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Conventions and Notation

Units in which c = ~ = 1 are used. A spacetime of dimensionality D = d + 1 has d spatial dimen-
sions, e.g. in a spacetime with (t, x, y, z), D = 4 and d = 3. The metric has a mostly plus (−,+,+, ...)
signature. Four-vectors are denoted by k = (ω,k), that is, bold face quantities are spatial vectors.

Often occuring symbols are:

L curvature radius of AdS (put to L = 1 mostly)
GN Newton’s constant in N dimensions
κ related to Newton’s constant via κ2 = 8πGN
gf effective dimensionless gauge coupling
q charge of fermion field ψ
r radial coordinate to parametrize AdS. Takes values between r =∞ at the AdS-boundary

and r = 0 in the deep interior of AdS
rh location of black hole horizon (put to rh = 1 mostly)
L2 curvature radius of near horizon AdS2 × R geometry, L2 = 1√

2
L = 1√

2

ζ near horizon radial coordinate; ζ = L2
2

r−rh
Q black hole charge
D(iΩ, k, r, r′) fermionic bulk-to-bulk propagator
Gk(Ω) IR retarded Green’s function of the AdS2 × R boundary.
GR(Ω, k) boundary retarded Green’s function
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Chapter 1

Introduction

BCS theory, which describes ordinary superconductivity with great success, is not sufficient to explain the
high-temperature superconductivity found in cuprates. Despite great theoretical effort, a new framework
to describe this phenomenon is still not found. A whole new approach, radically departing from conven-
tional condensed matter techniques, makes use of the anti de Sitter/conformal field theory correspondence
(AdS/CFT correspondence). This duality, emerging out of string theory in the end of the ’90s, seems tay-
lor made to describe strongly coupled many-body systems, such as the aforementioned cuprates. Because
AdS/CFT is a weak-strong duality, complicated condensed matter problems which due to strong coupling
cannot be solved with perturbative methods, can be mapped onto a theory defined on a curved background
in one dimension higher, where things drastically simplify. As such, AdS/CFT is a valuable tool in the
study of strongly coupled systems.
Since the correspondence is, as of yet, not proven rigorously; we will take a pragmatic standpoint, anticipate
its correctness, and investigate the implications of the correspondence for low-dimensional systems. In 1+1
dimensions a theory of interacting fermions with a gapless linear dispersion is exactly solvable. Through the
method of bosonization these interacting fermions can be mapped onto a theory of non-interacting bosons,
where a variety of physical observables can be obtained exactly. This so called Luttinger model (for reviews
see [1, 2, 3] and references therein) possesses a number of distinct features, among which spin-charge separa-
tion and anomalous scaling dimensions for correlation functions. Like Fermi liquid theory, which describes
a system of weakly interacting fermions with great success in higher dimensions, the Luttinger liquid has
a sharp Fermi surface. Essential to Fermi liquid theory are the existence of low-lying quasiparticles. The
original particles are ‘dressed’ by the interactions in the sense that their original properties are replaced
with renormalized values. The small phase space of the Luttinger model (the Fermi surface is made out of
two points at ±kf ) forbids the occurrence of quasiparticles. The only excitations of the Luttinger model
are collective excitations, which have bosonic properties. Because of the absence of fermionic quasiparticles
Luttinger liquids are called non-Fermi liquids.

We will try to reproduce and find signatures of these non-Fermi liquid features on the gravitational side of
the AdS/CFT correspondence. This means that we aim for a better understanding of the AdS side of the
correspondence by trying to reproduce an exactly solvable, strongly coupled field theory. To keep matters
as simple as possible we will focus on a spinless Luttinger liquid. Although there will be no spin/charge
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2 CHAPTER 1. INTRODUCTION

separation, the anomalous scaling of correlation functions should still hold true.

The AdS/CFT correspondence states that fields φ that live in the bulk couple on the boundary of AdS
to operators O in the CFT. The GPKW equation 〈e−

R
φ0O〉CFT1+1 = ZSUGRA(φ0) enables one to calcu-

late any n-point correlation function 〈O(x)...O(0)〉 by taking functional derivates to the fields φ0 on both
sides.1 The quantity appearing on the right-hand side however can only be approximated. In the context of
AdS/CFT this is done by taking a large N limit in which the supergravity partition function is approximated
semi-classically by the largest Euclidean saddle of the Einstein-Hilbert action with negative cosmological
constant,

〈e−
R
φ0O〉CFT1+1 = ZSUGRA(φ0) ≈ e−Son−shell[φ0] +O(1/N). (1.1)

A solution to 2+1 dimensional gravity with a negative cosmological constant was found by Bañados, Teit-
elboim and Zanelli [4]. To be more specific, the BTZ metric together with a gauge potential At = ρ log r/rh
solve Einstein’s equations which arise after variation of the Einstein-Hilbert-Maxwell action with negative
cosmological constant.
The BTZ metric is asymptotically AdS3 and via the AdS/CFT correspondence we can therefore study a dual
field theory which is 1 + 1 dimensional. The U(1) gauge field on the gravity side maps (by the AdS/CFT
dictionary) to a nonzero chemical potential µ for a U(1)charge i.e. a conserved current Jµ. This means
that the boundary field theory obtains a finite charge density. Written in Euclidean signature the time
component of the metric has a deficit angle which, after a periodic identification, is interpreted as the black
hole temperature. This Hawking temperature vanishes if the inner and outer BTZ horizons merge, which is
the case if the black hole is extremely charged. As was found in [5] for higher-dimensional AdS black holes,
and proven for the low-dimensional BTZ in section 4.3, this leads to a AdS2 × R near horizon geometry.
The AdS2 part of this metric hints in the direction that this metric has emergent conformal symmetry in
the near horizon area (an observation on which I will elaborate in chapter 4).

Generalizing Birkhoff’s theorem we show in section 4.2 that the charged BTZ is the unique static, spherically
symmetric solution to low-dimensional gravity with negative curvature and a non-zero electric field on the
asymptotic boundary.
We pose the configuration “BTZ + matter fields” as a good candidate to holographically describe a Luttinger
liquid.

The hypothesis formulated above does not apply the other way around. It might happen that in some
range of parameters in the AdS bulk, a field theory is produced on the boundary that is not a Luttinger
liquid. This means that the boundary field theory is not described by a theory of interacting fermions solely
and new additional (gauge) fields need to be introduced on the boundary.

As stated before, we will try to find the signatures of Luttinger liquids also on the bulk side of AdS/CFT.
One of the correlation functions in Luttinger liquid theory which shows anomalous scaling is the density-
density correlation function. This real space correlation function has a 2kf part which decays with a power

1The notation limr→∞ φ(r) ≡ φ0 is used.
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depending on the interaction couplings (see 2.28).
The charge density ρ is the t−component of the four-current Jµ which, via the AdS/CFT correspondence,
couples to the asymptotic value of the gauge field Aµ that lives in the bulk. Finding the density two-point
function therefore comes down to finding the tt-component of the gauge field propagator.

It was found by several authors that the large N result does not display any of the aforementioned in-
teresting 2kf singularities [6][7]. The claim we make is that this must be an artifact of the large N limit.
Put differently, we conjecture (logarithmic-divergent) quantum corrections which arise at finite N to be
responsible for the anomalous scaling dimension.2 Another possibility to include corrections is by adding
higher derivative terms to the Einstein-Hilbert action. This is a tricky procedure, in general associated with
ghosts, on which we will not elaborate in this thesis.

Matter is added to the BTZ spacetime in the form of a fermionic field ψ of mass mψ and charge q (see
5.2). Working in the so-called probe limit, the fields will not back-react on the metric. The coupling of the
gauge field to the fermions in the action gives rise to the one loop diagram depicted in figure 6 (page 37).
This quantum loop correction in the bulk is 1/N suppressed and thereby allows us to obtain results away
from the large N limit. Note however that diagrams in the bulk do not need to have a clear connection to a
counterpart (scattering) process on the boundary. A fermionic loop correction to a gauge field in the bulk
is therefore not necessarily equivalent to the same process occurring in the field theory.
To make this statement more acceptable, consider the stress-energy tensor Tµν of the field theory which, via
the AdS/CFT dictionary, couples to the metric gµν on the AdS boundary. In order to calculate corrections
to this Tµν using AdS/CFT one would consider graviton scattering processes on the bulk side. This clearly
does not have any counterpart interpretation in the CFT.
The interesting observation we make is that, the above considerations put aside, the bubble diagram in the
BTZ background will to a large extent resemble the calculation of the density two point function in field the-
ory. To find this we need to group all the radial dependent terms of the loop amplitude into effective vertices.

Also in higher dimensions quantum corrections can be of value. This work will be very much in the spirit
of some recent papers which tried to capture physical phenomena including ’t Haas van Alphen oscillations
[8] [9] and the Coleman-Mermin-Wagner theorem [10] which are not visible in the large N limit.3

This thesis is organized as follows; in chapter 2 the theory of Fermi liquids and Luttinger liquids is re-
viewed. This is more or less textbook material so we will be brief at some places, referring the reader
to references where necessary. To come to a holographic description of low-dimensional fermion systems,
first the basic principles of the AdS/CFT correspondence must be touched upon, which will be the topic
of chapter 3. Being the unique black hole solution to the Einstein equation with negative curvature, the
BTZ black hole is presented (chapter 4) as the best candidate to start this holographic computation. In
chapter 5 we introduce fermions in the BTZ background and analyze the Dirac equation for various regions

2In the large N limit quantum corrections on the bulk side are suppressed with a factor Ld−1

GN
∼ N � 1.

3Compare this to the old result of Witten [11]. He showed that in the SU(N) Thirring model, the large N-limit suppresses the
infrared fluctuations that wash out expectation values. Moving away from large N correctly produces the algebraic long range
order that is to be expected due to Coleman’s theorem (no spontaneous breaking of continuous symmetry in low dimensional
systems).
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of spacetime. In chapter 6 we move away from the large N limit to investigate whether the anomalous
scaling dimensions, which are a non-mean field phenomenon, present themselves when quantum corrections
are performed. This is done by calculating the loop correction to the gauge field two-point function. This
thesis is concluded with a discussion in chapter 7.

With Blaise Pascal in the back of my mind (“Je n’ai fait celle-ci plus longue parceque je n’ai pas eu le
loisir de la faire plus courte”) I decided not to include the calculation I spent most time on: the loop
correction to the scalar propagator. In retrospect this calculation had little physical relevance and would
have added twenty pages with the same procedure as outlined in the last three chapters, but with different
details.



Chapter 2

Luttinger liquid theory

Systems of interacting electrons are almost always very well described by Fermi liquid theory. There are
however two important exceptions; the first is when interactions become exceedingly large (interaction
energy due to Coulomb force stronger than kinetic energy), the second is when the electrons confined in a
space of low dimensionality.
This chapter will argue why one dimensional electron systems show behavior that is distinct from electrons
in higher dimensions. On an intuitive level this is clear from the observation that an electron moving in
one dimension has no room to avoid other electrons. Even for weak interactions the electrons are therefore
strongly coupled. Any individual motion has to becomes collective. Because the only low-lying excitations
are collective excitations, which have bosonic properties, a description in terms of a fermionic quasiparticle
is not possible.

d > 1 d = 1

Figure 2.1: Electrons moving in d dimensions. The degree to which particles can move freely depends not only on
the strength of the interactions but also on the dimensionality of the system.

Before we embark on our one dimensional journey it is wise to first review Fermi liquid theory, this is done
in section 2.1. The breakdown of Fermi liquid theory in low (1+1) dimensions can then be concretized in
section 2.2. In the final section 2.3 the Luttinger model is introduced, whose generalization, the Luttinger
liquid, is believed to capture the dynamics of interacting electrons confined in one dimension. The absence
of a quasiparticle led people to call this theory a non-Fermi Liquid.

5



6 CHAPTER 2. LUTTINGER LIQUID THEORY

2.1 Fermi liquid theory

Landau-Fermi liquid theory is the generalization of the Fermi gas, non-interacting fermions, to a system
of interacting fermions. The theory, developed by Landau (see: [12] [13] [14]), has been so successfull that
usually Landau’s name is omitted and interacting fermions are said to be described by Fermi liquid theory.
In the Fermi gas, the Pauli exclusion principle prohibits fermions to all be in the lowest momentum state.
As a result a Fermi sea is formed, filling up level by level up to a Fermi energy εf . The occupation number
n(ε) at T = 0 is given by n(ε) = Θ(εf − ε); where Θ is the Heaviside step function. It has a discontinuity of
height 1 at kf . The excitations of the non-interacting Fermi gas have a well-defined energy and momentum.
Particles can be created with momentum |~k| > kf and they have energy εk = ε − µ > 0. Also holes can
be created within the Fermi sea and they have momentum |~k| < kf and energy εk = µ − ε > 0. These
excitations have an infinite lifetime because they are eigenstates of the Hamiltonian. This is reflected by a
spectral function with delta function peak at the particle energy (see equation A.14).

In principle interacting fermions are hard to describe because, in typical conductors, the energy due to
Coulomb interactions is of the same order of magnitude as the kinetic energy of the particles. Put differ-
ently, interaction energies do not dominate nor do they vanish.1 This seems not to be a favorable position to
start a perturbation theory. Landau found a way however to describe these systems which is very powerful
because it works even for interactions which are not small.
Starting in a non-interacting system and switching on the interactions adiabatically, the fundamental parti-
cles with which Landau’s theory describes the system are no longer the bare electrons, but electrons ‘dressed
with density fluctuations’. These new particles are called quasiparticles. They are either non-interacting,
or interactions are at least controllable. Quasiparticles have the same quantum numbers as the constituent
particles, their mass however and also dynamical properties (e.g. specific heat, susceptibility) obtain renor-
malized values. The quasiparticles have a finite lifetime τ , which manifests itself as a nonzero self-energy in
the single-fermion Green’s function at k − kf ≈ 0,

GR(ω, k) =
Z

ω − vfk + iω2
, (2.1)

leading to a Lorentzian profile in the spectral function (see equation A.15). The lifetime (width of the
Lorentzian 1/τ) diverges as τ ∼ (E−Ef )2 when the energy approaches the Fermi energy. The quasiparticles
can therefore be considered approximately stable because in real metals the Fermi energy is very large
compared to excitation energies, Ef ∼ 3eV or Tf = Ef

kb
∼ 10000K.

The factor Z appearing in 2.1 reflects the fact that, due to the interactions, the occupation number n(ε) of the

Fermi liquid is not a Heaviside step function any more but the height decreases from 1 to Z =
(

1− ∂Σ′

∂ω

)−1

,
where Σ′ is the real part of the self-energy.
A renormalization proof of Landau’s theory of Fermi liquids was given by [15] [16]. Being a free stable RG
fixed point underlines the robustness of the theory and the quasiparticles is relies upon.

