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Abstract

In this thesis we will discuss various results found by other mathematicians about the connection
between recursively enumerable sets and diophantine representation. As a starting point, we will
use the Martin Davis theorem that uses results from Gödel and Rosser. We will then review the
proofs of the DPR-theorem, the DPRM-theorem and the single-fold DPR-theorem. After that, we
will discuss the conjecture that all recursively enumerable sets are single-fold diophantine. A main
result discussed in this thesis is the diophantine representation of the exponential relation found
by the mathematician Matiyasevich. A single-fold diophantine representation of this same relation
would prove the conjecture, but this has not been found yet. There is a result that a non-effective
estimate of the solutions of the equation 9(u2 + 7v2)2−7(r2 + 7s2)2 = 2 would theoretically give us a
single-fold diophantine representation of exponentiation. We will look at the proof of this statement
and we will study some solutions of other equations like the one in the statement.
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1 Introduction

1.1 Hilbert’s wish

A diophantine equation is an equation of the form:

D(x1, x2, ...., xn) = 0 (1)

Where D(x1, x2, ...., xn) is a polynomial with integer coefficients and integer unknowns x1, x2,... xn.
Solving equations of this type has been a challenge for mathematicians from the moment the ancient
Greek philosopher Diophantus conceived its structure. Many specific examples of those equations
have been thoroughly studied and the names of countless of those mathematicians are used to refer
to these equations. By 1900, many a field in mathematics had been lifted from mysterious conjecture
to the realm of the proven, but the solvability of the Diophantine equation was one problem that had
remained open.
The German mathematician David Hilbert came to the mathematical congress on the first year of the
new century to inspire the people of the new age to try and solve the still unsolved. He hand-picked 23
problems to present to his audience, and among those 23 there was a particularly famous one, Hilbert’s
tenth. In this problem Hilbert asked the people if there was a way to determine that an arbitrary
diophantine equation had a solution or not. He probably hoped the answer was yes, but he did not
live long enough to find out that in fact the answer was no. After 70 years, a Russian mathematician
named Matiyasevich did what had seemed impossible, with help of the work of his predecessor’s Julia
Robinson, Martin Davis and Robert Putnam, he was able to close the final gap in the theorem that
solved Hilbert’s problem (published in [8]):

DPRM-theorem Every recursively enumerable relation is diophantine

Let us first discuss what this theorem means and why it ruined the hope of some that maybe
some day all diophantine equations could be solved. A relation of rank n on Z is a subset of Zn. When
can we call such a relation diophantine? Let us consider a rank n relation and call it A. We say that
A is represented by a diophantine equation D(x1, x2, ..., xk) = 0 in k = n + r variables if for every
element (a1, a2, ..., an) of A there is a solution of D = 0 with a1, a2, ..., an as its first n coördinates
and for every solution of D = 0 it’s first n coördinates form an element of A. The formal definition being:

Diophantine representation: The relation A is represented by DεZ[a1, ..., an, x1, ..., xr] if:
((a1, a2, ..., an)εA)⇔ (∃x1x2...xrεZ)[D(a1, a2, ..., an, x1, x2, ..., xr) = 0]

An alternate equivalent definition could be that A is represented by DεZ[a1, ..., an, x1, ..., xr] if
it is the projection of the solution space of the equation D(a1, ..., an, x1, ..., xr) = 0 on the first n
coördinates.
If a relation A ⊂ Zn is represented by some diophantine equation, we call it Diophantine.
Now let us discuss the concept of a recursive enumerable relations. One says a relation is recursively
enumerable (in short r.e.) if it is empty or the exact range of some recursive functions. This means
that the relation A ⊂ Zn has an algorithm which takes an element from Zn and when that element is
in A it stops to tell us that it is in A. The problem is that such an algorithm does not need to stop if
the element is not in A, and it can run an infinite amount of time if this is the case.
A relation is called recursive if there is an algorithm which will always stop and tell whether or not
the element is in the set. An alternate definition might be that a relation A is recursive if A and
its complement are both recursive enumerable. The definition of recursive sets is stronger than the
definition of r.e. sets as it has been proven that there are recursive enumerable relations with a
non-recursive enumerable complement.
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Hilbert’s tenth problem could be seen in terms of recursiveness, he asked for an algorithm to determine
if an arbitrary diophantine equation has a solution or not. This would imply that every diophantine
set is recursive. But that statement was refuted when they found the proof of the DPRM theorem.
Any recursively enumerable set is diophantine, so even those sets that are not recursive. This gives us
a contradiction and Matiyasevich concluded that Hilbert’s tenth problem had a negative answer.

1.2 Endless complexity

So ends the tenth problem of Hilbert. This conclusion may have disappointed Hilbert himself
if he were still alive. So it does not matter how long we try to study the structures flowing
from our axioms, there will always be diophantine equations that are yet to be solved. Our math-
ematics is infinitely complex and there will always be areas to discover for those who seek the uncharted.

One of those open problems yet in the realm of the conjectures is found in the proof of the
DPRM-theorem. Before 1970, a big part of the theorem was already proven in the shape of the weaker
version (in [6]):

DPR-theorem: Every recursively enumerable relation is exponentially diophantine

Did you see the difference? It was the word ’exponentially’ in front of the word ’diophantine’.
The concept of an exponential diophantine equation is the idea that we can use unknowns in the
exponents. To give a more specific definition, we will first look at a definition of integral polynomials.
The set An is the set containing all polynomials with at most n unknowns (x1, x2, ..., xn) if it is
generated by the following rules:
• x1εAn, x2εAn,...,xnεAn. So any unknown itself is an integral polynomial.
• For all constants aεZ, aεAn.
• If P1εAn and P2εAn, then (P1 + P2)εAn.
• If P1εAn and P2εAn, then (P1P2)εAn.
The smallest set obeying all of these rules is the set containing all polynomials of at most n unknowns,
so a function with n unknowns is a polynomial if and only if it is a subset of An.
We can now define the set En of exponential polynomials with at most n unknowns as the smallest set
obeying the same rules as before, but with an added rule of:
• If P1εEn and P2εEn, then (PP2

1 )εEn.
So a set A ⊂ Zn is exponentially diophantine if for some k ≥ n there is an element D(x1, ..., xk)εEk
such that for all (y1, ..., yn)εZn, xεA⇔ (∃x1x2...xk−nεZ)[D(y1, ..., yn, x1, ..., xk−n) = 0].

You can imagine that we can represent relations much easier with exponential diophantine equations
than with diophantine equations. As the differences in the theorems suggests, the last step that was
done to prove the DPRM-theorem was the fact that every exponentially diophantine relation was in fact
also diophantine, and this was proven by Y.U. Matiyasevich. He proved that exponentiation itself can
actually be represented by a diophantine equation, by proving that the following relation is diophantine:

{< a, b, c > εZ3|a = bc} (2)

Using this one could switch all variable exponents from the exponentially diophantine representations
using this specific representation to find the diophantine representation of a specific recursively
enumerable relation.
After this proof, another improvement of the DPR-theorem was made but in another direction ([8]):

The single-fold DPR-theorem: Every recursively enumerable relation is single-fold exponen-

5



tially diophantine

This time, adding a word actually made the theorem stronger. A relation that is single-fold ex-
ponentially diophantine means that there is an exponential diophantine equation which not only
represents the relation but also only has one solution per element of the relation.
As of now we are not able to translate this single-foldness to the DPRM-theorem. Thus it still remains
to be proven or disproven that every recursively enumerable relation is single-fold or even finite-fold
diophantine (finite-fold meaning there are only a finite number of solutions per element of the relation).
But because of the before-mentioned other improvement of the DPR-theorem it is sufficient to prove
that the relation in (2) is diophantine in a single-fold (or finite-fold, depends on what you want) way.
Let us state the weakest form of this conjecture:

Main Conjecture (Open problem): {< a, b, c > εZ3|a = bc} is finite fold diophantine

Interestingly enough, an earlier attempt to close the final gap in DPRM-theorem made by Mar-
tin Davis ([7]) had this single-foldness. So it was disappointing to discover that the extra assumption
he made in his proof was actually not true. He assumed that the following equation:

9(u2 + 7v2)2 − 7(r2 + 7s2)2 = 2 (3)

only had the trivial solution u = 1, v = 0, r = 1, s = 0. A weaker form of this assumption could be used
to ward of the finiteness of the diophantine representability (In other words, it could be used to prove
the aforementioned conjecture) but its truth remains to be proven. Using Martin Davis original proof
and this weaker version of the assumption, one can state the following fact:

Salvaged Martin Davis theorem If (3) has finitely many solutions then the Main Conjecture
is true.

Of course there is always the possibility that the assumption may not be true at all.

Let us step back from all this for a moment. Notice that Davis’ assumption actually entails the
solvability of a certain diophantine equation (if you remove two from both sides of the equation). So
the finiteness of diophantine representations of an arbitrary r.e. relation can be reduced to finiteness of
solutions of a specific equation. On the other hand, the fact that we still do not know if this equation
has finite solutions is actually a testimony of the mysteriousness of the insolvability of diophantine
equations in general. In fact, this equation might actually be a specific example of the falseness of
Hilbert’s tenth problem.

In this paper we will look at the proof of the DPR-theorem, the DPRM-theorem and the single-fold
DPR-theorem. We will also discus how far we are from proving the main conjecture. But we will first
dive deeper into the concepts of diophantine representability and recursive enumerability in the next
two chapters.

2 Diophantine equations

2.1 Definitions

A diophantine equation can be described as a integer polynomial which must be equal to zero.
So if we have a set of n variables, say a1, a2, ..., an, we may combine them with summation and
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multiplication, and scale them with integer values. This lets us create arbitrary integer polynomials
such as P (a1, a2, a3) = 5(a1 + 2a2)− a2(3a3 − a1)2.
If we now take P (a1, a2, a3) = 0 and also demand the variables to be integer, we have created a
diophantine equation. Notice that demanding the variables to be integer severely diminishes the
number of possible solutions.
Take for instance the famous equation of pythagoras a2 + b2 = c2. This equation is satisfied by the
lengths of the sides of any right-angled triangle, but if we demand a, b and c to be integer, there are far
less solutions possible. So much less, that if we look at a specific Fermat equation a4 + b4 = c4, we find
that it has no positive integer solution at all, while in the real numbers you can just take the square
root of the sides of a right angled triangle.
So it is difficult to judge the nature of the solutions of diophantine equations. Each new one can provide
a new challenge. Of course, certain types of Diophantine equations have been studied extensively, and a
lot is known about them. We for instance know a lot about elliptic curves, linear diophantine equations
and quadratic forms. Unfortunately, these studies limit themselves to equations with a maximum
power smaller than 4. Why is this a problem? Because we will be facing equations with much higher
powers and much more variables before this paper is over.

So how do we want to use these types of equations? As was discussed before, we want to de-
scribe sets with them. Take an n-placed integer relation A (a subset of Zn), and an integer polynomial
D(a1, a2, ..., an, x1, x2, ..., xr) = 0. As defined before we can say that a relation A is represented by D = 0
if for all (a1, a2, ..., an)εNn: ((a1, a2, ..., an)εA)⇔ (∃x1, x2, ...xr)[D(a1, a2, ..., an, x1, x2, ..., xr) = 0].
This is called a diophantine representation. With D = 0 we can check the contents of A.
So take for instance again the pythagoras equation D(c, a, b) = c2 − a2 − b2 = 0 and we define A ⊂ Z
by the statement that cεA if and only if there are integers b and c such that D(c, a, b) = 0. Then
A is diophantine and in this example it is exactly the set of all possible hypothenuse of right angled
triangles with sides of integer length.

Besides normal diophantine equations, we can also define exponential ones. These allow the use
of variable exponentiation, meaning they have actual variables in the exponents. Of course any
diophantine equation is automatically also an exponential diophantine equation, because variable
exponents are allowed but not demanded. The same way as with regular diophantine equations,
we can define exponential diophantine relations as integer relations that can be represented by an
exponential diophantine equation in much the same way as before. So a relation A ⊂ Zn which
satisfies ((a1, a2, ..., an)εA)⇔ (∃x1x2...xr)[D(a1, a2, ..., an, x1, x2, ..., xr) = 0] with D = 0 an exponential
diophantine equation, is called exponential diophantine.

When talking about diophantine equations, one can also discuss the number of solutions it has.
The equations can be called single-fold, finite-fold and infinite-fold. Single-fold if it only has one solu-
tion, finite-fold if the number of solutions is finite and infinite-fold otherwise. This can also be used to
describe diophantine representations. For instance, an n-tuple relation A is called single-fold diophantine
if for every (a1, a2, ..., an)εZn, ((a1, a2, ..., an)εA)⇔ (∃!x1, x2, ...xr) : [D(a1, a2, ..., an, x1, x2, ..., xr) = 0],
with D = 0 a diophantine equation. Here the quantifier ∃!x means: there is an unique variable x such
that.
In the same way, finite-fold diophantine means there is a diophantine equation which only has a
finite number of solutions per element of A. Of course, the same story goes for defining single-fold or
finite-fold exponential diophantine relations.
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2.2 Natural sets

We have talked about the diophantine equations with integer variables. But we can also
talk about these types of equations with non-negative variable, meaning they are elements
of the natural set N = Z≥0. Take for instance an arbitrary equation D(a1, a2, ..., an) = 0
with integer unknowns. Notice that for each 1 ≤ i ≤ n we can define a new equation
P (a1, a2, ..., ai−1, bi, ci, ai+1, ..., an) = D(a1, a2, ..., ai−1, bi − ci, ai+1..., an) = 0 with the bi and ci
natural unknowns. Because bi − ci can reach all integers (the domain of ai in the original equation) we
can conclude that D(a1, a2, ..., an) = 0 has a solution if and only if P = 0 has a solution. So we have
successfully replaced the integer ai with two natural numbers.
For the other way around, we go back to a classic theorem:

Lagrange (1770): Every non-negative integer can be written as the sum of four squares

So if we have a diophantine equation P (a1, a2, ..., an) = 0 with all ai natural numbers, we can
define an equation with integer variables as follows D(a1, a2, ..., ai−1, bi, ci, di, ei, ai+1, ..., an) :=
P (a1, a2, ..., ai−1, b

2
i + c2i + d2i + e2i , ai+1, ..., an) = 0 and conclude that P = 0 has a solution if and only

if D = 0 has a solution. So the natural variable ai has been replaced by four integer variables.

