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Abstract

This thesis addresses two separate but fundamentally linked topics: interoper-
ability and data enrichment. Interoperability has become a popular concept in
the recent years and many systems have aimed at achieving it. However its
definition remains vague, since it has been highly dependent on the context of
use or the needs of each particular framework. To make things worse, various
levels of interoperability between two systems ranging from no interoperabil-
ity to full interoperability exist. This document’s primal goal is to present the
different facets of this confusing notion, while focusing on the overlapping con-
cepts across the numerous definitions. In addition, “search” interoperability
and record-linkage will be further investigated, since they are highly related to
our major topic of interest.

Data enrichment, similar to the previous topic, has a vague definition. Adding
data to existing data, as a procedure can vary from visiting the library to devel-
oping sophisticated, web harvesting systems. Once again the technical details
of data enrichment depend on the context of use. Based on the previous, we
have decided for this thesis to limit its focus to data enrichment systems, for
music sources, that employ web-mining techniques (Web MIR). We particularly
focus on databases containing old, rare and obscure music artists from the first
half of the previous century.

Both topics will be particularly investigated inside the context of a real-life
scenario; namely the case of interconnecting and enriching the music databases
of the Netherlands’ Institute of Sound and Vision and Meerten’s Institute.



Chapter 1

Introduction

The extreme growth of digital music collections leads to the crucial problem
of managing and exploiting their content. Information about the artist, album
name and song titles solely has proven unsatisfactory for commercial distribu-
tors or even users to exploit. The first require more data in order to provide
the correct music to the targeted people, while the latter for generating music
playlists, grouping music pieces etc.

Typically such data would be gathered using content-based approaches. In
such cases the audio files are processed, analysed and all the resulting high-level
information is derived from a set of extracted features such as chroma, MFCC
etc.

In the possible case of non-existent audio, typical MIR techniques are fu-
tile. In such cases, the available metadata should be employed for further data
enrichment. Web based metadata hubs for music entities, such as Last.fm and
MusicBrainz, alleviate the problem by offering vast amount of community and
editorial metadata. However, old and obscure artists are typically misrepre-
sented and therefore music hubs are rendered also futile.

In the recent years, a novel Music Information Retrieval (MIR) field has
emerged. Instead of analysing the audio content, Web-MIR techniques employ
the Web to extract the required metadata. By assuming the validity of the
“wisdom of the crowd”, the Web acts as a vast pool of useful data waiting to
be mined. A literature overview is presented in Chapter 3.

Therefore, this thesis investigates the ways that Web-MIR can be employed
for data enrichment, especially for pre-1950’s or obscure artists (Chapters 5, 6,
7 and 8). We are especially interested in three features related to artists: era of
productivity, geographic location and genre. Our experiments show that all of
them can be extracted efficiently and reliably using Web-MIR techniques.

However, the higher level concept of artist similarity cannot be computed
using the previous methods out of the box. We shall later see that Web-MIR is
based on a set of tools that simply cannot work for old and obscure artists, since
the way these are documented on the web differs from the normal. Therefore,
Chapter 8 presents our approach for computing artist similarity by employing
three distinct features, supported by musicological knowledge.

The lack of metadata, for large music collections, is only one of the problems
that arise with the growth of digital music. This extreme growth lead also to the
need for collaboration and exchange of information between distributed collec-
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tions. However, the heterogeneities between data representation and meaning
can act as a major drawback for achieving the goal of “interoperability”, and
therefore surpassing them is crucial. Chapter 3 offers an in depth introduction
to the world of interoperability while focusing on music applications. Chapter
4 additionally investigates the sub-problem of record linkage on a real life prob-
lem, namely the database of the Netherland’s institute for Sound and Vision,
as part of the COGITCH project.

1.1 COGITCH

COGITCH’s (COGnitive ITCH) general objective is to develop generic tech-
niques to index distributed music sources by developing an interoperable sys-
tem. The specific case studied in order to reach this general objective involves
two Cultural Heritage institutions, Meertens Institute (MI) and the Netherlands
Institute for Sound and Vision (S&V). MI and S&V possess two unique collec-
tions of Dutch musical heritage that must be made interoperable and accessible,
both at the level of metadata and at the level of musical content. For the latter,
the phenomenon of the musical “hook” in particular is employed.

Therefore, one of the main goals of the COGITCH project is the development
of an audio retrieval framework based on “hooks”. Although the definition of
“hook” is still abstract the underlying idea remains same: music tracks will be
indexed, compared and retrieved based on some feature representation. As a
consequence, a form of similarity will be established between each pair of songs
in the COGITCH dataset . This service by itself would simply provide a ranked
list of audio tracks for each query.

However, the questions that this project should be able to answer are more
sophisticated: how did Dutch music evolve from the beginning of the 20th
century until the current date? Which phrases/motives or eventually hooks
managed to stand the test time? How did the early folk melodies affect the
current pop repertoire? How did certain hooks transcend to other countries or
even genres? Most of these questions contain the concept of time, genre and
others. However, both MI and S&V datasets do not include metadata such as
year of release; hence the need for a data enrichment is obvious. Only if the
song relationships (encoded as hook similarities) are placed inside a meaningful
semantic context, will the COGITCH project manage to answer its research
questions.
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Chapter 2

Interoperability

2.1 Defining interoperability

As previously mentioned, interoperability lacks universal definition. While it
originally emerged from IT systems it quickly spread across different scientific
fields (eg. communications, medical industry, public safety etc.). For each of
those fields, a different denotion, to what inter-operable system means, was
given. However, common ground and fundamental components exist in all def-
initions, and they are listed below:

1. Ability to exchange information that is well undestood from all parties.

2. Ability to use that information.

Given those two components, more restricting and contex-dependant definitions
can be generated. We will later see how this applies for data repositories and
web-services, fields related to our work. For now, it is worth discussing the
fundamental, theoretic levels of interoperability.

2.1.1 Models for Levels of Interoperability

Unfortunately, there is not a single model of levels that satisfies all needs. LISI
(Levels of Information Systems Interoperability)[10] distinguishes between:

1. Isolated Systems: No physical connection exists.

2. Connected Systems: Homogeneous product exchange is possible.

3. Distributed Systems: Heterogeneous product exchange is possible.

4. Integrated Systems: Shared applications and shared data.

5. Universal Systems: Enterprise wide shared systems.

The LCIM (Levels of Conceptual Interoperability Model) [1, 11] aims at
going beyond the technical reference models for interoperable solutions to the
domain of conceptual modelling and simulations. The whole model is based on
the works of [12] in composability, meaning the ability of a system to provide
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recombinant components that can be selected and assembled in various combi-
nations to satisfy specific user requirements. The levels are presented in a brief
below:

1. Level 0: Stand-alone systems. No interoperability.

2. Level 1: Technical Interoperability assumes the existence a communication
protocol for exchanging data between participating parties. A communica-
tion infrastructure is established allowing systems to exchange the lowest
level of information encoding such as bits and bytes. In addition and the
underlying networks and protocols are defined unambiguously.

3. Level 2: Syntactic Interoperability introduces an underlying, shared struc-
ture to exchange information, such as a common data format. On this
level, a common structure protocol of data is used; in addition the format
of the information exchange is unambiguously defined.

4. Level 3: The level of Semantic Interoperability is reached when a common
information exchange reference model is used. On this level, not only the
structure but the meaning of the data is shared; hence the content of any
information exchange requests/responses are unambiguously defined. It
should be noted that there is a related but slightly different interpretation
of semantic interoperability notion, which roughly corresponds to what is
later denoted as Conceptual Interoperability, i.e. information in a form
whose meaning is independent of the application generating or using it.

5. Level 4: Pragmatic Interoperability is achieved when the participating
systems are aware of the methods and procedures that each system is
employing. In other words, the use of the data, or the context of its
application, is understood by the participating systems: the context in
which the information is exchanged is unambiguously defined.

6. Level 5: The state of dynamics systems may change over time, and this
includes the assumptions, constraints and the general context that affect
data exchange. Systems with Dynamic Interoperability are able to com-
prehend the state changes that occur in the assumptions and constraints
that each is making over time, while also employ those changes. When it
comes to effects of operations, this becomes very important; the effect of
the information exchange within the participating systems is unambigu-
ously defined.

7. Level 6: When the conceptual model, meaning the assumptions and con-
straints of an abstraction of reality, are aligned, then the highest level of
interoperability is reached, namely “conceptual interoperability”. Con-
ceptual models should be documented by engineering methods that would
enable their interpretation and evaluation by other engineers. In other
words, fully specified but independent models are required.

In this report, LCIM will be employed, although a rough mapping to the
notions of LISI is possible. In addition, for our topic of interest, two are the most
important and popular levels corresponding to LCIM: syntactic and semantic.
We will now discuss them further.
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Figure 2.1: The LCIM model

2.1.2 Syntactic Interoperability

In the traditional sense, syntax is defined as the “arrangement of words (in
their appropriate forms) by which their connection and relation in a sentence
are shown” or “the department of grammar which deals with the established
usages of grammatical construction and the rules deduced therefrom” (Oxford
English Dictionary). Hence, with syntax in the traditional sense, the challenges
of Syntactic interoperability become: a) identifying all the elements in vari-
ous systems; b) establishing rules for structuring these elements; b) mapping,
bridging, creating crosswalks between equivalent elements using schemas etc. c)
agreeing on equivalent rules to bridge different cataloguing and registry systems
[3].

These challenges, as described by Veltman, can be simplified into the fol-
lowing: if two or more systems are capable of communicating and exchanging
data they are exhibiting syntactic interoperability [3]. This simply implies that
particular data formats or even protocols should be employed by all participat-
ing parties. Common tools for syntactic interoperability are SQL and XML,
ensuring that each data source is represented with the same format.

2.1.3 Semantic Interoperability

Semantics is defined as the meanings of terms and expressions. Hence semantic
interoperability is “the ability of information systems to exchange information
on the basis of shared, pre-established and negotiated meanings of terms and
expressions” [3]. To simplify this, semantic interoperability assumes that the
content of the information exchanged is unambiguously defined and that all
parties interpret it the same. It becomes obvious that syntactic is a prerequisite
for semantic interoperability. If the representation of the data is ambiguous then
its semantic interpretation and its placing into context becomes impossible.

Now let us assume that the prerequisites are satisfied. Even so, ambiguity
would still be an issue since definitions across data sources may differ. In order
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to overcome this problem of semantic heterogeneity [5] and achieve an acceptable
level of precision and specificity, interoperable systems usually employ a shared,
independent vocabulary of concepts to which each data field is linked. The
vocabulary in addition to a related ontology describing meanings and First-
Order Logic relations between data, provide the fundamental tools for correct
semantic interpretation [4].

Currently there’s no single ontology that can represent all possible data fields
and terms for apparent reasons. As an alternative, foundation ontologies have
been suggested. Foundation, or upper ontologies, comprise of quantum elements
on which others can be user-generated. However, this topic is still researched and
no foundation ontologies have been widely accepted or standardized. As a result,
it is quite common for only partial-semantic interoperability to be achieved,
meaning that only part of the whole set of definitions are interconnected.

Regarding software application communication, there are at least two differ-
ent ontology-based types of solutions:

• In the first type of solutions all applications share a common, communica-
tion terminology. The semantics of this shared terminology are typically
specified by a (meta) standard and all applications employ it in an unam-
biguous fashion. In the case of an application that internally uses a ter-
minology digressing from the standard, a transformation mapping needs
to be established. This is usually achieved via human intervention and
specially developed software that perform the transformation.

• In the second case the system’s semantics is specified by logic-based on-
tologies. In order to resolve this, a broader terminology, whose semantics
is also specified by a logic-based ontology, is used as a medium or reference
terminology. Computer programs can automatically generate transforma-
tions between terminology systems. This is possible due the fact that rela-
tionships between terminologies can be mapped into or from the reference.
As we shall see in later chapters, the computer-based transformations are
the core of the Semantic Web.

It becomes quite obvious that the issue of semantic interoperability is multi-
faceted. Its theoretical aspects and intuition are even rooted to ancient philoso-
phers such as Plato and Aristotle. Therefore, we will end our discussion here,
forwarding the reader to the work of [3] for further details. It should be men-
tioned though that semantic interoperability governs the rest of this thesis, since
its importance and practical significance are great.

