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1 Introduction

Around 1900, Hilbert started working on the foundations of mathematics. His
work on the foundations would later be known as Hilbert’s programme, a pro-
gramme aiming to prove consistency of mathematics by means of restricted
methods. In 1930, when Hilbert and others were still working on this pro-
gramme, Gödel presented his incompleteness theorems, which have been said
to refute Hilbert’s programme. But do they? After this ‘refutation’, many
mathematicians have been working on the programme, adapting it to avoid the
consequences of the incompleteness theorems.

To be able to answer the question whether or not Hilbert’s programme has
really been refuted by the incompleteness theorems, we will first look at Hilbert’s
programme: its historical development and an explanation of its content. This
will mostly be in line with Smorynski [1986]. After that we will discuss Peano
Arithmetic, some logic and primitive recursive functions, to be able to under-
stand the next main subject: Gödel’s theorems. We will discuss the theorems,
their proofs, the theory Gödel developed to give these proofs, and how the the-
orems refute Hilbert’s programme. Except for the refutation, this will mostly
be in line with van Oosten [2009]. Then we will look at the adjustments made
to the programme, developments in different directions, by e.g. Feferman and
Gentzen, mostly in line with Zach [2006]. We will conclude by answering the
question whether or not the programme has been refuted by the incompleteness
theorems.
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2 Hilbert’s Programme

In 1921, Hilbert presented his programme. The main idea of the programme was
to axiomatise all classical mathematics. The consistency of the system obtained
this way should be proved, but only by means of certain restricted methods.
The methods Hilbert allowed he called finitary, and during the development of
the programme he specified more and more which methods were to be accepted
as finitary.

2.1 Historical Development of the Programme

Originally, in mathematics the traditional Aristotelian approach to axiomatisa-
tion was accepted. This approach is roughly as follows: an axiom is a ‘statement
worthy of acceptance’1, which means it is an evident truth about the structure
one is axiomatising. Theorems can be deduced from these axioms via proofs,
which are following certain logical rules. Using these means of proving, true
axioms will lead to true theorems.

This Aristotelian approach was slowly being abandoned during the 18th and
19th centuries. Axioms no longer needed to be evident truths, one could also
create systems which are different from the systems using only ‘true’ axioms.
For example, non-Euclidean geometry was being studied by Schweikert, Gauss,
Bolyai and others.2. George Peacock presented a new sort of algebra which was
not dealing with quantities at all, a purely symbolic system. Other examples
are the quaternions, an invention of Hamilton, or Cayley’s numbers. All these
examples show the enormous possibilities that mathematics could offer, once
the axiomatic view had changed.

In 1899, Hilbert published his lectures on Euclidian geometry, the Grund-
lagen der Geometrie3, in which Hilbert described the Euclidean geometry in a
formal axiomatic way. The Grundlagen was the first major work written using
this axiomatic freedom instead of the Aristotelian approach.

In 1902, Hilbert formulates his opinion on the axiomatic method as follows:4

Every science takes its starting point when5 a sufficiently coherent
body of facts is given. It takes form, however, only by organising this
body of facts. This organisation takes place through the axiomatic
method, i.e., one constructs a logical structure of concepts so that the
relationships between the concepts correspond to the relationships
between the facts being organised.

There is arbitrariness in the construction of such a structure of con-
cepts; we, however, demand of it:

1) completeness, 2) independence, 3) consistency.

This last consideration was of special importance to Hilbert, especially the
consistency of arithmetic of the reals. Before he published any of his consistency

1[Mendell, 2008]
2[Smorynski, 1986] p. 5
3[Hilbert, 1899]
4From [Zach, 2006], quoting [Majer and Hallett, 2004].
5In the original citation by Zach it was if instead of when. This adaptation I have made

because the original text by Hilbert says: ‘Jede Wissenschaft nimmt ihren Anfang dann, wenn
ein genügendes zusammenhängendes Tatsachenmaterial vorliegt.’ [Majer and Hallett, 2004]
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proofs, Bertrand Russell discovered his famous paradox in set theory:

R = {x : x /∈ x}, then R ∈ R if and only if R /∈ R (1)

This paradox could be derived in the work of Frege. Frege is famous for
reconceiving the discipline of logic: he constructed a formal system in which
he constituted the first predicate calculus. Also he criticized Hilbert’s under-
standing and use of the axiomatic system.6 After the news of this paradox, other
paradoxes were found and many mathematicians and philosophers worried about
the correctness of foundational work. Hilbert however, had known about these
paradoxes for a few years already and remained unperturbed.7 These paradoxes
convinced Hilbert of the need for rigour in foundational mathematics, but also
of the fact that logic alone wasn’t enough to describe fully the foundations of
mathematics.

In 1904, Hilbert showed his first consistency proofs. These showed the con-
sistency of some very weak systems. These results were not very impressive,
and one explanation for that is the fact that logic was still to be developed at
that time. Only Frege had experience in working within formal systems, and
his formal system was inconsistent. It was only in the 1920s that the distinction
between first-order and second-order logic was made, as well as the nature of
quantifiers was understood. Hilbert would do a lot of groundwork for these new
understandings, but in 1904 this was all still unknown.

Brouwer, a Dutch mathematician and philosopher, looked at the formaliza-
tion of mathematics from a very different perspective. As Hilbert wanted to
formalize mathematics and prove its consistency merely to be able to do the
‘usual mathematics’ without having to worry about the foundations, Brouwer
was more interested in the foundations of mathematics itself, as he was also
a philosopher. Mathematics is, according to Brouwer, working out the conse-
quences of our mathematical intuition, which is a fundamental intuition we all
share. He states that the parts of mathematics that cannot be based on this
intuition must be rejected. Hilbert, however, believed that every mathematical
problem could be solved.

In 1908, Brouwer published a paper entitled De onbetrouwbaarheid der logis-
che principes (The unreliability of the logical principles) in which he questioned
the laws of logic. Brouwer states that the Law of the Excluded Middle ( ϕ∨¬ϕ),
does not carry over to the infinite case. He states this as follows:8

[. . . ] the question of the validity of the principium tertii exclusi
is equivalent to the question whether unsolvable mathematical prob-
lems can exist. There is not a shred of a proof for this conviction,
which has sometimes been put forward, that there exist no unsolv-
able mathematical problems.

6[Zalta, 2013]
7‘The father of set theory, Cantor, had noticed similar difficulties already in 1895 (as

witnessed by Bernstein and by letters to Hilbert and Dedekind).’ about the Burali-Forti
paradox, in [Cantini, 2012], ‘He discovered the paradoxes while working on his survey papers
of 1895 and 1897 and he wrote to Hilbert in 1896 explaining the paradox to him.’ about the
paradoxes he discovered simultanuously with Burali-Forti, in[O’Connor and Robertson, 1988].

8[Smorynski, 1986] p. 14, quoting Brouwer.
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Or, as he puts it in his thesis9:

[. . . ] does it then follow from the non-contradictoriness of the log-
ical system, that such a mathematical building exists? [. . . ] So a
fortiori it is not sure, that for every mathematical problem either a
solution can be given, or it can be logically proved, that it is unsolv-
able; something that Hilbert meanwhile deems, in ”Mathematische
Probleme”, every mathematician is utterly convinced of.

The equivalence Brouwer states here, is a consequence of how Brouwer sees
mathematics. If one states ϕ∨¬ϕ, one must find a (finite) construction accom-
plishing the task demanded by ϕ, so that ϕ is true, or find a (finite) construction
that precludes the process of performing the task demanded by ϕ, so that ϕ is
false. The basis for this statement is Brouwer’s placement of mathematics in
the intellect10: a statement is true when it is known to be true, and statement
is false when it is known to be false. This explains the equivalence between The
Law of the Excluded Middle and the solvability of all mathematical problems.

It must be noted that Brouwer never claimed that the Law of the Excluded
Middle was in fact false. Brouwer accepted the consistency of the Law of the
Excluded Middle, but he distinguished between ‘provable truths’ and provable
‘non-contradictories’, so he wasn’t led to believe the Law of the Excluded Middle
was in fact true.

Brouwer’s opinion can be illustrated by the following example, from [Kuiper,
2004], regarding the decimal expansion of π. In Brouwer’s time, it was still un-
known whether or not the sequence 0123456789 ever appeared in the decimal
expansion of π. He used this fact in the following example. Define the denu-
merable infinite set {xn} on [0, 1] as follows:

xn = 2−n if for some m < n, at the mth decimal place of the expansion of
π, for the first time the sequence 0123456789 appears.

xn = 1− 2−n if this is not the case.
In classical logic, one would say that either 1 or 0 is a limit point of this set,

as we know that either that sequence does appear in the decimal expansion, or
it does not. In intuitionistic logic, one can not use that principle so one can
not say that either 1 or 0 is a limit point. (Note that this means that also the
theorem of Bolzano-Weierstrass does not hold in intuitionistic logic!) Because,
if we could say that either 0 or 1 is a limit point, this would mean that we
know that either the sequence appears in the decimal expansion, or that is does
not. Now this means, according to Brouwer, that we could find a construction
showing that indeed that sequence appears, or a construction showing that is
does not. And at that time this was clearly not the case.

By now we know that this sequence does appear in the decimal expansion of
π. The argument is still valid though, as it also holds for many other problems,
that have not yet been solved.

It is clear that the questioning of the Law of the Excluded Middle and his
criticism that consistency need not be enough as a condition to imply existence,

9[Brouwer, 1907], pp. 141-142, translated from: ‘[. . . ]volgt dan uit de niet-strijdigheid van
het logische systeem, dat zulk een wiskundig gebouw bestaat?[. . . ]Het is dus a fortiori niet
zeker, dat van elk wiskundig probleem f de oplossing kan worden gegeven f logisch kan worden
aangetoond, dat het onoplosbaar is; iets, waarvan intusschen HILBERT in ,,Mathematische
Probleme” meent, dat ieder wiskundige ten innigste is overtuigd.’

10[Smorynski, 1986] p. 14
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are both opposed to Hilbert’s view.
In 1917, Hilbert posed five epistemological questions11:

1. the problem of the solvability in principle of each mathematical question;

2. the problem of the additional verifiability12 of the results of a mathemat-
ical investigation;

3. the question of a criterion of simplicity of mathematical proofs;

4. the question of the relation between content and formalism in mathematics
and logic;

5. the problem of the decidability of a mathematical question through a finite
number of operations.

For the fourth question, we will return to it later, when discussing Hilbert’s
new version of his programme.

To Brouwer, the first question could be answered negatively, as it is equiv-
alent to the Law of the Excluded Middle, as we have seen before in the quotes
of Brouwer given and the explanation of one of his counterexamples. Moreover,
to him, the first and fifth question were essentially the same: for him solvability
meant solvable by means of a finite number of operations.

In 1921, Hilbert started working on foundations again, something he had
been considering since 1917, when he hired Bernays as his assistant. He lectured
several times and the first, but inadequate, description of Hilbert’s programme
appeared to print. Hilbert’s programme intended to prove the consistency of
arithmetic, but the ground rules were different than they had been in 1904, as
Hilbert made a distinction between actual mathematics and metamathematics,
a distinction that will be explained shortly.

Bernays, who was also schooled as a philosopher, indirectly explained the
importance of and emphasis on consistency in Hilbert’s programme to certain
extent, something that had not been explained so far. For example, in one of
his papers he writes13:

What matters for the question of pure mathematics is only whether
the usual, axiomatically characterised mathematical continuum is
possible in itself, that it is a consistent creation.

For Hilbert, this was probably a truism, as he commented in the following
way:14

If the arbitrarily given axioms do not contradict each other through
their consequences, then they are true, then the objects defined
through the axioms exist. That, for me, is the criterion for truth
and existence.

11Translation from [Smorynski, 1986], p. 18
12In the translation in [Smorynski, 1986] it said controllability, but I adapted this transla-

tion, because in the original text,[Hilbert, 1917], it was Kontrollierbarkeit, for which I think
verifiability is a better translation.

13[Smorynski, 1986] p. 24
14From [Smorynski, 1977], p. 825, citing Meschkowski, citing Hilbert.
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What neither he nor Bernays realised at the time, was that Brouwer seemed
to return to the Aristotelian approach in some way: he was after truth, not
mere consistency, something well illustrated by a remark in 1927 by Brouwer15:

nothing of mathematical value will thus be gained: an incorrect
theory, even if it cannot be inhibited by any contradiction that would
refute it, is none the less incorrect, just as a criminal policy is none
the less criminal, even if it cannot be inhibited by a court that would
curb it.

So, the very goal of the programme wouldn’t convince Brouwer, even when
achieved.

In the 1921 version of his programme, Hilbert made the distinction between
mathematics and metamathematics. Mathematics is what we all know as math-
ematics: analysis, set theory, etc. It is abstract, infinitary and has no empirical
meaning. Consistency is enough to guarantee its validity. Metamathematics is
the direct study of signs and their combinations. It is intuitive and contentual.
Hilbert wanted the formalisation of mathematics, with precisely defined axioms
and rules of inference, and the consistency of this system proven in metamath-
ematics.

The distinction between mathematics and metamathematics was first made
by Brouwer in 190716, and Hilbert picked it up as it suited his purposes well:
Brouwer would have to accept his consistency proof, as he accepted metamath-
ematical reasoning. Also he hoped other objections17 against his theory could

15Quoted in [Dalen, 2013], p. 442
16The distinction was made in his dissertation, [Brouwer, 1907], for example here (p. 98):

Eigenlijk is het gebouw der intuitieve wiskunde zonder meer een daad, en
geen wetenschap; een wetenschap, d.w.z. een samenvatting van in den tijd her-
haalbare causale volgreeksen, wordt zij eerst in de wiskunde der tweede orde, die
het wiskundig bekijken van de wiskunde of de taal der wiskunde is: eerst daar
bestaat een causaal verband in de wijze van opvolging der wiskundige systemen
eenerzijds, en der wiskundige teekens, woorden of begrippen andererzijds; maar
daar, evenals bij de theoretische logica, hebben we ook weer te doen met een
toepassing der wiskunde, met een ervaringswetenschap. Men vergelijke in dit
verband de ontwikkelingen van het derde hoofdstuk.

and here(pp. 132-133):

We leggen er verder den nadruk op, dat het syllogisme en de verder logis-
che principes kunnen worden gerekend te gelden voor de taal der logische rede-
neeringen, die handelen over eindige elementengroepen, of aftelbaar oneindige, of
gebieden binnen continua, maar in elk geval uitsluitend wiskundig opgebouwde
systemen; de overtuiging van de betrouwbaarheid hunner toepassing steunt op de
zekerheid, dat het wiskundig opbouwbare systemen zijn, waarover wordt gespro-
ken. En wanneer het gelukt taalgebouwen op te trekken, reeksen van volzinnen,
die volgens de wetten der logica op elkaar volgen, uitgaande van taalbeelden, die
voor werkelijke wiskundige gebouwen, wiskundige grondwaarheden zouden kun-
nen accompagneeren, en het blijkt dat die taalgebouwen nooit het taalbeeld van
een contradictie zullen kunnen vertoonen, dan zijn ze toch alleen wiskunde als
taalgebouw en hebben met wiskunde buiten dat gebouw, bijv. met de gewone
rekenkunde of meetkunde niets te maken.

Dus in geen geval mag men denken, door middel van die taalgebouwen iets
van andere wiskunde, dan die direct intuitief op te bouwen is, te kunnen te weten
te komen. En nog veel minder mag men meenen, op die manier de grondslagen
der wiskunde te kunnen leggen, m.a.w. de betrouwbaarheid der wiskundige
eigenschappen te kunnen verzekeren.

17Poincaré had accused Hilbert of using induction to prove induction.

8



be sidestepped this way.
In 1922, Hilbert presented a formal system of metamathematical arithmetic.

Also he sketched a proof of the consistency of a fragment thereof. This proof
sketch shows how Hilbert thought his programme should be carried out. In-
deed, his student Ackermann would almost succeed in carrying through the
programme, using this proof sketch as guideline.

This proof sketch, and the explanation of later improvements of the pro-
gramme can be found in section 2.3

2.2 Finitism

In his new version of the programme, Hilbert introduced a new word: ‘finit’,
from the Latin word for finite. He used this word to differentiate between finite
and finitistic: a set consisting of two infinite elements is finite (as it only has
two elements) but one would not want to call that set finitistic, as its elements
are infinite.

Actually Hilbert only adopted the already existing notion of finitistic math-
ematics. Finitistic mathematics had been developed by Kronecker, Skolem and
others, after recognising and criticising the use of abstract objects in the in-
tuitionstic mathematics of Brouwer. Their foundational viewpoint was that a
mathematical definition is genuine if and only if it leads to the goal by a finite
number of trials. Only concrete combinatorial operations on finite mathematical
objects are allowed.

Hilbert considered finitistic mathematics as the truly meaningful part of
mathematics. Clearly, finite mathematics is constructive and therefore, the
Law of the Excluded Middle, for example, can be used without problems.

According to Hilbert, problems arise when we apply procedures, reliable in
the finite case, to the infinite. For example, when using quantifiers ∃ and ∀.
These are, according to Hilbert, just abbreviations of infinite conjunctions and
disjunctions. For example, ∀vϕ(v) is the abbreviation of ϕ(0)∧ϕ(1)∧ϕ(2)∧ . . . .
Expressions like this had no precise negations. Later on, in 1925, Hilbert would
argue that only the existential quantifier was infinitistic, and that the universal
quantifier could be used without restraint.

One can say that, according to Hilbert, by using quantifiers, an infinitis-
tic element is introduced into logic. Nevertheless, Hilbert would add formulae
containing quantifiers to his formal system of finitary arithmetic and apply the
Law of the Excluded Middle to them. He would call these axioms and formulae
transfinite, roughly meaning that the cardinality is comparable with that of the
natural numbers. Hilbert claimed that the addition of these transfinite elements
was not necessary and just done for simplification:

To be sure one can presumably prove a finitistic statement also
without application of transfinite means of proof . . . but this claim is
of the sort of the claim that in general every mathematical assertion
must allow itself either to be verified or refuted. 18

We already noted that finite mathematics is constructive and hence a part of
intuitionistic mathematics. On the other hand, intuitionistic mathematics goes
beyond finite mathematics, as became clear when Gödel showed that classical

18Smorynski citing Hilbert in [Smorynski, 1986], p. 28
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arithmetic, which clearly goes beyond finite arithmetic, could be reduced to
intuitionistic mathematics, via his ‘negative translation’19. But this happened
in 1933, which means by that time also his incompleteness theorems had been
presented, and the programme, in this form, already had been refuted.

2.3 Explanation of the Programme

An outline of Hilbert’s approach to the proof of the consistency of the transfinite.
Because of the following equivalences, Hilbert’s logic only included the two

connectives ¬ and →:

ϕ ∨ ψ ⇔ ¬ϕ→ ψ ϕ ∧ ψ ⇔ ¬(ϕ→ ¬ψ) (2)

In his proof, variables are used for formulae as well as for numbers, and the
elements of the ‘language’ are the constant 0, the successor function (·) + 1 and
the predecessor function δ. The only rule of inference is

ϕ and ϕ→ ψ infer ψ (3)

This is called modus ponens.