So what does that mean? If we have a relation A that is diophantine, we know that
there is an integral polynomial D(a1, a2, ..., an, x1, x2, ..., xr) such that ((a1, a2, ..., an)εA) ⇔
(∃x1, x2, ...xr)[D(a1, a2, ..., an, x1, x2, ..., xr) = 0]. But with what we have found before, it is possible
to replace all the xi’s with natural variables, constructing P (a1, a2, ..., an, y1, y2, ..., yr, z1, z2, ..., zr) :=
D(a1, a2, ..., an, y1 − z1, y2 − z2, ..., yr − zr) such that ((a1, a2, ..., an)εA) ⇔ (∃x1 ≥ 0, x2 ≥ 0, ...x2r ≥
0)[P (a1, a2, ..., an, x1, x2, ..., x2r) = 0], so A is represented by a diophantine equation with natural
variables (of course the elements of the set can still have negative elements). And using the other
method, any relation represented by a diophantine equation with only natural unknowns can also be
represented by an equation with integer unknowns.
So in diophantine representability, it does not matter if the variables are integers or natural numbers.
So from this moment on,

We will assume all parameters and unknowns to be natural unless it is specifically stated other-
wise.

This will also be the case for our relations. Any n-tuple relation will thus be an element of
Nn.

Speaking of relations, it is not necessary to make a distinction between n-tuple relations and 1-
tuple relations. Not only does there exist a bijection between N and Nn, and between Z and Zn, it
is also possible to describe this map in a single-fold diophantine way. This diophantine map will be
discussed in chapter 9. For now, it is sufficient to know that:

For all n, all integral recursive enumerable n-tuple relations are (single-fold) (exponential) diophantine
representable if and only if all recursive enumerable subsets of N are (single-fold) (exponential)
diophantine representable.

2.3 Simple diophantine relations

Now for some specific relations. Firstly, when we have two relations A and B of rank n represented by
the diophantine equations D1(a1, a2, ..., an, x1, x2, ..., xr) = 0 and D2(b1, b2, ..., bn, y1, y2, ..., yl) = 0, we
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can represent their intersection C = A
⋂
B with the equation:

D1(c1, c2, ..., cn, x1, x2, ..., xr)
2 +D2(c1, c2, ..., cn, y1, y2, ..., yl)

2 = 0 (4)

This is because we know that the only solution of x2 + y2 = 0 is the trivial one. Notice that this new
equation does not eliminate possible single- or finite-foldness of D1 = 0 and D2 = 0. This method is
very handy, with it we can conclude that the solutions of any system of multiple diophantine equations
are the same as the solutions of a certain single diophantine equation. Many a time we will discuss a
system of diophantine equation because they are actually easier to consider.
With D1 and D2 we can also represent their union C = A

⋃
B by:

(D1(c1, ..., cn, x1, ..., xr)
2 + y21 + ...+ y2l )(D2(c1, ..., cn, y1, ..., yl)

2 + x21 + ...+ x2r) = 0 (5)

By using the x-s and y-s outside the D1 and D2 we are able to conserve single-foldness if A and B are
disjoint.
If we do not need the single-fold property, we can also just simply use the product
D1(c1, ..., cn, x1, ..., xr)D2(c1, ..., cn, y1, ..., yl) = 0 as the representation.

For the next few relations, remember we assumed all variables to be non-negative, so all vari-
able are elements of N = Z≥0. So:

a ≤ b⇔ ∃x : [a+ x = b] (6)

a < b⇔ ∃x : [a+ x+ 1 = b] (7)

a 6= b⇔ ∃x : [(a− b)2 = x+ 1] (8)

a|b⇔ ∃x : [ax = b & x ≤ b] (9)

These relations are also all single-fold. Notice that in the last one, we added the relation x ≤ b in order
to eliminate the infinite number of possibilities for x when a = b = 0. Notice that we can freely use the
symbol ’&’ because of (4).

With help of (9) we can create some more single-fold relations, where we define rem(a, b) as the
remainder of dividing a by b:

c = rem(a, b)⇔ c < b & b|(a− c) (10)

a 6 | b⇔ rem(b, a) > 0 (11)

(a ≡ b)mod(c)⇔ rem(a, c) = rem(b, c) (12)

When using exponential diophantine representations, it is possible to create rational numbers which are
not integer. This will happen when there are negative numbers in the exponents. That is why this next
diophantine relation will come in handy, for a rational non integers a and b:

b = entier(a)⇔ ∃x, y, z, w[(xa+ y = xb) & (zb+ w = z(a+ 1))] (13)

Last but not least we will define GPT (a) for each integer a as the greatest power of 2 which divides a.
With this we can create the relation:

a ≥ GPT (b)⇔ (∃x, y) : [b = y(2x+ 1) & a ≥ y] (14)
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3 Recursively enumerable relations

Let us now study the concept recursive enumerable relations and its connection to integral polynomials.
In the 1930s, a new branch in mathematical logic was perceived called recursion theory, later to be
renamed computability theory. In the beginning stages two concepts arose, recursive sets and recursive
enumerable sets. Both types are subsets of the natural numbers. Tightly linked together, they both
can be defined by a function that tells us in a finite amount of time if a certain number is in the set.
Recursiveness also demands that the function will always give his answer in a finite amount if time.
Recursive enumerability does not care if the function might never stop computing if the number is not
in the set. This means that you might never know for certain if a number is not in the set.
Let us give some formal definitions:

Recursive set: A subset S of the natural numbers is called recursive if there is a computable
function over the natural numbers that gives 1 to all numbers in S and 0 to all numbers not in S.

Recursive enumerable set: A subset S of the natural numbers is called recursive enumerable
if there is a computable function f which is defined over S, so its domain is S.

We see the word computable turn up in both of these definitions. Originally, the idea of com-
putable functions is that you can build a machine, for instance a Turing machine, to calculate the
outcome of the function. Of course, machines being a physical thing and the physical world being far
from formally defined, it is difficult to give the concept a place in mathematics. It is also possible to
look at computability in an effectively intuitive sense, meaning that you can define it with logical steps
in your head, this is called effectively calculable.
The mathematician Church stated that these two things, effectively calculable and computable by
machines are equivalent, creating something that is very uncommon in mathematics, a thesis. This
means that it can never be really proven.
Though the definition may be vague, a lot of concrete examples can be given. In short, one can say
that any subset of the natural numbers you can think of (still obeying axioms of set theory of course)
is recursive enumerable.

But how do you connect these concepts to something so concrete as exponential diophantine
equations? This can be done by combining two mayor results in computability theory.
The first one was by Gödel [2]. He talked about polynomial and arithmetic predicates. A polynomial
predicate is an equation P = Q with P and Q both integral polynomials. The predicate gives us
truth (1) if the equation is true and false (0) if the equation is not valid. An arithmetic predicate is a
polynomial predicate with a finite number of universal and existential quantifiers in front of it. Gödel
proved that any primitive recursive predicate is also immediately arithmetic. Not only that, in his
result all his universal quantifiers were bounded. So he did not use (∀z), only (∀z < k) with k some
constant.
The other result was by Rosser [3]. He proved that any recursively enumerable predicate can be written
as a primitive recursive predicate with one existential predicate. Combining these two results one gets
that:

Gödel and Rosser: Any recursively enumerable set can be represented by an arithmetic predi-
cate with existential quantifiers and bounded universal quantifiers

Martin Davis took it upon himself (in [5]) to try and reduce the quantifiers in front of the
polynomial predicate and succeeded. Combining this with the result of Gödel and Rosser Martin was
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able to prove the following theorem:

Davis’ theorem: For every recursively enumerable subset A ⊂ Z there is an integral polyno-
mial P (a1, ..., am+3)εN[a1, ..., am+3] such that for all xεN: xεA ⇔ (∃y)(∀k ≤ y)(∃z1 ≤ y...∃zm ≤
y)P (x, y, k, z1, ..., zm) = 0.

Notice that a diophantine predicate is a polynomial predicate with only existential quantifiers in
front of it. So with this result, we seem to be quite close to proving that all recursively enumerable sets
are diophantine, but the universal quantifier, though bounded, forces us to use exponentiation. In the
next chapter we look at a proof of the first major theorem.

4 Proof of the DPR-theorem

We have discussed two major concepts, (exponential) diophantine relations and recursively enumerable
relations. We will now look at the first bridge between the two. First published in 1961 ([6]) by
three prominent experts in the field was the connection between recursive enumerable and exponential
diophantine:

DPR theorem: Every recursively enumerable relation is exponential diophantine

In this chapter, we will look at its proof.

4.1 Helpful exponential diophantine relations

First remember that all the diophantine relations are of course also exponential relations, so we can
use all the relations from chapter 2.3 . Now for some more specific relations in the form of five lemmas.
The first two lemmas lend themselves from [4], and the rest are from [6].

Lemma 4.1: The relation c =
(
a
b

)
with parameters a, b, c ε N, a > 0, is single-fold exponential

diophantine.

Proof:
Assume b > 0 (because for b = 0 we have

(
a
b

)
= 1, so the relation is trivially diophantine). Then

2ab(1 + 2−a)a = 2ab(
∑a

n=0

(
a
n

)
2−an) =

∑a
n=0

(
a
n

)
2a(b−n) =

∑b
n=0

(
a
n

)
2a(b−n) +

∑a
n=b+1

(
a
n

)
2a(b−n) <∑b

n=0

(
a
n

)
2a(b−n) + (

∑a
n=b+1

(
a
n

)
)/2a <

∑b
n=0

(
a
n

)
2a(b−n) + (

∑a
n=0

(
a
n

)
− 1)/2a =

∑b
n=0

(
a
n

)
2a(b−n) + (2a−

1)/2a <
∑b

n=0

(
a
n

)
2a(b−n) + 1

And of course 2ab(1 + 2−a)a >
∑b

n=0

(
a
n

)
2a(b−n). So entier(2ab(1 + 2−a)a) =

∑b
n=0

(
a
n

)
2a(b−n).

In the same way, we have 2aentier(2a(b−1)(1 + 2−a)a) =
∑b−1

n=0

(
a
n

)
2a(b−n). So we can conclude that

(
(
a
b

)
) = entier(2ab(1 + 2−a)a)− 2aentier(2a(b−1)(1 + 2−a)a), so it is exponential diophantine.

2

Lemma 4.2: c = a! is single-fold exponential diophantine in parameters a and c.

Proof:
Notice that for r > (2a)a+1, ra/

(
r
a

)
= a!/((1 − 1/r)(1 − 2/r)...(1 − (a − 1)/r)) <

a!/((1 − a/r)(1 − a/r)...(1 − a/r)) = a!/(1 − a/r)a < a!(1 + 2a/r)a < a!(1 + 2a2a/r) < a! + 1.

And of course, ra/
(
r
a

)
= a!/((1− 1/r)(1− 2/r)...(1− (a− 1)/r)) > a!. So a! = entier(ra

(
r
a

)−1
), and we

11



can conclude that it is single-fold diophantine because both the entier function and the binomials are
single-fold exponential diophantine.

2

Lemma 4.3: [x/y =
(p/q
k

)
& p > qk] is single-fold exponential diophantine in parameters x, y, p, q

and k.

Proof:
Take α = p/q and α > k. Then we know that there are real numbers θ, θ′ between 0 and 1 such that:

a2k+1(a+ a−2)α =

k∑
j=0

(
α

j

)
a2k−2j+1 +

(
α

k + 1

)
a−1(1 + θa−2)α−k−1 = Sk(a) + θ′αk+1a−12α−1

With Sk(a) =
∑k

j=0

(
α
j

)
a2k−2j+1.

If qkk! divides a, then both Sk(a) and Sk−1(a) are integers. This is because
(
p/q
j

)
already divides qkk!

for all j ≤ k. Also, if a > 2p−1pk+1 then θ′αk+1a−12α−1 is less than 1. So if we choose a = 2ppk+1qkk!
then we have:
Sk(a) = entier[a2k+1(1 + a−2)p/q] and Sk−1(a) = entier[a2k−1(1 + a−2)p/q].

So for numbers u, v, p, q, k which satisfy u = Sk(a), v = Sk−1(a), we know that
(p/q
k

)
= a−1Sk(a)−aSk−1.

2

From this we can conclude that the binomial coefficient c =
(
a
b

)
with a rational is exponential

diophantine.

Lemma 4.4: The relation y =
∏
h≤H(a + hb) is single-fold exponential diophantine in parame-

ters y, a, b and H.
Proof:

∏
h≤H(a+ hb) =

(a/b+H
H

)
bHH!, which is clearly diophantine by previous results.

2

4.2 Completing the proof

These were the first four lemmas. Before we continue, remember the theorem discussed in the last
chapter:

Davis’ theorem: For every recursively enumerable subset A ⊂ Z there is an integral polyno-
mial P (a1, ..., am+3)εN[a1, ..., am+3] such that for all xεN: xεA ⇔ (∃y)(∀k ≤ y)(∃z1 ≤ y...∃zm ≤
y)P (x, y, k, z1, ..., zm) = 0.