1The lowest kinetic energy an electron can have follows from the uncertainty principle Ekin = ~p2
2m
∼ ~

mr2
. The energy

due to Coulomb forces between nearest neighbor electrons scales as e2

r
. Dividing the two gives an dimensionless ratio which

is denoted by rs. This rs is the radius of a sphere that on average contains one electron. For typical metals rs ∼ 1.
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2.2 The breakdown of Fermi liquid theory in low dimensions

The formalism reviewed in the appendix A puts us in a position where we can see why Fermi liquid theory
cannot describe fermions in one spatial dimension. The concept of adiabatic continuity does not apply for
fermions in one dimension. This is because switching on an infinitesimal interaction between the particles
already drastically changes the behavior of the system.
Doing perturbation theory in this interaction, terms will appear containing the density-density correlation
function. In this subsection I will show that the full density susceptibility, in the random phase approxi-
mation (RPA), diverges at a special vector called the nesting vector. This divergence signals an instability
towards the formation of an ordered phase, which in low dimensions, due to Mermin-Wagner, cannot hap-
pen.
To that end, consider the density susceptibility (the Fourier transform of the density-density correlation
function)

χ(~q, iω) = −
∫ β

0

dτeiωnτ 〈Tτρ(~q, τ)ρ(−~q, 0)〉. (2.2)

Now using that the density operator ρ(x) = ĉ†xĉx, which destroys and creates a particle at location x, in
momentum space is ρ(q) =

∑
k ĉ
†
k+q ĉk,

2

χ(~q, iω) = −
∑
k,k′

∫ β

0

dτeiωnτ 〈Tτ ĉ†k+q(τ)ĉk(τ)ĉ†k′−q(0)ĉk′(0)〉

= −
∑
k,k′

∫ β

0

dτeiωnτ
[
〈Tτ ĉ†k+q(τ)ĉk(τ)〉〈Tτ ĉ†k′−q(0)ĉk′(0)〉 − 〈Tτ ĉ†k+q(τ)ĉk′(0)〉〈Tτ ĉ†k′−q(0)ĉk(τ)〉

]
= −

∑
k,k′

∫ β

0

dτeiωnτ
[
((((

(((
((((

(((
((

δk+q,kG(k + q, 0)δk′−q,k′G(k′ − q, 0)− δk+q,k′G(k + q, τ)δk′−q,kG(k′ − q,−τ)
]

=
∑
k

∫ β

0

dτeiωnτG(k + q, τ)G(k,−τ). (2.3)

The negative τ component in the third line, a particle traveling backward in imaginary time, is interpreted as
a hole traveling forward in imaginary time. The density susceptibility is therefore a sum over the momentum
exchange in particle-hole bubbles.

k

k + q

Figure 2.2: Particle-hole bubble contributing to the density-density susceptibility.

2This simply follows after Fourier decomposition ρ(x) =
P
k,k′

1
Ω
ei(k−k

′)xĉ†
k′ ĉk ≡

P
q

1
Ω
eiqxρ(q).
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The above expression is cast into a more useful form,

χ(~q, iω) =
∑
k

∑
l,m

∫ β

0

dτeiωnτG(k + q, iωl)e−iωlτG(k, iωm)eiωmτ

=
∑
k

∑
l,m

∫ β

0

dτG(k + q, iωl)G(k, iωm)eiτ(ωn−ωl+ωm)

=
∑
k

∑
m

G(k + q, iωm+n)G(k, iωm). (2.4)

In the case of a free Fermi gas this sum can be evaluated by inserting the single-particle propagator,

χ(~q, iω) =
2T
L3

∑
k

1
−iωm+n + ξk+q

1
−iωm + ξk

=
2T
L3

∑
k

∑
m

1
−iωn + ξk+q − ξk

( 1
−iωm + ξk

− 1
−iωm+n + ξk+q

)
=

2
L3

∑
k

nf (εk+q)− nf (εk)
−iωn + ξk+q − ξk

, (2.5)

where I used that summing over Matsubara frequencies T
∑
m

1
iωm−ξa = nf (εa). Here ξk = k2−k2

f

2m measures
the energy relative to the Fermi energy.
The sum 2.5 can be transformed into an integral. If the system is isotropic and at zero temperature this
integral is better known as the Lindhard function. In a one dimensional, static (ωm = 0) case the result is∑

k

nf (εk+q)− nf (εk)
−iωn + ξk+q − ξk

ω=0=
∫

dk

2π
nf (εk+q)− nf (εk)

��k
2 + 2kq + q2 −��k2

T=0=
∫

dk

2π
(Θ(kf − k + q)−Θ(kf − k))

2kq + q2

=
∫ kf

kf−q

dk

2π
1

2kq + q2

=
1
2q

log
∣∣∣2kf + q

2kf − q

∣∣∣. (2.6)

The above analytic result has the special property that it diverges at q = 2kf . If we look back at 2.5 this is
due to a diverging contribution at a nesting vector q that connects two points of the Fermi surface. In this
case both particle and hole are on the Fermi surface, ξk+q = ξk = 0, and the denominator is zero. In 1d the
nesting vector connects the whole Fermi surface (k = −kf and k = kf ), this leads to a real singularity in
χ(q, ω = 0).
The nesting vector also occurs in the higher dimensional cases, but there it represents a point in a larger phase
space. As a result the integration over k in higher dimensions, where the the Jacobian gives d~k = kd−1dk,
smooths out the divergency.3

Allowing ω 6= 0 gives a complex result whose real part still diverges, but the peaks get shifted away from

3This is also closely related to the fact that in the dispersion relation in d = 1, regardless of its precise nature, can be
linearized around the Fermi points.
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q = 2kf (see e.g. [17])

Reχ(q, ω) =
1
4q

(
log
∣∣∣1 + q2

−/2q
1− q2

−/2q

∣∣∣− log
∣∣∣1 + q2

+/2q
1− q2

+/2q

∣∣∣) with q2
± =

~ω
εf
± q2. (2.7)

This dynamical result is plotted in the figure underneath.

0 1 2 3 4 q0.0
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Figure 2.3: Exact results for the Lindhard function with Fermi momentum put to kf = 1; (a) the static density
correlation function χ(~q, ω = 0) for d = 1 (solid line) and d = 3 (dashed line) as a function of momentum exchange
~q. The one dimensional case diverges at q = 2kf . (b) the dynamical density correlation function with ~ω

εf
= 0.5 is

depicted by a dotted line. The static result is shown for reference by a solid line.

In 1d a random phase approximation, summing particle-hole bubbles, the total susceptibility takes the form

χ = χ0 − χ0V χ0 + ... =
∑

χn+1
0 (−V )n

=
χ0

1 + χ0V
. (2.8)

We see that even for an infinitesimal repulsive interaction strength V , the system is on the verge of an
instability because at q = 2kf there is a solution to χ0(ω = 0, q) = − 1

V .
The divergence of the particle-hole bubbles means that it competes with the superconducting channel (i.e.
particle-particle excitations) which is also divergent. Both diagrams try to drive the system into an ordered
state (density wave resp. superconducting state), but it is known that such a phase transition does not occur
in 1d. To take into account the effect of both types of diagrams one should do a so-called parquet summation.

2.3 Luttinger model

Experimental set-ups that realize fermions in one dimension include the quantum Hall liquid edge states
[18] and carbon nanotubes [19]. These experimental realization of fermions moving in one dimension ask
for a theoretical framework to describe them. As was shown in the previous section, the instability of the
Fermi liquid towards any finite interaction makes it an unfavorable starting point to analyze fermions in one
dimension. This section introduces the Luttinger model, a model that was specifically designed to describe
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the low-energy properties of such systems.
The Tomonaga-Luttinger model assumes a strictly linear dispersion that continues until E = −∞ and all
energy levels up to ±kf are filled. There are therefore two types particles; there is a branch of left- and a
branch of right-movers. The Hamiltonian which realizes this (in the case of interacting spinless fermions)
reads

H =
∑

k;r=R,L

vf (εrk − kf )c†r,kcr,k +
1

2Ω

∑
k,k′;q

V (q)c†k+qc
†
k′−qck′ck, (2.9)

where the subscript r specifies left or right moving particles.
Generalization to systems consisting of fermions with spin also exist. In these spinfull models there is a
possibility for the spin waves and charge waves to acquire different speeds, a phenomenon called spin-charge
separation.
In the above Hamiltonian, different scattering processes are denoted by different coupling constants in the
Hamiltonian. Forward scattering, a process where two right moving fermions, or two left moving fermions
exchange momentum is denoted by g2 and g4 (i.e. (kf ;−kf )→ (kf ;−kf ) and (kf ; kf )→ (kf ; kf ) processes).
Backward scattering involves particles of both left and right moving branches, denoted by g3.4

−kf kf

~q

q = 0 or q = 2kf

Figure 2.4: Low-lying (near the Fermi surface E ≈ 0) particle-hole excitations in higher-dimensional set-ups (left),
and in the one dimensional case (right). The special Fermi surface topology (two Fermi points), together with the
strictly linear dispersion stretching to infinity causes the Tomonaga-Luttinger model to have particle-hole excitations
with a well defined energy-momentum relation.

2.3.1 Bosonization

The aforementioned strictly linear dispersion causes any particle-hole excitation to have a well-defined
energy-momentum relation. For a right moving particle that is excited from k → k + q the energy is

E(q) = vf (k + q)− vfk = vfq, (2.10)

independent of the initial momentum k. Density fluctuations ρ†(q) =
∑
k ĉ
†
k+q ĉk, summing over these

particle-hole excitations, consist of an even number of fermionic operators and are therefore bosonic in
nature. This is the motivation to start seeking for a Hamiltonian reformulated in a bosonic basis. It
is easy to see that the interaction term in the Hamiltonian 2.9 written in terms of ρ(q) is quadratic:
Hint = 1

2Ω

∑
q V (q)ρ(q)ρ(−q).

4These are the letters that are usually chosen ⇒ g-ology.
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A formal derivation of the density commutator needs to take into account that a so-called normal ordering
prescription, : AB := AB − 〈0|AB|0〉. In this way reference to the particle number, an infinite quantity, is
avoided. The result is (see e.g. [2])

[ρr(k), ρr′(−k′)] = −δk,k′δr,r′
rpL

2π
, (2.11)

making the bosonic nature of the density fluctuations manifest. This motivates one to define boson destruc-
tion and creation operators as

b̂†p =
( 2π
L|p|

) 1
2 (

Θ(p)ρ̂†R(p) + Θ(−p)ρ̂†L(p)
)

bp =
( 2π
L|p|

) 1
2 (

Θ(p)ρ̂†R(−p) + Θ(−p)ρ̂†L(−p)
)
. (2.12)

It is even more convenient to express everything in terms of the fields φ and θ, which are defined as

φ(x) ≡ − iπ
L

∑
p 6=−

(L|p|
2π

) 1
2 1
p
e−α|p|/2−ipx(b̂†p + b−p)

= − iπ
L

∑
p 6=−

1
p
e−α|p|/2−ipx(ρ̂†R + ρ̂†L)

θ(x) ≡ iπ

L

∑
p 6=−

1
p
e−α|p|/2−ipx(ρ̂†R − ρ̂

†
L), (2.13)

where in the second line I used 2.12. Also a momentum cutoff α was introduced which should be taken to
zero at the end of any calculation.
In terms of these fields the kinetic term of the Hamiltonian reads (once again, see [2] for details)

H =
1

2π

∫
dx vf

[ 1
π

(∇θ(x))2 + (∇φ(x))2
]
, (2.14)

switching on interactions this becomes

H =
1

2π

∫
dx
[uK
π

(∇θ(x))2 +
u

K
(∇φ(x))2

]
, (2.15)

where u = 1
2π

√
(2πvf + g4)2 − g2

2 and K =
√

2πvf+g4−g2
2πvf+g4+g2

are parameters depending on the different inter-
action processes.
This is a remarkable result because the kinetic term of this Hamiltonian is quadratic in boson operators φ, θ
as well. Put differently, through the method of bosonization a system of interacting fermions is mapped onto
a system of non-interacting bosons. Subsequently all thermodynamic quantities can be computed exactly
[20].
This subsection is concluded with two observations that are needed in the following subsection. First of all,
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the x derivative of the φ(x) is the density at q ∼ 0,

∇φ(x) = −π
L

∑
p 6=−

e−α|p|/2−ipx(ρ̂†R + ρ̂†L)

α→0= −π(ρR(x) + ρL(x)). (2.16)

Secondly, a single particle operator ψr(x) =
∑
k e

ikxĉk, destroying a particle at location x, is expressed in
terms of the φ, θ fields as

ψr(x) = Ur lim
α→0

1√
2πα

eirkfxe−i(rφ(x)−θ(x)). (2.17)

Here Ur is a so-called Klein factor to ensure particle conservation. The necessity of this fermionic operator
is obvious from the fact that the left-hand side of 2.17 changes the number of fermions by one, whereas the
right-hand side, which consists of bosonic operators, conserves the number of fermions. The Klein factors do
not have any spacetime dependence and are therefore unimportant when calculating correlation functions
[21].

2.3.2 Exact density-density correlation function

The above formalism enables one to give an exact derivation of the scaling of the density-density correlation
function at 2kf . Consider the density operator,

ρ(x) = ψ†(x)ψ(x)

= ρR(x) + ρL(x) + ψ†R(x)ψL(x) + ψ†L(x)ψR(x)

= − 1
π
∇φ(x) +

1
2πα

(
e2ikfxe−2iφ(x) + h.c.

)
, (2.18)

where in the last line both 2.16 and 2.17 were used. The equal-time density two-point function reads

〈ρ(x)ρ(0)〉 =
1
π
〈∇φ(x)∇φ(0)〉+

1
(2πα)2

(
e2ikfx〈e−2i(φ(x)−φ(0))〉+ h.c.

)
. (2.19)

The first term (q=0) gives 1
π 〈∇φ(x)∇φ(0)〉 = K

2π2
1
x2 , which decays with the same power as the Fermi liquid

result, but has a renormalized amplitude depending on the interaction couplings.5

To find the q ∼ 2kf behavior, use the identity 〈ei
P
j Ajφ(rj)〉 = e

1
2 〈[

P
j Ajφ(rj)]

2〉 to rewrite the second term,

〈ρ(x)ρ(0)〉 = ...+
1

(2πα)2

(
e2ikfxe−2〈[φ(x)−φ(0)]2〉 + h.c.

)
. (2.20)

By Fourier decomposing the field φ(x) the expectation value appearing in the exponential is rewritten as

〈[φ(x)− φ(0)]2〉 =
1

Ω2

∑
q1,q2

〈φ(q1)φ(q2)〉(ei(q1+q2)x − eiq1x − eiq2x + 1). (2.21)

5The Fourier transform of the first term is the compressibility.
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Expressing the expectation values 〈φ(q1)φ(q2)〉 as a path integral,

〈φ(q1)φ(q2)〉 =
1
Z

∫
Dφ(x, τ)Dθ(x, τ)φ(q1)φ(q2)e

1
~S , (2.22)

with an action

S
2.15=

∫ ∞
0

dτ

∫
dx

i

π
∇θ(x, τ)∂τφ(x, τ)− uK

2π
(∇θ(x))2 +

u

2πK
(∇φ(x))2

=
1
Ω

∑
k

−ikω
π

θ(k)φ(−k)− uKk2

2π
θ(k)θ(−k) +

uk2

2πK
φ(k)φ(−k), (2.23)

where a Fourier decomposition was done in the the second line. Completing the square,

S =
1
Ω

∑
k

−uKk2

2π

(
θ(k) +

iωφ(k)
uKk

)(
θ(−k) +

iωφ(−k)
uKk

)
− ω2

2πuK
φ(k)φ(−k) +

uk2

2πK
φ(k)φ(−k),

(2.24)

enables one to integrate out θ. 6 This integration cancels with an equal term originating from the normal-
ization factor 1/Z. The resulting expression is a Gaussian integral and can be computed (put ~ = 1),

〈φ(q1)φ(q2)〉 =
1
Z ′

∫
Dφ(x, τ)φ(q1)φ(q2)e−(2πuKΩ)−1 P

k φ(−k)
(
ω2+u2k2

)
φ(k)

=
πuKΩδq1,−q2
ω2 + u2q1

2
. (2.25)

Plugging this result back into 2.21 and transforming sums into integrals,

〈[φ(x)− φ(0)]2〉 = uK

∫
dq1

∫ ∞
0

dω

2π
1

ω2 + u2q1
2

(1− cos q1x)

= K

∫
dq1

q1
(1− cos q1x). (2.26)

To this expression a factor e−αq1 is added in order to ensure convergence,7

〈[φ(x)− φ(0)]2〉 = K

∫
dq1

q1
e−αq1(1− cos q1x)

=
K

2
log
(

1 +
x2

α2

)
. (2.27)

Plugging this back into 2.20,

〈ρ(x)ρ(0)〉 = ...+
1

(2πα)2

(
e2ikfxe−K log

(
1+ x2

α2

)
+ e−2ikfxe−K log

(
1+ x2

α2

))
=

K

2π2

1
x2

+
2

(2πα)2
cos(2kfx)

(α
x

)2K

, (2.28)

6One needs to shift θ(k)→ θ′(k) = θ(k)− iωφ(k)
uKk

. Also make the observation that the object φ(q1)φ(q2), of which we wish
to obtain the expectation value, does not depend on θ.

