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Abstract

We study two different subjects related to ultra-cold Bose gases. First we study
the influence of the trap and the background pressure on particle loss and tem-
perature change for trapped atom clouds. We find the number of particles to
exponentially decrease over time due to the imperfect vacuum, while the rate of
temperature change differs between a magnetic trap and a far off resonance op-
tical trap. Secondly, we study the properties of a standing sound wave induced
in a Bose-Einstein condensate. Phase contrast imaging is used to image the
condensate in order to observe the density profile as a function of time. We find
that there is coupling between the standing wave and other collective modes.
There is a clear relation between the frequencies of these collective modes, and
also between the frequencies of these modes and the frequency used to induce
the modes. We also find that the amplitude of the standing wave decays over
time.
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Chapter 1

Introduction

In the beginning of the 20th century, Bose and Einstein predicted a state of
matter in which a macroscopic fraction of the particles would be in the ground
state [1,2]. This phase occurs only for sufficiently large density combined
with sufficiently low temperature. The transition to this phase is called
Bose-Einstein condensation. In Utrecht, we make the largest Bose-Einstein
condensates in the world, composed of a few hundred million sodium atoms
[3,4]. As a consequence, our condensates are in the hydrodynamic regime: the
mean free path of the atoms is less than the size of the condensate [5]. This
gives us the opportunity to investigate several properties of condensates, for
example density excitations. Our condensates are cigar-shaped (as shown in fig
1.1), with a length of a few millimeters in the long direction. Their transition
temperature Tc is of the order of 1 µK [4]. The concept of Bose-Einstein
condensation and the process of making them will be discussed in chapter 2.

Figure 1.1: An image of one of our condensates. The image’s size is 0.16 mm
by 2.68 mm.

In order to make condensates, a cloud of particles has to be trapped in
vacuum inside a potential well. However, a trap and the vacuum cannot
be perfect, therefore a cloud inside a trap will undergo particle loss and
temperature change [6]. It is important to know how these imperfections
influence the cloud inside the trap, as that allows one to include these ef-
fects when analyzing measurements. This subject will be discussed in chapter 3.

Bose-Einstein condensates are superfluids, which have two different sound
modes: first and second sound [7]. One of these modes corresponds with density
fluctuations, while the other corresponds with temperature fluctuations. We
can measure the properties of these modes by making images of a condensate
at different points in time.
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By periodically squeezing the condensates radially, we managed to in-
duce a highly excited mode inside the condensate that closely resembles a
standing sound wave. This is a very remarkable feature, considering the
condensates do not have sharp edges. The mode itself has interesting properties
and we want to discover the origin of the mode, what its properties are and how
these properties relate to each other. This specific mode is the main subject of
this report, being discussed in chapter 4.
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Chapter 2

Bose-Einstein condensates

2.1 Bose-Einstein condensation

In order to perform research on Bose-Einstein condensates, one first has to
understand the concept of Bose-Einstein condensation and its consequences.
This is the aim of this chapter.

2.1.1 Bose distribution and condensation

To understand the concept of Bose-Einstein condensation, we first need to un-
derstand the statistics that describe bosons. The methods used here can also be
found with more detail in Blundell [8]. Classically, particles satisfy the Gibbs
distribution:

Pi =
eβ(µNi−Ei)∑
i e
β(µNi−Ei)

=
eβ(µNi−Ei)

Z
(2.1)

Here, Pi is the probability of finding a system in a specific microstate i, µ
is the chemical potential (the energy difference when adding one particle to an
ensemble), β equals 1/kBT , kB is the Boltzmann constant, T is the temperature,
Z is the grand partition function and Ni and Ei are the number of particles and
the energy of microstate i. If we look at one state with energy Ei = NiE, where
Ni is the amount of particles in this one state and E is the energy associated
with that state, we can write the average amount of particles in this state as:

〈Ni〉 =

∑
Ni
Nie

βNi(µ−E)∑
Ni
eβNi(µ−E)

= − 1

βZ
∂Z
∂E

= − 1

β

∂ lnZ
∂E

(2.2)

Exchange symmetry allows bosons to have many identical particles in the same
state. Therefore, we have to take Ni from 0 to ∞ when calculating Z:

Z =

∞∑
Ni=0

eβNi(µ−E) =
1

1− eβ(µ−E)
(2.3)

Here we used the fact that the sum is a geometric series. In order for the series
to be finite, the argument (eβ(µ−E)) must be smaller than 1, so E must always
be larger than µ. If we assume the ground state energy is zero, we get that
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µ < 0. If we now replace Z from eqn 2.3 inside eqn 2.2, we get that the average
occupation of a state takes the following form for bosons:

f(E) = 〈Ni〉 =
1

eβ(E−µ) − 1
(2.4)

This equation is called the Bose distribution.

With this, we can calculate the total number of particles in a fixed vol-
ume and with a fixed temperature, namely with N =

∑
iNi. To calculate this

sum, we can use the concept of density of states to transform the sum into an
integral:

N =
∑
i

Ni =

∫ ∞
0

g(E)f(E)dE (2.5)

For uniform ensembles in 3D, the density of state takes the following form:

g(E) =
(2S + 1)V

(2π)2

(
2m

~2

)3/2

E1/2 (2.6)

Here S is the total spin per particle (which is an integer for bosons), V is the
volume available to the particles, m is the particle mass and ~ is the reduced
Planck constant. Using this g(E), N becomes:

N =

[
(2S + 1)V

(2π)2

(
2m

~2

)3/2
]∫ ∞

0

E1/2dE

z−1eβE − 1
(2.7)

Here z is the fugacity, defined as z = eβµ. This integral has a well known
solution for the total number of particles:

N =
(2S + 1)V

λ3th
Li3/2(z) (2.8)

The thermal de Broglie wavelength (λth) equals λth = h√
2πmkBT

, where h is

the Planck constant. The Li function in this relation is a polylogarithm with
known values. More specifically, µ < 0 in order to get physical results, so z
must be between 0 and 1. Within this range, the polylogarithm can only have a
maximum value of 2.612. This means that, according to this relation for N , we
apparently have an upper limit for the density n = N/V when the temperature
is fixed. This limited density is not a physical result. Let us now separate
the total number of particles N in the number of particles in the ground state
(N0) and the number of particles in excited states (N1). The solution for the
problem of getting a limited density lies in the fact that a macroscopic amount of
particles occupies the ground state N0 below the temperature Tc where eqn 2.8
fails. This phenomenon is called Bose-Einstein condensation. We can rewrite
eqn 2.8 with the maximum value for the polylogarithm to get the value for Tc:

kBTc =
2π~2

m

(
n

2.612(2S + 1)

)2/3

(2.9)

Below this temperature, the amount of particles in excited states N1 is still given
by eqn 2.8, but the polylogarithm is now close to its maximum value 2.612. The
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Figure 2.1: Fraction of particles in the ground state as a function of T.

total density below Tc is given by:

n =
2.612(2S + 1)

[λth(Tc)]3
(2.10)

With this, we can calculate the fraction of particles in the ground state when
we are below Tc:

n0
n

=
n− n1
n

= 1−
(
T

Tc

)3/2

(2.11)

As is clear from this equation, a growing fraction of particles occupies the ground
state as the temperature decreases below Tc, which is Bose-Einstein condensa-
tion. Note that this condensation is purely a result from exchange symmetry and
has nothing to do with particle interactions. In fact, we have only considered
non-interacting particles so far.