2.2 Interoperability Into Context

In the previous section we described the different levels or types of interoper-
ability outside any practical context. Therefore in this section, we will focus on
its application on certain tasks and frameworks.

• Software: Interoperability in software corresponds to the ability of pro-
grams to exchange data via a set of data formats, protocols etc. For
example two communicating programs running on different platforms (eg.
Java, C++) show software interoperability. It is worth refering to the
ISO/IEC 2382-01, Information Technology Vocabulary definition which
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describes software interoperability as the ”the capability of communicate,
execute programs, or transfer data among various functional units in a
manner that requires the user to have little or no knowledge of the unique
characteristics of those units”.

• Medical industry: Interoperability in medical devices corresponds to
the ability of of those devices to communicate and be compatible with
others. In simpler words any new device purchased by a medical center,
should be able to work with any others already existing.

• Public safety: Interoperability in public safety has become a prominent
issue (at least in the USA) mainly after 9/11 and Hurricane Katrina, where
safety departments (fire fighting, law enforcement etc) presented lack of
communication in terms of data representation and hardware.

• Military: Ongoing military operations throughout the world have demon-
strated an increased reliance on the collaboration of many nations and
their corresponding services, disparate systems and procedures. These
systems (usually complex), were typically acquired in isolation without
considerating interoperability. It wasn’t until recently that some nations
begun to expend resources on researching the major issue of incompati-
bility within the battlespace.

2.2.1 Search Interoperability vs Multiple Database Query-
ing vs Enterprise Search

As mentioned in the abstract, the subject of interest of this report is search
interoperability, referring to the ability of searching and gathering information
from multiple, content-wise similar sources using (optimally) a single query.
Such sources encode and store semantically similar notions eg. music records,
employee profiles etc.

The notion of multiple database querying should be separated from the pre-
vious, since it refers to combining distributed sources in order to complete a
single query. For example, a table containing employees’ information may be
located in database A and a table with salary information in database B. Mul-
tiple database quering aims at combining the two separated sources in order to
complete an employee-salary query.

Enterprise search is a widely used concept that needs to be separated from
interoperability also. The latter can be considered as a desired or even re-
quired characteristic of an enterprise search framework, while its definition is
far less solid. Enterprise search actually corresponds to searching, indexing
and integrating documents from various sources such as file systems, intranets,
databases, the Web and others. The results of a search are usually available
within the enterprise but this not a canon. Typical procedures employed by
such systems are content processing and ingestion, query parsing, federated and
faceted search, and others. In order to be complete, we will later discuss a pub-
lished approach related to enterprise search [29]. For the time being the reader
is forwarded to Hawking’s research [28] which nicely summarizes the definition,
challenges, problems and solutions of enterprise search.

Returning to search interoperabity, it should be mentioned that during the
following paragraphs we will make the assumption that databases, web sources

7



and everything indexable roughly correspond to the same concept. In other
words we assume that each piece of information/entity online has a database
representation (set of fields and values). We also assume that the search inter-
operability problem can be generalized to web services[8], since such services
use web sources as input/output.

Problem Definition

Typically, what are called “enterprise” systems, are developed over several pe-
riods of time, by diverse organizations and not necessarily with the same meta-
data schemas, fields and vocabularies. This leads to substantial heterogeneity
in syntax, structure and semantics when it comes to interoperation and cross-
collection searching between these systems [8]. Figure 2.2 presents some typical
heterogeneities.

Schema and field disagreements are sometimes referred to as “metadata
schism”. The schism suggests that that there is no single metadata scheme
and set of fields that satisfies the needs of all applications. Although metadata
standardizations exist, this issue remains unsurpassed. On the other hand, gen-
erating new schemes for each new framework or application is rather unwise
since it propagates the problem.

Given that and if we digress a bit from the “search” problem into the “web
search”, we will stumble upon the lack of semantic context. Despite the popu-
larity of the standard Web technologies (HTML, XML) it has been obvious they
lack expressive power that would enable related entities (e.g. music artists), de-
scribed in various documents, to be connected. Hyper-links encode relationships
between documents, but fail to capture semantic content. In other words, it is
very common for the documents to be connected but not the data itself. Taking
into consideration the lack of formal specifications and concepts that attach a
“meaning” in a given domain, it becomes obvious that Web is currently a source
of distributed, heterogeneous data that users struggle to navigate into.

Studying the issues above draws a blueprint of the interoperability levels
with respect to distributed sources. Zeng and Chan [14] have clustered interop-
erability efforts using a practical approach:

• Schema level: Efforts are focused on the elements of the schemas, being
independent of any applications. The results usually appear as derived
element sets or encoded schemas, crosswalks, application profiles, and el-
ement registries (all will be discussed later).

• Record level: Efforts are intended to integrate the metadata records
through the mapping of the elements according to the semantic meanings
of these elements. Common results include converted records and new
records resulting from combining values of existing records.

• Repository level: With harvested or integrated records from varying
sources, efforts at this level focus on mapping value strings associated
with particular elements (e.g., terms associated with subject or format
elements). The results enable cross-collection searching.
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Heterogeneities/Conflicts	
   Examples	
  
Naming	
  conflicts	
  
Two	
  attributes	
  that	
  are	
  semantically	
  alike	
  
might	
  have	
  different	
  names	
  (synonyms)	
  
	
  
Two	
  attributes	
  that	
  are	
  semantically	
  
unrelated	
  might	
  have	
  the	
  same	
  names	
  
(homonyms)	
  

Source	
  1	
  
Student(#id,	
  Name)	
  
	
  
	
  
	
  
Source	
  1	
  
Student(#id,	
  Name)	
  

Source	
  2	
  
Student(SSN,	
  Name)	
  
	
  
	
  
	
  
Source	
  2	
  
Book(#id,	
  Name)	
  

Data	
  representation	
  conflicts	
  
Two	
  attributes	
  that	
  are	
  semantically	
  similar	
  
might	
  have	
  different	
  types	
  of	
  representations	
  

Source	
  1	
  
Student(#id,	
  Name)	
  #id	
  
defined	
  as	
  4	
  digit	
  number	
  
	
  

Source	
  2	
  
Student(#id,	
  Name)	
  #id	
  
defined	
  as	
  a9	
  digit	
  number	
  
	
  

Naming	
  conflicts	
  
Semantically	
  alike	
  entities	
  might	
  have	
  
different	
  names	
  (synonyms).	
  
	
  
Semantically	
  unrelated	
  entities	
  might	
  have	
  
the	
  same	
  name.	
  

Source	
  1	
  
EMPLOYEE(#id,	
  Name)	
  
	
  
	
  
Source	
  1	
  
TICKET(TicketNo,	
  Movie	
  
Name)	
  
	
  

Source	
  2	
  
WORKER(#id,	
  Name)	
  
	
  
	
  
Source	
  2	
  
TICKET(FlightNo,	
  Airport)	
  

Schema	
  isomorphism	
  conflicts	
  
Semantically	
  similar	
  entities	
  might	
  have	
  
different	
  number	
  of	
  attributes.	
  

Source	
  1	
  
PERSON(Name,	
  Address)	
  
	
  

Source	
  2	
  
PERSON(Name,	
  Address,	
  
Phone)	
  
	
  

Generalization	
  conflicts	
  
Semantically	
  similar	
  entities	
  are	
  represented	
  
at	
  levels	
  of	
  generalization.	
  

Source	
  1	
  
GRAD-­‐STUDENT(ID,	
  Name,	
  
Major)	
  
	
  

Source	
  2	
  
STUDENT(ID,	
  Name,	
  Major)	
  
	
  

Attribute	
  entity	
  conflicts	
  
Semantically	
  similar	
  entity	
  modeled	
  as	
  
attribute	
  in	
  one	
  service	
  and	
  as	
  an	
  entity	
  in	
  
the	
  other.	
  

Source	
  1	
  
COURSE(ID,	
  Name,	
  Semester)	
  
	
  

Source	
  2	
  
DEPT(ID,	
  Course,	
  …,	
  
Semester)	
  
	
  

	
  

Figure 2.2: Heterogeneities

2.3 Achieving Interoperability

2.3.1 Record Level

Semantic Web and the Linking Open Data Project

Linking Open Data (LDO) is a large W3C SWEO1 project that aims at publish-
ing interlinked datasets on the Web, following a series of Linked Data principles.
Technically, links between sources enable the user to navigate from a data item
within one document source to associated data items within other sources us-
ing a Semantic Web browser (eg. Tabulator 2, Marbles3). The aforementioned
process is presented in Figure 2.3, where RDFs encode relationships between in-
formation described as URI aliases (both notions will be explained later). The
use,r by querying for a Band A in a particular database, can navigate to the

1www.w3.org/2001/sweo
2www.w3.org/2005/ajar/tab
3marbles.sourceforge.net/
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same band in an another source. From there it is possible to acquire information
and relationships not present in the first database, such as the band’s location
and so on.

It is also possible for links to be followed by the web crawlers, which may
provide sophisticated search and query capabilities over crawled data. The
functionality and power of such a scheme is enhanced considering that the query
results are structured data and not just links to HTML pages therefore can be
used by other applications [15]. Currently the number of interlinked datasets is
295, which consist of over 31 billion links.

Same  as

www.musicbrainz/

bandA

www.musicbrainz/

bandA

www.dbpedia/bandA’

RDF

Query

Search Engine interface

www.dbpedia/bandA’RDFwww.dbpedia/bandA’

location

www.dbpedia/Athens

similar

www.dbpedia/Athens

www.geonames/athe

ns_greece

www.geonames/athe

ns_greece

RDF

Figure 2.3: Searching through RDF triples

In contrast to HTML and URLs used on the hypertext Web, Linked Data
employs the RDF (Resource Description Framework) format and URIs (Uniform
Resource Identifiers). In order to continue our discussion, we firstly have to
investigate those.

URIs

URLs describe a location/address of a document on the world wide web. URIs
on the other hand are more generic and provide an identity to an actual entity.
Typically URIs use the http:// scheme and hence the corresponding entities can
be looked up simply by dereferencing the URI over the HTTP protocol. There-
fore, the HTTP protocol provides a simple, universal mechanism for retrieving
absolute resources:

http://example.org/absolute/URI/dog.jpg

or retrieving descriptions of entities that cannot themselves be sent across the
network in this way:

http://en.wikipedia.org/wiki/URI/#dog

It should be mentioned that duplicate identities may exist for the same real
world concept; for example the URIs http://data.linkedmdb.org/resource/film/77
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and http://dbpedia.org/resource/pulp fiction%28film%29 refer to the same film
“Pulp fiction”.

Typical URI repositories, or “identifier hubs” as they are usualy denoted,
are DBpedia4 (which extracts sources from Wikipedia pages), Geonames5 (for
geographical information) and MusicBrainz6[16] (for music related sources eg.
songs, albums, artists).

RDF

RDF encodes information using three intuitive attributes: subject, predicate
and object. The subject denotes the resource, while the predicate corresponds
to traits or aspects of the resource and expresses a relationship between the
subject and the object based on vocabulary of relations, which we have called
“ontology” (see figure 2.4). If we imagine that the subject and object correspond
to different online resources, we can argue that RDF for datasets is the analogous
of hyper-links for documents [18]. A simple example can be very informative:

Subject: http://data.linkedmdb.org/resource/film/77

Predicate: http://www.w3.org/2002/07/owl\#sameAs

Object: http://dbpedia.org/resource/Pulp\_Fiction\_\%28film\%29

Predicate

Object

Subject

RDF
URI

Source A

URISubject

Vocabulary

URI

Source B

Figure 2.4: The RDF architecture

Once again hubs such as DBpedia, MusicBrainz etc, in addition to URI
identifiers, offer millions of RDF triples. Therefore they not only provide infor-
mation about concepts but also structured data about them. Hence navigation
from one source to another is easy and efficient, thus making them the de-facto
interlinking hubs.

Vocabularies and Ontologies

During our previous discussion about semantic interoperability (see section 2.3),
we mentioned vocabularies and ontologies that provide meaning descriptions, in
addition to First Order Logic relations. RDF encodings have a direction relation

4dbpedia.org/about
5www.geonames.org/ontology
6http://musicbrainz.org/
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to those notions; for example the previous example’s URI-predicate was pointing
to an entity of a particular ontology while the subject and object to different
vocabularies. It should be noted that the terms“ontology” and “vocabulary” are
usually misused and overlapped over the internet, however we shall try separate
them. Only “ontologies” describe relations but both can describe meanings.

