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Abstract

In this thesis we will attempt to close the gap between fast grid-based method and ε-approximation
methods that solve the Weighted Region problem. In order to compare both methods, we will
define a formula to calculate the ε-value of grid-based methods and define the bounds of the ε-value
for ε-approximation methods. Furthermore, we will improve on heuristics for A* grid methods for
weighted regions and present an adapted version of the Hierarchical A* method that improves the
running times of A* grid in heterogeneous environments. Finally, we present three pruned graph
methods that reduce the construction and query times of Steiner-graph methods.
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1 Introduction

Path planning is an important aspect of computer games, crowd simulations and robotics. The topic
has been studied for several decades, and a wide variety of subproblems have been tackled. Among
those are problems such as planning smooth and visually convincing paths for humanoid characters, as
described in the IRM [1] and MIRAN [2] methods, and adding weights to the environment [3, 4, 5, 6, 7].
The IRM and MIRAN methods require an indicative route as input that serves as a global route for
the character. The indicative route is used as a guide to plan the final motion of the character. The
final motion will deviate from the indicative route to ensure smooth curves, keep preferred clearance
from obstacles, avoid unnecessary detours, and avoid other characters. An environment can be split
up in regions and weights can be assigned to each region to model the costs of travel through a region
or to model psychological factors in a dynamic way. Throughout this work, we call an environment
heterogeneous, if each region is annotated with a weight. Virtual environments are path planning
environments that are time critical. Time critical applications such as games, crowd simulators or
safety training software only allow path planning methods to take up several milliseconds, because
paths may need to be planned for many characters each time step.

Adding weights to a scene has many applications. For instance, giving a sidewalk a lower weight
than a road will let pedestrians characters prefer to traverse the sidewalk instead of the road. However,
if the sidewalk is blocked by an obstacle such as a parked car, then pedestrians may use the road in
order to circumnavigate the obstacle. Rule-based approaches [8] that restrict pedestrians to walk on
the sidewalk do not yield the desired behavior in such a case. This may lead to unrealistic deadlock
situations.

However, there is a price to pay. The shortest path in an environment with uniform weights and
obstacles always consists of a series of straight lines that use the obstacle vertices, and thus bending
points of the shortest path are always obstacle vertices. The number of obstacle vertices is finite, and
a graph can be constructed containing all collision-free edges between obstacle vertices. This Visibility
graph [9] can then be queried to find shortest paths. In weighted regions, the bending point of an
optimal path can lie anywhere on the edge of a region. Each edge consists of infinitely many points
and a graph containing all possible paths will be of infinite size. As such, finding optimal paths in a
weighted region is an unsolvable problem [10] due to the infinite size of the search space. Although it
is impossible to find an optimal solution, approximate solutions can be found.

Researchers have been studying the problem of finding optimal paths in heterogeneous environments
for more than 20 years. The problem is formally known as the Weighted Region Problem (WRP) as
defined by Mitchell and Papadimitriou [3]. They state the WRP as follows: Given a straight-line
planar (polygonal) subdivision on which a weighted Euclidean metric is defined, and a start and goal
position, find a minimal length (in the weighted sense) path from the start to the goal. The length in
the weighted sense is mostly referred to as the costs of the path. These costs are defined by the sum of
all subpaths, where each subpath lies in a different weighted region. The costs of a subpath is defined
by the length of the path times the weight of the region.

1.1 Project motivation

The exact unsolvability of the Weighted Region Problem created two types of solutions to the problem.
The first solution takes the practical approach and focuses on fast algorithms. The resulting paths of
these fast algorithms are nowhere near-optimal. This solution is most used in practice. On the other
side there are solutions that focus on the optimality of the paths and create an approximation to the
optimal solution. These methods create suboptimal paths within a certain bound, but they are slow.
There is a huge gap between these two approaches, and currently there are no methods that provide
suboptimal paths that can be used in real-time applications.

5



1.2 Project goals

This master thesis will focus on finding a method that is able to find near-optimal paths in real-time.
First, we will identify the upper bound on the overestimation of the costs of the shortest path computed
by the practical solutions that are currently used to solve the WRP in real-time. These bounds are
expressed with an ε-value. An ε-optimal method will always compute paths that cost at most 1 + ε
times the costs of the optimal path. Once the ε-value is known for the practical solutions, we can
identify the size of the gap between near-optimal methods and fast methods based on the difference
in ε-optimality. Once the size of the gap is known, we will try to close the gap from both sides. We
will attempt to improve the running times of the near-optimal methods and lower the ε-optimality of
the fast methods. Finally, we will create a hybrid method that combines the fast and near-optimal
methods to create a fast near-optimal method.

1.3 Report structure

Section 2 gives an overview of related work on path planning and the Weighted Region problem (WRP).
The work of different scientific fields that work on the WRP is discussed, and a short overview of
practical approaches is given.
In Section 3, we will discuss how the solutions given by grid-based approaches compare to an optimal
solution in terms of path-costs. By defining the ε-value of grid-based approaches, we can compare
grid-based approaches with ε-optimal methods. We will also look at the heuristics used by A* and try
to improve these to better suit weighted grids.
The ε-approximation method as defined by Aleksandrov, Lanthier and Maheshwari [5] is described in
Section 4 along with a graph search method specially designed for the WRP called BUSHWHACK
[11]. We will also look at the bounds of the ε-value. The ε-value is a parameter for ε-approximation
methods. To compare the running times of grid-based methods with the ε-approximation methods, we
will have to make the ε-values of both methods compatible.
In Section 5 we present a new method that combines A* grid methods with ε-approximation methods.
We show how A* grid results can be used to prune the search space for ε-approximation methods.
The implementation notes are presented in Section 6. This section gives a small overview of the
implementation of the methods presented in this thesis and presents an adapted version of the A*
algorithm that supports multi-layered environments. Furthermore, it describes several issues that
occurred during the implementation of the BUSHWHACK method.
Section 7 describes the experiments that are conducted. First, we will find the optimal values of the
two Hierarchical A* parameters: abstraction factor and number of layers. Then we will compare the
different heuristics for A* to see which heuristic is well suited for weighted regions. Several newly
presented hybrid methods are compared against each other and to the ε-approximation methods to see
whether these new methods are faster, and if the ε is retained. Finally, we will compare the grid-based
methods to the ε-approximation methods and hybrid methods to see the size of the gap between the
grid-based and ε-approximation methods and to see whether the hybrid methods can narrow down
this gap.
In Section 8, we will draw conclusions about our algorithms and experiments. We will show that the
Hierarchical A* method lowers the running times of grid-based approaches and that the pruned-graph
methods can improve on both the construction times and query times of current graph-approaches.
Finally, in Section 9 we will discuss how the algorithms and methods presented in this thesis might be
further improved, and we will present several research questions that arose from the results presented
in this thesis.
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2 Related work

In this section, we will dive into the different methods that solve path planning problems in homoge-
neous regions and in weighted regions. We will look at existing techniques and discuss open research
questions. First we will look at path planning in homogeneous regions and discuss methods such as
graph-based methods, roadmaps, potential fields and visibility graphs. We will also look at extensions
of the path planning problem in homogeneous regions by looking at planning optimal paths for disk-
shaped characters with a variable radius and creating smooth and visually convincing paths. Next, we
will look at the Weighted Region problem (WRP) and discuss wavefront propagation, Pathnet, Steiner
points and BUSHWHACK. Research on the WRP has mainly been carried out by the computational
geometry and path planning communities. In this review, we will also discuss other fields that work on
the WRP, but in a different setting. Finally, we will look into practical solutions to tackle the weighted
region problem.

2.1 Path planning

Path planning originated from the field of robotics and is nowadays applicable to many other fields,
such as crowd simulation or video games. Path planning is originally defined as finding a collision-free
path from a start to a goal position in an environment with obstacles and is a NP-hard problem [12],
except for some simple instances. We will be focusing on finding shortest collision-free paths. Several
methods have been devised to tackle this problem and in this section we will discuss the headlines of
all these different methods along with their pro’s and con’s. Path planning always starts with a start
position, goal position and a scene with obstacles. In all methods, the scene is first converted into a
data structure that represents the scene and allows fast search methods on it.

2.1.1 Graph methods

Several methods use a grid that can serve as a graph [12, 13, 14]. Existing graph search algorithms can
then be used to find a shortest path. Rectilinear grids allow characters to move between neighboring
cells in 4 or 8 directions. Two cells are neighbours if the edges of both cells share at least one vertex.
The grid can be seen as a graph where the center point of every cell corresponds to a node. An edge in
the graph connects any two nodes that correspond to neighboring cells in the grid. A node can have
two states: free or obstacle. The size of the grid can be adjusted to alter the precision of the resulting
paths. A surface can be supersampled by using a larger grid (i.e. by using smaller cells). This will
result in a bigger graph and slower searches, but the resulting paths will be a better approximation
of the shortest path. In contrast, we can undersample the surface by taking a smaller grid. This will
speed up the search, but the resulting path will generally deviate more from the shortest path.

Basis algorithm The following methods that search a graph for a path from the start to the goal
node all use the same basic algorithm (see Algorithm 1). The difference between the methods lies within
the selection of the next node that should be discovered. All methods start by dividing the nodes of
the graph in three groups. The first group, closed, consists of nodes that have been discovered and
do not need further exploration. The second group, unvisited, consists of all nodes that haven’t been
visited by the algorithm. The third group, open, consists of nodes that are still open for exploration.
The algorithm starts with the start node in the open set and all other nodes in the unvisited set. With
each step of the algorithm, a node Nc is selected from the open set. This selection step is different for
each of the algorithms discussed below. After a new node Nc has been selected, it will be moved to
the closed group and all neighbours of Nc that are in the unvisited group will be moved to the open
set and have their parent pointers set to Nc. These steps are repeated until the selected node is the
goal node. The resulting path is reconstructed with parent pointers. These pointers are an attribute of
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each node. When new nodes are added to the open set, then the node from which they were discovered
will be set as their parent. The path can be found by following parent pointers from the goal node to
the start node. This path is reversed such that the start position is at the beginning.

Algorithm 1 Basis algorithm(G, start, goal)

1: Add start to open
2: Add rest to unvisited
3: Nc = start
4: while Nc 6= goal do
5: Select new Nc from open
6: Move Nc from open to closed
7: Move all neighbours of Nc from unvisited to open
8: Set the parent pointers of these neighbours to Nc
9: end while

10: Reconstruct the path from the parent pointers
11: Return Path

Breadth first search Breadth first search [12] on a graph works the same as breadth first search
on a tree. For each node that is being explored, all neighbours are added to the open set before the
next node will be explored. This is implemented through the use of a FIFO queue. Once a node is
selected from the open set, all neighbours will be moved from the unvisited set to the open set and
the selected node is moved from the open to the closed set. This will lead to a search that will expand
slowly from the start node, but it will expand in all directions. Breadth first search is a brute force
approach. All nodes will be examined until a path has been found. Breadth first search runs in O(n),
where n is the number of nodes in the graph.

Depth first search Depth first search [12] employs the opposite exploration technique of breadth
first search. Instead of exploring all neighbours gradually, depth first search fully explores a single path
and will then start looking at the neighbours starting from the end of the path until the beginning.
The algorithm is exactly the same as the breadth first search, but the FIFO queue is replaced by a
LIFO queue. This queue will always return the last node that was inserted and leads to a search that
expands rapidly in one direction. Just like breadth first search, is depth first search another brute
force approach to path planning. Depth first search runs in O(n), where n is the number of nodes in
the graph.

Best first search Best first search [12] is the first algorithm that assigns costs to the nodes in the
open set. The costs of a node are defined by the distance from the node to the goal node. Best first
search uses a priority queue as open set. A priority queue supports O(log n) time insertion and O(1)
time retrieval of the node with the lowest costs. Best first search is often a fast algorithm because
it takes a straight line to the goal position. However, when obstacles are between the start and goal
position the resulting path could be far from optimal. Best first search runs in O(n log n), where n is
the number of nodes in the graph.

Dijkstra Dijkstra’s algorithm was founded by the Dutch computer scientist Edsger Dijkstra in 1959
[13]. Dijkstra’s algorithm starts with setting a distance value for all nodes to infinity, except for the
start node. The start node will have a distance value of zero and will be added to the open set.
Dijkstra’s algorithm uses a priority queue to find the node with the lowest distance value at each
iteration. Once a node has been selected, the distance value for all nodes connected to this node are
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calculated by taking the edge costs plus the distance value of the current node. If a node already has
a distance value, then it will only be overwritten if the new value is lower. The strength of Dijkstra’s
algorithm is that it will always find the shortest path in the graph, if it exists. Dijkstra’s algorithm
runs in O(E+V log V ) if its priority queue is implemented by a Fibonacci heap, where E is the number
of edges and V is the number of vertices in the graph.

A* A* [14] is a generalized version of the Best first search and Dijkstra’s algorithm. During the
execution of the algorithm, each node in the open set will have four attributes. The first attribute g
represents the cost to travel to this node from the start node. The second attribute h represents an
estimate of the cost to travel from this node to the goal node. The third attribute f is the sum of g and
h. The final attribute is the parent pointer. The algorithm starts at the start position, so g can always
be calculated by looking at the g-value of the parent and adding the travel cost between the node and
his parent. We could calculate h and have a perfect estimation of the costs. This will make the A*
algorithm only explore nodes that are part of the optimal path. However, calculating the optimal path
to the goal for each node is not efficient. Instead, the algorithm uses a heuristic to approximate the
distance from the node to the goal. A* starts from the start position and looks at all neighbouring
nodes. All neighbouring nodes are added to the open set and their attributes are set. Again a priority
queue is used for the open set. In each iteration the node with the lowest f value will be removed
from the open set. The A* algorithm is a commonly used search algorithm because of its flexibility.
By using an admissible heuristic (see below), the time for computing a shortest path will always be at
most the time that Dijkstra’s algorithm requires to find the shortest path. The complexity of the A*
algorithm depends on the heuristic. The worst case running time for the A* algorithm is O(2l), where
l is the length of the shortest path. With an admissible heuristic the complexity of A* is equal to the
complexity of Dijkstra’s algorithm: O(E+V log V ) if its priority queue is implemented by a Fibonacci
heap, where E is the number of edges and V is the number of vertices in the graph.

Heuristic The A* algorithm has no predefined heuristic, and that’s what gives the algorithm
its flexibility. An important property of a heuristic is whether it is admissible or not. An admissible
heuristic never overestimates the costs to the goal. Non-admissible heuristics can yield non-optimal
solutions due to the overestimation of the costs to the goal. If h is set to 0 for all nodes, then the A*
algorithm will behave just like Dijkstra’s algorithm. The Euclidean distance from the current node to
the goal position is a heuristic that is mostly used in path planning without weighted regions. The
Euclidean distance always equals the actual costs if no obstacles block the straight-line connection be-
tween the current node and the goal. In a weighted region, the Euclidean distance could underestimate
the costs, because the weights are not incorporated.

Iterative Deepening A* (IDA*) The Iterative Deepening A* algorithm [15] decreases the
memory usage of the A* algorithm. Iterative Deepening is a method that can be applied to all graph
search algorithms. At each iteration of the A* algorithm, a depth first search is executed that is cut
off when a selected node exceeds a threshold. The initial threshold value is the f value of the start
position. After the first step, the threshold value is equal to the lowest value of all depth first searches
that exceeded the threshold. The threshold will be increased at each step until the goal is reached.
IDA* has little computational overhead, because at each step it will explore the same nodes in the
beginning that were already within the previous threshold. However, IDA* has a strongly decreased
memory usage, because there is no open list to maintain. The depth first searches already require little
memory and they are discarded when the threshold is increased.

Hierarchical A* Hierarchical A* [16] attempts to speed up the search through the use of better
heuristic values. Such values can guide the search better and let the A* algorithm visit less nodes.
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Several abstraction layers are created from the scene. These layers are used to calculate the heuristic
value for all nodes. The abstraction layers are created by taking the nodes with the highest number
of free nodes around it and grouping them with all nodes around it within a certain distance until all
nodes are grouped. This process is repeated until there is a top layer with just a single node. When
a node is added to the open list, then its heuristic value needs to be calculated. The node will look
at the layer above him for its heuristic value. Each abstraction layer will query its parent layer until
the top layer is reached. This will result in abstract path from the node to the goal. The exact length
of this path is known and will be used as h value for the node. In the paper, the authors compare
Hierarchical A* with Dijkstra’s algorithm. A comparison with other heuristics is not made.

Hierarchical Pathfinding A* Hierarchical Pathfinding A* [17] uses abstraction layers for the
search itself. The search will be faster than A*, but the path is near optimal. The methods starts
with an offline step where the grid is preprocessed into several tiles. For instance a grid of 40x40 cells
could be split up into 16 tiles of 10x10. Entrances are defined for each tile. An entrance is a segment
of the border that has adjacent free cells in other tiles. These segments are shrunk to a single point
in the middle for small entrances or two points at the edges for large entrances. The entrance points
are connected within the tile with intra-edges and to other tiles entrance points through inter-edges.
The Euclidean distance is used as the length of the edges. Obstacles within the tile are ignored. A
graph is constructed from these intra- and inter-edges with the assigned lengths. The online search
starts by connecting the start and goal positions to the entrances of their tiles. Then A* is used to
find a shortest path in the abstraction layer graph. This path is the guideline for the actual path. The
actual path is computed using A* within each tile separately when the current path has reached the
entrance of a tile. This technique will save many wasted computations when the path is frequently
changed. Furthermore, the search is pruned because it will only search in the tiles that lie within
the abstract path. In the experiments conducted in the paper, Hierarchical Pathfinding A* performed
10 times faster than A* while finding paths that are within 1% of the optimal path. The memory
overhead for the abstraction graph is around 9%. For larger maps, the method could be expanded by
using multiple abstraction layers.

2.1.2 Roadmap methods

The previous methods are mainly used in low-dimensional spaces. The upcoming methods are less
dependent on the dimensionality of the search space. The probabilistic roadmap [18] approach is a
sampling-based method for solving complicated path planning problems. Sampling is used to generate
an approximation of the free space of the scene. The method consists of two phases. In the construction
phase a graph is constructed that captures the connectivity of the free space. By default the method
uses uniform sampling, with additional sampling in difficult areas. Difficult areas are parts where the
graph is disconnected, but the free space isn’t. The second phase, i.e. the query phase, starts with
connecting the start and goal positions to the graph and then uses a local planner to find an optimal
path within the roadmap. This method is well-suited for motion planning where the degrees-of-freedom
of a robot are taken into account during the planning. Furthermore, once the roadmap is built, it can
answer queries efficiently. However, for single-query problems the construction phase is too expensive,
the uniform sampling method doesn’t always capture the connectivity of the free space and the path
quality is highly dependent on the sampling. Gaussian sampling [19] or Medial axis sampling [20]
methods can be used instead of uniform sampling to get better results in some cases.

2.1.3 Potential fields

Potential field methods [21, 22] guide a character from the start to the goal position with potentials.
There is an attractive potential that pulls the character towards the goal position and a repulsive
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potential that pushes the character away from obstacles. At each step, these potentials are combined
in the potential function that results in a vectorfield that points in the direction of the next step. A
major drawback of the potential field methods is that the search can end up in a local minimum. A
local minimum could be avoided [23], but the extra computations required wouldn’t allow for real-time
performance. However, this method works well with dynamically inserted obstacles because only the
potentials of the inserted obstacles need to be added to the previously calculated net potentials.

2.1.4 Visibility graphs

Visibility Graphs are graphs that consists of nodes that represent point locations and edges that
represent the visibility between point locations. Each obstacle vertex in the scene is transformed
to a node in the visibility graph and edges are added between each pair of obstacle vertices that
are mutually visible. Sharir and Shorr [9] created a method that constructs the visibility graph in
O(n2 log n) and queries it with Dijkstra’s algorithm to obtain the shortest path. The paths obtained
from the visibility graph are always optimal in length. However, there isn’t much room for improvement
on the construction time, because the visibility graph may contain O(n2) edges.

2.1.5 Hershberger and Suri

In 1999, Hershberger and Suri [24] developed an optimal-time algorithm that computes a shortest
path between two points in the presence of polygonal obstacles. The algorithm constructs a map that
stores the shortest paths from a single source to all other points in O(n log n) time, where n is the
total number of vertices in the obstacle polygons. This map can be queried in O(log n) time for a
single goal position. The map construction uses a wavefront that extends from the source position.
The expansion of the wavefront is based on Dijkstra’s algorithm. Many wavefront methods have been
developed before this method, but those methods had a running time of O(n2) due to the complexity
of the wavefront collision calculations. Hershberger and Suri managed to improve these calculations
by approximating the wavelets of the wavefront and by using a quad-tree-like subdivision of the scene.

2.1.6 Extensions to the path planning problem

In addition to the aforementioned approaches, research has been carried out on solving variants of the
original path planning problem. There are many extensions to the path planning problem, but we will
only discuss a few. First we will discuss the extensions to disk-based path planning and generating
smooth and visually convincing paths. In the next section we will look at the weighted region problem.