2.1.2 Gross-Pitaevskii equation

We will now consider interacting particles. The ground state of a system of
identical bosons is given by the Gross-Pitaevskii equation [9,10]:

− ~2

2m
∇2ψ(r) + V (r)ψ(r) + U0|ψ(r)|2ψ(r) = µψ(r) (2.12)

Note that this equation is a nonlinear Schrödinger equation. This equation
comes from minimizing the term E−µN for fixed µ. This procedure is equivalent
to minimizing E for fixed N , using µ as a Lagrange multiplier. The first two
terms in the equation are the kinetic energy and the potential energy, which
are the same as in the usual Schrödinger equation. The term with U0 is the
term that includes particle interactions. The constant U0 equals U0 = 4π~2a/m,
where ~ is the reduced Planck constant, a is the scattering length of the particles
and m is the particle mass. The final term is similar to the Eψ(r) term of the
Schrödinger equation, but now the constant is the Lagrange multiplier µ, found
to be equal to the chemical potential. Note that the ψ(r) in the equation is the
usual quantum mechanical wave function times the number of particles (since
eqn 2.12 describes the sum of all particles in the ground state), so |ψ(r)|2 = n(r).

6



Figure 2.2: Density profile of large BECs inside a harmonic oscillator potential.

2.1.3 Thomas-Fermi approximation

The Gross-Pitaevskii equation is very hard or even impossible to solve in most
cases. The approximation used here is the Thomas-Fermi approximation: for
sufficiently large clouds, one can neglect the kinetic energy (the first term in
eqn 2.12) when calculating the ground state energy, because for a large number
of particles, the potential energy is large compared to the kinetic energy. Doing
this, the Gross-Pitaevskii equation can be solved [11,12]:

n(r) = |ψ(r)|2 = [µ− V (r)]/U0 (2.13)

In our experiments, Bose-Einstein condensates (or BECs) are trapped inside a
potential approximated by a harmonic oscillator potential with radial and axial
trap frequencies:

V (r) =
1

2
m[ω2

r(x2 + y2) + ω2
zz

2] (2.14)

Here x, y and z are the position coordinates with respect to the center of
the potential, m is the particle mass and ωx = ωy = ωr and ωz are the
characteristic angular frequencies of the harmonic oscillator potential. With
this potential, we get a density profile that is an inverted parabola.

We demand that the density is non-negative because a negative density
would not be physical, so the density is zero when V (r) > µ. This implies a
boundary of the condensate given by V (r) = µ; the condensate only exists
within this boundary. The radius at which V equals µ is called the Thomas-
Fermi radius R. This also allows us to measure the chemical potential µ, as we
only need to measure the size of the condensate with a known potential.

2.2 Cooling to BEC

The process of making a BEC is first explained in short, after which the
different steps are discussed in more detail. An atomic beam is created by an
oven, after which they are slowed in the Zeeman slower. This consists of a
counter-propagating laser beam that slows down the particles emitted by the
oven. At the end, they are caught in a magneto-optical trap (or MOT), where
they are cooled further. After a certain time, a large amount of the particles
is transferred to the magnetic trap (or MT), where forced evaporative cooling
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will cool the remaining particles to BEC.

The different steps of making a BEC are now discussed in more detail.
We start with a large flux of sodium particles, coming from an oven as a
hot atomic beam. They are sent into a counter-propagating resonant laser
beam. This part is the Zeeman slower. As the laser beam is resonant with
the particles, the photons from the laser beam can transfer momentum to
the particles. First the particles absorb the counter-propagating photons.
After absorption, the photon is emitted in a random direction. On average
this results in momentum transfer from the photons to the particles. The
momenta of the laser beam and the particles are in opposite direction, so the
transferred momentum slows down the particles [3,4]. However, the required
frequency of the laser beam depends on the speed of the particles due to
Doppler-shift. To compensate for this, there is a magnetic field that reduces
in strength towards the end of the Zeeman slower. With the magnetic field,
the Zeeman effect is utilized to shift the frequency to the appropriate value [3,4].

At the end of the Zeeman slower, the atoms are slowed enough to be
caught in the MOT. To trap and cool the atoms, the MOT consists of three
orthogonal pairs of off-resonant laser beams and a magnetic field. The magnetic
field causes a Zeeman shift that radially increases in strength, giving atoms
with high velocities and atoms that are far away from the center a higher
probability to be slowed. Since particles with high velocities are slowed more
often than particles with low velocities, the slowing effect results in cooling.
Together this results in a trap that causes cooling, where the particle cloud
is kept at the intersection of those six beams [13]. There is a possibility the
particles fall back to a state that is not trapped, requiring an additional repump
beam to keep the atoms in the cooling cycle [3,4]. However, this cooling is
limited by the recoil energy the atoms gain by scattering the photons.

After being cooled to ∼10−4 K by the MOT, the particles are trans-
ferred to the MT. The magnetic field of the MT closely resembles a harmonic
oscillator potential near the center. The potential itself is given by U = −m ·B,
where B is the magnetic field and m is the magnetic dipole moment. The
alignment of the magnetic moment is directly related to the spin state of a
particle. This results in high-field seekers (in our case atoms in the 3 2S1/2

ground state with |F = 1,mF = 1〉 hyperfine component), low-field seekers
(atoms with |F = 1,mF = −1〉 hyperfine component) and magnetically neutral
atoms that are not influenced by the trap (atoms with |F = 1,mF = 0〉
hyperfine component) [3,4]. Only low-field seekers are trapped, which we
use to selectively remove the particles with the highest energy, called forced
evaporative cooling [14]. A radio frequency (or rf) field is applied with such a
frequency that it only flips the spin of the particles with the highest energy,
which are then untrapped. After removing the particles with the highest
energy, the cloud re-thermalizes to a lower average energy and thus a lower
temperature. The frequency is then lowered so that once again the particles
with the highest energy are removed, until the point where we reach our aimed
temperature. This technique requires a specific rf sweep, because doing it
too fast does not give the system time to re-thermalize (resulting in loss of
too many particles), while doing it too slow increases the amount of particles
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lost to the background pressure. Using this technique, we can reach Tc of
Bose-Einstein condensation, which is around one microKelvin for our trap
geometry and amount of particles.
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Chapter 3

Trap loss and heating

3.1 Theory

A trapped atomic cloud can be influenced by several processes. We will look at
two different processes: particle loss and temperature change. We investigated
those processes in two different types of traps, namely the magnetic trap (a
very deep magnetic potential well) and an optical dipole trap (the FORT, or
Far Off Resonance Trap). The FORT is an intense infrared laser beam, used
to generate an optical force strong enough to trap particles independent of spin
state. Because of the far off resonance frequency of the laser beam, not many
particles are excited to higher energies by random scattering.