There are various standardized vocabularies and ontologies that model mean-
ing and relationships over the web, such as:

• RDF Vocabulary Definition Language (RDFS)7: a general-purpose lan-
guage for representing information in the Web.

• Web Ontology Language (OWL)8: usually employed to model relation-
ships on the Web, but its applicability can be extended beyond that.

• Friend-of-a-friend (FOAF)9: aiming at describing people, the links between
them and the things they create and do. Typically employed to model
Facebook and MySpace networks.

• Music ontology (MO)10[8]: aiming at describing main concepts and prop-
erties related to music (i.e. artists, albums, tracks, but also performances,
arrangements, etc.).

• Semantically-Interlinked Online Communities (SIOC): although not a vo-
cabulary per se, SIOC offers the possibility for shared semantics by com-
bining ontologies such as the example below:

:myRadio a mo:Playlist;

mo:track : song1;

sioc:has_creator: me;

sioc:site <http://lastfm.com>;

dc:tile ’Alex’s last.fm playlist’;

:song1 a mo:Track;

dc:title ’Monkey Man;’

foaf:maker dbpedia:The_Specials.

Here MO, FOAF and Dublin Core are used. The latter will be discussed
in later chapters due to its popularity and significance.

• Other vocabularies: GoodRelations for E-Commerce, DOAP for describ-
ing open software projects and more.

SPARQL

Given the RDF syntax and vocabularies it is impossible to use conventional
querying languages and formats. SPARQL is a query language for data stored
in RDF format. A simple example is given below11.

Data:

7http://www.w3.org/TR/rdf-schema/
8http://www.w3.org/TR/owl-features/
9http://www.foaf-project.org/

10http://musicontology.com/
11http://www.w3.org/TR/rdf-sparql-query/#basicpatterns
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{@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Johnny Lee Outlaw" .

_:a foaf:mbox <mailto:jlow@example.com> .

_:b foaf:name "Peter Goodguy" .

_:b foaf:mbox <mailto:peter@example.org> .

_:c foaf:mbox <mailto:carol@example.o}

Query:

{PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?mbox

WHERE

{ ?x foaf:name ?name .

?x foaf:mbox ?mbox }}

Query Result:

| name | mbox |

|"Johnny Lee Outlaw"| <mailto:jlow@example.com> |

|"Peter Goodguy" | <mailto:peter@example.org> |

As it becomes obvious SPARQL has many similarities to the typical SQL
syntax. However, the reference ontology(s) or vocabulary(s) need to be defined
prior to any data storing or querying. SPARQL will not be discussed any further.

2.3.2 Publishing Linked Data on the Web

We now have a clearer understanding of the encoding-information-format em-
ployed by the Semantic Web. We are also aware of the increased potential that
if offers. However, it remains an issue how to publish our own data; hence the
following parts aim to provide a brief guide that would lead through such a pro-
cess. According to [18] there are three steps involved in the publishing process,
if no automated publishing tools are employed:

1. Choose URIs and RDF vocabulary.

2. Generate links.

3. Provide additional metadata in order to increase utility (will not be dis-
cussed).

We will discuss each step while focusing on the music-database context.

Choose URIs and RDF vocabulary

As we have previously mentioned the choice of URI repositories (for the Ob-
ject attribute) and RDF vocabularies/ontologies is highly associated with the
context of use. However both can be tailored to the developer’s and dataset’s
needs. For example if we aim to create an online music database, we may choose
to link each URI in our set to its corresponding in MusicBrainz, using either
the Music Ontology or the OWL. We can also link the band’s location to the
corresponding URI entities on Geonames. A simple example using both OWL
and FOAF is shown below [3]:

<http://dbtune.org/jamendo/artist/5>

foaf:based_near <http://sws.geonames.org/2991627/> ;

owl:sameAs <http://zitgist.com/music/artist/

0781a3f3-645c-45d1-a84f-76b4e4decf6d>.
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Generate Links

Search engines require RDF links in order to efficiently navigate through sources
and acquire additional data. Link generation though is a sophisticated pro-
cedure, especially when taking into consideration factors such as the size of
datasets and possible record ambiguity. Therefore it is common practice to use
automated or semi-automated tools.

The most difficult case appears when different naming schemes are em-
ployed by both sets. In that case links should be generated based on a dis-
tance/similarity metric. This issue has been addressed by many researchers in
the general database development area, therefore we will discuss the work of
Raimond et al. [3] and Kobilarov et al. [20] which fall into the music context.
Before we continue though, it would be wise to formulate the problem of record
linkage following Neiling’s work [21].

We denote with (a, b) ∈ (A × B) an ordered pair of elements of the two
populations (datasets) A and B. The crossproduct A×B = {(a, b)|a ∈ A,B ∈
B} is the disjoint of two sets:

A×B = M ∪ U, M ∩ U = ∅,
M = {(a, b) ∈ A×B|a = b},
U = {(a, b) ∈ A×B|a 6= b},

where M refers to the matched set (common records in A and B) and U to
the un-matched set. It is common practice to project both a and b into new
data spaces so as to convert the problem of similarity into a simple distance
calculation. Hence we introduce two data spaces X,Y and mappings a : A→ X
and b : B → Y . Now at the data space X and Y , with k ∈ N common
dimensions, we define γ the comparison function γ : X×Y → R ⊂ Rk. However
it becomes obvious that the choice of γ and the decision rule that confirms a
matching, are of great importance. We forward the reader to [21] for further
investigation of the problem. We will now focus on Raimond’s approach, which
firstly elaborates on the simplest of methods for achieving linkage.

Naive approach The simplest approach would be to iteratively try to match
each record a in A with the ones in B, possibly by employing literal matching
(string matching), which is typically supported by databases. Of course the
procedure would require to extract literals from the given sources and URIs,
but overall this is fairly simple procedure.

However this approach suffices only when the strings themselves provide
disambiguation. This is rarely the case, especially if we take into consideration
the amount of typos introduced during database creation. Moreover, when it
comes to music sources, it is fairly possible for certain song names to belong to
more than one artist. Artists with the same or similar name also exist (e.g..
“Iron Maiden” and “The Iron Maidens”).

Graph matching We will present Raimond’s ideas by employing his simple
example, which aims to associate the band “Both” from database A to database
B where two instances of “Both” appear (see figure 2.5).

Firstly the two datasets are modelled as graphs, with each edge represented
as a triple (s, p, o) corresponding to subject, predicate and object respectively.

14



Figure 2.5: Example datasets.

Later initial similarity values between all pairs of resources (s1, s2) and (o1, o2)
are computed, such that (s1, p, o1) ∈ A and (s2, p, o2) ∈ B. Such similarity
values might be calculated by a string matching algorithm.

Next, a graph-similarity measure is calculated. In our example, we consider
the possible graph mappings as presented in the second column of Figure 2.6.
Then, a measure is associated with such mappings: similarity values associated
with each pair (x, y) are summed and normalised by the number of pairs in
the mapping. In our example, the resulting measures are in the last column
of Figure 2.6. Finally, the mapping whose similarity measure is the highest,
is chosen, optionally thresholding to avoid making mappings between graphs
which are too dissimilar. In our example, MG1:G2a is eventually chosen.

Figure 2.6: Possible graph mappings (x, y) ≡ {x, owl : sameAs, y}, and associ-
ated measures.

It should be mentioned that this is an iterative procedure. If the artist
names in B were different then the algorithm wouldn’t compute the measures
associated with the neighbours. However in this example at the first stage (when
only “Artist” name is taken into consideration) both sources have a similarity
of 1 when compared to A.

BBC approach Kobilarov et al. [20] presented their method for interlinking
concepts from various BBC domains (food, music, TV, etc.) using DBpedia as
the controlling vocabulary.

It should be firstly noted that BBC used to store data in a CIS format
that captured a hierarchy of five terms (proper names, subjects, brands, time
periods, places). For example the TV sitcom Marry that appeared in 1985 would
be stored as “Mary (1985 sitcom)”.

Their algorithm for interlinking CIS data to DBpedia vocabulary consists
of two parts: DBpedia look up and Context-based disambiguation. During the
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first part the system uses a weighted label lookup and PageRank to identify the
more likely to be associated concepts. However, ambiguity could be introduced
between retrieved candidate concepts. Therefore, at the second stage the CIS
hierarchy is employed to generate clusters (in our particular example “Mary”,
“1985” and “sitcom”). The algorithm then tries to identify matching DBpedia
concepts and employ them for disambiguation.

With the previous example of “Mary (1985 sitcom)” falling into the clusters
together with other sitcoms and television shows, it is possible to reject the top
ranked label-based result “Mary (Holy Mother)” for the search term “Mary”
due to its DBpedia class, reject “Something about Mary” and “Mary Tylor
Moore Show”, and accept the match dbpedia:Mary (1985 TV series) based on
the DBpedia category “1980s American television series” (Figure 2.7).

Figure 2.7: Context based disambiguation

To our knowledge, these are the only published approaches for record linkage
inside the music database context. However, general record linkage tools have
been implemented that can sufficiently interlink music RDF sources, such as
SILK [22] and LinQL [23].

2.3.3 Schema Level

Throughout this chapter, it has been stated frequently that no metadata scheme
(or “profile”) satisfies all needs. Although rather unwise to create new schemes
from scratch, the metadata universe has led into metadata schism [7] . There
have been many attempts for standardising metadata schemes such as the ISLE
Meta Data Initiative (IMDI12) and the Open Language Archive Community
(OLAC13) for describing multi-media/multi-modal language resources. TEI
(Text Encoding Initiative) is a successful attempt for text resources. Dublin
Core (DC) though is the most popular, at least according to our findings, since
it is greatly associated with the OAI-PMH protocol. In addition, various ex-
tensions of DC have emerged to cope with specific needs (eg. OLAC). All of
these initiatives will be presented in detail later during our “Repository Level”
discussion, since their development is mostly associated to cross-repository data

12http://www.mpi.nl/IMDI/
13http://www.language-archives.org/
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harvesting. However, they can find application to simple, schema-level interop-
erability efforts.

We have already mentioned ontologies that offer relation vocabularies. How-
ever, they also aim at addressing this standardized metadata issue, by providing
well accepted, domain-specific metadata fields. But specificity and generalized
usage are opposite terms, and developers have been fluctuating between both
for years. As Broeder et al. [7] state “it started as a move from small sets of
descriptors with broad semantics to large sets with highly specific descriptors,
which was followed by a backward move”. Therefore, even though ontologies
exist, the problem remains unsurpassed.

The following paragraphs present typical and popular methods that have
been used over the years to address schema-level interoperability.

Application Profiles

One of the simplest ways to achieve interoperability on the schema level is
through application profiles (AP). Inside different communities the need of fields
provided by certain schema varies. For example, a particular system might re-
quire to employ DC’s “Creator” but not the “Type” field. With APs, existing
metadata schemas are used as the basis for describing a certain group’s dataset.
Elements from different namespaces can be combined, thus allowing different de-
grees of depth and detail, while offering optimization for a particular application
[13].

Schema 
B 
 
 
 

Schema 
C 
 
 
 

Schema 
A 
 
 
 

Application 
profile  

 
 
 
 
 

Records 

Records 

Figure 2.8: A simple illustration of AP generated from three different schemas.

The disadvantage is that APs cannot declare or introduce new elements.
Therefore, specific needs may not be met. [17] state the following: “if an imple-
mentor wishes to create new elements that do not exist elsewhere (under this
model) they must create their own namespace schema, and take responsibility
for declaring and maintaining the schema”.

Crosswalks

Crosswalk is the procedure of semantically mapping metadata elements from
one schema to another. If we want to formalize this procedure a little more,
given the sets of metadata fields A = {a1, a2, ..., an} and B = {b1, b2, ..., bm},
a crosswalk firstly defines a function g such that g(ai) = bj , and so g(A) →
A′ ∈ B. However, any given query should also be filtered and processed so as
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to correspond to the correct fields in both sets, hence a function f is defined
such that given a query Q = {q1, q2, ..., qk}, f(Q)→ Q′ ∈ A′ ∩B.