Extension to disk-shaped characters with variable radius The first extension we will discuss
is the extension to disk-based planning. The above methods all plan a path for a character without
any dimensions, except for the probabilistic roadmap method [18]. If an actual character will traverse
these paths, then he will most likely collide with several obstacles. These methods all plan optimal
paths for a disk-shaped character with a variable radius.

• Voronoi-based algorithms Voronoi diagrams [25] can be used to create paths with maximal clear-
ance to all polygonal obstacles. These methods create a generalized Voronoi diagram where each
obstacle in the scene becomes a site in the Voronoi diagram. The Voronoi diagram consists of
points and lines with maximal distance to the surrounding sites, thus path planning on a Voronoi
diagram will lead to paths with maximal clearance to the obstacles. A Voronoi diagram of a 2D
scene with polygonal obstacles can be constructed in O(n log n) time.

• Minkowski Sum methods Other approaches dilate the obstacles of the scene with a disk with
radius equal to the character’s size [26, 27]. Each obstacle in the scene is replaced by the
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Minkowski Sum of the obstacle and the disk. The resulting scene can be used as input for a
point-based path planning algorithm.

• Explicit Corridors The introduction of corridors [28] led to new methods for path planning for
disk-shaped characters. Corridors are defined by sequences of empty disks and define the free
space in which paths can be planned. The Explicit Corridor Map [29] consists of a generalized
Voronoi Diagram, where the edges are annotated with event points and their closest points to
obstacles. The Explicit Corridor Map can be used to find the shortest paths for disks of any size
by shrinking the corridors in the map. The corridor is shrunk to account for the disk radius and
a triangulation is made from this shrunk corridor. The Funnel algorithm [30] is used to find the
shortest path. The corridors are also useful for online obstacle avoidance, because force-based
obstacle avoidance approaches only have to consider obstacles that lie within the corridor.

Smooth and visually convincing paths Another extension to the path planning problem is the
extension to finding smooth paths that are visually convincing for particular application areas such
as simulating virtual pedestrians or Unmanned Aerial Vehicles (UAV). Shortest paths tend to make
sharp turns and move very closely to the obstacles in the scene. Humans are more likely to keep a
certain distance to the obstacles, whereas UAVs can’t take sharp turns mid flight and need smooth
paths. Several methods have been developed to create smooth paths.

• Post-Processing Smoothing Several methods have been devised that smooth an existing path.
Yang [31] uses a continuous cubic Bézier curve to smooth the sharp corners in a path. This
method doesn’t take obstacles into account and may lead to intersections between the path
and the obstacles. Pan [32] uses cubic B-splines to smooth the path. After the path has been
smoothed with the spline, the path needs to be checked for collisions. They also provide a
fast and reliable continuous collision detection algorithm along spline trajectories. Zhao [33]
formulates the problem as a quadratic program that minimizes the weighted L2-norm of the
curvature along the path. This method results in smooth paths while avoiding obstacles. This
approach is flexible because additional linear constraints on path length or local curvature can
be added to the quadratic program.

• Visibility-Voronoi diagram The Visibility-Voronoi diagram [34] is hybrid graph between a Vis-
ibility diagram and a Voronoi diagram. The diagram is defined by a parameter c that defines
the preferred clearance from obstacles. The graph changes from a Visibility graph at c = 0 to a
Voronoi diagram for c = ∞. The diagram is created by dilating the obstacles and creating the
Visibility graph of the dilated scene. If narrow passages disappear through this dilation, then
the Voronoi edge from this passage will stay in the graph with an added attribute that holds
the maximum clearance. This will allow for characters to still traverse this path if it’s a shorter
route. The obstacle vertices in the original scene correspond to arcs in the dilated scene. This
guarantees that the resulting paths are smooth, while the visibility diagram will ensure that the
shortest path will be found. The Visibility-Voronoi diagram is also very useful for disk-based
path planning, if the narrow passages are disregarded in the query phase. The Visibility-Voronoi
diagram can be constructed in O(n2 log n), where n is the number of obstacles vertices. After
construction, the diagram can be queried with any graph-search algorithm.

• IRM The Indicative Route method [1] combines the potential fields method with a guiding route
to find smooth paths. Corridors are used to plan the path, because they are useful for planning
paths for characters with a variable radius and for online obstacle avoidance, as mentioned in
Section 2.1.6. The method requires a control path as input. This control path is usually the
shortest path from the start to the goal position. An attraction point that moves along the
control path is used to guide the character from its start to the goal position. Forces are used
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to guide the character from start to goal. The force applied by the attraction point is called
the steering force. In addition to the steering force, there is a boundary force that pushes the
character away from the boundary of the corridor and there is an obstacle avoidance force that
allows for avoidance of dynamic obstacles or other characters. All these forces are combined to
compute the direction of the character for the next frame. The IRM produces natural looking
and smooth paths in real-time. However, the IRM method might take undesired shortcuts or
have trouble with intersecting indicative routes. Recently, the IRM method has been generalized
to the MIRAN [2] method that fixes these problems, supports weighted regions and adds user
control over the amount of path smoothing.

Future extensions The field of traditional path planning in 2D environments is covered on most
aspects. There are methods that compute real-time shortest paths for multiple characters in real-time.
Extensions to disk-based path planning are also widely explored with good results in terms of speed
and optimal paths. Research is already being carried out on extensions to 3D, but then the path
planning problem is much harder in 3D. The points where the shortest path touches the obstacles are
no longer restricted to a finite set of points, but could lie anywhere on the obstacle edges [35]. Most of
the 3D approaches are therefore approximations to the shortest path, that add points to the obstacle
edges and create a graph out of these points. Another way to tackle 3D environments is by treating
them as 2D-multilayered environments. This method is well suited for path planning in buildings,
because of the clear separation between layers. Gradual differences in height, such as a mountain, are
not suited for this approach. The Weighted Region problem is an extension that splits up environments
in regions and adds weights to these regions. Adding weights to a scene has a similar effect on the
search space as moving to 3D. Bending points can lie anywhere on an edge and thus finding optimal
paths is unfeasible. The Weighted Region problem will be addresses in detail in the next section.
Instead of adding weights, one could also add flows to the scene. Flows work as directional weights
and the weight depends on the direction of travel through a region. Research also continues on creating
smooth and visually convincing paths [2]. There are several approaches to path planning in dynamic
environments, but these methods still suffer from local minima.

2.2 Weighted Region problem

The Weighted Region problem (WRP) is an extension to the path planning problem, in which weights
are added to each polygonal region in the scene. Mitchell and Papadimitriou [3] state the WRP as
follows: Given a straight-line planar (polygonal) subdivision on which a weighted Euclidean metric is
defined, and a start and goal position, find a minimal length (in the weighted sense) path from the start
to the goal. The length in the weighted sense is mostly referred to as the costs of the path. These costs
are defined by the sum of all subpaths, where each subpath lies in a different weighted region. The costs
of a subpath is defined by the length of the path times the weight of the region. Several assumptions
about the input are made for the WRP. All polygons are simple, do not overlap each other, and cover
the entire environment. Obstacles are represented as regions with a very high weight. The WRP is
a generalization of the classical path planning problem. If all weights are equal, then the WRP is equal
to the path planning problem. Several facts about the shortest path in a non-weighted region might not
apply to the optimal path in a weighted region. For instance, the shortest path in a non-weighted region
without obstacles will always be a straight line from the start to the goal position while the optimal
path in a weighted region can have arbitrary shapes. Furthermore, the shortest path in a non-weighted
region with obstacles is always a sequence of straight-line segments connecting vertices of the obstacle
polygons, while in a weighted region the optimal path can bend at any position on an edge of one of
the regions. The exact solution to the weighted region problem is proven to be unsolvable [10], because
it is impossible to express the WRP as finite algebraic expressions. Even before the unsolvability was
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proven in 2012, research had been carried out on finding feasible approximated solutions to the WRP.
In this section, we will discuss the different methods that approximate the WRP.

2.2.1 Mitchell and Papadimitriou

Mitchell and Papadimitriou [3] have defined the WRP as mentioned in Section 1. They approximate
the solution to the WRP with an approximation algorithm that is based on two lemmas that are
derived from the field of optics. Mitchell and Papadimitriou prove that the shortest path in a weighted
region will behave according to Fermat’s Principle, which states that a ray of light will always take
the path that can be traversed in the least time. Mitchell and Papadimitriou derive a useful lemma
from this principle.

Lemma 2.1 Geodesic paths are piecewise linear, except within regions of weight zero (where subpaths
may be arbitrary). The intersection of a geodesic path within the interior of a face with αj > 0 is a
(possibly empty) set of line segments.

Here αj is the weight of face j, and a geodesic path is a path that is locally optimal. Snell’s law
of refraction can be derived from Fermat’s principle, and this law yields a formula to calculate the
angles of refraction and incidence when light (or any other wave) passes a border between two isotropic
regions. Such a region is a region that has the same properties everywhere. The WRP also contains
isotropic regions, because each region has a uniform weight. A second lemma is derived from Snell’s
law.

Lemma 2.2 Let αi and αj be the weights of two faces incident to an edge e and assume that αc =
min{αi, αj} and that αi, αj < +∞. If p is a geodesic path that passes through the interior of edge e,
then p obeys Snell’s Law at edge e.

These two lemmas can always be applied to the WRP and are the basis for the approximation algo-
rithms that solve the problem. The algorithm from Mitchell and Papadimitriou solves the WRP for
a finite triangulation of the plane, where all edges and faces have an assigned weight, within an error
tolerance ε > 0 with respect to the shortest path. This means that the costs of any path computed by
the algorithm are at most 1 + ε times the costs of the optimal path. The algorithm uses continuous
Dijkstra [36, 37] to extend a wavefront where every point on the wavefront has the same distance to
the source. Events are triggered at collisions between the wavefront and vertices or edges from the
triangulation. The total running time of the algorithm is O(n8 log(nNWwε )), where n is the number of
vertices, N is the maximum integer coordinate of any vertex of the triangulation, and w and W are
the minimum and maximum weights. The solution isn’t efficient, but it is the first theoretical result.

2.2.2 Pathnet

Mata and Mitchell [4] discretize the search space to approximate the optimal path. Their method
creates a graph called Pathnet that can be queried to find the optimal path between two points. The
algorithm makes use of cones around all vertices, which limit the paths that extend from a vertex v.
These cones discretize the orientations around the vertex from [0, π] to k directions. The boundaries of
these cones are traced, while obeying Snell’s Law at edge intersections, until the boundaries intersect
with different edges. The splitting vertex u that is adjacent to both these edges will be added to
the Pathnet, together with the edge uv that lies entirely within the cone and obeys Snell’s Law at
each edge intersection. If the boundary of a cone intersects with an edge at an angle greater than the
critical angle, then the tracing is also stopped and a critical vertex u is created on the intersected
edge at the position where the angle is exactly critical. The critical angle is defined as the angle where
the path switches from edge-crossing to edge-using, as shown in Figure 9 and 10, respectively. This
critical vertex is added to the Pathnet, together with the edge uv that lies entirely within the cone
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and obeys Snell’s Law at each edge intersection. The Pathnet can be constructed in O(kn3), where
k is the number of cones. Once the Pathnet has been constructed it can be queried with Dijkstra’s

algorithm to find the ε-approximate shortest path in O(n log n) time, where ε = O( W/wkθmin
). W/w is the

ratio of the maximum non-infinite weight to the minimum non-zero weight and θmin is the minimum
among the internal face angles of the subdivision.

2.2.3 Steiner points

In 1998, Aleksandrov, Lanthier and Maheshwari [5] came up with a new discretization scheme through
the use of Steiner points. These points are added to the edges of the triangulation of the scene. For
each vertex with an incident edge, Steiner points are added with a logarithmic distribution. Because
this distribution will lead to infinitesimal distances between the Steiner points close to the vertex, the
authors define a vertex vicinity. The vertex vicinity is a small circle around the vertex that is void of
Steiner points. There are now two sets of Steiner points on each edge, one starting from each vertex.
The authors define an interval to be the distance between two consecutive Steiner points in order to
merge the two Steiner point sets. The sets are merged by removing the Steiner points with the largest
interval for each set of overlapping intervals. A graph is created by connecting all Steiner points and
vertices within each triangle with each other. The approximate shortest path is found by applying an
improved version of Dijkstra’s algorithm to the graph. Dijkstra’s algorithm was improved through the
use of Fibonacci heaps. The total running time of this algorithm is O(mn log(mn) +nm2), where m is
the total number of Steiner points. The total number of Steiner points is defined as m = O(logδ(L/r)),
where L is the length of the longest edge and r is ε times the minimum distance from any vertex to the
boundary of the union of its incident faces and δ ≥ 1 + ε sin θ, where θ is the minimum angle between
any two adjacent edges of the surface. two

2.2.4 BUSHWHACK

Reif and Sun focused on improving graph-search methods for the WRP. First they introduced the
interval datastructure [38]. An interval is always defined by two edges (e, e′) of the triangulation and
a point v on e. The interval consists of all points v∗ on e′ where the optimal costs from s to v plus the
costs from v to v∗ are lower than the optimal costs from s to v′ plus the costs from v′ to v∗ for any
point v′ on e, where s is the start position. As shown in Figure 1, this will create a cone for each point
v. Next they formalized their problem definition as the Discrete Weighted Shortest Path Problem:
Given a 2D space of n triangular regions with weights, where each edge has m Steiner points, find a
weighted shortest path that only intersects region boundaries at vertices or Steiner points for any given
source and destination. Their research resulted in a new graph-search algorithm that takes advantage
of the underlying geometrical properties of the graph: BUSHWHACK. BUSHWHACK [11] maintains
a set of intervals to prune the search. An ε-approximate path can be found in O(nε (log 1

ε +log n) log 1
ε )

with BUSHWHACK.

2.2.5 Steiner points on bisectors

Aleksandrov, Maheshwari and Sack [6] improved the Steiner points approach in 2005 by adding Steiner
points to the bisectors of the triangles. This improvement lead to a running time of O(C(P ) n√

ε
log(nε )

log( 1
ε )), where C(P ) captures geometric parameters, such as the average of the reciprocals of the sinuses

of the angles of P, and the weights of the faces of the triangulation P . However, the improvements
that the BUSHWHACK algorithm could provide can’t be used within this method. The cones from
the BUSHWHACK algorithm would start on one bisector and end on a bisector in another triangle. If
the weights of the triangles differ, then the cone would be invalid, because it assumes that the weight
within the cone is homogeneous. This method has a better running time when compared to Steiner
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Figure 1: The BUSHWHACK algorithm uses intervals to prune the search

points on the edges of the triangulation combined with the improved version of Dijkstra’s algorithm.
But the authors didn’t compare their method to the Steiner points on the edges of the triangulation
combined with the BUSHWHACK search method.

2.2.6 All Points Query

The latest addition to the field is the All Points Query (APQ) [7] datastructure. This datastructure
can find the ε-approximate optimal path in O(q) for any pair of source and destination points, where

q = max( 1√
ε

log2 1
ε ,

(g+1)2/3n1/3

√
ε

). Genus g is defined as the number of holes in the polyhedral surface P .

This is the first all-pairs query algorithm for weighted regions. A partitioning technique is used to create
the APQ. The APQ is supported by SSSP trees [5, 6, 38]. An SSSP tree contains all optimal paths
from a single source to all other points. SSSP trees are constructed by discretizing the triangulated
polyhedral surface with Steiner points on the bisectors of all triangles. The APQ datastructure is

constructed in O( (g+1)n2

ε3/2q
log n

ε log4 1
ε ) time and its size is O( (g+1)n2

ε3/2q
log4 1

ε ). This method has a large

construction time, but once the datastructure is build, it can be queried very fast. The datastructure
could be useful when many queries are performed on the same scene.

2.2.7 Conclusion and discussion

So far several methods have been devised to tackle the weighted region problem. Increasingly better
discretization scheme’s are discovered to optimize the search and a new search algorithm BUSH-
WHACK was presented. Through the variation of the ε-parameter, it is possible to balance between
path optimality and computational costs. However, most articles state that the ε-value shouldn’t be
larger than 1, which leads to algorithms that currently will not be able to run in real-time. The ε-value
is a quality measure for the approximation and is usually kept small because the focus lies on path
optimality. In Section 4.3 we will explore the boundaries of the ε-value. All methods use a polygonal
subdivision with weights as input and none of the articles takes specific assumptions about the input
to optimize the search.
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2.3 Weighted Region problem in other research fields

Several research fields address the WRP in their own way. These research fields work on the WRP
independently, because there are no references between these fields. This section describes several of
these research fields and the research that they have done on the WRP.

2.3.1 Minimum risk path planning for UAVs

Unmanned Aerial Vehicles (UAV) require robust artificial intelligence in order to navigate autonomously
and in a save way. An important part is path planning. Recently, researchers started to focus on path
planning while avoiding risks. A risks could be an enemy threat, but also flying low near a mountain.
Because UAVs fly at a certain speed, it is impossible to stop and make sharp turns. The resulting paths
must be smooth if they are to be used as guidance for a flight. Fillipis [39] compared several methods
to achieve a minimum risk path. Fillipis used a geometric predefined trajectory, manual waypoints
definition, automatic waypoints distribution and an A*-based approach. This approach was applied
to a grid of 40x40 cells, where the cells had assigned risk values. The cost function f was slightly
modified by taking a weighted sum of g and h:

f = αg + βh.

The weights α and β are adjusted based on the mission requirements. The final path is smoothed with
Dubins curves. The path finding and smoothing can be done in real-time.

2.3.2 Risk averse motion planning for mobile robots

Researches in the field of Robotics search for efficient methods to solve the WRP. They focus on
autonomous navigation of robots while avoiding risks. As opposed to minimum risk path planning for
UAVs, this problem is less constrained, because robots are allowed to take sharp turns. MacMillan [40]
uses a riskmap based on certain beacon locations. These beacons have a limited range and scan the
area for risks. The resulting riskmap is a planar subdivision with assigned weights. The map is then
uniformly sampled to generate a roadmap. The risk map is used to assign weights to the edges of the
roadmap. Once the roadmap is constructed, it can be queried to retrieve shortest paths. MacMillan
doesn’t describe any search methods that should be used to find the optimal path, but focuses on the
roadmap construction. Chestnutt [41] proposes a weighted A* approach for legged robot navigation
planning. The search is performed in the space of possible footstep actions the robot can perform.
The cost of a path is a combination of action costs and terrain costs. The focus of the paper lies on
the choice of stepping actions used for expanding nodes in the A* search, and the use of the weighted
A* approach isn’t elaborated on.

2.3.3 Military simulations

Military simulations also include the WRP, but these systems require additional requirements. The
weights correspond to threats in the environment and the cover given by the terrain. Flexible algo-
rithms are required to cope with the possible movements of threats. Reece [42] worked on tactical path
planning for individual combatants in military simulations. He compared different methods to find
a suitable method for military simulations. Skeleton methods and potential fields were disregarded
because those methods don’t work well with weights. The algorithm from Mitchell [3] was disregarded
because it cannot cope with the varying costs of the weights. Finally, a cell decomposition method is
chosen. The cell decomposition results in a weighted graph. A* is used to find optimal paths within
the grid. Kamphuis [43] uses a roadmap-based method to plan paths for fireteams while maintaining
formations and avoiding being seen by the enemy. The method has a preprocess phase that starts
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with the creation of a roadmap. Corridors are created around the edges of the roadmap. The union
of the corridors should capture the free space as much as possible. Next, weights are assigned to the
spine and the edges of the corridor. The spine of a corridor is a line segment that lies on the roadmap
edge incident to the corridor and is bounded by the corridor edges. The weight values are based on
the distance to threats, visibility from threats and distance to the spine. The roadmap edges are given
weights by taking the length of the edges times the average weight of the two corridors incident to
the edge. The online phase starts with the recalculation of the weights due to enemy movement. The
roadmap is then used to find a corridor sequence for the team leader of the fireteam. The paper doesn’t
mention which graph-search algorithm is used. The resulting sequence of nodes and edges is converted
to a sequence of corridors. This corridor sequence is used to plan the path for the team leader while
maintaining several fireteam dynamics and staying out of the line of sight of the enemy. The online
phase can be executed in real-time.

2.3.4 Conclusion and discussion

The methods proposed by researchers from the above-mentioned fields focus on avoiding danger rather
than on computing the optimal path efficiently. The UAV methods use grid-based approaches and
could be improved by using exact cell decomposition approaches. The hardest issue for those UAV
methods lies within the creation of smooth paths that could be executed by a UAV, while still keeping
the path as efficient as possible to reduce flight times and fuel costs. The WRP is mentioned in the
robotics field, but the focus lies on different aspects. The paper by MacMillan [40] has more focus on
the creation of the roadmap from the beacon readings than solving the actual WRP. Chestnutt [41]
focuses more on choosing the right stepping motion for legged robots. Both military simulation papers
[42, 43] provide real-time methods for solving the WRP. These methods give good results, but the grid
method is slow on large environments, and the preprocessing phase of Kamphuis’ method needs too
much time for single queries.

