆ 〉, t) otherwise

This yields the following utility values:
Utility at t = 0 Utility at t = 30

O1 −1 −1

O2 0 0.8

O4 0 −0.4

O5 −1 −1

O6 0 0.1

O8 −0.2 −0.2

Example 8: Calculating the utility of options.
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Using this list of options (role assignments) and their utilities, we have to find a task
allocation TA (which is a set of role assignments) that:

� Includes exactly one role assignment for each actor.
� Allocates each task to exactly one actor.
� Maximizes the utility. We define the utility of a task allocation as the sum over

the utilities of all options included in the task allocation:

fTA
Utility(TAi, t) =

∑
x∈TAi

fO
Utility(x, t).

The problem of finding a task allocation as defined above, can be cast as an instance
of the SPP, as described in Appendix 2.

As our example is quite small, we can easily find the maximum utility task allocation
without using the SPP, by just exploring all options. All task allocations that include
exactly one role assignment for each actor and that allocate each task to exactly one
actor are:
TA1 = {O2, O8} = {〈Albert, {Box books}〉, 〈Ben, {Carry boxes}〉},
TA2 = {O6, O4} = {〈Ben, {Box books}〉, 〈Albert, {Carry boxes}〉}

Now we can calculate the maximum-utility task allocation for our book relocating
example. Filling in all values we have given before yields that when starting the tasks
(t = 0), TA2 has utility 0 and is preferred over TA1 which has utility −0.2. Thus,
at time 0, Albert should carry the boxes and Ben should put the books in the boxes.
After 30 minutes (t = 30) however, TA1 has utility 0.6 and is preferred over TA2 which
has utility −0.3. Albert and Ben should switch tasks.

Example 9: Finding the maximum-utility task allocation.
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4 Model for Adaptive Automation

In this section, a model for adaptive automation is presented, based on the framework
presented in the previous section (Section 3, Figure 6). This model is designed to
work in complex and dynamic environments. The model is applicable to mixed human-
robot teams that include at least one human and one robot, but could include multiple
humans and/or multiple robots. This section is structured as follows: Firstly a general
description of the proposed model is given in Section 4.1. After this, we detail important
concepts and their formalizations in Sections 4.2 to 4.5. How different levels of autonomy
are modeled is explained in Section 4.2. Section 4.3 covers the modeling of cognitive task
load. Section 4.4 details the concept of coordination costs and finally the utility function
is explicated in Section 4.5.

4.1 General Description of Model

Adaptive automation is the process in which a robot that is part of a mixed human-robot
team dynamically adapts its level of autonomy on one or multiple tasks, as explained in
Section 2.5. Adaptive automation can be seen as a special case of dynamic task alloca-
tion. We are not just dynamically allocating tasks, but we are dynamically allocating
tasks at a specific level of autonomy. Therefore, we can build a model for adaptive au-
tomation, based on the framework presented in the previous section (Section 3, Figure
6). If we are using the framework, the next step in building the model is defining the
factors we are including as influence on adaptive automation. As argued in Section 2.3,
cognitive task load is a good candidate as it affects performance and is influenced by the
tasks an actor has. Specifically, it is likely to be influenced by at which level of autonomy
an allocated task is. We will include the predicted cognitive task load of an actor on a
set of tasks (a role assignment) as a preference factor in our framework. The cognitive
task load can not be the only preference factor however. We also need to have some
preference factor that represents coordination costs. Team performance could benefit
from an actor switching between different (levels of autonomy of) tasks if it reduces the
negative effect on performance of the cognitive state he is in, but only if the costs of
switching do not outweigh the cost of the negative effect on performance of the cognitive
state [26]. Switching between different levels of autonomy on a task has been shown to
have such costs [53].

There are many other factors that could be included in the model. Some examples
can be seen in the list of influences on task allocation in Section 2.4. The appropriate
level of autonomy for a robotic actor on a task depends for example on how well the
robot is trusted to do the task [32]. The current research will focus mainly on cognitive
task load and secondary on coordination costs as preference factors that differentiate
between a task at different levels of autonomy (e.g. way-point navigation vs. tele-
operation). Future research should have no problem extending the model to include other
such factors and to include more general preference factors that differentiate between
different tasks (e.g. navigation vs. communication).

34



4.2 Levels of Autonomy

In this section, we will detail how adaptive automation can be seen as a special case of
dynamic task allocation. This involves modeling tasks than can be executed at different
levels of autonomy in such a way that adaptive automation can be described using the
framework presented in the previous section (Section 3, Figure 6). Firstly, we will give a
high level description of how we describe adaptive automation in terms of dynamic task
allocation in Section 4.2.1. Next, in Section 4.2.2, we will formalize this process.

4.2.1 General Description of Modeling Levels of Autonomy

Based on the task analysis of a team task, possible levels of automation for all tasks
and their interrelations need to be defined.1 Tasks that have multiple possible levels of
automation are replaced in the task analysis by a separate version of the task for each
different level of autonomy. The separate versions all need to be described in terms
of task state concepts. The same tasks at several different levels of autonomy can be
modeled as several mutually exclusive subtasks. For example, the task of navigation
(controlling the movements of the robot) at three different levels of autonomy is shown
in Figure 7. We define three mutually exclusive subtasks of navigation, which correspond
to the three levels of autonomy. Firstly, at the lowest level of autonomy of the robot,
navigation is called tele-operation. Tele-operation means the human fully controls the
robot’s every move. An example of navigation at an intermediate level of autonomy
is way-point navigation. Way-point navigation implies that a human operator set goal
coordinates (way-points) for the robot to move to, but the robot itself computes a path to
these goals and follows this on its own. Way-point navigation is further divided into the
subtasks of setting way-points and following way-points. The highest level of autonomy
implies that the robot also decides itself where it wants to drive (goal), the human has
no role in the navigation process at the highest level of autonomy. We now define that
only human team members are able to execute the following tasks: tele-operation and
setting way-points. Only robotic team members are able to execute the following tasks:
following way-points, full autonomy. Mutually exclusive task can be modeled by adding
a dummy actor, which (as explained in Section 3.2) is a placeholder for tasks that are
not executed. All but one of the mutually exclusive tasks (a single task at different
levels of autonomy) should be forcedly allocated to the dummy actor, ensuring a task is
only allocated at a single level of autonomy to a real actor. The dummy actor does not
execute tasks, so a task is only executed at a single level of autonomy.

Interrelations between tasks might be different at each level of autonomy. The ex-
ecution of a certain task at a certain level of autonomy might not be possible without
another task being at a specific level of autonomy. For example for a robot to fully au-
tonomously navigate it needs to be able to autonomously process dynamic environmental

1This could be extended to include narrowing of possible levels of autonomy for different tasks by the
robot operator, i.e. work agreements, like in [41]. Work agreements are rules a robot operates under,
agreed upon before starting a team task, giving the human operator room to restrict which tasks can be
done by the robot at which level of autonomy, and possibly when.
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Figure 7: The task of navigation and its different level of autonomy variants, which are mutually exclusive
subtasks. Whether a human or robot is needed to execute a task is seen at the bottom in the elliptical
label.

data, e.g. detect obstacles, that is relevant for planning.

4.2.2 Formalization of Modeling Levels of Autonomy

In this section, we will formalize the general idea of how we describe adaptive automation
in terms of dynamic task allocation that was given above. Firstly, we have a set of actors:
A′(t) = {A1, A2, ..., An} that comprises the team we want to allocate tasks for. We define
the input for the model as this set plus a dummy actor: A(t) = A′(t) ∪ {Adummy}. As
explained in Section 3.2 this dummy actor is a placeholder for tasks that are not executed.

Secondly, we have a set of tasks: T ′(t) = {T1, T2, ..., Tm} that need to be allocated.
For each of these tasks, multiple levels of autonomy for the robot might be possible:
T 1
x , T

2
x , ..., T

k
x . For all levels of autonomy that are in between no autonomy and full

autonomy (2 to k− 1), the task execution requires both the human and robot. In these

cases, tasks are modeled as two separate subtasks (T y
x becomes T y,h

x , T y,r
x ). The resulting

set of subtasks each task consists of is: Tx = {T 1
x , T

2,h
x , T 2,r

x , ..., T k−1,h
x , T k−1,r

x , T k
x }. The

input for the model is the set of tasks that includes all these different possibilities for
each task T (t) = T1 ∪ T2 ∪ ... ∪ Tm.

To make sure a task is not executed at multiple levels of autonomy, for each task (in
T ′(t)), we forcedly allocate either all but one of the possible level of autonomy variants
of the task or all possible level of autonomy variants of the task to the dummy actor.
Note that we leave open the option that the task is not executed at all, meaning it is not
allocated at any level of autonomy to a real actor and thus all level of autonomy variants
are allocated to the dummy actor. This forced allocation of tasks to the dummy actor is
modeled by a restrictive state concept DummyExecute (∈ SR). As explained in Section
3.3.5, restricting state concepts are always defined in such a way, that they return false
if and only if an inputted option should be pruned (and true otherwise). We thus define
the concept DummyExecute to return false if and only if an inputted option is a role
assignment for the dummy actor that for some task (in T ′(t)) does not contain either
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all possible level of autonomy variants or all but one possible level of autonomy variants
of that task. This can be described formally by stating that if an role assignment is for
the dummy actor, it should contain either all or all but one possible level of autonomy
variants of all tasks (in T ′(t)):

fU (DummyExecute, 〈Ax, T̆ 〉, t) =

(Ax = ADummy)→

∀(Ty ∈ T ′(t)) : Ty \ T̆ = ∅ ∨
Ty \ T̆ = {T 1

y } ∨
Ty \ T̆ = {T ky

y } ∨
(∃b : Ty \ T̆ = {T b,h

y , T b,r
y } ∧ 1 < b < ky)

where ky is the highest level of autonomy variant of Ty.1

We can define additional restricting state concepts to make sure human tasks can
only be allocated to humans and likewise for robots. This is done by defining two actor
properties, namely one that is only true for human actors (IsHuman ∈ SA) and one that
is only true for robotic actors (IsRobot ∈ SA). We further define two task properties, one
that defines whether a human actor could execute the task (IsHumanTask ∈ SA), and
the other defines whether a robotic actor could execute the task (IsRobotTask ∈ SA).
The property IsHumanTask is true for a task T a

y if and only if either a = 1 (the lowest
level of autonomy variant of Ty) or a = b, h for some integer b (where 1 < b < ky). The
property IsRobotTask is true for a task T a

y if and only if either a = ky (the highest level
of autonomy variant of Ty) or a = b, r for some integer b (where 1 < b < ky).

We can now define a restricting state concept ActorMatch ∈ SR that makes sure role
assignments for human actors contain only tasks that can be executed by a human actor
and likewise for robotic actors. The concept ActorMatch is defined to be true if and
only if an option is a role assignment that only assigns a human actor tasks executable
by a human and a robotic actor tasks executable by a robot:

fU (ActorMatch, 〈Ax, T̆ 〉, t) =

(fA(IsHuman, Ax, t)→ ∀(Ty ∈ T̆ ) : fT (IsHumanTask, Ty, t))∧

(fA(IsRobot, Ax, t)→ ∀(Ty ∈ T̆ ) : fT (IsRobotTask, Ty, t))

Interrelations between tasks are modeled by the task property CompatibleTaskSet.
The task property CompatibleTaskSet (fT (CompatibleTaskSet, T y

x , t))) relates a given
task at a specific level of autonomy (T y

x ) at a point in time (t) to a set of tasks that are
rendered possible in combination with the input task (T y

x ) . The output of Compatible-
TaskSet is of the form {T̆1(⊆ T1), T̆2(⊆ T2), ...T̆m(⊆ Tm)} where {T1, T2, ...Tm} = T ′(t).

1This can be formally stated as: ∃ky : (T
ky
y ∈ Ty ∧ ¬∃k′y : (T

k′
y

y ∈ Ty ∧ k′y > ky))
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Which specific subsets are outputted depends on domain dependent knowledge. Com-
patibleTaskSet describes what tasks are compatible, so we need to know the nature of
the tasks. Note that the set T̆x itself (in the CompatibleTaskSet of task T y

x ) should
always be empty, regardless the nature of the task, as an actor should never have the
same task on different levels of autonomy assigned to him at once.1 We can now de-
fine a restricting state concept CompatibleTasks2 (∈ SR) that ensures a role assignment
contains only compatible tasks. The concept CompatibleTasks is defined to be true if
for every task in a role assignment, all other tasks in the role assignment are contained
in its set of compatible tasks. The concept CompatibleTasks is also defined to be true
if the role assigment is targetted at the dummy actor. As the dummy actor does not
actually exucute tasks, the compatibility of the set of tasks allocated to the dummy
actor is irrelevant.3 The formal definition of the concept CompatibleTasks is:

fU (CompatibleTasks, 〈Ax, T̆ 〉, t) =

(∀y, z, v, w : (T z
y ∈ T̆ ∧ Tw

v ∈ T̆ ∧ ¬(y = v ∧ z = w))→
(∃S : T z

y ∈ S ∈ fT (CompatibleTaskSet, Tw
v , t)))

∨(Ax = ADummy)

In Appendix 3, the effect of the pruning concepts described in this section on the
number of possible role assignments is described.

4.3 Cognitive Task Load

In this section, we will describe how we include cognitive task load in our model. Firstly,
we will describe the general idea of how cognitive task load can be seen in the context
of the model in Section 4.3.1. Next we will formalize these ideas in Section 4.3.2.

1Actually, the restrictive concept DummyExecute together with the demand that all elements of a
task allocation are mutually exclusive (i.e. no task is allocated to multiple actors), already enforces that
role assignments including the same task at different levels of autonomy cannot possibly occur in a task
allocation. Despite this, pruning the set of possible role assignments as much as possible before starting
to search for a task allocation is important to keep the problem of finding the optimal task allocation
feasible to solve.

2This concept is quite similar to the concept ‘No incompatible tasks’ that was introduced in the
example formalization in Section 3.3.4. The concept ‘CompatibleTasks’ is different as it is tailored to
suit the formalization of the current model. The same relation holds for the concept ‘Incompatible tasks’
(in formalization example, Section 3.3.3) versus the new concept ‘CompatibleTaskSet’ (suited to the
model).

3Actually, we need to be able to allocate task sets including incompatible tasks to the dummy actor,
otherwise we cannot model tasks with more than two possible level of automony variants. If we have a
task with more than two level of automony variants, the dummy actor should be assigned multiple level
of autonomy variants of the task (so only maximum one variant is allocated to a real actor). As before
said, different level of autonomy variants of a task are always incompatible.
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4.3.1 General Description of Modeling Cognitive Task Load

In Section 2.3, we detailed previous work on cognitive task load (CTL). We explained
CTL can be described by three metrics [23]. The first metric is the percentage of time
that a person is occupied (TO) by his/her tasks. The second metric is the number
of task-set switches (TSS), which is the number of times that a person has to switch
between different tasks. The third metric is the level of information (LIP) processing
that is needed for the current tasks the person is doing. We want to use the predicted
CTL level of an actor on a task set to help decide how well this task set is suited to
be executed by the actor (relative to other tasks sets). All three metrics of CTL are
situation state concepts, combining actor states with task analysis. More specifically,
the metrics can be described as some function over the option of allocated tasks of an
individual and properties of these tasks (o.a. LIP). Using the three metrics, we can
estimate whether the CTL level of an actor will be in a problem region given a set of
tasks (role assignment). Task allocations that keep actors out of CTL problem regions
should be preferred as this benefits performance.

As explained in Section 2.3, timing is also an important aspect in CTL. The longer
a person’s CTL is in a problem region, the more negative the effect on performance
will be. Typically, vigilance and underload problems occur only after some time, while
overload and cognitive lock-up problems can occur even if the CTL has only been in the
problem region for a short time [8].

Cognitive task load as described above only makes sense in the context of human
actors, not for robotic actors.1 For example, robotic actors can not suffer from vigilance
problems if they are bored, because generally robots can not be bored.

4.3.2 Formalization of Modeling Cognitive Task Load

We will now formalize how CTL is included in our model. The three CTL metrics are
situation state concepts: TO,TSS,LIP ∈ SU . The specific functions combining actor
states with task analysis into TO, TSS or LIP are not specified here as they could be
different for each domain.2 We assume all values of problem region boundaries are given,
how we name them can be seen in Figure 8.

These values of problem regions are actor and time dependent, therefore we model
them as actor states. We can now define the situation state concepts that define whether
actors will be in a problem region if they are given a certain set of tasks (functions that
map to true (actor in state) or false (actor not in state)):

Vigilance: TSS < TSSlow ∧TO > TOhigh ∧LIP < LIPlow

Underload: TSS < TSSlow ∧TO < TOlow ∧LIP < LIPlow

Overload: TSS > TSShigh ∧TO > TOhigh ∧LIP > LIPhigh

1Obviously, CTL also does not make sense in the context of dummy actors, as they are not really
actors (that execute tasks).

2A good example of how to compute CTL for the urban search and rescue domain is the model made
by Colin et al. [34].
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Figure 8: Values of problem region boundaries in the Cognitive Load Space.