The axioms are as follows:

1. A→ (B → A)

2. (A→ (A→ B))→ (A→ B)

3. (A→ (B → C))→ (B → (A→ C))

4. (B → C)→ ((A→ B)→ (A→ C))

5. A→ (¬A→ B)

6. (A→ B)→ ((¬A→ B)→ B)

7. a = a

8. a = b→ (A(a)→ A(b))

9. ¬(a+ 1 = 0)

10. δ(a+ 1) = a

There were two things that Hilbert overlooked: the axiom ¬a = 0 →
δ(a) + 1 = a, and a value for δ(0). Even after adding such additional ax-
ioms, the system is still at best a fragment of finitistic arithmetic. Hilbert said
that one should add ‘recursion and intuitive induction’ to obtain the full meta-
mathematical arithmetic.20 In the system, so far no quantifiers are allowed,
which means that induction would have to be added as an inference rule:

from A(0) and A(a)→ A(a+ 1) infer A(b) (4)

19See [Troelstra and van Dalen, 1988], p.25
20From [Smorynski, 1986], p. 29
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At that time, Hilbert’s conception of recursion was, just as that of all his
contemporaries, only partially formed and it’s hard to say what exactly he meant
by recursion and intuitive induction. Now we know that the form of recursion
allowed should be primitive recursion (this will be explained in section 5).

Hilbert has given a proof-sketch of consistency of the theory given above,
which we name T0, which will be presented here. First it is necessary to define
exactly what a formal derivation is.

Definition 1. A formal derivation of a formula ϕ is a sequence of formulae
ϕ0, ϕ1, . . . , ϕn = ϕ such that each ϕi is an instance of an axiom or follows from
two earlier formulae ϕj and ϕk (j, k < i) by modus ponens.21

As Smorynski states in [Smorynski, 1986]: One can show that axioms 1-
6 are complete with respect to purely propositional reasoning. Whence, the
consistency of T0 reduces to the unprovability of ¬(0 = 0): if the system would
be inconsistent, anything could be proved. So if there is something which cannot
be proved, the system is consistent.

Theorem 2. The system T0 is consistent.

A reproduction of Hilbert’s proof, given in 1921, is given by Smorynski in
[Smorynski, 1986]:

Proof. Suppose D = ϕ0, ϕ1, . . . , ϕn is a formal derivation of ¬0 = 0.
As a first step, we can modify D by throwing away any ϕi (other
than ϕn) which is not used as a premise of an application of modus
ponens. Moreover, by repetition of formulae, we can assume each
ϕi occurs only once as such a premise. Call the resulting derivation
D′.

Second, we can omit number variables from D′ by substituting, say,
0 for each occurrence of a variable in D′. Call the result D′′. Third,
we can simplify the terms to the point that each formula is a propo-
sitional combination of equations of numerals,

0, 0 + 1, 0 + 1 + 1, . . . (5)

Fourth, every formula can be brought into a logical normal form (of
some sort - Hilbert doesn’t say which kind).

Each formula of the derivation is now subject to a control22, i.e. one
can check each formula for ‘correctness’ or ‘falsity’. But it can be
shown that each formula of this final derivation is correct, whence
the end formula ¬0 = 0 is correct - a contradiction. Thus, there was
no derivation D of ¬0 = 0.

Step two guarantees the finitary nature of the derivation, as it reduces every
term into a computable term capable of being reduced to a numeral. (This is
only true if one adds the additional axioms given.)

One possible interpretation23 of step three could be, as stated by Smorynski
in [Smorynski, 1986]:

21From [Smorynski, 1986], p. 30
22Originally in [Smorynski, 1986] it was control, but as before I think verifiability is a better

translation of the original text by Hilbert.
23For another possible interpretation, see [Smorynski, 1986] pp. 31-32
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Calculate the value of each term t occurring in the given derivation
D′′ and replace t in each occurrence by the numeral for this value.
Every formula is now a propositional combination of equations of
numerals. The ‘correctness’ or falsity of each equation is simply
a matter of comparison, and the computation of truth values of
propositional combinations is a simple matter.

If this indeed what Hilbert had in mind, then ‘bringing a formula
into a logical normal form’ refer to a simple calculation of the truth
value of a propositional combination of sentences once the individual
truth values are known.

Hilbert extended his proof with the aim of obtaining the consistency of
transfinite arithmetic, i.e. arithmetic with quantifiers. 24

2.3.1 The Introduction of the τ-function

First, Hilbert introduced choice functions. Given a formula ϕ(a) with free vari-
able a, Hilbert added a new term τa(ϕ), which was an attempt to find a coun-
terexample, and together these satisfied the transfinite axiom

ϕ(τa(ϕ))→ ϕ(a) (6)

This axiom can intuitively be explained as follows. If ϕ(a) holds, then the
implication is always true. If ϕ(a) does not hold, then τa(ϕ) is a ‘counterexam-
ple’ of ϕ: for this ‘value’ ϕ does not hold. Then ϕ(τa(ϕ)) does not hold, and
the implication is true.

Formally, the axiom was

11. A(τ(A))→ A(a)

As we see A is a variable for formulae, so it has no numerical variable a
occurring in it. Thus, τ(A) has no subscript indicating which variable is be-
ing bound. Nonetheless, τa does bind variables, and problems may arise with
substitution: we will return to binding variables and substitution in section 4.

Now, quantifiers could be introduced as abbreviations, using τ :

∀aϕ(a) : ϕ(τa(ϕ)) ∃aϕ(a) : ϕ(τa(¬ϕ)) (7)

The first one can be explained using the axiom that was introduced: this
just implies ϕ(a), for all a. The second one is ϕ of a counterexample of ¬ϕ,
which is an example of ϕ.

Once he had these, it is possible to derive the usual laws for quantifiers:

∀aϕ(a)→ ϕ(a), ¬∀aϕ(a)⇔ ∃a¬ϕ(a)

ϕ(a)→ ∃aϕ(a), ¬∃aϕ(a)⇔ ∀a¬ϕ(a)
(8)

Hilbert noted that there were difficulties with the nestings of τ ’s (for every
formula containing a τ -function, a new τ -function should be introduced to com-
plete the system, but then again new functions should be introduced, etc.), but
he indicated how the proof of theorem 2 could be extended to cover a special
instance of this new axiom.

24(not in quotation) This is what we would call ordinary set theory (ZF) now.
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Define, with f a function variable:

τ(f) = τa(f(a) = 0). (9)

This means that the corresponding instance of the newly added axiom be-
comes25

12. f(τ(f)) = 0→ f(a) = 0

To simplify matters, we define a new axiom in which we only allow one fixed
function F which is obtained by recursions, and which is assumed unary. The
new axiom becomes:

13. F (τ(F )) = 0→ F (a) = 0

The resulting system with axioms 1-10 and 13 and the recursion equations
needed to compute F, will be called T1.

Theorem 3. The system T1 is consistent.

A translation of the proof is given by Smorynski in [Smorynski, 1986]:

Proof sketch. Following the steps of the proof of theorem 2 we can
transform any derivation D into a derivation D′ which consists solely
of propositional combinations of equations involving numerals and
the symbol τ(F ). (This is in fact not true, but this is what Hilbert
claimed.) We now attempt a control26 of the proof by assigning τ(F )
the value 0. That is, we replace all occurrences of τ(F ) in D′ by the
numeral 0 to obtain a new ‘derivation’ D′′. We would like to show
that all sentences in D′′ are correct. Those that come from axioms
1-10 or the recursion equations defining F are correct, and modus
ponens preserves correctness. So any false sentences must have been
introduced by 13:

F (0) = 0→ F (z) = 0 (10)

for some numerals z. If all of these are correct, then every sentence in
D′′ is correct and the original D could not have derived ¬0 = 0 as this
formula is false and is left unchanged by the proof transformations.

If, one the other hand, the instance,

F (0) = 0→ F (z) = 0 (11)

is incorrect, we simply go back to D′ and replace all occurrences of
τ(F ) by the numeral z. The instances of 13 now become instances
like

F (z) = 0→ F (x) = 0 (12)

for various numerals x. But these implications are correct formulae,
because F (z) = 0 is false! Again, all sentences in D′′ are correct,
whence D could not have been a derivation of ¬0 = 0

25The function τ(f) wouldn’t be accepted by Brouwer, as Hilbert noted. He gave a sketch
of the consistency proof for theorem 2 and following this he gave a few examples of what
this consistency proof would yield that Brouwer wouldn’t allow. For these examples see
[Smorynski, 1986] p. 33

26I think this should be verification, as explained before.
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In the lecture where Hilbert presented this proof, he said as well that ‘one
had but to carry through the details of his proof sketch in order to complete
the laying foundations for analysis, and therewith begin the corresponding work
on set theory.’27 Hilbert was aware of the fact that this wouldn’t be without
difficulties. What the extent of these difficulties would be, we will see in later
sections.

2.4 Adjustments to the First Version

In 1925, Hilbert lectured again and now made a distinction between real propo-
sitions, finitary general propositions, and ideal propositions, instead of the old
dichotomy between finitary propositions and transfinite formulae. 28

Smorynski describes the difference between these kinds of propositions, as
explained by Hilbert, as follows29:

The real propositions are, Hilbert says, of ‘no essential interest’ in
themselves. They are simple propositional combinations of equations
involving primitive recursive functions and fixed numerals:

2 + 3 = 3 + 2, 1 + 1 = 2, etc. (13)

They are directly contentual assertions verifiable by direct compu-
tation. Their importance lies primarily in affording a control on the
results of formal mathematical proofs. [. . . ]

Real propositions do not exhaust the class of finitistic propositions.
There are also what I shall call here finitary general propositions -
assertions of the form ‘for every numeral n, n+ 1 = 1 + n’ [. . . ]

Finally ther are the ideal propositions are not really propositions
at all, but formal symbols manipulated according to pre-determined
rules [. . . ]

In a lecture in December 1930,[. . . ] Hilbert would point out the
difference between a finitary general proposition, e.g.

1 + x = x+ 1 (14)

and the similar ideal proposition,

∀x(1 + x = x+ 1). (15)

The former is the assertion that

n+ 1 = 1 + n (16)

for all numerals n; the latter also asserts the equation for meaningless
infinitary constructs involving the τ -function.30 [. . . ] Hilbert said

27[Smorynski, 1986] p. 34
28This new distincion as stated by Smorynski ([Smorynski, 1986]) is being criticised as

a misunderstanding of Hilbert’s writings, by e.g. Detlefsen. For a detailed comparison of
the German texts and translations given by Smorynski, and Detlefsen’s conclusions on this
subject, see [Detlefsen, 1990], pp. 347-357.

29[Smorynski, 1986] pp. 39-40
30Actually it was the ε-function instead of the τ -function. The ε-function will be introduced

in section 2.4.1
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the following: Let D be a formal system of finitary arithmetic and
let T be some system of transfinite mathematics. Suppose D proves
the consistency of T. Then: For any universal assertion ϕ, if T ` ϕ
then D ` ϕ.

Hilbert is talking only about the finitary general propositions here. He had
shown already before that for the real propositions, the conservation resulted
from verifiability of the results of mathematical derivations. The verifiability
of these mathematical derivations followed from the method Hilbert used in his
consistency proof.

What he was doing now, is settling the question of the finitistic derivability
of any finitistic statement obtained via transfinite means of proof.

He proved his method by means of an example, Fermat’s theorem:

FT : ∀xyzw(x > 1 ∧ y > 1 ∧ z > 1 ∧ w > 2→ xw + yw 6= zw) (17)

The idea of the proof is this. We assume FT holds in a transfinite system,
which we assume to be consistent and conservative, regarding elementary arith-
metic sentences, over the finitistic system. Now we want to see it is finitistically
derivable. So we reason finitistically and use the fact that transfinitely we know
FT holds to derive a contradiction, which will lead to the finitistic statement of
FT.

The proof of FT is as follows:

Proof. Suppose we are given numerals k,m, n, p such that

k > 1 ∧m > 1 ∧ n > 1 ∧ p > 2 ∧ kp +mp = np. (18)

This is a finitistic statement: it can be verified by a simple computation.
This translates directly into a proof in the transfinite system. On the other
hand, we know that FT is provable in the transfinite system (because we know
FT is provable if we don’t have the restriction of finitistic derivability). This
means, by the provability of FT within the transfinite system, that FT also
holds when applied to k,m, n, p:

k > 1 ∧m > 1 ∧ n > 1 ∧ p > 2→ kp +mp 6= np. (19)

So now we have

kp +mp 6= np kp +mp = np (20)

which are both provable transfinitely. (The first one is our assumption, the
second one follows from the transfinite provability of FT.) But the transfinite
system is consistent, so this means 18 is false and we have proven that for
any k,m, n, p 19 holds, so we have proven FT in our finitistic system, using
transfinite means of proof.

Still no proof of the consistency of transfinite mathematics had been given.
Hilbert had sketched his proof of consistency for the limited case of his transfinite
axiom with the τ -function in 1922. The τ -function was later replaced by a choice
function ε.
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2.4.1 The ε-function

The ε-function satisfied the following additional axiom:31

A(t)→ A(εa(A(a))). (21)

where t is an arbitrary term. With the ε-function it is possible to define the
quantifiers, as follows:

∃xA(x) ≡ A(εxA(x)) ∀xA(x) ≡ A(εx¬A(x)) (22)

The idea of the ε-function is as follows: The ε-function stands for a witness
of the formula A(x), intuitively seen. The ε-terms εxA(x) that occur in a formal
proof can be replaced by numerals, which turns the proof into a quantifier-free
proof.

An example: Suppose a derivation of ¬(0 = 0) exists, and that it contains
only one ε-term εxA(x). Now all occurrences of εxA(x) should be replaced by
0. The axiom added, 21, now only has instances of the form A(t)→ A(0). We
assumed that no other ε-terms occur in the proof, this means that A(t) and
A(0) are basic numerical formulae without quantifiers. Also we may assume,
to simplify matters, they are without free variables. This means they can be
evaluated by finitary calculation. Now all instances A(t)→ A(0) could be true,
then we are done. If one of them is false, then we know A(0) is false while A(t)
is true for some t. Now we replace εxA(x) by n instead of 0, where n is the
numerical value of the term t. Then all statements are true: A(t) was false for all
other terms, so then the implication holds, and for t we now have A(t)→ A(t)
which is of course true. The proof obtained is a derivation of ¬(0 = 0) from
true, purely finitistic, numerical formulae using only modus ponens. This is
impossible, from which we can derive that there doesn’t exist a derivation of
¬(0 = 0).

We can describe the function of the ε-function by the following two con-
servativity results, proved by Bernays in the second volume of the Grundlagen
in 1939.32 Let T be a finitely axiomatised theory containing no quantifiers of
ε-terms, and let PCε be a usual formulation of the predicate calculus, extended
by the ε-operator and its characteristic axiom as stated above. The first ε-
theorem states that for any formula without quantifiers or ε-terms provable in
PCε from T is already provable from T in the quantifier- and ε-free fragment EC
of PC. (EC is the so-called elementary calculus of free variables.) The second
ε-theorem states that any formula without ε-terms provable in PCε from T , is
also provable from T in PC, the pure predicate calculus (without ε-operator).

The difference between the ε-function and the τ -function could intuitively
be explained as follows: the τ -function yields a counterexample to a certain
formula, while the ε-function yields a ‘witness’, an example, of a certain formula.

Ackermann published a consistency proof in 1924, using this ε-function,
but discovered an error later. Johann von Neumann criticised Ackermann’s
improved version of his proof, and also published a consistency proof, in 1927.
However, Hilbert discussed Ackermann’s improved proof in a lecture, and the
published version was accompanied by a note by Bernays explaining the proof

31From Moser and Zach [2005] p. 1
32From Moser and Zach [2005] p. 2, p. 11 and p. 19
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in more detail. This all happened in 1928, and the Hilbert school believed the
proof was almost complete.

2.5 The Four Problems Posed by Hilbert

In 1928, there were four problems posed by Hilbert. The first one consisted
of extending the consistency proof given by Ackermann and von Neumann of
the arithmetical of the integers, to cover not only arithmetic formulae, but also
function variables. (In fact, Ackermann and von Neumann had not proved
the consistency for arithmetical formulae yet.) The second problem consisted of
giving a consistency proof for a system in which more advanced parts of analysis
could be carried out, as well as some set theory. The third problem was stated
as follows: ‘If one can proof the consistency of ϕ with the axioms of number
theory, then one cannot prove such consistency for ¬ϕ.’33

This statement is based on the following reasoning: if ϕ and ¬ϕ were both
consistent, then either one could be added as an axiom to the axioms of number
theory to obtain two non-isomorphic systems of arithmetic. However, Dedekind
showed34 that any two models of the Peano axioms35 are isomorphic. A year
later, Gödel would prove this in his Completeness theorem (23), according to
this theorem if both ϕ and ¬ϕ would be consistent, there would be a proof for
both of them, which results in a contradiction.

The fourth problem a statement of completeness that is more familiar to us
nowadays: ‘If ϕ is not provable from the axioms of arithmetic, then adding ϕ
as an axiom yields a contradiction.’36

Only two years later Gödel would present his famous theorems, refuting
Hilbert’s programme as formulated at that time, but we will return to this
later, in section 8. The question whether or not this meant the end of Hilbert’s
programme, will be discussed in section 9.

33Citing Smorynski in [Smorynski, 1986], p. 49
34See [Dedekind, 1901]
35These are not the Peano axioms that will be introduced in the next section, these are

second-order axioms, and the system introduced later will be of first-order. This distinction
is important because the first-order Peano system does have non-isomorphic models.

36Citing Smorynski in [Smorynski, 1986], p. 49
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3 Peano Arithmetic

PA, or Peano Arithmetic, is a system of first-order arithmetic. It is a theory
using the language LPA = {0, 1,+, ·}. In this language 0, 1 are the constants,
and +, · are binary function symbols. At the time PA was developed, the formal
notions of e.g. language, function symbols and theories were not in use yet. We
will see in section 4 what the formal definition of these notions is.

PA has the following axioms:

1. ∀x¬(x+ 1 = 0)

2. ∀xy(x+ 1 = y + 1→ x = y)

3. ∀x(x+ 0 = x)

4. ∀xy(x+ (y + 1) = (x+ y) + 1)

5. ∀x(x · 0 = 0)

6. ∀xy(x · (y + 1) = (x · y) + x)

7. ∀~x[(ϕ(0, ~x) ∧ ∀y(ϕ(y, ~x)→ ϕ(y + 1, ~x)))→ ∀yϕ(y, ~x)]

These axioms speak for themselves, only the last one needs some explana-
tion. The last axiom is actually an axiom for every possible formula ϕ(y, ~x).
The axioms are called induction axioms. This means there are infinitely many
axioms, as there are infinitely many formulae. It can be shown that there are
no finite LPA-theories which have the same models as PA, so it is necessary to
have infinitely many axioms for PA.

Clearly, PA can be applied to the natural numbers, N. In fact N is a model of
PA, a notion that will be explained in section 4. In PA one can carry out most
elementary number theory, as we will see in section 3.1. Also PA can represent
all recursive functions, as was proved by Gödel and will be used to prove his
incompleteness theorems. The concept of recursive functions will be explained
in section 5.

3.1 Basic Properties of PA

In PA, a lot of elementary number theory can be carried out. We will give some
examples and some definitions we will need later on. Also some theorems and
lemmas will be stated, some of which will be proved. For the proof of the rest
of the statements I refer to [van Oosten, 2009].