2.4 Weighted Region problem in practice

The Weighted Region problem has been addressed by researchers from several fields. In the gaming
industry, this problem is similar to tactical pathfinding. Several games use A* with weights to model
’good’ positions on the map. For instance, the bots in Counter Strike: Condition Zero [44] use this to
find sniper spots and to make paths that require jumping or crouching more expensive. Killzone [45]
uses tactical pathfinding to move characters from cover to cover.

2.4.1 Tactical pathfinding

William van de Sterren [45] is one of the developers of the tactical AI for Killzone. Killzone is a video
game created by the dutch studio Guerrilla [46]. Guerrilla works on creating a game-independent AI
framework that utilizes environment independent algorithms instead of waypoints and scripts. One
the aspects they address is tactical pathfinding. Firefights between the player and bots are a common
occurrence in Killzone. These bots use tactical pathfinding to move from one position to another
while avoiding enemy fire. A cost function is used to determine the safety of all cells in a grid. The
cost function depends on the line of sight of the enemies. A* is then used to find the optimal path
while taking these cost values into account. Figure 2 shows the same scene twice. The left part shows
non-tactical A*, and the right parts shows tactical pathfinding A*. The yellow cells are occupied by
enemies, and the orange cells show all cells that can be seen by enemies. Tactical pathfinding clearly
results in a safer path. The downside of tactical pathfinding is the number of cells evaluated. In the
example shown in Figure 2 (right) almost all cells are evaluated. The Euclidean distance heuristic
doesn’t perform well in weighted regions, and it is hard to find an efficient heuristic that guides A*
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through weighted grids. The main problem is that current heuristics estimate the costs to the goal
by taking the Euclidean distance to the goal, but the weights are not taken into consideration. The
lowest weight in the scene can be multiplied with the distance to keep the heuristic admissible and
achieve better estimates, but the heuristic will always underestimate in regions with higher weights.
Consequently, many cell will be traversed during the search, leading to increased running times. Van
de Sterren suggests to use hierarchical pathfinding to lower the number of cells evaluated.

Figure 2: A scene with a red start position and green goal position. The yellow cells are occupied by
enemies and the orange cells can be seen by these enemies. The left side shows a non-tactical A* path,
and the right side shows the final path of the tactical pathfinding A* method. Blue and pink cells are
cells that are examined by the A* algorithm, where the pink cells denote the boundary of examined
cells.

2.4.2 Influence maps

Influence Maps [47] can be used to deciding what parts of the map are controlled by which team
and for identifying chokepoints. These maps are commonly used in real-time strategy games. The
influence map contains regions with a certain influence value. These influence values consist of two
parts: static and dynamic. The static part is defined by the environment and by historical influence
data. The dynamic part is defined by enemy entities, explosions or enemy fire. The dynamic influence
values propagate to neighbouring nodes and they decay over time. The influence map is created by
adding the influence values to the current map of the environment. This could be any type of map
from grids to waypoint graphs. With the influence map in place, paths are planned with the potential
fields method [48] to avoid hazards. As noted in Section 2.1.3, these potentials fields suffer from local
minima and could lead to units getting stuck.

2.4.3 Conclusion and discussion

Practical applications have a hard requirement on real-time execution. Currently the ε-approximation
methods from Section 2.2 aren’t used in practical applications, because these methods focus on ε-
optimal paths and are unable to perform in real-time. Instead, A* on weighted grids is the most
common method. The computations for A* on weighted grids increase fast and will become problematic
for large maps, because it’s hard to find a good heuristic. The potential fields method suffers from
local minima and yields even more problems on weighted maps due to the increasing number of local
minima in comparison to non-weighted maps. Any of the methods from Section 2.2 might be able to
overcome these problems, but the resulting paths can only be rough approximations of the optimal
solution to guarantee real-time performance. Up until now there are no practical applications known
that use any of these methods, and there is a large gap between ε-optimal and time-efficient methods.
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2.5 Conclusions

Although several ε-optimal methods have been devised to approximate the WRP, none of these methods
are able to perform in real-time. Research fields such as robotics, UAVs and military simulation, as
well as practical applications such as games, use path planning algorithms with assigned weights to
tackle the WRP. The ε-optimal methods are hardly mentioned in any of these research fields. A* on
weighted grids is the most common method and is able to run in real-time. However, high-resolution
grids or multiple characters are problematic because A* on a weighted grid performs much slower than
A* on non-weighted regions, because the underestimation of the heuristics for weighted regions cause
A* to traverse many more nodes. This leads to a large gap between optimal and efficient solutions
to the WRP. The gap could be closed from both sides. Better heuristics for A* could improve the
running time and allow for higher resolution grids to improve optimality. Higher ε-values could lead
to faster execution at the cost of path optimality. A hierarchical method that combines the speed of
A* on a high level with the path quality of ε-optimal methods at lower levels might be the solution.
Once the high-level optimal path has been found by the A* algorithm, the ε-optimal method adds
Steiner points within the cells from the high-level path. One could also think of a method that uses
ε-optimal methods at a high level as a heuristic for A*. The high abstraction level will be a sparse
graph, and ε-optimal methods will be able to compute results fast, while the A* algorithm will have
better guidance to the goal with a better heuristic. Assumptions on the input of the WRP might also
prove to be the solution to this problem, but there are currently no methods that use this strategy. If
we can simplify the WRP by taking assumptions on the shape or size of regions, whether the regions
are axis-aligned or the amount and values of the weights, then we might be able to solve this modified
WRP faster. It is important that the gap between optimal and efficient solutions to the WRP is closed
because there are many applications that can profit from a solution that is both near-optimal and
efficient. Such a solution could be useful to improve crowd simulations by creating individual paths
for characters with different individual preferences. These preferences could be modeled through the
weights of different regions. This solution could also be used to generate the indicative routes for the
MIRAN method [2]. Games could use larger maps and enable tactical pathfinding for many characters
at the same time. The decrease in pathfinding time could also be used to render better graphics or
spend more time on the AI. In the rest of the thesis we will attempt to close the gap. In Section 3
we improve the heuristics for A* on weighted grids. Section 4 discusses the boundaries of the ε-value,
and in Section 5 we introduce several hybrid methods by combining A* grid results with an ε-optimal
method.
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3 A* grid approaches

In this section, we will look at A* grid approaches to tackle the WRP. These methods consist of
discretizing the scene with a grid, assigning weights to the cells and using A* to find an optimal path.
As mentioned in Section 2.4.3, these methods are applied in many practical applications. First, we
will examine how the solutions given by grid-based approaches compare to an optimal solution in
terms of path-costs. The upper bound on the overestimation of the path costs can be expressed with
the ε-value. Any path computed by a method that is ε-optimal will have a path costs that is always
smaller than the length of the optimal path times 1+ ε. The ε-value of grid-based methods is currently
unknown and we will introduce a formula to calculate the ε-value for grid-based methods that depends
on the weights and the resolution of the grid. If we can determine the ε-value of grid-based methods,
then we can compare A* grid approaches with other ε-approximation methods. We will also look at
the heuristics used by A* and try to improve heuristics to better suit weighted grids.

3.1 ε-optimality of grid methods

To compare different approaches to the WRP efficiently we need to be able to compare the efficiency
and path quality of these methods. Efficiency is easily compared by looking at the running times of
the different algorithms. Path quality can be compared by looking at the optimality bounds of the
different methods as expressed with the ε-value. However, there is no such bound known for grid-based
methods. If we could determine such an optimality bound, then we can compare grid-based method
to other ε-optimal methods.

3.1.1 Grids

First we have to define what kind of graph we are using. There are two possible ways of creating a
graph from a grid. As shown in Figure 3, the graph nodes could be the intersection of the cell borders
or the center of the cells. We will always use the cell centers as graph nodes. Each node will be
connected to the nodes of all eight surrounding cells. This will allow characters to move straight and
diagonally within the graph.

Grid

Graph 1

Graph 2

Figure 3: Two possible graphs for a rectilinear grid. In Graph 1, the nodes are defined as the cell
border intersections of the grid. In Graph 2, the nodes are defined as the center points of each grid
cell.
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3.1.2 Assumptions

We will start by making several assumptions. These assumptions will simplify the problem definition,
and solutions for the simplified version can be found in an easier way. Then we can expand the
solution to more general cases by dropping the assumptions one by one. We will start with the
following assumptions:

• The start and goal position lie on grid nodes

• All region boundaries lie on cell edges

• The scene consists of one region with weight 1

• All cells have unit length

3.1.3 Straight lines

First, we will look at an example scene that contains only one region with weight 1 and cells of unit
length. In order to find the maximum ε-value, we will compare the length of the optimal straight-line
path and the grid path for several goal positions around a fixed start position. As shown in Figure 4,
we only have to look at one direction of 45◦ due to the symmetry of a regular grid. Any maximum
ε-value found within this wedge of 45◦ can be reflected in the sides of the wedge to find corresponding
ε-values in the other directions. The length of the shortest path between an arbitrary start s = (xs, ys)
and goal node g = (xg, yg) is described by its Euclidean distance: d =

√
(xs − xg)2 + (ys − yg)2.

The length of the shortest path in the grid between an arbitrary start and goal node is defined by
dgrid = a

√
2 + (|xs − xg| − a) + (|ys − yg| − a), where a refers to the number of diagonal steps:

a = min (|xs − xg|, |ys − yg|).

(0,0)

y

x

9◦ 27◦ 45◦

81◦

63◦

Figure 4: A grid with shortest Euclidean paths (black straight lines) and shortest grid paths (red
dashed lines) from (0,0) to goals at multiple angles. The shortest paths can always be reflected in the
line at 45◦, thus any ε-value we find between 0◦ and 45◦ can also be found between 45◦ and 90◦. This
holds for all directions, and that’s why we only have to look at one wedge of 45◦ to find the ε-value in
all directions.

An example of Euclidean shortest path lengths and grid shortest path lengths for the example
wedge are shown in Figure 5, where s = (0, 0) and g = (x, 10). If we subtract these two distances, then
we will find the difference between the shortest path and the shortest path in the grid: dif = dgrid−d.
The ε-value can then be found by ε = dif/d. The ε-values for the example wedge are plotted in Figure
6, where s = (0, 0) and g = (x, 10).
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Figure 5: Graph of the Euclidean distance and grid distance for y = 10 and x = [0 : 10].
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Figure 6: Graph of the epsilon values for y = 10 and x = [0 : 10].

The maximum ε-value can be found by taking the derivative of ε, finding the x-value where ε′ = 0
and putting this x value back into the ε formula. To find the derivate of ε, we have to make three
out of the four parameters constant. The start position can be set to (0,0), and we will introduce a
new variable m that controls the size of the wedge (e.g. the maximum x- and y-coordinate). With
static values xs = 0, ys = 0 and yg = m and one variables xg = x ranging from [0 : m] we can

transform the ε-formula. We first note that a is now always equal to x. Thus ε = (x
√
2+m−x−

√
x2+m2)√

x2+m2
.
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The derivate of ε is ε′ = m(
√
2m−m−x)

(m2+x2)
3
2

, the derivation from ε to ε′ is shown in Appendix A. Solving

ε′ = 0 yields x =
√

2m − m as shown in Appendix B. We can then substitute x to find ε. During
this substitution, as shown in Appendix C, we lose the m parameter. Thus we can conclude that the
ε-value is independent of the wedge size m. After the substitution we will have the general formula for

calculating the ε-value: ε =
√

(4− 2
√

2)− 1 ≈ 0.0824.

3.1.4 Any start and goal position

Next we will drop the assumption that the start and goal positions lie on grid nodes. We can use
arbitrary start and goal positions by connecting the start and goal positions to the nodes of the cells
that contain the start and goal positions. This approach will not yield optimal paths, but in this
paragraph we will show that the additional cost are insignificant. The costs of the path will then
be the combination of the costs from the start position to the center of the start cell, the costs from
the start cell to the goal cell and the costs from the goal position to the center of the goal cell. We
can adjust the formula for dgrid to reflect this behaviour. We start by defining a mapping from the
coordinates of arbitrary points to the center points of the cells to find the grid node that corresponds
to a given query point. By (x′s, y

′
s), (x′g, y

′
g), we denote the mapped coordinates of the coordinates of

our start and goal points, respectively. We then let x′s = bxsc+ 1
2 , y′s = bysc+ 1

2 , x′g = bxgc+ 1
2 and

y′g = bygc+ 1
2 . The new grid distance is then computed as dgrid = a

√
2+(|x′s−x′g|−a)+(|y′s−y′g|−a),

where a = min (|x′s − x′g|, |y′s − y′g|). The formula for ε now contains several floor functions and is no
longer differentiable. However, we can examine the impact on the maximum ε-value. The maximum
difference between the shortest path and grid path will occur when the start or goal position, or both,
lie in the corner of a cell. The grid path will have an extra cost 1

2

√
2 to reach the grid node. If both

the start and goal points lie in the corner of a cell, an extra cost of
√

2 is needed to connect the points
to the grid path. This value of

√
2 is only added once to the path and is completely independent of

the path itself. That’s why the ε-value will remain unchanged. One can clearly see that as soon as the
path reaches a certain length, the extra costs of

√
2 will no longer be significant. We will remove the

mapped coordinates (x′s, y
′
s), (x′g, y

′
g) from the grid distance dgrid, because it has no significant effect

on the ε-value.

3.1.5 Obstacles

We will now add obstacles to the scene. A shortest path among obstacles will always be a straight line
from start to goal, or it will touch the obstacle vertices as can be concluded from the Visibility Graph
methods (Section 2.1.4). As shown in Figure 7, the shortest path can be split up in several segments
that only have the start position, goal position or obstacle vertex as endpoints. For each of these
segments we can calculate the ε-value with the formula from the previous paragraph, because each
segment lies in a subregion without obstacles. In contrast to the previous paragraph, the additional
cost of

√
2 seems to become significant, because the maximum number of segments is equal to the

length of the path. However, each segment lies within an obstacle-free rectangle where the segment
of the shortest path is always longer than the grid path that is contained within the obstacle-free
rectangle. For each obstacle-free region, except for the ones containing the start and goal position, the
segment of the shortest path will be equal to the diagonal of the rectangle or the longest side. There is
no straight path that lies within a rectangle that is longer than the diagonal, and a straight grid path
is always shorter than the longest side of the rectangle. To find the ε-value of the entire path, we need
to link all the segments together. The end and start point of two consecutive segments are the same
obstacle vertex, but they correspond to two different grid nodes. For instance in Figure 7, consecutive
segments (Start,A) and (A,B) both share vertex A, but segment (Start,A) ends in cell 1, while segment
(A,B) start in cell 2. Linking these nodes will cost an additional

√
2 per link. The maximum number
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of obstacles touched by the shortest path is equal to the length of the path minus one as is shown in
Figure 8. If n is the length of an optimal path through a scene with obstacle, then the grid path can
be divided into a maximum of n segments. Each of these segments need to be linked to each other,
making the number of links smaller than n. The relative overestimation of each segment is equal to the

ε-value from Section 3.1.3:
√

(4− 2
√

2)− 1, and the link costs are
√

2. For an optimal path of length

n the absolute overestimation of the grid path will be bounded by n ∗ (
√

(4− 2
√

2)− 1) + n ∗
√

2. We

can find the relative overestimation of the total path by dividing by the length of the path: n. As

such, the resulting ε-value will be: ε =
√

2 +
√

(4− 2
√

2)− 1 ≈ 1.4966.

Start

Goal

A

B2

1

Figure 7: A shortest path (straight line) and grid path (dashed line) among obstacles (grey rectangles).
The shortest path can be split up in three segments: (Start,A), (A,B), (B, Goal).

Start

Goal

Figure 8: A shortest path (straight line) and grid path (dashed line) among obstacles (grey rectangles).
This scene shows the worst case scenario where the maximum number of links is needed.

3.1.6 Weighted regions

We will now extend from obstacles to weighted regions. The main difference is that the shortest path
might now intersect the weighted regions at any location, instead of always touching the obstacle
vertices. In scenes with weighted regions, two types of intersections between the shortest path and an
region edge may occur. The first type is shown in Figure 9, and it is an edge crossing intersection.
This intersection causes the path to bend at an angle defined by the weights of both regions. The
second type is shown in Figure 10, and it is an edge using intersection. Here the path uses a part
of an edge of a neighboring region with a lower cost. Both intersections can be handled in one case.
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The segments of the optimal path are now defined by the intersections of the optimal path with the
region boundaries, and thus each segment will always be completely enclosed by one region. Because
the weights within a segment are uniform, the ε-value for each segment remains unchanged. However,
the link costs are different compared to the unweighted scenario. An example of an edge intersection
is shown in Figure 11, where w1 < w2. We can find a grid node A in the region with the higher weight
that has the intersection on one of its cell borders. In the other region, we can find one or two grid
nodes that are candidates to lie on the shortest path in the grid. We can always find the grid node B
that shares a cell border with A. The shortest path will be split up in two segments by edge e that
separates the two regions. If the shortest path intersects a cell border adjacent to the intersected cell
border, then the grid node that shares this border with B will also become a candidate C. The link
costs will consist of the connection between A and B or the connection between d and A, where d
is the intersection between AC and e. The connection between A and C is split in half because the
segment costs, for the segment between Start and B, already covers the costs from the start to d. The

final link costs will be min (
√
2
2 wmax,

1
2wmin + 1

2wmax), where wmin and wmax are the minimum and
maximum weight of the scene, respectively.

p

q

φ

ψx

Figure 9: Edge crossing intersection.

x y
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p q

Figure 10: Edge using intersection.

w1

w2

C
B

A

d
e

Start

Goal

Figure 11: The shortest path (straight line) and grid path (dashed line) among two weighted regions
and their boundary edge e, where w1 < w2. Candidate grid nodes are named A, B and C and the
intersection between e and AC is named d.
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3.1.7 Grid resolution

We will now look at the impact of different grid resolutions to the ε-value. We will start by introducing
a new parameter r that defines the size of the cells. In the previous paragraphs we used r = 1, and we
will now extend the discussion to arbitrary values of r to find an upper bound for the ε-value in the
general case. First we will adjust the grid distance: dgrid = ar

√
2 + (|xs − xg| − a) + (|ys − yg| − a),

where a =
min (|x′

s−x′
g|,|y′s−y′g|)
r . Variable r can be removed, because in a we divide by r but later we

multiply a by r. The grid distance will become: dgrid = a
√

2 + (|xs − xg| − a) + (|ys − yg| − a), where
a = min (|x′s − x′g|, |y′s − y′g|). The formula is exactly the same as for straight lines, and thus we can
conclude that the resolution has no impact on the ε-value of the segments.

However, the resolution does have an impact on the link costs. The link costs will be r
√

2 per link

for obstacles and r ∗ min (
√
2
2 wmax,

1
2wmin + 1

2wmax) for weighted regions. An interesting resolution
to look at is one that comes very close to zero. An infinitesimal resolution should lead to the best
approximation of the problem in the Euclidean space. If such a resolution is used, then link costs will
be reduced to an infinitesimal value, so we can conclude that the lower bound on the ε-value is equal

to formula from Section 3.1.3: ε =
√

4− 2
√

2−1 ≈ 0.0824. The maximum ε-values are shown in Table
1 for different resolutions.

Cell size ε-value
Segments Links Total

1
2 0.0824 0.7071 0.7895
1 0.0824 1.4142 1.4966
2 0.0824 2.8284 2.9108
4 0.0824 5.6569 5.7393
8 0.0824 11.3137 11.3961

Table 1: Table showing the different ε-values for different resolutions.

3.1.8 Region boundary on cell edges

To keep the ε-value below ∞, we have to keep the assumption that the region boundaries are on the
cell edges. If we dropped this assumption, then the homotopy of the grid might differ from the actual
scene. One could reason that the resolution could always be chosen in such a way that the homotopy
remains unchanged, but increasing the resolution will just lead to more region boundaries aligning
with the cell edges. A straightforward method to convert a scene to a grid is by drawing the scene and
reading the pixel values from the framebuffer. For instance, OpenGL [49] samples the center of each
pixel to determine its value.

As can be seen in Figure 12, if an obstacle blocks the center but not the rest of the scene, then
the entire cell will be blocked while the actual scene is not. This loss of information could lead to
situations where the grid does not contain a path from start to goal while the scene does. We can
prevent such a situation by restricting all region boundaries to lie on the cell edges. Problems can also
occur when the homotopy of the grid is equal to the scene. If the gray area in Figure 12 is a very high
weight w, then the ε-value will become ε ∗ w making it very high and thus useless.

3.1.9 Tiles

Up until now we have been using octiles as cells in the grid. Octiles are always connected to all of their
eight neighbours. Tiles only allow horizontal and vertical movement and are only connected to four of
their neighbours. We will now look at ε-values for tiles. The grid distance in this case is the Manhattan
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Start Goal

Scene

Grid

Start Goal

Figure 12: A scene of 1 by 4 with an obstacle (grey) and the cells of the grid that is extracted from
this scene. Because the centers of each cell lie within the obstacle, all cells will become obstacle cells.
In the grid there will be no solution to the shortest path from start to goal.

distance between the start and goal points, i.e. dgrid = |xs − xg| + |ys − yg|. The grid distance is
shown in Figure 13 for a wedge where s = (0, 0) and g = (x, 10). For the tiles, one can clearly see

that the maximum ε-values occurs with diagonal movements. This ε-value is equal to 2−
√
2√

2
≈ 0.4142.