3.1.1 Lifetime

Particles can be lost from the trap. One of the causes is that the clouds are not
contained in a perfect vacuum, so there is a background pressure. If particles
from the cloud collide with hot particles from the background pressure, the
kinetic energy that is transferred is large enough for trapped particles to escape
from the trap. This process exists in both the MT and the FORT. This process
is exponential: the more particles there are, the more particles are lost due to
this process, resulting in exponential decay. This exponential decay introduces a
lifetime τ for the cloud inside the trap. So when limiting ourselves to background
losses, the number of particles as a function of time will be:

N(t) = N(0)e−t/τ (3.1)

Another reason for particle loss is three-body recombination [15]. If two
particles recombine close to another particle, that last particle gains the energy
from the recombination process and is able to leave the trap. This process
mostly occurs at large density, because two particles cannot recombine if no
third particle is present to carry the energy away. This loss process effectively
limits the density one can achieve. Three-body losses are most important when
cooling the particles, because the density is increasing during the cooling and
three-body losses have to be avoided in order to cool effectively. It is less
important when looking at decay of a stationary cloud, because the cloud had
time to reach an equilibrium, which would not be an equilibrium if the amount
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of three-body losses are still high. However, it is a process to consider.

Particles trapped by the FORT are subject to random photon scattering,
which is a type of interaction that also happens with off-resonant photons [16].
This process acts on all particles, resulting in another source of exponential
decay. Together with the background losses, an atomic cloud inside the FORT
has a shorter lifetime than a cloud inside a MT. Moreover, the FORT has a
much smaller trap depth than the MT, causing the particles with the highest
energies to escape, which is a form of passive evaporative cooling and also an
extra source of particle loss inside the FORT.

3.1.2 Heating and cooling

The fact that the FORT has a finite trap depth causing passive evaporative
cooling results in temperature decrease. This gives the FORT a form of cooling
that does not occur in the MT. The cloud will exponentially cool inside the
FORT, converging to a final temperature determined by the trap depth. Apart
from this, clouds in both the MT and the FORT may experience heating pro-
cesses due to small fluctuations in the trap [6]. For the MT, there may be small
fluctuations in the magnetic field, modulating the trap potential and therefore
adding energy to the system. The FORT may have similar fluctuations. Most
other (random) processes, like interactions with particles from the background
pressure and random scattering, have no influence on the temperature, as they
do not change the width of the velocity distribution.

3.2 Experiment

In order to investigate how the number of particles and temperature change
over time in the different traps, we performed several measurements. For each
measurement, we made absorption images at different points in time and then
fitted the images to find the total number of particles in the cloud and its
temperature. Note that absorption images are destructive: making a single
image causes many interactions between the cloud and the resonant laser beam
used for imaging, basically destroying it. Therefore every image had to be a
new sample. From the images, it is possible to derive the number of particles by
looking at the width, length and and center absorption value (directly related
to density) of the cloud. The temperature can be found by turning off the trap,
using the expansion rate to determine the average velocity of the particles and
thus the temperature of the sample.

For the MT measurements, a measurement series at several different starting
temperatures is made, controlled by how far the rf sweep in the evaporative
cooling process goes. We varied the final rf sweep value from 1.85 MHz to 3.3
MHz relative to the bottom of the MT, giving us varying starting temperature
of a few microKelvin. We also varied the density of the cloud by using a ”tight”
axial trap frequency (16 Hz) and a ”loose” axial trap frequency (1.3 Hz) for
different measurements. The radial trap frequency was kept at 144 Hz. For the
FORT measurements (radial trap frequency of 850 Hz and axial trap frequency
of 3.5 Hz), we only looked at the effects of different starting temperatures.
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3.3 Results

3.3.1 Particle loss and heating in the MT

Looking at the MT with the axial frequency of 16 Hz. Fig 3.1 shows a typical
example of the number of particles and the temperature as a function of time.
We see an interesting result. The temperature increases linearly, but the
heating rate changes at around 11 s. The top plot does not show this behavior
because that particular point is likely before the first measurement point of
that series (which is at 20 s). This change in heating rate appears in several
measurement series. The heating rates found were around 0.2 µK/s for the
second part (after the change in heating rate), while the first part has a heating
rate of about 0.8 µK/s.

While the temperature shows unexpected results, the number of particles
behaves as expected: it decreases exponentially. From these measurements,
we found a lifetime of 80 to 150 seconds. This is lower than what we usually
find (200 to 300 seconds). This is likely because of a bad vacuum during these
particular measurements.

We now compare these results with the results from the trap with an axial
frequency of 1.3 Hz, see fig 3.2. While there was no clear difference in lifetime,
the temperature shows different behavior. The difference apparent here, is

Figure 3.1: Number of particles (left) and temperature (right) as a function of
time for a MT with an axial trap frequency of 16 Hz. The top plots are over a
longer period of time, while the bottom plots are over a shorter period of time.
Top and bottom are different measurement series with similar conditions, but
have different starting temperatures and number of particles.
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Figure 3.2: Number of particles (left) and temperature (right) as a function of
time for a MT with an axial trap frequency of 1.3 Hz.

that the temperature hardly changes over time. We found heating rates of
(0 ± 4) nK/s; some measurements show slight heating, while some show slight
cooling, but on average there is no clear temperature change. The density is
much lower inside this decompressed trap, allowing us to cool much further
without encountering three-body losses. More specifically, decompressing the
trap yielded starting temperatures of below 3 µK. This starting temperature
actually does not deviate much from the starting temperatures with the
compressed trap, but in the compressed trap there was rapid heating at that
temperature, while in the decompressed trap the temperature was almost
constant.

In conclusion, we found that a compressed trap results in high heating
rates before a certain temperature or point in time (in this case after 11 s),
after which the heating rate decreases, but remains high. A decompressed trap,
on the other hand, hardly has a heating rate at all. This suggests the heating
rate has something to do with the density or the gradient of the B-field (a
compressed trap has a larger slope in the axial direction than a decompressed
trap), as those are the main differences between the two situations. Even
though the density is likely related to the heating rate, three-body losses do
not seem to be responsible, as there is no clear difference between particle loss
rates, and three-body losses should be random so they should not influence
temperature either way.

3.3.2 Particle loss and cooling in the FORT

For the FORT, we have two measurement series: one starting slightly below
Tc (∼ 1.5 µK, so with a small condensate inside the cloud) and one starting
slightly above Tc (∼ 2 µK). The results can be seen in fig 3.3. Before discussing
the behavior of the temperature, we first note that the number of particles is
very similar in those two measurements. The lifetime from the measurements
just above Tc is 34 s, while the lifetime from just below Tc is 36 s. Note that
the number of particles from the measurements below Tc is only the number of
particles in the thermal cloud; the number of condensed particles is not shown
here, because the number of condensed particles was relatively low (∼ 5% of
the total number of particles) and it did not show any clear time dependence.
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Figure 3.3: Number of particles (left) and temperature (right) as a function of
time inside the FORT just above Tc (top) and just below Tc (bottom). The red
and the blue line in the upper left plot are not continuous because the transition
area was not taken into account when fitting.