Schema 

B

Schema 

A

B

A

A

A

B

A

A=B

Figure 2.9: Top: An illustration of crosswalk. Bottom: different degrees of
element equivalency.

This is by far the most popular approach for interoperability although the
disadvantages of such approach are prominent. This one-to-one semantic map-
ping between metadata schemes suggests that the work overload increases ex-
ponentially. Moreover, the overlap of the mapped schemes might not suffice,
leaving unmapped elements out of use (see Figure 2.9).

Metadata Registries & ISOcat

Metadata registries aim at gathering metadata schemas. In addition, they offer
access, such that the users can search, publish their own metadata while also
create APs. Depending on the registry implementation, crosslinking or cross-
walking between schemas can be also available. An important functionality
of registries is that they assign a unique identifier to various concepts such as
elements, schemas, APs etc.

Schema 

B

Scheme 

A

Registry

Interface

Combine schemes

Register profiles

Manage schemas

Schema 

C

Registry Manage schemas

Search function

Figure 2.10: An illustration of a metadata registry.

We will later thoroughly discuss Broeder’s et al. work on interoperability,
which firstly aims at setting a central base of agreed, controlled vocabulary,
instead of generating 1-to-1 metadata mappings, via ISOcat.

ISOcat14 is an implementation of the ISO 12620:2009 standard15, and is

14www.isocat.org
15ISO 12620:2009 provides guidelines concerning constraints related to the implementation
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used to validate and check the consistency of this standard. Its web interface
allows the user to create and combine metadata fields (denoted data categories)
into data category registries (DCR), edit, share and export them, while assuring
agreement with the ISO standards.

In general each data category field in ISOcat has three attributes (admin-
istrative, descriptive, linguistic). The most important, as far as this report is
concerned, is the “descriptive”, which contains an English name, definition and
optional translations. In addition to that, each data category has a unique
identifier called PID (persistent identifier), designed to be included in meta-
data schemas, similar to URIs for records. This is one of the strongest features
of ISOcat, offering a common understanding of concepts across databases and
therefore communities.

Figure 2.11: ISOcat’s interface queried with “audio”. From the resulting list
the user can pick metadata fields to build his own data category registry.

Federated Search

Federated search falls somewhere between the “Record” and “Repository” levels
of interoperability; however, for the sake of convenience we will describe it here.
The data flow in a federated search is as follows: the user firstly makes a single
query request, which is distributed to the search engines/sources participating
in the federation. The federated search then receives the data from the search
engines for presentation to the user. The resulting data are aggregated prior to
any display thus giving to the user the impression of consistency. This allows a
user to search multiple databases at once in real time, arrange the results from
the various databases into a useful form and then present them.

Peter Jacso [24] has established a set of criteria that have to be met for a
search to be considered federated:

1. Transforming a query and broadcasting it to a group of disparate databases
or other web resources, with the appropriate syntax.

of a Data Category Registry (DCR) applicable to all types of language resources, for example,
terminological, lexicographical, corpus-based, machine translation, etc. It specifies mecha-
nisms for creating, selecting and maintaining data categories, as well as an interchange format
for representing them.
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2. Merging the results collected from the databases.

3. Presenting them in a succinct and unified format with minimal duplica-
tion.

4. Providing a means, performed either automatically or by the portal user,
to sort the merged result set.

The list of criteria is surely debatable; however, it provides a set of fun-
damental guidelines that can be expanded or modified to fit each framework’s
needs, and as such we will employ it.

From the developer’s point of view it is worth mentioning that recent MySQL
versions offer the FEDERATED engine16. This storage engine enables data to
be accessed from a remote MySQL database on a local server without using
replication or cluster technology. When using a FEDERATED table, queries
on the local server are automatically executed on the remote tables. No data is
stored on the local tables. Although, simple approach, it can be very efficient
for small datasets. However, there are some drawbacks:

• Some querying functions can be very expensive for large databases.

• The federated table is not aware of any structural changes on the remote
server.

• The remote table must exist in order to create a local one.

Figure 2.12: An illustration of a federated search. ”Search engines” can be
generalized to distributes sources.

Besides MySQL there are other, higher level tools such as Sesat 17. Sesat
stands for Sesam Search Application Toolkit, and is a platform that provides
the framework and functionality required for handling parallel searches and
displaying them elegantly in a user interface, thus allowing engineers to focus
on the remaining aspects such as index/database configuration and tuning.

More implementations of federated search can be found online, hence we will
end our discussion here.

16dev.mysql.com/doc/refman/5.0/en/federated-storage-engine.html
17http://sesat.no/

20



2.3.4 Repository Level

We shall now investigate interoperability at the repository level, aiming at cre-
ating a central catalogue covering metadata from various harvestable sources.
The next paragraphs present related initiatives.

METS

METS (Metadata Encoding and Transmission Standard)18 is an XML-schema
that was developed as a standard data structure describing complex digital
library objects. A METS file comprises of seven sections:

• METS header: It contains metadata describing the METS document itself,
including information such as creator, editor, etc.

• Descriptive Metadata: This section can either point to external descrip-
tive metadata or contain internally embedded descriptive metadata. It is
possible for multiple instances of both external and internal descriptive
metadata to be included in the descriptive metadata section. An example
of a METS representation of an audio file is presented in Figure 2.13. The
XML section denoted as dmdSec corresponds to the Descriptive Metadata
section. It includes information such as the title of the song, instruments
an others.

• Administrative Metadata: This section contains data regarding the file’s
creation and storing, intellectual property rights, metadata regarding the
original source object from which the digital library object derives and
others. Similar to descriptive metadata, administrative metadata may be
either external or internal.

• File Section: The file section lists all files containing content which com-
prise the electronic versions of the digital object. In the example of Figure
2.13 this corresponds to fileSec.

• Structural Map: This section outlines a hierarchical structure for the dig-
ital library object, and links the elements of that structure to content files
and metadata that pertain to each element.

• Structural Links: This section allows to record the existence of hyperlinks
between nodes as modeled in the Structural Map.

• Behavioural: The behaviour section associates executable behaviours with
content in the METS object.

METS has proven to be a convenient format since its records can be ex-
changed between different data centers using the popular OAI-PMH protocol
(which is described below) [25]. In addition, the Fieldwork Data Sustainabil-
ity Project (FIDAS) has shown that METS is a suitable format for the meta-
description of linguistic resources.

18http://www.loc.gov/standards/mets/mets.xsd
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Figure 2.13: A METS XML representation of a sound recording. Due to size, a
large part of the file is omitted.

OAI-PMH and OAI-ORE

The Open Archives Initiative19, defines two standards that aim to provide in-
teroperability between heterogeneous repositories.

The first one, OAI-PMH (Protocol for Metadata Harvesting) establishes an
XML message format for the exchange of metadata. The OAI-PMH world is
devided into two groups: data and service providers. The first correspond to
administrative systems that support the OAI-PMH as a means of exposing meta-
data, while the latter use metadata harvested via the OAI-PMH as a basis for
building value-added services. Data providers are able to handle the six possible
OAI requests issued by the service providers: GetRecord, Identify, ListIdenti-
fiers, ListMetadataFormats, ListRecords and ListSets. OAI explicitly requires
metadata to be encoded in DublinCore format, hence as we shall see later, loss
of information occurs due to the limited number of available DC fields.

OAI-ORE (Object Reuse and Exchange) defines standards for the descrip-
tion and exchange of aggregations of Web resources. These aggregations, usually
called “compound digital objects”, may consist of distributed resources with
multiple media types such as text, images, data, and video. ORE is based on
a Web Architecture that assumes that every information object is defined by

19http://www.openarchives.org/
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a URI. Exchange of compound digital objects is possible individually by direct
web access, and via batch discovery mechanisms.

It is worth examining a simple HTTP request and response. Firstly the
service provider, by employing the verb GetRecord, asks from the repository
arXiv.org to retrieve the record with identifier oai:arXiv.org:cs/0112017 in DC
format.

http://arXiv.org/oai2?verb=GetRecord&identifier=oai:arXiv.org:cs/0112017&..

..metadataPrefix=oai_dc

The data provider,if it contains the specified record, sends an XML contain-
ing the appropriate information. The response is shown in Figure 3.12.

Figure 2.14: An OAI-PMH response to a GetRecord request.

Dublin Core

The Dublin Core Metadata Initiative started by establishing a small set of 13
elements with semantically broad categories, hoping for high scalability and gen-
eralization. The original objective was to define a set of elements that could be
used by authors to describe their own Web resources. However, the proliferation
of electronic resources and the inability of the library profession to catalogue all
them, led to the extension of Dublin Core with elements with precise semantics.
The resulting 15 elements are shown in Table 2.1.

Even with the extended element set, the need for further specificity was
prominent. Hence, there has been an ongoing procedure to develop exemplary
terms extending or refining the Dublin Core set. The additional terms are
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Content Intellectual Property Instance
Title Creator Date

Subject Publisher Type
Description Contributor Format
Language Rights Identifier
Relation
Coverage
Source

Table 2.1: The DC set.

identified, generally in working groups of the Dublin Core Metadata Initiative,
and judged by a board to be in conformance with principles of good practice
for the qualification of Dublin Core metadata elements[26]. An example of a
Dublin Core record is shown in Figure 2.15.

Figure 2.15: An example of a DC record.

Dublin Core’s employment by the OAI-PMH in addition to the various tools
provided have made DC the most popular metadata standardization format.
It is worth mentioning some of the tools such as Omeka20 which is a free and
open source web publishing system for online digital archives, that uses an un-
qualified Dublin Core metadata standard. Fedora21 is a repository architecture
compatible with OAI-PMH and therefore Dublin Core. It is built upon the idea
that the integration of data, interfaces, and functions as clearly defined modules,
ensures interoperability and extensibility.

TEI

The Text Encoding Initiative (TEI) is a popular standard for the representa-
tion of text in digital form. The encoding format used to rely on SGML, but
later versions employed XML. Similar to DC, metadata can be embedded in
the header of a TEI-file, which typically represent fields that correspond to a
bibliographic record (e.g. title, distributor). As from the most recent version of

20omeka.org
21http://fedora-commons.org/
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TEI (P5) its schema can be extended via the specification of the newly added
elements.

Figure 2.16: An example of William Blake’s Songs of Experience and of In-
nocense. Both songs encoded as div1 numbered text divisions, with a type
attribute with value book. Inside these books, all 45 poems are encoded as
div2 type=”poem”. All poems have a title and are subdivided into stanzas lg
type=”stanza”. Due to size issues, a large part of the XML file is omitted.

IMDI

The IMDI Framework for multimedia and multimodal language resources differs
from the previously described initiatives; besides a set of XML-based metadata
descriptors, IMDI offers a set of tools and an infrastructure to use these. Some
of its main characteristics are:

• It allows related resources to be bundled by metadata descriptions. In
other words, it allows resources such as two or more audio tracks, texts
and others to be grouped into the recording that pertains them.

• By embedding pointers in the XML format metadata description files,
records can be linked to form structured virtual organizations facilitating
browsing and management. This linking feature offers the ability to create
well-designed, hierarchically structured sub-corpora as well as to create
some sort of relations.
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Figure 2.17: A representation of the IMDI architecture. Repositories have a
hierarchical data structue (multimedia content deoted as M and text as T). An
IMDI harvester can be used to gather data from all sources.

OLAC

The OLAC Metadata Set is yet another set of metadata elements for describing
language resources. It is employed by the members of the Open Language
Archiving Community so as to harvest data (via OAI-PMH) from all registered
repositories and archives.

OLAC can be considered an extension of DC since its set is based on the
latter and uses all fifteen elements defined in that standard. However, in order
to increase specificity, OLAC follows the DC recommendation for qualifying
elements by means of element refinements or encoding schemes [27]. In simple
words, OLAC acts as a combination or application profile of the Simple and
Qualified DC, with the ability of incorporating other namespaces.

Figure 2.18: A simple OLAC record.