With the last axiom, the induction axiom, the basic rules for addition and
multiplication can be proved:

1. PA ` ∀x(x = 0 ∨ ∃y(x = y + 1))

2. PA ` ∀xyz(x+ (y + z) = (x+ y) + z)

3. PA ` ∀xy(x+ y = y + x)

4. PA ` ∀xyz(x+ z = y + z → x = y)

5. PA ` ∀xyz(x · (y · z) = (x · y) · z)
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6. PA ` ∀xy(x · y = y · x)

7. PA ` ∀xyz(x · (y + z) = (x · y) + (x · z)

8. PA ` ∀xyz(¬(z = 0) ∧ x · z = y · z → x = y)

Also the symbol <, with its usual meaning, can be defined formally in PA.
After we have defined it, we will use it as a primitive symbol of PA, but remember
that in fact it is just an abbrevation.

Lemma 4 (Least Number Principle). Let ϕ(x, y) be the formula ∃z(x+(z+1) =
y). In PA, ϕ defines a discrete linear order with least element, and which satisfies
the least number principle:

PA ` ∃wψ(w)→ ∃y(ψ(y) ∧ ∀x(ϕ(x, y)→ ¬ψ(x))) (23)

We write x < y for ϕ(x, y).

The least number is actually the formal statement of the following: for any
formula ψ, if there is a w such that ψ(w), then there is a smallest number y for
which ψ(y): for all x < y, we have ¬ψ(x).

Theorem 5 (Division with remainder). PA proves the following, in which a, b
are unique:

PA ` ∀xy(y 6= 0→ ∃ab(x = a · y + b ∧ 0 ≤ b < y)) (24)

Proof. We prove this by induction on x. For x = 0 we have 0 = 0 · y + 0 ∧ 0 ≤
b < y)), for any y > 0.

Suppose we have x = a ·y+b∧0 ≤ b < y). First we prove that such a, b exist
for x+ 1. Because < is a discrete linear order we have b+ 1 < y ∨ b+ 1 = y.

If b+ 1 < y, then we have x+ 1 = a · y + (b+ 1) and we are done.
If b+ 1 = y, then x+ 1 = a · y + (b+ 1) = a · y + y = (a+ 1) · y + 0 and we

are done.
Now we still have to prove that a, b are unique. Suppose we have x = a ·y+b

and x = a′ · y + b′, with 0 ≤ b, b′ < y. Suppose a < a′, then a + 1 ≤ a′ so we
have a′ · y ≥ a · y + y > a · y + b = x, which is a contradiction. So a′ ≤ a. By
symmetry we see a ≤ a′ so a = a′. So we have x = a · y + b and x = a · y + b′,
by one of the properties of addition stated above we see that also b = b′.

Once we have this important result, it is possible to define formulae express-
ing properties of numbers, below we have some examples:

• x|y ≡ ∃z(x · z = y)

• irred(x) ≡ ∀v ≤ x(v|x→ v = 1 ∨ v = x)

• prime(x) ≡ x > 1 ∧ ∀yz(x|(y · z)→ x|y ∨ x|z)

• pow(x, v) ≡ x ≥ 1 ∧ prime(v) ∧ ∀w ≤ x(w > 1 ∧ w|x→ v|w)

• pp(x) ≡ ∃v ≤ x pow(x, v)

19



For these, one can show the expected results, for example PA ` prime(x)↔
irred(x) and unique prime factorisation in PA. Also we can denote rm(x|y) = b,
if x = a · y + b ∧ 0 ≤ b < y.

We can also define lcm(least common multiple) and gcd(greatest common
divisor). From the least number principle we know that, as x|x · y and y|x · y,
there is a smallest w such that x|w ∧ y|w. We denote this w by lcm(x, y). Now
we can write, by theorem 5, x · y = a · lcm(x, y) + b, where 0 ≤ b ≤ lcm(x, y).
We know x|x · y ∧ y|x · y, x|lcm(x, y) ∧ y|lcm(x, y), so we have x|b ∧ y|b. If
b > 0 we would have found a smaller common multiple of x and y, which is a
contradiction, so b = 0 and we have x · y = a · lcm(x, y) for a unique a. We
denote this a by gcd(x, y). Now in PA we can prove their basic properties, for
example:

• PA ` ∀xyu(x, y ≥ 1 ∧ u|x ∧ u|y → u|gcd(x, y))

• PA ` ∀xyab(y = a · x+ b ∧ 0 ≤ b < x→ gcd(x, y) = gcd(x, b))

I will not state or prove all the properties of gcd, for a more complete
overview see [van Oosten, 2009].

3.2 More elementary number theory

Later on, we will need some more advanced results, that will be proved in this
section. To be able to prove those results, we will need Bézout’s theorem for
PA which we will present here. Then we will prove the results that we have
used, that are also very important for Gödel’s coding of sequences, as we will
see when we return to this in section 7.2. The sequences defined in this section
will be used to prove that primitive recursive functions can be represented in
PA, in particular the primitive recursive coding of sequences.

Theorem 6 (Bézout’s Theorem for PA).

PA ` ∀xy ≥ 1∃a ≤ y, b ≤ x(a · x = b · y + gcd(x, y)) (25)

Proof. We proof this theorem by induction on x, using properties we have shown
in section 3.1. For x = 1 take a = 1 and b = 0. Then for any y, 1 · 1 =
0 · y + gcd(1, y), as gcd(1, y) = 1 for any y. Now assume that for any x′ < x we
know PA ` ∀x′y ≥ 1∃a ≤ y, b ≤ x′(a · x′ = b · y + gcd(x′, y)).

We know that for y we can write y = c · x+ d, where 0 ≤ d < x. We divide
this equation by gcd(x, y) to obtain y′ = c · x′ + d′, where d′ < x′ ≤ x. d′ < x′

because d < x and x′ < x because gcd(x, y) ≥ 1. Also we know gcd(x′, d′) = 1.
For if gcd(x′, d′) = a with a > 1, then we can write x = a · x′′ · gcd(x, y) and
y = a(c · x′′ · gcd(x, y) + d′′), where x′′ = a · x′ and d′′ = a · d′. Which means a
divides both x and y, which is a contradiction because x′ and d′ already have
been divided by gcd(x, y) so they don’t contain any common divisors of x and
y.

Because d′ < x′ < x we can apply the induction hypothesis, and using
gcd(x′, d′) we obtain

u · d′ = v · x′ + 1 (26)
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which means we have v ·x′ = u ·d′−1. Squaring both sides gives (vvx′) ·x′ =
(uud′ − 2u) · d′ + 1, renaming vvx′ = a′ and uud′ − 2u = b′ and multiplying by
gcd(x, y) gives:

a′ · x = b′ · d+ gcd(x, y) (27)

Now substituting d = y − cx gives:

(a′ + c · b′) · x = b′y + gcd(x, y) (28)

Now let (a′ + c · b′) = c′ · y + a′′, where 0 ≤ a′′ < y for the same reasons as
before. Substituting this gives:

a′′ · x = (b′ − c′ · x) · y + gcd(x, y) (29)

We have already seen that a′′ < y. Because of that, we see that (b′−c′·x)·y ≤
a′′ · x < y · x = x · y. This means that (b′ − c′ · x) < x. So a′′ and (b′ − c′ · x)
are examples of a, b for which a ≤ y, b ≤ x(a · x = b · y + gcd(x, y)) holds.

Theorem 7. Given a sequence of numbers x0, . . . , xn−1, define:

m = max(x0, . . . , xn−1, n)!

a ≡ xi mod m(i+ 1) + 1
(30)

This system always has a solution and the pair (a,m) is said to code the sequence
x0, . . . , xn−1.

We use the following abbreviations: rm(x, y) denotes the remainder of x on
division by y. (a,m)i denotes rm(a,m · (i+ 1) + 1).

Proof. The fact that a is uniquely defined, and is the same for every i, follows
from the Chinese remainder theorem.

Theorem 8 (Chinese Remainder Theorem37). Suppose we are given m =
m1 · · ·mn with gcd(mi,mj) = 1 for i 6= j. Let b1, . . . , bn be integers and consider
the system of congruences:

x ≡b1(mod m1)

...

x ≡bn(mod mn)

(31)

This system always has solutions and solutions differ by a multiple of m.

First we see that indeed m(i+1)+1 and m(j+1)+1 are relatively prime for
all 0 ≤ i < j < n. If there would be a prime number p dividing both m(i+1)+1
and m(j + 1) + 1, then it would divide their difference: m(i− j). Because p is
prime, we know that p|ab⇒ p|a ∨ p|b. So p|m or p|(j − i). Because m = x! for
x ≥ n, we know that (j − i) is a factor of m, because (j − i) < n. So if p|(j − i)
then p|m. We conclude that p|m. But also we assumed p|m(i + 1) + 1, which,
together with p|m, is a contradiction because p - 1. So indeed m(i+ 1) + 1 and
m(j + 1) + 1 are relatively prime for all 0 ≤ i < j < n.

37[Ireland and Rosen, 1990] p. 34
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So we may apply the Chinese remainder theorem, which gives us the a from
the definition. And, trivially, xi < (i + 1)m + 1 for all i. This means that
(a,m)i = xi for all i. So there is only one sequence x0, . . . , xn−1 which meets
the requirements for m and a, and from (a,m) the original sequence can be
deduced: this is why (a,m) codes the sequence.

This coding of sequences was actually called the β-function by Gödel. The
following theorem expresses some important properties for the coding of se-
quences defined above. They are needed for the representation of primitive
recursive functions, as we have seen in section 7.1. The first one says that for
every x there exists a sequence starting with x. The second one says that every
sequence can be extended. The third one is a technical condition needed for the
proof of theorem 40.

Theorem 9 (Properties of sequences).

1. PA ` ∀x∃a,m((a,m)0 = x)

2. PA ` ∀yxam∃bn(∀i < y((a,m)i = (b, n)i ∧ (b, n)y = x)

3. PA ` ∀ami((a,m)i ≤ a)

Proof.

1. For the first one, take m = x and a = 2x+ 1. Then:

(a,m)0 = rm(a,m · (0 + 1) + 1) = 2x+1, x+1 = x (32)

2. For the second one, we prove three properties in PA:

PA ` ∀yxam∃u(∀i < y((a,m)i < u) ∧ x < u ∧ y < u)

PA ` ∀u∃v ≥ 1∀i ≤ u(i ≥ 1→ i|v)

PA ` ∀uv(∀i ≤ u(i ≥ 1→ i|v)

→ ∀ij(0 ≤ i < j ≤ u→ gcd((i+ 1) · v + 1, (j + 1) · v + 1) = 1))

(33)

• For the first property we use induction on y. For y = 0, take u = x+1.
Then there are no i < y so the first condition trivially holds, 0 < x+1
and x < x+ 1.

Now assume for y that for any x, a,m we have

∃u(∀i < y((a,m)i < u) ∧ x < u ∧ y < u) (34)

Take u′ = u + (a,m)y. Observe that u > 0 because (a,m)i < u. If
i < y+ 1 we have i < y or i = y. For i < y we know by our induction
hypothesis that

((a,m)i < u < u′) ∧ (x < u < u′) ∧ (y < u < u′) (35)

and for i = y we have (a,m)y < (a,m)y + u = u′. So for u′ we see

∀i < y + 1((a,m)i < u′) ∧ x < u′ ∧ y < u′ (36)
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• For the second property we use induction on u. For u = 0, the only
i ≤ u is i = 0. So the implication trivially holds because i < 1 for
any v. Now assume for u we have

∃v ≥ 1∀i ≤ u(i ≥ 1→ i|v) (37)

Now for u + 1 take v′ = v · (u + 1). Then for 1 ≤ i ≤ u we have
i|v · (u + 1) because i|v by the induction hypothesis. For i = u + 1
we have (u+ 1)|v · (u+ 1). So

∀i ≤ (u+ 1)i ≥ 1→ i|v′) (38)

• For the third property we observe that this is just the formal state-
ment of a part of the proof of theorem 7. We proved there that
(i+ i) ·m+1 and (j+1) ·m+1 are relatively prime for 0 ≤ i < j ≤ n,
using that for all 1 ≤ (i − j) ≤ n we had that (i − j)|m, and other
properties of gcd. This property states that this proof can be carried
out in PA. I will not proof this here.

Now using these three properties, we will prove the second statement of
the theorem. Given y, x, a,m, take u satisfying the first property and for
that u, take a v satisfying the second. Put n = v. Then we have:

∀i < y((a,m)i < (i+ 1) · n+ 1)

x < (y + 1) · n+ 1

∀ij(0 ≤ i < j ≤ y → gcd((i+ 1) · n+ 1, (j + 1) · n+ 1) = 1

(39)

The first follows from the first property, using that (i + 1) · n + 1 > n =
v ≥ u, which follows from a special case of the second property: if u 6= 0,
then u|v which implies that u ≤ v.

The second follows from the same reasoning, only now using (y+1)·n+1 >
n.

The third is just the third property, only using that y < u from the first
property.

Now we want to find b such that

(∀i < y((a,m)i = (b, n)i)) ∧ x = (b, n)y (40)

We use induction on k. Suppose for k < y we have b′ satisfying the
following:

(∀i < k((a,m)i = (b′, n)i)) ∧ x = (b′, n)y (41)

Then we want to find b, such that the following holds:

(∀i ≤ k((a,m)i = (b, n)i)) ∧ x = (b, n)y (42)

To do so we will prove the following:

∃w((y+1)·n+1|w∧∀i < k((i+1)·n+1|w)∧gcd(w, (k+1)·n+1) = 1) (43)
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We do this by induction on k. For k = 0, there is no i < k so we have to
prove

∃w((y + 1) · n+ 1|w ∧ gcd(w, n+ 1) = 1) (44)

Let w = (y + 1) · n + 1, then (y + 1) · n + 1|w and by the third property
we have for n we see that, taking i = 0 and j = y, that gcd(w, n + 1) =
gcd((y + 1) · n+ 1, (0 + 1) · n+ 1) = 1.

Now assume such w exists for k − 1, where 0 < k < y. For k, let w′ =
w · (k · n+ 1).

Then we know (y + 1) · n + 1|w′, because (y + 1) · n + 1|w (by induction
hypothesis).

Also we see that gcd(w ·(k ·n+1), (k+1) ·n+1) = 1: We have gcd(w, (k+
1) · n+ 1) = 1, because gcd(w, k · n+ 1) = 1 by induction hypothesis and
gcd((k + 1) · n + 1, k · n + 1) = 1 by the third property. Also we have
gcd(k · n + 1, (k + 1) · n + 1) = 1, again by the third property, so the
required property follows.

And we see that ∀i < k((i+ 1) · n+ 1|w′) because w′ = w · (k · n+ 1): for
i < k − 1, we have by induction hypothesis that (i+ 1) · n+ 1|w, and for
i = k − 1 we have (k − 1 + 1) · n+ 1|k · n+ 1.

So by induction we proved that such w always exist. Now take such w.
Now apply theorem 6, for x = w, y = (k + 1) · n + 1. The theorem gives
us f, g such that f · w = g · ((k + 1) · n+ 1) + gcd(w, (k + 1) · n+ 1). We
know that for all k, gcd(w, (k + 1) · n+ 1) = 1. So we have:

rm(f · w, (k + 1) · n+ 1) = gcd(w, (k + 1) · n+ 1) = 1 (45)

Now take b = b′ + f · w · (b′ · n · (k + 1) + (a,m)k). We want to show
(b, n)y = x and ∀i ≤ k((b, n)i) = (a,m)i).

We see (b, n)y = (b′, n)y = x, because by definition this means rm(b, (y +
1) · n+ 1) = rm(b′, (y + 1) · n+ 1) and this is true because b = b′ + w ·A,
for some term A, and by choice of w we know (y + 1) · n+ 1|w so rm(w ·
A, (y + 1) · n+ 1) = 0.

For i < k we have (b, n)i = (b′, n)i = (a,m)i, because also by choice of w
we have (i+ 1) · n+ 1|w, so we may use the same reasoning as before.

Now for (b, n)k we have:

(b, n)k = rm(b, (k + 1) · n+ 1)

= rm(b′ + b′ · n · (k + 1) + (a,m)k, (k + 1) · n+ 1)

= rm(b′((k + 1) · n+ 1 + (a,m)k, (k + 1) · n+ 1)

= (a,m)k

(46)

This completes the induction and we see that indeed ∀yxam∃bn(∀i <
y((a,m)i = (b, n)i ∧ (b, n)y = x)

3. For the third one: (a,m)i is the remainder of a divided by some integer
≥ 1. This means that (a,m)i ≤ a.
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4 Introduction to Logic

To be able to understand the proofs given later, it is important to see some
definitions used in logic.

First of all, it is important to understand what logic actually is. However,
there are several conceptions of logic. The one we will study here is logic in
the sense of studying certain mathematical properties of artificial formal lan-
guages.38 This roughly means that one can define a formal language, in which
certain properties can be expressed. Now one can find models of a language; in
a model all the properties that are true in the language, are true. This means
that once something has been proved in the formal language, it is true in all
models of that language. This might seem rather abstract, but we will explain
all of this in detail below.

The first important notion is that of a language. A language is a set of
symbols. These symbols can be devided into three groups: constants, function
symbols and relation symbols.

Functions symbols and relation symbols have an arity. The arity specifies
the number of arguments the function symbol or relation symbol takes.

From a language, terms and formulae can be deduced. Terms denote ele-
ments and formulae state properties. To deduce these, auxiliary symbols are
used. These are the following:

• Variables, this is an infinite set of symbols, usually left unspecified.

• The equality symbol =.

• The absurdity symbol ⊥.

• Connectives: ∧, ∨, →, and ¬. These are the symbols for respectively
conjunction (‘and’), disjunction (‘or’), implication (‘implies’) and negation
(‘not’).

• Quantifiers: ∃ and ∀. These are symbols for respectively the existential
quantifier (‘there exists’) and the universal quantifier (‘for all’).

• Readability symbols like brackets.

Definition 10. Terms of a language are defined inductively:

• Every constant of the language is a term of the language.

• Every variable is a term of the language.

• If t1, . . . , tn is an n-tuple of terms of the language, and f is an n-ary func-
tion symbol of the language, then f(t1, . . . , tn) is a term of the language.

Definition 11. Formulae of a language are defined inductively as well:

• If t and s are terms of the language, then (t = s) is a formula of the
language.

• If t1, . . . , tn is an n-tuple of terms of the language, and R is an n-ary
relation symbol of the language, then R(t1, . . . , tn) is a formula of the
language.

38See [Hofweber, 2013] for a full explanation of all conceptions of logic.
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• ⊥ is a formula of the language.

• If ϕ and ψ are formulae of the language, then (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ)
and (¬ϕ) are also formulae of the language.

• If ϕ is a formula of the language and x is a variable, then ∀xϕ and ∃xϕ
are formulae of the language as well.

A variable is called bound if it bound by a quantifier, like x in ∀xϕ. If a
variable is not bound, it is called free. In logic one usually uses the Convention
of variables, which says: A variable in a formula will always be either bound
or free, and not both. If it is bound, it is only bound once. If in a term or a
formula, all variables are bound, we call it, respectively, a closed term and a
closed formula.

One uses the convention of variables in the following definition, from [van
Oosten, 2009]:

Definition 12. Suppose ϕ is a formula of the language, and t is a term of
the language. By the substitution ϕ[t/x] we mean the formula which results by
replacing each occurence of the variable x by the term t, provided x is a free
variable in ϕ, and no variable in the term t becomes bound in ϕ.

In section 3 it was said that PA was a system of first-order logic. In first
order logic, variables denote elements of structures. This means we can only say
something about all elements of a structure, and not, for example, something
about subsets of all elements, or sequences, or all possible subsets. To be able
to do this, one needs higher order logic. In this thesis we will restrict ourselves
to first order logic.