Cognitive lock-up: TSS > TSShigh ∧TO > TOhigh ∧LIP < LIPhigh

Neutral: ¬Vigilance ∧ ¬Underload ∧ ¬Overload ∧ ¬Cognitive lock-up

Fully formalizing the above definitions of situation state concepts yields the following
definitions:

fU (Vigilance, 〈Ax, T̆ 〉, t) = fU (TSS, 〈Ax, T̆ 〉, t) < fA(TSSlow, Ax, t) ∧
fU (TO, 〈Ax, T̆ 〉, t) > fA(TOhigh, Ax, t) ∧
fU (LIP, 〈Ax, T̆ 〉, t) < fA(LIPlow, Ax, t)

fU (Underload, 〈Ax, T̆ 〉, t) = fU (TSS, 〈Ax, T̆ 〉, t) < fA(TSSlow, Ax, t) ∧
fU (TO, 〈Ax, T̆ 〉, t) < fA(TOlow, Ax, t) ∧
fU (LIP, 〈Ax, T̆ 〉, t) < fA(LIPlow, Ax, t)

fU (Overload, 〈Ax, T̆ 〉, t) = fU (TSS, 〈Ax, T̆ 〉, t) > fA(TSShigh, Ax, t) ∧
fU (TO, 〈Ax, T̆ 〉, t) > fA(TOhigh, Ax, t) ∧
fU (LIP, 〈Ax, T̆ 〉, t) > fA(LIPhigh, Ax, t)

fU (CognitiveLockUp, 〈Ax, T̆ 〉, t) = fU (TSS, 〈Ax, T̆ 〉, t) > fA(TSShigh, Ax, t) ∧
fU (TO, 〈Ax, T̆ 〉, t) > fA(TOhigh, Ax, t) ∧
fU (LIP, 〈Ax, T̆ 〉, t) < fA(LIPhigh, Ax, t)

fU (Neutral, 〈Ax, T̆ 〉, t) = ¬fU (Vigilance, 〈Ax, T̆ 〉, t) ∧
¬fU (Underload, 〈Ax, T̆ 〉, t) ∧
¬fU (Overload, 〈Ax, T̆ 〉, t) ∧
¬fU (CognitiveLockUp, 〈Ax, T̆ 〉, t)

We can now define the preference concept CTL(∈ SP) that gives a preference value
for a role assignment based on the CTL of the actor the role assignment is for. If a
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role assignment causes an actor to be in one of the CTL problem regions, we give the
role assignment a low preference. As the negative effect on performance is slightly less
harmful for cognitive lock-up then it is for other problem regions, we give this a slightly
higher preference value. Role assignments that do not cause the actor to be in a problem
region (optimal CTL) are given a high preference. We define CTL preference values to
range from 0 (lowest preference) up to 1 (highest preference).

As explained in Section 2.3, we need to take into account how for how long a person’s
CTL has been in a problem region. For the problem regions of cognitive lock-up and
overload, negative effects on performance can occur even if an actor has only been in
them for a short time (maximum effect estimated at five minutes). For the problem
regions vigilance and underload, the negative effect slowly increases as the actor has
been in the region for a longer time (maximum estimated at fifteen minutes).

The exact values that should be used for the different problem regions and the timing
aspects should be tweaked with domain dependent (experimental) knowledge. For now
we use an estimation of the values, which is defined below:

CTL =


1 if Neutral
0.2 (300s in region) up to 0.7 (0s in region) if Cognitive lock-up
0 (300s in region) up to 0.5 (0s in region) if Overload
0 (900s in region) up to 0.5 (0s in region) otherwise (if Vigilance

or Underload)

where we assume a linear relation between time and the preference concept CTL within
the above time frames.

We can formalize the above, by defining four actor states: VigilancePast, Under-
loadPast, OverloadPast and CognitiveLockUpPast (∈ SA). These actor states describe,
given an actor and a time point as input, for how long the actor has been in the problem
region corresponding to the name of the actor state concept (in seconds). If an actor is
currently not in the problem region corresponding to the name of the actor state concept,
the output will be zero.

Note that we have not yet defined that CTL is only applicable to human actors. We
define this by letting the output of the preference concept CTL always have the same
value for all non-human actors, independent of the set of tasks that is allocated to them.1

Adding this to the definition and formalizing it yields the following fully defined CTL
concept:

1We let this value be the highest preference value, as this means there is no negative influence of
CTL.
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fU (CTL, 〈Ax, T̆ 〉, t) =

1 if ¬fA(IsHuman, Ax, t)

1 if fU (Neutral, 〈Ax, T̆ 〉, t)

0.7− 0.5 ∗ min(300, fA(CognitiveLockUpPast, Ax, t))

300
1 if fU (CognitiveLockUp, 〈Ax, T̆ 〉, t)

0.5− 0.5 ∗ min(300, fA(OverloadPast, Ax, t))

300
if fU (Overload, 〈Ax, T̆ 〉, t)

0.5− 0.5 ∗ min(900, fA(VigilancePast, Ax, t))

900
if fU (Vigilance, 〈Ax, T̆ 〉, t)

0.5− 0.5 ∗ min(900, fA(UnderloadPast, Ax, t))

900
otherwise

(if fU (Underload, 〈Ax, T̆ 〉, t))

where min(x, y) returns the smaller of its two arguments: min(x, y) = x if x < y, and
min(x, y) = y otherwise.

4.4 Coordination Costs

As explained in Section 4.1, team performance could benefit from an actor switching
between different (levels of autonomy of) tasks if it reduces the negative effect on perfor-
mance of the cognitive state he is in, but only if the costs of switching do not outweigh
the cost of the negative effect on performance of the cognitive state [26]. Switching be-
tween different levels of autonomy on a task has been shown to have such costs [53]. In
this Section we will describe how we will include coordination costs in our model. Firstly
we will give a general idea of how coordination costs are modeled in Section 4.4.1. Next,
Section 4.4.2 will formalize these ideas.

4.4.1 General Description of Coordination Costs

The coordination costs have to take into account two aspects of switching between tasks.
The first aspect is whether the task switch implies an actor gets a task assigned he was
not currently assigned to at all or which was currently assigned to him, but at a different
level of autonomy. For human actors, there are costs associated to switching between
tasks [53]. For robotic actors, these sort of costs do not exist. For a human actor, if a

1This function and the similar ones below it are linear in the relevant time frame. This is because
during the period a human actor remains in the same problem region, the time the human actor has
been in this problem region has a linear relation to the time point t it is measured at.
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task is assigned that was not currently assigned at all, this has a relatively high cost,1

as the human actor needs to switch (redirect his attention) to this task. If a task was
already assigned to the actor, but with a higher level of autonomy of the robotic actor,
the cost is slightly lower. The actor does not need to switch to a new task, but only
needs to take up more responsibility in executing it. If a task was already assigned to
the actor, but with a lower level of autonomy of the robotic actor, the cost is even lower.
Again the actor does not need to switch to a new task, but the robotic actor takes over
some of the responsibility in executing the task. Lastly, if a task was already assigned
to the actor, and the level of autonomy of this task does not change, there are no costs
as nothing changes.

The second aspect that coordination costs have to take into account is how often task
reallocations take place. Timing is important in adaptive automation, not only when,
but also how often the level of autonomy of a task is changed. Changing the level of
autonomy too often could cause extra workload [26]. The frequency at which changing
starts causing extra workload likely depends on the nature of a task (domain dependent
knowledge) and on the individual actor (e.g. his personality and cognitive state) [54].

4.4.2 Formal Description of Coordination Costs

We will now formalize how coordination costs are included in our model. Firstly we
define a function fcost that maps a pair containing a single actor and a single task at a
certain time point to a preference value. This preference value represents how preferable
the actor-task pair is, based on coordination costs that arise when the task gets allocated
to the actor. The higher the coordination costs, the less an actor-task pair is preferred.
High coordination costs are thus associated with low preference values and vice versa.
The function fcost models the first aspect of coordination costs, namely whether the task
was already assigned to the actor and if so, whether the level of autonomy changes.

If a task was already allocated to an actor, and the level of autonomy on this task
does not change, there are no coordination costs as there is no switching. If a task was
already allocated to an actor, but at a different level of autonomy, there are two options.
Firstly, the level of autonomy could go down, this means the human actor gets more
responsibilities in executing the task. The cost of lowering the level of autonomy is quite
high. Secondly, the level of autonomy could go up, this means the robotic actor takes
over some responsibility. The switching costs for the human actor are quite low if the
level of autonomy goes up. The cost of allocating a task that was not allocated at all to
the actor before is the highest. We define coordination cost preference values to range
from 0 (lowest preference, thus highest coordination costs) up to 1 (highest preference,
thus lowest coordination costs). The exact values that should be used for the different
contexts (changes in task allocation) should be tweaked with domain dependent (exper-
imental) knowledge. For now we use an estimation of the values, which is given below:

1The cost is very much influenced by how different the tasks are, as argued by Colin et al. [34]. This
is outside the scope of the current research.
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fcost(〈Ax, T
v
y 〉, t) =



0 if task was not yet allocated to actor
0.2 if task was already allocated to the actor,

but with a lower level of autonomy
0.5 if task was already allocated to the actor,

but with a higher level of autonomy
1 if task was already allocated to the actor,

with the same level of autonomy

To formalize this function, we need to know the set of tasks that is currently allocated
to an actor. To this extent, we define the actor state concept CurrentTasks, which returns
the current task set of an actor. We can now formalize the cost function described above:

fcost(〈Ax, T
v
y 〉, t) =


0 if ¬∃w : Tw

y ∈ fA(CurrentTasks, Ax, t)

0.2 if ∃w : Tw
y ∈ fA(CurrentTasks, Ax, t) ∧ v < w

0.5 if ∃w : Tw
y ∈ fA(CurrentTasks, Ax, t) ∧ v > w

1 otherwise (if ∃w : Tw
y ∈ fA(CurrentTasks, Ax, t) ∧ v = w )

The second aspect that coordination costs have to take into account is how often
task reallocations take place. Changing tasks too often could cause extra workload, so
we add a timing factor to the coordination costs. We define a time frame of five minutes
after a task has been reallocated. If a task is reallocated again within this time frame, a
time penalty is subtracted from the coordination cost preference value. This penalty is
high if the task was just reallocated and decreases linearly to zero when the reallocation
was five minutes ago. Note that we again make an estimation of the values and how they
behave (length of time frame, height of penalty, linearity of function) and this should
be tweaked using domain dependent (experimental) knowledge. The function fcost+time

adds the timing factor to the coordination costs and is defined below:

fcost+time(〈Ax, T
v
y 〉, t) =

fcost(〈Ax, T
v
y 〉, t) if last task reallocation was (more

than) 5 minutes (300 seconds) ago
or task was already allocated to actor
at same level of autonomy

max(0, fcost(〈Ax, T
v
y 〉, t)−

300− i

300
∗ 0.25) otherwise (where i is the number

of seconds that passed since
the last task reallocation)

To formalize this function, we need to know how long ago the previous reallocation of
a task occurred. To this extent, we define a function freallocation. This function takes an
actor task-pair and a time point as input and returns how many seconds have past since
the last reallocation of the inputted task that concerned the inputted actor. In other
words, it returns how much time has passed since the last time the task either appeared,
disappeared of changed level of autonomy in the task set allocated to the actor. Using
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the last reallocation-function we can formalize the definition of the function fcost+time:

fcost+time(〈Ax, T
v
y 〉, t) =

fcost(〈Ax, T
v
y 〉, t) if freallocation(〈Ax, T

v
y 〉, t)

≥ 300
orfcost(〈Ax, T

v
y 〉, t) = 1

max(0, fcost(〈Ax, T
v
y 〉, t)−

300− freallocation(〈Ax, T
v
y 〉, t)

300
∗ 0.25) otherwise

We can now define the preference concept coordination costs (CC ∈ SP), which
describes the preference of a role assignment, based on the coordination costs this role
assignment causes. The preference of a role assignment, concerning coordination costs, is
some function over the output of the function fcost+time over all actor task-pairs contained
in the role assignment. An actor task-pair is contained in a role assignment, if the
role assignment allocates the task to the actor. Generally the average output of the
function fcost+time over all actor task-pairs contained in a role assignment will be a good
approximation of the coordination costs of this role assignment. This is because as the
more tasks change, the higher the costs are and the lower the preference is. The average
might not be a good function for atypical domains however and should be adjusted to
some more complex function if necessary.

Note that we have not yet defined that coordination costs are only applicable to
human actors. We do this by letting the output of the preference concept CC always
have the same value for all non-human actors, independent of the set of tasks that is
allocated to them.1 The definition of the preference concept CC is given below:

fU (CC, 〈Ax, T̆ 〉, t) =



∑
∀T v

y ∈T̆

fcost+time(〈Ax, T
v
y 〉, t)

|T̆ |
if fA(IsHuman, Ax, t)

1 otherwise (Ax is a robotic actor
or the dummy actor)

4.5 Utility Function

The utility function maps role assignments at a certain point in time to their utility.
The utility of a role assignment is some combination of all preference concepts. In
this case the set of preference concepts consists of the preference based on CTL and
the preference based on coordination costs (CC). As explained in Section 4.1, team
performance benefits from an actor switching between different (levels of autonomy of)
tasks if the the negative effect on performance of the cognitive state he is in outweighs
the costs of switching. The utility of a role assignment should thus be a measure that
represents the preference of the role assignment based on CTL minus the coordination

1We let this value be the highest preference value, as this means there are no coordination costs.
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costs. The preference concept CC is high if the coordination costs are low (because this
is preferred) and vice versa. Therefore the utility of a role assignment is the addition of
the two preference concepts CTL and CC.

For clarity, we define that the lowest utility equals 0 and the highest utility equals
1. To fit this range, we scale the sum of the preference concepts CTL and CC (which
also both range from 0 to 1) by dividing it by two. More formally, the utility of a role
assignment (an option) Oi = 〈Ax, T̆ 〉 at time t is the sum of values for all preference
state concepts (CTL and CC), divided by two:
fO
Utility(Oi, t) = (fU (CTL, Oi, t) + fU (CC, Oi, t))/2
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5 Experiment

In this section, we aim to validate the model presented in the previous section (Sec-
tion ) by using it in an experimental setting. Firstly, an example usage of the model is
shown, by instantiating it for the urban search and rescue domain in Section 5.1. After
this, an experiment that uses the instantiated model is described in Section 5.2. Results
of this experiment are described in Section 5.3 and conclusions are detailed in Section 5.4.

5.1 Instantiating the Model for the Urban Search and Rescue Domain

In this section, the model presented in the previous section (Section 5) is instantiated for
an urban search and rescue setting. Specifically, we focus on the cooperation between
a single robot and its operator. We detail how our model can be instantiated to model
how the autonomy level of the robot should adapt to the CTL of its operator in a typical
urban search and rescue task. Firstly, a short description of the urban search and rescue
domain is given in Section 5.1.1. Secondly, Section 5.1.2 details which levels of autonomy
different tasks can have. Thirdly, a model for CTL estimation in the urban search and
rescue domain is described in Section 5.1.3.

5.1.1 Urban Search and Rescue

Urban search and rescue (USAR) involves finding and extracting victims from disaster
sites. These sites can for example be traffic accidents, earthquake sites, or buildings
that are on fire. Finding victims in these situations is very stressful and demanding, as
the lay-out of the situation is often unsure and dangerous situations could arise. USAR
services try to find victims in these harsh conditions as fast as possible, since survivors
could be in need of medical attention. If, for example, a building is damaged by an
earthquake or bomb, the disaster site could be very unstable. In these situations, it is
very unsafe for rescuers to go in to the building, as walls or ceilings could collapse. To
risk as little as possible, robots can be used to help map the site. These robots can find
out for example, where the possible dangers are and where victims might be located. To
this extent, the NIFTi project1 was set up. In the NIFTi project, we investigate how
robots can be applied for USAR. A focus point in this is the cooperation between robot
and human team member, since this is often not yet ideal [55].

The model presented in Section 5 is instantiated to model cooperation between the
unmanned ground vehicle (UGV, see Figure 9a and 9c) developed in the NIFTi project
and its operator (Figure 9b). The operator can control the UGV’s movements and see its
surroundings via multiple (adjustable) camera views and a colored 3D point cloud (laser
mapping) through an operator control unit. The operator and UGV also have access
to a tactical display, which is shared with other USAR rescue members. Information
about the disaster site is communicated amongst rescuers through this tactical display.

1www.nifti.eu
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While the UGV is in the field (a disaster site), the operator can stay at a safe location
to control it. The UGV is thus not in line-of-sight of the operator.1

(a) A UGV in scenario

(b) A UGV operator (c) A UGV with victim

Figure 9: Some pictures taken during NIFTi experiments

The UGV and its operator form a team that gets assigned to tasks during USAR
missions. Most of these tasks can be executed at different autonomy levels for the UGV,
meaning the UGV has either no, some or full control over task execution. For example,
imagine the task ‘uploading relevant information to the tactical display’. The level of

1For more (detailed) information, see [55].
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autonomy of this task concerns who controls which information gets uploaded to the
tactical display. If the UGV has no control over this, this means the human decides
which information is uploaded. If the UGV has full control, it decides which information
is uploaded. Shared control could for example mean that the UGV suggests possible
information to upload and the operator can accept or reject this.

As USAR missions are stressful and demanding, and lives could depend on their
efficiency and effectiveness, it is important to improve cooperation and team performance
as much as possible. To this extent, introducing adaptive automation could be very
useful.

The task in USAR is often to explore an area and get an overview of the situation.
This often includes locating victims.1 The task of exploring an area can be reduced to
a set of subtasks, as seen in Figure 10.2 For the UGV and its operator, the task to ex-
plore an area can be divided into three subtasks: driving around, detecting objects and
communicating. These three subtasks can be divided into two subtasks each: navigation
and obstacle avoidance, obstacle detection and victim detection respectively forwarding
information and receiving/processing information. These six (subsub)tasks are not di-
vided into further subtasks for our purpose, so they compose the set of tasks for our
model (as seen in the bottom row of boxes (green) in Figure 10). This task set remains
constant over the whole mission of exploring the area. For our purpose, detecting and
avoiding obstacles can be seen as a single task as both have no meaning without the
other. The same holds for detecting victims and forwarding information to others, as
the information that needs to be forwarded only contains detected victims. The set of
tasks we deal with thus is:
T ′(∗) = {Nav,Obs,Vic, Info}

where the asterisk denotes a wildcard, meaning the value of t has no influence on the
set of tasks that need to be allocated (i.e. the set of tasks is constant). The following
abbreviations are used:

Nav : Navigation
Obs : Obstacle detection and avoidance
Vic : Victim detection and forwarding information
Info : Receive and process information from others

5.1.2 Automation Analysis

In this Section, we detail the set of tasks used for the instantiation by introducing
the different possible levels of autonomy for each task. After this, we explain which
constraints exist between tasks (and actors) and how we model these using pruning
rules (restrictive state concepts).