MPEG7

MPEG-7 is a multimedia content description standard. The rationale behind
it is to allow fast and efficient searching for multimedia material. It uses XML
to store metadata, and can be attached to time code in order to tag particular
events, or synchronize lyrics to a song, for example. MPEG-7 was never widely
used due to its complexity.
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Other

Other initiatives and efforts worth mentioning are the Natural Language Soft-
ware Registry (NLSR)22, the Association for Computational Linguistics Reposi-
tiry (ACL) 23and the Learning Object Metatada standard (LOM)24. The first
one corresponds to a summary of a large amount of natural language process-
ing software available to the Natural Language Processing community. The
ACL Data and Code Repository is a repository of data (e.g., hand-labeled text,
hand-parsed text, feature vectors for machine learning, etc.) and source code
(e.g., taggers, parsers, chunkers, etc.) for computational linguistics and natural
language processing. The Learning Object Metadata standard was developed
to enable the use and re-use of technology-supported learning resources such as
computer-based training and distance learning. The LOM defines the minimal
set of attributes to manage, locate, and evaluate learning objects encoded in an
XML format.

CLARIN

CLARIN’s website25 states as its “main goal”: CLARIN is committed to estab-
lish an integrated and interoperable research infrastructure of language resources
and its technology. It aims at lifting the current fragmentation, offering a sta-
ble, persistent, accessible and extendable infrastructure and therefore enabling
eHumanities.

• Integrated: the resource and service centres are connected via Grid tech-
nology and form a virtually integrated domain.

• Interoperable: the resources and services will be based on Semantic Web
technologies to overcome format, structure and terminological differences.

• Stable: the resources and services are offered with a high availability.

• persistent: the resources and services are planned to be accessible for many
years so that researchers can rely on them.

• Accessible: the resources and services are accessible via the web; different
access methods and training possibilities are offered tailored to the needs
of the communities making use of them.

• Extendable: the infrastructure is open so that new resources and services
can be added easily.

In general, CLARIN can be considered an open research infrastructure pro-
viding facilities for storing data and tools while also browsing and searching.
It has been built on top of ISOcat and other trusted registries, meaning that
it makes use of their shared data registries as controlled vocabulary to ensure
interoperability. However CLARIN uses its own design of metadata descrip-
tions denoted (CMDI). The novel design concept derives from “components”.
Components act as metadata templates that the local server can use as building

22http://registry.dfki.de/
23http://aclweb.org/
24http://ltsc.ieee.org/wg12/
25http://www.clarin.eu/external/index.php?page=about-clarin&sub=0
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blocks for more complex schemas. The validity of these schemas can be veri-
fied via the web interface; in addition other components can be recommended.
According to the developers themselves the re-use of components is highly pro-
moted, although users can generate their own.

CMDI uses existing schemas such IMDI, OLAC and DC, on which more com-
plex schemas can be built, used and registered. Each metadata field is linked
to exactly one data category in a data category registry (DCR) using a persis-
tent identifier. The DCR indicates how the content of the field in a metadata
description should be interpreted. If the same data category is used in various
metadata schemas, the reference to the DCR will still be the same. Figure 2.19
presents an abstraction of the whole CMDI architecture employing CLARIN as
the input interface and ISOcat, DCMI as the metadata registries. Metadata
components encoded in CMDI format point to ISOcat semantic concepts via
PID identifiers.
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Figure 2.19: A simplified illustration of the CMDI framework using ISOcat,
DCMI as registries.

As we’ve already mentioned CLARIN in addition offers cross-searching be-
tween sources. This is achieved via the OAI-PMH protocol and as a result,
all repositories need to employ the DC metadata-scheme. Inside The Nether-
lands many projects have been initiated aiming at employing CLARIN, such as
AAM-LR, Adelheid, ADEPT, MIMORE26 and others.

MuSeUM: Unified Access to the State of the Art

In the previous paragraphs we presented a set of initiatives that aimed at ad-
dressing the problem of interoperability at its very core. Most of the tools
previously mentioned can be adopted by any developer, archive, enterprise or
whoever requires such functionality. However, it is also quite common for spe-
cialized systems to employ their own framework that cannot be generalized as
easily as CLARIN or DC for example.

Arampatzis et al.[29] addressed the problem of disclosing multiple data and
meta-data collections from various cultural heritage insitutes, each with its own

26http://www.meertens.knaw.nl/mimore/
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characteristics, in a single, unified system. Their approach was based on un-
conditional merging of all collections and flattening of all metadata structures.
The data was later indexed using Apache Lucene. This brute-force process
transformed the sophisticated problem of information retrieval into free-text
retrieval.

Simple as that, the authors showed the superiority of their approach when
compared to the previous search systems used by the institutes. The evaluation
was based on two figures: retrieval performance and user satisfaction. For the
first one, a set of ad-hoc known topics were used as ground truth. Both systems
(old and new) were queried and metrics such as MRR (Mean Reciprocal Rank),
were employed to calculate the overall performance. User satisfaction was based
on a small user study and questionnaires.

2.4 Conclusions

The previous parts tried to guide the reader through the vast world of inter-
operability. Various definitions were presented along with relevant tools and
initiatives, mostly focusing on the notion of “search” interoperability. It should
be now obvious that interoperability cannot be quantified. It is a characteristic
that describes an underlying connection between sources and not some kind of
input/output function. In other words, interoperable systems don’t necesser-
aly employ a certain framework or protocol. Each enterprise of data sources
needs to weigh the pros and cons of all possible interconnection methods, before
employing or build on top of one.
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Chapter 3

Data Enrichment

Music Information Retrieval has gained a great amount of popularity over the
last years. The reason for this is multifaceted, however it can be mainly ascribed
to technological advances (hard drives, portable music players etc.) and the
digression of the musical industry to digital rather than physical audio formats.

Considering the above, a lot of the MIR research has focused on the auto-
matic extraction of information about pieces of music or music artists them-
selves. Early approaches were based on the analysis of audio signal, in order to
extract features describing the genre, tonality, tempo and other characteristics
of a piece. It wasn’t until recently were the focus moved to“cultural” features.
These features are based upon the notion of “wisdom of the crowd”, meaning:

“the process of taking into account the collective opinion of a group
of individuals rather than a single expert to answer a question. A
large group’s aggregated answers to questions involving quantity es-
timation, general world knowledge, and spatial reasoning has gener-
ally been found to be as good as, and often better than, the answer
given by any of the individuals within the group. An intuitive and
often-cited explanation for this phenomenon is that there is idiosyn-
cratic noise associated with each individual judgement, and taking
the average over a large number of responses will go some way toward
cancelling the effect of this noise” [15].

Depending on the context, cultural features are derived from different sources.
It has been common though to use “community metadata”, meaning sources re-
lated to particular fields. When it comes to music, these are online music stores,
collections, music services (Last.Fm, MusicBrainz etc.) and others.

However recently, a lot of research has diverged to exploit the World Wide
Web (denoted Web MIR). As Scheld mentions in his PhD thesis, “It is generally
assumed that the information provided by the zillions of Web pages and services
of the WWW also represents a kind of cultural knowledge and, therefore, can
be beneficially used to derive cultural features for MIR tasks”. Exploiting the
Web is typically achieved via the employment of web crawlers and other web
harvesting techniques.

So how does data enrichment for music relate to the MIR automatic extrac-
tion of information? To our understanding, there’s a thin line separating those
notions with regard to the final outcome. However, when it comes to methods,
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data enrichment mostly employs already existing data. By combining, filtering
and processing it, important conclusions are derived. For example, by exploit-
ing play list data from a single user, someone can derive the era of music that
the user mostly enjoys. On the other hand MIR automatic extraction methods
aim at getting information from and for one piece of music only. For example,
given the audio representation of a song, someone can derive its genre. How-
ever, ambiguity between those notions can be still introduced depending on the
context. Therefore, for the rest of this report, data enrichment for music and
MIR automatic extraction of information will denote the same procedure.

We will now present a brief overview of related published approaches. We will
later discuss in detail four of them that show great generalization of concepts,
meaning that their methods can be applied to various tasks and topics.

3.1 Literature Overview

Fan and Cohen [21] were among the first to exploit the Web for MIR purposes,
namely music recommendation. Their method employed a collaborative filtering
web spider that gathered lists of interesting entities (bands, artists) while encod-
ing them as pseudo-users. The recommendation was based on the comparison
of the actual user’s preferences against the pseudo ones.

Ellis et al [22] evaluated a set of artist similarity scores against a Web-survey
“ground truth”. The purpose of such an experiment was to assess the quality
of automatic rating against the subjective impressions of the users. The most
interesting part relates to the “Erdos similarity”, which presented the highest
correlation to users’ opinion. More precisely, the Erdos similarity between two
artists a1 and a2 is measured as the minimum number of intermediate artists
needed to form a path from a1 to a2 using the similar artist relationships.

In [1] Whitman and Lawrence extracted various term sets (uni-grams, bi-
grams, noun phrases, artist names, and adjectives) from artist-related Web
pages. For each artist and based on term occurrences, individual term pro-
files were created. The“overlap” between the term profiles of two artists was
then used to estimate their distance/similarity. Whitman and Lawrence were
among the first to query search engines with additional terms such as ”music”
and ”review” rather than just the artist name. Whitman and Smaragdis [12]
employed similar method for classifying artists among five genres.

Baumann and Hummel [13], similar to the previous researchers, queried
search engines and generated n-grams for each artist. However their method
employed term frequency, inverse document frequency weightings (see next sec-
tion). Their method in addition removed noisy content such as ads from HTML
pages.

Geleijnse and Korst [14], on their work on genre and mood classification
for artists, employed a“pattern based matching” technique. Instead of simply
searching for co-appearances of artists and genres in the same Web page, their
method searches for phrases such as “artist A such as artist B”. Their work also
took into consideration synonyms, while it also employed quering with multiple
terms such as“artist+music”.

Celma [2] proposed a music search engine that crawls audio blogs via RSS
feeds. The feeds contain links to music files in addition to short text descriptions
of the pieces. These are combined with metadata extracted from the audio files
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(in particular, from the ID3 tags), thus enabling user queries to be matched
with music files.

An interesting work by Knees, Pampalk and Widmer [16] employed machine
learning approaches for genre classification and artist similarity. Similar to most
of the pre-mentioned approaches search engines such as Google and Yahoo were
used to download artist-relevant pages. Then a histogram of frequency terms
appearing along with the artis name was created. All of the histograms were
fed to a support vector machine classifier, k-nearest neighbour classifier and a
self-organizing map.

One of the pioneers in the field of MIR information extraction via web mining
is Schedl. He has done a large amount of work on that particular field, and some
of his papers will be discussed later thoroughly. For now, this brief overview
of approaches is sufficient and delineates the fact that most of the methods
share a common ground in terms of data retrieval techniques. The next section
discusses those techniques.

3.2 Overview of Techniques

This section investigates and discuss some of the most common techniques and
methods related to Web content mining and information extraction. Most of
these methods are employed by the published approaches discussed in the pre-
vious part and are well described in Scheld’s and McKay’s PhD theses [3, 4].
Therefore, we will discuss them briefly and forward the reader to those theses
for further details.

3.2.1 Focused Web-crawlers and Querying Search Engines

Before any similarity, distance, membership and other calculations are per-
formed, a collection of documents must be retrieved from the Web. Two are
the most commonly used approaches for such a task:

1. Focused web crawlers take as input a list of seed URLs related to a certain
topic. Typically, a probabilistic classifier is trained based on the related-
ness of each page to the topic of interest. Therefore starting with the initial
seeds, the focused crawler iteratively follows the links that are judged rel-
evant to the topic by the classifier. Considering web pages as nodes in a
tree graph and their included links as children nodes, web-crawlers usually
employ a best-first exploring method.

2. Querying search engines relies on the search engine’s web-crawlers to re-
trieve a set of related documents. The main difference between the two
techniques is that search engines use breadth-first rather than best-first
algorithms for visiting web pages. The disadvantage of querying search
engines is that the relatedness of the returned documents is not always
guaranteed. For that reason, many of the published approaches described
above employ queries with additional terms such as “music+review”.
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3.2.2 Term and Inverse Term Frequency tf ∗ idf
The tf ∗ idf weight is a statistical measure that models how important a word is
to a document d in a collection of documents. The tf ∗ idf value is proportional
to the number of appearance in the document, however this is counterbalanced
by the frequency of the word in the corpus.

More specifically, term frequency weight tft,d corresponds to the times that
a term t appears in a certain document d. For a document d , the set of weights
determined by the tft,d weights can be viewed as a quantitative representation
of that document. In the literature this view is often denoted as the “bag of
words model”.