Say we have a first order language, which we name L. Then we can have a
structure for L, which is defined in [van Oosten, 2009] as follows:

Definition 13. An L-structure M consists of a nonempty set, also denoted M ,
together with the following data:

• for each contstant c of L, an element cM of M;

• for each n-ary function symbol f of L, a function

fM : Mn →M (47)

• for each n-ary relation symbol R of L, a subset

RM ⊆Mn (48)

In this, cM is called the interpretation of c, and similarly fM and RM are called
the interpretations of f and R, respectively.

Now we can define a new language LM . Given a language L and an L-
structure M , we can define LM to be L, together with, for every element m of
M , an extra constant, which is also denoted m. Now M is also an LM -structure,
if we say that the interpretation of each constant m is just the element m.
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Definition 14. We can define the interpretation of closed terms of the language
LM in M inductively. If t is a constant, then its interpretation is already
defined, because t was already in L and M is an L-structure. If t1, . . . , tn
are terms which have interpretations tM1 , . . . , t

M
n , then if t = f(t1, . . . , tn) then

tM = fM (tM1 , . . . , t
M
n ).

Definition 15. We define ‘ϕ is true in M’, or M |= ϕ, by induction on ϕ:

• For closed terms t, s, t1, . . . , tn:

M |= ⊥ never holds

M |= (t = s) if and only if tM = sM

M |= R(t1, . . . , tn) if and only if (tM1 , . . . , t
M
n ) ∈ RM

(49)

• If ϕ is of the form ϕ1 ∧ ϕ2:

M |= ϕ if and only if M |= ϕ1 and M |= ϕ2 (50)

• If ϕ is of the form ϕ1 ∨ ϕ2, we define the following, where ‘or’ is the
inclusive or:

M |= ϕ if and only if M |= ϕ1 or M |= ϕ2 (51)

• If ϕ is of the form ϕ1 → ϕ2:

M |= ϕ if and only if M |= ϕ2 whenever M |= ϕ1 (52)

• If ϕ is of the form ¬ψ, we define the following, where 6|= is ‘not |=’:

M |= ϕ if and only if M 6|= ψ (53)

• If ϕ is of the form ∀xψ:

M |= ϕ if and only if M |= ψ[m/x] for all m ∈M (54)

• If ϕ is of the form ∃xψ:

M |= ϕ if and only if M |= ψ[m/x] for some m ∈M (55)

Lemma 16 (Prenex normal form). For every formula ϕ, ϕ is equivalent to a
formula which starts with a string of quantifiers, followed by a formula in which
no quantifiers occur. Such a formula is said to be written in prenex normal
form.

Definition 17. If L is a language, an L-theory is a set of closed L-formulae.

For example, PA is a theory in the language L = {0, 1,+, ·}

Definition 18. If Γ is an L-theory, then an L-structure M is called a model of
Γ if M |= ϕ for all ϕ ∈ Γ.

For example, the natural numbers, N, are a model of PA.
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Definition 19. An L-theory Γ is called consistent if Γ has a model.

If M |= ϕ for every model M of Γ then we write Γ |= ϕ.

Theorem 20 (Compactness Theorem). Let Γ be a theory in a language L. If
every finite Γ′ ⊆ Γ is consistent, then so is Γ.

In this, Γ′ ⊆ Γ has the intuitive meaning; Γ′ contains some or all closed
formulae in Γ, and no formulae that are not in Γ. The compactness theorem
was stated and proved by Gödel in 1930, using results that he had found in 1930
as well, as we will see in section 4.2.39

4.1 Models of PA

We’ve seen already that N is a model of LPA, if we use the usual addition and
multiplication and the constants 0, 1. We call this the standard model. We
denote this model by N . However, PA also has non-standard models.

For every n ∈ N, define a term n (which we call a numeral) of LPA by
recursion: 0 = 0 and n+ 1 = n+ 1. Let c be a constant, different from the ones
we already had, and consider in the language LPA ∪ {c} the set of axioms:

{axioms of PA} ∪ {¬(c = n)|n ∈ N} (56)

These, infinitely many, axioms state that c is not equal to any n in LPA.
Every finite subset of this theory has an interpretation in N, because then c
can be chosen to equal an n which is not included in any of the (now finitely
many) added axioms. So, by the compactness theorem, this is a consistent set
of axioms and therefore has a modelM, which has a nonstandard element cM.

4.2 Proofs

Proofs can be formalised using proof trees. We will now give a rough idea of
how proof trees are defined.

Definition 21. A tree is a partial order, which means there is a set T and a
relation ≤ on T which relates some elements of T . This partial order has a least
element, which means there is an element a for which the following holds for
every x in T : if x ≤ a then x = a. This partial order is such that for every
x ∈ T the set {y ∈ T |y ≤ x} is a finite linear order, which means that for any
a, b in the set, a ≤ b and/or b ≤ a. The maximal elements of the tree are called
leaves.

Now elements of a tree can be labelled. Roughly speaking a labelled tree is a
finite tree T , together with a function f from T to the set which is the disjoint
union of the set of formulae and the set of labelled formulae, called the labelling
function, such that the only elements of T which are marked by f are leaves of
T . An operation on trees is the labelling of the leaves, and labelled leaves are
then called eliminated assumptions.

One can join labelled trees, by adding a root. If T and S are labelled trees
and ϕ a formula, then we can join these by adding a root r for which f(r) = ϕ.
We denote this by Σ(T, S;ϕ)

39A proof of the compactness theorem can be found in [Moerdijk and van Oosten, 2000] p.
95.
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Now the set P of proof trees is the smallest set of labelled trees, satisfying a
list of properties, e.g.:

• Ass: For every formula ϕ, the tree with one element r and labelling func-
tion f(r) = ϕ, is an element of P. This tree is called the assumption
tree.

• ∧I: If T is an element of P with conclusion ϕ, and S is an element of P
with conclusion ψ, then Σ(T, S;ϕ∧ψ) is an element of P. This is formed
by ∧-introduction.

• ∀E: Suppose T is an element of P with conclusion ∀uϕ, and t is a term such
that the substitution ϕ[t/u] is defined. Then Σ(T ;ϕ[t/u]) is an element of
P. This is called ∀-elimination.

These properties are cited from [van Oosten, 2009], and for a complete list of
this properties and a formal definition of proof trees, see [Moerdijk and van
Oosten, 2000].

A proof tree uses the axioms of a theory as unmarked assumptions, and the
least element of a proof tree is the formula that is proved. If there is a proof
tree with conclusion ϕ and unmarked assumptions that are either axioms of a
theory Γ or of the form ∀x(x = x), then we write Γ ` ϕ.

An example of a proof tree is the following:

∀xϕ(x)
∀E

ϕ[t/x] ψ
∧I

ϕ[t/x] ∧ ψ

Now we present two fundamental theorems in logic.

Theorem 22 (Soundness Theorem). If Γ ` ϕ then Γ |= ϕ

Theorem 23 (Completeness Theorem). If Γ |= ϕ then Γ ` ϕ

The completeness theorem was formulated and proved by Gödel in 1930, just
before he presented his incompleteness theorems. The completeness theorem
and the soundness theorem together are equivalent to the following assertion:
A theory Γ is consistent if and only if Γ 6` ⊥. Also the completeness theorem
and the soundness theorem together prove the compactness theorem, which was
also stated and proved by Gödel in 1930. For a proof of these theorems, see
[Moerdijk and van Oosten, 2000].
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5 Primitive Recursive Functions

The proof of Gödel’s incompleteness theorems is based on the fact that some
special types of functions, primitive recursive functions, partial recursive func-
tions and total recursive functions are representable in PA, and that they are
computable: one can find an algorithm that computes the value of these func-
tions at any given time. Some of the new concepts introduced here will be
formalised in this section. The definitions of these concepts will be given and
some important theorems. For the proof of these theorems and a more detailed
explanation of these concepts, see [van Oosten, 2009]. The application of these
definitions and theorems can be found in section 7.1.

We will use the so-called λ-notation: if ~x is a sequence of variables x1, . . . , xk
which might occur in the expression G, then λ~x.G denotes the function which
assigns to the k-tuple n1, . . . , nk the value G(n1, . . . , nk).

Definition 24. The class of primitive recursive functions Nk → N is defined in
the following way:

• The zero function Z = λx.0 is primitive recursive.

• The successor function S = λx.x+ 1 is primitive recursive.

• The projections Πk
i = λx1 · · ·xk.xi (for 1 ≤ i ≤ k) are primitive recursive.

• If G1, . . . , Gl : Nk → N and H : Nl → N are primitive recursive, then

so is λ~(x).H(G1(~x), . . . , Gl(~x)). This function is said to be defined from
G1, . . . , Gl and H by composition.

• If G : Nk → N and H : Nk+2 → N are primitive recursive, then so is the
function F defined from G and H by primitive recursion:

F (0, ~x) = G(~x)

F (y + 1, ~x) = H(y, F (y, ~x), ~x)
(57)

A relation A ⊆ Nk can also be primitive recursive: A is primitive recursive
if its characteristic function χA is primitive recursive, where χA is defined as
follows:

χA(~x) =

{
0 if ~x ∈ A
1 else

(58)

Definition 25. The function j : N2 → N, the diagonal enumeration of N, is
given as follows:

j(n,m) =
1

2
(n+m)(n+m+ 1) + n (59)

This function is a bijection. Define inverse functions j1 and j2 as follows:

j1(z) = µx ≤ z.[∃y ≤ z.j(x, y) = z]

j2(z) = µy ≤ z.[∃x ≤ z.j(x, y) = z]
(60)

The µ in this function is a notation for a primitive recursive function, in this
case it expresses the function that ‘picks the lowest x or y smaller than z such
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that there exists respectively an y or x such that j(x, y) = z. A more formal
definition of this µ can be found in Definition 31. j1 and j2 are primitive
recursive and with this definition the following holds:

x ≤ j(x, y)

y ≤ j(x, y)

j(j1(z), j2(z)) = z

(61)

Theorem 26. The functions jm and jmi defined below are primitive recursive.
The bijections jm : Nm → N are defined as follows:

j1 is the identity function

jm+1(x1, . . . , xm, xm+1) = j(jm(x1, . . . , xm), xm+1)
(62)

The projection functions jmi : N→ N for 1 ≤ i ≤ m, are defined as follows:

j11(z) = z

jm+1
i (z) =

{
jmi (j1(z)) if 1 ≤ i ≤ m

j2(z) if i = m+ 1

(63)

These functions can be used to code sequences:

Theorem 27. Define the code of the sequence as follows:

〈〉 = 0

〈x0, . . . , xm−1〉 = j(m− 1, jm(x0, . . . , xm−1)) + 1 if m > 0
(64)

For every y ∈ N it holds that either y = 0 or there is a unique m > 0 and a
unique sequence (x0, . . . , xm−1) such that y = 〈x0, . . . , xm−1〉.

There are also functions lh(x), giving the length of a sequence with code
x, and (x)i, giving the i’th element of a sequence with code x (this holds for
0 ≤ i ≤ lh(x), for i > lh(x) it is 0). These functions are primitive recursive.

Primitive recursive functions are defined in terms of the previous value of the
function. It is also possible to define functions in terms of all previous values,
this is called course-of-values recursion.

Definition 28. LetG : Nk → N andH : Nk+2 → N be functions. F : Nk+1 → N
is defined from G and H by course-of-values recursion if it is defined as follows:

F (0, ~x) = G(~x)

F (y + 1, ~x) = H(y, jy+1(F (0, ~x), . . . , F (y, ~x)), ~x)
(65)

If G and H in the above definition are primitive recursive, then F , defined
by course-of-values recursion is also primitive recursive.

Theorem 29. If G1, G2 and H are primitive recursive functions Nn → N, then
so is the function F , defined by

F (~x) =

{
G1(~x) if H(~x) = 0

G2(~x) else
(66)
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There are also partial recursive functions, which is a weaker than primitive
recursion. First we define some concepts for functions:

Definition 30. A partial function F from X to Y , where X and Y are sets,
is a function F : U → Y where U ⊆ X. We write F : X ⇀ Y to indicate
that F is partial, and we write U = dom(F ). If U = X then F is called a total
function. If F : X ⇀ Y and G : Y ⇀ Z then GF : X ⇀ Z is the composition
with dom(GF ) = {x ∈ X|x ∈ dom(F ) and F (x) ∈ dom(G)} ⊆ X. Define
F (x) ' G(x) as follows: F (x) is defined precisely when G(x) is defined, and
when they are defined, F (x) = G(x).

Definition 31. The class of partial recursive functions is defined in the following
way:

• All primitive recursive functions are partially recursive.

• The partial recursive functions are closed under composition: if the func-
tions G1, . . . , Gl : Nk ⇀ N and H : Nl ⇀ N are partial recursive, then so
is the function λ~x.H(G1(~x), . . . , Gl(~x)), with domain

{~x ∈
⋂l

i=1 dom(Gi)|(G1(~x), . . . , Gl(~x)) ∈ dom(H)}.

• If G : Nk+1 ⇀ N is partial recursive, then so is the function F defined from
G by minimisation: F (~x) ' µy.G(~x, y) = 0. F (~x) is defined precisely
when there exists a y such that ∀i ≤ y.(~x, i) ∈ dom(G) and G(~x, y) = 0.
Then F (~x) is the least y with this property.

A partial recursive function is total recursive if it is a total function. A
relation A ⊆ Nk is recursive if its characteristic function χA is partial recursive.
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6 Gödels Theorems

Gödel originally stated his theorems about PA. Later, Rosser showed that the
theorems could be extended to apply also to other systems - as long as enough
elementary arithmetic could be carried out, e.g. to formalise primitive recursion.
These final theorems have been formulated in [Franzén, 2005] in an intuitive
manner:

Theorem 32 (First Incompleteness Theorem). Any consistent for-
mal system S within which a certain amount of elementary arith-
metic can be carried out is incomplete with regard to statements of
elementary arithmetic: there are such statements which can neither
be proved, nor disproved in S.40

Theorem 33 (Second Incompleteness Theorem). For any consis-
tent formal system S within which a certain amount of elementary
aritmetic can be carried out, the consistency of S cannot be proved
in S itself.41

The ‘certain amount of elementary arithmetic’ that is needed in order for the
theorems to apply, is not the same amount for both theorems. Surely, both
theorems apply to PA, as this is what Gödel proved.

For the first incompleteness theorem, we could also take any system including
PA, or any system in which the language of arithmetic can be defined (the
language of arithmetic is the language of PA, see section 3) and in which the
first six axioms of PA (again, see section 3) can be proved. However, they only
need to be proved in a restricted version, applying to the objects satisfying
some formula N(x). This formula could be saying ‘x is a natural number’. Set-
theoretically this is very well possible. This means that PA can be represented
in ZFC, which means that the first incompleteness theorem also applies to ZFC,
that is, to the arithmetical component of ZFC, the part representing PA.

The last comment touches upon a common misunderstanding of the incom-
pleteness theorems: whenever enough arithmetic can be represented in a system,
the incompleteness theorems apply to it. However, it only applies to the part
that represents arithmetic. An example, taken from Franzén [2005]: it has been
stated that we will never know whether or not there exist ghosts, because of the
first incompleteness theorem. The argument used is that we could add arith-
metic to a theory about ghosts, so that the first incompleteness theorem applies
to it and therefore, there are undecidable sentences. But even if we would add
enough arithmetic so that the first incompleteness theorem would indeed apply
to the ghost-arithmetic system, it would only apply to the part concerning the
arithmetic, not the part about ghosts. The undecidable sentence that does in-
deed exist, is an arithmetical sentence. So it would not be possible to conclude
anything about ghosts using Gödel’s theorems.

For the second incompleteness theorem, the amount of arithmetic needed
is slightly different. To prove the second incompleteness theorem, part of the

40[Franzén, 2005] p. 16
41[Franzén, 2005] p. 34
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proof of the first incompleteness theorem needs to be formalised in the theory.
This means a larger amount of arithmetic is needed. We see the use of this in
the treatment of Formalised Σ1-completeness (theorem 50).

An example of a theory in in which enough arithmetic can be carried out to
for the first incompleteness theorem to apply to it, but not enough for the Second
to apply to it, is Robinson Arithmetic. Robinson Arithmetic is a finite part of
PA: it is the first six axioms, together with the axiom ∀x(x = 0∨∃y(y+ 1 = x).
Alternatively, one could say it is the first six axioms of PA together with the
definition of < as strict total order.
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7 Proof of the Theorems

Now for the formal statement of the theorems and the proof, we will restrict
ourselves to the versions stated and proved by Gödel. (In fact only the first in-
completeness theorem was proved by Gödel in detail, the second incompleteness
theorem was proved in the second part of the Grundlagen der Mathematik of
Hilbert and Bernays). Gödel only gave arguments about how the proof should
work.) These versions only apply to PA. The theorems stated in a mathematical
way look like this:

Theorem 34 (First Incompleteness Theorem). There is a Π1-sentence G such
that PA ` G↔ ¬�G. G is independent of PA and thus PA is incomplete.

Theorem 35 (Second Incompleteness Theorem).

PA 6` ConPA (67)

This formulation of course raises questions, as there is a lot of notation not
introduced yet. In order to fully understand the theorems and the proofs, we
need to answer these questions, e.g.: How did we find this sentence G, what is
the �, what is a Π1 sentence and what is ConPA?

To be able to answer these questions, we need a few more definitions, the
Diagonalisation lemma, and the representability and some features of primitive
recursive functions in PA. We will introduce these, before we explain in detail the
first incompleteness theorem, its proof, and the second incompleteness theorem.

7.1 Primitive Recursion in PA

We have seen that a lot of arithmetic can be carried out in PA, in section
3.1. Now we will see that also primitive recursive functions can be represented
in PA, by a special sort of formulae, which will be defined shortly. The fact
that primitive recursive functions (or, actually, all recursive functions) can be
represented in PA is important in the proof of the Diagonalisation lemma (47)
and in the construction of the Gödel sentence G that appeared in the first
incompleteness theorem. We will start with some definitions.

Definition 36. An LPA-formula ϕ is called a ∆0-formula if all quantifiers are
bounded in ϕ, that is of the form ∀x < t or ∃x < t, for a term t not containing
the variable x. We write ϕ ∈ ∆0.

An LPA-formula ϕ is called a Σ1-formula if it is of the form ∃y1 . . . ytψ with
ψ a ∆0-formula. We write ϕ ∈ Σ1.

An LPA-formula ϕ is called a ∆1-formula if both ϕ and ¬ϕ are equivalent in
PA to a Σ1-formula. We write ϕ ∈ ∆1.

An LPA-formula ϕ is called a Π1-formula if it is of the form ∀y1 . . . ytψ with
ψ ∈ ∆0.

First we will state an important property of Σ1-formulae. Once we have
proved that, we will look at the representation of recursive functions.
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Lemma 37 (Σ1-Completeness of PA). A closed Σ1-formula is provable in PA
if and only if it is true in N.

Proof. We will first prove the completeness of PA with respect to ∆0-formulae,
with induction to ∆0-formula.

• First we will show the equivalence for atomic formulae. Remember, as we
have seen in section 4.1, that numerals are defined inductively as follows:

0 = 0 n+ 1 = n+ 1 (68)

– First we show (PA ` n + m = k) ⇔ n + m = k, for all n,m, k ∈ N
with induction on m.

For m = 0 we have to prove PA ` (n + 0 = k) ⇔ n = k Because we
know PA ` (n+ 0 = n), this means we have to show that PA ` (n =
k)⇔ n = k This can be done by induction on k:

For k = 0 we have PA ` (n = 0 = 0)⇔ n = 0.