As mentioned before, we have identified three main sources of particle loss inside
the FORT: background pressure, random scattering and passive evaporative
cooling. From earlier measurements, we know the lifetime from background
pressure is 200 to 300 seconds. As we found a total lifetime of 34 s and 36
s from these measurements, we assume the particles lost to the background
pressure are negligible compared to the losses from random scattering and
evaporative cooling. The measurements with starting temperature just
above Tc show a constant temperature after the first few data points. By
excluding those first few data points, we can isolate the effects of random
scattering. This was already done when fitting the upper left plot from fig
3.3 (blue line), resulting in the previously mentioned lifetime of 34 s. If
we instead remove all but the first few points, we find a lifetime of 12 s
(red line). Subtracting the random scattering lifetime of 34 s (using that
1
τev

+ 1
τsc

= 1
τtotal

), we find a lifetime of 19 s caused only by evaporative
cooling. We cannot separate these different cooling times for the measurement
series with starting temperature just below Tc, because that data set does
not contain a region with stable temperature where evaporative cooling stopped.

One can calculate the theoretical random scattering rate and compare it
to the experimental results, using [16]:

Γsc(r) =
3πc2

2~ω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r) (3.2)
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Here Γsc(r) is the scattering rate, r is the position, c is the speed of light, ~
is the reduced Planck constant, ω0 is the resonance frequency of the sodium
atoms, ω is the frequency of the laser beam used by the FORT, Γ is the
damping rate and I(r) is the field intensity. Approximating Γsc ' 1

τsc
,

we find τsc ' 27 s. For this approximation we assumed that all atoms
subject to random scattering are untrapped, which does not have to be
true, resulting in a lower value for the random scattering lifetime. Still, the
random scattering lifetime value of 34 s found from experiments is similar to
the theoretical approximation, supporting the explanation of random scattering.

As explained earlier, one expects the passive evaporative cooling to cool
the cloud inside the FORT, to a specific temperature that depends on the
trap depth. The temperature indeed decreases exponentially to an asymptotic
temperature in both measurements. However, the cooling time when starting
above Tc (τ ∼ 1.6 s) is much lower than the cooling time when starting below
Tc (τ ∼ 5.5 s). The temperature they converge to is also different: 0.9 µK and
1.1 µK respectively. This small difference in temperature may be due to a small
difference in the FORT itself, as the measurements were done on different days.
In order to support these results, we can make a theoretical approximation for
the temperature the atomic cloud should converge to. We approximate the
speed distribution of the atomic cloud to be equal to the Maxwell-Boltzmann
distribution:

f(v) =
2

π

(
m

kBT

)3

v2e
− mv2

2kBT (3.3)

Here f(v) is the probability density for an atom to have a speed v = |v|, m
is the particle mass, kB is the Boltzmann constant and T is the temperature.
One can calculate the temperature required for all ∼ 5 · 107 atoms to have
an energy less than the trap depth of 30 µK. This gives us an asymptotic
temperature of T ' 1.8 µK, which is higher than the temperatures found from
the experiments. This difference can be explained by the fact that we used the
Maxwell-Boltzmann distribution to describe the speed distribution. The trap
potential of the FORT is wider than a harmonic oscillator potential, allowing
more atoms to have high speeds. This means that the actual value for the
asymptotic temperature is lower than 1.8 µK, supporting our experimental
results.

A possible explanation for the high cooling rate from the measurements
with starting temperature above Tc may be that there is a larger difference
between the starting temperature and the asymptotic than with the measure-
ments with starting temperature below Tc, so particles are on average further
away from the bottom of the trap. This bigger difference may be the reason
more particles are thrown away by the passive evaporative cooling, resulting in
faster cooling and disposal of more particles, agreeing with the upper plots of
fig 3.3.
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Chapter 4

Standing sound waves

4.1 Theory

During the first half of the twentieth century, the concept of second sound was
first observed, for example in liquid helium-2 [17]. Second sound is the name of
a sound mode that exists in hydrodynamic superfluids in addition to the usual
first sound mode. In BECs in the hydrodynamic regime we also see these two
different sound modes. Here follows a short explanation for the existence of
these sound modes. The full derivation can be found in Pethick & Smith [11].

4.1.1 First and second sound

The condensates used in our experiments are large enough to be in the hydro-
dynamic regime: the mean free path of the atoms is less than the size of the
condensate, giving the condensate fluid properties [5]. As with every system
of particles in the hydrodynamic regime, we can employ the conservation laws.
Here, we can use mass and momentum conservation. Neglecting friction and
external potentials, we can combine them to the following relation:

∂2ρ

∂t2
−∇2p = 0 (4.1)

Here ρ is the density and p is the pressure, and since the pressure is a function
of both density and temperature, this is a relation between density and temper-
ature. Next, we use the fact that a BEC is a superfluid, so we can write down
the superfluid velocity:

m
∂vs
∂t

= −∇µ (4.2)

Here µ is the chemical potential, m is the particle mass and vs is the superfluid
velocity: the velocity a superfluid flows with. For systems in thermal equilib-
rium, thermal physics gives us the Gibbs-Duhem relation:

Ndµ = V dp− SdT (4.3)

In this relation, N is the number of particles, V is the volume of the ensemble,
S is the entropy and T is the temperature. Combining eqn 4.1, 4.2 and 4.3 gives
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the relation between the normal velocity and the superfluid velocity:

∂s̃

∂t
= s̃

ρs
ρ
∇ · (vs − vn) (4.4)

Here s̃ = S
Nm is the entropy per unit mass, ρs is the density of the superfluid,

ρ is the total density and vs and vn are the superfluid and normal velocities
respectively. From these relations an equation for the speed of sound can be
derived:

(v2 − c21)(v2 − c22)− v2c23 = 0 (4.5)

Here v is the speed of sound, c1 is the speed of density waves at fixed tempera-
ture, c2 is the speed of temperature waves at fixed density and c3 is the coupling
between density and temperature variations [18]:

c21 =

(
∂p

∂ρ

)
T

, c22 =
ρss̃

2T

ρnC̃V
, c23 =

(
∂p

∂T

)2

ρ

T

ρC̃V
(4.6)

Here ρn is the normal density, T is the temperature and C̃V is the specific heat
per unit mass at constant volume. Eqn 4.5 has two solutions for the speed of
sound v. Those two solutions are called first and second sound:

v2 =
1

2
(c21 + c22 + c23)±

[
1

4
(c21 + c22 + c23)2 − c21c22

]1/2
(4.7)

The solution with the plus sign is defined as first sound, while the solution with
the minus sign is defined as second sound. Close to Tc first sound corresponds
to density fluctuations in the thermal (non-condensed) part, while second sound
corresponds to density fluctuations in the condensate. When looking at even
lower temperatures, the coupling c3 causes an avoided crossing of the two so-
lutions, where the first sound solution becomes second sound and the second
sound solution becomes first sound. Fig 4.1 shows the behavior of the two solu-
tions as calculated in the Landau model (solid line) and the ZGN model (dashed
line) [19].