The link costs for obstacle regions will increase to 2, because there are no diagonal links allowed. The
weighted region link costs will be 1

2wmin + 1
2 , because the diagonal movement from candidate A to C

is not allowed. One could reason that there are two possible paths that replace the diagonal from A
to C: ABC and AB′C, where B′ is B reflected in AC as is shown in Figure 14. However, A and B′

lie in the region with the highest weight, thus ABC will always be less expensive than AB′C.
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Figure 13: Graph of the Euclidean distance and grid distance for y = 10 and x = [0 : 10] for tiles and
octiles.
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Figure 14: The shortest path (straight line) and grid path (dashed line) among two weighted regions
and their boundary edge e, where w1 < w2. Diagonal lines are not allowed when using tiles, so there
are two possible paths that replace AC: ABC and AB′C.

3.1.10 Conclusion

In this section, we have analyzed the ε-value of grid approaches. This value expresses an upper bound
on the approximation of the shortest path in comparison to the shortest path. Knowing the ε-value
for grid based search methods allows us to compare these methods with ε-approximation methods that
are based on a triangulation of the scene. The final ε-value always consists of the combination of the
segment costs and the link costs. The segments costs define the overestimation of each straight subpath,
and the link costs define the additional costs required to link all segments together. The segment costs

are static and will always be
√

4− 2
√

2− 1 ≈ 0.0824. The link costs depend on the resolution of the

grid and the weights of the scene and is defined as: r ∗min (
√
2
2 wmax,

1
2wmin + 1

2wmax), where r is the
cell size and wmin and wmax are the minimum and maximum weight of the scene, respectively. With
the resulting ε-value for grid approaches, we can now focus on improving the speed of A* algorithms
through better heuristics.

3.2 Heuristics for A*

The A* algorithm is a flexible algorithm, because it can use different heuristics for different scenes.
The A* algorithm finds a shortest path in a graph faster than or equally fast as Dijkstra’s algorithm if
an admissible heuristic is used in an unweighted region, as mentioned in Section 2.1.1. An admissible
heuristic never overestimates the costs to the goal. However, problems arise when weighted regions
are added to the scene. The core of these problems lies with the admissible heuristic. If the Euclidean
distance is used as a heuristic, then it can be multiplied with a weight in order to give a better
estimation of the distance to the goal. However, the chosen weight can’t be higher than the lowest
weight, otherwise the heuristic might overestimate the actual cost. Picking the lowest weight as a
multiplier will make the A* algorithm behave more like Dijkstra’s algorithm, because the g-value
could be very high due to regions with very high cost, while the h-value is rather low, because the
lowest weight is multiplied with the Euclidean distance. Thus, keeping an admissible heuristic could
lead to big underestimations of the actual costs to the goal. It might be tempting to just calculate the
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actual costs to the goal, but this negatively influences the performance of the A* algorithm because
the heuristic value is calculated for each visited node. Increasing the costs of this calculation from
O(1) to anything higher will increase A* running times. However, this is a trade-off. The additional
costs for calculating the heuristic could be negated by visiting less nodes because the heuristic is better
suited for guiding the A* algorithm. In this section, we will describe several existing heuristics and
try to adapt the Hierarchical A* heuristic to the WRP. The heuristics described in this section will be
compared through a series of experiments in Section 7.2.

3.2.1 Dijkstra

Using a fixed heuristic of 0 for all nodes lets the A* algorithm behave like Dijkstra’s algorithm. From
now on we will refer to it as Dijkstra’s heuristic. Dijkstra’s heuristic will always find the shortest path
through a weighted region if it exists. It will be used as a baseline to compare the other heuristics
with.

3.2.2 Euclidean distance times lowest weight

The Euclidean distance is the most used heuristic for A* in unweighted regions. However, in weighted
regions this heuristic suffers from underestimation, thus making it perform more like Dijkstra’s algo-
rithm. A small adjustment can be made by multiplying the Euclidean distance with the lowest weight
in the scene. If a scene has weights ranging from 10 to 15, then the Euclidean distance will yield a
very underestimated cost to the goal. If we multiply the Euclidean distance with the lowest weight,
then we can compensate a bit. However, we can’t pick any weight higher then the lowest value because
then the heuristic will overestimate the costs to the goal in regions with the lowest weight leading to
non-optimal paths.

3.2.3 Hierarchical A*

As mentioned in Section 2.1.1, Hierarchical A* [16] uses a heuristic that creates several abstraction
layers from which better heuristics are derived. This will lead to increased running times for the
heuristic calculation, but the better guidance should speed up the search. The abstraction layers are
only defined for unweighted regions. In an unweighted region, the abstraction layers are created by
taking the nodes with the highest number of free nodes around it and grouping them with all nodes
within a certain distance until all nodes are grouped. This process is repeated until there is a top
layer with just a single node. The abstraction layers and the extraction of heuristic values from this
hierarchy of abstraction layers will be discussed.

Abstraction layers The hierarchy of Hierarchical A* consists of one or more abstraction layers.
Each abstraction layer holds an abstract representation of the scene of a certain size. The higher one
goes in the hierarchy, the smaller the abstract representation of the scene will become. The difference in
size between two abstraction layers is controlled by an abstraction factor. The size of abstraction layer
k can be found by dividing the width and height of abstraction layer k − 1. Each block of abstraction
factor*abstraction factor nodes on abstraction layer k − 1 will refer to a single node on abstraction
layer k. Whereas the abstraction factor in the original Hierarchical A* for unweighted regions was
fixed to the value of 3, the abstraction factor is now a parameter of the Hierarchical A* algorithm.
In Section 7.2.1, we will analyze the impact of the abstraction factor by comparing different values.
Higher abstraction factors will speed up the construction of the hierarchy, and heuristic values will be
computed faster because the abstraction layers are smaller. However, the heuristic values might be
inaccurate due to the high level of abstraction and thus lead to longer A* searches. The costs of travel
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between two nodes in an abstraction layer is equal to the costs within the layer times the abstraction
factor. In Section 7.2.1, we will compare different approaches to the creation of the abstraction layers.

Finding heuristic values Once the abstract hierarchy is constructed, heuristic values can be re-
trieved from it. If a heuristic value is requested for a certain node, then a search is started in the first
abstraction layer to find the costs to the goal. This search again requires heuristic values, which it
will retrieve from the abstraction layer above the current layer. This process is repeated on each layer,
until the top layer is reached. On this layer, paths are planned using Dijkstra’s heuristic. This process
leads to a high number of A* executions to find the shortest path from several starting positions to the
same goal position. Fortunately, we can use previously found shortest paths (heuristic values) in later
searches. Several caching techniques have been devised by the authors of the Hierarchical A* method
[16] that can reduce the number of A* executions. These methods will be discussed in the following
paragraphs.

Several nodes on abstraction level k direct to the same node on level k + 1. If heuristic values
are requested for these nodes on level k, then Hierarchical A* will compute the shortest path from
the same start and goal position on abstraction level k + 1 several times. We can prevent repeating
the same search by caching the heuristic values that are computed. We can store the heuristic value
together with the weight value if we create a grid of pairs on each abstraction layer. If a heuristic value
is requested, then the grid can be efficiently queried to see if the value is already known. This caching
method is called V0 caching, and it will reduce the number of searches by a factor that is equal to the
abstraction factor.

Further improvements can be made through the use of optimal path caching. This method, also
known as V1 caching, caches the heuristic values of all nodes that lie on an optimal path to the goal.
If an optimal path is found for a start and goal position, we also know the optimal costs to the goal
for each node that lies on the optimal path to the goal. If we also store this information, then we can
use it to our advantage in later searches because all searches lead to the same goal position. We can
use the previously found heuristic values instead of requesting heuristic values one abstraction layer
higher. These heuristic values can give better guidance to the current search and reduce the running
time. Although this caching method has a high probability of reducing the number of nodes that are
explored in subsequent searches, it has a chance to compute suboptimal paths due to the big difference
in heuristic values between nodes that lie on the path and nodes that lie just next to the path.

S1

GoalX

S2

X ′

Figure 15: An optimal path is shown from S1 to the goal position together with the starting point of a
new search S2. If Dijkstra’s heuristic is used, then the search will first encounter the previously found
optimal path at X. Combining paths S2X and XGoal will not return an optimal path. An optimal
path can be found by connecting S2 via X ′.

A better use of optimal path caching is done with V2 caching. V2 caching also stores the heuristic
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values of all nodes that lie on previously found optimal paths, but uses them to connect the new search
paths to previously found optimal paths. We can’t just blindly terminate the search once we reach a
node that lies on a previously found optimal path because the combination of the currently explored
path and the previously found path might not be optimal, as shown in Figure 15. We can, however,
connect the paths and use the combined path as a candidate for the optimal path. Let X be the
node that is discovered that already lies on an optimal path to the goal found in a previous search.
We can add the goal position to the open list with an f-value that is equal to the g-value plus the
heuristic value of X. Furthermore, we don’t have to explore the nodes around X because X is already
on the optimal path. This will make the previously found optimal path to the goal a border for the
exploration of the current search and thus reduce the number of nodes explored, as shown in Figure
16 and 17.

S1

Goal

S2

Figure 16: An optimal path is shown from S1

to the goal position together with the start-
ing point of a new search S2. The exploration
of Dijkstra’s algorithm with start position S2

is shown with the open nodes (green), closed
nodes (red) and undiscovered nodes (white) at
the termination of the search.

S1

Goal

S2

Figure 17: An optimal path is shown from S1

to the goal position together with the start-
ing point of a new search S2. The exploration
of Dijkstra’s algorithm with start position S2

is shown where optimal nodes are not further
explored, with the open nodes (green), closed
nodes (red) and undiscovered nodes (white) at
the termination of the search.

3.2.4 Grid lookup

As mentioned in Section 3.2.2, the Euclidean distance could underestimate the costs because it has no
knowledge of the weights. The grid lookup method tries to improve the Euclidean distance heuristic
by summing up the cell costs of all nodes in a straight line between the current node and the goal
node. This will return the actual costs of the straight line path from the current node to the goal
node. The extra computational costs required by looking up the values could be negated by the better
guidance that is given by this heuristic and thus less nodes will be explored. However, this heuristic
leads to local admissibility instead of global. If the start and goal position lie within the same region,
then the resulting path will be the straight line between these two points, because the heuristic never
looks further. A possible shortest path via a surrounding region with a much lower weight will always
be overlooked by this heuristic.

3.2.5 Conclusions

In this section, we have analyzed several heuristics for A*. We discussed the impact of weighted regions
on the performance of A* due to the underestimation of common heuristics, such as the Manhattan
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distance and Euclidean distance. Furthermore, we adapted the Hierarchical A* method to work with
weighted regions. We discussed the creation of abstraction layers and how the heuristic values can
be retrieved efficiently from the abstraction hierarchy. Finally, we devised a new method call Grid
Lookup.
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4 ε-approximation approaches

In this section, we will look at ε-approximation approaches to solve the WRP. These methods discretize
the environment to find an approximation of the shortest path. The approximation is bounded by the
parameter ε. The resulting shortest path of an ε-approximation method is always shorter than 1 + ε
times the shortest path. First we will dive into the details of the ε-approximation method as defined
by Aleksandrov, Lanthier and Maheshwari [5] and a graph search method especially designed for the
WRP called BUSHWHACK [11]. Both these methods have been implemented in our framework. We
will also look at the bounds of the ε-value. The bounds are required to compare the ε-value of the
ε-approximation methods with the ε-value of the A* grid approaches.

4.1 Steiner points

The Steiner points approach from Aleksandrov, Lanthier and Maheshwari [5] uses a triangulation of
the scene with assigned weights. Steiner points are added to the edges of the triangulation with a
logarithmic distribution. Placing a logarithmic number of Steiner points on each edge will ensure that
any path p between two adjacent edges can be approximated within the ε-bound by the paths between
the Steiner points left and right of p. Using a logarithmic distribution leads to problems near the
vertices of the triangulation. It yields infinitesimal intervals between the Steiner points and thus an
infinite number of Steiner points. A vertex vicinity is defined to solve this problem. The vertex vicinity
is a polygon around the vertex that is void of Steiner points. The vertex vicinity S(v) is visualized in
Figure 18. For any vertex v, the radius of the vertex vicinity r(v) is defined as: r(v) = εd(v), where
d(v) is the shortest distance from the vertex v to the boundary of the union of all faces incident to v.

d(v) v

S(v)

Figure 18: The vertex vicinity S(v) of vertex v. The dashed line represents d(v).

Given the vertex vicinity the Steiner points can be added to the edges of the triangulation. For
each vertex v, Steiner points will be added on all edges adjacent to v. First we will define αv to be
the minimum angle between any pair of adjacent edges that are incident to v. The first Steiner point
s1 that will be added to edge e is always placed exactly on the border of the vertex vicinity, and thus

|vs1| is equal to r(v). Let λ = 1 + ε ∗ sinαv, if αv <
π
2 or λ = 1 + ε otherwise, and let µ = logλ( |e|r(v) ).

Following Steiner points will be added according to |vsi| = rvλ
i−1 for s2, s3, ..., sµe−1. This strategy

will create Steiner point sets for every vertex-edge pair and thus generate two sets for each edge. These
two sets are merged by a single rule. If the intervals induced by two pairs of Steiner points overlap,
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then the the largest interval is removed.
Once all Steiner points have been added, a graph can be created. All Steiner points and vertices

within each triangle are connected to each other to form the graph. The graph will consist of |V | = nm
vertices and |E| = nm2 edges, where n is the number of faces in the original triangulation and m is

the total number of Steiner points. The total number of Steiner points is defined by m = O(logδ(
|L|
r )),

where |L| is the length of the longest edge, r is ε times the minimum d(v) for all vertices v. Furthermore,
δ ≥ 1 = sin(θ), where θ is the minimum angle between any two adjacent edges of the triangulation.
Once the graph is constructed, any graph search method can be used to find the ε-approximation of
the shortest path.

4.2 BUSHWHACK

Several approaches to the WRP are based on a discretization of the scene using Steiner points. A graph
can be created from these points that can be used to compute optimal paths. However, information
is lost during the conversion to a graph. The BUSHWHACK [11] method preserves the geometrical
properties of the scene by dynamically creating a new datastructure. This method uses a ’lazy’ and
best-first propagation scheme to find an optimal path while exploring less edges than other graph
search methods. The new datastructure is a subgraph of the total graph and is created in a ’lazy’ way:
Edges are only added to the subgraph when they are needed. The algorithm finds a shortest path in
the subgraph in O(nm log nm), where n is the number of faces in the triangulation of the scene and
m is the total number of Steiner points added to the triangulation.

The geometrical properties that are preserved by this method yield a reduction in the number of
edges that need to be explored in the graph. The most important property is that any two optimal
paths in the graph with the same source point cannot intersect in the interior of any region. This
property is derived from the unweighted path planning problem, where any two shortest paths with
the same source can never intersect. Each triangle has a uniform weight and can be treated as a
unweighted path planning subproblem, in which intersecting optimal paths cannot exist. With this
property, we can significantly reduce the number of graph edges that are created when connecting the
Steiner points. A new datastructure called Interval is introduced to keep track of feasible graph edges.
An interval is defined by two edges (e, e′) of the triangulation and a point v on e. The interval consists
of all points v∗ on e′ where the costs from s to v plus the costs from v to v∗ is optimal, where s is
the start position. With this interval definition, we can partition the Steiner points on each edge into
several intervals of consecutive points, as shown in Figure 19.

The interval creation is a ’lazy’ process, and intervals are only generated when new points are
discovered. The first point that is discovered on an edge of a triangulation will create an interval to
the other two edges, where each interval will contain all points on that edge. As soon as a second
point is discovered, the intervals are adjusted in such a way that all intervals will obey the above
mentioned rule. This process is visualized in Figure 20. In order to quickly retrieve candidates for
each interval, the intervals need to be sorted based on path costs. Each interval is split up in two
monotonic intervals. The splitting point is the perpendicular point of v1 on e′ as illustrated in Figure
21. Having monotonic intervals will allow us to find the optimal path within an interval in O(1) time.

Once a new set of intervals is created for a newly discovered point, there are also a couple of
non-interval paths that need to be considered. Intervals only consider face-crossing paths, but the
solution to a WRP can consist of face-crossing and edge-crawling paths. These edge-crawling paths
are added manually next to the intervals. There are three types of edge-crawling paths, and they are
visualized in Figure 22. The first type is a path that connects two neighbouring Steiner points on
the same edge within an interval. The second type is a path that connects a Steiner point within an
interval to a Steiner point outside of the interval. The final edge-crawling path is a path that connects
a vertex to the closest Steiner point on an edge. The candidates of the intervals and the non-interval
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Figure 19: The BUSHWHACK algorithm uses intervals to prune the search.

e′

v1 v2
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v1 v2
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vnew
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Figure 20: Adding a new interval to an edge.

paths are added to a priority queue that sorts them based on their costs to the start position. At every
iteration, the shortest path will be picked from the priority queue and will be further explored until
the goal is found.

The BUSHWHACK search method is a graph-search method that only plans from one node to
another. In practice, paths are planned from arbitrary start and goal positions. In order to let the
BUSHWHACK method cope with arbitrary start and goal positions, new nodes have to be created
for those points. We will create these new nodes by creating vertices for the start and goal position
and connecting these vertices to the three vertices of the triangle that contains the new vertex. The
triangulation will be altered before the Steiner points are added. The downfall of this approach is that
the altered triangulation cannot be used for the next search because then the number of edges and
nodes will increase with every search. After a search is finished, the triangulation will be restored to
its original state.
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Figure 21: Splitting an interval into monotonic intervals. The splitting point is the perpendicular point
of v1 on e′.

e′

e e
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1. 2.
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Figure 22: The three types of edge-crawling paths. 1: An edge-crawling path where the start and end
point lie within an interval. 2: An edge-crawling path where the start point lies within an interval and
the end point lies outside of the interval on edge e′. 3: An edge-crawling path starting from a vertex.

4.3 Upper bound on ε

To effectively compare A*-grid approaches with ε-approximation approaches, we have to match up
their ε-values. We have to know the upper bound on the ε-values in order to determine our playing
field. The lower bound is clearly given in all papers: ε > 0. This follows from the definition of ε: the
length of the approximated path is always shorter than 1 + ε times the length of the optimal path. For
ε = 0 the approximated path is equal to the optimal path. An upper bound is not explicitly mentioned
in most papers and will be researched in this chapter.

4.3.1 Steiner points

The vertex vicinity holds the key to finding the upper bound on the ε-value. The radius of the vertex
vicinity is defined by ε, and if the vertex vicinity is too large then it will overlap with vertex vicinities
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of other vertices. Overlapping vertex vicinities are not allowed because otherwise there may be triangle
edges without any Steiner points on it. The vertex vicinity S(v) is visualized in Figure 18. For any
vertex v, the radius of the vertex vicinity r(v) is defined as: r(v) = εd(v), where d(v) is the shortest
distance from the vertex v to the boundary of the union of all faces incident to v. The maximum
ε-value can be found in the case where the vertex vicinities of two vertices that share an edge exactly
touch each other and the edge will contain exactly one Steiner point on the intersection. The size of
the vertex vicinity is controlled d(v). Let d(v) be equal to d(v2) for vertex v and a neighbouring vertex
v2 that are connected through edge e. As such d(v) and d(v2) are equal to the length of e. The vertex

vicinities of v and v2 will exactly touch if the radius of both vertex vicinities are equal to |e|2 , where
|e| is the length of e. If we substitute the variables in the formula of the radius of the vertex vicinity

r(v), then we will end up with: |e|2 = ε|e|. This leads to an ε-value of 1
2 . Higher values for ε could lead

to overlapping vertex vicinities. Thus, we can conclude that for this method it holds that 0 < ε ≤ 1
2 .

4.3.2 Steiner points on bisectors

The Steiner points on bisectors approach from Aleksandrov, Maheshwari and Sack [6] places Steiner
points on the bisectors of the triangulation of the scene, as shown in Figure 23. These Steiner points are
connected to find a graph that can be used to find ε-optimal paths. Similar to the Steiner points on the
triangle edges, they define a new vertex vicinity. Their vertex vicinity is defined as: r(v) = ε wmin

7wmax
d(v),

where wmin and wmax are the minimum and maximum weight of the regions incident to vertex v,
respectively. We know from the previous section that r(v) can not be greater than 1

2d(v). If wmin and
wmax are both very high, then we will end up with r(v) = ε

7d(v). Resulting in a maximum value of
ε = 3 1

2 . Higher values of ε will lead to overlapping vertex vicinities. We can therefore conclude that ε
should be between 0 and 3 1

2 for this method.

p0 p1

p2
p3

p4 p5
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p7

p8

v

S(v)

Figure 23: The placement of Steiner points a bisector of the triangulation.