For k + 1 we have PA ` (n = k + 1 = k + 1) ⇔ n = k + 1, because
PA ` (n = k)⇔ n = k.

Now assume (PA ` n + m = k) ⇔ n + m = k holds for m, then for
m + 1 we have: (PA ` n + m+ 1 = n + m + 1 = k + 1). With our
induction hypothesis we now know: (PA ` n + m + 1 = k + 1) ⇔
n+m+ 1 = k + 1.

– Now we show (PA ` n ·m = k)⇔ n ·m = k, for all n,m, k ∈ N with
induction on m.

For m = 0 we know that n · 0 = n · 0 = 0, by one of the axioms for
PA. So we have (PA ` k = 0)⇔ k = 0, which holds for all n ∈ N.

Now assume (PA ` n · m = k) ⇔ n · m = k holds for m, then for
m + 1 we have: (PA ` n · m+ 1 = n · (m + 1) = k + n). With
our induction hypothesis and our previous result for addition we now
know: (PA ` n · (m + 1) = k + n ⇔ n · (m + 1) = n ·m + n. for all
n,m, k ∈ N with induction on m.

– Now we show (PA ` n < m)⇔ n < m for all n,m ∈ N by induction
on m.

For m = 0 the equivalence automatically holds because in N there
are no n such that n < 0 and PA ` ∀x¬(x + 1 = 0) which implies
that there are no x such that x < 0.

Now assume (PA ` n < m) ⇔ n < m holds for m. Then for m + 1
we have: (PA ` n < m+ 1 = m+ 1). With our induction hypothesis
we can now say that if n < m then this is equivalent to n < m for
all n,m ∈ N. If n = m then of course n = m.

– The last to show is PA ` ∀x(x < n↔ x = 0∨ . . .∨ x = n− 1) for all
n ∈ N. For n = 0 the implication trivially holds because there are no
x < 0.

Now assume PA ` ∀x(x < n ↔ x = 0 ∨ . . . ∨ x = n− 1) holds for
some n. Then for n+ 1 we have that x < n+ 1→ (x < n∨ x = n. If
x < n with our induction hypothesis we have x = 0∨ . . .∨x = n− 1).
So for any x < n+ 1 we have x = 0 ∨ . . . ∨ x = n− 1 ∨ x = n. So we
see that PA ` ∀x(x < n+ 1↔ x = 0 ∨ . . . ∨ x = n).
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• Now we will prove, by induction on terms, that PA ` t(n1, . . . , nk) =

tN (n1, . . . , nk).

– If t = c for some constant c then t = 0 ∨ t = 1, as these are the only
constants. Now 0 = 0 and 1 = 0 + 1, and of course 0N = 0 and
1N = 1, so 0N = 0 and 1N = 0 + 1.

– If t = x for some variable x, then if xN is its interpretation in N ,
then by definition xN = x.

– If t1, t2 are terms for which PA ` t(n1, . . . , nk) = tN (n1, . . . , nk)

holds. Then PA ` (t1 + t2) = t1 +N t2 and PA ` (t1 · t2) = t1 ·N t2,
with the obvious interpretation of + and · in N .

• Now we prove, by induction on ∆0 formulae that PA is ∆0 complete:

– For atomic formulae it holds by the first part of the proof.

– If ϕ and ψ are formulae for which PA ` ϕ(n1, . . . , nk) ⇔ N |=
ϕ(n1, . . . , nk) and PA ` ψ(m1, . . . ,ml) ⇔ N |= ψ(m1, . . . ,ml) holds.
Then we see that also the following hold:

PA `ϕ(n1, . . . , nk) ∧ ψ(m1, . . . ,ml)

⇔ N |= ϕ(n1, . . . , nk) ∧ ψ(m1, . . . ,ml)

PA `ϕ(n1, . . . , nk) ∨ ψ(m1, . . . ,ml)

⇔ N |= ϕ(n1, . . . , nk) ∨ ψ(m1, . . . ,ml)

PA `ϕ(n1, . . . , nk)→ ψ(m1, . . . ,ml)

⇔ N |= ϕ(n1, . . . , nk)→ ψ(m1, . . . ,ml)

(69)

For the first one we see that for the conjunction to be true in N, they
both need to be true in N, which is equivalent (by induction hypoth-
esis) with both of them being provable in PA, which is equivalent
with the conjunction being provable in PA.

For the second one we see that for the disjunction to be true in N,
at least one of them needs to be true in N, which is equivalent (by
induction hypothesis) with at least one of them being provable in PA,
which is equivalent with the disjunction being provable in PA.

For the last one we see that for the implication to be true in N, ψ
needs to be true in N (which is equivalent, by induction hypothesis,
to ψ being provable in PA) or ¬ϕ should be true in N (which is
equivalent, by induction hypothesis, to ¬ϕ being provable in PA), so
this is equivalent with the implication being provable in PA.

– Now only the induction step for bounded quantifiers is left. We know
that PA ` t = tN . So we may substitute this in PA ` ∀x(x < n ↔
x = 0∨. . .∨x = n− 1), to find that PA ` ∀x(x < t↔ x = 0∨. . .∨y =

tN − 1).

Let ϕ = ∀x < tψ, with PA ` ψ ⇔ N |= ψ and x is not a free

variable of t. Then we know PA ` ∀x < tψ ↔ ψ(0)∧ . . .∧ψ(tN − 1).
Now we have seen that PA ` ϕ(n1, . . . , nk) ∧ ψ(m1, . . . ,ml) ⇔ N |=
ϕ(n1, . . . , nk) ∧ ψ(m1, . . . ,ml) and repeated application of this gives
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us

PA ` ϕ⇔ PA ` ∀x < tψ ⇔ PA ` ψ(0) ∧ . . . ∧ ψ(tN + 1)

⇔ N |= ψ(0) ∧ . . . ∧ ψ(tN + 1)

⇔ N |= ∀x < tψ

⇔ N |= ϕ

(70)

Now let ϕ = ∃x < tψ, with PA ` ψ ⇔ N |= ψ and x is not a free

variable of t. Then we know PA ` ∃x < tψ ↔ ψ(0)∨ . . .∨ψ(tN − 1).
Now we have seen that PA ` ϕ(n1, . . . , nk) ∨ ψ(m1, . . . ,ml) ⇔ N |=
ϕ(n1, . . . , nk) ∨ ψ(m1, . . . ,ml) and repeated application of this gives
us

PA ` ϕ⇔ PA ` ∃x < tψ ⇔ PA ` ψ(0) ∨ . . . ∨ ψ(tN + 1)

⇔ N |= ψ(0) ∨ . . . ∨ ψ(tN + 1)

⇔ N |= ∃x < tψ

⇔ N |= ϕ

(71)

• Now we prove that this also holds for Σ1 formulae by proving this for
unbounded ∃. Let ϕ = ∃xψ, where ψ ∈ ∆0. Then, because N is a model
of PA, we trivially have that PA ` ϕ ⇒ N |= ϕ. Now for the other
implication we have the following, using that N |= ψ ⇒ PA ` ψ, which we
know because ψ ∈ ∆0:

N |= ϕ⇒ N |= ∃xψ(x)

⇒ ∃nN |= ψ(n)

⇒ ∃nPA ` ψ(n)

⇒ PA ` ∃xψ(x)

⇒ PA ` ϕ

(72)

Definition 38. An LPA-formula ϕ(x1, . . . , xk) is said to represent (numeral-
wise) the k-ary relation A ⊆ Nk if for all n1, . . . , nk ∈ N we have:

(n1, . . . , nk) ∈ A⇒ PA ` ϕ(n1, . . . , nk)

(n1, . . . , nk) 6∈ A⇒ PA ` ¬ϕ(n1, . . . , nk)
(73)

An LPA-formula ϕ(x1, . . . , xk, z) is said to represent (numeralwise) the k-ary
function F : Nk → N if for all n1, . . . , nk ∈ N we have:

PA `ϕ(n1, . . . , nk, F (n1, . . . , nk))

PA `∃! zϕ(n1, . . . , nk, z)
(74)

A relation or function is Σ1-represented if the formula ϕ representing it is a
Σ1-formula.

Lemma 39 (Collection Principle). In PA we have the following principle:

PA ` ∀i < t∃vψ(i, v)→ ∃w∀i < t∃v < wψ(i, v) (75)

and because of the above, we have that if ϕ is equivalent to a Σ1-formula, so is
∀i < tϕ.
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Theorem 40 (∆1 provable recursion). For every primitive recursive function
F : Nk → N there is a ∆1-formula ϕF (x1, . . . , xk+1) which represents F and is
such that

PA ` ∀x1, . . . , xk∃!xk+1ϕF (x1, . . . , xk+1) (76)

Proof. We prove this by induction on primitive recursive functions.

• The basic functions: λx1 · · ·xk.0 is represented by the formula xk+1 = 0.
We see that indeed for every x1, . . . , xk there is a unique xk+1 such that
xk+1 = 0. This is trivial, as we can always pick xk+1 = 0 and 0 is unique.

λx1.x1 + 1 is represented by the formula x2 = x1 + 1. For every x1 we
know that x1 + 1 exists. It is trivially also unique.

λx1 · · ·xk.xi is represented by the formula xk+1 = xi. Indeed for every
x1, . . . , xk there is a xk+1 such that xk+1 = xi and of course it is unique.

• composition: let F be defined by composition, so:

F (~x) = G(H1(~x), . . . ,Hm(~x)) (77)

with G, H1, . . . ,Hm ∆1 provable recursive (by induction hypothesis) and
represented by ∆1-formulae χ, ψ1, . . . , ψm respectively. Then F is repre-
sented by the following formula:

ϕ(~x, z) ≡ ∃z1 · · · zm(ψ1(~x, z1)∧· · ·∧ψm(~x, zm)∧χ(z1, . . . , zm, z)) (78)

Now ϕ is equivalent to a Σ1-formula. We know that ψ1, . . . , ψm, χ are all
equivalent to Σ1-formulae, this is a finite amount of formula, and they all
have a finite amount of existential quantifiers. By applying the following
equivalence finite number of times, we obtain a Σ1-formula:

ϕ ∧ ∃xψ ↔ ∃x(ϕ ∧ ψ) (79)

Now we still have to prove that ¬ϕ is also equivalent to a Σ1-formula.

We know ψi(~x, zi) ↔ ∃~yiζi(~yi, ~x, zi) with ζi a ∆0-formula, for all 1 ≤ i ≤
m, and χ(z1, . . . , zm, z)↔ ∀~hη(~h, z1, . . . , zm, z) with η a ∆0-formula. The
equivalences for ψi follow from the fact that all ψi are Σ1, the equivalence
for χ follows from the fact that χ is ∆1, which in particular means that
¬χ is Σ1, the equivalence stated above then follows from the property
¬∃xϕ ↔ ∀x¬ϕ and that the negation of a ∆0-formula is again a ∆0-
formula. Then we have the following equivalence:

ϕ(~x, z) ≡∃z1 · · · zm(ψ1(~x, z1) ∧ · · · ∧ ψm(~x, zm) ∧ χ(z1, . . . , zm, z))

↔∀z1, . . . , zm(ψ1(~x, z1) ∧ · · · ∧ ψm(~x, zm)→ χ(z1, . . . , zm, z))

↔∀z1, . . . , zm(∃~y1ζ1(, ~y1, ~x, z1) ∧ · · · ∧ ∃ ~ymζm( ~ym, ~x, zm)→

∀~hη(~h, z1, . . . , zm, z))

↔∀z1, . . . , zm, ~y1, . . . , ~ym,~h(ζ1(~y1, ~x, z1) ∧ · · · ∧ ζm( ~ym, ~x, zm)→

η(~h, z1, . . . , zm, z))

(80)
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So by the equivalence ¬∀xϕ ↔ ∃x¬ϕ we see that indeed the negation of
ϕ is again a Σ1-formula:

¬ϕ(~x, z)↔ ∃z1, . . . , zm, ~y1, . . . , ~ym,~h

(¬η(~h, z1, . . . , zm, z) ∧ ζ1(~y1, ~x, z1) ∧ · · · ∧ ζm( ~ym, ~x, zm))
(81)

So ϕ is equivalent to a ∆1-formula. We know that F is ∆1 provable
recursive if we show that PA ` ∀~x∃! zϕ(~x, z).

Say there is no z such that ϕ(~x, z), for some ~x. We know that ∃! ziψi(~x, zi)
for 1 ≤ i ≤ m by induction hypothesis for ψi. Now our assumption is that
for z1, . . . , zm we have ∀z¬χ(z1, . . . , zm, z). This is in contradiction with
our induction hypothesis for χ that ∀~x∃! zχ(~x, z). Conclude ∀~x∃zϕ(~x, z).

Now suppose we have z and w, w 6= z and ϕ(~x, z)∧ϕ(~x,w) for some ~x. By
induction hypothesis for ψi we know that all zi are uniquely defined. So
we have χ(z1, . . . , zm, z) ∧ χ(z1, . . . , zm, w) which is in contradiction with
our hypothesis for χ that z is uniquely defined. We conclude ∀~x∃! zϕ(~x, z).
So F is ∆1 provable recursive.

• primitive recursion: let F be defined by primitive recursion, so:

F (~x, 0) = G(~x) and F (~x, y + 1) = H(~x, F (~x, y), y) (82)

with G and H both ∆1 provable recursive, represented by χ(~x, z) and
ψ(~x, u, v, w) respectively. Then F is represented by the following formula
Φ:

Φ ≡ ∃am(χ(~x, (a,m)0)∧
∀i < yψ(~x, (a,m)i, i, (a,m)i+1) ∧ (a,m)y = u)

(83)

As before, this should just be seen as an abbreviation, as there is no term
(a,m)i in LPA. These abbreviations have been introduced in section 3.2.

First we will show that this formula is indeed the representation of F . For
this we have to prove that for every ~n, p:

PA `Φ(~n, k, p)⇔ F (~n, k) = p

PA `∃!uΦ(~n, k, u)
(84)

For the first property, we will do this by induction on k. The second
property will be proved while proving that F is ∆1 provable recursive (it
is a weaker condition than the condition for being ∆1 provable recursive).
For k = 0 we see Φ(~n, 0, p) = ∃am(χ(~n, (a,m)0) ∧ (a,m)0 = p) which
means we have χ(~n, p). So PA ` Φ(~n, 0, p) ⇔ PA ` χ(~n, p), so G(~n) = p,
so F (~n, 0) = p.

For the other implication, say F (~n, 0) = p, then G(~n) = p so PA ` χ(~n, p).
By the first property of theorem 7, we know that for every k there is
a,m such that (a,m)0 = k. This means we have PA ` χ(~n, p) ⇒ PA `
∃am(χ(~n, (a,m)0) ∧ (a,m)0 = p), so PA ` Φ(~n, 0, p).

Now for the induction step, suppose we have PA ` Φ(~n, k, p)⇔ F (~n, k) =
p.
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Suppose F (~n, k + 1) = q. We know that PA ` ∃am(χ(~n, (a,m)0) ∧ ∀i <
kψ(~n, (a,m)i, i, (a,m)i+1) ∧ (a,m)k = p).

By the second property of theorem 7, we know that there are a′,m′ such
that (a,m)i = (a′,m′)i for all i < k + 1 and (a′,m′)k+1 = q.

Because F (~n, k + 1) = q, we have H(~n, p, k) = q, which means we have
PA ` ψ(~n, p, k, q),so we know that PA ` ψ(~n, (a′,m′)k, k, (a

′,m′)k+1).

So PA ` ∃a′m′(χ(~n, (a′,m′)0) ∧ ∀i < k + 1ψ(~n, (a′,m′)i, i, (a
′,m′)i+1) ∧

(a′,m′)k+1 = q).

For the other implication, suppose we have PA ` ∃a′m′(χ(~n, (a′,m′)0) ∧
∀i < k + 1ψ(~n, (a′,m′)i, i, (a

′,m′)i+1) ∧ (a′,m′)k+1 = q).

Because (a′,m′)0 and (a′,m′)i+1 are uniquely determined for every i (as
we will see below, while proving that F is provable ∆1 represented), we
know that (a′,m′)k+1 is also uniquely determined. This means we have
PA ` ψ(~n, (a′,m′)k, k, q), so H(~n, p, k) = q, so F (n, k + 1) = q.

Now we prove that this formula is a ∆1-formula. G and H are represented
by ∆1-formulae, so there are ∆0-formulae χ′ and ψ′ such that χ(~x, z) ↔
∃rχ′(~x, z, r) and ψ(~x, u, v, w)↔ ∃sψ′(~x, u, v, w, s). Now Φ becomes:

∃am(∃rχ′(~x, (a,m)0, r)

∧ ∀i < y∃sψ′(~x, (a,m)i, i, (a,m)i+1, s) ∧ (a,m)y = u)
(85)

which is equivalent, using the Collection Principle (39) to:

∃amrs(χ′(~x, (a,m)0, r)∧
∀i < yψ′(~x, (a,m)i, i, (a,m)i+1, s) ∧ (a,m)y = u)

(86)

Now χ′ and ψ′ are ∆0, ∀i < yψ′ is also ∆0 as the quantifier is bounded,
and (a,m)y = u is ∆0 as this is just an abbreviation of an arithmetical
statement. The conjunction of the above is therefore also ∆0, which means
Φ is equivalent to a Σ1-formula.

Because G and H are ∆1 provable recursive, we have PA ` ∀~x∃! zχ(~x, z)
and PA ` ∀~xuv∃!wψ(~x, u, v, w). This means we also have:

PA ` ∀fg(χ(~x, f) ∧ χ(~x, g)→ f = g)

PA ` ∀fg(ψ(~x, u, v, f) ∧ ψ(~x, u, v, g)→ f = g)
(87)

This means that also a,m are uniquely determined, so Φ is equivalent to
the following formula:

∀am(χ(~x, (a,m)0)∧∀i < yψ(~x, (a,m)i, i, (a,m)i+1)→ (a,m)y = u) (88)

Now, using again the Collection Principle and the basic rule (∃xf(x) →
g)↔ (∀x(f(x)→ g)), we have that Φ is also equivalent to:

∀amrs(χ′(~x, (a,m)0, r)∧
∀i < yψ′(~x, (a,m)i, i, (a,m)i+1, s)→ (a,m)y = u)

(89)

This is a Π1-formula, which means the negation of Φ is a Σ1-formula,
which means Φ is indeed a ∆1-formula.
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And, to show that F is ∆1 provable recursive, we will show that PA `
∀~x, y∃!uϕ(~x, y, u).

Let y = 0. Then we know that ∃! zχ(~x, z) because G is ∆1 provable recur-
sive. By the first property of theorem 7 we know that ∀z∃am((a,m)0 = z).
Now take u = z, then u is uniquely defined and we have (as there are no
i < 0) that:

∃am(χ(~x, (a,m)0)∧∀i < 0ψ(~x, (a,m)i, i, (a,m)i+1)∧ (a,m)0 = u (90)

Now say the formula holds for y. We want to show it also holds for
y + 1. Use that for H we know that for ~x, (a,m)y, y there exists a unique
z such that ψ(~x, (a,m)y, y, z). Let u = z then u exists and is uniquely
determined. For this we use the second property of theorem 7. By this
property we know that ∀amuy we can find b, n such that ∀i ≤ y((a,m)i =
(b, n)i) ∧ (b, n)y+1 = u. So we have:

∃bn(χ(~x, (b, n)0)∧ ∀i ≤ yψ(~x, (b, n)i, i, (b, n)i+1)∧ (b, n)y+1 = u (91)

So by induction we see that such a u always exists and is uniquely deter-
mined because G and H are ∆1 provable recursive. So F is ∆1 provable
recursive.