7The physical meaning of this cutoff is that it gives a finite bandwidth.
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where the last line follows if the momentum cutoff α is taken to zero in the end. The 2kf part is special
in the sense that it decays with a non-universal power law depending on the interactions. This is to be
compared with the Fermi liquid which would fall of again with 1/x2. The special scaling can be seen as the
result of a resummation of all the logarithmically divergent diagrams which where discussed in the previous
section.



Chapter 3

AdS/CFT and its application to
condensed matter

3.1 Indications towards AdS/CFT

The AdS/CFT correspondence tells us that certain field theories can under certain conditions also be
described dually by theories on a curved spacetime. What can be said about their relative dimensionality?
The observation that the entropy of a black hole is proportional to the area of its horizon (in Planck
units) shows that gravitational theories have a number of degrees of freedom which is sub-extensive. The
gravitational theory therefore has to be at least one dimension higher, in order to match the degrees of
freedom of both theories.1 The AdS/CFT correspondence is therefore a holographic correspondence. It
relates a d+1 dimensional anti de Sitter space to a conformal field theory in one dimension less. Both have
precisely the same isometries; the conformal group in d dimensions. Via the Gubser-Klebanov-Polyakov-
Witten (GPKW) formula

〈e−
R
φ0O〉CFT = Zstrings in AdS[φ0] , (3.1)

which equates the partition sums of the two theories, observables in both theories are in a one-to-one cor-
respondence. It is the subject of the first half of this chapter to explain this formula and its usefulness.

The extra (radial) coordinate of the gravitational theory is usually interpreted as the energy scale at which
processes in the field theory take place. In this view the gravitational theory is sliced up in this extra spatial
dimension. At each slice lives a CFT with a particular energy scale. Dimensional analysis then tells us the
gravitational theory dual to CFT must be invariant under a rescaling {xµ, r} → {λxµ, rλ}. It is easy to see
that anti de Sitter spacetime, with curvature radius L,

ds2 = − r
2

L2
dt2 + L2 dr

2

r2
+
r2

L2
dxidx

i (3.2)

1In a QFT one expects: number of states N ∼ eV ⇒ S ∼ V .

15
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is invariant under this scaling. AdS can be seen as a stack of flat spaces (Poincaré symmetry) of increasing
size (with r). From the temporal component of the metric gtt ∼ r2

L2 (proper time dτ =
√
gttdt) it is clear

that the redshift decreases if one moves towards the AdS boundary. This relates the deep interior of AdS
to the IR of the CFT and the boundary of AdS to the UV of the CFT.
Anti de Sitter space is the maximally symmetric solution to Einstein’s equations resulting from variation of
Einstein-Hilbert action,

SEH =
1

2κ2

∫
dd+1x

√
−g
(
R− 2Λ

)
, (3.3)

with constant negative curvature Λ. In the case of AdS this cosmological constant is easily shown to take
the value −2Λ = d(d−1)

L2 .

CFT
(boundary)

AdS (bulk)

UV

IR

r

Figure 3.1: Cartoon picture of AdS/CFT. The radial coordinate is interpreted as energy scale.

3.2 The formulation

In the original formulation [22] it was shown that N = 4 supersymmetric SU(N) Yang-Mills theory at large
N and strong ’t Hooft coupling in 4d is dual to classical type IIB supergravity in 10d on AdS5 × S5 + 5
form flux background. Both have SO(2, 4)× SO(6) as isometry group.
In the year after there followed two articles [23][24] which made the correspondence more precise by relating
the correlation functions of gauge invariant operators in the CFT to fluctuating fields in AdS. On the
boundary of AdS the bosonic (fermionic) field φ(r), for example, couples to a bosonic (fermionic) operator
O. A change in the field theory is achieved by changing the boundary conditions on the field in the bulk.
Changing the mass of the field in the bulk affects the scaling dimension of the operator (see equation 3.7)
Besides scalar and spinor fields, also a graviton field in the bulk couples to an operator on the boundary:
the stress-energy tensor Tµν . This provides yet another indication that the bulk geometry must have one
dimension more. The Weinberg-Witten namely theorem states that a QFT with a conserved stress-energy
tensor cannot have massless particles with spin j > 1 which carry momentum. The graviton can avoid this
by living in a theory defined on a higher-dimensional spacetime.
Say we are interested in the boundary field theory correlation function 〈O(x)O(0)〉 because it represents
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an observable of the field theory. The GPKW equation 3.1 enables one to calculate any n-point correlation
function by taking functional derivates to the fields φ0 on both sides. The quantity appearing on the
right-hand side however is something which can only be approximated. In the context of AdS/CFT this
is done by taking a large N limit, where N is the rank of the gauge group on the field theory side, and
thereby a measure for the number of degrees of freedom per point. The AdS/CFT correspondence relates
this parameter on the bulk side to the inverse Newton constant. In the large N limit quantum corrections
are now suppressed with a factor Ld−1

GN
∼ N � 1, and the supergravity partition function is approximated

semi-classically by the largest Euclidean saddle,

〈e−
R
φ0O〉CFT = ZQG(φ0) ≈ e−Son−shell[φ0] +O(1/N). (3.4)

In the case of small curvature (that is, the AdS curvature radius L bigger than the energy scale set by the
string tension), this on-shell action is given by the Einstein-Hilbert action. Corrections containing higher
derivates of the metric than appearing in the Ricci scalar are suppressed in this case.

CFT

AdS

UV

IR

φ

〈O〉

Figure 3.2: Fields in AdS source vev’s in the boundary CFT.

The AdS/CFT correspondence is a weak-strong duality. It puts us in a position where processes in the
CFT which, due to strong coupling, are hard to solve, can be analyzed in a higher-dimensional space by
performing classical gravity calculations. Consider for instance adding a scalar field φ to the bulk action.
This field is governed by a Klein-Gordon type equation,( 1√

−g
∂r
√
−ggrr∂r +

1√
−g

∂µ̃
√
−ggµ̃ν̃∂ν̃ +m2

)
φ(r, x) = 0, (3.5)

where the difference to the usual Klein-Gordon equation lies in the fact that the scalar field now moves on
a curved (AdS) background.
The solutions of this equation behave near the boundary as

φ(r, kµ)
r→∞
≈ A(kµ)r∆−d +B(kµ)r−∆, (3.6)
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where the conformal dimension ∆ of an operator O to which φ couples on the AdS boundary is the solution
to ∆(∆− d) = m2L2;

∆± =
d

2
±
√(d

2

)2

+ (mL)2, (3.7)

and ∆ ≡ ∆+.2 In the case of a vector field the conformal dimensions are determined by ∆(∆−d+2) = m2L2.
Equation 3.6 shows that near the boundary, the equation of motion has two solutions, a normalizable one
(denoted by φn), which can be excited with finite energy, and a non-normalizable solution (denoted by φn.n.),
which vanishes on the boundary. 3 The normalizable solution (B(kµ)) corresponds to the expectation value
of an operator to which it is dual, while the non-normalizable solution A(kµ) indicates that a source for
this operator is included in the boundary field theory action. The retarded Green’s function describes the
reaction of a physical system to a source and is therefore given by the quotient of the subleading to leading
term [25],

GR(kµ) ∼ B(kµ)
A(kµ)

. (3.8)

3.3 Connection to condensed matter physics

The AdS/CFT correspondence is only a small part of what can be called gauge/gravity correspondence.4

One can break the conformal invariance of AdS by introducing additional energy scales. This may lead to a
holographic description of strongly coupled systems which are more likely to occur in nature (for a review
see [27]). This section contains two such options: temperature and chemical potential. AdS/CMT (CM
stands for condensed matter) is especially useful for fermions because strongly coupled fermions are hard
to describe analytically and numerical simulations at finite density are not possible because of the “sign
problem”.
A convenient way to put the boundary field theory at finite temperature is to use an asymptotically AdS
black hole geometry. This makes use of the observation of Bekenstein and Hawking [28] that black holes
are thermodynamical objects. I will discuss this option in 3.3.1. Another way to include temperature is by
introducing a thermal gas of particles. Above a certain temperature the black hole solution is preferred [29].
The second option for introducing an additional energy scale is to consider a nonzero chemical potential
for a charge density on the boundary. This procedure, the subject of 3.3.2, leads to a charged black hole
in the bulk. Another way to describe the boundary field theory at finite charge density, is to let a fluid
of electrons, instead of the black hole, carry a macroscopic amount of charge outside the horizon, see e.g. [30]

2Negative masses are allowed as long as they do not violate the Breitenlohner-Freedman bound mBF = −
`
d
2

´2 [31]. Below
this bound the conformal dimensions become imaginary in which case there a no normalizable solutions.

3Also there exist a mass range between BF and unitarity bound where there are two normalizable solutions. This allows
for an alternative quantization switching the role of expectation value and source.

4A nice example is described in [26] where it was proven that the quasi-normal modes of certain black holes, the eigenfre-
quencies of a “ringing” black hole subject to a perturbation, coincide with the poles of the retarded Green’s function of the
CFT. These are two independent, analytic calculations which give the same result.
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3.3.1 Temperature

Reconsider the Einstein-Hilbert action with a negative cosmological constant,

SEH =
1

2κ2

∫
dd+1x

√
−g
(
R− 2Λ

)
− 2Λ =

d(d− 1)
L2

. (3.9)

If one drops the demand of scale invariance and looks for solutions to the Einstein equations (which follow
from variation of the action) which are spherically symmetric and invariant under spacetime translations,
there exist also black hole solutions of the form 5

ds2 = −r2f(r)dt2 +
dr2

r2f(r)
+ r2dx2

i f(r) = 1−
(rh
r

)d
. (3.10)

There is a black hole horizon at rh, f(rh) = 0, in whose vicinity light becomes infinitely redshifted.6 The
black hole is asymptotically AdS

(
gtt

r→∞= r2

L2

)
which was demanded by the negative cosmological.7

QFT at
T 6= 0

UV

IR

AdS-black
hole

Figure 3.3: An asymptotically AdS-black hole geometry describes a field theory at finite temperature.

The so-called warpfunction has a near horizon expansion

f(r) r→rh= ��
�f(rh) + |f ′(rh)|(r − rh) +O

(
(r − rh)2

)
=

drdh
rd+1
h

(r − rh) =
d

rh
(r − rh), (3.11)

so the near horizon metric becomes

ds2 r→rh≈ −rhd(r − rh)dt2 +
dr2

rhd(r − rh)
+ r2

hd~x
2. (3.12)

Consider a variable change κ = drh
2 and ρ = 2√

rhd

√
r − rh. This gives

κ2ρ2 = rhd(r − rh), (3.13)

5Via the AdS/CFT correspondence, static black holes correspond to ensembles with strongly interaction constituent parti-
cles, in equilibrium.

6Interpreting the radial coordinate as the RG scale, the black hole horizon functions as an IR cutoff. This is a geometric
realization of a energy gap in dual the field theory.

7This is to be compared to the fact that the Schwarzschild black hole is asymptotically flat.



20 CHAPTER 3. ADS/CFT AND ITS APPLICATION TO CONDENSED MATTER

and also

dρ =
1√
rhd

1√
r − rh

dr ⇒ dρ2 =
1

rhd(r − rh)
dr2. (3.14)

Putting the parts together leads to the metric

ds2 ≈ −κ2ρ2dt2 + dρ2 +
L2

z2
h

d~x2. (3.15)

Doing a Wick rotation to Euclidean space we note that 3.15 looks just like flat space in polar coordinates.
In fact the metric is singular at ρ = 0 but the geometry is regular provided that the polar angle has period
2π. Demanding the absence of a conical singularity at r = rh, we therefore have to identify the polar angle
with κτ ' κτ +2π where τ = 1

T . A periodicity in the time component in Euclidean signature is interpreted
as temperature (e−iHt → e−Hβ)
Conclusion: the black hole has a temperature

T =
κ
2π

=
1

4π
|∂f(r)|
∂r

∣∣∣∣
r=rh

. (3.16)

3.3.2 Finite density

Consider a field theory at finite density, i.e. with a nonzero chemical potential µ. In order to describe
this system holographically, a gauge field Aµ(r → ∞, x, t) is introduced in the AdS bulk. The AdS/CFT
dictionary namely tells us that the asymptotic value of this gauge field Aµ(r →∞, x, t) = Aµ(x, t) couples
to a conserved four-current Jµ on the boundary, and thereby sets a nonzero chemical potential µ for a net
charge in the boundary field theory. This entry of the dictionary shows that gauged symmetries in the bulk
appear as global symmetries on the boundary.
The gauge field in the bulk is introduced by adding to the Einstein Hilbert action a Maxwell term (see
equation 4.1). The Einstein equations then obtain a nonzero stress-energy term depending on the gauge
fields, and thereby become coupled Einstein-Maxwell equations. As a result of the introduction of a gauge
field the black hole solutions carry a charge.8 The conclusion is that the boundary field theory can obtain
a finite charge density if a charged black hole is used on the bulk side. Another way to view this is that a
charge density on the boundary induces a flux in the bulk. This flux disappears behind the horizon which
leads to the conclusion that the black hole must carry a charge.

3.4 Renormalization and double trace deformations

Via the AdS/CFT correspondence we hope to gain insight in the dynamics of a strongly coupled many-body
systems. While the microscopic behavior of all constituent particles is extremely complicated, observables
in condensed matter are measured at macroscopic length and time scales. It turns out that often the
macroscopic behavior is largely insensitive to the dynamics of the individual particles. The microscopic
degrees of freedom can then be integrated out in the sense of the Wilsonian approach to renormalization

8The identification of charge is made by an ADM calculation.
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Figure 3.4: An asymptotically AdS charged black hole geometry describes a field theory at finite temperature and
finite charge density.

and these affect the IR only via a finite amount of relevant and marginal couplings.
Recently this was given an interpretation on the gravity side [32] [33]. This interpretation relies on the
observation that in AdS/CFT the radial direction of the bulk is related to the energy scale of the CFT.
The aforementioned increasing redshift in the deep interior of AdS leads to the conclusion that low-energy
processes are captured by the region near the black hole horizon r ≈ rh, with the black hole functioning
as a cutoff. In analogy to the Wilsonian approach of the renormalization of field theory, where the high
energies are integrated out, in the bulk AdS space the bulk action would be integrated out over the radial
direction. This integration will end at some IR scale which in our zero temperature BTZ case is set by the
boundary of the near horizon AdS2 × R geometry (to be discussed in the next chapter). In this way all the
UV information is captured in a boundary term that appears in the action.9

3.5 Historical overview of AdS/CMT

The AdS/CFT duality provides a convenient framework to describe strongly coupled condensed matter
problems. This approach was initiated by [35], who used holography to describe the transport properties of
hydrodynamics (momentum transport), culminating in a viscosity to entropy density ratio of ηs = 1

4π .
The year after, in 2008, Hartnoll, Herzog and Horowitz introduced the concept of the Holographic super-
conductor [36] [37]. They observed the ‘condensation’ of a scalar field in a Reisner-Nordström black hole
geometry if the Breitenlohner-Freedman bound is violated. This happens when the conformal dimension of
the scalar field becomes imaginary. This condensation, the occurrence of a nonzero expectation value for
the scalar field, is interpreted in the boundary field theory as the onset of superconductivity, precisely as in
the Landau formalism of superconductivity where the breaking of a symmetry is associated with a phase
transition. The black hole is now said to be ‘dressed by scalar hair’.
One year later, in 2009, a MIT group [5][38] and the group in Leiden [39] independently found signatures
of Fermi surfaces on the gravity side of the duality. These Fermi surfaces where signaled by peaks in the
boundary spectral function. The dual field theories where named ‘non-Fermi liquids from holography’.
These publications led to a search for new quantum states of matter. The question arises whether there are

9We have assumed that the CFT was not deformed by double trace deformations, even though they can represent relevant
operators which therefore should not be ignored [34]. In [32] it was observed that even if one starts with a zero double trace
coupling κ under the renormalization flow this coupling obtains a non-zero value.
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other phases, besides the ones which are already known, which have not been discovered yet. AdS/CFT
provides one with a plethora of different quantum states of matter, most of which probably do not have
anything to do with the real world. The challenge now is to classify the relevant ones.