4.4 Conclusions

In this section, we analyzed ε-approximation approaches. We discussed a method that shows how
Steiner points can be added to a triangulation. A graph can be constructed from these Steiner points,
that can be queried with any graph-search algorithm to find ε-optimal paths. We discussed the
BUSHWHACK graph-search method, and how it utilizes the interval datastructure to improve upon
other graph-search algorithms. Next we analyzed the bounds of the ε parameter that is used by these
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ε-approximation approaches. These bounds are required if we want to compare A*-grid approaches
with ε-approximation approaches. For the method that places Steiner points on the edges of the
triangulation it holds that 0 < ε ≤ 1

2 . For the method that places Steiner points on the bisectors of the
triangulation it holds that 0 < ε ≤ 3 1

2 . In section 7, will compare the ε-value of grid-based approaches
with ε-approximation approaches.
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5 Hybrid method

In this section, we will present new methods to solve the WRP. These methods use A* grid results to
limit the search space for ε-approximation methods. This will allow us to compute ε-approximations
of optimal paths faster than the current methods. Two of these hybrid methods have been developed.
The first method uses A* grid results to prioritize the search space. However, this method does not
always find the optimal path in the graph. In the upcoming section, we will discuss the idea and why
it fails to find the optimal path in the graph. Afterwards, we will discuss the second approach that
uses A* grid results to prune the search space. If we can decrease the size of the search space then we
can lower the worst case running times of the graph-search. We will present three sub-methods that
all prune the search space in a different way. Because both methods don’t interfere with each other
they can also be combined into one method using both mechanisms. Although this is currently of no
use because the first method does not return ε-optimal paths, if such a method would exist it can be
efficient to combine the two methods. For instance, instead of prioritizing the entire search space one
could first prune the search space and then prioritize the pruned search space.

5.1 A* guided search

When searching in a huge space for ε-optimal paths, the search can be improved by better guidance.
If the direction to follow is known at each node in the graph, then the number of nodes explored does
not have to be large in order to find a ε-optimal path. Because the A* grid method works fast and
has a adjustable grid size, we can create a coarse path to the goal and then use this path to guide the
graph-search. This idea is used in the weighted Hierarchical A* method that was devised in Section
3.2.3. If we search the graph with A* and use the Hierarchical A* heuristic, then we will plan a coarse
grid path that can be used to guide A* through the graph with heuristic values. However, the ε-value
of the grid-based search performed by Hierarchical A* tends to be higher than the ε-value of the ε-
optimal paths that can be retrieved from the Steiner graph. The path found by Hierarchical A* can be
more expensive than the actual costs and thus overestimate the costs to the goal. This overestimation
makes Hierarchical A* an inadmissible heuristic. We can compensate the overestimation by looking at
the difference in ε-values between the grid-based and Steiner graph-based methods. If the ε-value for a
grid is 1.5 and the Steiner set is created with ε = 0.5, then we know that the maximum overestimation
of the grid-based results in comparison to the graph-based results will be equal to: 2.5/1.5 = 1 2

3 . We
can divide all heuristic values by 1 2

3 to prevent overestimation of the heuristic. Separate values can be
calculated for each environment, grid settings and graph settings.

Lowering the heuristic value has several side-effects. If the difference between the ε-values becomes
bigger, the compensation factor grows and can lead to very small heuristic values. These values will
no longer be able to guide the A* algorithm. If the heuristic values are very small in comparison to the
g-values, then the A* node selection will mostly be based upon the g-values. The A* exploration with
low heuristic values will perform more like Dijkstra’s algorithm and thus no longer provide guidance
to decrease the number of explored nodes.

The second problem that arises is that the guidance remains unchanged if all heuristic values are
decreased by a certain compensation factor. The values might not overestimate the costs, but nodes
that lie near the grid path will always be given a lower heuristic value when compared to the surrounding
nodes. These node will get a higher priority and will be selected earlier than the surrounding nodes.
At the time that the surrounding nodes are explored that might lead to a shorter path, the nodes close
to the grid path are already closed and newly found paths can’t be connected to closed nodes.

Although the grid paths gives us a good approximate path to the solution, using it as a guidance to
find a optimal path in a Steiner graph will not lead to optimal paths. In situations in which the grid
path and the optimal graph path do not overlap, the heuristic values generated by the grid path will
let the A* algorithm first explore the graph-nodes closest to the grid path. When the search reaches
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the nodes that lie on the optimal graph path, the nodes previously selected by A* are already closed
and their parents can not be altered. This process is visualized in Figure 24.

The authors of the Hierarchical A* paper [16] state that the heuristic given by the Hierarchical A*

A B C D

E F G H

Figure 24: Several steps of the A* exploration. A) shows the properties of the exploration with a start
position (green), a common point of the optimal grid path and optimal graph path (red), the optimal
grid path (yellow cells) and the optimal graph path (blue). B,C,D,E) exploration of the graph with
the Hierarchical A* heuristic, where the open set is green and the closed set is red. F) The state of the
exploration several steps later. G,H) The last exploration steps that follow the optimal graph path. In
the end, A* can not connect this shorter path to the top node, because it is already closed as shown
by the blue arrow.

method is not monotone. A heuristic is monotone, if the difference in heuristic values between any two
neighbouring nodes is never larger than the costs to move between these two neighbours. Furthermore
the heuristic values are always increasing when nodes are further away from the goal position. An
admissible heuristic is always monotone, but a monotone heuristic does not have to be admissible.
The Hierarchical A* method can handle this issue on non-weighted regions because the homotopy of
the paths on the hierarchical abstraction layers is equal to the homotopy of the optimal path.

Because the A* guided search is very sensitive to small differences in the homotopy of the grid path
and optimal graph path, the method is very likely to return non-optimal paths. As a result, the A*
guided search method is unable to compete against the existing methods.
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5.2 A* pruned search

The second method attempts to decrease the running times of the search by pruning the search space.
The graphs that are created from the Steiner points can contain thousands of nodes even for small
environments, while the optimal path only uses a small number of them. If we only add Steiner points
within the proximity of the optimal path, then we can significantly reduce the number of nodes in the
graph. We can efficiently find a suboptimal path to the goal by using A* on a grid. The following
example will be shown on one of the scenes that is used in the experiments. The scene is called Puddle
and contains several polygons with weights ranging from 1 (gray region) to 20 (dark blue region). An
example grid path on the Puddle scene is shown in Figure 25 together with the grid path overlapping a
triangulation of the Puddle scene. If we only add Steiner points in the proximity of this path, then we
will severely prune the graph, and this will speed up the search. The proximity can be defined by the
difference in ε-value between the grid and the graph to insure that the ε-optimal path in the graph does
not get pruned. However, in practice it is inefficient to calculate the distance of each Steiner point to
the suboptimal path because there could be a huge number of Steiner points. We have devised several
methods that all define the proximity to the suboptimal path in such a way that the graph can be
pruned efficiently.

Figure 25: On the left, we display the resulting path (green) of an A* search on a grid of the Puddle
scene with a green start position (20,40) and red goal position (80,35). The right side shows the grid
path on the triangulation of the Puddle scene.
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5.2.1 Triangle intersection based

The triangle intersection based pruning method (TIB) defines the proximity to the suboptimal path as
a sequence of triangles. The pseudocode is shown in Algorithm 2. All triangles that are intersected by
the suboptimal path will be added to the pruned graph triangle set. Steiner points will only be added
onto the edges of the triangles in the set. The sequence of triangles will follow the homotopy of the
suboptimal path and will find the ε-optimal path in the graph that follows the same homotopy. An
example of the intersected triangle sequence is shown in Figure 26. Although grids can have a different
homotopy than the original scene, due to the loss of information at low resolutions, it is always possible
to find a resolution that maintains the homotopy of the original scene.

Algorithm 2 Triangle intersection based pruning(gridPath, triangles)

1: for all edges g in gridPath do
2: for all triangles t in triangles do
3: for all edges e in t do
4: if g intersects e then
5: Add t to intersectedTriangles
6: end if
7: end for
8: end for
9: end for

10: for all triangles t in intersectedTriangles do
11: for all edges e in t do
12: Add e to result
13: end for
14: end for
15: Return result

Figure 26: The sequence of intersected triangles (red) resulting from an A* grid search with triangle
intersection based pruning.

5.2.2 Vertex based

The vertex based pruning method (VB) aims at identifying the areas that contain the bending points
of the optimal path. These areas are identified by looking at the bending points of the suboptimal
path. Steiner points are always placed with a logarithmic distribution, starting from a vertex on each
edge, because a lot of possible bending points lie near the vertices. Therefore, the idea is to select the
nearest vertices for each bending point of the suboptimal path. The pseudocode for vertex base pruning
is shown in Algorithm 3. We will add Steiner points to all edges incident to these nearest vertices.
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This will result in several disjoint sets of Steiner points near the bending points of the suboptimal
path. If long straight segments occur in the suboptimal path, then these sets might be disconnected.
To handle long straight segments, we add Steiner points to each intersected triangle edge. This will
guarantee that the pruned graph is connected. An example of the selected edges is shown in Figure
27. The selected set of edges captures the homotopy of the suboptimal path with additional edges in
the proximity of the bending points of the suboptimal path, and will find the ε-optimal path in the
graph that follows the same homotopy.

Algorithm 3 Vertex based pruning(gridPath, triangleEdges, triangleV ertices)

1: for all bending points b of the gridPath do
2: Find the set closestV of closest vertices from b in triangleV ertices
3: for all vertices v in closestV do
4: for all edges i incident to v do
5: Add i to result
6: end for
7: end for
8: end for
9: for all edges g in gridPath do

10: for all edges e in triangleEdges do
11: if g intersects e then
12: Add e to result
13: end if
14: end for
15: end for
16: Return result

Figure 27: The selected set of edges (red) resulting from an A* grid search with vertex based pruning.

5.2.3 Closest edge based

Closest edge based pruning (CEB) is the last method we present in this section. Calculating the
distance from the suboptimal path to all Steiner points might be inefficient, but we can calculate the
distance from the suboptimal path to all the edges in the triangulation. If we can create a set with all
edges in the triangulation that are at some point closest to the suboptimal path, then we will ensure
that the graph will always contain the Steiner points that lie closest to the suboptimal path. An
example of the selected edges is shown in Figure 29 on the left side.

In our first approach, we use the cellsize of the grid as stepsize through the suboptimal path and
find the nearest edge in the triangulation at each step. It is possible that there are several nearest
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edges with the same distance. This is the case, for instance, if the suboptimal path goes through a
vertex of the triangulation. An arbitrary number of edges could spawn from this vertex, and in this
case all edges incident to the vertex will be added to the set of nearest edges. This set will be a
subset of the set of triangles edges obtained in Section 5.2.1, and the search for this set of edges can
be improved by starting of with just the set of triangles edges instead of all edges in the scene. Once
the set of nearest edges is obtained, we will connect the Steiner points and vertices of all edges that
share a triangle. If there are edges that do not have a common triangle, then we only connect the
Steiner points on that edge with each other to allow edge-crawling paths. Although this approach
yields connected graphs, optimal paths might be lost if we only select the nearest edge(s). As shown
in Figure 28, if several edges spawn from one vertex and the suboptimal path just misses the vertex,
then several edges will not be selected. The ε-optimal path has a high chance to use any of these edges
because of the difference in ε-optimality between the grid path and Steiner-graph path.

Figure 28: Although all edges lie very close to the suboptimal path (green), only the closest edges
(red) will be selected.

The second approach deals with this case by not looking at the closest edge at every step, but by
instead including all edges that lie within a certain radius r, as shown in Algorithm 4. The number
of checks required to find all edges within the radius is equal to finding the edge(s) that lie closest
to the suboptimal path. The homotopy of the suboptimal path is converted into a set of edges that
refer to the closest Steiner points, and will find the ε-optimal path in the graph that follows the same
homotopy. To keep this method from selecting too many edges, the size of the radius should be kept
small. A value of 5 is suitable for the scenes in our experimental framework because the lengths of
most of the triangle edges range from 10 to 100. If we encounter smaller triangle edges, then the area
is most likely crowded with small triangles (for instance around the fallen trees in the Forest scene, as
shown in Figure 32) and picking a lot of triangle edges there makes sense. The first approach uses the
set of triangle edges obtained in Section 5.2.1 to speed up the search, but the second approach could
select edges outside of this set. As a result, radius-based edge selection must consider all edges in the
triangulation. The adjusted set of edges is shown in Figure 29 on the right side.
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Figure 29: Left: The selected set of edges (red) resulting from an A* grid search with closest edge
based pruning that only selects the closest edges. Right: The selected set of edges for closest edge
based pruning that selects all edges within a radius of 5.

Algorithm 4 Closest edge based pruning(gridPath, triangleEdges, r, stepsize)

1: for all points p of the gridPath with distance stepsize between them do
2: for all edges e in triangleEdges do
3: if minimum distance between e and p < r then
4: Add e to result
5: end if
6: end for
7: end for
8: Return result

5.3 Conclusions

In this section, we presented several new methods that utilize suboptimal grid paths to prioritize
or prune the search space for ε-approximation methods. We presented an A* guided search method
that generates heuristic values from the A* grid path to guide the search through the Steiner graph.
However, this method is prone to small differences between the homotopy of the A* grid and ε-optimal
path. Small differences in the homotopy can lead to overestimation of the heuristic values, and thus lead
to non-optimal paths. As such, this method is unable to compete against the current ε-approximation
methods. Next, we presented the idea to use the A* grid path to prune the search space. By selecting
a subset of all the Steiner points in the scene we can reduce the size of the Steiner graph. Three
approaches have been devised that all capture a subset of the Steiner graph according to different
definitions of the proximity to the suboptimal path. Triangle intersection based pruning selects all
triangles that are intersected by the A* grid path. Vertex based pruning selects all edges incident to
the closest vertices of the bending points of the A* grid path along with all triangle edges that are
intersected by the A* grid path. Closest edge based pruning selects all edges that lie within a certain
distance r of the A* grid path. A comparison between the different A* pruned search methods is made
in Section 7.3.
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6 Implementation notes

In this section, we will discuss several implementation decisions and problems encountered during the
implementation of the algorithms. All algorithms are implemented within the ECM Framework. The
ECM framework is created by Geraerts and van Toll and is able to run crowd simulations using the
Explicit Corridor Map [29]. It supports interchangeable path planning algorithms for each character
in the simulation. The following path planning methods have been implemented: A* on a grid, A* on
a graph, BUSHWHACK, and the three pruned graph methods: triangle intersection based pruning,
vertex based pruning and closest edge based pruning. Both A* methods can use several heuristics:
Dijkstra, Manhattan distance, Euclidean distance, Grid Lookup, and Hierarchical A*. The graph of
Steiner points is created with a logarithmic distribution as described in Section 4.1.

6.1 Multi-layered A* Grid

The ECM framework is able to handle multi-layered environments as defined in [50]. Multi-layered
environments consist of a set of layers and transfers. Each layer is a collection of two-dimensional
polygons that all lie in a single plane and a transfer is defined as a polygon that connects two layers.
The newly implemented algorithms should also be able to handle multi-layered environments, and the
grid was the most challenging aspect to convert to a multi-layered version. Linking multiple grids
induced by the different layers of the environments through transfers was a difficult task. Typical
A*-exploration on a grid is done by altering the coordinates of the current node to all surrounding
nodes. To this end, a simple subtraction or addition of 1 to the x, y or both coordinates is performed.
The first idea was to add extra information to each cell in the grid. In addition to the weight-values,
transfer id’s could be stored. The downside of this approach is that the total memory consumption
could double because each cell needs twice as much bytes. Furthermore, most of these transfer id’s are
never set because there are typically more cells without a transfer than cells with a transfer. That is
why we decided to use a different approach, namely creating a set of transferrules. Each transferrule
contains a start layer, an end layer, and a set of coordinates for both layers. An A* grid multi-layered
method was implemented that checks if the current point is present in any of the transferrules that
apply to the current layer. If a corresponding transferrule is found, then the set of coordinates of the
end layer are added as candidates. This method performs slower than the regular A* implementation,
but it can still be used in real-time.

6.2 BUSHWHACK

Although the principles behind the BUSHWHACK method are intuitive and easy to understand,
the implementation was difficult. A doubly-connected edge list (DCEL) was chosen to store the
triangulation. Each half-edge stores a sorted list of pointers to the Steiner points that belong to
that edge. The first problem was dealing with the vertices of the triangulation. An interval that
holds Steiner points on an edge e could possibly also contain the vertices of edge e. These vertices
can however also be part of each interval that contains Steiner points on any edge incident to these
vertices. Furthermore, the vertex could also be a candidate of a non-interval path from the closest
Steiner point on each incident edge. When checking whether a vertex should also be contained in a
newly created interval, a large number of such checks to find and compare the candidate is required.
The second problem was dealing with the O(logm) time interval creation, with m being the number of
Steiner points on an edge. The authors state that keeping monotonically increasing intervals allows for
fast interval creation. This is true if several intervals span the points on an edge because checking the
borders of the intervals will return the overlapping intervals, and splitting the intervals can be done
in O(logm) time. However, it is possible that many of the Steiner points are explored by non-interval

47



paths. In this case, the intervals do not span the entire edge and manual checking is required for all
points not included in intervals. A schematic overview of this case is given in Figure 30.

w1 w1

w2w2
s s

e

e

Figure 30: Schematic overview of the creation of a new interval on edge e as spawned from point s.
Several edge-crawling paths are already present on edge e due to weight w1 being higher than weight
w2.
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7 Experiments

In this section, we will describe all the experiments that have been conducted for this thesis. We will
start with the experiments conducted to compare the different Hierarchical A* abstraction methods.
Next we will compare the different heuristics for grid-based methods to see which methods perform
well in a weighted grid. After the heuristic comparison, we will compare the different hybrid methods
against A* on the Steiner graph. Finally, we will compare the grid and graph methods when they
configured to return paths of the same ε-optimality to see how big the gap between grid methods and
graph methods is. We will also be able to see if the heuristics or hybrid methods can narrow the gap.
All our experiments are run on an AMD Phenom II x4 3.4Ghz processor with 4 Gb RAM. All running
times are averaged over 50 runs in order to decrease the error in the C++ high precision timer to 0.12
ms.

7.1 Scenes

All experiments have been conducted on five scenes. The first scene is called Puddle, and its size is
100 by 50 meters. The scene is shown in Figure 31 and contains a large puddle (weight 20) in the
middle with a forest (weight 5) around it. There is a road (weight 1) from left to right, and beneath
the road there is a lane of grass (weight 3). This scene is small and simple, which makes it easy to
visually check the computed paths. Furthermore, the high-cost puddle in the middle along with the
road next to it shows the standard behaviour of path planning methods in weighted regions: the paths
will avoid the puddle and will mostly try to plan paths on the road.

Figure 31: The Puddle scene contains a large puddle (weight 20) in the middle with a forest (weight
5) around it. There is a road (weight 1) from left to right, and beneath the road there is a lane of
grass (weight 3). The higher the weight for a particular region, the darker the shade of blue.

The second scene is a large scene with dimensions of 290 by 410 meters. The scene is called Forest
and is shown in Figure 32. Forest consists of deep forest (weight 99) at the sides and in the middle
of the scene. Through this forest runs a grassy road (weight 3) with several puddles on it (weight
20). On the top, there is an area resembling a panoramic view or a similar attractive spot with a low
weight (weight 1), and on the right are some fallen trees (weight 2). This scene is a representation of
a real-life scenario, and it is a large scene, which makes it well-suited for showing problems that seem
insignificant in smaller scenes. For instance, enlarging small differences in running times and path
costs.

The third scene is called Bars and spans an area of 100 by 50 meters. The scene is shown in Figure
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Figure 32: The Forest scene consists of deep forest (weight 99) at the sides and in the middle of the
scene. Through this forest runs a grassy road (weight 3) with several puddles on it (weight 20). On
the top, there is an area resembling a panoramic view or a similar attractive spot with a low weight
(weight 1), and on the right are some fallen trees (weight 2). The higher the weight for a particular
region, the darker the shade of blue.
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33 and consist of several vertical bars with different weights. The terrain types of the bars alternate
between road (weight 1) and forest (weight 5). If paths are planned from left to right on this scene,
then the paths exhibit path bending according to Snell’s law.

Figure 33: The Bars scene consist of several vertical bars with terrain types alternating between road
(weight 1) and forest (weight 5). The higher the weight for a particular region, the darker the shade
of blue.

High-low is the name of the fourth scene, which is 100 by 50 meters. The scene is shown in Figure
34 and consists of three regions. On the bottom, there is a big high-weighted region (weight 20), and
above that there is a medium-weighted region (weight 3) and a low-weighted region (weight 1). Several
exemplary paths of the Weighted Region problem can be shown with this scene. The optimal path can
cross the same triangle multiple times. This can happen if the start and goal position lie within the
high-weighted region and the optimal path uses parts of the upper region. Furthermore, we can create
a setting where the start and goal positions lie in the same triangle, while the optimal path leaves this
triangle to partially follow a region with a lower weight.