7.2 Coding

Gödel presented a coding of terms, formulae and proofs in PA. This coding will
be used to prove the Diagonalisation lemma, an essential property in the proof
of the first incompleteness theorem.

7.2.1 Coding of Terms and Formulae

Remember the definition of the coding of sequences given in theorem 27, which
was primitive recursive. We use this to assign to every formula ϕ in LPA a code
pnq ∈ N. We will see that this is done in a way which translates all relevant
operations on formulae into primitive recursive functions on codes.

We assume that variables are numbered (v0, v1, . . . ), and we take < as a
primitive symbol of LPA. We define the following:

0 1 v + · = < ∧ ∨ → ¬ ∀ ∃
0 1 2 3 4 5 6 7 8 9 10 11 12

First we define the coding of terms, by recursion on the term t:

• p0q = 〈0〉

• p1q = 〈1〉

• pviq = 〈2, i〉

• pt+ sq = 〈3, ptq, psq〉

• pt · sq = 〈4, ptq, psq〉

We define the coding of formulae by recursion as well:
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• pt = sq = 〈5, ptq, psq〉

• pt < sq = 〈6, ptq, psq〉

• pϕ ∧ ψq = 〈7, pϕq, pψq〉

• pϕ ∨ ψq = 〈8, pϕq, pψq〉

• pϕ→ ψq = 〈9, pϕq, pψq〉

• p¬ϕq = 〈10, pϕq〉

• p∀viϕq = 〈11, pviq, pϕq〉

• p∃viϕq = 〈12, pviq, pϕq〉

Now many properties are primitive recursive, we will show that for the fol-
lowing example, the proof of which also includes many other examples:

Lemma 41 (Substitution). There is a primitive recursive function Sub, such
that

Sub(x, y, i) =

{
pϕ[s/vi]q if y = pϕq and x = psq

0 else
(92)

Proof. We will prove that ‘y codes a formula’, ‘x codes a term’, ’vi is free in ϕ
and variables in s are not bound in ϕ when s is substituted for vi’ are primitive
recursive. Then the set of x, y for which x codes a term and y codes a formula is
primitive recursive as well: it is the intersection of two primitive recursive sets,
so we may add their characteristic function to obtain its characteristic function,
and this is primitive recursive because it is the composition of addition (which
is primitive recursive) and two primitive recursive functions. So that set is
primitive recursive and ’vi is free in ϕ and variables in s are not bound in ϕ
when s is substituted for vi’ as well, and by applying theorem 29 we see that
Sub is primitive recursive.

Before we prove the properties, let us observe that if a is defined by a code
of a sequence with at least two elements, e.g. a = 〈b, c〉, then we always have
a > b ∧ a > c.

First we prove that ‘x codes a term’ is a primitive recursive property. This is
equivalent with proving that the characteristic function χt(x) is primitive recur-
sive. Now we have the following equivalence, which follows from the recursive
definition of terms:

χt(x)⇔x = 〈0〉 ∨ x = 〈1〉
∨ ∃i < x(x = 〈2, i〉)
∨ ∃ij < x(χt(i) ∧ χt(j) ∧ x = 〈3, i, j〉)
∨ ∃ij < x(χt(i) ∧ χt(j) ∧ x = 〈4, i, j〉)

(93)

We know that 〈0〉, 〈1〉, 〈2, i〉, 〈3, i, j〉 and 〈4, i, j〉 are primitive recursive by the
properties of 〈〉. So we see that χt(x) is defined by course-of-values recursion
(see definition 28), from the composition of primitive recursive functions. So it
is primitive recursive.
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Now we will prove that ‘y codes a formula’ is primitive recursive. For the
characteristic function χf of the set of all y that code formulae, we have the
following equivalence, which follows from the recursive definition of formulae:

χf (y)⇔∃vw < y(χt(v) ∧ χt(w) ∧ y = 〈5, v, w〉)
∨∃vw < y(χt(v) ∧ χt(w) ∧ y = 〈6, v, w〉)
∨∃vw < y(χf (v) ∧ χf (w) ∧ y = 〈7, v, w〉)
∨∃vw < y(χf (v) ∧ χf (w) ∧ y = 〈8, v, w〉)
∨∃vw < y(χf (v) ∧ χf (w) ∧ y = 〈9, v, w〉)
∨∃v < y(χf (v) ∧ y = 〈10, v〉)
∨∃iv < y(∃j < i(i = 〈2, i〉) ∧ χf (v) ∧ y = 〈11, i, v〉)
∨∃iv < y(∃j < i(i = 〈2, i〉) ∧ χf (v) ∧ y = 〈12, i, v〉)

(94)

We know that χt is primitive recursive, as well as 〈〉, so we see that also
χf (y) is defined by course-of-values recursion from the composition of primitive
recursive functions, and is therefore primitive recursive.

The last one to prove is that ‘vi is free in ϕ and no free variables in s are
bound in ϕ when s is substituted for vi’ is primitive recursive. We see that
these are in fact two properties, and we can show they are primitive recursive
seperately, as we can just add their characteristic functions to obtain the char-
acteristic function of the property asked for. We will define the characteristic
function χb for vi is bound in ϕ, its negation will then be vi is free in ϕ.

χb(vi, ϕ)⇔ϕ = 〈11, pviq, pψq〉 ∨ ϕ = 〈12, pviq, pψq〉
∨ (ϕ = 〈7, pψq, pψ′q〉 ∧ (χb(vi, ψ) ∨ χb(vi, ψ

′)))

∨ . . . ∨ (ϕ = 〈10, pψq〉 ∧ χb(vi, ψ))

(95)

We see that this function is primitive recursive, as it is defined from primitive
recursive functions by course-of-values recursion. So its negation, χf (vi, ϕ) for
vi is free in ϕ, is also primitive recursive.

For the second part, no free variables in s are bound ϕ when s is substituted
for vi we define the characteristic function χs:

χs(s, ϕ)⇔ (χf (vj , s)→ χf (vj , ϕ)) (96)

We see that this is a composition of primitive recursive functions, so it is
primitive recursive. The characteristic function for the property as a whole
becomes

χf (vi, ϕ) + χs(s, ϕ) (97)

which is again a primitive recursive function.

7.2.2 Coding of Proofs

Also for the construction steps of proof trees one can find a coding like the one
above. I will only discuss the construction steps I have introduced before. For
simplicity I will just number them from 0 again. For a more complete overview
of the coding of proofs, see [van Oosten, 2009].
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Ass ∧I ∀E
0 1 2

The coding of proof trees is done by induction on the construction of proof
trees. This means for example that we have

• 〈0, pϕq〉 is the code of the tree with one node, the assumption tree.

• 〈1, pD1q, pD2q, pϕ ∧ ψq〉 is the code of the tree resulting from the trees
D1 and D2 with roots ϕ and ψ respectively, by applying ∧I.

• 〈2, pDq, pϕ[s/t]q〉, where the root of D is ∀tϕ(t) is the code of the tree
resulting from D by applying ∀E.

Remember the example of the proof tree given in section 4:

∀xϕ(x)
∀E

ϕ[t/x] ψ
∧I

ϕ[t/x] ∧ ψ

For this proof tree I will present its coding as an example to convince you
of this method. The code of this proof tree D is:

pDq = 〈1, pD1q, pD2q, pϕ[t/x] ∧ ψq〉
where pD2q = 〈0, pψq〉,

and pD1q = 〈2, pD3q, pϕ[t/x]q〉,
where pD3q = 〈0, p∀xϕ(x)q〉.

(98)

We see that this coding is also primitive recursive. Using this, one can prove
that some special properties that we will define here are also primitive recursive.
These properties we will use in section 7.3.

Definition 42. We define functions OA, giving the set of undischarged (not
eliminated) assumptions of a proof tree, NDT (natural deduction tree) and Ax:

• OA(x, y)↔ x is the code of a natural deduction tree and y is the code of
an undischarged assumption of the tree coded by x.

• NDT(x, y) ↔ y is the code of a formula and x is the code of a correct
natural deduction tree with root labelled by the formula coded by y.

• Ax(x) ↔ x is the code of an axiom of PA or the predicate calculus (gov-
erning the equality sign).

Lemma 43. The function OA and the predicates NDT and Ax are primitive
recursive.

Proof.

• For OA(x, y), its primitive recursiveness is proved by course-of-values re-
cursion. We will, again, not show all construction steps for proof trees. We
will show the steps presented above and a few steps with additional dif-
ficulties. These are negation introduction (¬I) and implication introduc-
tion (→ I). These are examples of steps in which assumptions are being
discharged, which means the set of undischarged assumptions changes.
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We have the following partial definition for OA:

OA(x, y)↔

(x = 〈0, pϕq〉 ∧ y = pϕq)∨
(x = 〈1, pD1q, pD2q, pϕ ∧ ψq〉∧
(OA(pD1q, y) ∨OA(pD2q, y)))∨
(x = 〈2, pDq, pϕ[s/t]q〉 ∧OA(pDq, y))∨
(x = 〈p→ Iq, pDq, pϕ→ ψq〉 ∧ y 6= pϕq ∧OA(pDq, y))∨
(x = 〈p¬Iq, pDq, p¬ϕq〉 ∧ y 6= pϕq ∧OA(pDq, y))

(99)

We see that OA is a composition of the primitive recursive coding of trees
and coding of formulae, and that OA for lower numbers (because adding a
root to a proof tree enlarges its Gödel number) appears in the definition.
This means that OA is defined by course-of-values recursion and composi-
tion of primitive recursive functions, which means it is primitive recursive.
The other construction steps can be formalised in the same manner, so
OA is primitive recursive.

• The proof that NDT is primitive recursive will be given in the same way
as the proof for OA. We will show its primitive recursiveness for a few
construction steps, the ones presented earlier, implication introduction
(→ I) and the introduction of the universal quantifier (∀I) as these are
again examples of more complicated steps: the former discharges an as-
sumption and for the latter there are additional requirements for the open
assumptions and the free variables, as we will see below.

First we see that the characteristic function for ‘the term with code x does
not occur in the term with code y’ is primitive recursive, defined by course-
of-values recursion and composition of primitive recursive functions:

χnt(x, y)↔ x 6= y ∧ (y = 〈0〉 ∨ y = 〈1〉 ∨ y = 〈2, i〉
∨(y = 〈3, ptq, psq〉 ∧ χnt(x, psq) ∧ χnt(x, ptq))

∨(y = 〈4, ptq, psq〉 ∧ χnt(x, psq) ∧ χnt(x, ptq)))

(100)

and we see that the characteristic function for ‘the term with code x does
not occur in the formula with code y’ is therefore also primitive recursive,
as it is defined by course-of-values recursion and composition of primitive
recursive functions:

χnf (x, y)↔(y = 〈5, ptq, psq〉 ∧ χnt(x, ptq) ∧ χnt(x, psq)) ∨ . . .∨
(y = 〈12, pviq, pϕq〉 ∧ χnt(x, pviq) ∧ χnf (x, pϕq)

(101)
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Now we give a partial definition of NDT:

NDT(x, y)↔

(x = 〈0, y〉 ∧ χf (y))∨
(x =〈1, c, d, e〉 ∧ χf (e) ∧ e = 〈7, u, v〉∧

NDT(c, u) ∧NDT(d, v))∨
(x =〈2, c, d〉 ∧ χf (d) ∧ d = Sub(psq, pϕq, i)∧

NDT(c, b) ∧ b = 〈11, pviq, pϕq))∨
(x =〈p→ Iq, c, d〉 ∧ χf (d) ∧ d = 〈9, u, v〉∧

NDT(c, v) ∧ ¬OA(x, u))∨
(x =〈p∀Iq, c, d〉 ∧ χf (d) ∧ d = 〈11, pviq, pϕq〉∧

NDT(c, b) ∧ b = Sub(psq, pϕq, i))∧
¬OA(c, psq) ∧ χnf (psq, pdq)

(102)

We see that NDT is defined by course-of-values recursion and composition
of primitive recursive functions: all functions occuring have been proved to
be primitive recursive and the appearances of NDT are for lower numbers,
because adding a root enlarges the Gödel number. The other construction
steps can be formalised in the same manner, so NDT is primitive recursive.

• Ax(x) is the characteristic function of the set of the codes of all axioms of
PA and the predicate calculus. The axioms of the predicate calculus are
the following:

– ∀u(u = u)

– ∀uvw(u = v ∧ v = w → u = w)

– ∀ϕtsu(t = s ∧ ϕ[t/u]→ ϕ[s/u])

Now we see that for example for the first two of these properties we have:

Ax(x) =



0 if (x)0 = 5 ∧ (x)1 = (x)2

0 if

∃ij < x(x = 〈9, i, j〉 ∧ ∃kl < j(j = 〈5, k, l〉)∧
∃mn < i(i = 〈7,m, n〉)
∧ k < m ∧ n < l∃t((t < m ∧ t < n)

∧ (m = 〈5, k, t〉 ∧ n = 〈5, t, l〉))

1 else

(103)

This can also be done for the axioms. For those I will also give an example.
This is for the axioms ∀x¬(x+ 1 = 0) and ∀x(x · 0 = 0)

Ax(x) =


0 if (x)0 = 10 ∧ ∃t < (x)1((x)1 = 〈5, i, p0q〉 ∧ i = 〈3, t, p1q〉)
0 if (x)0 = 5 ∧ (x)2 = p0q ∧ ∃t < (x)1((x)1 = 〈4, t, 0〉)
1 else
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(104)

Now we see that all these properties are primitive recursive, as they are
compositions of ()i and 〈〉 which are primitive recursive. This can also
be shown for the other axioms. So if we define Ax as the characteristic
function of the axioms of PA and the predicate calculus, this will also be
a primitive recursive function by theorem 29.

7.3 The Predicate Prf(x,y)

We will define a new predicate, Prf(x, y), which says that x is the code of a
correct proof of the formula that y codes.

Definition 44. Define Prf(x, y) with the following equivalence:

Prf(x, y)↔ NDT(x, y) ∧ ∀z ∈ OA(x)Ax(x) (105)

From the definition it is clear that Prf is the predicate which says x is a
correct proof of y in PA: there is a natural deduction tree that proves y, for
which all assumptions which are not eliminated are axioms of PA or of the
predicate calculus. We will prove some properties of Prf that we will need in
the proof of the first incompleteness theorem.

Lemma 45. Prf(x, y) is primitive recursive.

Proof. We see Prf(x, y) is just a composition of primitive recursive functions, so
it is primitive recursive.

As NDT, Ax and Prf are all primitive recursive, we know they are ∆1-
represented. Now let Prf, NDT and Ax be ∆1-formulae representing the predi-
cates Prf, NDT and Ax in PA.

Lemma 46.

1. PA ` ϕ⇒ PA ` ∃xPrf(x, pϕq)

2. PA ` ∀xy(Prf(x, pϕ→ ψq) ∧ Prf(y, pϕq)→ Prf(〈7, x, y, pψq〉, pψq))

Proof. For the first property:
PA ` ϕ means there is a proof of ϕ in PA. So there is a proof tree D with

conclusion ϕ, say pDq = n. Because it is a proof, we know that OA(n, y) →
Ax(y), and that NDT(n, pϕq). So we have Prf(n, pϕq). We know Prf represents
Prf, and because Prf is Σ1 and PA is Σ1-complete we may conclude that PA
` Prf(n, pϕq). So PA ` ∃xPrf(x, pϕq).

For the second property:
This follows from the inference rule for implication-elimination. If we have

Prf(x, pϕ→ ψq)∧Prf(y, pϕq), then there is a proof tree for ϕ→ ψ and a proof
tree for ϕ, both of which are correct natural deduction trees with undischarged
assumpions consisting only of axioms. We can primitive recursively add another
root using the inference rule for implication-elimination. This can be done in a
same fashion as the examples given above (i.e. ∀E). The resulting tree will again
be a correct natural deduction tree with undischarged assumptions consisting
only of axioms, so it is a proof, and the implication is shown.
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We introduce the following abbreviation: �ϕ ≡ ∃xPrf(x, pϕq). Then lemma
46 becomes:

1. PA ` ϕ⇒ PA ` �ϕ

2. PA ` �(ϕ→ ψ) ∧�ϕ→ �ψ

7.4 The Diagonalization Lemma

To prove the first incompleteness theorem, Gödel invented sentences that are
independent of PA. These sentences have been named after him: they are called
Gödel sentences, we will see them in section 7.6. To prove that these are indeed
independent of PA, we will need an important lemma, formulated by Gödel.

We could describe this lemma in words, which will hopefully give some in-
sight in how the lemma works.

The result of substituting the quotation of “The result of substitut-
ing the quotation of x for ‘x’ in x has property P .” for ‘x’ in “The
result of substituting the quotation of x for ‘x’ in x has property P .”
has property P .42

We will now give the formal formulation and its proof.

Lemma 47 (Diagonalisation Lemma). For any LPA-formula ϕ with free vari-
able v0 there is an LPA-formula ψ with the same free variables as ϕ except v0,
such that

PA ` ψ ↔ ϕ[pψq/v0] (106)

Moreover, if ϕ ∈ Π1 then ψ can be chosen to be Π1 as well.

Proof. We know the function Sub(x, y, i) is primitive recursive by lemma 41. So
the function λxy.Sub(x, y, 0) is primitive recursive as well. So it is ∆1 provable
recursive by theorem 40, so in particular it can be represented by a Σ1-formula
S. Let T be the Σ1-formula representing the primitive recursive function n →
pnq. Then we have the following properties, these follow from the definition of
representation and ∆1 provable recursion:

1. ∀nm ∈ N PA ` S(n,m, Sub(n,m, 0))

2. ∀n ∈ N PA ` T (n, pnq)

3. PA` ∀xy∃! zS(x, y, z)

4. PA` ∀x∃! yT (x, y)

Now let ϕ be an LPA-formula with free variable v0. We define the formula
C as follows:

C ≡ ∀xy(T (v0, x) ∧ S(x, v0, y)→ ϕ[y/v0]) (107)

and let ψ be defined as follows:

ψ ≡ C[pCq/v0] (108)

42Cited from [Franzén, 2005] p. 41
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We know that T and S are Σ1, so they are of the form ∃~uT ′ and ∃~wS′, so
we may write T (v0, x) ∧ S(x, v0, y) ↔ ∃~u, ~w(T ′(~u, v0, x) ∧ S′(~w, x, v0, y)), after
renaming variables bound by ∃ in S if they are already bound by ∃ in T .

Now we have the equivalence (∃xϕ → ψ) ↔ ∀x(ϕ → ψ), applying this
equivalence a finite number of times gives us

∀xy(T (v0, x) ∧ S(x, v0, y)→ ϕ[y/v0])

↔ ∀xy~u~v(T ′(~u, v0, x) ∧ S′(~w, x, v0, y)→ ϕ[y/v0])
(109)

where T ′ and S′ are ∆0-formulae.
ϕ is a Π1-formula, so it is of the form ∀~zϕ′(~z, y/v0). Because (ϕ→ ∀xψ)↔

∀x(ϕ→ ψ), we now obtain:

C ↔ ∀xy~u~w~z(T ′(~u, v0, x) ∧ S′(~w, x, v0, y)→ ϕ′(~u, y/v0)) (110)

This is a Π1-formula. Now ψ is also a Π1 formula, as this is just C with a
substitution of a variable with a certain (interpretation of a) numeral.