Chapter 4

The Charged BTZ black hole

The BTZ black hole was first developed by Bañados, Teitelboim and Zanelli in [4]. With the holographic
description of low-dimensional spinless fermion systems as our goal, the focus is on the black hole solution
without angular momentum but with charge. A charged black hole is required to describe the boundary field
theory at finite density (see subsection 3.3.2). A rotating (Kerr-AdS) black hole could be used whenever
one wishes to describe a boundary field theory with a nonzero chemical potential for particles with spin or
magnetic moment.

Classical AdS3 gravity combined with electro-magnetism is described by the Einstein-Hilbert action with a
Maxwell term and a negative cosmological constant,

SEH [A, g] =
1

2κ2

∫
d2+1x

√
−g
(
R+

2
L2
− L2

g2
f

F 2
)
. (4.1)

Varying this action gives the coupled Einstein-Maxwell equations

Rµν −
R

2
gµν −

1
L2
gµν =

κ2

2g2
f

(
2FµσFσν −

1
2
FσρF

σρ
)
,

DµF
µν = 0. (4.2)

The aim of this chapter is to find a solution to these equations which is spherically symmetric, static and
which has a non-vanishing electrical field on the boundary, where the metric should asymptote to AdS3.
We first turn our attention to the gauge field in the bulk which sources the right-hand side of the above
equation.

4.1 Gauge field

Because we are interested only in electronic properties we put the magnetic part of the electromagnetic tensor
to zero: Frφ = 0. Also due to spherical symmetry we take Ftφ = 0. We restrict to a gauge Ar = Ax = 0.
The solution for At is found by solving the Maxwell equation. In the region near the boundary r →∞ we
know that the metric is asymptotically AdS −gtt(r) = grr(r) = r2

L2 . We will see (in the next subsection)

23
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that we can find a consistent solution be taking −gtt(r) = grr(r) for all r,

DµFµν =
1√
−g

∂M (
√
−ggMAgZBFAB)

=
1
r
∂rrg

rrgttFrt = 0

= ∂2
rAt(r) +

1
r
∂rAt(r) = 0 → At = A

(1)
t log r +A

(0)
t . (4.3)

The above derivation is equivalent to the statement that the Poisson equation (∇ ·E = ρ
ε ) in 2 dimensions

has the solution At(r) = Q ln r
l , where Q is the total charge of the black hole and also a length scale l was

introduced on dimensional grounds.
Among the other ways to find this log-behavior is a d = 2 + ε → 2 limit of the Reisner-Nordström gauge

field At(r) = µ

(
1−

(
rh
r

)d−2
)

[40].1

Also note that the naive application of the aforementioned ∆(∆− d+ 2) = m2L2 equation (see section 3.2)
in order to find the conformal dimension of an operator coupling to a massless vector field, in the case of
AdS3, leads to a near boundary field expansion

At(r →∞) ∼ A(1)
t r∆− +A

(0)
t r∆+ , (4.4)

with ∆− = ∆+ = 0, i.e. two constants. The fact however that Aµ is the solution to a second order
differential equation demands two independent solutions. This problem can only be fixed by the appearance
of a log-term.
In this last argument the log behavior appears only in the asymptotic expansion of the gauge field whereas
the first two arguments given are true for all r. In general the leading terms of the gauge field near the AdS
boundary (r →∞) are

At(r) = A
(1)
t log r +A

(0)
t + ... (4.5)

As shown in equation 4.3, this expression is exact (no dots) in the case of pure gravity. In the case of
additional matter content in the form of e.g. scalar or Dirac hair, the right-hand side of that equation
obtains additional terms such that the gauge field expansion is true only near the boundary.
The integration constants in the above solution can be completely fixed by imposing boundary conditions.
First of all, the no-hair theorem states that the black hole should be fully specified by its mass, charge and
angular momentum. This means that gauge field vanishes on the black hole horizon, setting the relation
between the constants A(0)

i = −A(1)
i log rh. The second boundary condition makes use of the leading/sub-

leading analysis discussed in the previous chapter. Naive application indicates that A(1)
t = µ and A(0)

t = ρ.
2 The correct analysis however switches these two quantities [41].3

The above choices fix the gauge and consequently the non-vanishing gauge field on the boundary has physical
relevance for it is associated to a global symmetry in the field theory.

1Do a rescaling µ→ µ′ = µ
d−2

and take ε→ 0 to see that At(r) = µ′
`
1− eε log

rh
r
´

= µ ln r
rh

.
2Via an ADM calculation one could also express everything in terms of the charge Q of the black hole (bulk quantity)

instead of the boundary quantities ρ and µ which were chosen here.
3Thanks to Juan Jottar for pointing this out. An indication that this is correct is the fact that in the d → 2 limit the

logarithmic term arose from the subleading term.
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4.2 Solving Einstein’s equations

Now that we have obtained the gauge field, the stress-energy tensor Tµν = −
(
F ψ
µ Fψν + 1

4gµνFψτF
ψτ
)
has

non-vanishing components Ttt = 1
2g(r)Q

2

r2 and Trr = − 1
2f(r)

Q2

r2 . We will calculate various components of
the Einstein equation for a general space time which will lead us to the conclusion that in three space time
dimensions the charged BTZ is the unique solution. Start with the most general static (time independent),
spherically symmetric metric,

ds2 = −f(r)dt2 +
dr2

g(r)
+ r2dφ2, (4.6)

Our aim is to determine the functions f(r) and g(r). Using Mathematica (see appendix B) we calculate the
components of the Einstein tensor Gµν = Rµν − 1

2gµνR,

Gtt = −f(r)∂rg(r)
2r

(4.7)

Grr =
∂rf(r)
2rf(r)

. (4.8)

Gφφ is also non-vanishing but I don’t need that component for my arguments. Einstein’s equation for these
components reads

− 1
l2
f(r) +

1
2
g(r)

Q2

r2
+
f(r)∂rg(r)

2r
= 0 (tt)− component (4.9)

− 1
g(r)l2

+
1
2

Q2

f(r)r2
+
∂rf(r)
2rf(r)

= 0 (rr)− component. (4.10)

Comparing the (tt) and (rr) components we see that f(r)∂rg(r) = g(r)∂rf(r) so that ∂r ln f(r) = ∂r ln g(r).4

Up to a multiplicative factor which can be absorbed by a redefinition of the time coordinate we see that
f(r) = g(r). This function is found subsequently by inspection of the Einstein equation,

− 1
l2

+
1
2
Q2

r2
+
∂rf(r)

2r
= 0

∂rf(r) =
2r
l2
− 1

2
2Q2

r
. (4.11)

The integration constant is interpreted via the ADM formalism as the mass M [42],

f(r) =
r2

l2
−M − 1

2
Q2 ln

(r
l

)
. (4.12)

This correctly retrieves the asymptotic (r → ∞) AdS3 boundary, where the metric has 1+1 dimensional
conformal symmetry. At large frequencies ω � µ (in the UV) the effects of finite density are therefore
washed out and one recovers the conformal invariance of a zero density system (a vacuum).

4To see this, multiply the rr-component with f(r)g(r).
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4.3 Near horizon analysis of extremal BTZ

The charged BTZ metric, in units where the AdS radius is put to L = 1 and where the mass is scaled out,
reads

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dx2 f(r) = r2 − 1− Q2

2
log r At(r) = ρ log r . (4.13)

The black hole has an outer horizon at r = rh = 1 (f(1) = 0), independent of the black hole charge Q. The
temperature (see: section 3.3.1) of the black hole 4πT = ∂f(r)

∂r

∣∣
r=rh

= 2r− Q2

2r

∣∣
r=1

vanishes if the black hole
is extremely charged (Q=2). In this case the inner and outer horizon merge, and the warpfunction of an
extremely charged black hole has a double zero at the horizon, 5

f(r)
r→rh≈ f(rh) + (r − rh)

∂f(r)
∂r

∣∣∣∣
r=rh

+
1
2

(r − rh)2 ∂
2f(r)
∂r2

∣∣∣∣
r=rh

= 2(r − rh)2. (4.14)

This double zero turns out to be the reason for an interesting near horizon geometry. Putting back the

0.5 1.0 1.5 2.0 2.5 3.0
r

2

4

6

f HrL

Figure 4.1: The warpfactor f(r) is depicted for Q=1 (dashed), Q=2 (solid).

expansion of the warpfunction into the metric 4.13 gives

ds2 = −2(r − 1)2dt2 +
dr2

2(r − 1)2
+ dx2. (4.15)

Define a near horizon radial coordinate ζ = λL2
2

r−1 , t = λ−1τ and take the limits λ→ 0 and ζ, τ finite. Notice
that finite τ corresponds to a long time limit. This means that ω which is the variable conjugate to t goes to
zero. This is equivalent to the statement that the near horizon geometry is associated with the IR physics.
The variable change gives

dζ = d

(
λL2

2

r − 1

)
= − λL2

2

(r − 1)2
dr, (4.16)

5Further increase of Q will lead a black hole horizon at rh > 1 but this charge regime is non physical.
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leading to

L2
2

ζ2
dζ2 =

L2
2(r − 1)2

λ2L4
2

λ2L4
2

(r − 1)4
dr2 =

L2
2

(r − 1)2
dr2 =

1
2(r − 1)2

dr2. (4.17)

We also see that

−L
2
2

ζ2
dτ2 = −L

2
2(r − 1)2

L2
2λ

2
λ2dt2 = −2(r − 1)2dt2. (4.18)

Collecting these terms and comparing with 4.15 we see that the near horizon geometry of the BTZ black
hole is given by

ds2 =
L2

2

ζ2
(−dτ2 + dζ2) +

dx2

L2
2

, (4.19)

which is AdS2 × R with an AdS2 radius L2 = 1√
2
L = 1√

2
.

AdS2 × R

ζ = 0

ζ =∞

BTZ-bulk

r =∞r = rh

Figure 4.2: Various regions of BTZ spacetime.

The form AdS2 × R
n−1 also occurs in higher-dimensional AdS black holes (see e.g. [5]). This subsec-

tion thereby shows the analogy between the BTZ black hole and higher-dimensional extremely charged AdS
black holes. The Reisner-Nordström black hole for example has a near horizon AdS2 × R

2 geometry.
The occurance of the AdS factor hints at an emergent conformal symmetry. Put differently, it may be the
case that this region is dual to some 0 + 1d CFT. The implications of this near horizon have been the study
of some recent papers, most notably [43] and let to the introduction of the so-called semi-local quantum
liquid.
The extremal BTZ black hole with the AdS2×R near horizon geometry has a finite horizon area and thereby
a non-zero Bekenstein-Hawking entropy density S = A

4G . To my knowledge, there is no conclusive resolution
found for the violation of the third law of thermodynamics caused by this large ground state degeneracy. A
possible way out of this problem is that this near horizon geometry corresponds to an intermediate quantum
state and that for smaller values of r we have a (Lifschitz) AdS4 geometry; the black hole has disappeared
and in the absence of a horizon there is zero entropy density. Another possible answer is that it is a large
N artifact: tunneling interactions, lifting degeneracy, are suppressed at large N.
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Chapter 5

Fermions in a BTZ background

The BTZ black hole, which was discussed extensively in the previous chapter, is a solution to the equations of
motions which follow from varying the Einstein-Hilbert-Maxwell action with negative cosmological constant,

SEH [A, g] =
1

2κ2

∫
d2+1x

√
−g
(
R+

2
L2
− L2

g2
f

F 2
)
. (5.1)

We introduce fermionic matter fields in the bulk of this geometry by adding to the action a term

Sfermion =
∫
d3x
√
−gi(Ψ̄ΓµDµΨ−mΨ̄Ψ), (5.2)

with Dµ = ∂µ + 1
4ωabµΓab− iqAµ, where Γab = 1

2 [Γa,Γb]. We work in the probe limit which means that the
fermionic fields do not back-react on the metric. Varying the above action leads to a Dirac equation in a
BTZ background (section 5.1), with the necessary spin connection terms due to the non-vanishing curvature.
In section 5.2 the near horizon geometry of the BTZ is examined in more detail. It turns out that in that
region the Dirac equation can be solved exactly.1 Section 5.3 discusses the matching procedure for which a
numerical study in the full background geometry is required.2

5.1 Dirac equation and Spin connection

Decomposing the spinor in Fourier modes Ψ = Ψ(r)e−iωt+ikx, the Dirac equation reads(
Γt(−iω +

1
4
ωabtΓab − iqAt) + Γr∂r + Γx(ik +

1
4
ωabxΓab)−m

)
Ψ(r) = 0. (5.3)

Bulk indices are denoted by Greek letters µ = (r, µ̂), where hatted Greek letters indicate directions along
the boundary µ̂ = (t, x). Because the gamma matrices in Γµ∂µ = eµaΓa∂µ can only be defined in flat space,
tangent spacetime indices (a, b, ..) are used. Also the underlined indices (t, r, x) refer to this tangent space.

1I give an explicit analytic derivation of the low dimensional generalization of a formula which appears in the literature but
of which I have not found any derivations[5].

2This method was introduced by the MIT group in [5].
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The vielbeins, defined through gµν = ηabe
a
µe
b
ν , in the case of the BTZ metric are

e
t
t =
√
−gtt =

√
f err =

√
gxx =

1√
f

exx =
√
grr = r. (5.4)

We will now show that the the spin connection, given by

ωabµ = eaν∂µe
b
σg
σν + eaνe

b
τg
τσΓνσµ, (5.5)

can be removed by a rescaling of the spinor fields. The derivation we present only requires that (i) the
metric components are related via gtt = −g−1

rr , and that (ii) the metric components only depend on the
radial coordinate r.
The Christoffel symbols Γσµν = 1

2g
σρ(∂µgρν + ∂νgµρ − ∂ρgµν) in that case are

Γrrr =
1
2
grr∂rgrr Γrtt = −1

2
grr∂rgtt Γrxx = −1

2
grr∂rgxx

Γttr = Γtrt =
1
2
gtt∂rgtt Γxxr = Γxrx =

1
2
gxx∂rgxx. (5.6)

Because the metric is diagonal the first term in 5.5 is only non-vanishing when σ = ν ⇒ a = b: This gives

ωttr = e
t
t∂re

t
tg
tt + e

t
te
t
tg
ttΓttr

=
√
−gtt∂r

√
−gttgtt +

√
−gtt
√
−gttgttΓttr

=
1
2

√
−gtt

(−gtt)
3
2
∂r(−gtt)−

1
2
gtt∂rgtt = 0, (5.7)

and analogously ωrrr = ω
xx
r = 0.