In our experiments the temperature is close to Tc, so the second sound solution
is the solution that corresponds to density fluctuations in the condensate. The
sound speed of these density fluctuations is given by the Bogoliubov speed of
sound [20]:

v =

√
U0nc
m

(4.8)

Here U0 is the constant for particle interactions from the Gross-Pitaevskii equa-
tion (eqn 2.12), and nc is the condensate density. If we make an approximation
and assume the waves only travel axially, we can take the radial average den-
sity along the z-axis (which is the long axis of our cigar-shaped condensates).
Using eqn 2.13 together with eqn 2.14, we can calculate this average density by
integrating over the radial direction. The result gives us a relation between v
and nc(0, 0, z) [19]:

v(z) =

√
U0nc(0, 0, z)

2m
(4.9)
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Figure 4.1: Avoided crossing of first (I) and second (II) sound speed below Tc,
calculated in two different models. The inset shows the same temperature range
on a larger vertical scale [19].

4.2 Experiment

4.2.1 Phase contrast imaging

In order to measure sound, we have to measure the density profile of a conden-
sate over time. To get accurate measurements, we measure the density profile of
the same condensate at consecutive points in time. This requires non-destructive
imaging. The solution lies in PCI, or Phase Contrast Imaging [21]. For PCI
measurements, an off-resonant laser beam is sent through a condensate. Due to
the difference in refractive index between the background and the condensate,
the coherent laser source accumulates a difference in phase. This accumulated
phase shift depends on the density of the sample. The accumulated phase can
be converted to an intensity. This is done by placing a phase spot (a small
transparent object that blocks the part of the laser beam that was diffracted
by the condensate) to make the intensity phase dependent through interference.
The CCD (or Charge-Coupled Device) camera then images the intensity (and
thus the accumulated phase difference), so we have an image that can directly
be translated to a density profile. Note however that phase is 2π-periodic, so
if the density is large enough for the phase to go through 2π, the intensity of
the signal decreases with increasing density. This makes it possible to get dark
spots although the density is large.

Figure 4.2: PCI image of a condensate. Note how the dark center of the con-
densate corresponds with a large density. The image’s size is 0.16 mm by 2.68
mm.
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4.2.2 Measurements

On a condensate, several modes can be induced. One would expect to see lower
order modes, like a condensate’s position oscillating inside a trap, known as
the dipole mode. However, we saw a quite spectacular mode: density peaks ap-
pear at periodic locations in the axial direction of our cigar-shaped condensates,
closely resembling a standing wave. This is a highly excited mode that is not
easy to understand right away. Even inducing this mode is quite an extraor-
dinary accomplishment if one considers the fact that condensates do not have
sharp edges. We are looking at the origin and properties of this very unusual
mode. Now recall that the trap potential is a harmonic oscillator potential (eqn
2.14). The highly excited standing wave mode is indirectly induced by taking
a typical cigar-shaped condensate and then periodically modulating the radial
trap frequency at its own frequency. During the driving, we see three collective
modes appear. Firstly, we see a collective oscillation of the condensate in the
radial direction. We call this the dipole mode. The reason we see the dipole
mode is because there are always small perturbations present in the MT. If the
condensate is out of the equilibrium position, driving the collective modes will
also result in driving the dipole mode. Secondly, we see the condensate’s radial
width oscillating as a direct result from modulating the radial trap frequency.
This is called the quadrupole mode, which is the mode we are driving most
directly, oscillating at twice the radial trap frequency [22]. During the driving,
a third mode appears, which is the mode that so closely resembles an axial
standing sound wave.

In order to gain more understanding about this remarkable feature, we per-
formed several measurements. Measurements consist of a series of thirty to fifty
PCI images of the same condensate, with 3.2 to 3.6 milliseconds in between
the images. Fig 4.3 shows a typical measurement series and contains all three
modes: indeed, the condensate moves as a whole, the width changes periodically
and it contains the standing wave pattern, which’s amplitude is also changing
periodically. We took several measurement series, varying the radial trap fre-
quency (and also the frequency with which we are driving the modes) and the
point in time at which series are started. The frequencies were varied between
39.6 Hz and 108.9 Hz, with both big and small variations in driving frequen-
cies, in order to accurately determine how the properties of the collective modes
depend on the driving frequency. Varying the starting time of a measurement
series is done so that we can investigate how the modes behave over an extended
period of time by combining several measurement series. This cannot be done
by making one long series, because PCI is not completely non-destructive.
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Figure 4.3: A typical measurement series, in this case at a radial trap frequency
of 39.6 Hz. These are all the same condensate, but with 3.6 milliseconds in
between each image. The upper image is the first one in this series, with its
point in time defined as t = 0.
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4.2.3 Analyzing the standing wave pattern

To gain understanding why the standing wave pattern appears, we investigated
the following:

• How do the frequencies and phases of the three different modes relate to
each other and to the radial trap frequency?

• How does the speed of sound depend on the radial trap frequency?

• How exactly does the spacing between the peaks, or the wavelength of the
standing wave, behave in the axial direction?

• How does the standing wave pattern behave over an extended period of
time?

To extract data from the images, we fitted all images and derived relevant
quantities from the fit parameters. These quantities would be fitted over time.
Now recall eqn 2.13 and eqn 2.14. We propose that the wave pattern in the
data can be approximated by the condensate density n0 (given by eqn 2.13),
multiplied by (1 + a cos[k(z)z]) to account for the standing wave pattern. This
density profile should then be enclosed by a sinusoidal function to take care of
the fact that the images are made with PCI.

Let us look at the first part of the fit function, taking care of the con-
densate density n0. Our data images are 2D CCD images of a 3D profile.
To account for this fact, we need to integrate n0 along one of the axes, say
the y axis. We take this integration from −Ry to Ry, where Ry is the radius
of the condensate in the y direction, solved from eqn 2.13 and 2.14 with
V (x,Ry, z) = µ: [

µ− 1

2
m(ω2

r(x2 +R2
y) + ω2

zz
2)

]
/U0 = 0 (4.10)

With this, we can calculate the n0 we have to use for 2D images:

n2D =

∫ Ry

−Ry

n0(x, y, z)dy =
4

3

√
2U0

mω2
r

(n0(x, 0, z))3/2 (4.11)

For simplicity, we will use normalized densities:

ñ0(x, y, z) = 1−
(
x− x0
Rx

)2

−
(
y − y0
Ry

)2

−
(
z − z0
Rz

)2

(4.12)

Here x0, y0 and z0 are the positions of the center of the BEC in all three
dimensions, and Rx, Ry and Rz are the widths of the condensate in these
directions. If we now also use a normalized n2D, we get that:

ñ2D(x, z) = (ñ0(x, 0, z))3/2 (4.13)

For the second part of the fit function (1 + a cos[k(z)z]), we need a relation for
k(z). We assume we can use the dispersion relation v = ω

k , so that k = ω
v . We
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Figure 4.4: A PCI image (top) and the result from fitting this image (bottom).