With that in mind, we can finish the proof with the next lemma.

Lemma 4.5: Let P (x, y, k, z1, ..., zm) be an integer polynomial and G(x, y) a polynomial with
∀x, y : G(x, y) ≥ y and (∀x∀y∀k ≤ y∀z1 ≤ y...∀zm ≤ y) : [|P (x, y, k, z1, ..., zm)| ≤ G(x, y)] then we have
for all y:

(∀h ≤ y)(∃z1 ≤ y...∃zm ≤ y) : [P (x, y, h, z1, ..., zm) = 0]⇔

(∃c, t, a1, ..., am)[t = G(x, y)! & (1 + ct) =
∏
k≤y

(1 + tk) &

12



(1 + ct) | P (x, y, c, a1, ..., am) & (∀i ≤ m)((1 + ct) |
∏
j≤y

(ai − j))]

We see that all relations on the right hand side are exponential diophantine, as was already discussed.
It is also easy to see that for any polynomial P (x, y, h, z1, ..., zm) we can always find a G(x, y) such that
(∀x∀y∀z1 ≤ y...∀zm ≤ y): G(x, y) ≥ y and |P (x, y, k, z1, ..., zm)| ≤ G(x, y).
We can do this if we define g as the degree of P (at least one) and s as the sum of all absolute values
of the coefficients of P and then we see that G(x, y) = sxgyg satisfies the conditions.
So combining this choice with the lemma and with Davis theorem, we see that every recursively
enumerable set is exponential diophantine. The proof of this lemma uses the Chinese remainder
theorem.

Proof of lemma 4.5:
• Let us take an integer x and y and assume there are c, t, a1, ..., am such that:

t = G(x, y)!

& (1 + ct) =
∏
k≤y

(1 + tk)

& (1 + ct) | P (x, y, c, a1, ..., am)

& (∀i ≤ m)((1 + ct)|
∏
j≤y

(ai − j))

Take an arbitrary h lower or equal than y. Now we want to define ph as an arbitrary prime which
divides (1 + ht). Define for all natural i, z(h,i) as the remainder of dividing ai by this prime ph. We will
show that x, y, h, z(h,1), ..., z(h,m) is a solution of P = 0 with 0 < z(h,i) ≤ y.
We know that: for all i ≤ m, (1 + ct)|

∏
j≤y(ai − j) and ph|

∏
j≤y(1 + tj) = 1 + ct.

So ph|
∏
j≤y(ai− j) and since ph is a prime this means there is a j between 1 and y such that ph|(ai− j).

So 1 ≤ z(h,i) ≤ y for all i. Because ph|(1 + ht), gcd(ph, t) = 1 and from assumption t = G(x, y)! we can
thus derive that ph > G(x, y) ≥ y. So we can conclude that |P (x, y, h, z(h,1), ..., z(h,m))| ≤ G(x, y) < ph.
From our assumption we know that 1 + ct ≡ 0(mod(1 + kt)), so c ≡ h(mod(1 + th)) and
this means c ≡ h(mod(ph)). Remembering that ai ≡ z(h,i)(mod(ph)) and that from assump-
tion (1 + ct)|P (x, y, c, a1, ..., am), whilst (1 + ct) ≡ (1 + ht) ≡ 0 mod ph, we can conclude that
P (x, y, h, z(h,1), ..., z(h,m)) ≡ P (x, y, c, a1, ..., am) ≡ 0(mod(ph)). Which means together with 0 ≤
|P (x, y, h, z(h,1), ..., z(h,m))| < ph that:

P (x, y, h, z(h,1), ..., z(k,m)) = 0

Which is what we wanted to prove.

• Now, let us prove the theorem the other way. Let us again take natural numbers x and y
and now assume that

∀h ≤ y(∃z1 ≤ y...∃zm ≤ y) : [P (x, y, h, z1, ..., zm) = 0]

Define t = G(x, y)! and c such that (1 + ct) =
∏
k≤y(1 + tk) (this is possible because all terms in the

expansion of (
∏
k≤y(1 + tk)− 1) have a factor t).

So for all k and j (k 6= j) smaller or equal than y, |(k− j)| ≤ y ≤ G(x, y) and t = G(x, y)!, so (k− j)|t.
If a prime p divides (k − j)t, then this must mean that p|t. Thus we find that gcd(1 + kt, 1 + jt) = 1.

Now we use the Chinese Remainder Theorem to find a1, ..., am such that ai ≡ z(k,i) mod (1 + kt) for all

13



k ≤ y and i ≤ m. Here we defined z(k,1), ..., z(k,m) as the solution of P = 0 for each k (so also z(k,i) ≤ y).

Now we have all constants, we only need to show that the rest of the relations on the right
hand side of the lemma are valid. We know that c ≡ k mod (1 + kt) (because 1 + ct ≡ 0), thus
P (x, y, c, a1, ..., am) ≡ P (x, y, k, z(k,1), ..., z(k,m)) ≡ 0 mod (1 + kt) for all k ≤ y. We already proved
that (1 + jt) is relative prime for different j, so we know that P (x, y, c, ai, ..., am) is divisible by
(1 + ct) =

∏
k≤y(1 + tk), which is the third relation.

From our choice of ai we have (1 + kt)|(ai − z(k,i)) for all k ≤ y and i ≤ m. This means that
(1 + kt)|

∏
j≤y(ai − j) for all k ≤ y.

And again, because (1 + kt) is relative prime for all k ≤ y we can conclude that
(1 + ct) =

∏
k≤y(1 + kt)|

∏
j≤y(ai − j) for all i ≤ m. This was the last of the four relations, so

now we know that there are c, t, a1, ..., am such that:

t = G(x, y)!

& (1 + ct) =
∏
k≤y

(1 + tk)

& (1 + ct) | P (x, y, c, a1, ..., am)

& (∀i ≤ m)((1 + ct)|
∏
j≤y

(ai − j))

This concludes the proof of Lemma 4.5, and as already was discussed, this automatically proves the
DPR theorem.

2

We have now seen the proof of the statement that all recursive enumerable sets/relations are exponential
diophantine. Next up, proving that they are also diophantine. This can be proven by studying but one
relation, exponentiation, and proving that it is diophantine. If we know that we can replace all variable
exponents with some integer polynomial creating a diophantine representation from an exponential
one. In the next part of this paper, we will look at two attempts to prove this, one failed but can still
be used for something else, and one succeeded. But before that, we will look at some important results
about the Pell equation.

5 The Pell equation

The Pell equation is a diophantine equation given by:

x2 − dy2 = 1 (15)

Where d is a constant. We always take d to be a non-square, because if d was a square the only solution
would be x = 1 and y = 0. It was known for a long time that the solutions of the Pell equation
for a non-square d have an exponential behavior. This meant that the higher you get, the less dense
the solutions become. That would make it the ideal choice to try and prove that exponentiation is
diophantine. That is why both Davis and Matiyasevich used it in their proofs.
This chapter will be about the properties of the solutions of this type of equations. Most of the
information in this chapter is from [7] and [13].
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5.1 The specific solutions of the Pell equation

The trivial solution is given by (1, 0). To study the non-trivial solutions we will consider the domain
Z[
√
d] which is the set of integers extended with the irrational number

√
d. An element a of this domain

can be written as ’x + y
√
d’ with x and y two integers, so a is bijectively defined by (x, y)εZ2. We

define a = x− y
√
d as the conjugate of a. Notice that aa = x2 − dy2. So (x, y) is a solution of the Pell

equation if aa = 1 with a = x + y
√
d, in that case we know that a = a−1. Notice that for a, bεZ[

√
d]

we have that ab = (x − y
√
d)(u − v

√
d) = (xu + dyv) − (xv + yu)

√
d = ab. So if aa = 1 = bb (they

both represent a solution of the Pell equation), we have that abab = aabb = 1 so we get another solution.

Notice that for aεZ[
√
d] with a = x + y

√
d ≥ 1 and aa = 1 we have that 0 < a = a−1 ≤ 1.

So we have 1/2 ≤ (1/2)(a + a) = x and 0 ≤ (1/2)(a − a) = y
√
d, so a ≥ 1 if and only if x ≥ 1 and

y > 0. The converse is trivial. Notice that for any a with aa = 1, if a = 1 then it is the trivial Pell
solution and if a > 1 then it gives a non-trivial solution.

Now consider two solution given by 1 ≤ a = x + y
√
d and 1 ≤ b = u + v

√
d. Notice that

x2 − dy2 = 1 = u2 − dv2 means that x < u ⇔ y < v, so 1 ≤ a < b implies x < u and y < v. So this
means both coördinates x and y of the solutions are ordered the same way as the real values of x+y

√
d.

Because of this ordering, we can consider the smallest possible non-trivial solution, so the small-
est aεZ[

√
d] such that a > 1 and aa = 1. We know from the previous results that every power

of a: an gives another solution of the Pell equation, and this solution is distinct for every n be-
cause a > 1. Do these powers give all the positive solutions of the Pell equation? Consider a
solution bεZ[

√
d] with bb = 1 and 1 ≤ b. So b is a non-trivial positive solution of the equation.

Obviously, there is an n such that 1 ≤ an ≤ b < an+1. So 1 ≤ ba−n < a, and we can see that
(ba−n)ba−n = (b)anb(a−n) = (b)b(a)

n
an = 1, so ba−n gives another solution. But a was defined as the

smallest non trivial solution, so ba−n must be the trivial solution and must be equal to 1. So b = an.
We can conclude that every non-negative solution of the Pell equation can be written as a power of this a.

Lemma, Solutions of the Pell equation: (x,y) is a non-negative solution of the Pell equa-
tion if and only if there is an nεZ≥0 such that x + y

√
d = (u + v

√
d)n, were (u, v) is the smallest

non-trivial positive solution of the Pell equation.

Because of the ordering of solutions, there is a simple algorithm to find these (u, v). They are
simply found by looking for the smallest x > 0 for which 1 + dx2 is a square, because then
(u, v) = (

√
1 + x2d, x) is the smallest non-trivial solution.

5.2 Recursive properties of the solutions

We will now define (xn) and (yn) as the ascending row of non-negative solutions of the Pell equation,
and we know that:

xn + yn
√
d = (u+ v

√
d)n (16)

From this we can derive a recursive formula by using the fact that xn+1 + yn+1

√
d = (u +

√
dv)n+1 =

(u+ v
√
d)n(u+ v

√
d) = (xn + yn

√
d)(u+ v

√
d) = (xnu+ dynv) + (xnv + ynu)

√
d, so we get:

xn+1 = xnu+ dynv (17)

yn+1 = xnv + ynu (18)

It is also relevant to look at more general addition rules. We know that xn±m + yn±m
√
d = (xn +

yn
√
d)(xm − ym

√
d), so we can see that:

xn±m = xnym ± dynym (19)
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yn±m = ynxm ± xnym (20)

We can also find another formula by looking at a = u+v
√
d again: a2−2ua+1 = a2−(a+a)a+aa = 0,

so an+2 − 2uan+1 + an = 0 where ak = xk + yk
√
d, so:

xn+2 = 2uxn+1 − xn (21)

yn+2 = 2uyn+1 − yn (22)

Where the initial values of x are x0 = 1 and x1 = u, and the initial values of y are y0 = 0 and y1 = v.
Also note that the xn and yn of a single solution does not have any prime factors in common, because
looking at the Pell equation we can see that if something divides them both, it should divide 1 as well.
So:

gcd(xn, yn) = 1 (23)

Secondly, we see that the parity of the solutions stays the same after increasing the index by two, so:
the parity of x2k is the same as that for x0 = 1 so it is odd, the parity of x2k+1 the same as for x1 = u,
for y2k it is even because y0 = 0 and for y2k+1 it is the same as for y1 = v.
We can clearly see the exponential properties of the solutions with these relations, because xnu <
xn+1 < 2uxn and ynu < yn+1 < 2uyn, so:

uun−1 < xn < u(2u)n−1 (24)

vun−1 < yn < v(2u)n−1 (25)

In the next chapter, we will see how these inequalities help us get closer to the diophantine repre-
sentation of arbitrary recursive enumerable sets.
Below, you can see a table of the first 10 solutions of the Pell equation for d = 3 and their exponential
behavior as an example.

n yn log(yn) log(yn+1/yn)

1 1 0 1.38629
2 4 0.38629 1.32176
3 15 2.70805 1.31730
4 56 4.02535 1.31698
5 209 5.34233 1.31696
6 780 6.65929 1.31696
7 2911 7.97625 1.31696
8 10864 9.29321 1.31696
9 40545 10.6102 1.31696

10 151316 11.9271 1.31696

6 The Julia Robinson prerequisites

In 1950, Julia Robinson presented a very useful result (in [4]), which was used to prove the DPRM-
theorem. It demands a diophantine equation whose solutions should obey two properties, later to be
called the Julia Robinson prerequisites. Because this proof does not lose single-foldness, it is also very
handy to consider when trying to prove that exponentiation is single-fold diophantine. The theorem
Julia Robinson proved goes as follows (the two parts between brackets should either both be ignored
or both considered):
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Julia Robinson prerequisites theorem {< a, b, c > |a = bc} is (single-fold) diophantine if
there is a Diophantine equation J(u, v, x1, ...., xn) = 0 with unknowns u, v, x1, ..., xn (single-fold when u
and v are taken to be arbitrary constants) with the following two properties:
-∀k there is a solution with v > uk

-In every solution v < uu

Proof:
• Denote (Xa(n), Ya(n)) as the n-th non-trivial solution of the Pell equation x2 − (a2 − 1)y2 = 1. The
first non-trivial solution is (a, 1), so we know that these solutions satisfy Xa(n) + Ya(n)

√
a2 − 1 =

(a+
√
a2 − 1)n. Thus:

Xa(n) =

n∑
k=0, 2|k

(
n

k

)
an−k(a2 − 1)k/2

We will write out two terms in detail, let b be an integer:

Xa(n)bn = bn
n∑

k=0, 2|k

(
n

k

)
an−k(a2 − 1)k/2 =

n∑
k=0, 2|k

(
n

k

)
(ab)n−k(a2b2 − b2)k/2

Xab(n) =
n∑

k=0, 2|k

(
n

k

)
(ab)n−k(a2b2 − 1)k/2

Now assume b > 1, we can immediately see that Xa(n)bn ≤ Xab(n). On the other hand we have:

Xab(n)

Xa(n)bn
= (

a2b2 − 1

a2b2 − b2
)n/2 ≤ (1− a−2)−n

If we also assume a > bn we can now find that:

Xab(n) ≤ Xa(n)bn

(1− 1/a2)n
<
Xa(n)bn

1− n/a2

<
Xa(n)bn

1− 1/a
≤ Xa(n)bn

1− 1/(bn + 1)
= Xa(n)(bn + 1)

So we see that with these two assumptions b > 1 and a > bn we have found that:

Xa(n)bn ≤ Xab(n) < Xa(n)(bn + 1) (26)

From this we can derive that:

(b > 1 & a > bn)⇒ [c = bz ⇔ Xa(n)c ≤ Xab(n) < Xa(n)(c+ 1)] (27)

The converse c = bn ⇒ Xa(n)c ≤ Xab(n) < Xa(n)(c+ 1) is true because there can only be at most one
c such that Xa(n)c ≤ Xab(n) < Xa(n)(c+ 1), and because it is true for c = bn we get that indeed this
is the case.