There are however four Christoffel connections left with which the non-vanishing components of the spin
connection can be constructed,

ω
rt
t = erre

t
tg
ttΓrtt =���

���√
grr
√
−gttgtt(−

1
2
grr∂rgtt) = −1

2
∂r(
√
−gtt)2 = −∂r

√
−gtt√
grr

ω
tr
t = e

t
te
r
rg
rrΓtrt =���

���√
−gtt
√
grrg

rr(
1
2
gtt∂rgtt) = −1

2
∂rgtt =

∂r
√
−gtt√
grr

ω
rx
i = erre

x
xg
iiΓrxx =

√
grr
√
gxxg

xx(−1
2
grr∂rgxx) = −1

2
√
grr
√
gxx∂rgxx = −

∂r
√
gxx√
grr

ω
xr
i = exxe

r
rg
rrΓxrx =

√
gxx
√
grrg

rr(
1
2
gxx∂rgxx) =

∂r
√
gxx√
grr

. (5.8)

Lower indices with ωabµ = ηacηbdω
cd
µ,

ωrtt = −ωtrt =
∂r
√
−gtt√
grr

ωrxx = −ωxrx = −
∂r
√
gii√
grr

. (5.9)

In this BTZ case (D=2+1) the gamma matrices are 2× 2 and can conveniently be chosen to coincide with
the Pauli matrices, where an additional factor i in Γt has to be taken into account in order to satisfy the



5.1. DIRAC EQUATION AND SPIN CONNECTION 31

Clifford algebra.3 With the choice Γt = iσ1, Γr = σ3 and Γx = σ2, the Dirac equation 5.3 is purely real
and therefore the spinor solutions are purely real. Now using the commutation relation for Pauli matrices
[σa, σb] = 2iεabcσc, with our choice of gamma matrices we have −ΓtΓtr = ΓrΓrr = ΓxΓxr = Γr. This allows
us to write the spin connection term in the action as

1
4
ωabµΓµΓab =

1
4

√
−gttΓtωrttΓrt +

1
4

√
−gttΓtωtrtΓtr +

1
4
√
gxxΓxωrxxΓrx +

1
4
√
gxxΓxωxrxΓxr

=
1
2

Γt
√
−gtt ∂r

√
−gtt√
grr

Γrt − 1
2

Γx
√
gxx

∂r
√
gxx√
grr

Γrx

=
1
2

√
−gtt ∂r

√
−gtt√
grr

Γr +
1
2
√
gxx

∂r
√
gxx√
grr

Γr, (5.10)

which can subsequently be written as

1
4
ωabµΓµΓab =

1
2

1
√
grr

Γr
1√
−gttgii

∂r
√
−gttgxx

=
1
√
grr

Γr∂r ln
(
−g
grr

)1/4

. (5.11)

Taking into account the above considerations on the spin connection, the Dirac equation 5.3 now turns into

(√
−gttΓt(−iω − iqAt) +

√
grrΓr∂r +

√
gxxΓxik −m+

1
√
grr

Γr∂r ln
(−g
grr

)1/4)
Ψ = 0. (5.12)

A rescaling of the spinors Ψ =
(
−g
grr

)−1/4

ψ transforms the spin connection into

1
√
grr

Γr∂r ln
(−g
grr

)1/4

Ψ =
1
4

1
√
grr

Γr
(−g
grr

)−5/4(
∂r
−g
grr

)
ψ. (5.13)

The result of this rescaling is a complete cancellation of the spin connection by a term that originates from
the r-derivative term in the Dirac equation,

√
grrΓr∂rΨ =

√
grr
(−g
grr

)−1/4

Γr∂rψ︸ ︷︷ ︸
stays in Dirac equation

− 1
4
√
grrΓr

(−g
grr

)−5/4

∂r

(−g
grr

)
ψ︸ ︷︷ ︸

gives cancellation

. (5.14)

The result is a Dirac equation(√
−gttΓt(−iω − iqAt) +

√
grrΓr∂r +

√
gxxΓxik −m

)
ψ = 0, (5.15)

which for large r asymptotes to 4

(
rσ3∂r −m

)
ψ = 0. (5.16)

3In general the Dirac equation equation in D dimensional space time has 2D/2 × 2D/2 dimensional gamma matrices when
D is even and 2(D−1)/2 × 2(D−1)/2 dimensional gamma matrices when D is odd.

4Use here that
p
−gtt,

√
gxx ∼ 1

r
→ 0.
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We find a asymptotic solution of the form ψ(r) r→∞−→ ψ−r−m

(
0
1

)
+ ψ+rm

(
1
0

)
.

After scaling back with Ψ =
(
−g
grr

)−1/4

ψ
r→∞= r−

d
2ψ this solution reads

Ψ(r) r→∞−→ Ψ−r−1−m

(
0
1

)
+ Ψ+r−1+m

(
1
0

)
. (5.17)

This shows that the general large r solution for a fermion in the background of a higher-dimensional AdS
black hole, Ψ(r) r→∞−→ Ψ−r−

d
2−m + Ψ+r−

d
2 +m, also applies in the case of the BTZ black hole.

5.2 Boundary Green’s function of AdS2 × R

In 4.3 it was found that the extremal BTZ black hole has an AdS2 × R near horizon geometry,

ds2 =
l22
ζ2

(−dτ2 + dζ2) +
dx2

l22
, (5.18)

which is parametrized by the radial coordinate ζ = L2
2

r−1 . The gauge field At(r) = ρ ln r has a near horizon
expansion At(r → 1) = ρ(��ln 1 + (r − 1)) = ρ

ζ .
5 This section covers the Dirac equation for fermions in this

specific region of the BTZ geometry.

The spin connection is removed by the same rescaling Ψ =
(
−g
grr

)−1/4

ψ. This is because the metric written in
the usual radial coordinate 4.15 clearly satisfies the two demands posed in the previous section. Decomposing

the field Ψ =
(
−g
grr

)−1/4

e−iωτ+ikxψ(ζ), the Dirac equation takes the form

(
ettΓ

t(∂t − iqAt) + eζζΓ
ζ∂ζ + exxΓx∂x −m

)
ψ = 0(

σ1(ω + qAt) + σ3∂ζ +
R2

ζ
(σ2ik −m)

)
ψ = 0. (5.19)

Multiplying from the right with σ3 and using σ3σ3 = 1, σ3σ1 = −iσ2, σ3σ2 = −iσ1 gives

∂ζψ = iσ2

(
ω +

qρ

ζ

)
ψ +

R2

ζ
(−σ1k + σ3m)ψ. (5.20)

Near the AdS2 × R boundary when ζ → 0 the equation takes the form

ζ∂ζψ =

(
m qρ− k

−qρ− k −m

)
ψ, (5.21)

which is solved by

ψ(ζ) = A+ψ+ζ
νk +A−ψ−ζ

−νk

⇒ Ψ(ζ) = A+ψ+ζ
1
2 +νk +A−ψ−ζ

1
2−νk , (5.22)

5In units where the black hole horizon is scaled to rh = 1, the gauge field vanishes on the horizon if µ = 0.
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where ν± = ±
√
m2 + k2 − (qρ)2 (and ν+ ≡ νk) are the eigenvalues and ψ± =

(
ν± +m

qρ+ k

)
are the eigenvec-

tors of the above matrix. In the second line there was a scaling back Ψ =
(
−g
grr

)−1/4

ψ = ζ
1
2ψ.

The quotient of the constants A± is the retarded Green’s function, with the additional demand that the
solution should be infalling near the horizon. We find this quotient by solving the Dirac equation 5.20 in
the whole AdS2 × R geometry. After setting R2 = 1 and rescaling the spinors ψ → 1√

2
(1− iσ1)ψ this Dirac

equation reads

(1− iσ1)ζ∂ζψ = (iσ2 + σ2σ1)(ωζ + qρ)ψ + (σ3 − iσ3σ1)mψ + i(1 + iσ1)kψ

(1− iσ1)ζ∂ζψ − (1 + iσ1)ikψ = (σ2 − σ3)i(ωζ + qρ)ψ + (σ3 + σ2)mψ, (5.23)

where in the second line I used σaσb = δab + iεabcσc. Writing this as a matrix equation(
1 −i
−i 1

)
ζ∂ζψ −

(
1 i

i 1

)
ikψ =

(
−1 −i
i 1

)
i(ωζ + qρ)ψ +

(
1 −i
i −1

)
mψ, (5.24)

makes it easier to read of the components,

(A) ζ∂ζψ1 − iζ∂ζψ2 − ikψ1 + kψ2 = −i(ωζ + qρ)ψ1 + (ωζ + qρ)ψ2 +mψ1 − imψ2

(B) ζ∂ζψ1 + iζ∂ζψ2 + ikψ1 + kψ2 = −i(ωζ + qρ)ψ1 − (ωζ + qρ)ψ2 −mψ1 − imψ2, (5.25)

where the component (B) was multiplied with i. Adding these two (and dividing by 2) gives

(C)
[
ζ∂ζ + i(ωζ + qρ)

]
ψ1 = −(k + im)ψ2 ⇒ ψ2 =

[
ζ∂ζ + i(ωζ + qρ)

]
ψ1

−(k + im)
, (5.26)

while subtracting (B) of (A) (and dividing by −2i) gives

(D)
[
ζ∂ζ − i(ωζ + qρ)

]
ψ2 = −(k − im)ψ1 ⇒ ψ1 =

[
ζ∂ζ − i(ωζ + qρ)

]
ψ2

−(k − im)
. (5.27)

Plugging ψ2 in (D) gives[
ζ∂ζ − i(ωζ + qρ)

][
ζ∂ζ + i(ωζ + qρ)

]
ψ1 = (k + im)(k − im)ψ1

ζ∂ζ

(
ζ∂ζψ1

)
+((((

((((i(ωζ + qρ)ζ∂ζψ1 + iωζψ1 −(((((
(((i(ωζ + qρ)ζ∂ζψ1 =

(
m2 + k2 − (ωζ + qρ)2

)
ψ1

ζ2∂2
ζψ1 + ζ∂ζψ1 =

(
ν2 − ωζ(2qρ+ i)− (ωζ)2

)
ψ1, (5.28)

whereas plugging ψ1 into (C) gives the same expression for ψ2 except for one minus sign,

ζ2∂2
ζψ2 + ζ∂ζψ2 =

(
ν2 − ωζ(2qρ − i)− (ωζ)2

)
ψ2. (5.29)

Note that given a solution for ψ1, the other spinor component ψ2 is determined via equation 5.26. We can
therefore focus attention on the differential equation 5.28 governing ψ1.
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The term with the first derivative ∂ζψ can be removed by a redefinition ψ → Aψ,

ζ2
(
A∂2

ζψ1 +���
��2∂ζA∂ζψ1 + ψ1∂

2
ζA
)

+
(
���

�ζA∂ζψ1 + ζψ1∂ζA
)

=
(
ν2 − ωζ(2qρ+ i)− (ωζ)2

)
Aψ1, (5.30)

giving an equation which fixes A,

2ζ2∂ζA+ ζA = 0 ⇒ A =
1√
ζ
. (5.31)

Dividing the whole equation 5.30 by A gives

ζ2
(
∂2
ζψ1 + ψ1

1
A
∂2
ζA
)

+ ζψ1
1
A
∂ζA =

(
ν2 − ωζ(2qρ+ i)− (ωζ)2

)
ψ1. (5.32)

The terms containing A are easily calculated ( 1
A∂ζA = − 1

2ζ and 1
A∂

2
ζA = 3

4ζ2 ) and plugged in, yielding

∂2
ζψ1 +

(
ω2 + 2iω

( 1
2 − iqρ)
ζ

+
1
4 − ν

2

ζ2

)
ψ1 = 0, (5.33)

which is solved by 6

ψ1(ζ) = A1W 1
2−iqρ,ν

(2iωζ) +B1W− 1
2 +iqρ,ν(−2iωζ). (5.34)

Expressing Whittaker’s function in terms of the Kummer’s confluent hypergeometric function

Wk,µ(z) = e−
z
2 zµ+ 1

2U(µ− κ+
1
2
, 1 + 2µ; z), (5.35)

the solution for ψ1 is written as

ψ1(ζ) = = A1e
−iωζ(2iωζ)ν+ 1

2U(ν + iqρ, 1 + 2ν; 2iωζ) +B1e
iωζ(−2iωζ)ν+ 1

2U(ν − iqρ+ 1, 1 + 2ν;−2iωζ).
(5.36)

To find the retarded Green’s function, the solution should be infalling near the horizon. The term scaling
like φ ∼ e−iω(τ−ζ) ∼ eiωζ satisfies this (as τ grows, so must ζ, to keep the phase fixed). Therefore A1 = 0.
We could now use a cute trick

U(a, b, z) =
Γ(1− b)

Γ(a− b+ 1)
M(a, b, z) +

Γ(b− 1)
Γ(a)

z1−bM(a− b+ 1, 2− b, z), (5.37)

6Recall that the Whittaker function Wk,µ(z) is the solution to

d2w

dz2
+
“
−

1

4
+
k

z
+

1
4
− µ2

z2

”
w = 0,
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to rewrite U in terms of M

U(ν − iqρ+ 1, 1 + 2ν;−2iωζ) =
Γ(−2ν)

Γ(1− iqρ− ν)
M(ν − iqρ+ 1, 1 + 2ν;−2iωζ)

+
Γ(2ν)

Γ(1− iqρ+ ν)
(−2iζω)−2νM(1− iqρ− ν, 1− 2ν;−2iζω). (5.38)

In the asymptotic boundary limit ζ → 0 the hypergeometric function M goes to 1, so the infalling piece of
ψ1 has a near boundary expansion that reads,7

ψ1
ζ→0
= eiωζ(−2iωζ)

1
2 +ν Γ(−2ν)

Γ(1− iqρ− ν)
+ eiωζ(−2iωζ)

1
2−ν

Γ(2ν)
Γ(1− iqρ+ ν)

. (5.39)

The rescalings Ψ =
(
−g
grr

)−1/4

ψ = ζ
1
2ψ and ψ → Aψ = ψ√

ζ
cancel each others effect. Also the transformation

ψ → 1√
2
(1− iσ1)ψ must be undone. This is done by observing 1√

2
(1− iσ1) 1√

2
(1+ iσ1) = 1. The eigenspinors

appearing in equation 5.22 are therefore transformed into

(1 + iσ1)ψ± = (1 + iσ1)

(
ν± +m

qρ+ k

)
=

(
ν± +m+ iqρ+ ik

iν± + im+ qρ+ k

)
. (5.40)

We effectively put unity in equation 5.20. One term 1√
2
(1 − iσ1) turned the Dirac equation into a hyper-

geometric equation, the other term transformed the eigenspinor. The solution on the asymptotic boundary
reads

Ψ1
ζ→0
= eiωζ(−2iωζ)

1
2 +ν(ν +m+ iqρ+ ik)

Γ(−2ν)
Γ(1− iqρ− ν)

+ eiωζ(−2iωζ)
1
2−ν(−ν +m+ iqρ+ ik)

Γ(2ν)
Γ(1− iqρ+ ν)

.

(5.41)

Conclusion: The exact boundary retarded Green’s function for a fermion of mass m and
charge q in AdS2 × R is8

G(ω, k) =
Γ(−2ν)Γ(1− iqρ+ ν)
Γ(2ν)Γ(1− iqρ− ν)

m+ ik + iqρ+ ν

m+ ik + iqρ− ν
(2ω)2νe−iπν (5.42)

This result is to be compared with [5]. The reason for the similarity in the expressions found traces back to
the fact that BTZ and Reisner-Nordström black holes have the same near horizon gauge field expansion.
Notation Gk(ω) = c(k)ω2νk = |c(k)|eiγkω2νk is introduced, to single out the interesting scaling in ω. Also
the subscript k in νk is restored.

5.3 Boundary Green’s function of full background

To find the retarded Green’s function of the full BTZ geometry, the solution found in the region near the
black hole horizon (henceforth denoted by ΨI(r)) needs to be matched to solutions that live in the rest of
the geometry (denoted by ΨO(r)). Recall that at ω = 0, a solution to the Dirac equation was found in the

7M(a, b, ζ → 0) =
Γ(b)

Γ(a)Γ(a−b)
R 1
0 e

ζuua−1(1− u)b−a−1du =
Γ(b)

Γ(a)Γ(a−b)B(a, b) = 1.
8This is found by taking the quotient of subleading to subleading term of 5.41. Also (−i)2ν = (−1)ν = e−iπν was used.
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near horizon region which scales as 9

ΨI(ζ) = ψ+ζ
1
2 +νk + ψ−ζ

1
2−νk . (5.43)

Matching this to the outer region solution means that

ΨO(r) r→rh∼ (r − 1)−
1
2 +νk + Gk(r − 1)−

1
2−νk . (5.44)

is demanded, where Gk(ω) is the Green’s function of the IR AdS2 × R derived in the previous subsection.
On the other hand, the retarded Green’s function of the full geometry is given by the ratio of leading to
sub-leading terms near the AdS-boundary. This is the motivation to expand the near horizon solution in
terms of near boundary solutions (found in equation 5.17).