Figure 34: The High-Low scene. On the bottom, there is a big high-weighted region (weight 20), and
above that there is a medium-weighted region (weight 3) and a low-weighted region (weight 1). The
higher the weight for a particular region, the darker the shade of blue.

The fifth and last scene is called Zigzag and spans an area of 100 by 50 meters. The scene is shown
in Figure 35, and it contains a sandy road (weight 6), a grass field above it (weight 3) and there are
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alternating parts of road (weight 1) and water (weight 20). Paths planned from left to right should
follow the sandy road, but switch from the bottom to the top border of this region several times. This
will result in many edge-crawling paths.

Figure 35: The Zigzag scene contains a sandy road (weight 6), a grass field above it (weight 3) and
there are alternating parts of road (weight 1) and water (weight 20). The higher the weight for a
particular region, the darker the shade of blue.

For easy reference, we define the following notation to refer to a scene with certain start and goal
positions. The notation consists of the first letter of the scene followed by the start and goal positions
between parenthesis. For instance, P(20,40)(80,35) will refer to the scene Puddle with start location
(20,40) and goal location (80,35).
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7.2 Heuristic experiments

Several experiments have been conducted to compare the different heuristics based on path costs,
running times and number of explored nodes. The Hierarchical A* heuristic will use V2 caching, as
was discussed in Section 3.2.3.

7.2.1 Hierarchical A*

First we will take a look at the two different methods that can be used to generate the abstraction
layers. Our first approach to the creation of the hierarchy consists of the combination of grids sampled
at different resolutions. For each abstraction layer, we will render a scaled version of the scene to the
framebuffer. From the framebuffer we can extract the weights by looking at the color of every pixel.
Although the framebuffer approach is fast, experiments have shown that the corresponding heuristic
values overestimate the costs and result in suboptimal paths. The use of abstraction layers will always
lead to inaccuracies in the heuristic values, but this is feasible as long as the heuristic values never
overestimate the costs to the goal. Then the heuristics remains admissible and the resulting paths
will always be optimal. When the framebuffer is used to create the abstraction layers of the scene,
then OpenGL downsamples the scene to each required resolution. The OpenGL rendering pipeline
draws the scene at a lower resolution and uses sampling to determine the pixel color values. Because
OpenGL samples only the center of the pixel to determine the color value, there might be several
regions within that pixel that all get assigned the weight of the region that lies in the middle of the
pixel. If for instance a block of 4 pixels contains 3 pixels with weight 1 and 1 pixel with weight 20,
then the weight value of the corresponding pixel in the downscaled scene might be 20. If Hierarchical
A* searches on this abstraction level, then it might overestimate the heuristic value because it uses a
weight of 20 where it could also use a weight of 1. If the pixel has a value of 1 instead of 20, then the
values are still not accurate, but it will make the heuristic underestimate and thus remain admissible.
To overcome the problems with OpenGL sampling, a second method has been devised to obtain an
abstraction hierarchy. This method converts a block of pixels by taking the lowest value of all pixels
within the block. This will create abstraction layers where the weight of each pixel is always the lowest
possible weight for that pixel and will prevent overestimation of the heuristic in abstraction layers.

The experiments measure the path costs, because we want to see if the sampling of OpenGL has a
big impact on the heuristic values. The resulting path costs for the Puddle and Forest scene are shown
in Figure 36. The table shows that a simple axis-aligned scene such as the Puddle scene yields almost
equal results for both methods. However, the large Forest shows a significant increase in path costs
for the resolution-based abstraction method. If we look at both paths in Figure 36, then we see that
there are two areas that show the limitations of resolution-based abstraction. The path takes a big
detour around high-weighted region A, whereas the path under A intersects the two fallen trees. The
resolution-based abstraction enlarges high-weighted region A and the high-weighted region in the cen-
ter because the region borders are not aligned with the raster of the OpenGL sampling. The enlarged
regions on the highest abstraction layer cause the path below A to intersect with the high-weighted
region. The optimal path on this abstraction layer runs above high-weighted region A instead of run-
ning below it. As soon as a path running above region A is computed on the highest abstraction layer,
the paths computed on lower levels also run above region A. The final path will end up on the top
side of A instead of the much cheaper bottom side. The same problem can also be seen near puddle B
on the left side. The path from the resolution-based abstraction keeps more clearance from the Pud-
dle in comparison to the mapping-based abstraction path. This is again caused by the enlargement
of obstacles because the OpenGl sampling raster is not aligned with the region boundaries. Similar
behaviour also displays at several other locations, for instance near C. However, near C there is no
alternative route, and all paths have to cross the high-weighted region. Due to these limitations of
resolution-based abstraction, all further experiments use mapping-based abstraction.
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Next we will look at the impact of the number of abstraction layers used for Hierarchical A*.
We will plan several paths with the number of abstraction layers varying from one to six layers. The
resulting paths for the Puddle scene are shown in Figure 37 together with the results table. The
first conclusion that we can draw from the data is that the costs of the paths and number of nodes
explored are independent of the number of abstraction layers. The path costs are therefore not shown
in the table. It can be seen that the runnings times decrease when more abstraction layers are added.
However, the decrease stabilizes soon when the abstraction layers become smaller. For instance, the
level 4 abstraction layer for the puddle scene measures only 3x6 and does not speed up the search
any more. The level 3 abstraction layer is already so small that Dijkstra’s algorithm runs very fast
on it. With the much larger forest scene we see the same when we reach the 6th abstraction layer.
This abstraction layer measures only 4x6. We can conclude that using more abstraction layers speeds
up the search only until the point where the highest abstraction level becomes smaller than 50 nodes.
The number of 50 is chosen because then the Puddle scene will use 3 abstraction layers, and the Forest
scene will use 5 abstraction layers.

Finally, we will look at different abstraction factors. The default factor is 2 because every cell
maps to a 2x2 block of cells in a higher level. The number of abstraction layers is highly dependent
on the abstraction factor. A higher abstraction factor will decrease the resolution between abstraction
layers at a higher rate. In order to keep the highest abstraction level larger than 50 nodes, we will
have to adjust the number of abstraction layers according to the abstraction factor. The results for
several abstraction factors are shown in Figure 38 and Table 2.

If we look at the running times, we notice that increasing the abstraction factor while keeping the
same the number of abstraction layers will lead to a decrease in running time. Larger abstraction fac-
tors will create smaller abstraction layers, so there will be less nodes to explore at each level. However,
when an abstraction layer is removed due to the 50-node restriction, we see an increase in running
times. The top layer will increase in size, and because Dijkstra’s algorithm is used on the top layer, the
running times will increase. This increase is clearly visible in the Forest scene. Between the abstraction
factors 3 and 4, there is a huge increase in running times. Abstraction factor 3 holds three abstraction
layers with a top layer of 150 nodes, while abstraction factor 4 only has two abstraction layers with a
top layer consisting of 450 nodes. Due to the large abstraction factor, the next layer would consist of
only 24 and thus breaks the 50-nodes rule. In retrospect, the 50-node rule does not suffice in all cases.
Therefore, we will redefine the rule in such a way that the abstraction hierarchy may only contain one
layer with less than 200 nodes. The 200-node rule ensures that the Puddle and Forest scene still uses
3 and 5 abstraction layers, respectively, if the abstraction factor is 2. Furthermore, the 200-node rule
will ensure that Dijkstra’s algorithm will not slow down the Hierarchical A* method and will provide
heuristic values for any layer larger than 200 nodes to speed up the search.

The resulting paths are negatively influenced by higher abstraction factors. The path costs and
number of nodes explored both increase when higher abstraction factors are used. This is caused by
two factors. First of all the overall accuracy of the heuristic is decreased when the abstraction factor is
increased. Due to the inaccuracy of the heuristic, A* needs to explore a large number of nodes to find
the optimal path. Furthermore, inaccurate heuristic values can lead to non-optimal paths. Next to the
inaccuracy of the heuristic, using high abstraction factors leads to large blocks of nodes with the same
heuristic value. The effects of such blocks are clearly visible at the abstraction factor of 7 near the
panoramic view at the top of the scene. The line is bent, where one would expect a straight (diagonal)
line. If a block with equal heuristic values is explored by A*, then the heuristic has no influence on the
A* node selection. This will make A* behave like Dijkstra’s algorithm within each block. Dijkstra’s
algorithm will always first encounter the edges of the block on the horizontal and diagonal lines from
the entry point, because it has a circular expansion. As soon as a new block with a lower heuristic
value is discovered, A* will prioritize the expansion of the new block. This will lead to some nodes of
the previous block to never get explored. These unexplored nodes will always lie in a corner that is
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Scene Path costs
Resolution Mapping Optimal

P(20,40)(80,35) 241.2 241.2 241
P(5,45)(95,5) 236.3 236.9 235.6
P(50,45)(50,5) 287.6 287.7 286.9
P(10,10)(70,40) 217.5 217.8 217.3
F(60,2)(200,2) 2739.0 2556.1 2555.4

Figure 36: The resulting paths of Hierarchical A* with resolution-based abstraction layers (orange)
and mapping-based abstraction layers (purple) on the Forest scene together with the paths costs of
both abstraction methods for several start and goal positions on the Puddle and Forest scene. The
figure is tilted 90◦ counterclockwise. A, B and C denote areas of special interest as explained in the
text.
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Scene Abstraction Running
layers time (ms)

P(20,40)(80,35)

1 13.5
2 5.6
3 5.2
4 5.2

P(5,45)(95,5)

1 16.6
2 7.5
3 7.1
4 7.1

P(50,45)(50,5)

1 46.9
2 6.6
3 5.8
4 5.8

P(10,10)(70,40)

1 140.5
2 16.2
3 6.9
4 6.9

F(60,2)(200,2)

1 17674
2 1034
3 137
4 96.0
5 90.4
6 90.4

Figure 37: The resulting paths of Hierarchical A* with different numbers of abstraction layers along
with the running times.
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opposite of the first entry point of the block and that’s why these bent lines only appear on diagonal
lines. The unexplored nodes have a heuristic value that overestimates the costs to the goal, because
all nodes that are explored within the block have the same heuristic value and lower g-values. The
abstraction factor of 8 suffers from the same problems, as can be seen near the goal position. These
effects are only visible on diagonal lines that lie not too close to the start position.

There is one special case of P(10,10)(70,40) that requires examination. The path costs for ab-
straction factor 6 are lower than the path costs of abstraction factor 2. This is caused by the specific
positioning of the start and goal positions in combination with the abstraction factor. Hierarchical A*
overestimates the optimal path costs by a small amount due to the enlargement of the goal position at
each abstraction layer. The goal position will also be combined with several other nodes to refer to one
node in every abstraction layer. This abstraction will lead to small overestimations in the heuristics
and thus suboptimal paths by a small margin. The goal position of (70,40) lies exactly in the top right
corner of a node on the abstraction layer: (70 + 1)/6 = 11 5

6 and (40 + 1)/6 = 6 5
6 . The addition of

1 is needed because the scene coordinates start at 0. Because this search starts from the bottom left
corner (10,10), the paths on the abstraction layer to the abstract goal position will always be shorter
than the actual path to the top right corner of the abstract goal position. All heuristic values will
underestimate the costs, and thus a better path is returned.

We can conclude that using an abstraction factor of 2 leads to the best results in all cases. Higher
values have a small chance to lead to lower cost paths and have lower running times, but the bound
on the inaccuracy of the final path grows along with the abstraction factor. Using 2 as abstraction
factor will ensure that we maintain the lowest possible bound and acceptable running times.
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Figure 38: The resulting paths of Hierarchical A* for several abstraction factors: darkgreen = 2, green
= 3, red = 4, orange = 5, pink = 6, blue = 7, black = 8 on the Forest scene with start position (60,2)
and goal position (200,2).
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Scene Abstr. Abstr. Running Path Nodes
factor layers time (ms) costs explored

P(20,40) (80,35)

1 1 195.4 241.0 357
2 3 5.2 241.2 490
3 2 6.7 243.4 699
4 1 3.6 242.3 727
5 1 2.9 250.3 840
6 1 3.8 244.0 1405

P(5,45) (95,5)

1 1 198.2 235.6 466
2 3 7.1 236.0 627
3 2 3.0 238.7 692
4 1 4.9 235.8 1351
5 1 3.3 237.5 1411
6 1 3.6 236.9 1642

P(50,45) (50,5)

1 1 226.5 286.9 303
2 3 5.8 288.9 438
3 2 3.4 289.8 535
4 1 4.3 305.7 824
5 1 3.5 307.1 910
6 1 3.2 299.3 1140

P(10,10) (70,40)

1 1 972.4 217.3 332
2 3 6.9 217.9 776
3 2 9.2 224.0 1198
4 1 15.7 237.0 1117
5 1 6.8 219.9 1121
6 1 6.5 217.3 1987

F(60,2) (200,2)

1 1 163138.0 2555.4 3084
2 5 96.3 2556.1 4960
3 3 89.2 2679.1 12006
4 2 376.7 2632.3 10726
5 2 184.9 2623.0 12420
6 2 138.1 2650.4 14516
7 1 436.7 2664.8 18660
8 1 238.2 2741.7 18915

Table 2: The number of abstraction layers, running times, path costs and explored nodes for several
paths planned on the Puddle and Forest scenes.
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7.2.2 Comparing heuristics

Now that we have found the optimal parameters for Hierarchical A*, we will continue with the compar-
ison of the different heuristics. We will compare the path costs and running times of five scenario’s on
the Puddle scene and one on the Forest scene. The first scenario for the Puddle scene starts at (20,40)
and ends at (80,35) and is shown in Figure 39. Most paths use the road with its low costs (weight 1)
to find a shortest path to the goal. The Grid lookup (red) favours a straight route to the goal and
ends up with very high costs. The Grid lookup method will fail to find a shortest path in all upcoming
experiments and will not be considered further during the examination of the experimental results.
The Hierarchical A* heuristic has slightly higher costs compared to the other heuristics because it cuts
the corner on the right side. The corner is cut because the node that lies exactly on the corner has a
high heuristic value in comparison to the node above it. Figure 40 shows the f , g and h-values of the
Euclidean distance and Hierarchical A* around the corner node. The Hierarchical A* heuristics makes
A* pick the diagonal path to the top right node immediately, while the Euclidean distance heuristic
first explores to the right. This results in a difference of 0.2 in the total path costs. In terms of running
times, the Hierarchical A* heuristic outperforms the other methods that return optimal paths. The
actual search explores 490 nodes while the other methods explore almost ten times as many nodes.
The running time isn’t ten times lower than the other methods, because most of the running time of
the Hierarchical A* methods is spent on creating the abstraction layers and running A* on them.

Puddle from (20,40) to (80,35)

Method Running Path Nodes
time(ms) costs explored

Manhattan distance 4.74 241.0 4268
Euclidean distance 4.74 241.0 4307
Dijkstra 4.78 241.0 4497
Grid Lookup 0.17 317.4 251
Hierarchical A* 3.94 241.2 490

Figure 39: The resulting paths of all heuristics: Manhattan distance(green), Euclidean dis-
tance(lightgreen), Dijkstra(darkgreen), Grid Lookup(red), Hierarchical A*(orange) on Puddle with
start position (20,40) and goal position (80,35) along with the running times, path costs and explored
nodes.

The second scenario is shown in Figure 41 with start position (5,45) and goal position (95,5). The
grid lookup heuristic overestimates the costs to the goal and results in a path with more than twice
the costs of the shortest path. The other heuristics all use the road to find their shortest paths. The
paths are not exactly the same, but the total costs are equal. It does not matter whether a path runs
diagonal first and then straight, or vice versa, as long as these variations happen within the same
region. If the entry and exit points as well as the number of diagonal and straight steps are equal,
then the order of the steps has no influence on the path costs. The Hierarchical A* heuristic suffers
from an overestimation again. This time the Hierarchical A* path runs parallel to the optimal path at
the end. These parallel lanes have equal heuristic costs because the heuristic values are generated for
blocks of 2x2 nodes. The A* algorithm will pick the closest one to the start to traverse because of the
lower g-costs, and will end up doing a diagonal step towards the goal. The Hierarchical A* method
has quite a high running time in this scenario. The additional time required for the creation of the
abstraction layers and searching them is higher than the time required to search without additional
guidance, because only around 3000 nodes needed to be explored to find the shortest path. Dijkstra’s
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Figure 40: A* exploration around the right corner of the paths returned with the Hierarchical A* and
Euclidean distance heuristics. The Hierarchical A* heuristic will make A* pick the top right node
immediately, while the Euclidean distance heuristic will first explore the right and then move to the
top, leading to 0.2 less in path costs.

heuristic also has higher running times because the distance between the start and goal position is
almost at its maximum.

Puddle from (5,45) to (95,5)

Method Running Path Nodes
time(ms) costs explored

Manhattan distance 3.20 235.6 2900
Euclidean distance 3.13 235.6 2942
Dijkstra 3.99 235.6 3791
Grid Lookup 0.34 530.7 424
Hierarchical A* 5.91 236.0 772

Figure 41: The resulting paths of all heuristics: Manhattan distance(green), Euclidean dis-
tance(lightgreen), Dijkstra(darkgreen), Grid Lookup(red), Hierarchical A*(orange) on Puddle with
start position (5,45) and goal position (95,5) along with the running times, path costs and explored
nodes.

The third and fourth scenarios show similar behaviour as the first two scenarios. The results are
still provided to show the consistency of the methods. The third scenario is shown in Figure 42 and
has a start position of (50,45) and goal position of (50,5) in the Puddle scene. The fourth scenario in
the Puddle scene with start position (10,10) and goal position (70,40) is shown in Figure 43.

The last scenario is shown in Figure 44. In this scenario, we examine the Forest scene with start
position (60,2) and goal position (200,2). This scene is a lot larger, and the Hierarchical A* method
excels with only 5000 explored nodes and a reduction of 50 ms in running time. The other heuristics
explore up to 16 times as many nodes to find the optimal path. As with the previous scenarios, the
Hierarchical A* heuristic has slightly higher path costs due to the corners being cut at the top when
entering and exiting the panoramic view (weight 1).
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Puddle from (50,45) to (50,5)

Method Running Path Nodes
time(ms) costs explored

Manhattan distance 3.70 286.9 3343
Euclidean distance 3.80 286.9 3467
Dijkstra 5.26 286.9 4980
Grid Lookup 0.11 466 149
Hierarchical A* 4.63 286.9 438

Figure 42: The resulting paths of all heuristics: Manhattan distance(green), Euclidean dis-
tance(lightgreen), Dijkstra(darkgreen), Grid Lookup(red), Hierarchical A*(orange) on Puddle with
start position (50,45) and goal position (50,5) along with the running times, path costs and explored
nodes.

Puddle from (10,10) to (70,40)

Method Running Path Nodes
time(ms) costs explored

Manhattan distance 5.17 217.3 4339
Euclidean distance 5.27 217.3 4390
Dijkstra 5.17 217.3 4638
Grid Lookup 1.19 474 976
Hierarchical A* 5.80 217.9 776

Figure 43: The resulting paths of all heuristics: Manhattan distance(green), Euclidean dis-
tance(lightgreen), Dijkstra(darkgreen), Grid Lookup(red), Hierarchical A*(orange) on Puddle with
start position (10,10) and goal position (70,40) along with the running times, path costs and explored
nodes.
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Forest from (60,2) to (200,2)

Method Running Path Nodes
time(ms) costs explored

Manhattan distance 141 2555.4 78604
Euclidean distance 140 2555.4 78920
Dijkstra 151 2555.4 83250
Grid Lookup 0.84 7194.4 869
Hierarchical A* 88.9 2556.1 4960

Figure 44: The resulting paths of all heuristics: Manhattan distance(green), Euclidean dis-
tance(lightgreen), Dijkstra(darkgreen), Grid Lookup(red), Hierarchical A*(orange) on Forest with start
position (60,2) and goal position (200,2) along with the running times, path costs and explored nodes.
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7.2.3 Conclusions

In this section, we have discussed the experiments to find the best abstraction technique and parameters
for Hierarchical A* and to compare different heuristics for A* on weighted regions. We compared
the resolution-based abstraction against the mapping-based abstraction. Resolution-based abstraction
generates higher heuristic values due to enlarged obstacles or removed low-cost areas on the abstraction
levels. The overestimation problems from resolution-based abstraction are solved by using a mapping
that only keeps the lowest values. Mapping-based abstraction tends to underestimate, but that keeps
the heuristic admissible.

There are two Hierarchical A* parameters. The first parameter controls the number of abstraction
layers that are used in the hierarchy. The experiments show that the path costs are independent of
this parameter, and only the running time was influenced by this parameter. Running times decrease
with every added abstraction layer until the layers reach a certain size. We showed that a bottom
layer of less than 200 nodes is small enough for Dijkstra’s algorithm to outperform Hierarchical A*
with another layer. The second parameter is the abstraction factor that controls the difference in cell
size between each abstraction layer. Increasing the abstraction factor improves the running times at
the costs of path optimality. We are looking for optimal paths, and as such we will stick to the lowest
abstraction factor, which is 2.