Let us again take b > 1 and a > bn. We know that the sequence (Xab(n))nεN is an increasing
sequence, so for m < n we have:

Xab(m) ≤ Xab(n− 1) < Xa(n− 1)(bn−1 + 1) ≤ Xa(n− 1)a ≤ Xa(n)

And for m > n we have that:

Xab(m) ≥ Xab(n+ 1) > abXab(n) > aXa(n)
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So we have found that Xa(n) ≤ Xab(m) < Xa(n)a if and only if m = n.
So for a arbitrary integers u and n, if u = Xab(m) for some m and if Xa(n) ≤ u < aXa(n), then we
know for certain that u = Xab(n), so for all u, b, a and n we have:

(b > 1 & a > bn)⇒ [u = Xab(n)⇔ [[∃v : u2 − (a2b2 − 1)v2 = 1] & [Xa(n) ≤ u < aXa(n)]]] (28)

Combining the two results (27) and (28) we find that:

(1 < c < a & b > 1 & a > bn) (29)

⇒ [c = bn ⇔ (∃u, v) : [(u2 − (a2b2 − 1)v2 = 1) & Xa(n)c ≤ u < Xa(n)(c+ 1)]]

Before we continue, we define the diophantine relation:

ψ(a, u) := (∃x, y) : [[x2 − (a2 − 1)((a− 1)y)2 = 1] & [x > 1] & [a > 1] & [u = ax]]

Recall from earlier results that an ≤ Xa(n) ≤ (2a)n. We also know that if ψ(a, u) is true, then there is
an n such that x = Xa(n) and (a− 1)y = Ya(n). So we know that:

Ya(n) =
n∑

k=1,kεOdd

(
n

k

)
an−k(a2 − 1)(k−1)/2

From which we can derive that Ya(n) ≡ nan−1 mod (a2− 1). So n ≡ Ya(n) = (a− 1)y ≡ 0 mod (a− 1).
So n = (a− 1)k for some k > 0.
So we get u = ax = aXa(ak − k) ≥ aXa(a− 1) ≥ aaa−1 = aa. So:

ψ(a, u)⇒ u ≥ aa

We also know that if we take u = aXa(a− 1), then ψ(a, u) is true and u = aXa(a− 1) ≥ aa, so we get
a second property of the relation:

(a > 1)⇒ ∃u(ψ(a, u) & u ≥ aa)

With help of this newly found relation, we can replace the inequality a > bn with a stronger diophantine
relation θ defined as:

θ(a, b, n) := (∃k, h) : [k > b & k > n & a > h & ψ(h, k)]⇒ (a > bn)

Substituting this in (29) we get the relation for non trivial c = bn in terms of diophantine relations and
Pell equations. We find that if n > 1 then ∀c, b, n:

c = bn ⇔ [[b > 1] & [c > 1] & (30)

(∃u, v, a) : [[c < a] & [θ(a, b, n)] & [u2 − (a2y2 − 1)v2 = 1] & [Xa(n)c ≤ u < Xa(n)(c+ 1)]]

Thus we can conclude that c = bn is diophantine in c, b and n, if r = Xa(n) is diophantine in the
parameters r, a and n.

• To finish of, we will now prove that if we have a diophantine equation as is in the assump-
tion, then r = Xa(n) is diophantine in r, a and n.
Let ρ(u, v) be the relation satisfying the Julia Robinson prerequisites, so by the assumption in the
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theorem it is diophantine. We can describe r = Xa(n) in terms of this ρ and some other diophantine
relations. Notice that:

[[1 < r < Xa(a)] & [0 < z < a]]⇒ [r = Xa(n)⇔ ∃s : [r2 − (a2 − 1)(z + s(a− 1))2 = 1]] (31)

This because if r2 − (a2 − 1)(z + s(a − 1))2 = 1 we know that there is an n such that r = Xa(n) and
z + s(a − 1) = Ya(n), so just like we did earlier we can derive that z ≡ z + s(a − 1) ≡ n mod (a − 1).
And because z < a we get that z = n, so r = Xa(n) = Xa(z).
Now, last but not least, notice that from the first JR prerequisite we know that if r ≤ d and ρ(a, d) is
true then r ≤ d < aa < Xa(a). From the second JR prerequisite we know that for all a and n there is a
d such that d > Xa(n). So in conclusion:

(r = Xa(n))⇔ [[1 < r ≤ d] & ρ(a, d) & [0 < z < a] & ∃s : [r2 − (a2 − 1)(z + s(a− 1))2 = 1]]

So we now know that r = Xa(n) is diophantine in the parameters r, a and n if there exists a diophantine
equation J = 0 satisfying the Julia Robinson prerequisites.
End of proof

2

We will now discuss what this theorem implies. Halfway through the previous proof, we have found that
if r = Xa(n) is diophantine in the parameters r, a and n, then we get that exponentiation is diophantine.
But because of the theorem, we do not need to limit ourselves to the Pell equation. If we have a row
(zn) of which we know an < zn < bn, with 1 < a < b, we can say that {< u, v > |v = zu & u > b}
satisfies the Julia Robinson properties. Because for every solution, v = zu < bu < uu and for every k
it is obvious that we can find an u such that v = zu > au > uk, because the exponential formula goes
faster than a constant power. So we can conclude:

Exponential row theorem If a row of integers (zn) with the property Aan < zn < Bbn with
1 < a < b and A > 0 and B > 0 can be represented in a (single-fold/finite-fold) diophantine way, then
exponentiation is (respectively single-fold/finite-fold) diophantine

Proof: Define m as an integer such that bm > B and look at the relation {< u, v > |v =
zu−m & u > m & u > b}, then for every solution we have v = zu−m < Bbu−m < bmbu−m = bu < uu

so the second property is found. Because of the fact that exponentiation grows faster than a fixed
power we can also say that for every k there is an u such that v > zu−m > Aau−m > uk. So both
properties are met. Hence with the Julia Robinson theorem we can conclude that exponentiation is
diophantine.

2

This is a really handy tool. We now know that if we have a diophantine row with exponential behavior
we can prove that exponentiation is diophantine. The solutions of the Pell equation are an obvious
contestant. The problem however is that with the equation alone, we can only find the an unordered
set of solutions. We must find a way to link the solutions to its appropriate index. The next two
chapters are about two attempts of doing so.

7 Proof of Martin Davis

This chapter is about the proof of Martin Davis ([7]). In this proof, Davis is forced to make a false
assumption whereby his result could not be used. However, it is possible to weaken the assumption in
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order to get the stronger result; exponentiation is single-fold diophantine.
This proof will show a direct method of finding the index of the solutions of the Pell equations by not
looking at the whole row of solutions, but at a particular subrow: (y2n)nεN. We will set d to 7, for
reasons that will become clear later. For this d, we have that the initial solutions are u = x1 = 8 and
v = y1 = 3. We will first see that if this subrow is diophantine, then we can prove that exponentiation
is diophantine.

7.1 The sub-row to salvation

From our knowledge of the solutions of the Pell equation we can find the doublings-formula: x2n +
y2n
√

7 = (8 + 3
√

7)2n = (xn + yn
√

7)2 = (x2n + 7y2n) + (2xnyn)
√

7. So:

x2n = x2n + 7y2n (32)

y2n = 2xnyn (33)

From this we can find that:

y2n = 2ny1

n∏
k=0

x2k = 3(2)n+3
n∏
k=1

x2k (34)

Notice that y2n is always even, so that means with gcd(xk, yk) = 1 that x2n is always odd. So the only
factors of 2 in y2n is the power 2n+3. This property is fundamental in the proof.

Let us assume for a moment that we are able to represent the set {y2n} in a diophantine way
(so a = y2n is diophantine in parameters a and n).
In section 7.2 and 7.3 we will prove that this assumption can be reduced to the Martin Davis’
assumption.
The idea of this approach is to recognize the index x of y2x by means of the already diophantine relation
a ≥ GPT (b), and knowing that GPT (y2x) = 2x+3. Let us define the relation ρ(m,n) as follows:

ρ(m,n) := [[∃x : m = y2x ] & [n ≥ 8GPT (m)] & [n > 16]] (35)

By our assumption and results from earlier chapters (for instance 14 from chapter 2), this is diophantine.
Let us prove this relation satisfies the Julia Robinson Prerequisites:

Prerequisite I: Let k > 0, choose n = 2x, where x is chosen such that n > 16 and 8(n − 1) > nk

(which is possible because you can always find an N such that t > N implies at > tb). Choose
m = yn = y2x . This is clearly an element of the diophantine relation, and we see that with (25) that
m = yn > vun−1 = 3(8)n−1 > nk. So that suffices for the first prerequisite.

Prerequisite II: For an element (m,n) of the relation, we know that there is an x such that
m = y2x . Since n ≥ GPT (m) = 2x and since the solutions of the Pell equation are strictly ascending,
we have that m = y2x ≤ yn ≤ v(2u)n−1 = 3(16)n−1 < 3nn−1 < nn, because n > 16. So the second
prerequisite is valid.

We can conclude that if we indeed have that m = y2n is diophantine in m and n, then we
know that exponentiation is diophantine.

7.2 The filter x2 + 7y2

So what does it take to prove that m = y2n is diophantine in parameters m and n? To do this we will
study when numbers that are represented in the form of a2 + 7b2, with a and b integers. Let us call the
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set of numbers represented in this form K. It is better to talk about representability by x2 + 7y2 as
being in elements of a set so we don’t get confused with diophantine representability. So:

xεK ⇔ (∃a, b) : [x = a2 + 7b2] (36)

This is clearly a diophantine set. The information in this section is mostly from [16].
Firstly, if one has two numbers that are in K, say x = a2 + 7b2 and y = c2 + 7d2, you have that xy =
a2c2+72b2d2+7(a2d2+b2c2) = (a2c2−7abcd+72b2d2)+7(a2d2+abcd+b2c2) = (ac−7bd)2+7(ad+bc)2.
So its product is also in K. This is a result originally from Euler:

Lemma (Euler): If m and n are in K, then mn is in K

To further determine the elements of K, we must give some definitions. A prime p is called an
essential prime of x2 + 7y2 if p is not 7, not 2 and there are x and y with gcd(x, y) = 1 (so also y > 0,
very important) such that p|(x2 + 7y2). Now we will prove the following lemma:

Essential prime lemma: Let p be an odd prime, then p is an essential prime if and only if
-7 is a square mod p and not equal to zero mod p.

Proof:
Let p be an essential prime, then there are x and y such that gcd(x, y) = 1 and p|(x2 + 7y2). So
x2 ≡ −7y2 mod p. We know that y 6≡ 0 mod 7 because else x ≡ 0 mod p, so p|gcd(x, y). So
−7 ≡ (xy−1)2 mod p, so in other words a square modulus p.
Let −7 be a square mod p, then there is an x such that −7 ≡ x2 mod p. So x 6≡ 0 mod p. So there is a
k such that −7 = x2 + kp, or in other words x2 + 7(1)2 = −kp, thus p is an essential prime.

2

So by using calculations with quadratic residues, we can easily determine all essential primes of x2+7y2.
The question now is, what combinations (products) of essential primes are elements of K.

To this extend we will look at two lemmas which will to help us get to the main result of this
paragraph:

Lemma 7.1: Let p be a prime and let s be an integer. Then there are x and y such that
p|(x2 − s2y2) and x2 < p and y2 < p and x and y not both zero.