ΨO(r) r→∞= (r − 1)−
1
2 +νk︸ ︷︷ ︸

a+r−1−m+b+r−1+m

+Gk (r − 1)−
1
2−νk︸ ︷︷ ︸

a−r−1−m+b−r−1+m

=
(
a+ + a−Gk

)
r−1−m +

(
b+ + b−Gk

)
r−1+m (5.45)

In this expansion appear coefficients a and b (depending on k) which are found by solving the full outer
region equations of motion numerically. The result is an expression for the retarded Green’s function,

GR(k) ∼ b+ + b−Gk
a+ + a−Gk

. (5.46)

This strict ω = 0 result is generalized in [5] to include small nonzero ω, 10

GR(ω, k) = K
b
(0)
+ + ωb

(1)
+ +O(ω2) + Gk(ω)

(
b
(0)
− + ωb

(1)
− +O(ω2)

)
a

(0)
+ + ωa

(1)
+ +O(ω2) + Gk(ω)

(
a

(0)
− + ωa

(1)
− +O(ω2)

) . (5.47)

Once again, the a’s and b’s are coefficients that are found by solving the full outer region equations of
motion numerically. Numerical studies (see e.g. [43]) have shown that there are certian momentum values
kf such that a(0)

+ (kf ) = 0. This motivates us to make an ω ≈ 0, k ≈ kf expansion. The latter means that

a
(0)
+ (k) ≈

��
��a

(0)
+ (kf ) + (k − kf )

∂a
(0)
+ (k)

∂k , leading to

GR(ω, k ≈ kf ) ≈ h2

k⊥ − 1
vf
ω − h2e

iγkf ω2νkf
, (5.48)

where vf ≡ −
∂ka

(0)
+ (kf )

a1
+(kf )

, h1 ≡
b1+(kf )

∂ka
(0)
+ (kf )

and h2 ≡ −|c(kf )| a0
−(kf )

∂ka
(0)
+ (kf )

. The term that scales nontrivially in ω

is the IR AdS2 × R Green’s function Gk(ω) which appears as the self-energy.

9Equation 5.35 shows that ω always comes in pairs with ζ, therefore ζ → 0 and ω → 0 are equivalent.
10The factor K is a term not depending on k and scaling as K ∼ µ2νU where νU is the conformal dimension of the boundary

operators νU =
q
m2R2 + d2

4
=
√
m2R2 + 1.



Chapter 6

Quantum Corrections

The fermionic action introduced in the previous chapter

Sfermion =
∫
d3x
√
−gi(Ψ̄Γµ

(
∂µ +

1
4
ωabµΓab − iqAµ

)
Ψ−mΨ̄Ψ), (6.1)

contains a gauge field-fermion-fermion interaction term which is 1/N suppressed. Moving away from large
N allows fermion/anti-fermion bubbles (depicted in figure 6) which contribute to the gauge field two-point
function (denoted by χ̃).

UV

IR

〈ρ(~x)ρ(~y)〉
=〈At(~x)At(~y)〉∂AdS

Charged BTZ

k, iΩ

k, iΩ

k + q,
iΩ + iω

q, iω

~x

~y

Figure 6.1: Fermionic loop correction to the gauge field two-point function.
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The fermions can be formally be integrated out from the action

S =
∫
d2+1xTr ln(i /D0 +m+ iq /A)

=
∫
d2+1xTr ln

(
D0(r, ~x, r′, ~x′)−1 + iq /A

)
∼
∫
d2+1xTr ln

(
1 +D0(r, ~x, r′, ~x′)iq /A

)
, (6.2)

where we absorbed the term Tr ln
(
D0(r, ~x, r′, ~x′)−1

)
into the constant in front of the partition sum. Ex-

panding out for small coupling q,1

S =
∫
d2+1xTr

(
D0(r, ~x, r′, ~x′)iq /A

)
− 1

2

∫
d2+1x

∫
d2+1x′Tr

(
D0(r, ~x, r′, ~x′)iq /AD0(r′, ~x′, r, ~x)iq /A+ ..

)
. (6.3)

The first order term gives a tadpole diagram which contributes to the background gauge field. The second
order term is the diagram we are interested in. We aim at the calculation of quantum corrections to
〈ρ(r)ρ(0)〉 = 〈J0(r)J0(0)〉 = 〈At(r → ∞, ~x)At(r → ∞, 0)〉. Therefore only the µ, ν = t components are of
interest. Fourier transforming the propagators with

D(r, ~x, r′, ~x′) =
∫
dω

2π

∫
dk

2π
D(r, r′, iω, k)e−iω(τ−τ ′)+ik(x−x′), (6.4)

gives the amplitude of the one loop diagram (In Euclidean signature),

χ̃(iω, q) ≡ (iq)2

2

∫
dr
√
g dr′

√
g′
∫
dΩdk
(2π)2

At(r,−q)Tr
[
ΓtD(iΩ, k, r, r′)ΓtD(iΩ + iω, k + q, r′, r)

]
At(r′, q)

(6.5)

In the above expression appear fermionic bulk to bulk propagators D(iΩ, k, r, r′). The next section dis-
cusses their construction. Because the gauge field only depends on the radial coordinate, henceforth the q
dependance is omitted.
In section 6.2 the one loop diagram is further manipulated and the radial parts are integrated out. Under
some simplifications, an analytic solution to the resulting integral is found in section 6.3.

6.1 Construction of fermionic propagator

Written in position space (~x = x, t) the bulk to bulk propagator D(r, ~x, r′, ~x′) obeys the usual Green’s
function equation [27],

( /D −m)D(r, ~x, r′, ~x′) =
i
√
g
δ(r − r′)δ(~x− ~x′). (6.6)

1Use log(1 + x)
x→0
= x− x2

2
+O(x3).
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Fourier transforming the boundary coordinates into momentum space gives

(ΓrDr −m)D(r, r′,Ω, k) =
i
√
g
δ(r − r′). (6.7)

In curved spacetime the non-trivial vielbeins make it very difficult (if possible) to find general expressions
for these propagators. One needs expressions for geodesic distances which are not easy to obtain analyti-
cally, especially in non-radial cases. Via tedious calculations and under the assumption that spacetime is
approximately flat, all kinds of terms need to be computed to obtain corrections to the propagator [44] [45].
I will construct the propagator differently, under the assumption that a solution to the homogeneous Dirac
equation of motion is at hand. The propagator can then be constructed by multiplying two such solutions
D(r, r′,Ω, k) ∼ ψ(r<)ψ̃(r>) + ψ(r>)ψ̃(r<) (see also [46]). Here the radial coordinates are written as r<, r>
to indicate which one is closer to the horizon or boundary.
There are two boundary conditions we need to impose. First of all the ψ(r<) part of D(r, r′) should be
chosen such that near the horizon it represents an infalling solution, i.e. ψ(r<) = ψin(r<). This is due to the
demanded causality, which prohibits fields to pop up out of the horizon. An infalling solution represents a
situation that happens, rather than something that “unhappens”. Secondly, near the boundary the Green’s
function should be normalizable, we therefore choose ψ(r>) = ψn(r>).

Claim
The fermionic bulk-to-bulk propagator, the solution to equation 6.7, is given by

D(r, r′,Ω, k) = GR(Ω, k)

{
ψin(r)ψ̃n(r′) r < r′

ψn(r)ψ̃in(r′) r > r′
, (6.8)

where boundary conditions are implemented in the way which was described above, and where ψ̃ ≡ ψTΓ0 =
iψTσ1 is defined.
This claim is insensitive to the precise metric we choose and will therefore have general applicability.

Proof
The term GR(Ω, k) in front of the above expression will naturally arise after plugging in the rest of the
expression into the Green’s function, 2

(
/D −m

)
G(r, r′) =

[
err̄Γ

r̄∂r −m
](

Θ(r′ − r)ψin(r)ψ̃n(r′) + Θ(r − r′)ψn(r)ψ̃in(r′)
)

=errΓ
rδ(r′ − r)ψin(r)ψ̃n(r′) + Θ(r′ − r)errΓr(∂rψin(r))ψ̃n(r′)

+ errΓ
rδ(r − r′)ψn(r)ψ̃in(r′) + Θ(r − r′)errΓr(∂rψn(r))ψ̃in(r′)

−m
(

Θ(r′ − r)ψin(r)ψ̃n(r′) + Θ(r − r′)ψn(r)ψ̃in(r′)
)
. (6.9)

2Another route uses two forms of the Green’s function; the Green’s function equation at r 6= r′, and an integrated version
of the form

R r=r′+ε
r=r′−ε �ψ = 1, thanks to Sean Hartnoll for pointing this out.



40 CHAPTER 6. QUANTUM CORRECTIONS

Use the assumption that ψ is a solution to the Dirac equation to rewrite the second and fourth term,(
/D −m

)
G(r, r′) =−

√
grrσ3δ(r′ − r)ψin(r)ψ̃n(r′) +

((((
(((

((((
Θ(r′ − r)mψin(r)ψ̃n(r′)

+
√
grrσ3δ(r − r′)ψn(r)ψ̃in(r′) +

(((
((((

((((
Θ(r − r′)mψn(r)ψ̃in(r′)

−m
(
((((

(((
(((

Θ(r′ − r)ψin(r)ψ̃n(r′) +((((
(((

(((
Θ(r − r′)ψn(r)ψ̃in(r′)

)
=δ(r − r′)

√
grr
(
σ3ψ

n(r)ψ̃in(r′)− σ3ψ
in(r)ψ̃n(r′)

)
. (6.10)

The radial arguments can be dropped because the normalization is only needed if r = r′ anyway. Writing
out in spinor components,(

/D −m
)
G(r, r′) = δ(r − r′)

√
grri

(
σ3ψ

n(ψin)Tσ1 − σ3ψ
in(ψn)Tσ1

)
= δ(r − r′)

√
grri

[(
ψn1

−ψn2

)
(ψin2 , ψ

in
1 )−

(
ψin1

−ψin2

)
(ψn2 , ψ

n
1 )
]

= δ(r − r′)
√
grri

(
ψn1ψ

in
2 − ψin1 ψn2 0

0 ψin2 ψ
n
1 − ψn2ψin1

)

=
δ(r − r′)√
−g

√
−g
√
grri

(
ψn1ψ

in
2 − ψin1 ψn2

)
12×2, (6.11)

we see that we can normalize the solution with a Wronskian

W (ψn, ψin) ≡
√
−g
√
grr(ψ̃inσ3ψ

n − ψ̃nσ3ψ
in)

=
√
−g
√
grr((ψin)T iσ1σ3ψ

n − (ψn)T iσ1σ3ψ
in)

=
√
−g
√
grr((ψin)Tσ2ψ

n − (ψn)Tσ2ψ
in)

=
√
−g
√
grri

(
ψn1ψ

in
2 − ψin1 ψn2

)
12×2. (6.12)

To calculate what this object is, recall from 5.17 the form of the solution near the boundary,

ψ(r) r→∞−→ ψ−r−1−m

(
0
1

)
+ ψ+r−1+m

(
1
0

)
. (6.13)

whose normalizable part at the boundary is the first term ψn ∼ r−1−m

(
0
1

)
.

We can also write the infalling solution ψin as a linear combination of a part ψn which is normalizable near
the boundary, and a part ψn.n. which is non-normalizable,

ψin(r<) = ψn.n.(r<, ω, k) +GR(ω, k)ψn(r<, ω, k)

∼ r−1−m

(
0
1

)
+

1
GR

r−1+m

(
1
0

)
. (6.14)

In this expression appears the boundary retarded Green’s function as the proportionality between the two
independent modes. This is due to the definition of the retarded Green’s function being the ratio of the
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pre-factors of normalizable and non-normalizable solutions, with the additional demand that the solution
should be infalling at the horizon to ensure causality.
One might wonder why we impose that normalizability constraint on the spinor ψ(r>) if there is still a non
normalizable part to ψin(r<). Because you can never take both r and r′ in equation 6.8 to the boundary
simultaneously, ψin(r) is never strictly ‘near’ the boundary. In other words, one of them is always smaller
and therefore not on the boundary. Writing out the Wronskian,

W (ψn, ψin) =
√
−g
√
grr(ψ̃inσ3ψ

n − ψ̃nσ3ψ
in)

=
ir2

L2

[(
G−1
R rm−1, r−1−m

)( 0 −1
1 0

)(
0

r−1−m

)
−
(

0, r−1−m
)( 0 −1

1 0

)(
1
GR

rm−1

r−1−m

)]
=

2iL2

GR
, (6.15)

and combining equations 6.11 6.12 6.15 it is evident that the claim in 6.8 is justified.3

6.2 Effective vertices

Using the result of the previous section and putting all these pieces together into a Wick rotated equation
6.5 gives

χ̃(ω, q) =
(iq)2

2

∫
dr
√
g dr′

√
g′
∫
dΩ
2π

∫
dk

2π
At(r)At(r′)

Tr
[
Θ(r − r′)ΓtGR(Ω, k)ψn(r)ψ̃in(r′)ΓtGR(Ω + ω, k + q)ψin(r′)ψ̃n(r)

+ Θ(r′ − r)ΓtGR(Ω, k)ψin(r)ψ̃n(r′)ΓtGR(Ω + ω, k + q)ψn(r′)ψ̃in(r)
]
, (6.16)

where the two possibilities r > r′, r < r′ where treated separately. Interchanging r ↔ r′ in the second term

χ̃(ω, q) =
(iq)2

2

∫
dr
√
g dr′

√
g′
∫
dΩ
2π

∫
dk

2π
At(r)At(r′)GR(Ω, k)GR(Ω + ω, k + q)Θ(r − r′)

Tr
[
Γtψn(r)ψ̃in(r′)Γtψin(r′)ψ̃n(r) + Γtψin(r′)ψ̃n(r)Γtψn(r)ψ̃in(r′)

]
, (6.17)

and using the cyclic property of the trace,

χ̃(ω, q) =(iq)2

∫
dr
√
g dr′

√
g′
∫
dΩ
2π

∫
dk

2π
At(r)At(r′)GR(Ω, k)GR(Ω + ω, k + q)Θ(r − r′)

Tr
[
ψ̃n(r)Γtψn(r)ψ̃in(r′)Γtψin(r′)

]
. (6.18)

The argument of the trace is a scalar so Tr can be dropped. Further note that the (r, r′)-dependence of this
expression appears exclusively in the wave functions, and that these terms factorize in terms depending on

3This is up to a factor 2 which can be absorbed into the definition of the Wronskian.
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r and terms depending on r′,

χ̃(iω, q) =(iq)2

∫
dΩ
2π

∫
dk

2π
GR(Ω, k)GR(Ω + ω, k + q)∫ Υ

0

dr′
√
g′
√
g′At(r′)ψ̃in(r′)ettΓ

tψin(r′)
∫ ∞
Υ

dr
√
gAt(r)ψ̃n(r)ettΓ

tψn(r), (6.19)

where Υ is as a cutoff on the radial integral which arises due to the Heaviside step function in 6.18, and
where the vielbeins where introduced because the gamma matrices are only defined in flat space.
The next subsections will show that these radial integrals don’t diverge and can be denoted by effective
vertices Λ (for a similar calculation, see [47]). In order to investigate possible divergencies we need to
consider the radial integrals in the different regions of the BTZ spacetime. Recall that at T = 0, the near
horizon region has an AdS2 × R geometry ds2 = −dτ2+dζ2

ζ2 + dx2. In this region the equation of motion for

AdS2 × R

ζ = 0

ζ =∞

BTZ-bulk

r =∞r = rh

Figure 6.2: Various regions of spacetime.

the upper component of the fermionic field with infalling boundary conditions is solved by equation 5.36,

ψ1(ζ) = B1e
iωζ(−2iωζ)ν+ 1

2U(ν − iqρ+ 1, 1 + 2ν;−2iωζ), (6.20)

while the lower component reads 4

ψ2(ζ) = B2e
iωζ(−2iωζ)ν+ 1

2U(ν − iqρ, 1 + 2ν;−2iωζ). (6.21)

Note that the radial coordinate ζ = L2
2

r−rh for the near the horizon appears always multiplied with ω. In the
near horizon region therefore also ζω can be used to denote the radial position.