already know v from eqn 4.9 making the approximation that the standing wave
is purely axial. This results in:

k(z) = ω

√
2m

U0n0(0, 0, z)
∝ (ñ0(0, 0, z))−1/2 (4.14)

However, our experiments do not quite agree with this power of −1/2. In order
to find out what is missing in the theory, we added this power as a fit parameter.
We can now combine everything to form a fit function for the density at fixed
time t:

f(x, z) = p1(ñ0(x, 0, z))3/2(1 + p6 cos[p7(ñ0(0, 0, z))−p8(z − p3)]) (4.15)

Here, p1 is the center value that can be converted to the non-excited density
at the center of the condensate, p2, p3, p4 and p5 are respectively Rz, z0, Rx
and x0 from eqn 4.12, p6 is the amplitude a of the standing wave pattern, p7
is k0 at the center of the condensate and p8 is the power that was mentioned
previously. Fig 4.4 illustrates how well this function fits to the data. The only
regions where the fit function does not seem to be completely accurate, are the
edges. However, the edges are also less clear in the data because of the low
density. Table 4.1 shows the results from a measurement series at radial trap
frequency of 39.6 Hz. Note that the center value is not the density. Instead,
the center density can be obtained by approximating the chemical potential µ
to be constant in the condensate by solving V (Rx, 0, 0) = V (0, 0, Rz) = µ, then
replacing this µ in eqn 2.13.

With this fit function, we proceeded to fit several measurement series,
giving us many data points. Some of these parameters were then plotted and
fitted over time, namely the amplitude of the standing wave, x0 (to analyze
the dipole mode) and Rx (to analyze the quadrupole mode). As the only
information we wanted at the time are the frequency, phase and the amplitude,
using a sine function was sufficient to retrieve the information. A sine may
not always be fully correct in some cases, but it is sufficient to extract the
frequencies, phases and amplitudes.
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Time (ms) Center value (AU) Rz (mm) z0 (mm) Rx (µm) x0 (µm) a (AU) k0 (103 m−1) Power (AU)
3.6 1.173(8) 0.939(5) 1.263(1) 37.2(3) 117.4(1) -0.17(1) 75.5(5) 0.18(2)
7.2 1.420(8) 0.797(5) 1.249(1) 48.6(3) 85.9(1) 0.12(1) 78.0(5) 0.20(2)
10.8 1.182(8) 0.829(5) 1.253(1) 60.1(3) 85.0(1) 0.33(1) 79.3(5) 0.14(2)
14.4 2.443(8) 0.726(5) 1.256(1) 29.1(3) 64.0(1) 0.25(1) 79.4(5) 0.12(2)
18.0 1.384(8) 0.807(5) 1.227(1) 41.0(3) 42.4(1) -0.05(1) 15.8(5) 2.16(2)
21.6 1.148(8) 0.783(5) 1.228(1) 56.9(3) 31.8(1) -0.23(1) 80.1(5) 0.08(2)
25.2 1.162(8) 0.800(5) 1.266(1) 49.6(3) 36.9(1) -0.27(1) 78.5(5) 0.19(2)
28.8 2.944(8) 0.718(5) 1.262(1) 24.2(3) 58.6(1) -0.15(1) 79.0(5) 0.13(2)
32.4 1.286(8) 0.822(5) 1.228(1) 46.8(3) 85.8(1) 0.15(1) 79.9(5) 0.12(2)
36.0 1.220(8) 0.841(5) 1.229(1) 52.8(3) 93.5(1) 0.30(1) 78.1(5) 0.16(2)
39.6 2.651(8) 0.715(5) 1.187(1) 27.4(3) 72.8(1) 0.10(1) 79.2(5) -0.02(2)
43.2 1.319(8) 0.819(5) 1.240(1) 41.3(3) 43.2(1) -0.06(1) 62.1(5) 1.05(2)
46.8 1.169(8) 0.791(5) 1.196(1) 54.1(3) 23.2(1) -0.17(1) 78.9(5) 0.12(2)
50.4 1.343(8) 0.811(5) 1.195(1) 43.2(3) 26.2(1) -0.21(1) 77.9(5) 0.11(2)
54.0 2.526(8) 0.757(5) 1.191(1) 23.7(3) 54.1(1) -0.11(1) 76.1(5) 0.14(2)
57.6 1.316(8) 0.840(5) 1.230(1) 45.8(3) 91.3(1) 0.08(1) 70.9(5) 0.44(2)
61.2 1.218(7) 0.852(5) 1.2243(5) 49.1(3) 103.2(2) 0.220(9) 75.3(2) 0.160(7)
64.8 2.462(6) 0.747(3) 1.2197(5) 27.9(1) 77.13(6) 0.133(5) 74.7(3) 0.090(7)
68.4 1.281(8) 0.807(2) 1.234(1) 40.9(3) 39.1(1) 0.05(1) 40.2(6) 1.41(2)
72.0 1.093(7) 0.770(2) 1.195(1) 50(1) 12.5(6) -0.04(1) 56.2(9) 1.56(1)
75.6 1.239(8) 0.845(6) 1.219(1) 38.6(5) 17.8(2) -0.09(1) 75.2(6) 0.15(2)
79.2 2.241(9) 0.769(3) 1.2153(5) 23.7(1) 53.97(6) -0.168(8) 75.6(3) 0.133(7)
82.8 1.163(7) 0.880(6) 1.203(1) 44.0(3) 99.1(2) 0.08(1) 80.1(7) -0.02(2)
86.4 1.189(7) 0.910(6) 1.1711(5) 43.3(3) 110.7(2) 0.23(1) 74.3(2) 0.200(8)
90.0 2.496(7) 0.732(3) 1.2052(5) 27.0(1) 77.91(6) 0.115(5) 70.8(3) 0.348(8)
93.6 1.145(7) 0.858(3) 1.209(1) 41.5(3) 31.7(2) -0.06(1) 76.2(7) 0.91(2)
97.2 1.05(1) 0.842(9) 1.196(1) 53(2) 0.1(9) -0.12(1) 72.4(6) 0.31(2)
100.8 1.217(8) 0.904(6) 1.1920(8) 34.1(5) 13.5(3) -0.15(1) 70.7(4) 0.38(1)
104.4 1.402(1) 0.913(7) 1.165(2) 27.0(2) 59.1(1) 0.07(1) 75.0(9) -0.12(3)
108.0 1.087(7) 0.919(7) 1.200(1) 43.7(3) 109.2(2) 0.11(1) 70.1(5) 0.30(2)

Table 4.1: Results from a measurement series with radial trap frequency
ωr/(2π) = 39.6 Hz.
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4.3 Results

4.3.1 Frequencies and phases of the modes

We want to know how the frequencies and phases of the different modes
correlate. In order to investigate these properties, we looked at measurement
series with radial trap frequencies of approximately 39.6, 86 and 108.9 Hz.
Fig 4.5 shows the results of the measurement series of 39.6 Hz, showing
the amplitude of the standing wave (blue), the dipole mode (position of the
condensate, red) and the quadrupole mode (width of the condensate, green).
Here we used a sine function to fit the data. These measurement series are
taken at a point after all three modes have started, so t = 0 does not correspond
with the start of one of the modes, but instead is defined as the starting time
of the measurement series. As one data set covers only a short period of time,
we ignore any damping effects when investigating the frequencies and phases.
Damping effects will be discussed in section 4.3.4.