Lemma 7.2: If p and n are numbers with p or −p a prime, pn in K and p in K, then n is
in K

With these lemma’s, lets look what combinations of essential primes are possible. Notice that 7 is a prime
in class 3 modulo 4. So the essential dividers of x2+7y2 are the primes p (not 2, not 7) such that 1 =

(−7
p

)
,

-7 a square modulo p, which means 1 =
(−7
p

)
=
(
7
p

)
(−1)(p−1)/2 =

(
p
7

)
(−1)(p−1)/2(−1)(p−1)/2 =

(
p
7

)
. So

all primes which are not equal to 7 and 2, but which are quadratic modulo 7 are essential.
Let p be such a prime, then there is an s such that s2 ≡ −7 mod p. From Lemma 7.1 we have that
there are x and y such that (x, y) 6= (0, 0), x2 < p, y2 < p and p|(x2 − s2y2). With the property that
p|(s2 + 7) we get that p|(x2 + 7y2) for these specific x and y. We know that 0 < (x2 + 7y2) < (1 +N)p,
so k = (x2 + 7y2)ε{p, 2p, 3p, 4p, 5p, 6p, 7p} Let us look at all possible values of k separately:

• If k = p, then p is representable.
• If k = 7p, then because 7 is representable, we get from Lemma 7.2 that p is representable.
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• If k = bp with b < 7 not a square mod 7 (so b = 3, b = 5 and b = 6), we get a contradiction because
x2 + 7y2 is a square modulo 7 and p is a square modulo 7, so with lemma 7.2 we find that b is a square
modulo 7.
• If k = 2p. Then either x and y are both odd or both even. If both even, then with x = 2a and
y = 2b, 4a2 + 4(7b2) = 2p which is impossible because p is odd. If both are odd, then x = 2a + 1 and
y = 2a+ 1, so 4a2 + 4(7b2) + 4a+ 4(7b) + 1 + 7 = 2p, so again 4|2p which is impossible. So k 6= 2.
• If k = 4p. Then either x and y are both zero or 1 mod 4. If both 0, then with x = 4a and y = 4b, we
get that 16a2 + 16(7b2) = 2p which is impossible because p is odd. If both are 1, then x = 4a + 1 and
y = 4a+ 1, so 16a2 + 16(7b2) + 8a+ 8(7b) + 1 + 7 = 4p, so again 8|4p which is impossible. So k 6= 4.

We can conclude that for all possible k our result means that p is representable, so p is repre-
sentable. So all essential primes of x2 + 7y2 are representable.

Of course we know that all squares are also in K, because we can take x2 + 7(02) = x2. And
if for k = x2 + 7y2 we have that gcd(x, y) = a 6= 1, then a2|k. So we have that any product of essential
primes and squares are elements of K. By definition of essential primes, no other combination of factors
can be used. So we can say:

K representability theorem An integer a is an element of K if and only if a = b2p1...pn
with p1, .., pn primes which are squares modulo 7 (so equivalent to 1,2 or 4 modulo 7).

7.3 Elements filtered

How is the knowledge of the previous section going to help us? In this section we will prove that
m = y2n is diophantine in m and n if we assume that the Martin Davis equation only has the trivial
solution.
We can easily see with the fact that 4 = (2)2 +7(0)2 and 8 = (1)2 +7(1)2 that all 2m with m ≥ 2 are ele-
ments of K. Also, from (32) we have that x2n = x2n + 7y2n, so one can say that (y2n/3) = 2n+3

∏k=n
k=1 x2k

is in K.

Now we want to prove that if yn/3 is not in K, if n is not an power of 2. Before we continue,
notice that we can always divide by 3 because y0 = 0 and y1 = 3 are divisible by 3, so by (22) all yn
are.

Let us call all odd primes not 7 which are not squares modulo 7 non-essential primes. Then
from the results of the previous section any power of essential primes are allowed and only even powers
of non-essential primes are allowed.
So we can say that if an x contains an odd power of a certain non-essential prime, it is not in K.
Also, if x is odd and it is not in K, then it must have an odd power of a certain non-essential prime.
We will now prove that ym is not in K if there is no n such that m = 2n and we assume that
9(u2 + 7r2)2 − 7(r2 + 7s2)2 = 2 only has the trivial solution. We will do this by using two inductive
steps.

Step I: Say n is even but not a power of 2, so there are m > 0 and k > 2 such that n = 2mk. Then we
have that yk/3 is in K only if yn/3 is in K.

Proof:
Assume yk/3 is not in K. We know by definition that k is odd, and because of parity properties we
get that yk is odd. So yk/3 must contain an odd power of a certain non-essential prime, let’s call that
prime p. Using (33) we can find that: y2mk/3 = 2m(yk/3)xk

∏h=n
h=1 x2hk. Remember that 3|yk. By (32)
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we know that any x2hk with h ≥ 1 is representable, so if they contain p, they must have him to an
even power. Also, p is odd so it does not divide 2m. Because p divides yk and gcd(xk, yk) = 1, we
also have that p does not divide xk. So because yk/3 has p to an odd power and all other elements of
y2mk/3 have p to an even power, we can conclude that y2mk/3 has an odd power of p, and because p
was non-essential we can conclude that y2mk/3 is not in K.

2

Step II: Say n is odd, so there is a k such that n = 2k + 1. If y2k+1/3 is in K, then both xk + 7(yk/3)
and xk + 3yk should be in K.

Proof:
We know that x2k+1 + y2k+1

√
7 = (xk + yk

√
7)2(x1 + y1

√
7) = ((x2k + 7y2k) + 2xkyk

√
7)(8 + 3

√
7) so

y2k+1 = 3x2k + 16xkyk + 21y2k = (3xk + 7yk)(xk + 3yk) = (xk + 7(yk/3))(xk + 3yk). Define d such that
d|(xk + 7(yk/3)) and d|(xk + 3yk). We know that d is odd because (xk + 3yk) is odd (gcd(xk, yk) = 1).
Also, d|(3(xk + 3yk)− 3(xk + 7(yk/3))) = 2yk, so d|yk. This means that d|((xk + 3yk)− 3yk) = xk. But
again gcd(xk, yk) = 1, so d = 1. We can conclude that gcd(xk + 7(yk/3), xk + 3yk) = 1. So if either
xk + 7(yk/3) or xk + 3yk is not in K, then one of them must contain an odd power of a non-essential
prime p and the other does not contain that prime. So y2k+1/3 has an odd power of that non-essential
prime and is not in K.

2

These two steps inductively lead to the following fact, if xk + 7(yk/3) and xk + 3yk are never in K for
any k, we can conclude with induction that for all n not a power of 2, yn is not in K.

So what does it mean if xk + 7(yk/3) and xk + 3yk is in K. It means that for a solution of
the Pell equation x2n − 7y2n = 1 there are u, v, r and s such that xk + 7(yk/3) = u2 + 7v2 and
xk + 3yk = r2 + 7s2. Taking X = xn and Y = yn/3, for which we have:
2 = 2(x2n − 7y2n) = 2(X2 − 7(3Y )2) = 2(X2 − 63Y 2) = (9− 7)X2 + (441− 567)Y 2 + (126− 126)XY =
9(X2 +14XY +49Y 2)−7(X2 +18XY +81Y 2) = 9(X+7Y )2−7(X+9Y )2 = 9(u2 +7v2)2−7(r2 +7s2)2

so we get (3).
9(u2 + 7v2)2 − 7(r2 + 7s2)2 = 2

So if yn is in K and n is not an power of 2, we have that (3) has a non-trivial solution. Reversing that
statement, one can say that if (3) does not have any non-trivial solutions, yn can never be in K if n is a
power of 2. So one would get yn is in K if and only if n is a power of two, resulting in the diophantine
representation of m = y2x in the parameters m and x:

∃x : [b = y2x ]⇔ (∃a, t, f) : [a2 − 7b2 = 1 & b = t2 + 7f2] (37)

Unfortunately, many non-trivial solutions of (3) have been found since Martin’s original publication of
this proof. But there is hope yet, if one can prove that there are only a finite number of solutions of this
equation, one can for instance create the finite set W = {(3(u2+7v2))|(∃r, s)[9(u2+7v2)2−7(r2+7s2)2 =
2]}. When using (8) on every element of W , one can represent in a diophantine way the relation of not
being in the set W . If a solution of the Pell equation is in K, and does not coincide with one of the
solutions of (3) one knows that its index is a power of 2. This would give the diophantine representation:

∃x : [b = y2x ]⇔ (∃a, t, f) : [a2 − 7b2 = 1 & b = t2 + 7f2 & (3a− 7b)ε(N−W )] (38)

This representation is by construction finite-fold, because there are only a finite number of t and
f such that b = t2+7f2 and one a such that a2−7b2 = 1. So we can conclude with the following theorem:
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Salvaged Martin Davis Theorem If 9(u2 + 7v2)2 − 7(r2 + 7s2)2 = 2 only has a finite num-
ber of solutions then any recursively enumerable relation is finite-fold diophantine

As an overview, here is the structure of the proof in short: If (3) only has a finite number of
solutions, then the row m = y2n is finite-fold diophantine in m and n, which gives us a diophantine
equation which satisfies the Julia Robinson prerequisites in a finite way, from which we can conclude
that exponentiation is finite-fold diophantine, which closes the gap of the proof that r.e. relations are
finite-fold diophantine.
Let us hope that this weakened assumption is true.

8 Matiyasevich proof of the DPRM-theorem

Now for the successful attempt of proving that exponentiation is diophantine, originally published in
[8] and later in the book [14]. Because it uses a lot of calculations in modulo equivalence, this proof
does not show that exponentiation is single-fold diophantine, only that it is diophantine. For this proof
we look at an arbitrary d in the form of d = a2 − 1, with a ≥ 1. We will define (Xa(n), Ya(n)) as
the row of solutions for a fixed a. We know that the lowest non-trivial solution of this Pell equation
is (xa(1), ya(1)) = (a, 1), so the solutions of the Pell equation x2 − (a2 − 1)y2 = 1 can be define the
solutions in the following two equivalent ways as discussed before in the Lemma and (21):

(Xa, Ya) is a solution if and only if there is an nεZ≥0 such that Xa+Ya
√
d = (u+v

√
d)n = (a+

√
a2 − 1)n

Let us define the recursive row Xa(0) = 1, Xa(1) = a, Xa(n + 2) = 2aXa(n + 1) − Xa(n) and
Ya(0) = 0, Ya(1) = 1, Ya(n+ 2) = 2aYa(n+ 1)−Ya(n). We know that this row gives us all the solutions
of the Pell equation with d = a1 − a.

8.1 Congruence properties

First note that Ya(n) is polynomial in a, which you can conclude from the recursive definition. From
this we can derive that b = a is a zero of the polynomial F (b) = Ya(n)− Yb(n) with unknown b, so we
can state the congruence rule:

(a− b) | (Ya(n)− Yb(n)) (39)

In particular, we know from our recursive property that Y1(n) = n, so we also know that:

Ya(n) ≡ n mod (a− 1) (40)

Lemma 8.1: n|m if and only if Ya(n)|Ya(m)

Proof: We know from (19) that Ya(k ± n) = Ya(k)Xa(n) ± Xa(k)Ya(n) ≡ Ya(k)Xa(n) modulo
Ya(n). With gcd(Xa(n),Ya(n)) = 1 we can see that Ya(n)|Ya(k± n) if and only if Ya(n)|Ya(k). Because
trivially Ya(n)|Ya(n), so we can conclude by repeatedly using this rule that k must be a multiple of n if
and only if Ya(n)|Ya(k).

2

Lemma 8.2: Y 2
a (n)|Ya(m) if and only if (nYa(n))|m
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Proof: We know that Xa(nk) + Ya(nk)
√
d = (Xa(n) + Ya(n)

√
d)k, so Ya(nk) =∑(k−1)/2

i=0

(
k

2i+1

)
Xa(n)k−2i−1Ya(n)2i+1di. So:

Ya(nk) ≡ kXa(n)k−1Ya(n) mod Ya(n)3 (41)

Assume (nYa(n))|m. Choose k = Ya(n), then we know from (41) that Ya(n)2|Ya(nYa(n)), so with
lemma 8.1 we get that Ya(n)2|Ya(m).
Assume Ya(n)2|Ya(m), then with lemma 8.1 we have that n|m, say m = nk. From the previous result
(41) and gcd(Xa(n), Ya(n)) = 0 that Ya(n)2|kYa(n). So Ya(n)|k, so (nYa(n))|m.

2

That concludes the proof of lemma 8.2. Let us now derive a helpful relation for the last lemma.

Note that from the doublings-formulas (33) and (32) we have that Ya(2n) ≡ 0 mod Xa(n) and
Xa(2n) ≡ −1 mod Xa(n). Using this combined with the addition rules in (19) we get that
Ya(2n ± m) ≡ ∓Ya(m) mod Xa(n). So using that twice we get Ya(2n + (2n ± m)) ≡ ±Ya(m) mod
Xa(n). Using it an arbitrary amount of times we get that for all natural numbers i, n and m:

Ya(4ni±m) ≡ Ya(m)(mod(Xa(n))) (42)

Ya(4ni+ 2n±m) ≡ ∓Ya(m)(mod(Xa(n))) (43)

With help of these relations (we will call them the 4n-relations) we can find the final lemma:

Lemma 8.3: Ya(k) ≡ ±Ya(m) (mod (Xa(n))) if and only if either k ≡ m (mod 2n) or k ≡ −m (mod
2n).

Proof: Take a ≤ 2 and 1 ≤ n.
Assume k ≡ ±m (mod 2n), take k = 2nj ± m. We can immediately conclude from the 4n-relations
(looking at j = 2i and j = 2i + 1 separately) that indeed either Ya(k) ≡ Ya(m) (mod (Xa(n))) or
Ya(k) ≡ −Ya(m) (mod (Xa(n))).