6.2.1 Near horizon: ζω � 1

To find the near horizon behavior of the solutions 6.23, 6.21 use the identity

U(a, b, x) x→∞∼ x−a2F0(a, a− b+ 1; ;−1/x). (6.22)

4The extra minus sign mentioned in equation 5.29 means that the infalling solution is W 1
2 +iqρ,ν(−2iωζ). To find equation

6.21 once again use 5.35.
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As a result near the horizon the solutions have the form

ψ1(ζ →∞) = B1e
iωζ(−2iωζ)ν+ 1

2 (−2iωζ)−ν+iqρ−1
2F0(ν − iqρ+ 1,−iqρ− ν; ;−1/2iωζ)

∼ eiωζζiqρ− 1
2

ψ2(ζ →∞) = B2e
iωζ(−2iωζ)ν+ 1

2 (−2iωζ)−ν+iqρ
2F0(ν − iqρ,−ν − iqρ− 1; ;−1/2iωζ)

∼ eiωζζiqρ+ 1
2 . (6.23)

The measure of the radial integral in the near horizon region is rewritten in terms of ζ,∫
dr
√
−detgµν(r) =

∫
dr

dζ
dζ

√
−detdζ

α

drµ
dζβ

drν
gαβ(ζ)

=
∫
�
�
�dr

dζ

dζ

dr
dζ
√
−detgαβ(ζ)

=
∫
dζ

ζ2
. (6.24)

Recall that ψ̃ = ψTΓt and that the gauge field in the near horizon region (ζ � 1) reads At(ζ) ∼ 1
ζ . The

vielbein in this region is given by ett = ζ. The contribution to the effective vertex of the near horizon region
can now be calculated,

Λnearhorizon ∼
∫ ∞
cutoff

dζ

ζ2
At(ψin)T ett(Γ

t)2ψin

= −
∫ ∞
cutoff

dζ

ζ2

1
ζ
ζ
(
ψ2

1 + ψ2
2

)
= −

∫ ∞
cutoff

dζ

ζ2

(1
ζ

+ ζ
)
e2iωζζ2iqρ ∼ ζ2iqρ <∞. (6.25)

For finite charge this region does not give rise to divergencies.

6.2.2 The boundary of the near horizon AdS2 × R region: ζω � 1

Other possible divergencies might arise at the boundary of the AdS2×R where the radial coordinate ζω � 1.
Near this boundary the spinor solution is of the form

Ψ(ζ) = ψ+ζ
1
2 +ν + ψ−ζ

1
2−ν ν =

√
m2 + k2 − (qρ)2, (6.26)

such that the normalizable part is given by ψ(ζ) ∼ ζ 1
2 +ν . The vertex contribution is

Λ∂AdS2 =
∫ cutoff

0

dζ

ζ2
At(ζ)ett

(
ζ

1
2 +ν
)2 =

∫ cutoff

0

dζζ−1+2ν ∼ ζ2ν , (6.27)

which is finite for ν > 0.
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6.2.3 UV: bulk AdS3 −BTZ

Near the asymptotic AdS boundary of the full BTZ geometry the normalizable spinor of equation 5.17 scales
as ψn(r) = r−1−m. In this region the vielbein has the value ett =

√
−gtt r→∞∼ 1

r . The effective vertex gets
a contribution

Λboundary =
∫ ∞
cutoff

dr
√
−gAt(r)ψ̃nettΓt(r)ψn(r)

=
∫ ∞
cutoff

dr r−2−2m log r

∼ − 1
r2m−1

(1 + 2m log r)
∣∣∣r=∞
r=cutoff

, (6.28)

which is finite if m > − 1
2 . We conclude that this region cannot cause divergencies in the effective vertices.

Conclusion: the effective vertex integrals are finite.

They will be denoted by the letter Λ in which also a factor of iq is absorbed. The density susceptibil-
ity 6.19 now reads

χ̃(ω, q) =Λ2

∫
dΩ
2π

∫
dk

2π
GR(Ω, k)GR(Ω + ω, k + q), (6.29)

It was argued in section 5.3 that near the Fermi surface the Green’s functions have the form

Gl,r(k, ω) =
1

±k − kf − 1
vf
ω − cω2νk

, (6.30)

with c a complex number. The subscript r, l makes a distinction between the two Fermi points. The
q = 2kf behavior we are interested in arises when the arguments of both Green’s function are at either one
of k ≈ ±kf , ω ≈ 0. This is satisfied with the combination k + q − kf = 0 and −k − kf = 0. Because with
this choice of arguments both Green’s functions are close to the Fermi surface (where the Green’s function
are singular), the integral obtains its major contribution in this region.
We seem to end up in a situation where we will always have results which depend on νk, associated with
the near horizon region of the BTZ geometry. This is in agreement with the picture of holographic renor-
malization where it is argued that low energies of the dual field theory are to be associated with the deep
interior of the bulk, as was argued in section 3.4.
The above result 6.29 is to be compared with 2.4. The remarkable observation that we make at this point
is that the computation in AdS comes down to the same integral as calculated in chapter 2. The only
difference lies in the near horizon Green’s function which shows up as the self-energy, giving a nontrivial
Σ ∼ ω2νk scaling.

The the remaining integrals cannot be calculated analytically. The next subsection assumes a k-independent
ν, in which case analytic statements are possible.
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k

k + q

Figure 6.3: Particle-hole bubble contributing to the density susceptibility. Compared to the calculation done in
section 2.2, the single particle propagators are replaced by Green’s functions with a nontrivial self-energy which
arises from the near BTZ horizon IR Green’s function.

6.3 Analytic results

The real space density-density correlation function is given by the Fourier transform of the density suscep-
tibility. In general for k dependent νk our integrals are not solvable with analytic techniques. If, however,
we assume for the moment that νk is k-independent, which is true near the Fermi surface where the integral
obtains its major contribution, there is an analytic result possible.5

Taking the aforementioned Fourier transform of the result obtained in 6.29 gives the real space density
correlation function, 6

χ(x, t = 0) =
∫
dq

∫
dωχ̃(q, ω)eiqxe−iωt

=
∫
dq

∫
dω
[ ∫

dk

∫
dΩ Gl(Ω + ω, k + q)Gr(Ω, k)

]
eiqxe−iωt

=
∫
dk

∫
dΩ
(∫

dq

∫
dω Gl(Ω + ω, k + q)eiqxe−iωt

)
Gr(Ω, k)

=
∫
dk

∫
dΩ
(∫

dq

∫
dω Gl(ω, q)ei(q−k)xe−i(ω−Ω)t

)
Gr(Ω, k)

=
∫
dq

∫
dω Gl(ω, q)eiqx��

�e−iωt
∫
dk

∫
dΩ Gr(Ω, k)e−ikx��eiΩt. (6.31)

Notice the similarity between the proof of the convolution theorem F{f ∗ g} = F{f}F{g} and the above
calculation.
Since we are interested in the k ≈ kf , ω ≈ 0 regime, the value of ν determines which ω-dependent term in
equation 6.30 is more important. We restrict to the interesting ν < 1

2 regime (the ν > 1
2 will give back the

familiar fermi liquid like behavior, as I discuss in the end). This means that the term linear in ω is dropped

5I thank Subir Sachdev for pointing this out to me.
6The exponential e−iωt associated with the ω integral was added to make it more transparent, but keep in mind that in

the end t = 0.
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because it vanishes faster near ω ≈ 0. Working out the left moving term of equation 6.31,∫
dq

∫
dω Gl(ω, q)eiqx =

∫
dq

∫
dω

1
q − kf − cω2ν

eiqx

q→q+kf= eikfx
∫
dq

∫
dω

1
q − cω2ν

eiqx

q̃=qx
= eikfx

�
��1
x

∫
dq̃

∫
dω �x

q̃ − cω2νx
eiq̃

ω̃=ωx1/2ν

= eikfxx−
1
2ν

∫
dq̃

∫
dω̃

1
q̃ − cω̃2ν

eiq̃

∼ eikfxx−
1
2ν . (6.32)

Likewise for the right mover,∫
dq

∫
dω Gr(ω, q)e−ikx =

∫
dq

∫
dω

1
−k − kf − cω2ν

e−ikx

k→k−kf= eikfx
∫
dq

∫
dω

1
−k − cω2ν

e−ikx

∼ eikfxx−
1
2ν . (6.33)

This leads to a contribution to the real space density-density correlation function

χ(x, t = 0) = e2ikfxx−
1
ν ν <

1
2
. (6.34)

What does ν < 1
2 mean? Lets recall the definition νk =

√
m2 + k2 − (qρ)2. Since we have k ≈ kf ,

ν <
1
2

⇒ m2 + k2
f − (qρ)2 <

1
4
. (6.35)

The mass/charge ratio 6.35 sets the threshold for the possibility of scaling with special power law behavior.

The special scaling at q = 2kf we find is certainly interesting. The question remains however if the field
theory we describe holographically is in any way related to the Luttinger liquid, or that our result is just
coincidental.

The case ν ≥ 1
2 means that the linear term in the Green’s function 6.30 dominates around ω ≈ 0. We

can use our current result 6.34 and fill in “ν”= 1
2 , leading to x−2 scaling, just like in Fermi liquid theory.7

This is an indication that our result should be doubted.

7Quotation marks emphasize that in this case ν is not the conformal dimension, but just the power with which the dominant
ω-term scales.



Chapter 7

Conclusion and Discussion

Quantum corrections to a gauge field propagator in a BTZ black hole background were studied. These 1/N
suppressed processes were shown to be a possible cause of the anomalous scaling of the density two-point
function in the holographic description of low-dimensional fermions.
To come to this conclusion, first low-dimensional interacting fermion systems were studied in chapter 2.
Fermi liquid theory was presented and in particular its inability to describe interacting electrons in one
spatial dimension. A derivation was presented of the interaction dependent scaling of the Luttinger model
in the density two point function at 2kf . This scaling traces back to perfect nesting in one dimension at
that wave vector causing a logarithmic divergence in the particle-hole channel.
Chapter 3 introduced the basic principles of the AdS/CFT correspondence and in particular its application
to condensed matter. Because AdS/CFT is a holographic correspondence, the dual gravitational description
of interacting fermions in two spacetime dimensions must have a three dimensional negatively curved metric.
The BTZ black hole was presented in chapter 4 as the best candidate to start this holographic computation.
In this chapter we derived the charged BTZ black hole as the unique black hole solution with negative
cosmological constant and non-vanishing electric field on the boundary. We further showed that the near
horizon region of the extremal BTZ black hole has an emergent AdS2 × R geometry, similar to the near
horizon region of the Reisner-Nordröm black hole.
In chapter 5, we introduced fermions in the BTZ background and analyzed the Dirac equation for various
regions of spacetime. Here we showed that the spin connection can be removed in the same manner as
was known for higher-dimensional black holes. In the near horizon geometry the Dirac equation was solved
exactly. We thereby re-derived a result known in the literature for the specific case of a BTZ black hole. The
boundary retarded Green’s function was constructed by matching solutions of the inner and outer spacetime
regions. In a certain regime of the parameters this Green’s function takes a familiar form with a self-energy
term whose scaling depends on the conformal dimension of an operator on the boundary of the near horizon
region.
In chapter 6, we moved away from the large N limit by investigating a 1/N suppressed fermionic loop correc-
tion to the gauge field propagator which arises in a second order expansion in the electromagnetic coupling.
In the loop diagram appeared bulk-to-bulk fermion propagators which were constructed by multiplying two
spinor solutions of the homogeneous Green’s function equation. The resulting loop amplitude factorized in
terms at different radial coordinates. These so-called effective vertices were shown not to diverge in any
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region of the BTZ geometry. Interestingly, the remaining part of the loop amplitude had a form similar
to the expression found in the field theory calculation done in the second chapter. The effective vertices
put aside, all information on the extra dimension of AdS was captured in the non-trivial IR scaling of the
self-energy of the boundary Green’s functions. The resulting integrals could be solved analytically under the
simplification that these IR conformal dimension are constant, which is largely true near the Fermi surface,
where the integral obtains its major contribution. In a certain regime of parameters we found special scaling
in the gauge field two-point function at q = 2kf . Although this scaling is certainly interesting, the question
remains if the field theory we hereby describe holographically is indeed really a Luttinger liquid.



Appendix A

Linear Response

An important tool in physics is the theory of linear response.1 It provides a bridge between theoretical
predictions on one side and experiments on the other. Linear response describes how a system in thermal
equilibrium reacts to a perturbation by an external, time dependent force F (t, x). This force couples to an
operator of the system and thereby introduces a perturbation term (switched on adiabatically at t = −∞)
to the Hamiltonian,

Ĥ = Ĥ0 +
∫
ddxF (x, t)X̂. (A.1)

For small driving forces this reaction is supposed to be linear,

X =
∫
ddx

∫
dtχij(x, x′, t, t′)F (x, t). (A.2)

The function χ, the response function (or susceptibility) is a property of the system. It measures the re-
sponse of expectation value of some operator of the system to some applied perturbation. A few observations
can be made on general grounds:
The system cannot react to any forces which have not been applied yet. Put differently, the response func-
tion is retarded χij(x, x′, t, t′) = Θ(t− t′)χij(x, x′, t, t′).
Secondly, if the original Hamiltonian does not depend on time, the response function will depend only on
time differences t− t′, χij(x, x′, t, t′) = χij(x, x′, t− t′).
If the system is spatially translation invariant the response function only depends on spatial distances x−x′,
χij(x, x′, t, t′) = χij(x− x′, t, t′).

1In this section I use the notation of Altland and Simons [48].
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A.1 Microscopic considerations

The expectation value of some operator can be written using bosonic or fermionic functions,

〈X̂〉 =
∑
αα′

〈ψ̄αXαα′ψα′〉. (A.3)

To calculate the expectation value, a functional integral, one needs to specify the action,

S[F, F ′ψ̄, ψ] = S0[ψ̄, ψ] + δS[F, ψ̄, ψ] + δS′[F ′, ψ̄, ψ]

= S0[ψ̄, ψ] +
∫
dτF (τ)

∑
aa′

ψ̄a(τ)Xaa′ψa′(τ) +
∫
dτF ′(τ)

∑
aa′

ψ̄a(τ)X ′aa′ψa′(τ), (A.4)

which is also used to find the partition function Z.
Taking functional derivatives

〈X̂〉 = −Z−1 δ

δF (τ)

∣∣∣
F=0

lnZ[F, F ′]

≈ −
∫
dτ ′
[

δ2

δF (τ)δF ′(τ ′)

∣∣∣
F=F ′=0

lnZ[F, F ′]
]
F ′(τ ′), (A.5)

and comparing this to A.2 gives

χij(τ, τ ′) = −Z−1 δ2

δF (τ)δF ′(τ ′)

∣∣∣
F=F ′=0

Z[F, F ′]. (A.6)

A.1.1 The plethora of real-time response function

The path integral approach to field theory naturally delivers us with the imaginary time (Euclidean) corre-
lation function

CτX1X2
(τ1 − τ2) = −〈Tτ X̂1(τ1)X̂2(τ2)〉. (A.7)

We are interested however response χ(x, x′, t, t′) of the system in the real time to a real time perturbation
F (x, t). We can define three different response functions.; the real time response function

CtX1X2
(t1 − t2) = −i〈TtX̂1(t1)X̂2(t2)〉, (A.8)

the retarded response function

C+
X1X2

(t1 − t2) = −iΘ(t1 − t2)〈[X̂1(t1), X̂2(t2)]ζX 〉, (A.9)

and the advanced response function

C−X1X2
(t1 − t2) = iΘ(t2 − t1)〈[X̂1(t1), X̂2(t2)]ζX 〉, (A.10)
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where ζX = 1 for bosons and ζX = −1 for fermions. The retarded time response functions turns out to
be most important one. This is because this one generates the linear response of X̂ to the presence of a
perturbation.
Using the Lehman representation, which expresses the correlation functions in terms of eigenvalues of a
complete set of eigenfunctions, the different response functions can be connected. If, for example, one has
an explicit expression for CτX1X2

(τ1−τ2), we can obtain C+
X1X2

(t1−t2) by a Wick rotation iω → ω+iδ. This
infinitesimally small δ makes sure no branch cuts are crossed. Also it has a very physical interpretation: it
makes sure that the perturbation is turned on adiabatically at t = −∞. The poles of the retarded correlation
function all lie in the lower half of the complex plane. A pole in the upper half plane would lead to a mode
that is growing in time and is therefore non-normalizable.