Term frequency lacks discriminating power in determining relevance. For
example, when searching for a music artist, the term “music” will appear nu-
merous times across the whole collection of documents while it will have high
tft,d value for each d. However, this doesn’t necesserilly mean that it is rep-
resentative of the documents containing it. Inverse document frequency aims
at counterbalancing this effect by reducing the weight of a term by a factor
that grows with its collection frequency. Hence inverse document frequency is
defined as follows:

idft = log
N

dft
(3.1)

where N the total number of documents and dft the number of documents where
the term t appears. Then td ∗ idf is defined as such:

tf ∗ idft,d = tft,d × idft (3.2)

Variations of the tf ∗ idf weighting scheme are typically employed by search
engines in order to score and rank documents’ relevance based on user queries.
For example Apache Lucene employs tf ∗ idf to calculate the query-document
similarity as shown in the formula below:

sim(q, d) =
∑
t∈q

tft,q · idft
normq

tft,d · idft
normd

· coordq,d · weightt (3.3)

for a collection D, document d, query q, query term t and:

tft,X =
√
freq(t,X) (3.4)

idft = 1 + log
|D|

freq(t,D)
(3.5)

normq =

√∑
t∈q

tft,q · idft (3.6)

normd =
√
|d| (3.7)

coordd =
|q ∩ d|
|q|

(3.8)
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3.2.3 Collaborative Filtering, Co-occurrence Analysis and
Cross-tabulation

Collaborative filtering, as its name implies, refers to a method that links entities
(eg. CDs, books, music artists) based on the users’ profiles, interests and ex-
pressed behaviour. In simpler words, given that two users have expressed similar
taste in music by purchasing the same album, then this method can recommend
another album purchased by user A to user B. Such a technique is employed by
vendors such as Amazon, and its weaknesses are obvious:

• Large amount of user data is required to achieve acceptable confidence
values. Otherwise the method models noise.

• Popular entities are usually more favoured than those unpopular which
are ignored. This is also known as the ”cold start problem”.

• Gift items can are a common case that introduces noise.

Co-Occurrence analysis models similarity between two items/terms based
on their co-occurrence in the same web context. In other words, if two items
appear on the same web page, it is more likely for them to be similar in some
sense. However, it becomes quite obvious that the definition of “similarity” in
that context is rather vague. Aucouturier and Pachet [5] found co-occurrence
analysis generates similarity clusters that mostly model thematic/genre and
period relationships. Artists that appear in the the same web source tend to
belong to the same genre or artistic era or even year (a result of the “Best of
Year X” compilations). Once again though, the problem of labeling the clusters’
meaning remains.

It should be noted that there is a distinction between the occurrence of
two items from the same and different vocabularies, denoting co-occurrence
and cross-tabulation analysis respectively. For example, given an set A of artist
names and a set B of genres , co-occurrence analysis calculates the co-appearance
of items in set A (e.g. Artist i, Artits j), while cross-tabulation of couples from
A and B (e.g. Artist i, Genre k).

Whatever the case, calculating co-appearances of strings presents certain
weaknesses:

• Synonyms induce noise. For example such methods cannot distinguish
between entities with the same or even similar name.

• Variations of an entity’s name can be also confusing.

• Names that consist of a set of substrings e.g.. Justin Bieber, induce noise,
since each substring can appear on a web page seperately from the rest.
Searching for exact string matches e.g. “Justin Bieber” may miss cases
such as “Bieber” or “J. Bieber”.

• Negative meanings can be confusing. For example the string “Iron Maiden
are not like Justin Bieber” presents a dissimilarity between the two artists.
However co-occurrence analysis will classify this case as belonging to-
gether.
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• Finally, as initially stated, the semantic meaning of a co-occurrence is
ambiguous. Some artists may appear together but this doesn’t ensure
significant relatedness or similarity.

Despite the previous, co-occurrence analysis is one of the most popular tech-
niques for information extraction on the Web. Its success is largely based on
the fundamental ideas of “wisdom of the crowd”, and namely the on the fact
that the vastness of the Web filters out noise. We shall now present the different
formulations of co-occurrence that aim at counterbalancing weaknesses such as
popularity bias. For the remaining of this section C(x) will denote the counts
of a term x, and C(x, y) the counts of the co-occurance of terms x, y:

1. Patchet et al.[17] employed co-occurance on radio playlists and CD databases.
Their normalized co-occurance is defined as follows:

Coocnorm(a, b) = (
C(a, b)

C(a)
+
C(a, b)

C(b)
)/2 (3.9)

Similarity it is later calculated as such:

S1(a, b) = 1− Coocnorm(a, b) (3.10)

In addition, in order for indirect links between entities to be taken into
account, Patchet introduces:

S′2(a, b) =
Cov(a, b)√

Cov(a, a)× Cov(b, b)
(3.11)

where Cov the covariance. The distance is then defined as:

S2(a, b) = 1− (1 + S′2(a, b))/2 (3.12)

2. Whitman and Lawrence [1] queried search engines with tuples of the form
artits, music+review. For each web-page retrieved, its content surround-
ing artist names is divided into n-grams. Based on statistical features
regarding various terms, a histogram of term frequencies is generated for
each artist. Whitman and Lawrence introduces the following similarity
measure:

S3(a, b) =
C(a, b)

C(b)
(1− |C(a)− C(b)|

C(c)
) (3.13)

where C(c) the counts of the most popular item or artist in tha case.

3. Zadel and Fujinaga[18] employ the following similarity measure, to gener-
ate clusters of similar artists, based on Amazon and Google web services:

S4(a, b) =
C(a, b)

min(C(a), C(b))
(3.14)
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4. Geleijnse and Korst[19] uses a method derived from information theory in
order to classify artists by genre and mood. Each artist a in the set A is
assigned a membership score in class g denoted T :

T (a, g) =
C(a, g)

1 +
∑

i∈A C(i, g)
(3.15)

5. Schedl et al.[20] uses two measures to calculate the membership of an
artist a in a genre g using:

t1 =
C(a, g)

C(a)
, t2 =

C(a, g)

C(g)
(3.16)

This concludes our brief overview of the different co-occurrence analysis us-
ages. So far none of them is consider optimal, since depending on the context
of use, their behaviour may vary.

3.3 Published Approaches

In the following paragraphs we will present a series of published approaches in
more detail. Our goal is to discuss all the different steps included in such MIR
information extraction systems.

3.3.1 Automatically Extracting, Analysing, and Visualiz-
ing Information on Music Artists from the World
Wide Web

Schedl’s PhD thesis [3] describes the implementation of a series of tools, most of
them incorporated inside the CoMIRVA framework (Collection of Music Infor-
mation Retrieval and Visualization Applications). These tools range from the
typical feature extraction to information extraction via web mining techniques
and visualization.

AGMIS (Automatically Generated Music Information System) acts as a
search engine for music artists with enhanced functionalities. The gathering
of artist related data from the Web is performed offline by querying search en-
gines such as Google and Exolead. The queries were of the form “artist name”
NEAR music and resulted in the huge amount of 732.6 gigabytes of web sources.
The pages were then indexed using Apache Lucene.

On the basis of this data, AGMIS calculated artist similarity by calculating
a tf ∗ idf vector for each artist. The bins of such vectors corresponded to the
elements of a music dictionary (set of music related terms). Regarding genre
classification, Schedl queried Exolead with two different term configurations:

• “artist name ” AND music

• “artist name ” AND “genre name” AND music

The first one captures the genre-independent popularity of an artist pca,
the second one the popularity with respect to genres pca,g. Eventually the
membership r of an artist is calculated using the following equation:
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Figure 3.1: A screenshot of the CoMIRVA GUI.

r(a, g) = pca,g(log
1

pca + 1
)2 (3.17)

Scheld’s thesis also includes extensive experiments aiming at evaluating and
comparing tf ∗ idf , co-occurrence analysis while also various querying config-
urations such as : (“artist/band name ”+music), (“artist/band name ”+mu-
sic+review) and (“artist/band name ”+music+genre+style). The interpreta-
tion of the results cannot be summarized in a few lines, hence we forward the
reader to the original document for further details. It is our belief though, that
the performance of systems like that depends at large on the collection of docu-
ments, context and other factors such as the amount of web-pages retrieved for
each artist.

3.3.2 A Web-based Approach to Determine the Origin of
an Artist

Govaerts and Duval [6] exploited community metadata for determining artists’
country of origin. By country of origin the authors denote the geographical
locations where an artist started his career.

This approach relies on three methods namely metadata extraction from
repositories such as Last.fm, Freebase and biography analysis. Last.fm is one
of the most popular music recommender systems while Freebase is semantic
database that contains structured data harvested from different sources. Last.fm
was harvested using Dapper and Freebase was queried using its own querying
language.

One of the most interesting methods described in the original paper, was the
analysis of biographies using demonyms. Demonyms correspond to names of the
inhabitants of a country or adjectives of geographical locations (e.g. German,
Germany). The mapping between demonyms was achieved via Wikipedia. After
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Figure 3.2: Data processing diagram of AGMIS.

that offline procedure each biography was split into natural language sentences,
and for every sentence the demonyms and locations were noted and counted.
Based on those, three figures well calculated:

• Highest occurrence: the demonym or location that appears most fre-
quently.

• Favor first occurrence: for every country code (cci), the sentences contain-
ing it are kept (where sj the sentence number). If stot is the total number
of sentences in the biography then:

Rcc =

length(s)∑
i=0

(stot + 1)− si
stot + 1

(3.18)

This scheme gives higher weight to the first sentences in a biography that
contain the country of origin. It is based on the author’s assumption that
the origin of an artist is often mentioned in the first lines.

• Weaker favouring first occurrence: this is similar to the previous but it
uses different weighting so as to spread the importance more over the
sentences:

Rcc =

length(s)∑
i=0

(stot + 2)− si
stot + 1

(3.19)

In the experimental section, the authors first evaluated how rich each data
source is (denoted coverage). They found that for 62% of the artist’s origin
can be retrieved with at least one of the three methods (Last.fm, Freebase,
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biographies). The accuracy though presents fluctuations; continent determina-
tion shows high accuracy with Last.fm achieving 95%. Biographies on the other
hand did not perform as expected. The country of origin results show lower per-
formance but with Last.fm and FreeBase around 90%. A combination method,
that aimed to combine the results of all methods, was also evaluated but didn’t
outperform the best.

It is worth mentioning that the authors’ assumption that the origin is men-
tioned in the first sentences in a biography, is proven true by the experiments.
Also, each method has its issues. For example Last.fm sometimes uses de-
monyms instead of country names and ambiguity is introduced in cases where
a city/town name appears in multiple countries.

3.3.3 Country of Origin Determination via Web-mining
Techniques

Schedl et al. [7] following Govaerts work presented above, aimed at determining
the artist’s country of origin. In their approach Google was queried with strings
of the form “artist music”. The first 100 pages returned pages were retrieved
and indexed with Apache Lucene, similar to AGMIS.

Schedl’s approach uses three different methods for origin determination:

• Page counts approach: this method is based on the assumption that query-
ing search engines with tuples of the form “artist, country” will return
more page results for the artist’s country of origin. The search engine
employed was Google since it has proved to outperform Yahoo! and MSN
search (currently renamed to Bing Search) [8].

• Term Weighting approaches: this method is based on the tf ∗ idf weight
vector or bag-of-words model as described in 3.2.2. Each document re-
trieved is assigned a term profile or histogram; each bin corresponds to a
term and the value assigned corresponds to its importance in the docu-
ment. The term weighting measures employed differ slightly from those
in 3.2.2 and are presented below:

– Document frequency: dft,a represents the total number of pages re-
trieved for an artist a where at least one time t appears.

– Term frequency tft,a is the total number of occurrences of term t
in the set of retrieved documents for artist a (denoted as ”virtual
document” for a).

– Term frequency-inverse document frequency: the classical formula-
tion of tf ∗ idf as described in 4.4.2 performed weakly so Schedl and
his colleagues used variations:

tf ∗ idf1t,a = (1 + log2tft,a)log2(
n

dft
) (3.20)

for tft,a > 0, otherwise tf ∗ idf is set to 0.

tf ∗ idf2t,a = ln(1 + tgt,a)ln(1 +
n

dft
) (3.21)

In both formulations n denotes the total number of Web pages re-
trieved and dft the number of pages containing the term t.
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– Text distance approaches: this category of heuristic methods aims at
determining the country of origin by calculating the offset distance
between key terms such as “born”, “origin” etc. and country names.
This approach integrates two functions: a distance measure on the
document level to determine the distances within a Web page; an
aggregation function to combine the document level distances for all
pages of a.