Assume Ya(k) ≡ ±Ya(m) (mod (Xa(n))). Let h be defined such that h ≡ ±k mod (2n) and
0 ≤ h ≤ n. Define l such that l ≡ ±m mod (2n) and 0 ≤ l ≤ n. So from what we already have proven
in this lemma, we can see that Ya(k) ≡ ±Ya(h) (mod (Xa(n))) and Ya(l) ≡ ±Ya(m) (mod (Xa(n))), so
with our assumption we have Ya(h) ≡ ±Ya(l) (mod (Xa(n))). So Xa(n)|(Ya(h)± Ya(l)).
If h 6= l, we have that 0 < |Ya(h)± Ya(l)| ≤ |Ya(h) + Ya(l)| ≤ Ya(n− 1) + Ya(n). We know that in the
solutions of the Pell equation, Xa(n) > Ya(n), so |Ya(h)± Ya(l)| < Ya(n− 1) + Ya(n) < Xa(n), which is
not possible if Xa(n)|(Ya(h)± Ya(l)), contradiction.
So h = l. We can deduce from this that h ≡ ±l mod (2n), so also k ≡ ±m mod (2n).
This concludes the proof of Lemma 8.3 .

2

8.2 System of equations

Now we have all the needed lemmas about congruence relations out of the way, we can finally look at a
specific diophantine system of the relation C = YA(B) with parameters A, B and C.
We will look at the next system of Diophantine equations/relations with unknowns D,E, F,G,H, I:

(I): D2 − (A2 − 1)C2 = 1
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(II): F 2 − (A2 − 1)E2 = 1
(III): I2 − (G2 − 1)H2 = 1
(IV): 2C2|E
(V): G ≡ A (mod F )
(VI): G ≡ 1 (mod 2C)
(VII): H ≡ C (mod F )
(VIII): H ≡ B (mod 2C)
(IX): B ≤ C

With the previous congruence results we can prove that for A > 1 this system has a solution if
and only if C = YA(B).

Proof:
• Let us take a solution of this system with A > 1, so A,B,C,D,E, F,G,H, I obey the equations
(I-IX). The first three equations (I-III) are all Pell equations in the form of what we have studied
this chapter. So we can find p, q and r such that D = XA(p), C = YA(p), F = XA(q), E = YA(q),
I = XG(r) and H = YG(r). We want to prove that B = p.
From (IV) we know that C2|E, so YA(p)2|YA(q). With lemma 8.2 we then know that YA(p)|q, so C|q.
From (VI) we know that 2C|(G− 1), so with (40) we get that H = YG(r) ≡ r mod 2C. So with (VIII)
we get that B ≡ r mod 2C.
From (V) we know that F |(A − G), so with (39) we get YA(r) ≡ YG(r) mod Xa(q) = F . (VII) says
H ≡ C (mod F ), so YA(r) ≡ YA(p) mod F . This together with Lemma 8.3 means r ≡ ±p mod 2q.
So we know C|q, B ≡ r mod 2C and r ≡ ±p mod 2q. We can conclude that B ≡ ±p mod 2C. We know
that in general 0 ≤ n ≤ Ya(n), so 0 ≤ p ≤ C. With (IX) we have that for B we also have 0 ≤ B ≤ C.
So B = p,
Conclusion: C = YA(B).

• Now for the converse, let us take A, B and C such that C = YA(B). We want to prove that
there are D,E, F,G,H, I which obey (I-IX).
Notice (IX) already holds. Take D = XA(B), we see that the first Pell equation in (I) holds.
Define q = BYA(B) and take F = XA(2q) and E = YA(2q) so the 2q-th solution of (II).
From lemma 8.2 we know that C2 = YA(B)2|YA(BYA(B)) = YA(q). The doubling formula in (33)
implies 2C2 = (2XA(q)YA(q))|YA(2q) = E. So (IV) holds.
Choose G = A+ F 2(F 2 −A), so (V) holds. From (II and IV) we know that 2C|(F 2 − 1), so (VI) holds
as well.
Choose I = XG(B) and H = YG(B) which give a solution of (III). With the congruence rule in (40) we
know that H ≡ B mod (G− 1). With (VI) this means (VIII) holds.
With the general congruence rule (39) we know that H ≡ C mod (G-A). With (V) we have that (VII)
holds.

2

That concludes the proof. So we now know that the relation C = YA(B) with parameters A, B and C
is diophantine. Combining this result with the theorem of Julia Robinson, we get that exponentiation
is diophantine. Thus we now have proven the DPRM theorem:

DPRM theorem: Every recursively enumerable relation is diophantine
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9 A universal diophantine equation

This chapter will be an intermission about a special type of diophantine equation, a universal one.
A universal diophantine equation is an equation that is able to generate all possible diophantine
sets of a certain rank. Formally, if we take an arbitrary n > 0, then the universal diophantine
equation with rank n is a diophantine equation U(a1, a2, ..., an, k, x1, x2, ..., xr) = 0 with unknowns
a1, a2, ..., an, k, x1, x2, ..., xr such that:
For any diophantine set AεNn there is a k such that (a1, a2, ..., an)εA ⇔ ∃x1, ∃x2, ...,∃xr :
U(a1, a2, ..., an, k, x1, x2, ..., xr) = 0.
In this chapter, we will prove its existence using some newly introduced tools and using some old ones.

9.1 The Cantor ordering

Cantor gave a bijection between N × N and N given by the function Cantor(a, b) = (a+b)2+3a+b
2 .

Luckily for us, this function is almost diophantine, we just have to multiply both sides by two. So both
coördinates are also diophantine, we can define the following two diophantine relation;
The relation CantorA(c) = a in parameters a and c will be defined as: there is a b such that
2c = 2Cantor(a, b)
And the relation CantorB(c) = b in parameters b and c as: there is an a such that 2c = 2Cantor(a, b).

By induction we can find a bijection between Nn and N, define Cantor1(a1) = a1 and
Cantorn(a1, ..., an) = Cantorn−1(a1, ..., an−2, Cantor(an−1, an)) for n > 1.
Again, this can be made diophantine for fixed n by multiplying both sides by 22

n
and this way we can

also define the diophantine relation x = CantorEm,n(c), as the m-th coördinate of an element xεNn for
which c = Cantorn(x). This relation is diophantine in parameters x and c for fixed m and n.

So CantorEm,n(c) = am is diophantine in the parameters c and am for fixed m and n. But we
will want to find some diophantine way to order elements of arbitrary dimension (in Nn for arbitrary
n). Let n > 0 and take an arbitrary element (a1, ..., an) of Nn. Define b = max(n, a1, ..., an)!, and then
take b1, ..., bn to be bi = bi+ 1 for all i = 1, ..., n.
Notice that all bi are pairwise relative prime; if for some i and j there is a d such that d|bi and d|bj ,
then d|(b(i − j)), so either d|b or d|(i − j), the latter also implies d|b because |i − j| < n and n!|b. So
d|b and d|(bi+ 1), so d = 1.
Secondly, notice that ai < bi for all i = 1, ..., n. bi = bi+ 1 > b ≥ max(n, a1, ..., an) ≥ ai.
Now, using the Chinese remainder theorem, define a such that ai is the remainder of dividing a by bi.
So we have two numbers, a and b, from those we can create all the coördinates of (a1, ..., an) in a diophan-
tine way; take i = 1, ..., n, then ai = rem(a, (bi+1)). Let us call CantorG(a, b, i) = rem(a, (bi+1)) = ai.
We now know that (a, b, n) where a and b as before and n the dimension gives us a diophantine de-
scription of (a1, ..., an), meaning that we can deduce (a1, ..., an) from (a, b, n) in a diophantine
way.

9.2 Universal

A diophantine equation is just an integral polynomial equated to zero. When looking at a dio-
phantine equation with non-negative unknowns, it is possible to split the polynomial in two and
construct some polynomials P (x1, ..., xn) and Q(x1, ..., xn) with only non-negative coefficients such that
P (x1, ..., xn) = Q(x1, ..., xn) yields the same solutions as the old equation. This can be done by working
out the brackets and transport all parts with a negative coefficient to the other side of the equation.
This is handy because there is a recursive way to define all natural polynomials (where unknowns and
coefficients are non-negative), using the definition discussed in the Introduction:
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• For all kεN, k itself is a natural polynomial.
• For any unknown xn, xn itself is a natural polynomial.
• If P and Q are natural polynomials, then P +Q is a natural polynomial.
• If P and Q are natural polynomials, then PQ is a natural polynomial.

These rules give us all the possible natural polynomials. With help of the Cantor-function, we
can now sort all these possible equations by putting them in one recursive row {Pn}nεN. Define for
all k > 0, P4k = k and P4k+3 = xk+1, so we now have all numbers and unknowns in the sequence.
Using Cantors function, we can find i and j such that Cantor(i, j) = k. So we can now define
P4k+1 = Pi+Pj and P4k+2 = PiPj . Because of the nature of Cantors function, we know that all possible
natural values of i and j are used, so any summation and multiplication of two arbitrary elements
already in the sequence is also later on in the sequence. So this sequence contains all natural polynomials.

Now take an a collection of natural numbers p0, p1, ..., pr−1. We say that this collection is a re-
alization of the sequence of polynomials if there are some x1, x2, x3, ... such that pi = Pi(x1, x2, x3, ...).
With the method in the previous section we can represent this equation in a diophantine way by the
numbers p, q and r, such that CantorG(p, q, i+ 1) = pi for all i = 0, 1, ..., r − 1.
We can use the fact that the CantorG function is diophantine to find p and q such that
p0 = CantorG(p, q, 1), p1 = CantorG(p, q, 2), ..., pr−1 = CantorG(p, q, r). In other words, we
can find p, q such that there are x1, x2, ... for which Pi(x1, x2, ...) = CantorG(p, q, i + 1) for all
i = 0, 1, ..., r − 1 in a diophantine way.
And by definition of the polynomial sequence, we know that for k, i and j where k = Cantor(i, j);
p4k = k, p4k+1 = pi + pj , p4k+2 = pipj and p4k+3 can be anything because of the free choice of the
unknown xk+1. It is not hard to see that if a sequence p0, p1, ...., pr satisfies those conditions, then
there are x1, x2, ... such that pi = Pi(x1, x2, ...) for all i = 0, 1, ..., r − 1.

So (p, q, r) is a code of the realization of the polynomial sequence if and only if:

For all l < r we have that there are i, j, k with Cantor(i, j) = k and 4k ≤ l < 4(k + 1) such
that:
• If l = 4k then k = CantorG(p, q, l + 1), (p4k = k).
• If l = 4k+ 1 then CantorG(p, q, l+ 1) = CantorG(p, q, i+ 1) +CantorG(p, q, j+ 1), (p4k+1 = pi + pj)
• If l = 4k + 2 then CantorG(p, q, l + 1) = CantorG(p, q, i+ 1)CantorG(p, q, j + 1), (p4k+1 = pipj).

We will call this relation PolynSeq(p, q, r). Notice that this relation is almost diophantine, safe
from one bounded universal quantifier ∀l < r. Notice that i, j, k are all smaller than l, so also smaller
than r. So our universal quantifier is bounded by the same number as existential quantifiers in this
statement. So this predicate is of the form as in the Martin Davis Theorem in chapter 4, of which
we proved in Lemma 4.5 that those types of predicates are diophantine. So we can conclude that
PolynSeq(p, q, r) is diophantine.

Now, let us take an arbitrary diophantine set A ⊂ Nn. So there is an integral polynomial
D(a1, a2, ..., an, xn+1, ..., xm) such that D(a1, a2, ..., an, xn+1, ..., xm) = 0 represents the set. So
there must be two natural polynomials P and Q such that P (a1, a2, ..., an, xn+1, ..., xm) =
Q(a1, a2, ..., an, xn+1, ..., xm) also represents A, so there must be i and j such that
Pi(a1, a2, ..., an, xn+1, xn+2, ...) = Pj(a1, a2, ..., an, xn+1, xn+2, ...) also represents A. So we can
say that this equation is the number k = Cantor(i, j) diophantine equation, and its solution space is
the number k diophantine space. Any diophantine set is a projection of a solution space, so for any
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diophantine set there must be a k and an n such that A is the projection of the number k diophantine
solution space in the first n coördinates.

Now take an arbitrary k and n, and let A be the diophantine set which is the n-dimensional
projection of the number k diophantine solution space.
Take an arbitrary collection of numbers a1, a2, ..., an. We know that (a1, ..., an)εA if and only if there
are x1, x2, ... such that Pi(a1, a2, ..., an, xn+1, xn+2, ...) = Pj(a1, a2, ..., an, xn+1, xn+2, ...). So:

(a1, ..., an)εA⇔

∃i, j, p, q, r[[k = Cantor(i, j)] & [r > i] & [r > j] & PolynSeq(p, q, r)

& [CantorG(p, q, i+ 1) = CanorG(p, q, j + 1)] & [CantorG(p, q, 4) = a1 &...& CantorG(p, q, 4n) = an]]

Notice what happens. This statement finds the i and j belonging to k and the three p, q, r which not
only are a realization of the polynomial sequence, but also have the added quality that pi = pj , so it
gives any solution of Pi = Pj . Then it selects the first n unknowns by using the fact that P4h+3 = xh+1.
This statement is clearly diophantine in the parameters a1, a2, ..., an and k. So this whole statement is
a diophantine representation of the universal diophantine set.
We can conclude that the universal diophantine equation exists.

10 Single-fold DPR-theorem

We will now look at the proof that all recursive enumerable sets are single-fold exponential diophantine.
This proof was originally published in [10]. For single-fold we need to refine some stuff, we want to
change everything in the original proof in such a way that they become single-fold. First note that we
now already know that all recursively enumerable sets are diophantine, so we can use this for this proof.

10.1 Single-fold theorems

Firstly, remember the Cantor ordering from the previous chapter. For each n, we have an integer
polynomial: In(a1, ..., an) := Cantorn(a1, ..., an) which orders the elements of Nn in the following way:
(a1, ..., an)εNn goes after (b1, ..., bn)εNn if and only if In(a1, ..., an) > In(b1, ..., bn). Not only that, for
all integers y > 0 there is exactly one element (a1, ..., an)εNn such that In(a1, ..., an) = y, so it gives us
a neat single-fold diophantine ordering.
Also remember that In = Cantorn contains rational non-integer coefficients, but 22

n
In does not. So

22
n
In(a1, ..., an) = 22

n
y is diophantine in y, a1, ..., an.