A.2 The spectral function

The spectral function is introduced as

A(ω) ≡ −2ImC+(ω). (A.11)

The retarded and the advanced correlation functions are related through complex conjugation C+(ω) =
[C−(ω)]∗.2 It follows that ImC+(ω) = −ImC−(ω), and consequently,

A(ω) = i(C+(ω)− C−(ω)). (A.12)

The spectral function contains the same amount of information as the correlation function itself,∫ ∞
−∞

dω

2π
A(ω)
z − ω

=
∫ ∞
−∞

dω

2π
i(C+(ω)− C−(ω))

z − ω
= C(z). (A.13)

This complex integral is computed after recognition of the fact that C+(ω)(C−(ω)) only has poles in the
upper (lower) imaginary plane. These poles coincide with those of C(z).
The physical meaning of the spectral function becomes apparent if we look at the Fermi gas (non-interacting
fermions). Wick rotating the single particle propagator to GR(k, iω → ω + iδ) = 1

p⊥−ω−iδ and using
limη→0

1
x±iη = ∓iπδ(x) + P 1

x we see that the spectral function of a Fermi gas,

ImGR(ω) = δ(p⊥ − ω), (A.14)

has a single peak at the particle energy. The spectral function is therefore a measure of the probability to find
a excitation with a specific energy.3 In the case of the interacting Fermi gas (Fermi liquid) Gp(ω) = 1

p⊥−ω+Σ

this delta function peak is smeared out to a Lorentzian profile,

A(ω) =
ImΣ

(k2
⊥ − ω + ReΣ)2 + ImΣ2

. (A.15)

2This can be derived easily using the Lehman representation.
3Probabilities are normalized because

R
dω
2π
Aα(ω) = 1.
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Appendix B

Curvature and the Einstein Equation

From a given metric gαβ , this Mathematica notebook computes the components of the following: the
inverse metric, gλσ, the Christoffel symbols or affine connection, 1

Γλµν = 1
2g
λσ (∂µgσν + ∂νgσµ − ∂σgµν),

( ∂α stands for the partial derivative ∂ /∂xα ), the Riemann tensor,
Rλµνσ = ∂νΓλµσ − ∂σΓλµν + ΓηµσΓλην − ΓηµνΓλησ,
the Ricci tensor
Rµν = Rλµλν ,
the scalar curvature,
R = gµνRµν ,
and the Einstein tensor,
Gµν = Rµν − 1

2gµνR.

Clearing the values of symbols:

First clear any values that may already have been assigned to the names of the various objects to be
calculated. The names of the coordinates that you will use are also cleared.

Clear[coord,metric, inversemetric, affine, riemann, ricci, scalar, einstein, r, θ, φ, t]Clear[coord,metric, inversemetric, affine, riemann, ricci, scalar, einstein, r, θ, φ, t]Clear[coord,metric, inversemetric, affine, riemann, ricci, scalar, einstein, r, θ, φ, t]

Setting the dimension:

The dimension nnn of the spacetime (or space) must be set:

n = 3n = 3n = 3

3

1This program was written by Leonard Parker, University of Wisconsin, Milwaukee .
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Defining a list of coordinates:

coord = {r, φ, t}coord = {r, φ, t}coord = {r, φ, t}coord = {r, φ, t}coord = {r, φ, t}coord = {r, φ, t}coord = {r, φ, t}coord = {r, φ, t}coord = {r, φ, t}

{r, φ, t}

Defining the BTZ metric:

metric = {{(g[r])∧(−1), 0, 0}, {0, r∧2, 0}, {0, 0,−f [r]}}metric = {{(g[r])∧(−1), 0, 0}, {0, r∧2, 0}, {0, 0,−f [r]}}metric = {{(g[r])∧(−1), 0, 0}, {0, r∧2, 0}, {0, 0,−f [r]}}{{
1
g[r] , 0, 0

}
,
{

0, r2, 0
}
, {0, 0,−f [r]}

}

Calculating the inverse metric:

The inverse metric is obtained through matrix inversion.

inversemetric = Simplify[Inverse[metric]]inversemetric = Simplify[Inverse[metric]]inversemetric = Simplify[Inverse[metric]]{
{g[r], 0, 0},

{
0, 1

r2 , 0
}
,
{

0, 0,− 1
f [r]

}}

Calculating the Christoffel symbols:

The calculation of the components of the Christoffel symbols is done by transcribing the definition given
earlier into the notation of Mathematica and using the Mathematica functions DDD for taking partial
derivatives, SumSumSum for summing over repeated indices, TableTableTable for forming a list of components, and SimplifySimplifySimplify
for simplifying the result.

affine:=affine = Simplify[Table[(1/2) ∗ Sum[(inversemetric[[i, s]])∗affine:=affine = Simplify[Table[(1/2) ∗ Sum[(inversemetric[[i, s]])∗affine:=affine = Simplify[Table[(1/2) ∗ Sum[(inversemetric[[i, s]])∗

(D[metric[[s, j]], coord[[k]]]+(D[metric[[s, j]], coord[[k]]]+(D[metric[[s, j]], coord[[k]]]+

D[metric[[s, k]], coord[[j]]]−D[metric[[j, k]], coord[[s]]]), {s, 1, n}],D[metric[[s, k]], coord[[j]]]−D[metric[[j, k]], coord[[s]]]), {s, 1, n}],D[metric[[s, k]], coord[[j]]]−D[metric[[j, k]], coord[[s]]]), {s, 1, n}],

{i, 1, n}, {j, 1, n}, {k, 1, n}]]{i, 1, n}, {j, 1, n}, {k, 1, n}]]{i, 1, n}, {j, 1, n}, {k, 1, n}]]

Displaying the Christoffel symbols:

The nonzero Christoffel symbols are displayed below. You need not follow the details of constructing the
functions that we use for that purpose. In the output the symbol Γ[1,2,3] stands for Γ1

23. Because
the Christoffel symbols are symmetric under interchange of the last two indices, only the independent
components are displayed.

listaffine:=Table[If[UnsameQ[affine[[i, j, k]], 0], {ToString[Γ[i, j, k]], affine[[i, j, k]]}],listaffine:=Table[If[UnsameQ[affine[[i, j, k]], 0], {ToString[Γ[i, j, k]], affine[[i, j, k]]}],listaffine:=Table[If[UnsameQ[affine[[i, j, k]], 0], {ToString[Γ[i, j, k]], affine[[i, j, k]]}],

{i, 1, n}, {j, 1, n}, {k, 1, j}]{i, 1, n}, {j, 1, n}, {k, 1, j}]{i, 1, n}, {j, 1, n}, {k, 1, j}]
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TableForm[Partition[DeleteCases[Flatten[listaffine],Null], 2],TableSpacing→ {2, 2}]TableForm[Partition[DeleteCases[Flatten[listaffine],Null], 2],TableSpacing→ {2, 2}]TableForm[Partition[DeleteCases[Flatten[listaffine],Null], 2],TableSpacing→ {2, 2}]

Γ[1, 1, 1] − g′[r]
2g[r]

Γ[1, 2, 2] −rg[r]

Γ[1, 3, 3] 1
2g[r]f ′[r]

Γ[2, 2, 1] 1
r

Γ[3, 3, 1] f ′[r]
2f [r]

Calculating and displaying the Riemann tensor:

The components of the Riemann tensor, Rλµνσ, are calculated using the definition given above.

riemann:=riemann = Simplify[Table[riemann:=riemann = Simplify[Table[riemann:=riemann = Simplify[Table[

D[affine[[i, j, l]], coord[[k]]]−D[affine[[i, j, k]], coord[[l]]]+D[affine[[i, j, l]], coord[[k]]]−D[affine[[i, j, k]], coord[[l]]]+D[affine[[i, j, l]], coord[[k]]]−D[affine[[i, j, k]], coord[[l]]]+

Sum[affine[[s, j, l]]affine[[i, k, s]]− affine[[s, j, k]]affine[[i, l, s]],Sum[affine[[s, j, l]]affine[[i, k, s]]− affine[[s, j, k]]affine[[i, l, s]],Sum[affine[[s, j, l]]affine[[i, k, s]]− affine[[s, j, k]]affine[[i, l, s]],

{s, 1, n}],{s, 1, n}],{s, 1, n}],

{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}]]{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}]]{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}]]

The nonzero components are displayed by the following functions. In the output, the symbol R[1, 2, 1,
3] stands for R1

213, and similarly for the other components. You can obtain R[1, 2, 3, 1] from R[1, 2, 1, 3]
using the antisymmetry of the Riemann tensor under exchange of the last two indices. The antisymmetry
under exchange of the first two indices of Rλµνσ is not evident in the output because the components of
Rλµνσ are displayed.

listriemann:=Table[If[UnsameQ[riemann[[i, j, k, l]], 0], {ToString[R[i, j, k, l]], riemann[[i, j, k, l]]}],listriemann:=Table[If[UnsameQ[riemann[[i, j, k, l]], 0], {ToString[R[i, j, k, l]], riemann[[i, j, k, l]]}],listriemann:=Table[If[UnsameQ[riemann[[i, j, k, l]], 0], {ToString[R[i, j, k, l]], riemann[[i, j, k, l]]}],

{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, k − 1}]{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, k − 1}]{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, k − 1}]

TableForm[Partition[DeleteCases[Flatten[listriemann],Null], 2],TableSpacing→ {2, 2}]TableForm[Partition[DeleteCases[Flatten[listriemann],Null], 2],TableSpacing→ {2, 2}]TableForm[Partition[DeleteCases[Flatten[listriemann],Null], 2],TableSpacing→ {2, 2}]

R[1, 2, 2, 1] 1
2rg
′[r]

R[1, 3, 3, 1] 1
4

(
g[r]f ′[r]2

f [r] − f ′[r]g′[r]− 2g[r]f ′′[r]
)

R[2, 1, 2, 1] − g′[r]
2rg[r]

R[2, 3, 3, 2] − g[r]f
′[r]

2r

R[3, 1, 3, 1]
−f [r]f ′[r]g′[r]+g[r](f ′[r]2−2f [r]f ′′[r])

4f [r]2g[r]

R[3, 2, 3, 2] − rg[r]f
′[r]

2f [r]
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Calculating and displaying the Ricci tensor:

The Ricci tensor Rµν was defined by summing the first and third indices of the Riemann tensor (which has
the first index already raised).

ricci:=ricci = Simplify[Table[Sum[riemann[[i, j, i, l]], {i, 1, n}], {j, 1, n}, {l, 1, n}]]ricci:=ricci = Simplify[Table[Sum[riemann[[i, j, i, l]], {i, 1, n}], {j, 1, n}, {l, 1, n}]]ricci:=ricci = Simplify[Table[Sum[riemann[[i, j, i, l]], {i, 1, n}], {j, 1, n}, {l, 1, n}]]

Next we display the nonzero components. In the output, R[1, 2] denotes R12, and similarly for the other
components.

listricci:=Table[If[UnsameQ[ricci[[j, l]], 0], {ToString[R[j, l]], ricci[[j, l]]}], {j, 1, n}, {l, 1, j}]listricci:=Table[If[UnsameQ[ricci[[j, l]], 0], {ToString[R[j, l]], ricci[[j, l]]}], {j, 1, n}, {l, 1, j}]listricci:=Table[If[UnsameQ[ricci[[j, l]], 0], {ToString[R[j, l]], ricci[[j, l]]}], {j, 1, n}, {l, 1, j}]

TableForm[Partition[DeleteCases[Flatten[listricci],Null], 2],TableSpacing→ {2, 2}]TableForm[Partition[DeleteCases[Flatten[listricci],Null], 2],TableSpacing→ {2, 2}]TableForm[Partition[DeleteCases[Flatten[listricci],Null], 2],TableSpacing→ {2, 2}]

R[1, 1]
−f [r](2f [r]+rf ′[r])g′[r]+rg[r](f ′[r]2−2f [r]f ′′[r])

4rf [r]2g[r]

R[2, 2] − r(g[r]f
′[r]+f [r]g′[r])
2f [r]

R[3, 3] 1
4

(
f ′[r]g′[r] + g[r]

(
2f ′[r]
r − f ′[r]2

f [r] + 2f ′′[r]
))

Calculating the scalar curvature:

The scalar curvature R is calculated using the inverse metric and the Ricci tensor. The result is displayed
in the output line.

scalar = Simplify[Sum[inversemetric[[i, j]]ricci[[i, j]], {i, 1, n}, {j, 1, n}]]scalar = Simplify[Sum[inversemetric[[i, j]]ricci[[i, j]], {i, 1, n}, {j, 1, n}]]scalar = Simplify[Sum[inversemetric[[i, j]]ricci[[i, j]], {i, 1, n}, {j, 1, n}]]

rg[r]f ′[r]2−2f [r]2g′[r]−f [r](rf ′[r]g′[r]+2g[r](f ′[r]+rf ′′[r]))
2rf [r]2

Calculating the Einstein tensor:

The Einstein tensor, Gµν = Rµν − 1
2gµνR, is found from the tensors already calculated.

einstein:=einstein = Simplify[ricci− (1/2)scalar ∗metric]einstein:=einstein = Simplify[ricci− (1/2)scalar ∗metric]einstein:=einstein = Simplify[ricci− (1/2)scalar ∗metric]

The results are displayed in the same way as for the Ricci tensor earlier.

listeinstein:=Table[If[UnsameQ[einstein[[j, l]], 0], {ToString[G[j, l]], einstein[[j, l]]}],listeinstein:=Table[If[UnsameQ[einstein[[j, l]], 0], {ToString[G[j, l]], einstein[[j, l]]}],listeinstein:=Table[If[UnsameQ[einstein[[j, l]], 0], {ToString[G[j, l]], einstein[[j, l]]}],

{j, 1, n}, {l, 1, j}]{j, 1, n}, {l, 1, j}]{j, 1, n}, {l, 1, j}]

TableForm[Partition[DeleteCases[Flatten[listeinstein],Null], 2],TableSpacing→ {2, 2}]TableForm[Partition[DeleteCases[Flatten[listeinstein],Null], 2],TableSpacing→ {2, 2}]TableForm[Partition[DeleteCases[Flatten[listeinstein],Null], 2],TableSpacing→ {2, 2}]

G[1, 1] f ′[r]
2rf [r]

G[2, 2]
r2(f [r]f ′[r]g′[r]−g[r](f ′[r]2−2f [r]f ′′[r]))

4f [r]2

G[3, 3] − f [r]g′[r]
2r
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