As proposed by Miller [6], we define levels of autonomy for all subtasks separately.
For now, we define three possible levels of autonomy for each task: 1, 2 and 3. Level

1It could also include locating other objects of interest, such as fire or smoke.
2Note that the reduction into subtasks we give here is not the only possible one, but we choose this

one to use for the instantiation.
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avoidance

Obstacle

detection

Victim
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from others

Figure 10: Overview of the different tasks and subtasks in a typical USAR mission, the tasks on the
bottom row (green boxes) are used as task set for our task allocation model. The tasks with a dashed
box (red) around them are grouped and seen as a single task.

1 means the robot (UGV) has no autonomy, the human controls the robot fully (e.g.
tele-operation). Level 2 means there is some autonomy for the robot, but the human
makes the higher level decisions (e.g. way-point driving). Level 3 means the robot has
full autonomy and makes decisions and executes actions without human interference.
An overview of the tasks we define for the different levels of autonomy (LoA) is given in
Table 1.

LoA 1 LoA 2 LoA 3

Nav Tele-operation Way-point driving Full autonomy
Obs No obstacle Robots warns operator Robot avoids

detection/avoidance for nearby obstacles obstacles
Vic No victim Robot suggests Robots detects victims

detection possible victims and forwards information
Info No automatic Robot suggests possible Robot decides

information processing places of interest where to go

Table 1: An overview of the tasks at different levels of autonomy.

Without yet taking constraints into account (e.g. tasks that might be incompatible),
this makes the set of tasks that need to be allocated (which again is static):
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T (∗) = Nav
⋃

= { Nav1, Nav2,h, Nav2,r, Nav3,

Obs
⋃

Obs1, Obs2,h, Obs2,r, Obs3,

Vic
⋃

Vic1, Vic2,h, Vic2,r, Vic3,

Info Info1, Info2,h, Info2,r, Info3}
Note that if we would not have any pruning, the set of possible role assignments

would be enormous even for this small instantiation. As explained in Appendix 3, the
number of role assignments without pruning is (2|T |)|A|. In the current instantiation,
the number of actors is three (the operator, the robot and the dummy actor) and the

number of tasks is 16. This implies there are (216)
3

= 281474976710656 distinct role
assignments, making it clear that we should have effective pruning. Using the domain
independent pruning rules defined in Section 4.2.2 (DummyExecute, ActorMatch and
CompatibleTasks), we can reduce the number of options, as explained in Appendix 3.
For the current instantiation, there are 481 possible role assignments (256 for the dummy
actor, 81 for the other actors each) left after domain independent pruning, which is a
huge improvement over the 281474976710656 role assignments that were possible before
pruning.

Luckily, there a some more (domain dependent) restricting rules, so we can further
prune the set of possible role assignments. Firstly, in the current instantiation all tasks
are mandatory. Tasks such as victim detection might not be actively executed the
whole time, but it should always be clear who has the responsibility to detect victims
allocated to him. With this in mind, we can prune all options in which some task is
not executed at any level of autonomy. We can easily do this, by making the restrictive
concept DummyExecute (introduced in Section 4.2.2) more restrictive. The stricter
concept DummyExecute is true and only true when a role assignment for the dummy
actor contains all but precisely one level of autonomy for each task, which is formally
described by the following statement:

fU (DummyExecute, 〈Ax, T̆ 〉, t) =

(Ax = ADummy)→

∀(Ty ∈ T ′(t)) : Ty \ T̆ = {T 1
y } ∨

Ty \ T̆ = {T ky
y } ∨

(∃b : Ty \ T̆ = {T b,h
y , T b,r

y } ∧ 1 < b < ky)

where ky is the highest level of autonomy variant of Ty.∗

This reduces the possible role assignment options for the dummy actor from 256†

to 81‡, meaning there are a total of 243 options left (81 (human) + 81 (robot) + 81
(dummy)).

∗This can be formally stated as: ∃ky : (T
ky
y ∈ Ty ∧ ¬∃k′y : (T

k′
y

y ∈ Ty ∧ k′y > ky))
†∏

Tx∈T ′(t)(LoA(Tx) + 1) where LoA(Tx) returns the number of level of autonomy variants of task

Tx (formally defined in Appendix 3).
‡∏

Tx∈T ′(t) LoA(Tx) where LoA(Tx) returns the number of level of autonomy variants of task Tx

(formally defined in Appendix 3).
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Nav
LoA 1 LoA 2 LoA 3

O
b

s

LoA 1 Tele-operation × ×
LoA 2 Tele-operation × ×

with obstacle warning × ×
LoA 3 Tele-operation Way-point navigation Full autonomy

with obstacle avoidance

Table 2: The relation between different levels of autonomy for navigation (Nav) and obstacle detec-
tion/avoidance (Obs).

Nav
LoA 1 LoA 2 LoA 3

In
fo

LoA 1 Tele-operation Way-point navigation ×
LoA 2 Tele-operation Way-point navigation ×

with place of interest with place of interest
suggestions suggestions

LoA 3 × × Full autonomy

Table 3: The relation between different levels of autonomy for navigation (Nav) and receiving and
processing information from others (Info).

The second restrictive concept we can restrict further using domain knowledge is
CompatibleTasks (introduced in Section 4.2.2). Setting an autonomy level of one of the
tasks could influence which autonomy levels are possible for other tasks. This domain
dependent information can be used to prune more options using the restrictive concept
CompatibleTasks. The relation between different levels of autonomy for navigation (Nav)
and obstacle detection/avoidance (Obs) is specified in Table 2. The table shows, for
each pair of a level of autonomy variant of navigation and a level of autonomy variant
of obstacle detection/avoidance, whether these two tasks are compatible1. A cross (×)
means the tasks are not compatible. If the tasks are compatible, the combination of the
two tasks is shortly described. For example, if we set the autonomy level for detecting
obstacles very low (LoA 1, top row in table), the robot does not know where obstacles
are. Setting the autonomy level for navigation medium or high (LoA 2 or 3) would be a
bad idea since the robot has a high risk of crashing into the obstacles it does not detect.
If we set the autonomy level for navigation low (LoA 1), the combination with the low
autonomy level for detecting obstacles is fine, as the robot is tele-operated.

A same sort of relation exists between different levels of autonomy for navigation
(Nav) and receiving and processing information from others (Info), this relation is spec-
ified in Table 3. The other tasks do not influence each other in this way.

Using the specified relations in tables 2 & 3, we can define the task property Com-

1We have define compatible to mean two tasks can be allocated to an actor at the same time, thus
occur together in a role assignment.
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patibleTaskSet for all tasks:

fT (CompatibleTaskSet,Nav1, ∗)) = {∅,Obs,Vic, {Info1, Info2,h, Info2,r}}
fT (CompatibleTaskSet,Nav2,∗, ∗)) = {∅, {Obs3},Vic, {Info1, Info2,h, Info2,r}}
fT (CompatibleTaskSet,Nav3, ∗)) = {∅, {Obs3},Vic, {Info3}}

fT (CompatibleTaskSet,Obs1, ∗)) = {{Nav1}, ∅,Vic, Info}
fT (CompatibleTaskSet,Obs2,∗, ∗)) = {{Nav1}, ∅,Vic, Info}
fT (CompatibleTaskSet,Obs3, ∗)) = {Nav, ∅,Vic, Info}

fT (CompatibleTaskSet,Vic1, ∗)) = {Nav,Obs, ∅, Info}
fT (CompatibleTaskSet,Vic2,∗, ∗)) = {Nav,Obs, ∅, Info}
fT (CompatibleTaskSet,Vic3, ∗)) = {Nav,Obs, ∅, Info}

fT (CompatibleTaskSet, Info1, ∗)) = {{Nav1,Nav2,h,Nav2,r},Obs,Vic, ∅}
fT (CompatibleTaskSet, Info2,∗, ∗)) = {{Nav1,Nav2,h,Nav2,r},Obs,Vic, ∅}
fT (CompatibleTaskSet, Info3, ∗)) = {{Nav3},Obs,Vic, ∅}

Using the restrictive concept CompatibleTasks, we can again prune the set of options.
This reduces the possible role assignment options for the human actor from 81 to 57 and
for the robotic actor from 81 to 36. This implies that there are a total of 174 options
left (57 (human) + 36 (robot) + 81 (dummy)).

5.1.3 Cognitive Task Load

A model for estimating the CTL1 of robot operators in the USAR domain was developed
by Colin et al2 [34]. Figure 11 shows an overview of the steps Colin’s [34] model takes
to estimate the CTL of a robot operator in the USAR domain.

The first step of the model consists of gathering events, for example when the operator
starts moving the robot or when the operator stops using the tactical display (Figure 11,
top box). Using these events, a task bar concerning the past two minutes3 is generated
that shows which tasks the operator is doing and when he is doing them (Figure 11,
second box from top). The model, together with an analysis of how tasks interact that
is supposed as input, now combines these tasks into a single task bar (Figure 11, third
box from top). The model presupposes a task analysis as input. For every task, this
analysis describes three properties relevant to the CTL. Firstly, the level of information
processing (LIP) an operator needs to execute the task. Secondly, how high the mental
occupancy (MO) is, i.e. the proportion of an operator’s attention that is needed for

1As introduced in Section 2.3.
2From now on, ‘Colin et al.’ is abbreviated to ‘Colin’.
3Or concerning one minute or more than two minutes, depending on the configuration of the model.

We configure it to look back two minutes.
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Figure 11: Overview of the steps Colin’s [34] model takes to estimate the CTL of a robot operator in
the USAR domain. For a detailed description of how the model calculates CTL the reader is referred
to [34].

a task. Thirdly, the domains: these are the categories of mental representations an
operator needs to execute a task. Domain information is used towards calculating how
much workload is associated with switching between tasks (TSS). The task properties
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can be made dependent on certain environmental properties, for example whether a
robot is near an obstacle (see the modifier ‘Collision Risk’ in Figure 11). Modifiers
(term used by Colin) correspond to environmental properties. If a task has an active
modifier (e.g. ‘Collision Risk’), this means the task is situated in an environment for
which this modifier is active (e.g. a cluttered environment). The task analysis we use
for Colin’s model is shown in Table 4. We define two environmental properties that
influence the task properties. Firstly, if an environment has much obstacles (clutter)
avoiding them is a much harder task. Secondly, if there is much information coming in
that needs to be processed (busy) it is harder to decide where to go. Using the combined
task bar, and the input task analysis, the CTL of the operator can be calculated (Figure
11, third box from top). Note that the metric ‘Time occupied’ (TO) is replaced here
by ‘Mental occupancy’ (MO) which represents the same metric, but is defined in a way
more appropriate to the USAR domain.

LIP MO Domains
range 0 to 3 0 to 1

Nav1 1 0.5 Video feed

Nav2,h 2 0.8 Video feed, Tactical display

Obs1 1 0.5 Video feed

Obs1 [clutter] 2 0.8 Video feed, Laser map, Robot shape

Obs2,h 1 0.3 Video feed

Obs2,h [clutter] 2 0.6 Video feed, Laser map, Robot shape

Vic1 1 0.4 Video feed, Tactical display

Vic2,h 1 0.2 Video feed, Tactical display

Info1 2 0.5 Tactical display

Info1 [busy] 2.5 0.7 Tactical display

Info2,h 2 0.4 Tactical display

Info2,h [busy] 2.5 0.6 Tactical display

Table 4: The configuration for the CTL model.1Note that this configuration is an estimation, based on
research by Colin et al. [34]. The configuration should be tweaked/validated for each different scenario
the model is used for.

We can use Colin’s CTL model to give a prediction of the CTL an operator would
have given a certain reallocation of tasks. To do this, we need to predict the temporal
behavior of the set of tasks allocated to the operator (when is he executing which tasks)
over the upcoming two minutes. We can predict the temporal behavior of a single task,
by copying the temporal behavior this task had in the most recent past two minutes it
was allocated to the operator.2 We can predict the temporal behavior of a set of tasks,
by combining all the predictions for the separate tasks. This method of prediction is

1We have only included tasks that are appropriate for human actors to execute, as CTL is only
applicable to humans.

2Using (events gathered from training data as) default temporal behavior to be used if there is no
previous allocation of this task to the operator
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quite coarse, but as we are only talking about a very short time period, it is likely to
be a usable estimate. Further research could refine the prediction of temporal behavior
by using a task simulator. This task simulator could simulate how a task is likely to
behave temporally, taking into account previous temporal behavior but also the context
of the previous occurrence of the task in relation to the future context. For example,
the temporal behavior is of task is likely to depend on which other tasks are allocated
to the operator at the same time.

If we want to use the CTL model to know whether an operator’s performance is
negatively influenced by his CTL, we also need to estimate the values of the problem
region boundaries of CTL. As mentioned in Section 4.3.2, these can be dependent on the
specific actor and on time. For the current instantiation, we approximate the problem
region boundaries with constant values, independent of time and specific actors. These
approximated values are obtained by observing human actors and the value of their CTL
while executing the task to explore an area (in the set up as described in Section 5.2)
and can be seen below:

LIPlow = 1, LIPhigh = 1.8,
MOlow = 0.6, MOhigh = 0.75,
TSSlow = 4, TSShigh = 7

5.2 Method

In this section, we describe the experiment used to validate the model. This experiment
uses the instantiated model as described in the previous section (Section 5.1). Section
5.2.1 describes the design of the experiment, including the hypotheses we aim to validate.
Section 5.2.2 describes the participants we used for the experiment and Section 5.2.3
describes the task these participants had to execute. In Section 5.2.4, we cover the
materials that were used and the set-up. Section 5.2.5 covers the procedure. Lastly, the
measurements are detailed in Section 5.2.6.

5.2.1 Design and Hypotheses

We aim to validate our model with an experiment. The model reallocates tasks as to
improve performance of the robot-operator team using the cognitive task load of the
operator. A first step towards validating that the model actually improves team per-
formance, is making sure the model works as we expect it to work. The model should
reallocate tasks when the cognitive task load of the operator becomes problematic and
the task reallocation should be such that this problem is resolved. Our experiment thus
aims to validate the following hypotheses about the task reallocation model:

Hypothesis 1: The model reallocates tasks at the right moment.

Hypothesis 2: The model chooses appropriate reallocations.

These two hypotheses are very general and not easily validated using objective data.
Therefore we add a third, more specific hypothesis:
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Hypothesis 3: The real shift in CTL corresponds to the predicted shift in CTL.

With each task reallocation, the model aims to change the CTL of the participant and
hereby relieve the problem state he/she is in. The model chooses a new task allocation
based on the shift in CTL it predicts to arise from switching to this new task allocation.
With this hypothesis, we aim to validate that the predicted shift in CTL is actually
achieved by the task reallocation.1 This third hypothesis can be validated using objective
data. Hypothesis three is a subhypothesis of hypothesis 2: if the predicted shift in
CTL corresponds to the real shift in CTL, this helps towards choosing appropriate task
allocations.

5.2.2 Participants

A total of 15 runs of the experiment was conducted, each with a different participant.
The data of two participants was not usable for analysis, so it was excluded. Data
of thirteen participants was used for analysis. These thirteen participants included
twelve males and one female, aged 21 to 38 (average 25,54; standard deviation 4,86).
Ten participants had at least a higher vocational education2. Participants indicated
to spend an average of 0 to 40 hours a week playing video games (average 7,88; stan-
dard deviation 10,68) and an average of 0 to 10 hours a week driving a vehicle (average
2,04; standard deviation 2,80). Most participants had a little experience with remote
controlled vehicles/non-autonomous robots (range from 1 (no experience) to 5 (much
experience), average response 2,31; standard deviation 0,82). Most participants had no
experience with autonomous robots, some participants had much experience with au-
tonomous robots (range from 1 (no experience) to 5 (much experience), average response
1,96; standard deviation 1,42).

5.2.3 Task

The participant is given the role of robot operator and is asked to execute a typical
USAR task (as explained in Section 5.1). The task is to explore an office building after
an earthquake. He is told to cooperate with a robot to map the situation in the building.
If any victims or large obstacles are seen, these should be added to a tactical display.
The participant is told to hurry, as victims might be in need of medical attention and
it is not safe for medics to go inside the building until the situation is fully mapped.
Participants get 15 minutes to explore the building. A timer counting down from 15
minutes to zero is displayed to remind participants of the time pressure. To motivate
participants, (they are told that) a small present is rewarded to the participant that
performs best on the task.

1Note that we could also just check whether the task reallocation relieved the problem state. However,
this can be overly coarse. For example, the model could aim to relieve underload by increasing all three
metrics with a task reallocation. If only one of the three metrics is actually increased by the task
reallocation, the problem state will still be resolved, but the model does not work entirely as expected.

2HBO
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The participant is told to do the tasks that are allocated to him by the task allocation
model. He is also explained that the task allocation can be changed at any time during
the experiment, namely if the model thinks he is too busy or not busy enough to function
optimally. The subtasks and their possible level of autonomy variants that used are
those described in Section 5.1 except for two small adjustments. Firstly, the task of
detecting and avoiding obstacles at level of autonomy two (robot warns for obstacles)
was excluded due to technical difficulties. Secondly, the combination of navigation at
level of autonomy one (tele-operation) with victim detection at level of autonomy two
(robot suggests possible victims) was excluded as it turned out to result in the exact same
behavior as the combination of navigation at level of autonomy one (tele-operation) with
victim detection at level of autonomy one (no victim detection). The (Dutch) description
of the tasks, as given to participants, can be found in Appendix 4.

5.2.4 Materials and Set-up

To execute the experiment, several materials are needed. Firstly, an implemented version
of the instantiated model as described in Section 5.1 is needed. Secondly, an autonomous
robot is needed that can execute the tasks as we described them in Section 5.1.2. Thirdly,
an environment for the task is needed, namely an office building that has been damaged
by an earthquake. Lastly, a tactical display is needed though which information about
possible places of interest/dangers/victims can be communicated. The remainder of this
section describes which materials were used for the experiment.

Implementation of Model The model was implemented in C++ using Microsoft
Visual C++ 2010 Express. A high level pseudo code description of how the model was
implemented in given in Appendix 5.1 As input, the model needs to know which tasks
are executed at what time. We use a human observer to keep track of this. A screenshot
of the interface this observer uses to keep track of the tasks the operator is executing is
shown in Figure 12. Buttons can be pressed to indicate that a task is started or stopped
by the operator. The output of the interface serves as input for constructing a timeline
that indicates which tasks are executed at what time. This timeline is the input for
the CTL model which uses it to calculate the current CTL of the robot operator. The
current CTL of the operator is then used as trigger for the task reallocation model. If
the current CTL is in a problem region, the task reallocation model is run. If the tasks
are reallocated, the new task allocation is communicated to the robot and its operator.
The task reallocation model also receives the timeline with tasks as input and uses it to
predict future temporal behavior of tasks.