Now we need to improve the theorem that started it all by using the fact that we know that a
recursively enumerable set already has a diophantine equation. We can write our r.e. relation in three
other arithmetic ways:

Single-fold Davis Theorem:For every recursively enumerable relation R(a1, ..., an) there are polyno-
mials E(a1, ..., an, x) with unknowns a1, ..., an, x and D(x, y, u1, ..., um) with unknowns x, y, u1, ..., um,
both with non-negative coefficients such that the following statements are equivalent:

R(a1, ..., an)⇔

(∃x)(∀y ≤ x)(∃u1, ..., um ≤ E(a1, ..., an, x)) : [D(a1, ..., an, x, y, u1, ..., um) = 0]⇔

(∃!x)(∀y ≤ x)(∃u1, ..., um) : [D(a1, ..., an, x, y, u1, ..., um) = 0]⇔

(∃x)(∀y ≤ x)(∃!u1, ..., um) : [D(a1, ..., an, x, y, u1, ..., um) = 0]
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Because of the diophantine bijective map between Nn and N, we will only prove this for n = 1.

Proof:
Let P (a) be an enumerable predicate (So there is a set A ⊂ N such that P (a) ⇔ aεS) and let us take
M(a, z1, ..., zm) = 0 as a diophantine representation of this enumerable predicate. Now we are going
to use the Cantor ordering. For a certain value of a, if it satisfies the predicate, we know that M = 0
has solutions in (u1, ..., um). With the Cantor ordering we can give an unique value to this set of m
integers, we can find the minimal value of all possible solutions. For all sets of m-tuples with a lower
value, M(a, z1, ..., zm) will not be zero. So we can say that:

P (a)⇔ (∃x)(∀y ≤ x)(∃u1, ..., um) : [y = Im(u1, ..., um) & [[y < x & M(a, u1, ..., um) 6= 0] (44)

OR [y = x & M(a, u1, ..., um) = 0]]]

Notice that u1, ..., um are fully determined by y = Im(u1, ..., um). This relation is basically saying that
only the set of numbers belonging to y = x should be a solution of M = 0, and any set belonging to a
value lower than x should not be a solution of M = 0. So we force x to be the value belonging to the
minimal solution of M = 0.
So we see that the right hand side is fully single-fold diophantine. So this gives us the polynomial D
needed in the theorem. If you want something more specific, here is an example of the polynomial
D(a, x, y, u1, ..., um) as the representation of (44):

22
m

(y − Im(u1, ..., um))2 + ((x− y)M2(a, u1, ..., um)− 1− u0)2((x− y)2 +M2(a, u1, ..., um) + u20)

Where the pre-factor 22
m

is used to make all coefficient integral (Im contains rational non-integral
coefficients).
We still need to find the bounding polynomial E(a, x). For that polynomial we can just try and find
the maximum of x(1 +M2(a, u1, ..., un)), because in expression (44) the u1, ..., un are bounded by that
maximum. We can for instance just take E(a, x) = x(1 + N(a, x)) with N equal to be the square of
M with all signs turned positive and for all variables y, u1, ..., un we substitute an x. This makes E at
least as large as the maximum discussed before, and so it also bounds u1, ..., un (meaning there are no
solutions for ui larger than E).
This concludes the proof of the Single-fold Davis Theorem.

2

Now for something different, remember that the Chinese remainders theorem can be stated in such a
way that it is single-fold:

Single-fold Chinese remainders theorem:For all pairwise relatively prime positive numbers
d1, ..., dt and integers a1, ..., at there is only one a such that 0 ≥ a < d1, ..., dt and a ≡ ai mod di for all
1 ≤ i ≤ t.

10.2 The proof

We will now prove the single-fold DPR-theorem. Take a recursively enumerable predicate P (a) and
take D and E to be as in the single-fold Martin Davis theorem. Define F (a, x) as the polynomial
created from D(a, x, y, u1, ..., um) with all minus signs turned into plus signs and all variables except a
and x replaced with x+ E(a, x).
We will also define polynomials Di by expanding D at y = −1, such that D(a, x, y, u0, ..., um) =∑s

i=0Di(a, x, u0, ..., um)(y+1)i, where we take s to be the degree of y in D. We define a new polynomial
R(a, x, r, u0, ..., um) =

∑s
i=0Di(a, x, u0, ..., um)(−r)s−i.
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We are going to prove that the following system of four exponential diophantine relations give us a
single-fold representation of our recursive enumerable set P (a). The unknowns are x, r, q, s1, s2, ..., sm:

(I) r = (E(a, x) + F (a, x) + x+ 1)!
(II) q =

∏x
i=0(1 + r(i+ 1))

(III) (∀ 0 ≤ t ≤ m) : [[q |
∏E(a,x)
i=0 (st − i)] & [st < q]]

(IV) R(a, x, r, s0, ..., sm) ≡ 0 mod q

Notice that both (II) and (III) use products with variable indexes (x in (II) and E(a, x)), we
have shown in Lemma 4.4 that these are exponential diophantine. Also notice that though (III)
contains a universal quantifier, it is bounded by a constant so it is actually just a system of m
exponential diophantine equations. So with previous results we know that this system is exponential
diophantine. Now let us prove it is a single-fold representation of P (a).

Proof:
• First, let us prove that the system implies P (a). Take a natural number a and assume there are
x, r, q, s0, ..., sm such that the four relations are valid. Let y be a natural number smaller or equal

than x. Let p be a prime divisor of 1 + r(y + 1). According to (II) and (III), p|
∏E(a,x)
i=0 (st − i) for all

0 ≤ t ≤ m.
So there are u0, ..., um for which p|(st − ut) and ut ≤ E(a, x) for all 0 ≤ t ≤ m. Combining this result
with (II) and (IV) we get: R(a, x, r, u0, ..., um) ≡ 0 mod p.
So 0 ≡ R(a, x, r, u0, ..., um) ≡

∑s
i=0Di(a, x, u0, ..., um)(−r)s−i ≡

∑s
i=0Di(a, x, u0, ..., um)(−r)s−i(y +

1)s ≡
∑s

i=0Di(a, x, u0, ..., um)(y + 1)i ≡ D(a, x, y, u0, ..., um) mod p.
From (I) we know that p > F (a, x) ≥ |D(a, x, y, u0, ..., um)|. So indeed D(a, x, y, u0, ..., um) = 0 and
thus P (a) is valid (because D = 0 was its representation).

• Now for the converse, assume a as an element of the recursively enumerable with predicate P
(so P (a) is true). By our equivalent statements in the refined Davis theorem, we know that there are
x and there are u(0,y), ..., u(m,y) such that for all 0 ≤ y ≤ x : u(t,y) ≤ E(a, x) for all 0 ≤ t ≤ m and
D(a, x, y, u(0,y), ..., u(m,y)) = 0.
Now we choose r and q such that (I) and (II) are valid. Just like in our original proof (the not
single-fold proof), we know that for 0 < y1 < y2 ≤ m, 1 + r(y1 + 1) and 1 + r(y2 + 1) are relative prime
(you can simply prove this).
So with the Refined Chinese remainder theorem we can find s0, ..., sm such that st ≤ q and st ≡ u(t,y)
mod (1 + r(y + 1)) for all 0 ≤ t ≤ m and 0 ≤ y ≤ x. With this (III) is correct.
With our previous results, we see that for all y not exceeding m:
0 ≡ D(a, x, y, s0, ..., sm) ≡

∑s
i=0Di(a, x, u0, ..., um)(y + 1)i ≡

∑s
i=0Di(a, x, u0, ..., um)(y + 1)i(−r)s ≡∑s

i=0Di(a, x, u0, ..., um)(−r)s−i ≡ R(a, x, r, s0, ..., sm) mod (1 + r(y + 1)). And because (1 + r(y + 1))
is relative prime for different y, we can conclude that (IV) is also correct. So there is a solution for the
system of four equations.

• We can conclude that the system represents P (a), but is it single-fold? Let a satisfy P (a)
and take x, r, q, s0, ..., sm and X,R, S0, ..., Sm to be two sets of variables satisfying the relations I-IV.
We know that (∀y ≤ x)(∃u0, ..., um)[D(a, x, y, u0, ..., ym) = 0] and (∀y ≤ X)(∃u0, ..., um) :
[D(a,X, y, u0, ..., um) = 0].
According to the refined Davis theorem we have that (∃!k)(∀y ≤ k)(∃u0, ..., um) : [D(a, x, y, u0, ..., um)]
and so we can derive that x = X. So now we can find from (I) and (II) that r = R and q = Q.
Let us now assume that there is a j such that sj 6= Sj . By assumption, sj < q and Sj < q, so there is
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a prime p and a positive number d such that pd|q and sj 6≡ Sj mod pd, and so pd|
∏E(a,x)
i=0 (sj − i) and

pd|
∏E(a,x)
i=0 (Sj − i).

From (I) and (II) we find that p > E(a, x) which means that there are uj and Uj such that
pd|(sj − uj), p

d|(Sj − Uj), uj ≤ E(a, x) and Uj ≤ E(a, x). Because sj 6≡ Sj mod pd we find that
uj 6= Uj . Take the other ui and Ui with iε{0, ..., j − 1, j + 1, ...,m} such that p|(st − ut) and
ut ≤ E(a, x) for all 0 ≤ t ≤ m. As before, in our proof that (I-IV) implies P(a), we can derive that
D(a, x, y, u0, ..., um) = 0 = D(a, x, y, U0, ..., Um). But according to the refined Martin Davis theorem,
we know that (∀y ≤ x)(∃!u1, ..., um) : [D(a, x, y, u1, ..., um) = 0], so ui = Ui for all iε0, 1, ...,m. But that
is in contradiction with uj 6= Uj . So we can conclude that there is no j such that uj 6= Uj .
Conclusion, for all a satisfying P (a) there is but one solution of (I-IV) in the unknowns r, x, s0, ..., sm.

2

And so we have found a single-fold exponential diophantine representation of an arbitrary recursively
enumerable set. And because of bijections between different dimensional sets, we can also represent
any recursively enumerable relation the same way.

11 Implications of finite-fold exponentiation

Now that we know that all r.e. are single-fold exponential diophantine, a single-fold or finite-fold
diophantine representation of exponentiation would give us respectively a single-fold or finite-fold
diophantine representation for an arbitrary r.e. set. However, as of yet this representation has not
been found. The salvaged Martin Davis theorem in chapter 7 however gives us a bit of hope for the
possibility of finite exponentiation.

But what does it actually mean when a diophantine equation has a finite number of solutions?
Let us take D(a1, ..., an) = 0 with D a integral polynomial. If we know that it only has a finite number
of solutions, we know that the number of solutions is smaller than a certain number c. We can also
find a bound for the variables, a constant b such that all solutions of D = 0 satisfy a1 < b,...,an < b.
Or in other words, ∀a1, a2, ..., an, if for some i, ai ≥ b then D(a1, a2, ..., an) 6= 0.
If we know the bound b, it is possible to check how many solutions of D = 0 there are by just trying
all possible combinations of a1, ..., an smaller than b.
But if we know the bound for the number of solutions of D = 0 (or even if you exactly know the
number of solutions) then there is no general method to find a bound b for the unknowns.
So having a bound for the variables, you can find all solutions of the equation, that is why such
information is called an effective estimate of the solutions of the equation. A bound for the
number of solutions is called a non-effective estimate, because with it you may still be unable to
find all the solutions. Therefore it is better to have an effective estimate than to have a non-effective one.

A classic example from the past is a theorem from Axel Thue in 1909, which states that if we
have a irreducible binary form F with a degree of at least 3, then for all integers a we have that
F (x, y) = a only has a finite number of solutions in the unknowns x and y. This is a typical non-effective
estimate. Only in 1968 an effective estimate was found by Alan Baker.
It is still not known if all equations with a non-effective estimate also have an effective estimate. Till
this day, no example of an equation with non-effective estimate without the possibility of an effective
estimate has been found.
The next two results were originally discussed in [17].

Non-effectiveness
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Say that we have proven that all recursive enumerable sets are finite-fold diophantine. This would
mean that we have a non-effective estimate of the diophantine equation which represents that set. But
if we take a recursive enumerable, but not recursive set S, and look at its representation D(x, a1, ..., an)
we see something interesting. Because S is not recursive, we can find an element xεN of which we
know that there is no recursive way of determining if xεS. Now, let us assume D(x, a1, ..., an) = 0 has
an effective estimate for its solutions in a1, ..., an. Then with that estimate, we can try all possible
combinations of these variables within the bound and check within a finite amount of time whether xεS.
But that is in contradiction with the assumption that there is no recursive way of determining that.
We can conclude that the diophantine equation 0 = P (a1, ..., an) := D(x, a1, ..., an) has no effective
estimate. This gives us an example of what we discussed before:

Conjecture corollary: If exponentiation is finite-fold diophantine, then there are diophantine
equations with a non-effective estimate but without the possibility of ever finding an effective estimate.