Now by the properties 2 and 4 stated above, we have:

PA ` ∀y(∃x(T (pCq, x) ∧ S(x, pCq, y))↔ S(ppCqq, pCq, y)) (111)

From 2 we derive that PA ` T (pCq, ppCqq), then from 4 we see that if

PA ` T (pCq) then x = ppCqq. Now the above stated property follows.
By properties 1 and 3 stated above, we have:

PA ` ∀y(S(ppCqq, pCq, y)↔ y = pC[pCq/v0]q) (112)

From 1 we derive that PA ` S(ppCqq, pCq,Sub(ppCqq, pCq, 0)) and from 3

we know that if PA ` S(ppCqq, pCq, y) then y = Sub(ppCqq, pCq, 0).
And from the definition of Sub we derive Sub(ppCqq, pCq, 0) = pC[pCq/v0]q,

so the above stated property follows.
Now combining these two equivalences and using the definition of ψ, we

obtain the following equivalence:

PA ` ∀y(∃x(T (pCq, x) ∧ S(x, pCq, y))↔ y = pψq) (113)

Now it is straightforward to derive the equivalence stated in the lemma,
using the definition of ψ and the above stated equivalence:

PA ` ψ ↔ ∀y(∃x(T (pCq, x) ∧ S(x, pCq, y))→ ϕ[y/v0]

↔ ∀y(y = pψq→ ϕ[y/v0])

↔ ϕ[pψq/v0]

(114)

7.5 Proof of the First Theorem

Now that we have seen enough theory to understand the first incompleteness
theorem, we will state it again and prove it.
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Theorem 48 (First Incompleteness Theorem). There is a Π1-sentence G such
that PA ` G↔ ¬�G. G is independent of PA.

Proof. Let F be the formula ¬∃Prf(x, v0). We know that Prf ∈ ∆1, so it is
equivalent to ∃~yϕ for some ϕ ∈ ∆0. So ¬Prf is equivalent to ∀~y¬ϕ. F equals
∀x¬Prf(x, v0) so it is equivalent to ∀x∀~y¬ϕ(~y, x, v0) which is a Π1-formula.

Now apply the Diagonalisation lemma to F . F has free variable v0 and is
Π1, so we can find a formula G which does not have v0 as a free variable and is
also Π1. For G we have:

PA ` G↔ ¬∃xPrf(x,G) (115)

In the abbreviation introduced before this becomes:

PA ` G↔ ¬�G (116)

Assume PA ` G. By the first property of lemma 46 we then have PA ` �G.
From the equivalence that we have for G, we then have PA ` ¬G. So PA ` G
and PA ` ¬G, which means PA is inconsistent. This is a contradiction so PA
6` G.

Now assume PA ` ¬G. Then, by the equivalence we have for G, we have
PA ` �G. We know PA ` ϕ ⇒ N |= ϕ so we know N |= �G. This means that
there is a proof of G. For this proof one can make a correct proof tree so PA
` G. So we have PA ` ¬G and PA ` G, which means PA is inconsistent, which
is again a contradiction so PA 6` ¬G. This means G is independent of PA, so
PA is incomplete.

The sentence G is true in N. This is because G is a Π1-formula, which means
¬G is a Σ1-formula. We know PA is Σ1-complete, by lemma 37, so this would
mean that if N |= ¬G, then PA ` ¬G, and we know PA 6` ¬G so it is not the
case that N |= ¬G, so G is true in N.

7.6 Gödel Sentences

The sentence G is the Gödel sentence we mentioned before. This sentence has
been compared with several liar paradoxes, because of the strange equivalence
it involves: if it is true in all models, there is no proof, and if there is a proof it
is not true in all models.

There have been developed other ways of producing self-referential sentences,
like the following, developed by W. Quine:

“yiels a sentence with property P when appended to its own quota-
tion.” yields a sentence with property P when appended to its own
quotation.43

The Gödel sentence is a sentence G, such that the theory S proves

G if and only if n is not the Gödel number of a theorem of S,

where n is the Gödel number of G itself.
The formulation in words of the sentences Rosser used to adapt Gödel’s

proof to cover also other theories than PA (Rosser sentences, denote this by R),
would be something like this: PA proves

43From [Franzén, 2005] p.42
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R if and only if for every n, if n is the Gödel number of a proof of
R, then there is an m < n such that m is the Gödel number of a
proof of not-R.

In the proof we have just seen, using the Gödel sentence, it is used that N is
a model of PA. If one uses the Rosser sentence to prove the first incompleteness
theorem, only the consistency of PA is used to prove the independency of PA
of the Rosser sentence. This is why this sentence can be used to prove the first
incompleteness theorem also for other theories, as we stated above. We will
discuss Rosser sentences again in section 9.3.

7.7 Proof Sketch of the Second Theorem

Now we will take a second look at the second incompleteness theorem.
We know a system is consistent if ⊥ cannot be derived in it. This means that

¬�⊥ is actually a formula expressing consistency. This is such an important
property that this sentence has been given a name:

ConPA = ¬�⊥ (117)

We now see that the second incompleteness theorem indeed states that PA
does not prove its own consistency:

Theorem 49 (Second Incompleteness Theorem).

PA 6` ConPA (118)

The proof of this theorem will now be presented, assuming one property that
has not been proved:

PA ` �ϕ→ ��ϕ (119)

This property is far from trivial. In fact it is a consequence of a more general
property of PA: Formalised Σ1-completeness. We will return to this after we
have given the proof of the second incompleteness theorem.

Recall the properties of � that we proved in section 7.3:

1. PA ` ϕ⇒ PA ` �ϕ

2. PA ` �(ϕ→ ψ) ∧�ϕ→ �ψ

Note that the second property is equivalent to the following property:

PA ` �(ϕ→ ψ)→ (�ϕ→ �ψ) (120)

Proof. In the proof of the first incompleteness theorem, we constructed a sen-
tence G such that PA ` G↔ ¬�G. We will now show that for such G we have
PA ` G↔ ¬�⊥.

We know PA ` ⊥ → G. By the first property, this means we have PA `
�(⊥ → G). Then by the equivalent formulation of the second property we have
PA ` �⊥ → �G. By construction of G we now have: PA ` G→ ¬�G→ ¬�⊥.

For the other implication, we will first proof that the first and second prop-
erty together proof the following property:

PA ` �ϕ ∧�ψ → �(ϕ ∧ ψ) (121)
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We know that for all ϕ and ψ we have PA ` ψ → (ϕ→ (ϕ ∧ ψ)). So by the
first property this means we have PA ` �(ψ → (ϕ→ (ϕ ∧ ψ))).

Now assume we know PA ` �ϕ ∧ �ψ. Then we may conclude the follow-
ing, using that the property stated above is always true, and using the second
property of the proposition twice:

PA `�ψ ∧�ϕ
↔�(ψ → (ϕ→ (ϕ ∧ ψ))) ∧�ψ ∧�ϕ
→�(ϕ→ (ϕ ∧ ψ)) ∧�ϕ
→�(ϕ ∧ ψ)

(122)

Now we have PA ` G → ¬�G, so by the first property we have PA `
�(G→ ¬�G), by the equivalent definition of the second property we thus have
PA ` �G → �(¬�G). On the other hand, by our assumption we have PA
` �G → ��G. These together give us PA ` (�G → (�(¬�G) ∧ ��G)) and
now we have, using the property we just proved:

PA `(�G→ (�(¬�G) ∧��G))

→(�G→ �((¬�G) ∧�G))

→(�G→ �⊥)

(123)

This means we have PA ` ¬�⊥ → ¬�G→ G.
So indeed we have PA ` G ↔ ¬�⊥. As we know that G is independent of

PA by the first incompleteness theorem, this equivalence shows that also ConPA

is independent of PA and therefore the consistency of PA cannot be proved
within PA.

Now for the proof of the second incompleteness theorem, we assumed a
property that was a consequence of the Formalised Σ1-completeness:

Theorem 50 (Formalised Σ1-completeness of PA). For every Σ1-sentence of
PA,

PA ` ϕ→ �ϕ (124)

Now the proof of this theorem is far from trivial, and I will only give an idea
of how the proof can be carried out.

First, we take symbols T , representing the primitive recursive operation
n→ pnq and Sf and St, representing primitive recursive substitution operations
on formulae and terms respectively, and prove that PA proves the recursion for
those functions.

Then one can prove the following lemma:

Lemma 51. For every ∆0-formula ϕ(v0, . . . , vk−1) we have:

PA ` ∀x0 · · ·xk−1(ϕ(~x)→ ∃yPrf(y, Sf (pϕq, 〈T (x0), . . . , T (xk−1)〉))) (125)

To prove this lemma, one has to formalise the results obtained in lemma 37,
the Σ1-completeness of PA.
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This lemma now suffices to prove the theorem, it only has to be extended
to cover not only ∆0- but also Σ1-formulae: If ψ is a Σ1-formula, we know
PA ` ψ ↔ ∃x1, . . . , xnϕ(~x) for some ∆0-formula ϕ. Now for ϕ we know:

PA ` ∀x0 · · ·xk−1(ϕ(~x)→ ∃yPrf(y, Sf (pϕq, 〈T (x0), . . . , T (xk−1)〉))) (126)

So we have

PA `∃x0 · · ·xk−1ϕ(~x)→ ∃yPrf(y, Sf (pϕq, 〈T (x0), . . . , T (xk−1)〉))

→ ∃yPrf(y, Sf (p∃~xϕ(~x)q, 〈T (x0), . . . , T (xk−1)〉))
(127)

Which is equivalent to

PA ` ψ → ∃yPrf(y, Sf (pψq, 〈T (x0), . . . , T (xk−1)〉)) (128)
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8 Gödel and Hilbert’s Programme

In 1930, a conference was held, at which Gödels incompleteness theorems were
presented. On the first day, von Neumann presented an overview of Hilbert’s
programme.

Gödel reacted to this in the following way: ‘one cannot claim with certainty
of any formal system that all conceptual considerations are representable in
it.’44 Thus, it is possible that one could prove, with the transfinite methods of
classical mathematics, a sentence p in a consistent formal system A, though all
that follows from the consistency of A is that not-p is not provable within A,
and one could still recognise not-p through some conceptual considerations with
cannot be formally represented in A.

Also Gödel stated his first incompleteness theorem, given as a critique of
Hilbert’s programme and the inadequacy of consistency for Hilbert’s purpose:

One can (under the assumption of the consistency of classical math-
ematics) even give examples of statements (and even of the sort of
Goldbach’s or Fermat’s), which are conceptually correct but unprov-
able in the formal system of classical mathematics. Therefore, if one
adjoins the negation of such a statement to the axioms of classi-
cal mathematics, then one obtains a consistent system in which a
conceptually false sentence is provable. 45

8.1 Gödels Refutation of the Original Programme

It is clear that Gödel’s second incompleteness theorem shows that Hilbert’s pro-
gramme, in his original form, can never be attained. Hilbert wanted to formalise
mathematics in a consistent system, and as he wanted to do all mathematics
in this system, also the consistency of that system should be proved within
the system, which is impossible, according to the second incompleteness theo-
rem. The first incompleteness theorem showed that the programme developed
by Hilbert, if it would prove consistency, could never prove completeness, and
therefore could never be completed.

Smorynski presented an argument that even the first incompleteness theo-
rem by itself defeats Hilbert’s programme.46, He argues in the following way.
Suppose T is a theory formalising ideal mathematics. If there would be a fini-
tary consistency proof of T , then T must be conservative over S, a subtheory of
T formalising finitary real mathematics, for Π1-formulae. Because if T were not
conservative over S, the consistency of T could never be proved in S. We may
apply the first incompleteness theorem to S, as finitary real mathematics clearly
contains enough arithmetic. So there is a sentence GS which is not derivable in
S if S is consistent. T formalises the sentence ‘if S is consistent, then GS ’, as T
formalises ideal mathematics (which is, roughly, all of mathematics that is not
finitary), and finitary mathematics as a subtheory, which means it formalises all
of mathematics. But it also proves the soundness of S and therefore its consis-

44As cited in [Smorynski, 1986], p.51
45As cited in [Smorynski, 1986] p.52
46He does so in [Smorynski, 1977], according to [Zach, 2006]. The statement is indeed in

[Smorynski, 1977], at p. 825, the argument however I cannot find, so the one explained here
is from [Zach, 2006].
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tency47, which means T proves GS . This means there is a true real statement,
provable in ideal mathematics, but undecidable in real mathematics. So ideal
mathematics is not conservative over finitary real mathematics.

Smorynski also notes why this means that its consistency cannot be proved
in finitary real mathematics either48, by showing that consistency implies con-
servation in this case, which would lead to a contradiction.

Let ϕ be a Π1 formula, say ∀xψx, with ψ ∈ ∆0. If T ` ϕ, then there is a
derivation d of ϕ from T . But derivations are concrete objects, which means
that for some real formula P encoding derivations in T , we have S ` P (d, pϕq).
If ϕ were false, there would be an a such that ¬ψa, and there would be a c such
that S ` P (c, p¬ϕq. There would even be the following, stronger, assertion,
with cx depending on x:

S ` ¬ψx→ P (cx, p¬ϕq) (129)

Now if S would prove the consistency of T , we would have

S ` ¬(P (d, pϕq) ∧ P (c, p¬ϕq)) (130)

because S proves there is no contradiction in T ,because it proves the consistency
of T . Because S ` P (d, pϕq) this means we have S ` ¬P (c, p¬ϕq), so by the
implication stated above we have S ` ψx for free variable x, so we have S ` ϕ.49

So if it is shown by the first incompleteness theorem that T is not conser-
vative over S, we know by the argument given above that S does not prove the
consistency of T .

Gödel’s original formulation, as cited above, also shows another important
consequence of the theorems. It shows that, if a certain formal system is con-
sistent, it is incomplete, and we can find a sentence which is unprovable in the
system, but conceptually correct. The system obtained when adding the nega-
tion of that sentence to the original system, would be consistent. But also, it
would be proving a conceptually false statement!

This shows that maybe Brouwer was right: consistency is not enough to
ensure truth. Indeed, consistency is only a weak soundness condition.

We can indeed say that through finitistic reasoning, indeed we cannot prove
the consistency of PA. However, if we widen our scope, we see that the con-
sistency of PA can be proved in ZFC quite easily.50 An often heard objection
against this, is a consistency proof of PA in ZFC is only meaningful if ZFC itself
is consistent.

This argument of course makes sense, but it is striking to see that those kind
of objections are never heard in the field of ‘ordinary’ mathematics. Returning
to a famous theorem we’ve seen earlier, when Andrew Wiles proved Fermat’s
theorem, there was no objection like: ‘No, he only proved that if ZFC is con-
sistent, then there is no solution in positive integers to xn + yn = zn for n > 2’.
Now one could say that there is always an implicit ‘if ZFC is consistent’ in front
of every mathemical theorem, and only in the case of consistency theorems it
is important to explicitly state them. However, there is no way to make sense

47Zach does not explain why this is true.
48[Smorynski, 1977], p.824
49Smorynski notes that this proof is a bit vague and refers to other parts of [Smorynski,

1977] for a detailed proof.
50[Franzén, 2005], p. 106
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of those theorems, if one seriously doubts the consistency of ZFC.51 So we may
conclude that the consistency of PA can indeed be proved in ZFC, if we view it
as just an ordinary proof in mathematics. If one equally doubts the consistency
of ZFC, then of course the proof will not be convincing, but this doubt only
makes sense given a skeptical attitude towards all other mathematics as well.

So we see that if our scope is widened, it is still possible to give proofs
of consistency like the ones Hilbert sought for, and this was also Gödel’s own
opinion52: he actually himself gave one way of extending the notion of finitistic
proof, so that acceptable consistency proofs could be carried out. This was done
in his Dialectica Interpretation, published in 1958. We will return to this and
other ways of adjusting the programme in the next section.

51From [Franzén, 2005] p.112
52From [Franzén, 2005], p.39
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9 Adjustment of the Programme to Gödel’s The-
orems

The question that arises now, is whether or not this refutation of the ambitious
programme proposed by Hilbert, is in fact the end of it. Many people have
worked on it afterwards, trying to work their way around the incompleteness
theorems. It was Hilbert himself who made the first attempts.

It was only half a year later, in the beginning of 1931, that Hilbert was
confronted with Gödel’s first theorem.

He tried to find his way around the theorem. His solution was to extend the
following rule:

if, for every numeral n, the numeral formula ϕ(n) can be checked

to be a correct one, then conclude ∀xϕx.
(131)

His extension was called the ω-rule, and the simplest form reads as follows:

from ϕ(0), ϕ(1), . . .

infer ∀xϕx
(132)

This rule allows the derivation of all true arithmetic sentences, under a va-
riety of restrictions. However this method was not considered finitistic, Hilbert
proved the Law of the Excluded Middle in the last of his full publications, by
deriving all true arithmetic sentences via the ω-rule.

Gödel did not understand how Hilbert could still write a paper like this,
after he had shown his results.53. However, he did not commit himself to the
question whether or not he had destroyed Hilbert’s programme.

For the first volume of Grundlagen der Mathematik, published in 1934,
Hilbert wrote the preface. In this preface he said the following:

. . . the occasionally held opinion, that from the results of Gödel fol-
lows the non-executability of my Proof Theory, is shown to be erro-
neous. This result shows indeed only that for more advanced con-
sistency proofs one must use the finite standpoint in a deeper way
than is necessary for the consideration of elementary formalisms.54

This remark, however, is rather odd. Because if we would accept the distinc-
tion, made by Hilbert, between actual mathematics and finite metamathematics,
then there are only two possible conclusions. By this time, Gödel had already
proved his second incompleteness theorem. Either, the same refutation would
still hold, according to the second incompleteness theorem, or the formal codifi-
cation of actual mathematics cannot adequately represent finitary mathematics,
meaning that the codification is not strong enough for the second incompleteness
theorem to apply to it.

These remarks by Hilbert have later been read in a different way: that there
is a hierarchy of formal systems, which is never ending, of actual mathematics.
Also, there is a hierarchy of deepenings of metamathematics, corresponding to

53He wrote to Olga Taussky-Todd: ‘How can he write such a paper after what I have done?’,
[Smorynski, 1986] p. 53

54As cited in [Smorynski, 1986], p.54
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the former hierarchy. In such a deepening of metamathematics one could prove
the consistency of the corresponding formal system of actual mathematics. This
led to a more successful development. However, the question remains why these
consistency proofs are given, as Gödel had also shown that consistency did not
imply truth.

There have been different ways in which Hilbert’s programme has been
adapted to evade Gödel’s theorems. Some of the more common of these methods
will be discussed below.

9.1 The Generalised Hilbert’s Programme

As shortly noted when discussing finitism (section 2.2), Hilbert’s programme
can be seen as an attempt to offer an intuitionistic justification of classical
mathematics.

There have been many proof-theoretical approaches, using a generalisation
of the finitary standpoint to accomplish an analysis of systems of classical math-
ematics. Roughly we can divide those in an approach by ordinal analysis and a
functional approach.

9.1.1 Ordinal Analysis

Gentzen has given a consistency proof of PA that uses transfinite induction up
to ε0. This was actually one of the first proof-theoretic results after Gödel’s
theorems had been presented. Gentzen uses a system of notations for ordinals
less than ε0, and he proves that the reduction procedure for derivations in PA
terminates. This proof is based on induction of these ordinal notations.