1Some parts of the model were not implemented as we did not need them for this scenario. We did
not implement the pruning process. Pruning was done manually, carefully following the rules of the
model. As the set of actors and tasks was small and constant, we manually inputted the pruned the set
of options. This also relieved the need to use a dummy actor. Furthermore, we did not implement a set
partitioning problem optimization algorithm, as a brute force solution (explore all options and choose
the best) was sufficient for this small set of actors.
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Figure 12: A screenshot of the interface used to keep track of the tasks the operator is executing. This
serves as input to construct a timeline, which is used to calculate the current CTL of the operator and
to predict future temporal behavior of tasks. The current CTL of the operator is shown at the bottom
of the screen, the current level of autonomy (LoA) at which tasks are allocated to the operator is shown
just above the buttons. In the top of the screen the number of active tasks and the number of seconds
the interface is running is shown.

Environment To simulate a USAR mission, USARsim1 is used. Using USARsim we
create a virtual environment that represents a office building after an earthquake. We can
create a virtual robot that can be navigated through the environment. Some screenshots
of the USARsim environment are seen in Figure 13. Three similar, but slightly different
virtual environments were created plus a simple training environment.

Tactical Display As tactical display, the TrexCOP application (Trex) [56] is used.
The Trex system can be used to map information about the environment, for example
so that other rescue workers know where victims/dangers and obstacles are located. A
screenshot of the TrexCOP application is seen in Figure 14.

1http://usarsim.sourceforge.net/

59



(a) The robot in a hallway

(b) A victim

(c) Another victim

Figure 13: Some screenshots of the USARsim environment.

Figure 14: A screenshot of the TrexCOP application. The robot is seen on the left, depicted by the
yellow circle labeled “UGV - search office”.
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Autonomous Robot To simulate the autonomy of the robot, a second human oper-
ator (Wizard of Oz) which is located in a separate room controls the robot when tasks
are allocated to the robot. The first robot operator (test subject) is convinced that the
robot is capable of autonomous action and does not know the robot autonomy is actually
faked by a second human operator.

Set-up The set up of the experiment can be seen in Figure 15. The robot operator
(participant) has two computer screens, one showing camera images coming from the
robot (USARsim client), the other showing the tactical display (TrexCOP). The robot
itself (thus the Wizard of Oz) also has access to two screens, one showing camera images
from the robot (USARsim client), the other showing the tactical display (TrexCOP).
The observer watches the robot operator (participant) and keeps track of the tasks he
is executing. If tasks are reallocated, the new allocation is forwarded to the USARsim
server and shown to the participant and the Wizard of Oz via their USARsim client.

Separate room

USARsim

client
TrexCOP

Robot operator

USARsim

client
TrexCOP

WoZ robot

Annotation

interface

Observer

USARsim

server
Trex server

Task

reallocation

model

CTL

model

Figure 15: Overview of the experimental set up. In the lower left corner the robot operator is shown
and in the upper left corner the second robot operator (Wizard of Oz) is shown. The third person that
is shown in the figure is the observer.

5.2.5 Procedure

Every run of the experiment followed the same procedure. Firstly, the participant was
asked to sign a consent form and fill in a questionnaire containing some general questions.
This (Dutch) questionnaire can be seen in Appendix 6. After this, the task was explained
and the participant was allowed some training with the USARsim and Trex environment
using a small training level. After the training, there was a 5 minute break and time for
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the participant to ask any questions he might have about the task. When the participant
understood everything, the first USARsim level was started. The participant was given
15 minutes to find as many victims in this level as possible. After these fifteen minutes,
a five minute break was given. This process was repeated with the same task for two
similar, but slightly different USARsim levels. Each participant thus completed three
fifteen minutes runs of the ‘explore an office building’-task. Finally, after the third level
participants were asked to complete another questionnaire. This (Dutch) questionnaire
is about their experiences during the task and can be seen in Appendix 7.

5.2.6 Measurements

To test the hypotheses we stated in Section 5.2.1, we take several measures during
the experiment. Hypothesis 1 and 2 are validated using a subjective measure, namely
a questionnaire. A questionnaire is given to the robot operator after the experiment
that contains questions concerning how well the model reallocated tasks, this (Dutch)
questionnaire can be seen in Appendix 7. The first six questions are aimed at validating
hypothesis 1. Questions 7 to 12 are aimed at validating hypothesis 2. Each question asks
participants to what extent they agree with some statement. Some of these statements
are positively formulated, for example statement 1:“Whenever I felt too busy, tasks were
reallocated”. For these statements a high answer (extent to which participants agree with
the statement) corresponds to a validation of the hypothesis related to that statement.1

To ensure participants carefully read all statements, not all statements were positively
formulated. In this way, we prevent participants from being able to fill in a similar
answer six times in a row. Some statements were negatively formulated, for example
statement 2: “Tasks were reallocated too often.”. For these statements a low answer
(extent to which participants agree with the statement) corresponds to a validation of
the hypothesis related to that statement.

Hypotheses 3 is validated using more objective data which is saved output of the
CTL model and task reallocation model. To validate hypothesis 3 we check whether
the real CTL (saved output of CTL model) reacts to the tasks reallocations as expected
based on predicted CTL (saved output of the task reallocation model). We do this by
checking if the difference between the predicted CTL for the old task allocation and the
predicted CTL for the new task allocation is the same as the difference between the real
CTL before the reallocation and the real CTL after the reallocation. For example, if the
task reallocation model reallocates tasks as to lower the level of information processing
of the operator, we should see the real level of information processing of the operator
decrease after the tasks are reallocated.

1In this example this means if participants strongly agree with the statement “Whenever I felt too
busy, tasks were reallocated.” this is an indication that they think the model reallocates tasks at the
right moment.

62



5.3 Results

In this section, we describe the results of the experiment. Firstly, some general results
are detailed in Section 5.3.1. After this, the results concerning the validation of the
hypotheses (as described in Section 5.2.1) are given. Section 5.3.2 covers hypothesis 1,
Section 5.3.3 covers hypothesis 2 and finally hypothesis 3 is covered by Section 5.3.4.
A graphic representation of the CTL of the participants and the reaction of the model,
separately for each run of the experiment can be found in Appendix 8.

5.3.1 General Results

Data of thirteen participants was complete enough to be be used for analysis. Twelve
participants completed all three levels, one participant completed only the first level.
Data of 37 sessions could thus be analyzed. A total of 42 task reallocations occurred, an
average of 1,14 (standard deviation 0,78) per session. Task reallocations that occurred
during the last two minutes of a session are not included in this total and are not used
for analysis. This is because we need at least two minutes of cognitive task load data
with the new task allocation to be able to analyze whether the task reallocation had
an effect on the cognitive task load.1 At the beginning of Appendix 8 an overview is
given as to which task allocations occurred during the missions and what cognitive states
participants were in.

Seven general statements were given to participants after the experiment. Partici-
pants were asked to indicate how much they agree with these statements. Answers could
range from 1 (Strongly disagree) to 5 (Strongly agree). The statements2 and responses
to them will be discussed below.

“Sometimes I felt too busy.” The average response to this statement was 2,38
(standard deviation 1,15). This implies that participants did not feel very busy. This
result complies with CTL data, which indicates that overload was hardly experienced
(< 1% of the time). Cognitive lock-up was experienced 15% of the time and this likely
explains why (some) participants felt busy sometimes.

“Sometimes I felt as if I could do more tasks.” The average response to this
statement was 3,08 (standard deviation 1,33). This implies participants did not often
feel they could do more tasks. This result complies with CTL data as underload was
only experienced 2% of the time (and vigilance was never experienced).

“I think I did not have enough training to react appropriately to the task
reallocations.” The average response to this statement was 2,08 (standard deviation
1,21). So most participants felt they have had enough training (approximately a half

1Cognitive task load is calculated over a time-frame of two minutes so it needs some time to react to
the reallocated tasks.

2All statements/questions were given in Dutch and are translated. Original formulations can be found
in Appendix 7, question 13 to 22.
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hour) to react appropriately to the model. Overall, the training indeed seemed quite
sufficient.

“I think the task reallocation model could have a positive influence on task
execution if I would have more time to train/practice.” The average response
to this statement was 3,00 (standard deviation 1,57). So, participants responded mostly
neutral to this statement.

“I trusted the robot and his ability to execute the tasks assigned to him.”
The average response to this statement was 3,54 (standard deviation 1,45). So, partici-
pants mostly trusted the robot.1

“I felt I was better at mosts tasks than the robot.” The average response to
this statement was 3,08 (standard deviation 1,38). So, on average participants felt their
capabilities were similar to the robot’s. As the task allocation model does not take
capabilities into account, the aim was to let the robot be as capable as the participant
(such that capability differences do not influence results).

“I was convinced the robot was really autonomous (not controlled by a hu-
man).” The average response to this statement was 4,00 (standard deviation 1,28).
So, most participants believed the robot was autonomous (when the task allocation al-
lowed it to be autonomous). All participants were surprised to find out afterwards that
the robot was actually controlled by a human sitting in the adjacent room.

Two open ended question were given to participants.2 Firstly, participants were asked
to state three positive aspects of the task reallocation model or the experiment in general.
About half of the responses were about the experiment in general and conveyed that
people thought the training was clear and useful, liked executing the task, thought
controlling the robot was easy/fun and thought the multiple screen display was very
useful. The other half of the responses mostly conveyed that people liked the idea of
automating some of the tasks. Some of the most positive comments for the current
research were that participants said the model releases stress in stressful situations, the
model recognized when it was a good moment to automate the task of detecting obstacles
and the model found a good task allocation which was constant over all three levels.

Secondly, participants were asked to state three negative aspects of the task reallo-
cation model or the experiment in general. Some of the most common responses to this
question are summarized below:

1When participants did not trust the robot, automation was often accompanied by participants
constantly checking whether the robot was doing what is was supposed to do. This causes extra workload
and diminishes the positive effect of automation. Luckily, only a small number of participants showed
this behavior.

2There was actually a third open ended question that asked participants whether they had any other
comments, but hardly any participant had any comments left after the first two open ended questions.
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� Some participants found way-point driving to be frustrating. Most of these par-
ticipants disliked that they could not turn the camera during way-point driving.
Some participants disliked that they could not add direction (for the robot to face)
to way-points or that they could only set one way-point at a time.

� Most participants indicated that some sort of alarm should be added to indicate
when the task allocation changes. Participants often did not notice when tasks
were reallocated. This was solved by letting the experimenter pay extra attention
to this and vocally attending participants to a change in task allocation.1

� Some participants wanted control over the task reallocations or wanted the model
to take their preferences into account. These participants really disliked that they
could not decide/influence what tasks are automated and when.

5.3.2 Hypothesis 1: The Model Reallocates Tasks at the Right Moment

Six statements about timing were given to participants after the experiment. An overview
of the average response (and standard deviation) to each statement is given in Table 5.

Average Standard
response deviation

1. Whenever I felt too busy, tasks were reallocated. 1, 62 0, 74

2. Tasks were reallocated too often. 1, 62 1, 15

3. I understood why tasks were reallocated when they were. 1, 92 1, 21

4. Task execution would have improved if I could decide 3, 77 1, 37
when tasks were reallocated myself.

5. Sometimes I felt bored, but tasks were not reallocated. 2, 85 1, 35

6. The moment at which tasks were reallocated 2, 62 1, 15
never surprised me.

Table 5: Responses to statements concerning timing. Answers could range from 1 (Strongly disagree)
to 5 (Strongly agree).

Cronbach’s alpha was used to check the internal consistency of these six statements.
Firstly, responses to negatively formulated statements such as “Tasks were reallocated
too often” (2,4 and 5 in Table 5) were negated2 before using them for analysis. Cron-
bach’s alpha over all responses to the six statements was 0,607. This is quite low, but
as the concept of timing is rather broad and we use only six statements we should not
expect very high Cronbach’s alpha levels. Cronbach’s alpha can be improved by remov-
ing statement 1 (+0,081) or removing statement 6 (+0,098).3 As both these statements

1Participants most likely still indicate this as an issue (although it was solved) as their task description
stated that they should watch the task allocation themselves.

2By negating we mean answer 1 was mapped to 5, 2 to 4, 3 to 3, 4 to 2 and 5 to 1.
3Removing both statements 1 and 6 would yield a Cronbach’s alpha of 0,797 and cannot be further

improved.
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seem clear and integral to the hypotheses (and the effect of removing them on Cronbach’s
alpha is not very large1) we decide to not exclude these statements for analysis.

To validate hypothesis 1, the average response over all six statements about timing
was calculated, using the negated response where necessary. The value obtained in this
way describes to what extent participants think the model reallocated tasks at the right
moment. Averaged out over all participants, this value is 2,65 (standard deviation 0,68).
The 95% confidence interval ranges from 2,30 to 3,01. Participants are thus quite neutral
(a bit towards the negative) about the timing of the model. We can not validate, based
on this data, that the model reallocates tasks at the right moment. Conversely, we can
also not say the timing of the model was fully off, as participants were quite neutral.
This is quite a good result when taking into account that participants did not feel very
busy/bored at all.

5.3.3 Hypothesis 2: The Model Chooses Appropriate Reallocations

Six statements about the appropriateness of reallocations were given to participants after
the experiment. An overview of the average response (and standard deviation) to each
statement is given in Table 6.

Average Standard
response deviation

1. Whenever I felt too busy, the level of autonomy 1, 77 0, 58
of the robot increased on some tasks.

2. If there would have been no task reallocations, 1, 85 0, 86
task execution would have gone worse.

3. The task reallocations helped improve 2, 77 1, 48
task execution.

4. Sometimes the level of autonomy of the robot decreased 1, 69 0, 91
on some tasks, while I was not bored.

5. The task would have gone better if I could decide 3, 85 1, 35
what tasks to reallocate myself.

6. I always understood why a specific reallocation 1, 96 0, 97
of tasks was chosen.

Table 6: Responses to statements concerning appropriateness of reallocations. Answers could range from
1 (Strongly disagree) to 5 (Strongly agree).

Cronbachs alpha was used to check the internal consistency of these six statements.
Responses to negatively formulated statements such as “I would have performed better
if I could decide what tasks to reallocate myself” (4 and 5 in Table 6) were negated
before using them to calculate the average over all statements. Cronbach’s alpha over
all responses to the six statements was 0,510 which is quite poor, meaning the internal

1The effect is very large for removing both statements, but removing one third of the statements
seems too rigorous when no clear reason to do so besides internal consistency can be found.
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consistency of the six statements is low. Removing statement 4 improves Cronbach’s
alpha to the more acceptable 0,694. Closer inspection reveals that statement 4 should
indeed be excluded from analysis as the level of autonomy of the robot did not decrease
in any of the sessions1. Cronbach’s alpha can be further improved,2 but this is not
done since the remaining five statements seem clear and integral to the hypotheses (and
either the effect of removing them on Cronbach’s alpha is not very large or half of the
statements is removed).

To validate hypothesis 2, the average response over statements 1,2,3,5 & 6 about
appropriateness of the reallocations was calculated, using the negated response where
necessary. The value obtained in this way describes to what extent participants think
the model chose appropriate task reallocations. Averaged out over all participant, this
value is 1,71 (standard deviation 0,39). The 95% confidence interval ranges from 1,71 to
2,49. Participants are thus quite negative about the appropriateness of the reallocations.
We cannot validate, based on this data, that the model chooses appropriate realloca-
tions. Conversely, we can say participants think the model does not choose appropriate
reallocations.

5.3.4 Hypothesis 3: The Real Shift in CTL Corresponds to the Predicted
Shift in CTL

For each task reallocation, the real shift in CTL was compared to the predicted shift
in CTL. The shift might be different for all CTL metrics. Therefore, the comparison
was done separately for the three metrics. We do this by checking if the difference
between the predicted CTL for the old task allocation and the predicted CTL for the
new task allocation is the same as the difference between the average real CTL in the
two minutes before the reallocation and the average real CTL in the two minutes after
the reallocation. This difference is calculated by subtracting the value for the new task
allocation from the value for the old task allocation. Task reallocations that occurred in
the last two minutes of a session were excluded (since the average real CTL in the two
minutes after the reallocation can not be computed).

Firstly we checked whether the predicted CTL for the old task allocation corresponds
to the average real CTL in the two minutes before the reallocation and whether the
predicted CTL for the new task allocation corresponds to the average real CTL in
the two minutes after the reallocation by calculating correlation coefficients. This was
done separately for all three metrics and should give high correlation coefficients as the
measures are straightforwardly corresponding3. We check the correlation coefficients

1This is probably because sessions always started with all tasks at level of autonomy 1 and they only
lasted 15 minutes, so participants were unlikely to experience underload.

2Removing statement 4 and 1 yields an Cronbach’s alpha of 0,726; removing statement 2, 4 and 1
yields (the highest possible) Cronbach’s alpha of 0,797.

3They are not the same however, as the predicted variants are about a single two minute time-frame,
while the real variants are the average over two minutes. Each single estimation this average is calculated
over is again based on a two minute time-frame. One of these time-frames is the same as the two minute
time-frame the predication was based on. Another one has 115 seconds overlap, another one has 110
seconds overlap and so on until the last time-frame which had no overlap.
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here, as the existence of these correlations is a precondition for existence of a correlation
between the real and predicted shifts in CTL. Scatter plots of the results are shown
in Figures 16, 17 and 18. All predicted metrics are indeed significantly (p < 0, 05)
correlated to their real counterparts, correlation coefficients range from 0,45 to 0,79.
The best result is seen for mental occupancy (MO).