In the lower right corner of fig 4.5, all three fits are plotted in one figure in order
to compare the phases of the different modes, with each plot retaining its color.
Fig 4.6 shows the same, but now with the information from the 86 and 108.9
Hz measurement series. From these three series, we found interesting results:
the dipole mode and the standing wave pattern have the same frequency as
their radial trap frequency, while the quadrupole mode oscillates at twice that
frequency. This agrees with theoretical analysis [22]. Table 4.2 shows the values
we found for the frequencies.

Figure 4.5: Time plots of the amplitude of the standing wave pattern (upper
left, blue), the dipole mode (upper right, red) and the quadrupole mode (lower
left, green) at ωr/(2π) = 39.6 Hz. The lower right plot shows them all combined
in order to compare them.
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Figure 4.6: Amplitudes of the modes at 86 Hz (left) and 108.9 Hz (right).

We are also interested in how the phases of the modes correlate. However,
as one can see in fig 4.5 and 4.6 and table 4.2, the different data sets all
have different phase relations between the modes. This makes it impossible
to draw definitive conclusions, as we need more information to do so. There
will be measurements at more different radial trap frequencies in order to
determine how the modes correlate, mostly with small radial frequency steps
in order to see more details. However, we still see a few things. Firstly, it
looks like the standing wave and the dipole mode are either approximately
in phase or almost exactly out of phase. Secondly, it seems that de-phasing
occurs. For example, for 108.9 Hz the standing wave and the dipole mode are
almost in phase at the start, but near the end they are almost exactly out of
phase. This may be due to the fit error, as the frequencies found by fitting are
not exactly the same and the plot contains many cycles, causing slow de-phasing.

As one can see in fig 4.5 and 4.6, the peaks of the standing wave pat-
tern follow shortly after extrema of the quadrupole mode most of the time.
This can also be seen in table 4.2: in all cases, the phase of the standing wave
is slightly higher than the phase of the quadrupole mode (after adding π in
case of 86 Hz and 108.9 Hz). This suggests that the quadrupole mode drives
the standing wave. However, we do not have enough data to determine the
exact relation between these two modes. The only conclusions are that the
standing wave and the dipole mode oscillate with approximately the radial
trap frequency, while the quadrupole mode oscillates twice as fast as the
other modes, and that all three modes have phase relations (that are to be
determined in more detail).

Radial trap frequency Standing wave Dipole mode Quadrupole mode
Frequency 39.6 Hz (39.4 ± 0.4) Hz (39.6 ± 0.3) Hz (80.4 ± 0.5) Hz
Phase −0.36 ± 0.15 0.05 ± 0.11 −1.51 ± 0.19
Frequency 86 Hz (86.0 ± 0.6) Hz (88.0 ± 0.1) Hz (173.9 ± 0.7) Hz
Phase 2.99 ± 0.23 −0.28 ± 0.02 −0.24 ± 0.27
Frequency 108.9 Hz (104.4 ± 0.8) Hz (106.4 ± 0.2) Hz (209.9 ± 0.3) Hz
Phase 2.37 ± 0.29 3.21 ± 0.06 −1.25 ± 0.10

Table 4.2: Frequencies and phases of the different modes at different radial trap
frequencies.
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4.3.2 Accurate determination of the sound speed

The speed of sound is a fundamental property of a hydrodynamic system of
atoms and we are interested in its value. Using the dispersion relation k = ω

v ,
all we need to know is the frequency of the standing wave pattern (which equals
the radial trap frequency, as found in section 4.3.1) and the wave number k. In
this case, we look at the sound speed at the center of the condensate v0, so we
also have to use the wave number at the center of the condensate k0. Referring
back to eqn 4.15, this center wave number k0 is a quantity we get directly from
the fit, as the density inside the cosine is normalized to be one at the center.
Fig 4.7 shows the k0 found from each image of one series, in this case a series
at 39.6 Hz. For this series in particular, we found k0 = (75.7 ± 0.4) · 103 m−1.
We found a sound speed of 3.3 mm/s by using v = ω

k with ωr/(2π) = 39.6 Hz.

The first thing we notice is that there are a few points (with a high error bar)
that deviate quite far from the average. This has a clear explanation: as one
can see in fig 4.3, some images do not show a clear standing wave pattern, as
the amplitude peak is changing from one belly to the other. Those images are
difficult to fit, so they do not yield an accurate value for the wave number,
hence the large error bars. Because of the large error bars of these points, the
relative standard deviation of the average of k0 is still less than a percent. This
leads us to believe we can accurately determine the wave number, and with
that the sound speed.

Even though we appear to have a good method to determine the sound
speed, we have not yet determined how exactly the sound speed depends on
the density. We found from measurements that the k (and so the peak spacing
and the sound speed) does not depend on the density as eqn 4.9 predicts.

Figure 4.7: Wave number k0 at different points in time for a series of measure-
ments at ωr/(2π) = 39.6 Hz.
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4.3.3 Wave number and condensate density

In this section we investigate how the wave number relates to the density
in the axial direction. From eqn 4.14, one would expect the wave number
to be proportional to n−1/2. The power is a fit parameter from eqn 4.15.
We proceed to fit several images from measurement series with radial trap
frequency of 39.6 Hz. However, this is somewhat problematic, since most
information about the power is located at the edges, and the edges are also
the most unclear part of the images due to the low density. Fig 4.8 illustrates
how the wavelength depends on the position in the condensate for a power of
1/2 and 0.2. Here, the position can be translated to the density with eqn 2.13,
while the wavelength equals λ = 2π/k. As one can see, the difference in power
expresses itself as differences in wavelengths of more than a factor 2 towards
the edges, while the center does not show a large difference. Fig 4.8 illustrates
how clear the difference between the theoretical power and a power similar to
our measurements is. Despite the fact that the edges are unclear, we found a
power of 0.19 ± 0.10 from measurements, which is much lower than 1/2. This
value is obtained from the data of table 4.1 and discarding the values lower
than 0 and higher than 0.8, since these values are from images that do not
contain a clear standing wave pattern, resulting in values that deviate much
from all other values. Moreover, these few very high and very low values do
not seem realistic when looking at the images. While the value of the power is
not conclusive, we are certain that it is not the 1/2 expected naively from theory.

In order to understand why our measurements disagree with theory, we
compared the results with simulations (performed by S. Pratama). The
simulations are done by solving the Gross-Pitaevskii equation (eqn 2.12)
using the time-splitting spectral method for the time evolution [23]. In the
simulations, the collective modes are also induced by modulating the radial
trap frequency, but the trap frequencies used for the simulations are different
from the trap frequencies used in the experiments. Fig 4.9 shows a typical
frame of the simulation, with fit in order to extract the power. This particular
data set is obtained by subtracting the non-excited condensate density from the
excited condensate density. Fitting resulted in a power of 0.20 ± 0.02. While
we do not fully understand all the details, we agree that it is very promising
that the measurements agree with the simulation.