The experiments showed that term frequency tf performs slightly better
than df (82% and 79% for the f-measure respectively). All the differ-
ent configurations of the text distance approaches while also page counts
performed much worse.

3.3.4 Automatic Music Classification with jMIR

McKay [4], as part of his dissertation, developed a framework of tools (jMIR)
that enables users to extract meaningful information from audio recordings (jAu-
dio), symbolic musical representations (jSymbolic) and cultural information re-
lating to music that is available on the Internet (jWebMiner). The functionali-
ties of his implementation vary from automatically building classification models
to automatically collecting profiling statistics, to detecting metadata errors in
musical collections and others.

The most interesting tool of jMIR, as far as this thesis is concerned is jWeb-
Miner1 and a relevant sub-tool that is offered online, jSongMiner2. In a sense,
jWebMiner is nothing more than a set of nicely, gathered tools for Web MIR. It
employs the Google and Yahoo! search engines in order to acquire hit counts in-
dicating the number of pages containing one or more search strings. jWebMiner
offers the two fundamental types of feature extractions, co-occurrence and cross
tabulation, and their set of modifications as described in 3.2.3.

jSongMiner is far more interesting, since it is used for auto-identifying songs
and extracting metadata about them from various sources on the web. jSong-
Miner begins by identifying unknown audio files using fingerprinting. If the
audio is absent, it can identify songs using metadata queries, meaning known
metadata about a song. Once jSongMiner has identified a song, it can then
extract metadata about the song from various sources, such as from The Echo
Nest, Last.FM and Music Brainz. From there on it is possible to extract meta-
data about artists and albums associated with songs as distinct resources.

The whole jMIR framework was employed for a series of tasks and has shown
great performance. However, we will not present any results due to the variation
and length of those experiments. The reader is forwarded to McKay’s thesis for
further details.

3.3.5 Mining Microblogs to Infer Music Artist Similarity
and Cultural Listening Patterns

One of the latest published approaches by Shedl and Hauger [11] aims at ex-
ploiting microblogs, and more specifically Twitter, for music artist similarity.
The idea behind the method is to leverage the on growing popularity of such

1jmir.sourceforge.net/index jWebMiner.html
2jmir.sourceforge.net/jSongMiner.html
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Figure 3.3: Query terms for a sample co-occurrence feature extraction that will
measure the similarity between four musical artists. A synonym for Charles
Mingus is included.

social media platforms, which offer the possibility of sharing favoured music
tracks.

The first dataset of the described system comprised of crawled Twitter mes-
sages that contained the hashtag # nowplaying. The second one included that
hashtag # iTunes. The text retrieved was processed and matched against
common patterns such as “songtitle by artistname”, “artistname-songtitle”,
“#artistname”. The potential artist strings were also matched against a list
of publicly available, known, artist names.

The experimental section was based on the evaluation of four co-occurrence
analysis measures which yielded item-to-item similarity:

1.

sim(i, j) =
x(i, j)

occ(i)
(3.22)

2.

sim(i, j) =
x(i, j)

occ(i)
(1− |occ(i)− occ(j)|

maxkocc(k)
) (3.23)

3.

sim(i, j) =
x(i, j)

min(occ(i), occ(j))
(1− |occ(i)− occ(j)|

maxkocc(k)
) (3.24)

4.

sim(i, j) =
x(i, j)√

(occ(i)× occ(j)
(3.25)

where x(i, j) the co-occurance count between artists i and j, and occ(i) the
number of occurances of artist i inside the Twitter-text set. The resulting rank
of similar artists for each of the aforementioned methods, was compared to the
Last.fm top-ranked similar artists (ground truth). The R-precision measure
showed that similarity measures 2 and 4 performed the best.

An interesting part of Schedl’s paper investigates geospatial patterns, mean-
ing listening patterns with regard to geographical information. However since
this topic exceeds the scope of this report, we will forward the reader to the
original publication.
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3.3.6 Combining Social Music and Semantic Web for Music-
Related Recommender Systems

In our discussion regarding interoperability (see Chapter 2) we thoroughly ex-
plained Semantic Web and its relevant notions, such as RDF, URIs etc. We
will now see how the semantic web has been exploited in conjuction with social
music for music recommendation, by Passant and Raimond [10]. It should be
noted that the term ”social music” was coined by Last.fm to describe the act
of sharing musical tastes, but can be generalized to any platforms rather than
Last.fm (eg. blogs, microblogs etc.)

Passant’s and Raimond’s approach makes use of the large amount of seman-
tic connections, mostly encoded via the FOAF vocabulary, between MySpace,
MusicBrainz, DBpedia and Last.fm. Also their system exploits SIOC’s inherited
functionality that allows new types of user generated data types to be created
based on other domain-specfic ontologies.

Their first described method uses social networks and the foaf:topic interest
term that provide a direct link between someone and his interests such as a
band or artist. The music ontology MO can be also used to represent someone
listening habits as done by Last.fm. A simple example is presented in Figure
3.4.

The second proposed approach uses the MOAT framework which allows
people to tag content with URIs rather than simple words. The relationships
between URI tags can later be used recommend related items. For example if
a user browses a web page pertaining Michael Jackson, the system can provide
direct link to a flickr page with his former band ”Jackson 5”.

Figure 3.4: Using distributed social-networks in recommendation systems.

The paper describing the aforementioned methods doesn’t include any evalu-
ation or experiments. However its importance, as far as this report is concerned,
relies on the employment of the semantic web and on the exploitation of its ca-
pabilities.

3.3.7 Taking Advantage of Editorial Metadata to Recom-
mend Music

One of the latest approaches for music recommendation using community meta-
data is proposed by Dmitry Bogdanov and Perfecto Herrera [9]. Their imple-
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mentation is based on Discogs.com, a music database that contains information
about artists, labels and recordings.

As an initial step, a user profile is generated from a set of provided music
tracks and their corresponding metadata in Discogs. Latent semantic analysis
is employed to compact the user profile representation into a single vector. The
same happens for all artists appearing in Discogs allowing similarity/distance
measures to be calculated.

More specifically a tag cloud is initially created for each artist. It contains
information such as genre, style, label, country and year of release. Three
list of releases are retrieved: “main” where the artist appears as heading the
release,“track” where the artist is just credited in the release (e.g. compilation,
guest) and “extra” where the artist is mentioned in the record credits. The
tag-clouds of each release list are later merged using a weighting function that
favors ”main” releases. Tags are also propagated using artist relations found on
the database. An example of this procedure is shown in Figure 3.5.

The proposed method touches a topic that hasn’t been investigated before,
namely determining a records’s authentic epoch. Authentic epoch, according to
the authors, represents the years when the music was firstly recorded, produced
and consumed. This task is handled by finding the release with the earliest date
and propagate that date with weights as follows:

Wy±i = Wy ∗ 0.75i, i ∈ {1, 2, 3, 4, 5} (3.26)

The evaluation of the whole system is based on questionnaires of 27 voluntary
subjects, with the expectation that the data could generalize for a wider popu-
lation. The proposed approach is compared against methods based on Last.fm
tags, black-box similarity by iTunes Genius and content based semantic simi-
larity refined by genre metadata. The results show that the first outperforms
the latter, however due to the nature of the evaluation the exact numbers and
details will be omitted.

3.4 Conclusion

In the previous paragraphs we described the notion of MIR data enrichment
and identified its connection to the MIR information extraction and Web MIR.
A series of relevant techniques were presented along with published approaches.

It is our belief that not a single approach can be considered optimal. De-
pending on the context, a method’s efficiency and relevance may vary. However
a common set of tools exist, such as querying search engines, indexing, co-
occurrence analysis etc. This set can be modified, or even extended, to fit the
needs of other tasks rather that artist similarity or genre classification.
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6 Dmitry Bogdanov and Perfecto Herrera

Fig. 1. An example of the proposed artist annotation based on editorial metadata from
Discogs. Three lists of releases (MAIN, TRACK, EXTRA) are retrieved according to
an artist's role. Particular releases are summarized into master releases, merging all
found genre, style, label, and country tags, and selecting and propagating original year.
Thereafter, tags are weighted to form a tag-cloud of an artist, and summed with the
propagated tags of all related artists. Letters �g�, �s�, �l�, �y�, �c� stand for genre, style,
label, year and country tags respectively.

623

Figure 3.5: An example of the proposed artist annotation based on editorial
metadata from Discogs. Three lists of releases (MAIN, TRACK, EXTRA) are
retrieved according to an artist’s role. Particular releases are summarized into
master releases, merging all found genre, style, label, and country tags, and
selecting and propagating original year.
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Chapter 4

Interoperability: Record
Linkage

Two separate and structurally different databases exist inside the COGITCH
domain (see section 1.1). Although both of them represent and store seman-
tically the same concepts, syntactic heterogeneities, typos and other factors
disallow precise interlinking between musical entities. This chapter presents a
simple yet efficient method for locating artist entities inside noisy strings and
then linking them to MusicBrainz. Our approach, which relies on the employ-
ment of string permutations and metaphones [5], shows great performance and
room for further improvement.

4.1 Introduction

The Sound and Vision (S&V) database, although large in terms of number of
records, presents various flaws. First, it lacks significant musical information
such as genre and year of release; issues to be addressed in the later parts of
this thesis. Secondly and most importantly, it stores artist information about a
song in a complex string architecture. Although guide rules have been provided
to the data loggers, these were not explicitly followed for various reasons. For
example, in some cases information about the main artist of a song may not
have been clear. It is also possible that the guidelines did not take into con-
sideration special cases, thus the logger might had to improvise when inserting
information. When taking into account the existence of typos, it becomes clear
that linking each “Artist” field in S&V to distinct artist entities, constitutes a
major problem.

But why are we interested in solving this problem? First, consider data
enriching functions which can only be applicable on clearly defined music entities
such as “Willy Derby”; and not on cases such as“Willy Derby (singer) and the
Amsterdam Orchestra”. The latter string contains information unrelated to
the main artist, and thus any data harvesting techniques would fail to retrieve
correct and complete information about the artist. Secondly, consider the case
of searching for all songs by Willy Derby. A full-text search optimally would
suffice, however for an “Artist” field containing typos and noisy additions, the
performance would drop. Finally, linking records within and between databases
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is a crucial procedure that requires each record to point to a well defined entity.

4.1.1 Problem Definition and Assumptions

Following Neiling’s work [4] the question we are trying to answer is as such:
given two overlapping data sets A and B, on the same universe of object, are
there any records a ∈ A that belong to any record b ∈ B? According to [4]
the first step for answering this question is object identification. In other words
prior to any linkage, the objects of interest should be well-defined. This is
typically achieved via cleansing of the data, conversion functions, employment
of contextual information and others.

MusicBrainz has well-defined objects and therefore we won’t be dealing with
that source. However, this is not the case for S&V , since by manually inspecting
its contents, we have identified the following cases:

1. Typos e.g. “Willie Derby” instead of “Willy Derby”.

2. Name permutations e.g. “Derby Willy” instead of “Willy Derby”.

3. Noise additions e.g. “Willy Derby (singer) and the Orchestra of Amster-
dam”.

4. Name abbreviations e.g “W. Derby” instead of “Willy Derby”.

5. Name variations e.g. “Beatles” instead of “The Beatles”.

6. Other e.g. “Bob Scholte plays Willy Derby”.

Given this specific list of special cases, the problem is transformed into find-
ing a set of functions (conversions, comparisons, etc.) that convert each “Artist”
attribute to clearly-defined artist-object.

Before explaining in detail our methodology it is important to discuss two
major assumptions that alleviate the difficulty of the whole problem:

1. The main artist appears always first in the “Artist” field. This implies in
that cases such as “Orchestra of London conducted by Derby”, the main
artist is “Orchestra of London”.

2. The three first words of an artist’s name constitute an adequate identifier.
In other words, we assume that there are no two artists with their three
first words (in their name) exactly the same. This of course does not hold
in cases such as “The band of A” and “The band of B”, but this is a
sacrifice we are willing to make for the sake of computational efficiency.