Figure 16: Scatter plot showing the relation between real and predicted LIP values. Each data point
corresponds to the moment of a task reallocation. Both the relation between the real and predicted
LIP values of the old task allocation (blue) and of the new task allocation (purple) of this reallocation
are shown. The correlation coefficient for the old task allocation real and predicted LIP values is 0,47
(p < 0, 01); the correlation coefficient for the new task allocation real and predicted LIP values is 0,52
(p < 0, 01).
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Figure 17: Scatter plot showing the relation between real and predicted MO values. Each data point
corresponds to the moment of a task reallocation. Both the relation between the real and predicted
MO values of the old task allocation (red) and of the new task allocation (orange) of this reallocation
are shown. The correlation coefficient for the old task allocation real and predicted MO values is 0,69
(p < 0, 01); the correlation coefficient for the new task allocation real and predicted MO values is 0,71
(p < 0, 01)

Figure 18: Scatter plot showing the relation between real and predicted TSS values. Each data point
corresponds to the moment of a task reallocation. Both the relation between the real and predicted
TSS values of the old task allocation (green) and of the new task allocation (yellow) of this reallocation
are shown. The correlation coefficient for the old task allocation real and predicted TSS values is 0,79
(p < 0, 01); the correlation coefficient for the new task allocation real and predicted TSS values is 0,45
(p < 0, 01).
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To validate hypothesis three, we check whether the predicted shift in CTL corre-
sponds to the real shift in CTL obtained by the task reallocations. We do this separately
for each metric. These shifts in CTL are not straightforwardly corresponding. Even if
the predicted and real CTL levels would be highly correlated, it does not necessarily
follow that the shifts are also highly correlated as they cover exactly the hardest part of
the CTL to be predicted: the change that occurs as a result of the reallocated task(s).
If the predicted and real CTL levels are not correlated, it does follow that the shifts
are very unlikely to be correlated. As we have found lower correlation coefficients for
LIP and TSS than for MO, the shifts in LIP and TSS are likely less correlated than
the shifts for MO. Scatter plots of the results are shown in Figures 19, 20 and 21. The
correlation coefficients are 0,32 (p < 0, 05) for LIP; 0,43 (p < 0, 01) for MO and 0,29
(p = 0, 06) for TSS. We indeed see that the correlation coefficient for MO is the highest.
The correlations for LIP and MO are significant (p < 0, 05), the correlation for TSS is
not. Based on this data, we cannot validate hypothesis 3. We can validate that the LIP
and MO respond to the task reallocations as the model predicts.

Figure 19: Scatter plot showing the relation between the real and predicted shift in LIP caused by a
task reallocation. Each data point corresponds to the moment of a task reallocation. The correlation
coefficient for the real and predicted shifts in LIP is 0,32 (p < 0, 05).
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Figure 20: Scatter plot showing the relation between the real and predicted shift in MO caused by a
task reallocation. Each data point corresponds to the moment of a task reallocation. The correlation
coefficient for the real and predicted shifts in MO is 0,43 (p < 0, 01).

Figure 21: Scatter plot showing the relation between the real and predicted shift in TSS caused by a
task reallocation. Each data point corresponds to the moment of a task reallocation. The correlation
coefficient for the real and predicted shifts in TSS is 0,29 (p = 0, 06).
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5.4 Conclusion (Experiment)

In conclusion, the experiment did not result in conclusive evidence that validates that
the model reallocates tasks at the right moment and chooses appropriate reallocations
(that benefit the cognitive task load of the participant). However, we did not find con-
clusive evidence that the model does not work as it should either and some results were
promising. Mainly promising was that we found both mental occupancy and level of
information processing to react to the task reallocations as intended (predicted) by the
model. Furthermore, a lot of important and useful lessons were learned during the exper-
iment. Some lessons are very specific and may only be useful for the specific instantiation
of the model used in the current experiment. Other lessons are very important and are
steps forward in developing the model in general. An overview of all lessons learned
during the experiment is given below.

� To thoroughly test the full functionality of the model, we need to elicit all possible
different CTL states. In the current experiment, we did not see enough variation
in CTL. Even though we tried to make participants as busy as possible, overload
states were hardly experienced. It is very hard to simulate urban search and rescue
tasks with their high cognitive demands, especially in an virtual environment. Un-
derload was also hardly experienced, longer term usage of the model and different
starting task allocations are needed to elicit this.

Important to note is that the scarceness of overload and underload states was
visible in both in the CTL states calculated by the model and in the responses of
participants to the questionnaire. This compliance is a strong indicator that the
model was working with the correct input (CTL estimation and problem region
boundaries).

� Boundaries of problem regions should be configured separately for each user as it
is very different per user what their optimal cognitive task load is. Also, upper
and lower boundaries of the neutral zones of metrics should not be too close as
this might cause unusual behavior.

� Coordination costs should not only be separately calculated per task, but should
also include a general switching factor. This general switching factor should dis-
courage the model to reallocate tasks shortly after each other, even if the two
reallocations do not involve the same task. Behavior caused by not doing this is
seen in Appendix 8 (participant 1, level 2 and participant 10, level 3).

� Preference based on CTL should be more fine-grained. For example, relieving the
problematic CTL state underload (all three metrics too low) by increasing all three
metrics into their neutral zone should be preferred over relieving underload by in-
creasing one metric to its neutral zone while decreasing the two other metrics. This
makes it more likely that the underload is indeed resolved if the future temporal
behavior of the tasks differs (a bit) from what was predicted. Behavior caused by
not doing this is seen in Appendix 8 (participant 3, level 3 and participant 4, level
2).
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6 Discussion and Future Research

In this section we discuss whether the approach taken in this research was suitable
for answering the main research question and its limitations. Furthermore, we detail
important challenges that are not addressed in the current research and could be the
subject of future research.

The following sections detail discussion points concerning each of the three subques-
tions (as stated in Section 1). Firstly, discussion points concerning the general framework
for dynamic task allocation are detailed in Section 6.1. Secondly, we detail some dis-
cussion points concerning the model for adaptive automation in Section 6.2. Thirdly,
discussion points concerning the experiment are detailed in Section 6.3.

6.1 Framework for Dynamic Task Allocation

We aimed at answering the main research question by building a general framework
describing the important concepts that influence team performance and can be used to
dynamically allocate tasks. This framework shows how to use dynamic task allocation to
improve team performance. It does this on a very high level, by showing what concepts
are important and how they can be formalized. For practical application general concepts
do not suffice. Specific instantiations of these general concepts are needed. Every context
(task and team) calls for different factors influencing the task allocation, or at least a
different balance in how important each of these factors are. How to choose what specific
factors are needed, is not apparent from the framework as it is not a process that can be
generalized. However, the framework serves as a guideline for designing models and using
it allows for easier identification and formalization of important factors. We showed this
by designing a fully instantiated model based on the framework.

6.2 Model for Adaptive Automation triggered by Cognitive Task Load

We aimed at showing the applicability of the framework by designing a model for adap-
tive automation, triggered by cognitive task load. The concepts of the framework were
easily applicable to the design of the model. Furthermore, using the framework as a
guideline allowed for easy implementation and leaves room for expansion. For example,
the current model only takes into account two factors when deciding on a task allo-
cation, namely cognitive task load and coordination costs. It is quite straightforward
however to imagine how multiple other factors could be included. More models should
be built based on the framework to ensure its applicability is robust and flexible enough
to deal with different factors. As the model did not limit itself to specific tasks and/or
team compositions, flexibility on this point is likely to be sufficiently represented in the
framework. Some points of discussion concerning the model are detailed below.

6.2.1 Trust in Model

To ensure human actors have no problems working with a dynamic task allocation model,
reallocation surprises and trust issues need to be avoided [26]. During the experiment,
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participants found it hard to trust the model and to have no control over the task
allocation themselves. This trust issue caused negativity about the task reallocations.
The participants were mostly young, male and university student, which might have had
some influence on the results. Young male students, when compared to professionals,
might have a much harder time accepting that they cannot decide for themselves what
to do. Accepting losing some control might be easier for urban search and rescuers, as
they are highly trained firefighters that are well adjusted towards hierarchical structures
and obeying orders. Even so, the problem likely remains (even if diminished) and should
be considered.

Making work agreements, like in [41], could also help improve trust. Work agreements
are rules a robot operates under, agreed upon before starting a team task, giving the
human operator room to restrict which tasks can be done by the robot(s) (at which level
of autonomy), and possibly when. Work agreements can also give insight into what tasks
actors can expect to be reallocated and possibly also why and when specific reallocations
occur.

To further give actors insight and even some influence, we could adapt the level of
automation of the task reallocation model itself. A hybrid approach might be most
suitable, in which the level of autonomy of the task allocation model itself reacts to the
cognitive task load of an actor. We could imagine having adaptive automation for high
workloads and adaptable automation for lower workloads [32], meaning the model could
be used to decide for high workloads and to suggest for low workloads. This gives an
actor influence on the task allocation, only when he is not too busy to think about it.
Furthermore, the model could show to the actor how it values the options it suggests. In
this way, the actor can get more insight into how the model chooses a task reallocation
which again benefits trust [54].

Future research using different participants, work agreements and hybrid models is
needed to investigate the effects on trust in the model. Furthermore, future research is
needed that specifically addresses how participant’s trust in the model effects how useful
the model is in terms of improving performance and how useful the model is perceived
to be by the participant.

6.2.2 Factors in Choosing a Task Allocation

CTL is a very important factor in choosing a task allocation, but it is likely beneficial
to include other factors. Furthermore, CTL as factor has some limitations itself. In this
section, we discuss firstly the limitations of CTL and secondly the additional factors
that might be needed.

Limits of CTL The CTL model used here is limited by only being able to reason with
a specific sort of tasks. Namely, it needs tasks for which it is possible to automatically
detect whether they are active or not. In the current experiment this was not a problem,1

1Note that we did not actually use automatic detection of task activity in the experiment, but a
human observer. Research by Colin et al. [34] however shows for a very similar task that this process
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but one could image a lot of domains where this would be a problem. For example, if
an actor seemingly does nothing for some time, we cannot assume directly that he/she
is indeed doing nothing that affects CTL. Thinking is a hard behavior to automatically
detect, while it has a large influence on CTL. The seemingly vacant actor could really
be doing nothing, then he might be in underload and we need to assign some tasks
to him/her. Conversely, the actor might be extremely busy thinking about complex
problems in which case we surely do not want to assign more tasks to him/her. Some
sort of additional measure might be necessary to help estimate how busy someone is. For
example, a biochemical measure such as skin conductance can be used to complement
the CTL estimations. Skin conductance is shown to increase with cognitive load [57].
Including a measure for cognitive task load that covers less visible tasks would make
the CTL estimation applicable to a much wider range of tasks. Additional research into
CTL is needed to figure out the most robust way of measuring it.

Beyond CTL Two factors that are important when making task allocation decisions,
besides CTL, were identified during the experiment and are discussed here. Firstly, it is
very important to take the capability of an actor to do a task into account. This can be
done by either making a static factor, using estimations made beforehand, or by using a
real-time estimation of how good someone is doing. A static capability factor could be
used to take into account capability differences of the different actors. These differences
were minimized for the current experiment, but in real life situations they exist and
are important to consider. A real-time estimation of an actors capability can also be
very useful, imagine as example the task of obstacle avoidance. It would have been very
beneficial for this experiment to include some estimation of how well a participant avoids
obstacles, for example by counting the number of times he/she bumps into an obstacle.
When the CTL of the participant becomes problematic, the estimation can be used to
decide whether to automate the obstacle avoidance task (if the participant often bumps
into obstacles) or some other task (if the participant hardly bumps into obstacles).

A second important additional factor is which tasks actors personally prefer to exe-
cute. Taking this into account could greatly benefit actors trust towards the model and
reduce reluctance to accept its decisions, indirectly benefiting performance. It can also
directly benefit performance as an actor is probably more likely to execute a task he likes
doing well. How much the preference of an actor needs to be taken into account, relative
to other factors, is not clear and might be a domain specific decision. The preference for
tasks an actor might have, can again be estimated in different ways. We can include a
static factor that needs to be configured beforehand (by asking the actor(s) which tasks
they prefer) or we could estimate the preference real-time. This real-time estimation can
for example be done if we implement a hybrid model that gives the actor some options of
possible task allocations and lets the actor decide a task allocation from these options.
Which task allocation is selected by the actor can give information about which tasks
he prefers to execute, so the model can learn the preference of the actor without having
to ask him/her beforehand.

can be automated.
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Research is needed to investigate how to include actors’ preference and capability
as factors. Different strategies should be tested, both static and real-time estimation.
This research should explore the effects on performance of including actors’ preference
and capability into the decision on which tasks to reallocate. Also, how much actors’
preference and capability need to be taken into account, relative to the other preference
factors (e.g. CTL) should be explored.

6.2.3 Configuration

The exact moment of a task allocation relies on the configuration of the CTL model.
In the experiment we conducted, this was not configured separately for each participant
and was thus likely always a bit off. Participants’ opinion about the timing of the task
allocation model will likely benefit from personalizing configuration of cognitive task load
problem region boundaries.1 Future research is needed to figure out how to incorporate
personal configuration and to explore the effects.

Configuration poses an additional challenge. Results of experiments using task allo-
cation models are often very hard to generalize as they highly depend on how all user
and task dependent values are configured and this is very different for each domain. Fur-
thermore, configuration takes a lot of time and effort. It is integral to the applicability
of task allocation models that future research will invest a lot of effort into automatizing
as much of the configuration process as possible. Ideally, models will need to become
self-learning, adapting themselves to novel tasks and actors when needed.

6.2.4 Representation and Notification

The task allocation model as discussed focuses on how to determine the most suitable
task allocation. We did not address how we should communicate this task allocation
to the actors using the model. More research is needed to investigate how to keep
all actors aware of which tasks are allocated to them. Furthermore, when tasks are
reallocated, actors should be notified. It is very important that the representation of the
task allocation and the notifications of changes are very clear as an unclear task allocation
could hinder actors in executing their tasks. Future research into task reallocation
models should include representation and notification design as it is an important part
of designing usable models.

6.3 Experiment Urban Search and Rescue

We aimed at validating the effects of our model in an experimental setting. While
the main research question is about improving performance, we chose to perform an
experiment that checks whether the model works as expected in terms of improving
the CTL of the operator, not whether the performance of the team actually improves.
As explained in Section 2.3, the relation between CTL and performance is quite well

1I.e. testing in advance what CTL levels are problematic for each different participant and configuring
this in the model.
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established by earlier research. If we can validate that our model improves the CTL
of an operator, we can thus reasonably expect it will also help optimize performance.
Experimentally validating whether the model works as expected in terms of relieving
problematic CTL states is thus an important first step towards validating that the model
improves performance.

The experiment did not use the full functionality of the model and further exper-
iments are needed to generalize experiment results to conclusions about the effects of
the model. For instance, experiments with the model reallocating tasks for teams with
multiple humans and/or multiple robots and for different domains are needed. Until
further experiments are conducted, the results of the current experiment cannot be seen
as validation of the model’s effects. However, as we did not make any assumptions that
severely simplified validating the model’s effects in our experimental design, the positive
results obtained can be seen as an indication that we are moving in the right direction.

Some points of discussion concerning the experiment and directions for future re-
search are detailed below.

6.3.1 Error in Prediction

Important to note is that an error was found in the code of the model after the experi-
ment. It is not hard to fix this error, but as it was not found until after the experiment,
the whole experiment was run with this error. The error consisted of the model failing
to take into account the temporal behavior of modifiers when predicting the temporal
behavior of tasks. More precisely, if a modifier was active/inactive at the exact time
of the call to the model, it was predicted to be active/inactive during the whole future
time frame. Depending on the exact situation, this causes under- or overestimation of
all three metrics of the predicted CTL.1 It is not clear to what extent this error has
influenced the model’s behavior, but it is clear that its predictions were further off than
they should be. This has a negative influence on all results, but the magnitude of this
influence is unclear and future research is needed. The most influence was likely on the
prediction of task set switching. We can see in the results for validating hypothesis 3
(5.3.4) that task set switching is the only CTL metric for which a significant correlation
between real and predicted shift could not be found. This observation indicates that it is
likely that fixing the error will result in finding a significant correlation for all three met-
rics thereby validating hypothesis 3. This means the task reallocations likely do what
they aim to do, relieve problematic CTL states, if we resolve the modifier prediction
error. However, we can not be sure about this until further experiments are conducted
using the model without the error.

1In Table 4, an overview of the task analysis can be found. Tasks and their properties (that contribute
to the CTL estimation) are shown for both the task in combination with an active modifier (modifier
showed behind name of task in brackets, e.g. Obs1[clutter]) and in combination with an inactive modifier
(no modifier showed behind name of task, e.g. Obs1). The effect of a modifier can thus be seen by
comparing the two task properties (with active and inactive modifier).
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6.3.2 Lack of Training and Frustration

Although participants indicated they thought training was sufficient, some task switches
seemed quite hard for some participants and could likely have benefited from more
training. The best example of this is switching from tele-operation to way-point driving.
Way-point driving can save time, but only if participants actually do other tasks while
the robot is driving towards the way-point. Some participants forgot to first set a new
way-point before doing another task (for example filling in a victim report) which nullifies
the time benefit. Furthermore, some participants were frustrated by way-point driving,
mostly because their were unable to turn the camera. This can and should be improved
to ensure easier and more efficient way-point driving. As the behavior of the model is
very much influenced by the task analysis (what effect some task has on CTL) it is very
important that the task analysis is correct. Frustration and lack of training increase
the mental occupancy and likely the level of information processing a task requires and
future research should make sure to avoid it.1

6.3.3 Variation in CTL

Participants were mostly in a neutral CTL state during the experiment, hardly experi-
encing problem states (neither busy nor underloaded).