Figure 4.8: Normalized wavelength as a function of position for a Thomas-Fermi
density profile, using a power of 1/2 (blue) and a power of 0.2 (red).
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Figure 4.9: Simulation of the standing wave pattern and a fit to find the power.
This plot shows the total density minus the non-excited condensate density of
a single frame, isolating the standing wave pattern (simulation by S. Pratama).

The question why both the simulation and the measurements disagree with the
naive theory remains. The solution they both yield (a power of 0.2) does not
seem trivial. Possible explanations may be that it is not a power law at all,
but something completely different, like some sort of guided sound mode, or
that there are more quantities that influence the wave number that we did not
anticipate.

4.3.4 Long-term behavior

In this section we look at was how the pattern behaves over an extended
period of time. We combined several consecutive series of measurements, in
this case at a radial trap frequency of 39.6 Hz. Two series overlap for quite a
bit, allowing us to see if they agree with each other and if they are consistent.
Fig 4.10 shows how the standing wave amplitude behaves as a function of time
after combining several measurement series. Note that the first ten points are
before the pattern appeared, and the last ten points also did not have a clear
pattern anymore, so these points were not included for research on the standing
wave pattern.

Figure 4.10: Amplitude of the standing wave pattern as a function of time with
ωr/(2π) = 39.6 Hz, now over an extended period of time.
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The data is consistent with fig 4.5, although t = 0 is defined differently.
In fact, the data of fig 4.5 is included in fig 4.10.

Note that we are driving the modes over the whole duration. We clearly
see the amplitude changing over time. One question is if the amplitude really
damps out or if it is a sort of ”beating” behavior, in which case the pattern
would return at a later point in time. We fitted the data with two different
functions in order to determine the properties of the behavior. For the the
standing wave pattern, we used a sine function, but for the amplitude of this
sine function we tried two different functions to see which one works best:

A(t) =

{
ep1t : t < t0
ae−p2t : t ≥ t0

(4.16)

A(t) =

{
ep1t : t < t0
a(sin[p2t+ p3] + p4) : t ≥ t0

(4.17)

Here a is to make sure the function is continuous, while the different pi and
t0 are the fit parameters. The assumption here is that the amplitude grows
exponentially up to a maximum (which is around t = 0.08 s in fig 4.10), after
which it either starts damping out (eqn 4.16) or starts oscillating (eqn 4.17).
The point in time this happens is defined as t0. We tried to fit the data with
both functions, but unfortunately they were almost exactly as good. However,
eqn 4.16 (damping) seemed to be slightly better. This is also the function used
in fig 4.10.

Even though we cannot rule either one out just from fitting this data set, we
can draw some conclusions. The fact that we are still driving the oscillations
suggests that it should be oscillatory behavior. On the other hand, we have a
few series at even later times than in fig 4.10, and we still do not see the pattern
returning. This suggests eqn 4.17 is wrong. While this suggest damping, we
do not have many of these measurements, so there may be a third option: in
the same way it takes some time for the standing wave pattern to appear,
it is possible the standing wave pattern appears again at a later point. An
explanation for this third option may be that the modes have a frequency
that is slightly different from the radial trap frequency. This would result in
damping at first, but the pattern would return at some later point when the

Figure 4.11: Width of the condensate (the quadrupole mode) as a function of
time with ωr/(2π) = 39.6 Hz, now over an extended period of time.
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phases match again. This option can be tested by doing measurements at even
later times.

It is interesting to see that the quadrupole mode shows similar damping
behavior, as seen in fig 4.11. This again suggests that the quadrupole mode and
the standing wave pattern are coupled. Furthermore, the dipole mode does not
show damping and the number of condensed particles remains approximately
constant. The fact that the number of particles remains constant means that
the damping is not caused by loss of particles.
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Chapter 5

Conclusion

In conclusion, in chapter 3 we found that the particle loss processes inside
traps are indeed exponential, while the temperature showed more interesting
behavior. Namely, a MT with a high axial trap frequency causes a high heating
rate, but with two different regions for the rate of temperature change. A
decompressed trap hardly sees any change in temperature. The FORT causes
exponential cooling, although we found highly distinct cooling rates between
measurements: a higher starting temperature (just above Tc) caused much
faster cooling than a lower starting temperature (just below Tc). This is
likely due to the larger difference between the starting temperature and the
asymptotic temperature of the trap.

As for the standing wave pattern, in chapter 4 we found several things.
Firstly, we found that the dipole mode and the standing wave pattern oscillate
with approximately the same frequency as the radial trap frequency, while
the quadrupole mode oscillates twice as fast, which would be expected from
theory [22]. We could not draw any definitive conclusions on the phase relation
between the different modes yet. Secondly, we found that we can accurately
measure the wave number k0 and with that the sound speed v0. Thirdly, we
found that the spacing between the peaks is not proportional to n1/2 as the
theory naively suggests. Instead, both simulations and measurements suggest
that it should have a power of 0.2. However, it may not even be a power law
at all. Lastly, we found that the standing wave pattern is damped over time,
even though we cannot conclude if this really is damping or if it is some sort of
oscillatory behavior.

We are still missing information on how the phases of the different modes relate
to each other and to the radial trap frequency. We also have to understand
why exactly the peak spacing we found does not agree with the theory. Lastly,
we still do not completely understand the origin of the mode that so closely
resembles a standing wave pattern. This understanding may come from solving
the Gross-Pitaevskii equation together with the equations for superfluid motion
and from collecting and analyzing more data.

31



Bibliography

[1] S. N. Bose, Placks Gesetz und Lichtquantenhypothese. Zeitschrift für Physik,
26:178 (1924).

[2] A. Einstein, Quantentheorie des einatomigen idealen Gases: Zweite Abhand-
lung. Sitzungber Preuss. Akad. Wiss. 1924, (1925).

[3] E. D. van Ooijen, Realization and Illumination of Bose-condensed Sodium
Atoms. Phd thesis, Utrecht University (2005).

[4] R. Meppelink, Hydrodynamic excitations in a Bose-Einstein condensate.
Phd thesis, Utrecht University (2009).

[5] K. M. R. van der Stam, R. Meppelink, J. M. Vogels and P. van der Straten,
Reaching the hydrodynamic regime in a Bose-Einstein condensate by sup-
pression of avalanches. Phys. Rev. A 75, 031602 (2007).

[6] W. Ketterle, D. S. Durfee and D. M. Stamper-Kurn, Making, probing and
understanding Bose-Einstein condensates. (1999).

[7] M. R. Andrews et al., Propagation of Sound in a Bose-Einstein Condensate.
Phys. Rev. Lett. 79, 553 (1997).

[8] S. J. Blundell and K. M. Blundell, Concepts in Thermal Physics. (2006).

[9] L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 40, 646 (1961)

[10] E. P. Gross, Nuovo Cimento 20, 454 (1961)

[11] C. J. Pethick and H. Smith, Bose-Einstein condensation in dilute gases.
(2002).
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