Effectiveness
Now let us assume that it is not possible to create a finite-fold diophantine representation of expo-
nentiation, so we have found a recursive enumerable set which does not have a finite-fold diophantine
representation. This would mean that all possible ways to construct such a representation are
impossible. Recall the Julia Robinson prerequisites:

Julia Robinson prerequisites theorem: {< a, b, c > |a = bc} is finite-fold diophantine if
there is a Diophantine equation J(u, v, x1, ...., xn) = 0 (having for every u and v only a finite number
of solutions) with the following two properties:
-∀k there is a solution with v > uk

-In every solution v < uu

Julia Robinson was able to improve this result using super powers. Take u ∗ m to be the m-th
super power of u. With this definition she proved the following:

Improved Julia Robinson prerequisites theorem: {< a, b, c > |a = bc} is finite-fold dio-
phantine if there is a Diophantine equation J(u, v, x1, ...., xn) = 0 (having for every u and v only a
finite number of solutions) with the following two properties:
-∀k there is a solution with v > uk

-There is a natural number m such that in every solution, v < u ∗m

If we have a counter-example, then it is impossible to find a finite-fold diophantine representa-
tion of exponentiation, and so it would also be impossible to construct any equation with the properties
in the theorems of Julia Robinson. So we get the result:

Conjecture corollary II: If there is a recursive enumerable set which does not have a finite-
fold diophantine representation, then for all Diophantine equations J(u, v, x1, ...., xn) = 0 having for
every u and v only a finite number of solutions and for which there is a m such that v < u ∗m for all
solutions, then there is a k such that v < uk.

12 Martin Davis-like equations

We know a lot about diophantine equation with at most 2 unknowns and at most a degree of 3. Beyond
those values, things get perilous. Those equations become way too unpredictable. A particular equation
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that has peeked the interest of mathematicians in the last couple of decades is the equation that Martin
Davis used in his attempt to prove that exponentiation is diophantine. He assumed that the equation
9(u2 + 7v2)2 − 7(r2 + 7s2)2 = 2 only has the trivial solution u = 1, v = 0, r = 1, s = 0. But Oskar
Herrmann found its first non-trivial solution in 1971 ([9]), and in 1995 Daniel Shanks and Samuel
Wagstaff found 48 more solutions ([15]).
As discussed before, we can salvage Martin Davis’ proof to get the result: Exponentiation is single-fold
diophantine if 9(u2 + 7v2)2 − 7(r2 + 7s2)2 = 2 only has a finite number of solutions. Still, a lot of
arguments have been given saying that the equation has an infinite number of solutions, though it has
never been proven. The solution space of this equation seems to be teetering on the edge of finiteness
and infiniteness.
In this chapter we will look at a more general equation: a(u2 + Nv2)2 − b(r2 + Ns2)2 = a − b, with
parameters a, b,N (gcd(a, b) = 1, N does not contain any squares) and unknowns u, v, r, s. We will call
this type of equation a Martin Davis-like equation. For all choices of parameters, we have the trivial
solution (1, 0, 1, 0).

12.1 Combination of two equations

A Martin Davis-like equation is a composition of two parts.
One part is the Pell-like equation: ax2 − by2 = a − b, with parameters a and b, and unknowns x
and y. Though the solutions of these Pell-like equations can not be described generally (unlike the
Pell equations), there are well known methods of finding generating a lot of solutions. One need just
multiply both sides with a to find (ax)2 − aby2 = a(a − b). With z = ax we get the Pell-like equation
z2 − aby2 = a(a − b). The solutions can be described as the elements of Z[

√
ab] with norm a(a − b).

So if we have an element of that extension with norm 1 and one with norm a(a − b), then we know
that their multiplication is also a solution. So a good way of finding a lot of solution is to first find
the general sequence of solutions of the equation z2 − aby2 = 1 (these are discussed to a great extend
in the chapter about Pell equations). Then one searches for solutions of our original equation, each
of those generating an infinite sequence of solutions which may or may not be independent. So if
(z, y) = (u, v) is the first non-trivial solution of z2 − aby2 = 1 and (z, y) = (r, s) is a solution of
z2 − aby2 = a(a − b), then for all n > 1 we have that there is a solution (z, y) of z2 − aby2 = a(a − b)
with x+

√
ab = (u+

√
ab)n(r2 +

√
abs2) (for each n there is a different solution). Notice that a|a(a− b)

and a|aby2, so a|z2 in all solutions of the equation. So to find a solution of ax2 − by2 = a − b, we just
need to take (x, y) = (z/a, y) for any solution (z, y) of z2 − aby2 = a(a− b) previously discussed.

The second part is the representation by u2 + Nv2. This was partly discussed in the chapter of
Martin Davis’ proof for N = 7. For that case, it was proven that for any natural number x, if for all
prime dividers p of x we have that:

(
p
N

)
= −1 implies that p divides x an even amount of times, then x

can be represented by u2 +Nv2. This statement is also true for N = 2 and N = 3, this can be proven
the same way.
The Martin Davis-like equation is now a question of which solutions of the equation ax2 − by2 = a− b
have coördinates which can both be represented by u2 +Nv2.

12.2 Early Solutions

I will now show you a table containing some solutions of the Martin Davis-like equation. Each
box contains all non-trivial solutions of the equation with u, v, r, s ≤ 2500 and with certain choice
of parameters a, b and N . On the left hand side the values of a, b are displayed, they contain all
0 < b < a ≤ 12 with gcd(a, b) = 1. On top the value of N is given, with all natural numbers below
12 not containing a square, so N = 1, 2, 3, 5, 6, 7, 10, 11. For N = 1, only the solutions with u ≥ v and
r ≥ s are displayed to avoid any unnecessary use of space (if one wants all solutions for N = 1, just
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consider the fact that you can swap both u and v, and you can swap r and s).

The solutions seem to behave very irregularly. For some parameters the solutions appear on a
regular interval, for some other parameters the equation does not have any solutions below 2500 and
for some parameters the equation has a lot of solutions but only in a small interval. This behavior
does not seem to have any correlation with the choice of parameters. We see that for a = 9 and
b = 7 we have no solutions for any choice of N , not just for N = 7 (where the first non-trivial
solutions has an u of 525692038369576), so the Pell-like equation 9x2 − 7y2 = 2 does not seem to
be as susceptible to representations as other Pell-like equations in the table. Though for other a and
b it can be seen that most solutions are just different representations of the same solution of the
Pell-like equation ax2 − by2 = a − b. So, it seems that most representable solutions have more than
one representation. Still, it will be difficult to state something concrete about the finiteness of these
equations, any solution of the Pell-like equation can only be represented a finite number of times, so
the question is whether there are an infinite amount of representable solutions. This question is yet to
be solved for a = 9, b = 7 and N = 7, and it might be equally as difficult for other choices of parameters.
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13 Examples of specific diophantine representations

Let us end this paper with something a bit less abstract.
When the DPRM-theorem was proven, many mathematicians sought specific examples of diophantine
representations. These could be used to represent mathematical statements, even open conjectures.
This chapter will discuss some of those.

In the year 1976, James P. Jones found the diophantine representation of the set of prime num-
bers ([12]). He proved that they were represented by the equation with unknowns a, b, c, ..., z (alphabet
without k) and parameter k:

[wz+h+j−q]2+[(gk+2g+k+1)(h+j)+h−z]2+[2n+p+q+z−e]2+[16(k+1)3(k+2)(n+1)2+1−f2]2+
[e3(e+2)(a+1)2+1−o2]2+[(a2−1)y2+1−x2]2+[16r2y4(a2−1)+1−u2]2+[((a+u2(u2−a))2−1)(n+
4dy)2+1−(x+cu)2]2+[n+l+v−y]2+[(a−1)l2+1−m2]2+[ai+k+1−l−i]2+[p+l(a−n−1)+b(2an+2a−
n2−2n−2)−m]2+[q+y(a−p−1)+a(2ap+2a−p2−2p−2)−x]2+[z+pl(a−p)+t(2ap−p2−1)−pm]2 = 0

This system has a solution in his unknowns for a certain value of k if and only if k + 2 is a
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prime. For simplification we will write this equation as P (k, a, b, c, ...., z) = 0.
With this equation we can rewrite a lot of problems in number theory that are not even about dio-
phantine equations in such a way that they do coincide with the solvability of some diophantine equation.

Goldbach conjecture Every even number greater than 2 can be written as the sum of two
primes.
This question is equivalent to the following statement: For all non-negative n, the following diophantine
equation with unknowns p1, p2, a1, a2, ..., a25, b1, b2, ..., b25 has a solution:

[2n− (p1)− (p2)]
2 + [P (p1 − 2, a1, a2, ..., a25)]

2 + [P (p2 − 2, b1, b2, ..., b25)]
2 = 0

has a solution.

Legendre’s conjecture There is a prime number between every two consecutive squares
This is equivalent with the statement: For all non-negative n, the following diophantine equation with
unknowns p, d, e, a1, a2, ..., a25 has a solution:

[n2 + d− p]2 + [(n+ 1)2 − e− p]2 + [P (p− 2, a1, a2, ..., a25)]
2 = 0

Twin primes conjecture There are infinitely many twin primes. Note that the question of there
being infinitely many of something in an ordered system with a minimum is equivalent to the question
of there always being one higher than the ones you already got.
With that in mind we see that the conjecture is equivalent to the following statement: For all non-
negative n, the following diophantine equation with unknowns p, d, a1, a2, ..., a25, b1, b2, ..., b25 has a so-
lution:

[n+ d− p]2 + [P (p− 2, a1, a2, ..., a25)]
2 + [P (p, b1, b2, ..., b25)]

2 = 0

There are many conjectures talking about the existence of infinitely many primes with a certain extra
property. As long as this property is diophantine, one can obviously represent the conjecture in a
diophantine way. Say the property can be represented by a integral polynomial D(x, a1, ..., an) having
a zero in a1, ..., an if and only if x has the property.

There are infinitely many primes with a property represented by D = 0 if and only if for every
non-negative n the following diophantine equation with unknowns p, a, a1, a2, ..., a25, b1, b2, ..., bk has a
solution

[n+ 2 + a− p]2 + [D(p, b1, ..., bk)
2 + [P (p− 2, a1, a2, ..., a25)]

2 = 0

Besides the prime number representation, James P. Jones also found other representations ([11]). One
of the more simple diophantine representation is the one for the fibonacci numbers: A number y is in
the fibonacci sequence if and only if there is an x such that (y2 − xy − x2)2 − 1 = 0. This gives us a
representation of the following conjecture:

Fibonacci prime conjecture: There are infinitely many primes in the Fibonacci sequence

One should also not forget the central result of this paper, the fact that exponentiation is dio-
phantine. With that representation we can easily represent the following conjecture.

Mersenne prime conjecture: There are infinitely many primes of the form 2n − 1

39



14 Discussion and conclusion

14.1 Discussion

To prove that all recursively enumerable sets are single-fold or finite-fold diophantine, we have to prove
that the exponential relation is respectively single-fold or finite-fold diophantine. But how would we go
about doing that?
One possible way to go is to prove that 9(u2 + 7v2)2 − 7(r2 + 7s2)2 = 2 only has a finite number of
solutions. To this extend, it might be useful to study the Martin Davis-like equation in order to discover
some deeper properties we have not yet found. Of course, the assumption is a much stronger statement
than the thing we want to prove, so there is a chance that it is not true while exponentiation is still
single-fold diophantine. This might discourage people to study it. Still, the Martin Davis-like equation
are very interesting in their own right, they may be a gateway to new theories so I would encourage
people to look into them.
The second way to go is to change Matiyasevich’s proof in such a way that it also contains a single/finite-
fold nature. This might happen by finding the correct bound for its unknowns. Matiyasevich’s proof has
also been used to create alternative proofs having roughly the same steps. Those could also be used as
a starting point. The problem is however, that many people have already attempted to improve these,
including Matiyasevich himself. From this fact we can conclude that it will be very difficult to go this
route.
A more general way would be to try and prove the existence of a polynomial J(u, v, x1, ..., xn) which
satisfies the Julia Robinson prerequisites and which also is finite or single-fold with u and v as parameters
and x1, ..., xn as unknowns. This would require a lot of ingenuity, seeing that most infinite-fold proofs
use many steps that only make sense when the whole argument is made. A lot of leaps must be made
demanding a lot of trial and error in using many different equations.
A proof might even fall from the sky, as someone might find out about the exponential nature of some
single-fold diophantine equation he or she was studying. It is difficult to say.

14.2 Conclusion

We have seen that all recursively enumerable relations are diophantine and that they are single-fold
exponentially diophantine. We have also seen how far we are in proving that they are single-fold
diophantine and the consequences that it may bring. But the last few years, there has not been
much improvement in the search of the single-fold representation of the exponential relation. Both
Matiyasevich’s and Martin Davis’ proof use very specific constructions of various diophantine equations,
if one wants to change a small thing you will have to change the whole proof.
I was not able to change Martin Davis proof in such a way that a different assumption arose than:
9(u2 + 7v2)2 − 7(r2 + 7s2)2 = 2 has only a finite number of solutions. So Davis’ constructive and
thereby single-fold method of proving that exponentiation is diophantine seems to be forever tied to
that equation. But an analysis of the equation by many different mathematicians show that the validity
of the assumption is doubtful. Further study of this equation must be done to check the validity of the
assumption.
On the other hand, the proof of Matiyasevich uses modular equations to such an excessive extend that
even after many years of work from various different mathematicians, we still do not have a bound to
the unknowns used in Matiyasevich’s diophantine representation of exponentiation.
In my study, I discovered that all publications regarding this conjecture uses the Pell equation in one
way or another. There may be different diophantine equations that can also be used, though that might
be even more difficult seeing that the Pell equations are very simple in construction.
Let us not forget that it took many years before somebody was able to prove that exponentiation is
diophantine and many more years have passed since. It might take a long time before the conjecture
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is proven or disproven. A proof might be just around the corner, or maybe there is no proof at all.
Whatever the result is, it will either take a mathematical genius or a lot of luck to assign a truth value
to the statement: All recursive enumerable sets are single-fold diophantine.
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