The fact that participants did not feel very busy is puzzling. The task was clearly
too much work to do in the given time. For example, 32 victims had to be found
in each level while participants found only 10 to 26. Furthermore, most participants
seemed very motivated to do the task fast as they wanted to get a high score (as the
highest scorer was promised a prize and a list of scores to beat was put up). The
lack of feeling too busy (while they actually were too busy to do all tasks) most likely
influenced participants’ opinion on the model greatly. For example, participants mostly
disagreed with statements as “Whenever I felt too busy, tasks were reallocated.” as they
hardly ever felt too busy. Future research should put even more effort into trying to get
participants to experience business as it is integral to how useful the model is perceived
to be. This could be done for example by adding even more tasks that have to be
executed simultaneously or by making the scenario more realistic.2

The fact that participant did not feel underload/vigilance was expected as sessions
always started with all tasks fully allocated to the participant (no autonomy of the
robot) and lasted only 15 minutes. Future research should either have longer experi-
ment sessions or vary the starting task allocation if they want to trigger more under-
load/vigilance.3

1Or at least take it into account.
2It will probably be very beneficial to test the model during a non-virtual experiment.
3Which is necessary if the full functionality of the model is to be tested.
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6.3.4 Short Term Interaction

The focus of this experiment was on short term interaction, while the model is likely also
of use for longer term interaction. The model is built to deal with dynamic circumstances.
These dynamics are not only short term dynamics (such as cluttered rooms versus empty
rooms) but also (and maybe more importantly) longer term dynamics. These longer term
dynamics for example include exhaustion/alertness and visibility (day/night). Future
research is needed to investigate whether the model is indeed also of use for long term
interaction.

6.3.5 Measuring performance

Ultimately the most important measure of how well the model works is team perfor-
mance. How useful or good participants perceive the model to be is not a perfect
measure of how useful the model actually is in terms of improving performance. Some
difficult issues need to be tackled when setting up an experiment to test whether the
model improves team performance. Firstly, it would need to be verified that the CTL as
calculated corresponds to the real CTL of the robot operator. This does not only involve
verifying Colin’s model,1 but also the specific configuration that is used. Secondly, if we
would want to measure performance, we would need a baseline measurement of perfor-
mance. It is very hard to imagine what this would be. If we go for adaptable levels of
automation, the robot operator can decide when the robot takes over tasks. This is a
task in itself and could cause extra workload. If we go for static levels of automation, it
is not clear which levels to use. Future research is needed to tackle these issues and set
up a experiment that tests whether the model improves team performance.

1Or possibly another CTL model that is used.
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7 Conclusion

The main research question of this thesis is:

How can we use dynamic allocation of tasks to improve team performance?

In this section we will firstly detail conclusions and contributions to the current state of
affairs for each of the three subquestions we formulated in the introduction (Section 1).
After this, the conclusion for the main research question will be given.

Subquestions

1. Can we build a general framework describing the important concepts that influence
team performance, that can be used to dynamically allocate tasks?

A high-level framework for dynamic task allocation, aimed at improving team perfor-
mance in mixed human-robot teams was presented. The framework describes the impor-
tant concepts that influence team performance and can be used to dynamically allocate
tasks. The framework applies to a wide array of problems, including heterogeneous
teams that might (but do not necessarily) include multiple human actors and multiple
(sophisticated) robots or agents, a variety of tasks that might change over time and com-
plex and dynamic environments. The framework provides a formally described base for
designing applied models that dynamically allocate tasks. Using the framework makes
models easier to design, extend and generalize.

2. Can we apply the framework to design a model for adaptive automation, triggered
by cognitive task load?

We were able to use the framework as a base for designing a model for adaptive automa-
tion triggered by cognitive task load. The framework was general and flexible enough
to cover all aspects needed to formalize the model, mainly cognitive task load (as a
preference factor) and adaptive automation (as dynamic task allocation). Furthermore,
using the framework allows for easy extension of the model where needed. We concluded
(using results from the experiment) that reallocating tasks purely on cognitive task load
is not optimal for improving performance. Some factors are also important, such as
capability (who does what best), preference (what does the user like doing best), and
trust or perceived capability (does the user think the robot can do the tasks). Cognitive
task load is a very important factor, but to optimize performance, we need to take into
account more factors. As the model is based on the framework, the model can be quite
easily extended to include other factors, both static and dynamic.

The model addresses a wider range of problems than most current adaptive au-
tomation research as it focuses on multiple tasks each with their own variable level of
autonomy. Also, the model is able to deal with teams that are larger than just a single
robot or system and its operator.
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3. Can we validate the effects of our model in an experimental setting?

As shown, we were able to design an experiment using the model, to measure the effects
of the resulting adaptive automation. The model was instantiated for a single human
agent cooperating with a single robot in the urban search and rescue domain. A small
experiment was conducted aimed at testing the model. The experiment did not result
in conclusive evidence that the model worked as it should, but encouraging results were
found. Two of the three cognitive task load metrics (both the level of information
processing and the mental occupancy) of participants could be managed using the model.
Furthermore, important focus points for improving the model and furthering research
on adaptive automation in general were identified.

Main Research Question This research was aimed at finding out how to use dy-
namic task allocation to improve team performance in mixed human-robot teams. We
have shown how to use dynamic task allocation to improve team performance. The
most important contribution we made is providing a general high-level framework that
can be used as a foundation for future research into dynamic task allocation, giving
a guideline to designing dynamic task allocation models and making it easier to com-
pare, draw inspiration from and extend studies that use the framework. We showed the
framework’s usability by building a model for adaptive automation and we showed its
practical application by instantiating it for an experimental setting.
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Appendix 1

Glossary

Teams

Team: A group of two or more actors that set out to achieve a common goal. To achieve
this goal, several different tasks need to be done or roles need to be fulfilled.
Team performance: A measure of how well the common goal of a team is achieved.
Mixed human-robot team: A team that consists of both one or more human actors
and one or more robotic actors.
Single human-single robot team: A team that consists of one human actor and one
robotic actor.
Dummy actor: A placeholder (actor) for tasks that are not executed.

Allocating Tasks

Task allocation: An agreement that specifies for each task a team needs to do, which
actor is responsible for the execution of that task.
Dynamic task allocation: A task allocation that can change during task execution.
Comparison allocation: A procedure that allocates tasks based on capabilities of
actors.
Role assignment: A combination of a single actor with the set of all tasks allocated
to that actor.
Actor-task pair: A combination of a single actor with a single task that is allocated
to that actor. This does not imply the actor has no other tasks allocated to him.
Actor-task set pair: A role assignment: a combination of a single actor with the set
of all tasks allocated to that actor.

Utility

Utility: An evaluation measure of a task allocation (or role assignment or actor-task
pair). The utility describes the expected quality minus the costs of the execution of the
tasks by the actors that are assigned to do them.
Restrictive factor/restrictive state concept: A concept that describes whether
role assignments are possible or impossible. This could be, for example, a concept that
restricts stationary robots to get assigned to patrolling tasks.
Preference factor/preference state concept: A concept that puts a preference
ordering on role assignments. This could be, for example, a concept that describes
allocating a patrolling task to a fast moving robot should be preferred over allocating
it to a slow moving robot. The preference ordering produced can be used as a factor in
deciding on a task allocation.
Coordination costs: The costs introduced by switching between different tasks or
between different level of autonomy variants of a task. In the current study, coordination
costs mostly focus on the second aspect. The first aspect is taken into account by the
CTL metric task set switching.
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Autonomy

Level of autonomy (LoA): The level of autonomy of an actor on a task is the degree
of freedom or responsibility the actor has in executing that task. In this thesis, the level
of autonomy usually refers to the robot’s level of autonomy.
Adaptive automation: The process in which robots, which can be assigned different
levels of autonomy on tasks, operate under automated dynamic task allocation in a mixed
human-robot team.
Adaptable automation: The process in which human team members can invoke a
change in a robot’s level of autonomy (instead of this being automated).
Static automation: The process in which a robot’s level of autonomy does not change
during task execution.

Cognitive Task Load

Cognitive task load (CTL): A measure of how task characteristics are of influence
on individual performance and mental effort of a human actor. CTL consists of three
metrics: level of information processing, time occupied (or mental occupancy) and task
set switching.
Level of information processing (LIP): A measure of how mentally challenging tasks
are for an actor, based on the skill-rule-knowledge framework described by Rasmussen
[24].
Time occupied (TO): The percentage of time an actor is occupied by his tasks.
Mental occupancy (MO): The percentage of mental resources that are occupied by
an actor’s tasks.
Task set switching (TSS): The costs associated with switching between different
tasks.
Shift in CTL (or one of the metrics): The change in CTL that occurs in result to
a task reallocation.
Problem region: A CTL level that has a negative influence on performance. For
example overload (all three metrics too high) or underload (all three metrics too low).
Problem state: The state an actor is in when his CTL level is in a problem region.
Modifier: A state of the environment that influences the contribution of some task to
CTL. For example, driving through a cluttered environment is a more difficult task than
driving through an environment without obstacles.
Temporal behavior of task: When a task is allocated to an actor, this does not imply
he is constantly executing it. The temporal behavior of a task describes at what intervals
an actor is actively executing a task, while the task is allocated to him.

Urban Search and Rescue

Urban Search and Rescue (USAR): A highly trained team of rescuers that special-
izes in finding and extracting victims from disaster sites. These sites can for example be
large traffic accidents, earthquake sites, or buildings that are on fire.

89



Appendix 2

Casting the Task Allocation Problem to an Instance of the Set Parti-
tioning Problem

We aim to cast the task allocation problem for multiple-task actor, single-actor task and
instantaneous assignment (MT-SA-IA task allocation problem) to an instance of the Set
Partitioning Problem (SPP). To do this, we firstly have to define both problems.

The MT-SA-IA task allocation problem can be defined in the following way:

Definition 2. (MT-SA-IA task allocation problem) Given the following input:

� A finite set of actors A = {A1, A2, ..., An}

� A finite set of tasks T = {T1, T2, ..., Tn} (which is disjoint from the set of actors
A
⋂
T = ∅)

� A set of possible role assignments, which are pairs of an actor and a set of
tasks that this actor could execute RA = {〈a1, T̆ 1〉, 〈a2, T̆ 2〉, ..., 〈am, T̆ m〉} where
∀mi=1 : ai ∈ A ∧ T̆ i ⊆ T

� A utility function from role assignments to a utility value f : RA→ R+

Find a task allocation TA ⊆ RA that includes exactly one role assignment for each
actor ∀Ai ∈ A : ∃!〈x, y〉 ∈ RA : Ai = x, allocates each task to exactly one actor
∀Ti ∈ T : ∃!〈x, y〉 ∈ RA : Ti ∈ y and has the maximum possible utility ¬∃TA′ ⊆ RA :∑

ra∈TA′ f(ra) >
∑

ra∈TA f(ra).

The SPP is defined below:

Definition 3. (Set Partitioning Problem (SPP)) Given a finite set E, a family F of
acceptable subsets of E, and a utility function u : F → R+, find a maximum-utility
family X of elements in F such that X is a partition of E. X is a partition of E if and
only if the elements of X are mutually disjoint (∀y, z ∈ X, y 6= z : y

⋂
z = ∅) and their

union is E (
⋃

x∈X = E).

We can cast the input of the MT-SA-IA task allocation problem to the input for the
SPP in the following way:

We define E to be the union of the set of actors and the set of tasks E = A
⋃
T .

We define F to be the set of all feasible actor-task set pairs RA, where we change the
notation of a role assignment from a pair to a set which is the union of both pair elements
(actor and tasks): ∀x, y : 〈x, y〉 ∈ RA ↔ {x}

⋃
y ∈ F . Note that, as required, the set

F now only contains (certain) subsets of the set E. Furthermore, every set contained in
F includes precisely a single actor (as follows from the definition of RA combined with
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the fact that A
⋂
T = ∅). Lastly, we define u to be a the utility estimate function f

for each role assignment. Since u takes sets as input, and f pairs, we define u to be
u(X) =

∑
x∈X

⋂
A f(〈x,X \ x〉).

Solving the SSP for the above input, yields a maximum-utility family X of elements
in F such that X is a partition of E. We aim to prove that X corresponds to a task
allocation TA in the way in it defined above as desired result of the MT-SA-IA task
allocation problem. To do this, we first construct XTA from X and then prove XTA is
a task allocation TA.

Constructing XTA from X:
We define XTA as follows: ∀x ∈ A : {x}

⋃
y ∈ X ∧ x 6∈ y ↔ 〈x, y〉 ∈ XTA. From

the definition of the SPP, it follows that every element in X is also an element of F
(X ⊆ F ). Every element of F contains precisely one actor, as mentioned above. Thus,
every element of X also contains precisely one actor. From this we can conclude that
∀x ∈ A : {x}

⋃
y ∈ X it holds that y does not contains actors. Since every element of

X is also an element of F and every element of F is a subset of E, every element of X
is also a subset of E. As E contains only actors and tasks (and these are two disjunct
sets) y can only contain tasks, thus y ⊆ T . The pairs in XTA thus correspond to role
assignments, pairs of an actor and a set of tasks that this actor could execute.

Proof that XTA is a task allocation TA:

1. Since X is a partition of E, it holds that
⋃

x∈X = E. As E = A
⋃
T , the set

of actors is a subset of E (A ⊆ E). Taking these two facts together yields that⋃
x∈X ⊇ A, meaning for each actor, X contains at least one element that contains

this actor. From the definition of XTA it follows that if X contains an element that
contains an actor, XTA has an element that is a pair which first element is that
actor. Thus, for each actor, XTA has an element that is a pair which first element
is that actor. Since pairs in XTA correspond to role assignments, we conclude that
XTA includes a role assignment for each actor.

2. Since X is a partition of E, it holds that all its elements are mutually disjoint
(∀y, z ∈ X, y 6= z : y

⋂
z = ∅). Since every two elements of X are mutually disjoint,

no two elements of X include the same actor. Following from the definition of XTA,
if no two elements of X contain the same actor, no two pairs in XTA will contain
the same actor as first element. Since pairs correspond to role assignments, XTA

does not include multiple role assignments for one actor.

3. Since some role assignment in XTA exists for all actors (1) and no actor appears
in multiple role assignments (2) we can conclude that each actor has exactly one
role assignment in XTA.

4. Since X is a partition of E, it holds that
⋃

x∈X = E. As E = A
⋃
T , the set

of tasks is a subset of E (T ⊆ E). Taking these two facts together yields that⋃
x∈X ⊇ T , meaning for each task, X contains at least one element that contains

this task. From the definition of XTA it follows that if X contains an element that
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contains a task (and this element also contains an actor, which they all do), XTA

has an element that is a pair which second element contains that task. Thus, for
each task, XTA has an element that is a pair which second element contains that
task. Since pairs in XTA correspond to role assignments, we conclude that each
task in included in some role assignment in XTA.

5. Since X is a partition of E, it holds that all its elements are mutually disjoint
(∀y, z ∈ X, y 6= z : y

⋂
z = ∅). Since every two elements of X are mutually disjoint,

no two elements of X include the same task. Following from the definition of XTA,
if no two elements of X contain the same task, no two pairs in XTA exist in which
some task occurs in both pair’s second element, since each element of X only
includes one actor. Since pairs correspond to role assignments, no task appears in
multiple role assignments in XTA.

6. Since all tasks are included in some role assignment in XTA (4) and no task appears
in multiple role assignments (5) we can conclude that each task is allocated to
exactly one actor in XTA.

7. According to the definition of the SPP, XTA represents the maximum utility (func-
tion u) family of F that is a partition of E. This means there is no family XTA′

of F that is a partition of E, that has a utility higher than XTA (¬∃XTA′ :
XTA′ ⊆ F :

∑
ra∈XTA′

u(ra) >
∑

ra∈XTA
u(ra)). Since the function u is defined

as u(X) =
∑

x∈X
⋂
A f(〈x,X \ x〉), and every element of F (and thus of XTA and

XTA′) always contains precisely one actor, the function u over a set X always has
the same outcome as the function f over the actor task-set pair that corresponds
to this set (〈x,X \ x〉 where x ∈ A). Thus, XTA has the maximum possible util-
ity according to function f : (¬∃XTA′ : (∀x ∈ A : {x}

⋃
y ∈ TA′ ↔ 〈x, y〉 ∈

XTA′) ∧ TA′ ⊆ RA :
∑

ra∈TA′ f(ra) >
∑

ra∈TA f(ra)).

8. Since XTA includes exactly one role assignment for each actor (3), each task is
allocated to exactly one actor (6) and it has the maximum possible utility (7),
XTA is a task allocation TA. �

We have now successfully cast the MT-SA-IA task allocation problem to an instance
of the SPP.
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Appendix 3

Results of Domain Independent Pruning of Possible Role Assignments

As before said (3.3.5), we need to generate all possible role assignments to use as input
for applying a SPP solving algorithm. If this set is very large, solving the SPP will be
very time-consuming.1 If our model would not include pruning rules, the set of possible
role assignments would be enormous. It would include all distinct pairs of an actor (there
are |A| actors) and a subset of tasks (there are |T | tasks, so 2|T | subsets of tasks). The
number of role assignments without pruning is (2|T |)|A|. Even for a small set of actors
and a small set of tasks this number can be very large, making it clear that we should
have effective pruning.

We can use the domain independent pruning concepts we defined in Section 4.2.2,
namely DummyExecute, ActorMatch and CompatibleTasks. For now, let us assume the
most unrestrictive form of CompatibleTasks: all tasks are compatible2 except two tasks
that are the same, but at different levels of autonomy. We have defined the set of different
level of autonomy variants for each task Tx as: Tx = {T 1

x , T
2,h
x , T 2,r

x , ..., T k−1,h
x , T k−1,r

x , T k
x },

where 1 to k is the level of autonomy and h and r specify whether the task is appropriate
for a human respectively a robot to execute. This definition states that the lowest and
highest lowest and highest level of autonomy only have a single task (for the human
respectively the robot) and all tasks in between have two variants (one for the human
and one for the robot). The number of possible levels of autonomy of a task Tx can thus
be calculated with the following formula:

LoA(Tx) =

 |Tx| if |Tx| < 3

2 + (
|Tx| − 2

2
) otherwise

The pruning concept DummyExecute enforces that all tasks are allocated to the
dummy actor at either all level of autonomy variants (task is not executed at all) or all
but one level of autonomy variants (task is executed at one level of autonomy). This
implies that for all tasks Tx, the number of possible subsets of Tx that can be allocated
to the dummy actor is precisely the amount of different autonomy levels Tx has (all
but one level of autonomy variants are assigned to dummy actor) plus one (all level of
autonomy variants are assigned to dummy actor): LoA(Tx) + 1. This makes the number
of possible role assignments for the dummy actor

∏
Tx∈T ′(t)(LoA(Tx) + 1). The pruning

concept CompatibleTasks enforces that all other actors besides the dummy actor can
only have a tasks allocated to them at maximum one level of autonomy. The concept
ActorMatch further enforces that a human actor can only have human tasks (the lowest
LoA up to the second highest LoA) and a robotic actor can only have robot tasks (the
second lowest LoA up to the highest LoA). This implies that for all tasks Tx, the number

1Which is a problem as we want our model to work real-time, dynamically allocating tasks in response
to current context.