Once the optimal parameters for Hierarchical A* had been found, we compared all the different
heuristics with each other. Each heuristic has been compared with respect to path costs, running
time and number of nodes explored. The grid lookup returned non-optimal paths on all experiments
and is not a feasible heuristic, as expected. On the Puddle scene, the resulting running times of the
other heuristics didn’t show any significant differences, and each heuristic was the fastest on one of the
settings. The paths of the Hierarchical A* method were all no more than 1 off in terms of path costs
when compared to the optimal paths. Although A* explores up to 8 times less nodes when Hierarchical
A* is used, the extra time needed for construction and planning on the abstraction layers negates the
time saved on exploring nodes. However, in the Forest scene, the better guidance of Hierarchical A* is
clearly visible. A significant decrease (p < 0.001) in running time and a near-optimal solution makes
the Hierarchical A* method outperform all other methods.

7.3 Pruned graph experiments

In this section, we will compare the different hybrid methods. We will look at the performance of a plain
Steiner graph and graphs that have been pruned by any of the three pruning methods from Section 5.
All scenes will be taken into account to compare the performance for different kinds of environments.
We will create the different graphs for ε-values ranging from 0.1 to 0.5. The performance of each
method will be measured by the construction time of the graph, query time with Dijkstra’s algorithm,
path costs and the number of nodes explored by Dijkstra’s algorithm. Once the running times are
measured, we will try to find cases where the pruned graph methods fail to return the shortest path.
We will use a uniform sampling method to generate start and goal positions across all scenes. The
costs of the resulting paths of the pruned graph methods will be compared to the optimal path costs
of the Steiner graph for each start and goal position.

7.3.1 Running times

The first experiments are conducted on the Forest scene with start position (60,2) and goal position
(200,2). The resulting paths for the different ε-values are shown in Figure 45 together with the data
in Table 46. All methods return the same path costs, and the figure shows the paths for the different
ε-values. The pruned graph methods show a significant improvement in the construction times of
the graphs for low ε-values. T-tests for all pruned graph methods construction times in comparison
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with the Steiner graph returned p < 0.001 for ε = 0.1 and ε = 0.5. As the ε-value increases, the
difference in construction times becomes smaller. The pruned graph methods save a lot of time on
adding Steiner points and connecting Steiner points, but they require additional time to find the set
of edges that makes up the pruned graph. The costs of finding this set of edges is independent of
the ε-value. As the ε-value becomes higher the impact of this preprocessing step has bigger impact
on the total construction time. However, the savings made by pruning the graph allow the pruned
graph methods to outperform the Steiner graph even when using the highest ε-value. The query times
of the pruned graph methods also show a significant improvement for all ε-values in comparison to
the Steiner graph. T-tests for all pruned graph methods query times in comparison with the Steiner
graph returned p < 0.001 for ε = 0.1 and ε = 0.5. The pruned graphs contain less nodes and are able
to reduce the number of nodes explored, which leads to lower query times. The closest-edge-based
pruning method is able to achieve the lowest construction and query times on the Forest scene.

Forest from (60,2) to (200,2)

Figure 45: The resulting paths for different ε-values: ε = 0.1 (green), ε = 0.2 (lightgreen), ε = 0.3
(darkgreen), ε = 0.4 (red), ε = 0.5 (orange) on Forest with start position (60,2) and goal position
(200,2).

In addition to the Forest scene, the Puddle scene has been tested. Start and goal positions of (20,40)
and (80,35) are used. The resulting paths are shown in Figure 47 together with their construction
times, query times, explored nodes and path costs. Similar to the Forest scene, the pruned graphs
methods show an improvement over the Steiner graph in this scenario. Both construction times and
query times are lowered by all of the pruned graph methods. Overall, the closest-edge-based pruning
is the fastest method.
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Forest from (60,2) to (200,2)

Construction Query Nodes Path
ε Graph type time (ms) time (ms) explored costs

0.1

Steiner graph 163325.0 1141.1 47969 2461.2
Triangle intersection based pruning 20580.6 266.4 19204 2461.2
Vertex based pruning 16857.2 224.6 15413 2461.2
Closest edge based pruning 14360.3 183.9 13362 2461.2

0.2

Steiner graph 9638.0 127.8 17710 2461.4
Triangle intersection based pruning 1207.0 32.0 6990 2461.4
Vertex based pruning 1049.6 26.8 5700 2461.4
Closest edge based pruning 947.4 22.5 4924 2461.4

0.3

Steiner graph 1794.7 34.3 9370 2461.9
Triangle intersection based pruning 376.8 9.2 3654 2461.9
Vertex based pruning 351.9 7.8 3031 2461.9
Closest edge based pruning 359.6 6.5 2610 2461.9

0.4

Steiner graph 600.6 13.4 5744 2462.5
Triangle intersection based pruning 255.3 3.6 2206 2462.5
Vertex based pruning 245.0 3.1 1863 2462.5
Closest edge based pruning 273.4 2.7 1599 2462.5

0.5

Steiner graph 300.4 6.4 3826 2464.2
Triangle intersection based pruning 226.6 1.7 1448 2464.2
Vertex based pruning 225.4 1.4 1243 2464.2
Closest edge based pruning 252.2 1.3 1068 2464.2

Figure 46: The construction times, query times, number of nodes explored and path costs of the Steiner
graph and pruned Steiner graphs for different ε-values on the Forest scene with start position (60,2)
and goal position (200,2).
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Puddle from (20,40) to (80,35)

Construction Query Nodes Path
ε Graph type time (ms) time (ms) explored costs

0.1

Steiner graph 49911.9 222.3 7441 231.5
Triangle intersection based pruning 19768.9 84.1 3834 231.5
Vertex based pruning 18396.8 77.6 3561 231.5
Closest edge based pruning 17572.2 76.2 3361 231.5

0.2

Steiner graph 2943.4 29.0 2856 231.5
Triangle intersection based pruning 1170.9 11.7 1470 231.5
Vertex based pruning 1084.5 10.7 1367 231.5
Closest edge based pruning 1043.2 10.4 1300 231.5

0.3

Steiner graph 617.7 8.7 1560 231.8
Triangle intersection based pruning 302.9 3.4 804 231.8
Vertex based pruning 283.1 3.1 751 231.8
Closest edge based pruning 273.9 3.1 717 231.8

0.4

Steiner graph 255.3 3.6 986 232.2
Triangle intersection based pruning 168.8 1.4 511 232.2
Vertex based pruning 164.2 1.4 479 232.2
Closest edge based pruning 156.5 1.3 460 232.2

0.5

Steiner graph 167.0 1.8 675 232.3
Triangle intersection based pruning 132.7 0.8 351 232.3
Vertex based pruning 125.0 0.7 331 232.3
Closest edge based pruning 125.0 0.7 320 232.3

Figure 47: The resulting paths for different ε-values: ε = 0:1 (green), ε = 0:2 (lightgreen), ε =
0:3(darkgreen), ε = 0:4 (red), ε = 0:5 (orange) together with the construction times, query times,
number of nodes explored and path costs of the Steiner graph and pruned Steiner graphs on the
Puddle scene with start position (20,40) and goal position (80,35).
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The Bars scene provides an interesting test case, because it only consists of several long vertical
triangles. By planning a path from left to right, we will create a scenario were the optimal path
intersects almost every triangle in the scene. It is important to test how the pruned graph methods
perform when the pruned graphs are close to the original Steiner graph. The resulting paths and
experimental data are shown in Figure 48. The triangle-intersection-based pruning method selects
all triangles in the scene because the number of explored nodes is equal to the Steiner graph for
each ε-value. The additional costs required for triangle-intersection-based pruning and vertex-based
pruning are visible, and the Steiner graph requires lower construction times in comparison to both
pruning methods. The closest-edge-based pruning method achieves lowest construction times for low
ε-values because the edge-selection costs are low, and the number of pruned nodes and edges is highest.
However, with higher ε-values the Steiner graph also outperforms the closest-edge-based pruning. As
expected, the pruned graph methods do not outperform the Steiner graph method. The additional
costs required to search for a pruned graph have a negative influence on the construction costs because
in this test scenario, Steiner points are still added on all edges.

The Zigzag scene is a very complex scene that contains many long triangles with small internal
angles. These small angles lead to small vertex vicinities and a large number of Steiner points. Paths
are planned on the Zigzag scene from (3,7) to (90,35), and the results are shown in Figure 49. The
closest-edge-based pruning method is not able to significantly reduce the number of Steiner points, and
the Steiner graph achieves lower construction times for ε = 0.5, while the construction times for lower
ε-values are similar to each other. The vertex-based pruning method is well-suited for this scenario
and is able to significantly reduce the number of Steiner points. This results in the lowest construction
and query times for all ε-values.

The last scenario is the High-Low scene with start position (10,10) and goal position (95,10). The
final paths and running times are shown in Figure 50 and show that the pruned graphs do not yield a
big improvement over the Steiner graph in this scenario. Although the number of pruned nodes and
edges is small, the pruned-graph methods show lower running times for low ε-values. As the ε-value
increases, the difference in construction times between the methods becomes smaller and only the
triangle-intersection-based pruning method achieves a significantly lower construction time for ε = 0.5.
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Bars from (10,10) to (95,40)

Construction Query Nodes Path
ε Graph type time (ms) time (ms) explored costs

0.1

Steiner graph 6993.7 62.8 4908 273.6
Triangle intersection based pruning 7057.0 61.1 4908 273.6
Vertex based pruning 5281.6 48.5 3957 273.6
Closest edge based pruning 4057.1 37.4 3094 273.6

0.2

Steiner graph 450.3 8.4 1774 273.8
Triangle intersection based pruning 470.9 8.2 1774 273.8
Vertex based pruning 394.6 6.7 1468 273.8
Closest edge based pruning 344.6 5.4 1203 273.8

0.3

Steiner graph 166.1 2.4 909 273.8
Triangle intersection based pruning 181.5 2.4 909 273.8
Vertex based pruning 171.9 1.9 776 273.8
Closest edge based pruning 166.4 1.7 672 273.8

0.4

Steiner graph 117.6 0.9 542 274.0
Triangle intersection based pruning 140.6 0.9 542 274.0
Vertex based pruning 136.5 0.8 475 274.0
Closest edge based pruning 133.3 0.7 431 274.0

0.5

Steiner graph 120.7 0.5 370 274.2
Triangle intersection based pruning 131.0 0.5 370 274.2
Vertex based pruning 131.5 0.4 329 274.2
Closest edge based pruning 127.2 0.4 306 274.2

Figure 48: The resulting paths for different ε-values: ε = 0.1 (green), ε = 0.2 (lightgreen), ε = 0.3
(darkgreen), ε = 0.4 (red), ε = 0.5 (orange) on the Bars scene with start position (10,10) and goal
position (95,40) together with the edges of the triangulation (dashed gray). The table shows the
construction times, query times, number of nodes explored and path costs of the Steiner graph and
pruned Steiner graphs.

69



Zigzag from (3,7) to (90,35)

Construction Query Nodes Path
ε Graph type time (ms) time (ms) explored costs

0.1

Steiner graph 438767.4 2238.3 26245 343.6
Triangle intersection based pruning 358115.0 2082.3 24869 343.6
Vertex based pruning 303882.8 1789.0 21004 343.6
Closest edge based pruning 410700.6 2116.3 23222 343.6

0.2

Steiner graph 28167.3 256.5 10334 343.6
Triangle intersection based pruning 22321.1 238.4 9853 343.6
Vertex based pruning 19252.0 203.3 8333 343.6
Closest edge based pruning 26186.6 242.0 9263 343.6

0.3

Steiner graph 5089.8 72.8 5796 343.7
Triangle intersection based pruning 4049.9 67.7 5560 343.7
Vertex based pruning 3547.5 57.8 4717 343.7
Closest edge based pruning 4819.5 70.1 5268 343.7

0.4

Steiner graph 1591.8 30.0 3765 343.8
Triangle intersection based pruning 1332.0 27.6 3634 343.8
Vertex based pruning 1192.1 24.2 3096 343.8
Closest edge based pruning 1570.0 29.1 3471 343.8

0.5

Steiner graph 683.3 15.3 2645 343.8
Triangle intersection based pruning 618.5 13.9 2567 343.8
Vertex based pruning 565.3 12.4 2199 343.8
Closest edge based pruning 725.3 14.6 2478 343.8

Figure 49: The resulting paths for different ε-values: ε = 0.1 (green), ε = 0.2 (lightgreen), ε = 0.3
(darkgreen), ε = 0.4 (red), ε = 0.5 (orange) together with the construction times, query times, number
of nodes explored and path costs of the Steiner graph and pruned Steiner graphs for different ε-values
on the Zigzag scene with start position (3,7) and goal position (90,35).
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High-Low from (10,10) to (95,10)

Construction Query Nodes Path
ε Graph type time (ms) time (ms) explored costs

0.1

Steiner graph 127198.0 471.1 7887 592.7
Triangle intersection based pruning 105146.4 412.8 7185 592.7
Vertex based pruning 117328.3 448.8 7409 592.7
Closest edge based pruning 86438.5 264.5 5304 592.7

0.2

Steiner graph 7895.9 60.9 3016 592.8
Triangle intersection based pruning 6451.6 53.4 2742 592.8
Vertex based pruning 7245.3 59.9 2721 592.8
Closest edge based pruning 5840.8 39.6 2187 592.8

0.3

Steiner graph 1409.0 17.7 1648 592.8
Triangle intersection based pruning 1183.2 15.7 1497 592.8
Vertex based pruning 1335.7 16.6 1494 592.8
Closest edge based pruning 1168.7 13.0 1276 592.8

0.4

Steiner graph 487.5 7.3 1039 592.8
Triangle intersection based pruning 423.3 6.7 945 592.8
Vertex based pruning 475.6 6.9 946 592.8
Closest edge based pruning 444.9 5.9 861 592.8

0.5

Steiner graph 251.8 3.5 723 592.9
Triangle intersection based pruning 235.0 3.2 659 592.9
Vertex based pruning 252.2 3.4 662 592.9
Closest edge based pruning 251.6 3.2 632 592.9

Figure 50: The resulting paths for different ε-values: ε = 0.1 (green), ε = 0.2 (lightgreen), ε = 0.3
(darkgreen), ε = 0.4 (red), ε = 0.5 (orange) together with the construction times, query times, number
of nodes explored and path costs of the Steiner graph and pruned Steiner graphs for different ε-values
on the High-Low scene with start position (10,10) and goal position (90,10).
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7.3.2 Path costs

Now that we have seen the performance of the pruned graph methods, we also have to check the
consistency of the pruned methods. In order to check whether the pruned graph methods always
return the same paths as the Steiner graph we have conducted several experiments. These experiments
are based on uniform sampling of start and goal positions on a scene. With this technique, we will
be able to generate paths for numerous start and goal positions while covering the entire scene. The
costs of the resulting paths are compared. If the path returned by a pruned-graph method returns
different costs than the path returned by the Steiner graph, then this will be marked as an error for
the corresponding pruned-graph method.

The Puddle scene is tested first. A total of 6561 paths have been planned on the Puddle scene using
the uniform sampling method. The 6561 paths resulted from every combination of 81 start positions
and 81 goal positions. The 81 positions are generated from every combination of 9 x-coordinates and
9 y-coordinates. The x and y-coordinates are uniformly divided over the entire scene. The number
of errors of each method is shown in Table 51. The shared errors column shows the number of paths
were all three pruned graph methods fail. The number of errors is low for all methods. Upon closer
examination of the errors, the shared errors were all caused by a difference in the homotopy of the grid
path and the Steiner graph path. An example of such a case is shown in Figure 52. If the homotopy of
the grid paths diverts from the Steiner graph path, then the edges selected for pruning might contain
the optimal Steiner graph path.

Pruned graph errors on Puddle scene.

Graph type Number of errors

Triangle intersection based pruning 18
Vertex based pruning 23
Closest edge based pruning 26
Shared errors 17

Figure 51: The number of errors in pruned graph methods resulting paths for 6561 uniformly sampled
start and goal positions on the Puddle scene.

Next to these shared errors, there are also cases where one pruned graph method fails, while
the other pruned graph methods succeed in finding the optimal path in the graph. Such a case is
highlighted in Figure 53. The difference in resulting paths is caused by the different homotopy of the
grid path that is used to prune the Steiner graph. The other graph pruning methods select more edges
and are able to cope with the difference in homotopy of the grid path and optimal path.

Similar experiments have been conducted on all scenes. The results for the Forest scene are shown
in Table 54. We used 9000 uniformly sampled start and goal positions, because the Forest scene is
larger than the Puddle scene. The triangle-intersection-based pruning method performs badly with
three times as many errors as the other pruned-graph methods.

The Bars scene yields a clean sheet with no errors for any pruned-graph method, as shown in Table
55. The Bars scene is tested for 6561 uniformly sampled start and goal positions. The pruned graph
methods are error-free, because the number of triangles is small, and the triangles are large. Large
triangles always have a bigger chance to be selected for the pruned graphs. Small triangles can easily
be missed by the triangle-intersection method or the closest-edge-based pruning method.

The number of errors on the High-Low and Zigzag scenes are shown in Table 56 and Table 57,
respectively. Again the 6561 uniformly sampled paths are used. The High-Low scene shows almost
only shared errors. In contrast to the High-Low scene, the Zigzag scene shows a lot more individual
errors, and this caused by the complexity of the scene. The Zigzag scene contains a high number
of small triangles, which are easily missed by the triangle-intersection based and closest-edge-based
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Figure 52: Different resulting paths for the pruned graph methods (darkgreen) and Steiner graph
(green) on the Puddle scene with start position (12,42) and goal position (72,42). The difference in
resulting paths is caused by the different homotopy of the grid path (orange) that is used to prune the
Steiner graph.

Figure 53: Different resulting paths for the Closest edge based pruning method (darkgreen) and Steiner
graph (green) on the Puddle scene with start position (12,37) and goal position (52,32). The difference
in resulting paths is caused by the different homotopy of the grid path (orange).

Pruned graph errors on Forest scene.

Graph type Number of errors

Triangle intersection based pruning 1623
Vertex based pruning 587
Closest edge based pruning 590
Shared errors 583

Figure 54: The number of errors in pruned graph methods resulting paths for 9000 uniformly sampled
start and goal positions on the Forest scene.
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Pruned graph errors on Bars scene.

Graph type Number of errors

Triangle intersection based pruning 0
Vertex based pruning 0
Closest edge based pruning 0
Shared errors 0

Figure 55: The number of errors in pruned graph methods resulting paths for 6561 uniformly sampled
start and goal positions on the Bars scene.

pruning methods. The vertex-based pruning method suffers a lot less from these problems and almost
only fails to find the optimal path when all pruned graph methods fail.

Pruned graph errors on High-Low scene.

Graph type Number of errors

Triangle intersection based pruning 128
Vertex based pruning 132
Closest edge based pruning 128
Shared errors 128

Figure 56: The number of errors in pruned graph methods resulting paths for 6561 uniformly sampled
start and goal positions on the High-Low scene.

Pruned graph errors on Zigzag scene.

Graph type Number of errors

Triangle intersection based pruning 501
Vertex based pruning 201
Closest edge based pruning 399
Shared errors 198

Figure 57: The number of errors in pruned graph methods resulting paths for 6561 uniformly sampled
start and goal positions on the Zigzag scene.

The accumulated results are shown in Table 58. Combined over all scenes, 35244 paths were
planned for each pruned graph method and compared with the Steiner graph method on path costs.
Overall, the vertex-based pruning method is most reliable with a success rate of 97.3%.
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Total pruned graph errors on all scenes.

Graph type Number of errors Success rate

Triangle intersection based pruning 2270 93.6%
Vertex based pruning 943 97.3%
Closest edge based pruning 1143 96.8%
Shared errors 926 97.4%

Figure 58: The number of errors in pruned graph methods resulting paths for 35244 uniformly sampled
start and goal positions on all scenes.
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7.3.3 Conclusions

The pruned-graph methods rely on an investment, in terms of running times, to decrease the construc-
tion and query times. This investment is the time required to find the edges that will be pruned. The
construction times can be reduced because a lot less connections have to be made when the Steiner
graph is pruned. Furthermore, by confining Dijkstra’s algorithm to pruned graphs, the number of
nodes explored and query times can be greatly reduced. The return on investment depends on the
scenario and the ε-value. Low ε-values generate a large number of Steiner points per edge, and pruning
a small number of edges can already lead to improved running times. As the ε-value rises, it becomes
harder to improve running times because the costs of pruning the graph might be higher than the
costs of adding Steiner points to the edges. As such, the scenario has a big impact on the performance
of the pruned-graph methods. If there is nothing to prune, then the pruned-graph methods yield
unnecessary overhead in terms of construction times. Since the resulting graphs will be the same, the
pruned-graph methods will need more time than the construction time of the Steiner graph. On the
other hand, if the scenario only uses a small part of the scene, then massive improvements can be
made. This has been shown in the Forest scene, where the pruned-graph method achieved 10 times
lower construction times. In most cases, the pruned-graph methods will outperform the Steiner graph
method on construction time and query time.