This system and proof have been the basis for a theory of ordinal analysis. To
give an ordinal analysis of a theory T , one has to produce an ordinal notational
system for ordinals less then some ordinal α, such that for every β < α, the
formalisation of the transfinite induction principle for β is provable in T . Then
one can prove, in practice, the consistency of T using transfinite induction up
to α and finitary methods.

An example: the consistency of PA can be shown by induction up to ε0,
and it can also be shown that for all β < ε0, PA proves the formalisation
of the transfinite induction principle for β. So if β is the ordinal number of
some recursive well-order <, and ϕ represents this well-order, then we have
PA ` ∀x(∀y(ϕ(y, x) → ψ(x)) → ∀xψ(x) for all ψ. This constitutes an ordinal
analysis of PA. We say ε0 is the proof theoretic ordinal of PA.

More, stronger results have been attained using this method. However, it
is still in question how much of the complex ordinal systems are acceptable
as being finitarily. Also it is unclear what the philosophical meaning of these
results is. As Feferman puts it55:

As the systems of ordinal notation used for consistency proofs of
stronger and stronger theories become more and more complicated,
the significance to noncognoscenti of what is thereby accomplished
decreases in inverse proportion. Thus, on the one hand, to say that
one has obtained a constructive consistency proof of a theory T -
without saying anything more - is too general to be informative;

55As cited in Zach [2006] p.27
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and, on the other hand, to say that the proof has been carried out
by transfinite induction on a certain complicated recursive ordering
for some very large ordinals tells us nothing about what constructive
principles are involved in the proof of this well-ordering.

9.1.2 Functional Interpretation

The functional interpretation is modelled after Gödels Dialectica interpretation.
I will present a short overview of how this interpretation works, for a detailed
explanation see Feferman and Avigad [1995], from which the overview below
has been abstracted.

Gödel’s interpretation is based on intuitionistic arithmetic, using the axioms
of Heyting Arithmetic, or HA for short. These are the following axioms:

1. From ϕ, ϕ→ ψ conclude ψ

2. From ϕ→ ψ,ψ → θ concude ϕ→ θ

3. ϕ ∨ ϕ→ ϕ, ϕ→ ϕ ∧ ϕ

4. ϕ→ ϕ ∨ ψ,ϕ ∧ ψ → ϕ

5. ϕ ∨ ψ → ψ ∨ ϕ,ϕ ∧ ψ → ψ ∧ ϕ

6. From ϕ→ ψ conclude θ ∨ ϕ→ θ ∨ ψ

7. From ϕ→ (ψ → θ) conclude ϕ ∧ ψ → θ and conversely

8. ⊥ → ϕ

9. From ϕ→ ψ conclude ϕ→ ∀xψ, assuming x is not free in ϕ

10. ∀xϕ→ ϕ[t/x] assuming t is free for x in ϕ

11. ϕ[t/x]→ ∃xϕ assuming t is free for x in ϕ

12. From ϕ→ ψ conclude ∃xϕ→ ψ, assuming x is not free in ψ

Here ϕ[t/x] denotes the earlier definition of substitution. We define negation
by

¬A = A→ ⊥ (133)

here ⊥ is an identically false statement, which may be identied with 0 = 1.
The equality axioms are given by:

1. x = x

2. x = y → (ϕ[x/z]→ ϕ[y/z]), where ϕ is atomic.

Now to obtain classical logic, we have to add the law of the excluded middle;
ϕ ∨ ¬ϕ. To reduce classical predicate logic to intuitionistic predicate logic, one
uses the double-negation translation, developed by Gödel and Gentzen. This is
defined as follows.

1. ϕN = ¬¬ϕ for ϕ atomic
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2. (ϕ ∧ ψ)N = ϕN ∧ ψN

3. (ϕ ∨ ψ)N = ¬(¬ϕN ∧ ¬ψN )

4. (ϕ→ ψ)N = ϕN → ψN

5. (∀xϕ(x))N = ∀xϕ(x)N

6. (∃xϕ(x))N = ¬∀x¬ϕ(x)N

From an intuitionistic point of view, we have the equivalences (ϕ ∧ ψ)N ↔
¬¬(ϕ ∨ ψ)N and (∃xϕ)N ↔ ¬¬∃xϕN . From a classical point of view, every
formula is equivalent to its N-interpretation.

Now we have that if a set of axioms S proves a formula ϕ using classical
logic, then SN proves ϕN using intuitionistic logic. This leads us to the following
result: if PA proves a formula ϕ, then HA proves ϕN .

Now the Dialectica interpretation reduces HA to a theory T which axioma-
tises a class of functionals that Gödel called the primitive recursive functionals
of finite type. T is a quantifier-free theory. Gödel assigned to every term of T a
type symbol. The set of type symbols is generated inductively by the following
rules:

1. 0 is a type

2. If σ and τ are types then so is σ → τ .

The idea is that objects of type 0 are natural numbers, and objects of type
σ → τ are considered to be functions form objects of type σ to objects of type
τ .

Now to each type σ we can assign a natural number lev(σ) as its type level :

1. lev(0) = 0

2. lev(σ → τ) =max(lev(σ) + 1,lev(τ))

Now by this convention, every type is assigned a finite level, so the language
of T is said to be of finite type.

Gödel continues by defining the set of terms of T and assigning types to these
terms, and defines terms for the constant function, successor function etc. Now
using these one can formulate the axioms of T , which consist of the usual defining
equations for functions like the successor function, a rule allowing substitution
in the usual way, equality axioms, the axioms of classical propositional axioms
and a scheme of induction.

Now to each formula ϕ in the language of arithmetic, we associate its Di-
alectica interpretation ϕD, which is a formula of the form

ϕD = ∃x∀yϕD (134)

where ϕD is a quantifier-free formula in the language of T . The free vari-
ables of ϕD consist of those free in ϕ, together with the sequences of variables
(possibly empty) x and y. The Dialectica interpretations are defined inductively
as follows, where ϕD = ∃x∀yϕD and ψD = ∃u∀vψD.

1. For ϕ an atomic formula, x and y are both empty and ϕD = ϕD = ϕ
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2. (ϕ ∧ ψ)D = ∃x, u∀y, v(ϕD ∧ ψD)

3. (ϕ ∨ ψ)D = ∃z, x, u∀y, v((z = 0 ∧ ϕD) ∨ (z = 1 ∧ ψD))

4. (∀zϕ(z))D = ∃X∀z, yϕD(X(z), y, z)

5. (∃zϕ(z))D = ∃z, x∀yϕD(x, y, z)

6. (ϕ→ ψ)D = ∃U, Y ∀x, v(ϕD(x, Y (x, v))→ ψD(U(x), v))

And from 6 we obtain

7. (¬ϕ)D = ∃Y ∀x¬ϕD(x, Y (x))

The capital letters are introduced while ‘Skolemising’ the existential vari-
ables, item 6 will be used to show this method:

(∃x∀yϕD(x, y)→ ∃u∀vψD(u, v))↔
∀x(∀yϕD(x, y)→ ∃u∀vψD(u, v))↔
∀x∃u(∀yϕD(x, y)→ ∀vψD(u, v))↔
∀x∃u∀v(∀yϕD(x, y)→ ψD(u, v))↔
∀x∃u∀v∃y(ϕD(x, y)→ ψD(u, v))↔

∀x∃u, Y ∀v(ϕD(x, Y (v))→ ψD(u, v))↔
∃U, Y ∀x, v(ϕD(x, Y (v))→ ψD(U(x), v))

(135)

Not all of these equivalences are valid in intuitionistic reasoning. However,
the Dialectica interpretation can still be used as a tool in constructive meta-
mathematics.

Now Gödel’s main result is as follows:

Theorem 52. Suppose ϕ is a formula in the language of arithmetic, and HA
proves ϕ. Then there is a sequence of terms t such that T proves ϕD(t, y).

Combining this with the earlier noted result, we obtain the following:

Suppose ϕ is a formula in the language of arithmetic, such that PA proves
ϕ. Then there is a sequence of terms t such that T proves (ϕN )D(t, y).

We won’t present the proof here. We see that Gödel proved that intuitionistic
first-order arithmetic can be reduced to a quantifier-free theory. From this one
can derive, more generally, a method to reduce an infinitary theory T to a
quantifier-free theory F . This quantifier-free theory F is not strictly finitary,
it contains functions of finite type. Usually one first proves the reduction of a
classical theory to a variant of intuitionistic arithmetic, and then a reduction of
the latter to a quantifier-free functional theory.

The advantage of this approach over the ordinal analysis, is that this method
yields an analysis of the computational content of F : the terms of F represent
natural classes of functions such as primitive recursive functions. If a function
is recursive, and can be proved to be total in T , it is represented by a term of
F , thereby belonging to one of those classes.

This also leads to constructive information: the functional interpretation and
Gödel’s functionals of finite type show much clearer what kind of constructive
methods are used.56

56From Feferman and Avigad [1995] p. 2

62



9.2 The Relativised Hilbert’s Programme

Interpreting Hilbert’s programme as an attempt to justify ideal mathematics
by restricted methods, one can reduce its goal to justifying only fragments of
higher mathematics. In this interpretation, Hilbert’s aim was to show that ideal
mathematics does not go beyond real mathematics, so that real mathematics
is a foundation for ideal mathematics. A finitary consistency proof of ideal
mathematics would have accomplished this.

This means that one could give finitary consistency proofs of fragments of
higher mathematics, thereby justifying those fragments. Two examples of these
kinds of proofs are the work of Feferman and the reverse mathematics project
of Friedman and Simpson, both of which we will discuss shortly. What all the
relativised Hilbert’s programmes have in common, is that they focus on reducing
systems of classical mathematics to more restricted systems, in a proof-theoretic,
finitistic way.

9.2.1 Feferman’s Approach

A reduction in the sense Feferman defined to be a foundational reduction, is a
proof that ‘a body of mathematics which is justified by a foundational framework
F1 (e.g. finitary, constructive, predicative, infinitary, set-theoretic) can already
be justified, in a certain sense, in a weaker, or stricter foundational frame work
F2.’57. Generally, this is not possible for a whole body of mathematics, but par-
tial foundational reductions can be achieved. The following definition shows how
theories can be reduced, showing conservativity for fragment of mathematics,
denoted by ϕ.

Definition 53. Suppose we are given a theory T1, justified by a foundational
framework F1, and a theory T2, justified by a weaker foundational framework
F2. A proof-theoretic reduction, conservative for ϕ58 of T1 to T2, is a partial
recursive function f such that:

1. Whenever x is (the code of) a proof in T1 of a formula (with code) y in
ϕ, then f(x) is (the code of) a proof of y in T2

2. T2 proves the formalisation of (1).

If such an f exists, we write T1 ≤ T2[ϕ]

The second requirement for f ensures that the function f itself is justified
in F2.

Definition 54. Suppose we are given a theory T1, justified by a foundational
framework F1, and a theory T2, justified by a weaker foundational framework
F2. A partial foundational reduction of F1 to F2 is a proof-theoretic reduction
that establishes T1 ≤ T2[ϕ].

Now it has been shown, in the partial foundational reductions that have
been carried out in practice, that f is a primitive recursive function. Also the
formalisation of (1), so the second requirement, can be carried out in primitive

57Cited from Zach [2006] p.28
58Definition from Zach [2006] p.28
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recursive arithmetic PRA59. We know PRA is justified by the finitary frame-
work directly, this means that partial foundational reductions are all finitarily
justified.

A proof-theoretic reduction of a theory T1 to a theory T2 yields a consistency
proof of T1 in T2: of T2 is not consistent, then a consistency proof of T1 can
be given in T2. If T2 is consistent, then there is no proof of 0 = 1 in T2, which
means there cannot be a proof of 0 = 1 in T1 as T1 is conservative over T2,
which means that T1 is consistent.

This means that this method of proof-theoretic reduction provides a solution
for Hilbert’s programme: it yields relativised consistency proofs for specific
theories.

Feferman notes that this shows that adopting a viewpoint such as finitism
or constructivism does not necessarily mean one has to give up mathematics
as we know it. For example, subsystems of analysis have already been reduced
to finitary systems. On the other hand, he adds, one should reflect on the
reasons for adopting such a viewpoint seriously, because of the sacrifices that
are required nonetheless. We will return to this consideration later.

9.2.2 Reverse Mathematics

The programme of reverse mathematics is another continuation of Hilbert’s
programme, and has been developed by Friedman and Simpson. Gödel had
shown that not all of classical mathematics could be reduced to the finitary.
The programme is the search for the answer to the following question: how
much of classical mathematics can be reduced to the finitary?

As noted before, there are subsystems of analysis which have been reduced
(in the Feferman sense) to finitary systems. Reverse mathematics now investi-
gates which theorems of classical mathematics are provable in those subsystems.
A typical example is that the Hahn-Banach theorem is provable in a theory de-
noted WKL0, which is proof-theoretically reducible to PRA for ϕ the set of
sentences of the form ∀x∃yA(x, y).

Reverse mathematics is primarily concerned with subsystems of analysis,
which are infinitary systems. Gödel showed, however, that not even all true
statements in first-order arithmetic are provable in PA. So not even first-order
arithmetic can be given a finitary foundation. The question now rises what
sort of statements are not provable in PA: are they mathematically interesting?
The most famous result to answer this question with, is a proof given by Parris
and Harrington: there is a version of the finite Ramsey theorem60 which is not
provable in PA. Clearly this theorem is mathematically relevant. On the other
hand, this example is constructed specifically so that it would be independent
of PA, and the most of the ‘ordinary’ statements in mathematics can be proved
even in weaker systems than PA, whose consistency can be proved by finitistic
(primitive recursive) means.

59PRA is a system of arithmetic, weaker than PA. The consensus is that all reasoning in
PRA is finitistic. PRA is often used for consistency proofs, e.g. by Gentzen, whose proofs we
have seen in section 9.1.

60This is a theorem from combinatorics, about the colouring of edges of graphs.
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9.3 The Instrumentalist Hilbert’s Programme

Detlefsen has given an instrumentalist interpretation of Hilbert’s programme,
designed to evade the difficulties posed by the incompleteness theorems.

First, Detlefsen gives an analysis and defense of the use of instrumentalism
in mathematics. In this analysis Detlefsen states that even though e.g. full set
theory is accepted as a formalisation of infinitary mathematics, only parts of
it are useful from an instrumentalist view. There are two sorts of ideal proofs
which are not useful: first, the ideal proofs of real theorems that are more
complex than any real proof of the same theorem and second, the ideal proofs
which are so long or complex that they cannot be comprehended by humans.
Also Detlefsen states that the proof of the conservativity of ideal theory over
real mathematics is only required for the instrumentally useful part. The part of
ideal mathematics that is instrumentally useful is called the Hilbertian residue.
The point now is, that the Hilbertian residue may not contain enough basic
arithmetic in order for the incompleteness theorems to apply to it, in particular
the second incompleteness theorem. This means that the consistency of the
Hilbertian residue could still be proved.

Another argument Detlefsen61 uses is that ideal mathematics need not be
conservative over the real part. Hilbertian instrumentalism only requires, ac-
cording to Detlefsen, that the ideal theory does not prove anything which is in
conflict with the real theory. If this is true, then, according to Zach [2006], the
first incompleteness theorem indeed does not pose a challenge to the instrumen-
talist interpretation of Hilbert’s programme, as this interpretation evades the
arguments of Smorynski explained above in section 8.1.62

Also Detlefsen presents arguments against the application of the second in-
completeness theorem. He gave a version of the ω-rule, and if this version were
finitarily acceptable, this would yield a finitarily acceptable method of proof,
not capable of being formalised in ideal mathematics. This implies that real
mathematics is not a subtheory of ideal mathematics, which means we cannot
claim via the second incompleteness theorem that there cannot be a real con-
sistency proof of ideal mathematics (because the fact that real mathematics
cannot prove its own consistency is no longer an objection). Detlefsen’s version
of the ω-rule however, has been criticised seriously.63 Another argument Detlef-
sen presents is about the formalisation of consistency. Gödel’s second theorem
in its generalised form is about the sentence ConT , stating that T is consis-
tent. However, the fact that ConT is not provable does not mean there could
not be other formalisations of consistency that are provable in T . These other
formalisations could be found using another definition of the (generalised form
of the) predicate Prf(x, y) that we introduced before. These might, Detlefsen
argues, be provable in the corresponding theories. However, these conceptions

61The following argument is the main subject of [Detlefsen, 1990], a more detailed explana-
tion can be found there.

62I think Zach might have misread Detlefsen [1990], as Detlefsen only argues that ideal
mathematics need not be conservative over real mathematics, and indeed the first incom-
pleteness theorem shows that indeed it could not be conservative over real mathematics.
Smorynski however, in Smorynski [1977], shows that ideal mathematics cannot be consistent
if it is not conservative over real mathematics, which means he is still choosing consistency
as a requirement for ideal mathematics, instead of conservativity over real mathematics. so
Detlefsen might be right that the first incompleteness theorem does not pose a problem for the
instrumentalist interpretation, Smorynski did not state that it would, in Smorynski [1977].

63See [Zach, 2006] p. 24
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of provability would most likely not have been accepted by Hilbert. An example
is the use of Rosser provability (which we have touched upon when discussing
Gödel sentences). This states that a derivation of A is only a proof of A if no
derivation of ¬A exists with smaller Gödel number than the derivation of A:

PrfR(pAq) ≡ ∃x(Prf(x, pAq) ∧ ∀y < x¬Prf(y, p¬Aq)) (136)

Now we have, for example, that ¬PrfR(p0 = 1q) is provable in PA! However,
the provability of a formula is, in this definition, more than just deriving it from
the axioms: one has to check that every derivation with smaller Gödel number
does not end in ¬A. Also other notions of provability have been studied, for an
overview, see [Zach, 2006] p. 25.
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10 Conclusion

We have seen an overview of Hilbert’s programme, Gödel’s theorems and their
proofs, and the implications of the incompleteness theorems for the programme.
Then we have looked at several ways at which the programme has been extended
or adapted to evoid the consequences of the incompleteness theorems.

We have seen that, indeed, Hilbert’s original formulation of the programme
has been refuted. However there are several ways to re-interpret Hilbert’s pro-
gramme, so that it is still possible to accomplish its goals. As the field of logic
and foundations has changed very much since Hilbert started working on his
programme, it is not always clear what exactly Hilbert means with his defi-
nitions and goals. So, some of the re-interpretations are meant to explain in
contemporary language what Hilbert could have meant, others really differ from
the original programme in their philosophical meaning.

Also, some of the methods used in the extended programmes might not have
been accepted by Hilbert, though others might have, and all of them are in line
with his original ideas of which methods would be allowed.

One might say that the extended programmes have goals that have been
lowered, compared to Hilbert’s original programme, which means their outcomes
may not be of much value. Because, yes, indeed, when you lower your goal, it
is easier to reach it. You could keep lowering it, until you have made sure it is
possible to reach your goal.

However, the adaptations made to Hilbert’s programme might be of a dif-
ferent kind: substantial results have been achieved and the original formulation
has mostly just been adapted to fit in the present conception of the foundations
of mathematics, even though this meant it had to be weakened. So we may
say that even though Hilbert’s original formulation of the programme indeed
has been defeated by Gödel’s theorems, this has not been the end of it: many
important results have been achieved, showing that the programme could be
continued in other forms.

Hilbert thought consitency implied truth and therefore existence. This was
the main reason for him to focus his programme on consistency proofs. The
question remains, now, what reasons we have to proceed giving consistency
proofs and reducing systems to weaker systems, now that we know that con-
sistency does not neccesarily imply existence, or truth, as shown by Gödel’s
theorems.
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