2We have define compatible to mean two tasks can be allocated to an actor at the same time, thus
occur together in a role assignment.
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of possible subsets of Tx that can be allocated to the all actors besides the dummy actor
is precisely the amount of different autonomy levels Tx has minus one (either highest of
lowest level of autonomy) plus one (no level of autonomy at all) = LoA(Tx). Thus, the
number of possible role assignments for all non-dummy actors is

∏
Tx∈T ′(t) LoA(Tx). The

total number of possible role assignments after using only domain independent pruning
rules is:

(
∏

Tx∈T ′(t)(LoA(Tx) + 1)) + (
∏

Tx∈T ′(t) LoA(Tx)) ∗ |A′(t)|

The above formula has a substantially smaller output than the formula we had before
pruning ((2|T |)|A|), especially for large actor/task sets. Thus, we have effective domain
independent pruning.
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Taakomschrijving 
  
 

 
 Scenario 
 
Er heeft een aardbeving plaatsgevonden waardoor een kantoorgebouw is ingestort. Je bent een 
reddingswerker die in het gebouw moet gaan kijken wat de situatie is. Door verder instortingsgevaar van 
het gebouw mogen er geen mensen naar binnen en wordt er gebruik gemaakt van robots. Mogelijk zijn 
er slachtoffers in het gebouw. Je hebt beschikking over een tactische display waarin deze slachtoffers 
moeten worden vastgelegd zodat andere hulpdiensten daar rekening mee kunnen houden. Denk 
bijvoorbeeld aan voldoende mankracht en vervoer kunnen regelen om de levende slachtoffers zo goed 
mogelijk te kunnen helpen. Ook is het belangrijk om grote obstakels, die lastig zouden kunnen zijn bij de 
zoektocht toe te voegen aan de tactische display. Een collega-reddingswerker is met iemand aan het 
praten die in het gebouw werkt, maar vandaag niet aanwezig was. Deze persoon vertelt soms waar hij 
denkt dat mensen zich bevinden. Je collega voegt dit dan toe aan de tactische display, eventueel kun je 
hier naar toe gaan om te kijken. Er wordt 15 minuten gezocht, daarna zullen de slachtoffers die niet 
gevonden zijn niet meer gered kunnen worden. 
 
Geef nu een seintje aan de proefleider, deze zal het trainingslevel opstarten. 
 

De omgeving 
 
Je werkt met twee schermen, zie een voorbeeld op het plaatje hieronder. Op het linkerscherm zie je de 
beelden die worden opgenomen door de camera die op de robot zit. Op het rechterscherm zie je de 
tactische display. 
 

 
 
 
 
 

Appendix 4

Task description for participants
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Tactische Display 
 

De tactische display is de digitale kaart waarop je de omgeving kunt vastleggen. De display toont de 
plattegrond van de omgeving. Je kunt hierop dingen toevoegen, zoals slachtoffers en obstakels. De 
robot kan ook dingen toevoegen aan de tactische display. Je collega-reddingswerker kan dit ook. Verder 
kun je op de tactische display zien waar de robot zich bevindt (rondje waarin ‘UGV’ staat), welk pad hij 
heeft afgelegd (roze lijn) en in welke richting hij staat (streep in het rondje wijst naar voorkant). Het 
plaatje hieronder toont de tactische display zoals hij eruit zou kunnen zien tijdens een missie.  
 

 
 
De tactische display is te gebruiken met de muis. Je kunt de kaart verslepen door je linkermuisknop 
ingedrukt te houden. Je kunt de kaart in- en uitzoomen met het scrollwiel van je muis. In de tactische 
display kun je informatie toevoegen, dit werkt als volgt: 

o Klik met je rechtermuisknop op de plek waar je de informatie wilt toevoegen en ga naar 

“Add”. 

o Kies wat van toepassing is (bijvoorbeeld een slachtofferrapport). 
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o Vul het formulier zo compleet mogelijk in als daar sprake van is. 

 
o Voeg eventueel commentaar (opmerking) toe. 

o Klik “Add” om door te voeren (of ‘cancel’ om te annuleren). 

 
Je kunt op bestaande datapunten klikken om meer informatie te tonen. Je kunt deze informatie ook 
aanpassen. Je kunt een datapunt niet verplaatsen, als je dit toch wilt doen zul je het datapunt moeten 
weghalen en opnieuw aanmaken. Een datapunt verwijderen kan door op “remove” te klikken. 
 

Taak 

Je gaat samen met de robot als team op zoek in het gebouw. Je hebt beschikking over een digitale kaart 
(tactische display) waar op aangegeven kan worden wat er in het kantoor ligt; bijvoorbeeld slachtoffers 
en obstakels. Het is belangrijk om hierop zo goed mogelijk in te vullen hoe de situatie is zodat je collega-
reddingswerkers op een later moment snel en makkelijk de slachtoffers kunnen weghalen. Verplaats je 
dus in je collega’s, zij horen bij jouw team en jullie willen zo veel mogelijk mensen redden. Het 
belangrijkste is dat duidelijk gemaakt wordt waar de slachtoffers liggen (zowel levende als overleden 
slachtoffers) en waar grote obstakels zijn. 
 
Er zijn vier subtaken die allemaal tegelijk uitgevoerd moeten worden. Ten eerste navigatie, dit is het 
rondrijden van de robot. De tweede subtaak is het herkennen en ontwijken van obstakels. De derde 
subtaak is het herkennen van slachtoffers en deze toevoegen aan de tactische display. De vierde subtaak 
is het verwerken van de informatie die je collega-reddingswerker toevoegt aan de tactische display. 
Deze vier taken hebben allemaal drie verschillende varianten, waarin het verschillend is hoeveel van de 
taak jij zelf op je neemt en hoeveel de robot zelfstandig doet.  
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De taakverdeling  
 
Er zijn dus vier taken (navigatie, obstakels, slachtoffers, informatie verwerken) die altijd uitgevoerd 
moeten worden. Van alle vier de taken bestaan drie varianten, er is altijd één variant actief tijdens de 
missie. Welke variant dit is kunt je zien linksboven in je 
linker scherm (de gele tekst, zie het plaatje hiernaast). 
Hier staan onder elkaar de vier actieve varianten van de 
vier taken, dit is de taakverdeling. Welke variant van een 
taak actief is, kan veranderen tijdens de missie 
(verandering van de taakverdeling). Het is dus heel 
belangrijk dat je er constant op let welke variant van de taken je moet uitvoeren! (Met andere woorden: 
in welke mate je iedere taak moet uitvoeren.) 
 
De taakverdeling wordt in de gaten gehouden door een recentelijk ontwikkeld systeem. Dit systeem 
reageert op de taaklast die jij ervaart tijdens de missie. Het systeem verandert de taakverdeling zodra 
het denkt dat jouw taaklast niet optimaal is. Het doel van dit experiment is testen of het systeem goed 
werkt. Het is dus zeer belangrijk dat je op de taakverdeling let en altijd de variant van de taken uitvoert 
die op je scherm wordt weergegeven. 

 
Taak – Navigatie  

 
De navigatietaak is het rondrijden van de robot door de 
omgeving. Hiernaast zie je een plaatje van de robot. 
 
De robot is langzaam en heeft een vaste camera bovenop. 
De robot heeft moeite met het nemen van obstakels en 
door de bumpers voor en achter kan de robot ergens 
achter blijven haken. De robot is makkelijk te besturen 
maar kan zich vastrijden in een gat of tussen obstakels. Je 
bestuurt de robot met de linkerjoystick van de 
gamecontroller. Door de joystick minder ver te bewegen 
zal de robot minder snel rijden of sturen, om de robot 
nauwkeurig te besturen.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

1 

2 4 

3 

1. Naar voren 

2. Naar achteren 

3. Naar links 

4. Naar rechts 
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Van de navigatietaak bestaan drie verschillende varianten, deze varianten worden hieronder kort 
uitgelegd. 
 

1. Tele-operation  
Jij bestuurt de robot. 
 

2. Way-point driving 
Jij voegt een waypoint (zie hiernaast) toe aan de tactische display op 
de plek waar je wilt dat de robot naartoe gaat. De robot zal dan zelf 
naar dit punt toe navigeren. Voeg maar één waypoint tegelijk toe, de 
robot zal het waypoint verwijderen als hij is aangekomen. (Je kunt 
een ‘place of interest’-icoon plaatsen om zelf te onthouden waar je 
eventueel later de robot nog naar toe wilt laten gaan.) Zet de waypoints niet al te ver weg (niet 
helemaal aan de andere kant van de kaart, in een andere kamer is prima en aan te raden). Terwijl de 
robot naar een waypoint toe rijdt, kun jij je bezig houden met andere dingen zoals informatie verwerken 
die binnenkomt of slachtofferformulieren invullen.  
 

3. Full autonomy 
De robot bestuurt zichzelf. Je hoeft geen waypoints te zetten, de robot bepaalt zelf waar hij heen gaat. 
 

Taak – Obstakels  
 
De tweede taak is het herkennen en ontwijken van obstakels. Er zijn weer drie varianten, deze worden 
hieronder uitgelegd. 
 

1. No obstacle detection 
De robot ontwijkt zelf geen obstakels, dus jij zult dit moeten doen. 
Mocht je grote obstakels zien, voeg deze dan toe aan de tactische 
display (zie hiernaast). 
 

2. Robots warns for obstacles 
Deze taak is door technische problemen niet mogelijk en zal dus niet voorkomen. 
 

3. Robot avoids obstacles 
De robot ontwijkt zelf obstakels, jij hoeft dit niet te doen. Jij hoeft geen obstakels toe te voegen aan de 
tactische display. Let op: het zou kunnen voorkomen dat deze taak voorkomt terwijl jij wel zelf de robot 
bestuurt (tele-operation). In dit geval kan de robot dus de controle van je overnemen, als hij denkt dat je 
anders tegen een obstakel op gaat botsen. 
 
 

Taak – Slachtoffers  
De derde taak is het herkennen van slachtoffers en deze 
toevoegen aan de tactische display. Bij een slachtoffer is altijd 
een nummer te vinden, zie het plaatje hiernaast. Met behulp van 
dit nummer kun je in de papieren lijst die je hebt gekregen 
opzoeken wat er met het slachtoffer aan de hand is. Vul deze 
informatie in op het slachtofferformulier in de tactische display.  
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Van deze taak bestaan drie verschillende varianten, deze varianten worden hieronder kort uitgelegd. 
 

1. No victim detection 
De robot herkent geen slachtoffers. Jij zult de slachtoffers 
moeten herkennen en toevoegen aan de tactische display (zie 
plaatje hiernaast). Vul alle informatie in! 
 

2. Robot proposes possible victims 
 
De robot zal foto’s maken van slachtoffers die hij denkt te herkennen. Deze foto’s verschijnen op je 
tactische display op de plek waar ze genomen zijn. Als je op de foto inderdaad een slachtoffer ziet, voeg 
deze dan toe aan de tactische display en vul alle informatie in. De robot voegt zelf geen slachtoffers toe 
aan de tactische display, het is dus belangrijk dat jij alle foto’s bekijkt en de slachtoffers toevoegt. 
 

3. Robot detects victims 
De robot voegt slachtoffers die hij herkent zelf toe aan de tactische display. Jij hoeft geen slachtoffers 
toe te voegen. 
 

Taak – Informatie verwerken 
 
De laatste taak is het verwerken van de informatie die binnenkomt op je tactische display van je collega-
reddingswerker. (Een collega-reddingswerker is met iemand aan het praten die in het gebouw werkt, 
maar vandaag niet aanwezig was. Deze persoon vertelt soms waar hij denkt dat mensen 
zich bevinden. Je collega voegt dit dan toe aan de tactische display.) De informatie komt 
binnen in de vorm van remarks, zie het plaatje hiernaast. Je kunt op een remark klikken 
om de inhoud te zien. Van de informatietaak bestaan drie verschillende varianten, deze 
varianten worden hieronder kort uitgelegd. 
 

1. No automatic information processing 
Jij leest de binnenkomende informatie en beslist waar de robot naar toe gaat.  
 

2. Robots suggests possible places of interest 
De robot verwerkt de binnenkomende informatie en maakt op basis hiervan suggesties 
van wat hij denkt dat mogelijk interessante locaties zijn om naar toe te gaan. Jij leest de 
binnenkomende informatie niet. De robot voegt de mogelijk interessante locaties toe aan 
de tactische display, zie het plaatje hiernaast. Jij kiest op basis van de opties die de robot 
geeft waar hij naartoe gaat.  
 

3. Robot decides where to go 
De robot verwerkt de binnenkomende informatie en beslist op basis hiervan zelf waar hij naar toe gaat. 
Jij leest de binnenkomende informatie niet. 
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De missies 

 

Je gaat straks drie keer een missie doen. Deze missies duren elk 15 minuten. Mocht je nog vragen of 

onduidelijkheden hebben over de taken of iets anders dan kun je nu vragen stellen.  

 

De proefleider zal de schermen opstarten die je nodig hebt voor elke missie, doe dit niet zelf! De 

proefleider vraagt hierna of je klaar bent om te beginnen. Als dit zo is, wacht je tot de proefleider start 

zegt. Op start druk je op de “start timer” knop die rechts in je tactische display gaat. De tijd begint nu te 

lopen en je kunt beginnen met je taak. Wanneer de vijftien minuten om zijn, staat de timer op nul en 

stop je met de taak. Je hoeft zelf je schermen niet af te sluiten, de proefleider zal dit voor je doen! Na 

elke missie is er een korte pauze. 

 

Na de drie missies wordt je gevraagd een korte vragenlijst in te vullen. Hierna ben je klaar. 

 

In het kort: Let goed op de taakverdeling en zorg dat jij en de robot zoveel mogelijk van de omgeving 

verkennen en zoveel mogelijk slachtoffers/grote obstakels toevoegen aan de tactische display. Vergeet 

niet de slachtofferformulieren goed in te vullen en op de hints te letten die verschijnen (wanneer dit 

jouw taak is). Je hebt niet veel tijd, dus probeer zo snel mogelijk te werken! Als jij samen met de robot 

de taak het best uitvoert van alle proefpersonen (in totaal 15) dan win je een leuk cadeautje. 

 

Succes! 

 

Geef de proefleider nu een seintje dat je klaar bent met lezen en stel eventuele vragen die je nog hebt.  
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Appendix 5

Pseudo Code Description of the Model

function main( )
set up annotating interface( )
initialize model( )
while true do

if a button is pressed then
update current timeline

end if
if 5 seconds have passed since this if-loop was last entered then

shorten current timeline to last 120 seconds
current CTL ← get ctl(current timeline)
if current CTL != neutral then reallocate tasks( )
end if

end if
end while

end function

function set up annotating interface( )
sets up an interface in which an observer can annotate
which tasks the UGV operator is doing by pressing a button

end function

function initialize model( )
initializes tasks with task properties
initializes possible task allocations

end function

function get ctl(timeline)
uses Colin’s model to calculate CTL from timeline

end function
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function reallocate tasks( )
best utility ← 0
for all options in possible task allocations do

construct predicted timeline for option
predicted CTL option ← get ctl(constructed timeline for option)
preference CTL option ←
get preference ctl(predicted CTL, option)

preference CC option ←
get preference cc(option, current allocation)

utility option ← (preference CTL option + preference CC option)/2
if utility option > best utility then1

best utility ← utility option
best option ← option

end if
end for
reallocate tasks with best option
save option as current allocation

end function

function get preference ctl(predicted CTL, option)
Calculate the preference based on CTL, as described in Section 4.3.2

end function

function get preference cc(option, current allocation)
Calculate the preference based on coordination costs, as described in Section 4.4.2

end function

1Note that if there are multiple options with the same highest utility, this function selects the first
one it finds. Options were ordered from lowest level of autonomy to highest level of autonomy (firstly on
the victim detection task, next on navigation, next on the obstacle task and lastly on the information
task).
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Vragenlijst vooraf 

  

 

 

 

Proefpersoonnummer: ___ (in te vullen door experimentleider) 

 

Deze vragenlijst bevat een aantal vragen over persoonlijke karakteristieken die van invloed kunnen zijn 

op uw prestatie tijdens het experiment. De antwoorden worden alleen gebruikt om het resultaat te 

analyseren. 

 

1. Wat is uw leeftijd? 

 

 

 

2. Wat is uw geslacht? 

 

 

 

3. Wat is uw hoogst gevolgde opleiding (bv. HBO of WO)? 

 

 

 

4. Hoeveel uur per week bestuurt u gemiddeld een voertuig (bv. auto of motor)? 

 

 

 

5. Hoeveel uur per week besteedt u gemiddeld aan het spelen van computerspellen (bv. op de PC of 

een console)? 

 

 

 

 

z.o.z. 

  

Appendix 6

Questionnaire - Before Experiment
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Bij de volgende vragen wordt u gevraagd hoeveel ervaring u heeft met verschillende systemen. Hierbij 

staat het antwoord ‘1’ gelijk aan ‘geen ervaring’ en antwoord ‘5’ gelijk aan ‘heel veel ervaring’. 

Omcirkel het antwoord tussen de ‘1’ en ‘5’ dat voor uw gevoel het best klopt. 

 

6. Hoeveel ervaring heeft u met het besturen van op afstand bestuurbare 

voertuigen/robots/speelgoed?  