The downside of the pruned-graph methods is the dependency on the grid path that is used to
guide the pruning process. The pruned-graph methods do not always return the optimal path that can
be found in the Steiner graph. If the homotopy of the grid path differs from the optimal path, then
Steiner points that lie on the optimal path might be pruned from the graph. This happens in 3%-7%
of the tested cases, depending on the pruned-graph method.

Overall, the vertex-based pruning method performed the best in comparison to the other two
pruned-graph methods. It improved the construction and query times of the Steiner graph on all
scenarios except the Bars scenario. Furthermore, the vertex-based pruning method almost only fails
to find the shortest path when all three methods fail, and it has a success rate of 97.3%.

7.4 Overall comparison

Finally, we will compare all methods presented throughout this thesis. To compare all the methods, we
will have to calculate the ε-value of all scenes. The Forest and Zigzag scene do not fulfill the property
of region boundary alignment with grid cells. Therefore, any calculated ε-values for these scenes are
not valid. We will still use the scenes and calculate the ε-values to get an idea of the performance of
the grid-based methods on these two scenes.√
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We will use Equation 1, which has been presented in Section 3.1.10, to calculate the ε-value for
each scene based on the weights w and cell size r. For a cell size of 1 and the weights of each scene we
will end up with an ε-value of 10.5824 for all scenes, except the Forest scene. In contrast to the other
scenes, the Forest scene has a maximum weight of 99 instead of 20. This will result in an ε-value of
50.0824.

To reduce the ε-value of the Forest scene, we lowered the maximum weight to 20. With the ε-values
known for each scene, we can lower the ε-value by decreasing the cell size. As shown in Section 4.3,
the maximum ε-value for the ε-approximation method that is implemented is 1

2 . If we want to achieve
the same ε-bound on the grid methods, we will have to use a cell size of 0.0397. Using such a small
cell size turned out to be a problem in the Forest scene. The size of the grid of the Forest scene
rises from 410x290 nodes to 10327x7304 nodes, and the 4Gb of memory on the computer that ran the
experiments could not handle such a large grid. As such, the grid-paths could not be computed for
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the Forest scene.
We will use vertex-based pruning (VBP) as pruned-graph method because it achieved the highest

success rate of all pruned-graph methods. All graph methods will use Dijkstra’s algorithm to find the
shortest path. The grid methods are tested with Dijkstra and Hierarchical A* (HA*).

The first scenario is the Puddle scene, as shown in Figure 59. The construction times of the
different methods are close to each other. BUSHWHACK manages to achieve quite a low construction
time because it only has to create the sets of Steiner points. The query times show huge differences
between the grid and graph methods. The grid methods have to use such large grids to achieve the
same ε-values that the query times are extremely high. The path costs of the grid methods are close
to the graph methods, but Dijkstra’s algorithm has to explore over 2,5 million nodes to find this path.
The Hierarchical A* method reduces the query time, but running the search on 7 abstraction layers
prevents the Hierarchical A* method to compete with the query times of the pruned-graph methods.
The BUSHWHACK method saved some time on constructing the Steiner graph, but it has to spend a
lot more resources in the query phase while maintaining the intervals. Due to the higher query time,
BUSHWHACK is unable to compete with the Steiner graph and pruned-graph method in terms of
total running time.

Puddle from (20,40) to (80,35)

Method Construction Query Path Nodes
time(ms) time(ms) costs explored

Steiner Graph 152.4 1.8 232.3 675
VBP 125.0 0.9 232.3 331
BUSHWHACK 89.0 103.7 232.3 1155
Grid - Dijkstra 135.0 7870.6 235.0 2585261
Grid - HA* 135.0 3040.9 235.0 1108

Figure 59: The resulting paths of all methods: Steiner Graph and VBP (green), BUSH-
WHACK(darkgreen), Grid - Dijkstra(red) and Grid - HA*(orange) on Puddle with start position
(20,40) and goal position (80,35) together with the construction time, query times, path costs and
explored nodes.

The Forest scenario is shown in Figure 60. The grid methods are absent because the grid became
too large for the memory of the computer running the experiments. In this much larger scene, the
BUSHWHACK method is able to outperform the Steiner graph and pruned-graph methods. The time
saved in the construction phase compensates the higher query time with a total running time of 214.6
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ms versus 227.3 ms of the pruned-graph method.
The Bars scene, Figure 61, shows similar behaviour as the Puddle. The grids are too large to be

able to compete with the graph methods, although the path costs are close to each other. The Steiner
graph method outperforms the pruned-graph method and BUSHWHACK because this is a small scene,
and almost all triangles are selected by the vertex-based pruning method.

The pruned graph shows good results on the High-Low scene, as shown in Figure 62. Neither the
Steiner graph nor the BUSHWHACK method come close to the total running times of the vertex based
pruning method. The difference in path costs between the grid and graph methods seems a bit bigger
in this scenario, but with an ε-value of 0.5 the optimal path costs could lie anywhere between 401.5
and 592.9.

The last scenario is the Zigzag scene from (3,7) to (95,40). The results are shown in Figure 63. The
BUSHWHACK method significantly outperforms all other methods on this scenario. A small difference
can be seen in the path costs between the Steiner graph and BUSHWHACK. The difference is only
0.008, but the rounding of path costs made the Steiner graph path costs to be rounded down and the
BUSHWHACK path costs be rounded up. The difference in path costs is caused by an accumulated
rounding error. As previously mentioned in Section 4.2, the BUSHWHACK method requires a small
re-triangulation of the triangles that contain the start and goal nodes in order to insert triangle vertices
at the start and goal position. Steiner points will be added to these newly inserted edges. If the optimal
path happens to go straight from the start or goal position to one of the three surrounding vertices of
the original triangle, then the resulting BUSHWHACK path will be an edge-crawling path. Summing
up the costs of moving from each Steiner point to the next on this edge can introduce small rounding
errors. The Steiner graph has a straight connection between the start/goal position and all surrounding
nodes and can avoid these rounding errors.
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Forest from (60,2) to (200,2)

Method Construction Query Path Nodes
time(ms) time(ms) costs explored

Steiner Graph 281.1 6.3 2464.2 3825
VBP 225.4 1.9 2464.2 1249
BUSHWHACK 87.1 127.5 2464.2 3416
Grid - Dijkstra x x x x
Grid - HA* x x x x

Figure 60: The resulting paths of several methods: Steiner Graph and VBP(green), BUSH-
WHACK(darkgreen) on Forest with start position (60,2) and goal position (200,2) together with the
construction times, query times, path costs and explored nodes. The grid methods are absent because
the grid was too large to be contained in the memory of the computer running the experiments.
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Bars from (10,10) to (95,40)

Method Construction Query Path Nodes
time(ms) time(ms) costs explored

Steiner Graph 120.7 0.9 274.5 364
VBP 131.5 0.9 274.5 323
BUSHWHACK 96.0 95.8 274.4 712
Grid - Dijkstra 130.1 9349.7 279.1 3144252
Grid - HA* 130.1 4242.4 279.1 10094

Figure 61: The resulting paths of several methods: Steiner Graph and VBP(green), BUSH-
WHACK(darkgreen), Grid - Dijkstra(red) and Grid - HA*(orange) on Bars with start position (10,10)
and goal position (95,40) together with the construction times, query times, path costs and explored
nodes.
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High-Low from (10,10) to (90,10)

Method Construction Query Path Nodes
time(ms) time(ms) costs explored

Steiner Graph 242.1 3.6 592.9 723
VBP 96.7 4.6 592.9 660
BUSHWHACK 97.7 103.6 592.9 883
Grid - Dijkstra 141.9 8961.4 602.3 2905727
Grid - HA* 141.9 3636.2 602.6 12146

Figure 62: The resulting paths of several methods: Steiner Graph and VBP(green), BUSH-
WHACK(darkgreen), Grid - Dijkstra(red) and Grid - HA*(orange) on High-Low with start position
(10,10) and goal position (90,10) together with the construction times, query times, path costs and
explored nodes.
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Zigzag from (3,7) to (95,40)

Method Construction Query Path Nodes
time(ms) time(ms) costs explored

Steiner Graph 626.4 14.8 343.8 2465
VBP 565.3 13.7 343.8 2029
BUSHWHACK 125.0 155.7 343.9 2755
Grid - Dijkstra 141.2 9869.3 349.9 3085623
Grid - HA* 141.2 5125.2 363.1 10940

Figure 63: The resulting paths of several methods: Steiner Graph and VBP(green), BUSH-
WHACK(darkgreen), Grid - Dijkstra(red) and Grid - HA*(orange) on Bars with start position (10,10)
and goal position (95,40) together with the construction times, query times, path costs and explored
nodes.
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Finally, we will also compare the ε-approximation methods against the grid methods with cells of
unit length. Grid methods are mostly used with cells of unit length in practice. By comparing these
grid methods against the ε-approximation methods, we can see how the ε-approximation methods
perform in practice. The results for the Puddle scene are shown in Figure 64. The grid methods
achieve the lowest total running times, but the Steiner graph and pruned-graph methods have lower
running times. If several queries have to be performed on a single scene, then the graph methods can
outperform the grid methods. The Forest scene shows similar behaviour in Figure 65. In this scene the
graph methods can already outperform the grid methods if four or more queries are performed on the
scene. As such, the graph methods can compete with the grid methods in practical applications that
perform multiple queries on the same scene. Additionally, the computed paths of the graph methods
have lower ε-values and are closer to the optimal path costs.

Puddle from (20,40) to (80,35)

Method ε-value Construction Query Path Nodes
time(ms) time(ms) costs explored

Steiner Graph 0.5 152.4 1.8 232.3 675
VBP 0.5 125.0 0.9 232.3 331
BUSHWHACK 0.5 89.0 103.7 232.3 1155
Grid - Dijkstra 10.5824 0.8 4.78 241.0 4497
Grid - HA* 10.5824 0.8 3.94 241.2 490

Figure 64: The resulting paths of all methods: Steiner Graph and VBP (green), BUSH-
WHACK(darkgreen), Grid - Dijkstra(red) and Grid - HA*(orange) on Puddle with start position
(20,40) and goal position (80,35) together with the ε-value, construction time, query times, path costs
and explored nodes.
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Forest from (60,2) to (200,2)

Method ε-value Construction Query Path Nodes
time(ms) time(ms) costs explored

Steiner Graph 0.5 281.1 6.3 2464.2 3825
VBP 0.5 225.4 1.9 2464.2 1249
BUSHWHACK 0.5 87.1 127.5 2464.2 3416
Grid - Dijkstra 50.0824 4.2 151 2555.4 83250
Grid - HA* 50.0824 4.2 88.9 2556.1 4960

Figure 65: The resulting paths of several methods: Steiner Graph and VBP(green), BUSH-
WHACK(darkgreen), Grid - Dijkstra(red) and Grid - HA*(orange) on Forest with start position (60,2)
and goal position (200,2) together with the ε-value, construction times, query times, path costs and
explored nodes.
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8 Conclusions

In this thesis, we have searched for methods to improve current solutions to the Weighted Region prob-
lem [3]. We first discussed A* grid approaches. We created a formula that can be used to calculate
the ε-value of paths returned by grid methods, based on the minimum and maximum weights in the
scene and the resolution of the grid. The A* heuristics have been examined to address the problems
of A* on weighted regions.

The Hierarchical A* method has been adapted to work with weighted regions. Two abstraction
methods, resolution-based and mapping-based abstraction, have been compared to see which method
yields the best abstraction layers. The discretization errors in the resolution-based abstraction cause
severe overestimations of the heuristic values, while the mapping-based abstraction only causes under-
estimations of heuristic values, which allows the heuristic to maintain admissible.

Experiments have been conducted to find optimal values for the two parameters of the Hierarchi-
cal A* method. The first parameter controls the number of abstraction layers that are used in the
hierarchy. The experiments showed that this parameter is dynamic and should be adjusted to each
scene. The running times of the Hierarchical A* method decrease with each added abstraction layer,
until the resolution of the abstraction layer is lower than 200. Abstraction layers with such a small
resolution can efficiently be explored by Dijkstra’s algorithm, and adding more layers will only lead to
more overhead. We conclude that one should use as many abstraction layers, as long as there is only
one layer with a resolution lower than 200 in the hierarchy.

The second parameter of the Hierarchical A* method is the abstraction factor. This factor controls
the number of nodes that are mapped to a single node on a higher abstraction layer. Using higher
values decreases the query times, but has a negative influence on the path costs. We have determined
the optimal value for the abstraction factor to be 2. In addition, we have compared different heuristics
with each other. The Hierarchical A* method improves upon the performance of A* if the environ-
ments are large, while not significantly under-performing in smaller scenes. The resulting paths for
Hierarchical A* are near-optimal and only overestimated the total costs by a maximum of 0.7 for path
costs ranging from 217 to 2555 in the tested scenes.

The bounds of the ε-values for ε-approximation methods have been analyzed. The minimum ε-value
must always be greater than 0. The maximum ε-value depends on the ε-approximation method that is
used. For the ε-approximation method [5] that places Steiner points on the edges of the triangulation,
the maximum ε-value is 1

2 . For the ε-approximation method [6] that places Steiner points on the
bisectors of the triangle edges of the triangulation, the maximum ε-value is 3 1

2 .
Several new methods have been devised to improve the graph-based approaches to the Weighted

Region Problem. The first method aims at reducing the number of nodes explored by A* on the graph
by creating a better guidance through the use of a grid path. The Hierarchical A* heuristic takes
a similar approach and has been used to create heuristic values for the A* method on the Steiner
graph. This method suffers from higher path costs. Several attempts have been made to correct the
Hierarchical A* heuristic to yield optimal paths, but the Hierarchical A* method is not suited for
graphs because the heuristic is not monotone.

The second method utilizes the A* grid path to prune the graph. This approach shows an improve-
ment over the Steiner graph method in two ways. Firstly, the number of Steiner points that need to
be added and connected can be reduced, allowing for lower construction times of the graph. Secondly,
the pruned graph can be a lot smaller and thus reduce the number of nodes that can be explored by
graph-search algorithms such as Dijkstra’s algorithm. Three approaches have been devised to prune
the graph. The first method creates the pruned graph by determining all triangles that are intersected
by the grid path. The second method selects a set of vertices near the bending points of the grid path
and combines all incident edges of the vertices with all edges that are intersected by the grid path. The
pruned graph is constructed by adding Steiner points on all of these edges. The last method creates a

85



pruned graph out of a set of edges that lie within a certain radius of the grid path.
The pruned-graph methods have been compared against the Steiner graph and against each other.

The pruned-graph methods showed to be able to reduce the construction and query costs, when the
ε-values are low and the optimal path does not intersect with all triangles in the scene. Except for
the Bars scenario, the vertex-based pruning method has been able to construct the pruned graph
faster than the Steiner graph and achieve lower query times than the Steiner graph method. The
pruned-graph methods do not always return the optimal path. If the homotopy of the grid path is
different from the homotopy of the optimal graph path, then the pruned-graph methods may prune
too much and the optimal path might no longer exist within the pruned graph. Experiments have been
conducted to find the success rate of all pruned-graph methods. The vertex-based pruning method
achieved the highest success rate with a rating of 97.3%.

Finally, we have compared the grid and graph methods while adjusting the grid methods ε-value
by increasing the resolution of the grid. The increase of grid resolution has such a huge impact on the
grid methods that the query times became extremely high. The BUSHWHACK method was able to
achieve the best running times on the complex Zigzag scene and large Forest scene. The pruned-graph
method performed best on the other scenarios.

Overall, we can state that the gap between the grid and graph approaches has been reduced. The
newly introduced pruned-graph methods can be used to plan near-optimal paths for multiple characters
in real-time applications due to its low running times. Furthermore, using the Hierarchical A* method
can improve running times of grid-based methods, allowing for higher resolution grids to return paths
with a lower ε-value. Games and virtual environments could benefit from using the Hierarchical A*
method when the environments are not too big and path for many characters need to be planned.
When the environments are large or if precision is more important, then the pruned graph methods
will outperform the current grid and graph methods, as well as the Hierarchical A* method.
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9 Future work

In this section, we will discuss how the algorithms and methods presented in this thesis might be
further improved, and we will present several research questions that arose from the results presented
in this thesis.

9.1 BUSHWHACK improvements

The BUSHWHACK method could be adapted to work with pruned graphs. The running times could
be improved in two ways. The first idea is to only add Steiner points to the edges selected by the
pruned-graph method. The second idea is to reduce the number of intervals that need to be maintained
by BUSHWHACK by using pruned-graphs.

BUSHWHACK uses a wavefront expansion comparable with Dijkstra’s algorithm. We might be
able to improve the performance if we use a heuristic to guide the expansion. Adding a heuristic to
BUSHWHACK is complicated, because BUSHWHACK maintains monotonically increasing intervals.
However, BUSHWHACK is devised as a general method that could be applied to any piecewise pseudo-
Euclidean optimal path problem. The only requirement is that the local extrema on an edge can be
calculated in O(logm) time, where m is the number of Steiner points on that edge. Finding these local
extrema might be difficult because the combination of two monotonic intervals (one for the heuristic,
one for the costs to the start) could lead to an interval with two extrema. When two extrema are
found, the interval should be split up in four monotonic increasing intervals. Another possibility is that
the sum of the heuristic and the costs to the start add up to the same value for several neighbouring
Steiner points. Additional rules need to be be defined to handle such cases.

9.2 Weight-based pruning

For specific problems, one might also use a weight-based pruning method to prune the Steiner graph.
For instance, if path planning is done for virtual pedestrians in a city environment, one could only add
Steiner points to the triangles that represent the sidewalks in the environment. In order to maintain
dynamic pedestrian behaviour, such as avoiding a blocked sidewalk by using the read next to the
sidewalk, one could additionally use Steiner points on all triangles adjacent to sidewalk triangles. This
approach does not work in the general WRP because there is always a possible scenario where a
character has to cross regions with all possible weights in order to find the optimal path. If a character
needs to cross all regions, then all regions need to be covered with Steiner points, and the pruned
graph will be equal to the normal Steiner graph.

9.3 Hierarchical Steiner graphs

The Hierarchical A* heuristic is not compatible with the graph-search methods because the difference
between the ε-values of the grid and Steiner graph are too great. One could also construct a hierarchical
structure that consists of Steiner graphs at different ε-values, where each layer creates heuristic values
for the lower layers. Finding a path for ε = 0.0001 can take hours with current approaches, but with
a hierarchy that produces good heuristic values, the search could be reduced significantly.

9.4 Improvement of the Hierarchical A* approach

Hierarchical A* tends to overestimate the costs to the goal, as shown in Section 7.2.2. However, these
near-optimal paths differ from the optimal path by not more than one node. If optimal paths are a hard
requirement, one could examine all nodes that lie within a one-node radius of the path returned by
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Hierarchical A* and update parent pointers if shorter paths are found. This is a simple postprocessing
step that could be performed in O(l) time, where l is the length of the near-optimal path.

9.5 Final words

This thesis provides some new insights and new methods to tackle the Weighted Region problem. The
gap between grid and graph approaches has been reduced, but is still far from being closed. There
are many open questions left and there is still room for improvement. Future gaming and simulation
applications can benefit from answering those questions.
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ε′ = 0

m(
√

2 ∗m−m− x)

(m2 + x2)
3
2

= 0

m(
√

2 ∗m−m− x) = 0
√

2 ∗m−m− x = 0

x =
√

2 ∗m−m
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C Finding the maximum value of ε

ε =
(
√

2 ∗m−m)
√

2 +m− (
√

2 ∗m−m)−
√

(
√

2 ∗m−m)2 +m2√
(
√

2 ∗m−m)2 +m2

ε =
2m−

√
2 ∗m+m− (

√
2 ∗m−m)−

√
(3− 2

√
2)m2 +m2√

(3− 2
√

2)m2 +m2

ε =
3m−

√
2 ∗m− (

√
2 ∗m−m)−

√
(4− 2

√
2)m2√

(4− 2
√

2)m2

ε =
(3−

√
2)m− (

√
2− 1)m−

√
(4− 2

√
2)
√
m2√

(4− 2
√

2)
√
m2

ε =
(3−

√
2−
√

2 + 1)m−
√

(4− 2
√

2) ∗m√
(4− 2

√
2) ∗m

ε =
(4− 2

√
2)m−

√
(4− 2

√
2) ∗m√

(4− 2
√

2) ∗m

ε =
(4− 2

√
2)m√

(4− 2
√

2) ∗m
−

√
(4− 2

√
2) ∗m√

(4− 2
√

2) ∗m

ε =
(4− 2

√
2)m√

(4− 2
√

2) ∗m
− 1

ε =
(4− 2

√
2)√

(4− 2
√

2)
− 1

ε =

√
(4− 2

√
2)− 1
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