 

(geen ervaring)   1  2 3  4 5  (heel veel ervaring) 

 

7. Hoeveel ervaring heeft u met autonome robots? 

 

(geen ervaring)   1  2 3  4 5   (heel veel ervaring) 
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Vragenlijst achteraf 

  

 

 

Proefpersoonnummer: ___ (in te vullen door experimentleider) 

 

Deze vragenlijst gaat over uw persoonlijke ervaring met verschillende aspecten van het experiment. Een 

aantal beweringen zal u worden voorgelegd. U wordt gevraagd aan te geven in hoeverre u het met deze 

beweringen eens bent. Dit antwoord mag tussen de ‘1’ en de ‘5’ zitten. Hierbij staat het antwoord ‘1’ 

gelijk aan ‘helemaal mee oneens’ en antwoord ‘5’ gelijk aan ‘helemaal mee eens’. Omcirkel het 

antwoord tussen de ‘1’ en ‘5’ dat voor uw gevoel het best klopt. 

 

Omdat de beweringen over uw persoonlijke ervaring gaan, zijn er geen goede of slechte antwoorden. In 

het kader van het onderzoek is het belangrijk dat u de vragen goed leest en eerlijk antwoord geeft. 

 

De volgende beweringen gaan over de timing van de veranderingen in taakverdeling. 

 

1. Elke keer dat ik me te druk begon te voelen, veranderde de taakverdeling. 

 

(helemaal mee oneens)   1  2  3 4  5  (helemaal mee eens) 

 

2. De taakverdeling werd te vaak veranderd. 

 

(helemaal mee oneens)   1  2  3 4  5  (helemaal mee eens) 

 

3. Ik begreep waarom de taakverdeling veranderde, wanneer deze veranderde. 

 

(helemaal mee oneens)   1  2  3 4  5  (helemaal mee eens) 

 

4. De taak zou beter zijn gegaan (bv. meer slachtoffers gevonden en toegevoegd aan de tactische 

display of een beter overzicht van de situatie gekregen) als ik de momenten waarop de 

taakverdeling veranderde zelf had kunnen kiezen. 

 

(helemaal mee oneens)   1  2  3 4  5  (helemaal mee eens) 

 

5. Soms had ik het gevoel dat ik meer taken zou kunnen doen, maar werd de taakverdeling niet 

veranderd. 

 

(helemaal mee oneens)   1  2  3 4  5  (helemaal mee eens) 

 

6. Het moment waarop de taakverdeling veranderd werd, verraste me nooit. 

 

(helemaal mee oneens)   1  2  3 4  5  (helemaal mee eens) 

 

z.o.z. 

Appendix 7

Questionnaire - After Experiment
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De volgende beweringen gaan over de kwaliteit van de veranderingen in taakverdeling. 

 

7. Elke keer dat ik me te druk begon te voelen nam de robot één of meerdere taken (deels) over. 

 

(helemaal mee oneens)   1  2  3 4  5  (helemaal mee eens) 

 

8. Als de taakverdeling constant zou zijn gebleven (geen veranderingen) dan zou de taak slechter 

zijn gegaan (bv. minder slachtoffers gevonden en toegevoegd aan de tactische display of een 

slechter overzicht van de situatie gekregen). 

 

(helemaal mee oneens)   1  2  3 4  5  (helemaal mee eens) 

 

9. De veranderingen in taakverdeling hielpen om de taak sneller/beter uit te voeren. 

 

(helemaal mee oneens)   1  2  3 4  5  (helemaal mee eens) 

 

10. Soms moest ik één of meerder taken (deels) overnemen van de robot, terwijl ik mij niet het 

gevoel had dat ik meer taken zou kunnen doen. 

 

(helemaal mee oneens)   1  2  3 4  5  (helemaal mee eens) 

 

11. De taak was beter gegaan (bv. meer slachtoffers gevonden en toegevoegd aan de tactische display 

of een beter overzicht van de situatie gekregen) als ik zelf de taakverdeling had kunnen bepalen. 

 

(helemaal mee oneens)   1  2  3 4  5  (helemaal mee eens) 

 

12. Ik begreep altijd waarom een bepaalde taakverdeling werd gekozen. 

 

(helemaal mee oneens)   1  2  3 4  5  (helemaal mee eens) 

 

 

 

z.o.z. 
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Ten slotte volgen er nog wat algemene beweringen en vragen. 

 

13. Ik voelde me soms te druk met mijn taken. 

 

(helemaal mee oneens)   1  2  3 4  5  (helemaal mee eens) 

 

14. Ik voelde me soms te rustig met mijn taken en had op die momenten het idee dat ik meer zou 

kunnen doen. 

 

(helemaal mee oneens)   1  2  3 4  5  (helemaal mee eens) 

 

15. Ik had het gevoel dat ik te weinig had kunnen oefenen om goed met de verschillende 

taakverdelingen om te kunnen gaan. 

 

(helemaal mee oneens)   1  2  3 4  5  (helemaal mee eens) 

 

16. Ik denk dat gebruik van dit taakverdelingsmodel een positieve invloed zou hebben op de 

uitvoering van de taak (omgeving verkennen, slachtoffers vinden) als ik meer had kunnen 

oefenen. 

 

(helemaal mee oneens)   1  2  3 4  5  (helemaal mee eens) 

 

17. Ik vertrouwde de robot en ik vertrouwde erop dat hij de taken kon uitvoeren die aan hem waren 

toebedeeld. 

 

(helemaal mee oneens)   1  2  3 4  5  (helemaal mee eens) 

 

18. Ik vond dat ik beter was in het uitvoeren van de taken dan de robot. 

 

(helemaal mee oneens)   1  2  3 4  5  (helemaal mee eens) 

 

19. Ik geloofde dat de robot echt autonoom was (niet door een mens bestuurd werd). 

 

(helemaal mee oneens)   1  2  3 4  5  (helemaal mee eens) 

 

z.o.z. 
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20. Noem drie aspecten die u positief vond aan het taakverdelingsmodel / experiment. 

 

______________________________________________________________________________ 

 

   ______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

21. Noem drie aspecten die u negatief vond aan het taakverdelingsmodel / experiment. 

 

______________________________________________________________________________ 

 

   ______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

22. Heeft u verder nog opmerkingen over het taakverdelingsmodel / experiment? 

 

______________________________________________________________________________ 

 

   ______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

   ______________________________________________________________________________ 

 

______________________________________________________________________________ 
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Appendix 8

CTL Data Experiment Runs

In this section we give a detailed account of the CTL level and task reallocations that
occurred during the experiment. When we look at all sessions together, we see that the
CTL level of participants was mostly neutral (83% of the time).1 The second most com-
mon cognitive state was cognitive lock-up (15%), followed by underload (2%). Overload
was hardly experienced (< 1%) and vigilance was not experienced at all.

For clarity, the explanation of the tasks at their different level of autonomy (LoA)
variant is repeated in Table 7. This table also includes the percentage of time a task was
active at a specific LoA, over all sessions. All sessions started with all tasks at LoA 1.

LoA 1 LoA 2 LoA 3

Nav Tele-operation Way-point driving Full autonomy
85% 15% 0%

Obs No obstacle Robots warns operator Robot avoids
detection/avoidance for nearby obstacles obstacles
50% 0% 50%

Vic No victim Robot suggests Robots detects victims
detection possible victims and forwards information
95% 1% 4%

Info No automatic Robot suggests possible Robot decides
information processing places of interest where to go
94% 6% 0%

Table 7: An overview of the tasks at different levels of autonomy and the percentage of time (over all
sessions) tasks were active at each specific level of autonomy.2

In the following sections, a detailed account of the CTL level and task reallocations
that occurred is given separately for each session. For each participant, three graphs
are shown that indicate the CTL level of the participant during the three levels played
during the experiment. The different metrics are scaled to have overlapping neutral
zones, shown by the green background. The red line indicates mental occupancy (MO),
the blue line indicates level of information processing (LIP) and the green line indicates
task set switching (TSS). The graphs contains a vertical blue line for each moment the
CTL is in a problem region (and thus the task reallocation model is called) and a vertical
(thick) purple line for when tasks are actually reallocated.3 All levels started with no
autonomy for the robot on any of the tasks. The caption below each graph explains
which task reallocations occur. Task reallocations less than two minutes before the end

1As the task reallocation model (and the CTL model) are not active in the first two minutes of each
session, only the remaining thirteen minutes are used to calculate these percentages.

2See footnote 1.
3The vertical purple line at the end (right) of each graph is caused by closing the model and can be

ignored.
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are not mentioned nor used for analysis as there is not enough future CTL data to
analyze them with.

Participant 1 The CTL of participant 1 was mostly in a neutral zone (70%), some-
times in cognitive lock-up (28%), scarcely in overload (2%), scarcely in underload (< 1%)
and never in vigilance. Tasks were reallocated a total of six times. Noteworthy for par-
ticipant 1 is that the content of the task switches as well as the timing was quite similar
in the three different levels. The only difference is the number of times tasks were
reallocated.

In the graph of level two we see a curious phenomenon. Two task reallocations
occur very fast after each other. At the time of the first of these two reallocations, the
model considers multiple different reallocations that could solve the cognitive task load
problem. It prefers and chooses an option that only changes the level of autonomy on a
single task, as this causes less coordination costs. Some seconds later, the cognitive task
load did not yet have enough time to benefit from the new allocation and the model is
again called. The time penalty included in the coordination costs should now prevent
the model from reallocating tasks again (see Section 4.4). This does not happen, as the
model only changes the level of autonomy on some other task and we defined the time
penalty separately for each task. This problem can be solved by including a general
time penalty that discourages a task reallocation to happen right after another task
reallocation, no matter what specific tasks are reallocated.

Participant 1, level 1: The first reallocation switches the LoA of Info from 1 to 2. The second reallocation
switches the LoA of Obs from 1 to 3.
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Participant 1, level 2: The first reallocation switches the LoA of Info from 1 to 2. The second reallocation
switches the LoA of Obs from 1 to 3. The third reallocation switches the LoA of Nav from 1 to 2.

Participant 1, level 3: The first reallocation switches the LoA of Info from 1 to 2.

Participant 2 The CTL of participant 2 was mostly in a neutral zone (87%), some-
times in cognitive lock-up (12%), scarcely in underload (1%) and never in overload or
vigilance. Tasks were reallocated a total of three times.

Participant 2, level 1: No reallocations occurred.
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Participant 2, level 2: The first reallocation switches the LoA of Obs from 1 to 3. The second reallocation
switches the LoA of Nav from 1 to 2.

Participant 2, level 3: The first reallocation switches the LoA of Vic from 1 to 3.

Participant 3 The CTL of participant 3 was mostly in a neutral zone (74%), some-
times in cognitive lock-up (21%), scarcely in underload (5%) and never in overload or
vigilance. Tasks were reallocated a total of three times.

Noteworthy for participant 3 is that we can clearly see that the model is not able to
resolve the underload situation in level three. Tasks are reallocated but the underload
only gets worse. This is partly caused by a failure to take into account modifiers when
predicting future task behavior. This is an error in the implementation of the model
and can be easily fixed. However, a more important lesson can also be learned. The
model chooses to increase the level of autonomy of the robot on a task to solve the
underload problem, which is counterintuitive. The new task allocation is expected to
resolve the underload situation as the higher level of autonomy will increase TSS just into
its neutral zone. The new task allocation is also expected to decrease LIP and MO, but
low LIP and MO (no matter how low) combined with neutral TSS does not constitute a
problematic CTL. The preference based on CTL as it is described at the moment does
not differentiate between multiple task reallocations that are all expected to result in
neutral CTL. As coordination costs are lower for switching to a higher level of autonomy
for the robot, this option is selected. We can solve this issue by making preference
based on CTL more fine-grained. For example, solving underload by increasing all three
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metrics into their neutral zone should be preferred over solving underload by increasing
one metric to its neutral zone while decreasing the two other metrics. This makes it
more likely that the underload is indeed resolved if the future temporal behavior of the
tasks differs (a bit) from what was predicted, making the model more robust.

Participant 3, level 1: No reallocations occurred.

Participant 3, level 2: The first reallocation switches the LoA of Info from 1 to 2.

Participant 3, level 3: The first reallocation switches the LoA of Obs from 1 to 3. The second reallocation
switches the LoA of Info from 1 to 2.

114



Participant 4 The CTL of participant 4 was mostly in a neutral zone (85%), some-
times in cognitive lock-up (9%), sometimes in underload (6%) and never in overload
or vigilance. Tasks were reallocated a total of four times. The first reallocation is the
same for all three levels and comparable in terms of timing. This reallocation solves
the cognitive lock-up problem. The underload problem at the end of level two is again
difficult for the model to solve.

Participant 4, level 1: The first reallocation switches the LoA of Obs from 1 to 3

Participant 4, level 2: The first reallocation switches the LoA of Obs from 1 to 3. The second reallocation
switches the LoA of Nav from 1 to 2.
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Participant 4, level 3: The first reallocation switches the LoA of Obs from 1 to 3.

Participant 5 Participant 5 only completed one level due to motion sickness, during
this level tasks were reallocated once. The CTL of participant 5 was mostly in a neutral
zone (97%), scarcely in cognitive lock-up (3%), and never in overload, underload or
vigilance.

Participant 5, level 1: The first reallocation switches the LoA of Vic from 1 to 3

Participant 6 Participant 6 was not able to properly execute the task as his vision
was impaired. His data was not used for analysis.

Participant 7 The CTL of participant 7 was mostly in a neutral zone (90%), some-
times in cognitive lock-up (6%), scarcely in underload (3%) and never in overload or
vigilance. Tasks were reallocated a total of five times. The first reallocation is the same
for all three levels and comparable in terms of timing (except for the first level where it
occurred some minutes later). The second reallocation is also the same in the different
levels except for the first level (which has only one reallocation). In level two we see the
same curious phenomenon (two subsequent task reallocations) as we saw for participant
1 in level two, the same reasoning as explained there applies for this case.
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Participant 7, level 1: The first reallocation switches the LoA of Obs from 1 to 3

Participant 7, level 2: The first reallocation switches the LoA of Obs from 1 to 3. The second reallocation
switches the LoA of Nav from 1 to 2.

Participant 7, level 3: The first reallocation switches the LoA of Obs from 1 to 3. The second reallocation
switches the LoA of Nav from 1 to 2.

Participant 8 The CTL of participant 8 was mostly in a neutral zone (85%), some-
times in cognitive lock-up (14%), scarcely in underload (< 1%) and never in overload
or vigilance. Tasks were reallocated a total of four times. The first reallocation is the
same for all three levels and comparable in terms of timing, except in level two, where
it occurred much earlier.
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Participant 8, level 1: The first reallocation switches the LoA of Obs from 1 to 3

Participant 8, level 2: The first reallocation switches the LoA of Obs from 1 to 3. The second reallocation
switches the LoA of Nav from 1 to 2.

Participant 8, level 3: The first reallocation switches the LoA of Obs from 1 to 3.

Participant 9 Inspection of the data of participant 9 after the experiment revealed
that an error occurred that corrupted the data. The data of participant 9 was not used
for analysis.

Participant 10 The CTL of participant 10 was mostly in a neutral zone (84%), some-
times in cognitive lock-up (16%), scarcely in overload (< 1%) and never in underload
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or vigilance. Tasks were reallocated a total of two times. In level three we see the same
curious phenomenon (two subsequent task reallocations) as we saw for participant 1 in
level two, the same reasoning as explained there applies for this case.

Participant 10, level 1: No reallocations occurred.

Participant 10, level 2: No reallocations occurred.

Participant 10, level 3: The first reallocation switches the LoA of Obs from 1 to 3. The second reallocation
switches the LoA of Nav from 1 to 2.
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Participant 11 The CTL of participant 11 was mostly in a neutral zone (79%), some-
times in cognitive lock-up (21%) and never in overload, underload or vigilance. Tasks
were reallocated a total of two times.

Participant 11, level 1: The first reallocation switches the LoA of Info from 1 to 2.

Participant 11, level 2: No reallocations occurred.

Participant 11, level 3: The first reallocation switches the LoA of Obs from 1 to 3.
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Participant 12 The CTL of participant 12 was mostly in a neutral zone (88%), some-
times in cognitive lock-up (12%) and never in overload, underload or vigilance. Tasks
were reallocated a total of three times. The first and only reallocation is the same for
all three levels and comparable in terms of timing.

Participant 12, level 1: The first reallocation switches the LoA of Obs from 1 to 3.

Participant 12, level 2: The first reallocation switches the LoA of Obs from 1 to 3.

Participant 12, level 3: The first reallocation switches the LoA of Obs from 1 to 3.
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Participant 13 The CTL of participant 13 was mostly in a neutral zone (90%), some-
times in cognitive lock-up (8%), scarcely in underload (2%) and never in overload or
vigilance. Tasks were reallocated a total of five times. The first reallocation is the same
for all three levels and comparable in terms of timing. The second reallocation is also
the same for all three levels, but differs in timing (in the second level it is too late to be
suitable for analysis).

Participant 13, level 1: The first reallocation switches the LoA of Obs from 1 to 3. The second reallocation
switches the LoA of Nav from 1 to 2.

Participant 13, level 2: The first reallocation switches the LoA of Obs from 1 to 3.

Participant 13, level 3: The first reallocation switches the LoA of Obs from 1 to 3. The second reallocation
switches the LoA of Nav from 1 to 2.

122



Participant 14 The CTL of participant 14 was mostly in a neutral zone (80%), some-
times in cognitive lock-up (20%) and never in overload, underload or vigilance. Tasks
were only reallocated once in total, this was in the first level. Most likely, this differ-
ence is explained by the fact that in the first level the participant spend much time on
adding obstacles to the tactical display (part of Obs). In the second and third level, the
participant spend almost no time on adding obstacles to the tactical display, releasing
the need for the robot to take over this task.

Participant 14, level 1: The first reallocation switches the LoA of Obs from 1 to 3.

Participant 14, level 2: No reallocations occurred.

Participant 14, level 3: No reallocations occurred.
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Participant 15 The CTL of participant 15 was mostly in a neutral zone (76%), some-
times in cognitive lock-up (22%), scarcely in underload (1%) and never in overload or
vigilance. Tasks were reallocated a total of three times.

Participant 15, level 1: No reallocations occurred.

Participant 15, level 2: The first reallocation switches the LoA of Obs from 1 to 3.

Participant 15, level 3: The first reallocation switches the LoA of Obs from 1 to 3. The second reallocation
switches the LoA of Nav from 1 to 2.
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