4.2 System Description

Our method aims at addressing each and every one of the issues presented in
4.1.1 while at the same time taking into consideration the two major assump-
tions. For each string of characters S, corresponding to an entry at the “Artist”
name field, extracting a unique name-identifier S∗ and linking it to MusicBrainz
is achieved via a five step function:

Object identification:
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1. Locating the main artist.

2. Calculating possible permutations and metaphones.

3. Calculating name abbreviations.

Record linkage:

1. Internal record linkage.

2. Linkage to MusicBrainz.

The first three steps aim at a) locating the main artist’s name and b) com-
puting all its possible appearances in the database. The fourth one ensures that
any duplicates will be deleted, or will be pointing to the same unique artist
name S∗. The final step links any possible unique artist name to a unique
MusicBrainz profile.

4.2.1 Locating the Main Artist

By manually inspecting the database we have discovered that the main S string
can incorporate the main artist in many ways. Some examples are shown below
(the main artist in Italic font):

• Shepherds, The.

• Polland, Pamela [zang]

• Hoogoven Harmoni (Orkest), Steyn, Willem

• Clark, Gus [electr. orgel]

• Life Guards olv. W. Jackson

• Shines, Johnny [zang + gitaar]

Therefore the main artist can be either a band, a person or an orchestra.
The role of each entity can vary from being the singer, the guitar player, the
main violinist and many more. As a consequence, locating the main artist is a
complicated task.

Our method starts by assuming that the singer tag e.g.“[zang]” is present
and therefore the main artist is a singer. After locating such a tag, the sub-
string on the left would correspond to the main artist, since the singer typically
appears first. However, the “[zang]” tag appears in many versions throughout
the database; for example as “[zanger]”,“(zang)”,“(singer)” etc. Taking into
account all the possible versions, our method discards the right substring that
corresponds to noise.

This process is successful only when the singer tag is present. In the oppo-
site case, the S string corresponds to either a band e.g. “Shepherds, The” or
a sequence of music entities such as “Bulterman, Jack met zijn (Orkest)” and
“Mariachi Vargas de Tecalitlan, Fuentes, Ruben”. Locating the main artist now,
is a matter of segmenting the string at the optimal position. Our manual inspec-
tions yielded a set of tags and words that constitute important segmentation
points. These are presented below:
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"gespr tekst","gitaar", "tenor","a/h","gespr.","Electr.","gespr","citer",

"bas","kwintet","Kwintet","choir","ensemble","Ensemble","kapel",

"Kapel","combo","Combo","kwinter","Kwintet","barrelpiano","e/s",

"Orkest","sextet","Sextet","septet","Septet","Draaiorgel","Orkest",

"orkest","orkesten","Orkesten","accordeon","Accordeon","duo",

"Duo","Kwartet","kwartet","duo", "Trio","trio","Orgel","electr. orgel",

"orgel", "cello","Cello","piano","sopraan","drums","saxofoon",

"band","Band","koor","Koor","contrabass","trompet", "olv",

"cineamorgel","y/s","bariton","clarinet","the","The","met"

To avoid segmenting in between an artist’s name (that includes any of the
tags), we segment the string only when the tags are in between white spaces,
“( )”, “[ ]” and combinations of those. The tag “the” is a special case and does
not correspond to a segmentation point. However, it is removed when not in
between white spaces. For example, in the cases of “The Beatles” and “Beatles
the” it will be discarded but not in the case of “Nick Cave and the Bad Seeds”.

The final step of the process employs the second assumption (see section
4.1.1). Each resulting name string containing more than three words is trimmed
to three. The purpose of such function is currently not apparent, but will be
discussed thoroughly later. For the time being, it is worth presenting some
examples of resulting strings after the end of the whole procedure.

• Davidson, Harry met zijn (Orkest) → Davidson Harry

• Hammond Beat Boys, The → Hammond Beat Boys

• Beefheart, Captain a/h Magic (Band) → Beefheart Captain

• Edoardo, Vianello [zang] Morricone, Ennio met zijn [orkest] [Cantori]
Moderni → Edoardo Vianello

4.2.2 Computing Permutations and Metaphones

Previous process addresses the issues of locating the main artist by filtering
noise in strings and by minimizing name variations of the type “Beatles The”,
“The Beatles”. The process to be discussed deals with typos and random-order,
name appearances of the type “Willy Derby”, “Derby Willy”.

As we have seen, each artist is currently represented by a three-word string
at maximum. Out method computes all possible word permutations for each
string. Therefore for a two-word name the permutations are two, while for a
three-word name the permutations are six. This amount increases exponentially
with regard to the words pertained in the name. Now the rational behind our
choice of limiting the words to three becomes obvious.

A list of example names and their permutations is shown below:

• Schaik Frans v. → Schaik Frans v.;Schaik v. Frans;Frans Schaik v.;Frans
v. Schaik;v. Schaik Frans;v. Frans Schaik

• Jordaan Johnny → Jordaan Johnny;Johnny Jordaan

Computing the permutations covers a large number of the possible appear-
ances of an artist name in the database. However, when using exact-matching
string comparisons, typos are a major drawback. Out method assumes that most
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frequent typos are of the type “Willie”, “Wily” instead of “Willy” or“Peyne”
instead of “Payne” or even “Jordan” instead of “Jordaan”. In other words our
method assumes that typos do not introduce any phonetic variations in the
name, therefore the pronunciation is almost identical.

Based on this assumption, our method computes the metaphone [1] corre-
spondence of each permutation. Metaphones, developed by Lawrence Philips,
are string keys that are the same for similar sounding words. In other words,
names pronounced similarly should produce the same metaphone key. Examples
are shown below:

• Low Bruce → LBRS

• Woodhouse John → WTHSJN

• Derby Willy → TRBWL

Eventually each artist name string S is represented by a set of permutations
PS a set of metaphones MS and a unique name identity IS . For S =“Willy
Derby”, PS = {Derby Willy,Willy Derby}, MS = {TRBWL;WLTRB} and
IS =“Derby Willy” which simply corresponds to the first permutation.

4.2.3 Computing Name Abbreviations

The procedure to be discussed deals with cases of the form “W. Derby” instead
of “Willy Derby”, which are quite common in the database. We are not sure
if such trimmed name versions are the result of the loggers’ mistakes or if the
artists themselves were credited in such way. The fact still remains; even after
computing all possible permutations and metaphones, “W. Derby” and “Willy
Derby” would be still considered different entities.

In an ideal situation, where first names appear before last ones, converting
a name string to its abbreviated form would be easy. However, we know that
first-last name ordering does not follow any rules. In addition, not all artists are
persons. Bands and orchestras also appear in the database and thus converting
them would be futile.

Our method makes use of two large sets of possible, English, male and female
first names1 2. For each permutation in PS , the method matches its first word
to both name-lists. In case of a match an extra permutation is added to PS ,
corresponding to the abbreviated form. For example, for “Willy Derby” our
approach would return “W. Derby”, since “Willy” appears in the name-lists.

However, there’s a downside to that approach. Some artists have last names
that can be misinterpreted as first names e.g. “Bob Dylan”. Now, imagine
that “Dylan Bob” appears as the main artist; then the abbreviated form would
be “D. Bob”. The confusion and errors that may be introduced are obvious.
It is our belief that solving such problem exceeds the scope of this study. We
have identified potential solutions, such as using the artist detection function
of EchoNest, but we will not pursue them due to time constraints. Our simple
solving methodology relies on the observation that artist names are usually

1www.infochimps.com/datasets/word-list-3800-common-male-given-names-english-
speaking-countrie

2www.infochimps.com/datasets/word-list-4900-common-female-given-names-english-
speaking-countr
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Permutations Metaphones
Willy Derbyid WLTRB
Derby Willy TRBWL
W. Derby
D. Willy

Table 4.1: Permutations and Metaphones for the artist “Willy Derby”

Permutations Metaphones
Shepherdsid XFRTS

Table 4.2: Permutations and Metaphones for the artist “The Shepherds”

inserted in the form “Last name, First name”. Given that, we assume that
“Bob Dylan” appears significantly less number of times than “Dylan Bob” and
therefore any errors will be limited.

The upside of our approach relies on the relation between names and genders.
Most names can be employed to directly identify the gender of an artist. This
piece of information might be irrelevant to our general goal, but enhances the
knowledge we have about the artist in hand.

4.2.4 Internal Record Linkage

The first step in linking ”Artist” name fields to unique artist entities is to build
a database/index for the latter. In other words, before any linking, the actual
target entities must be present. In our case, such source of unique musical
entities is either non-existent or insufficient. Therefore we had to build one
from the scratch.

Our method sequentially processes each S&V record and adds the corre-
sponding main artist to a unique-artist index Ind in case it hasn’t appeared
before. The latter is achieved via the employment of permutations, metaphones
and name abbreviations.

It is worth describing the process along with a simple example. For each
“Artist” name S our method first locates the main artist and then computes a
representation comprising of a set of permutations (including the name abbre-
viation) PS

+ , a set of metaphones MS and a unique name id IS . Let us assume
that the first S that appears in the database is “Willy Derby met Lou Bandy
[accordeon]”. The corresponding representation is shown in Table 4.1.

Unfortunately, both names “Willy” and “Derby” are first names, therefore
the incorrect abbreviated version “D. Willy” appears. But we will see later how
this affects the matching procedure. Now, since the index Ind is empty, the
system adds to it the IS accompanied by the permutations and metaphones.

Let us assume that the next record in the database contains the “Artist”
name S′ =“The Shepherds (band)”. Its corresponding representation is shown
in Table 4.2.

Now, since the index Ind is not empty, the system computes the similarity
between the permutations and metaphones. For each permutations p′ in PS′

and p in PS , a string similarity function s(p, p′) is applied. In our case, for each
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Permutations Metaphones
Derby Willieid TRBWL
Willie Derby WLTRB

W. Derby
D. Willie

Table 4.3: Permutations and Metaphones for the artist “Derby Willie”

of the “Willy Derby”, “Derby Willy”, “W. Derby” and “D. Willy” the similarity
between “Shepherds” is calculated. The algorithm corresponds to the PHP’s
similar text() function [1]. If the similarity is above 0.96 (with 1 being exact
match), our method assumes that the strings are the same and therefore also
the same musical entities.

In our case, none of the permutations of PS yield similarity higher than the
threshold. Therefore, our method gives those entities another chance, assuming
that the low similarity is a result of typos. The same procedure is now applied on
the corresponding metaphones, but with higher threshold of 1; since metaphones
are high level abstractions already. In our case, none of the metahophones in MS

are exact matches of MS′ and therefore the system concludes that the entities
are not the same. The index Ind will now incorporate the entity “Shepherds”.

Let us now assume that the third record in S&V contains S′′ =“Derby Willie
[zang]”, with a repesenation as in Table 4.3.

Given the previous process, the entity “Derby Willie” will be matched to
“Willy Derby” and therefore it will not be added to the index Ind.

A problem will arise only when an artist string of the form S′′′ =“Donald
Willy” appears. Since “Donald” is a first name also, an abbreviated version “D.
Willy” will emerge. As a consequence our method will eventually assert that
“Willy Derby” and “Donald Willy” are the same entities, and the latter will
not be included in Ind.

It is also worth pointing out that if a typo-version of an artist name appeared
before the correct one, then that would be the one stored in the index. For
example, if “Derby Willie” appeared before “Willy Derby” then this artist would
be represented by the first typo-including version.

4.2.5 Linkage to MusicBrainz

The methods presented above optimally result to an index of unique artist names
as they appear in the S&V database. By assuming that the “Artist” field in
the Meertens database does not contain any noise, a linkage between the two
collections is easily achievable. Although this is not the case, we are interested
in a greater problem, namely generalization. Similar to crosswalks (see 2.3.3)
for more than two datasets the work overload of record linkage increases expo-
nentially. Therefore, it is wiser to link each artist to a well established, large
identifier hub such as MusicBrainz.

Given the precomputed index of unique artists names inside S&V we aim at
correctly matching each one of them to a MusicBrainz profile. However, given
the possible ambiguities, trusting MusicBrainz for matching each query to the
correct artist is ill-advised. MusicBrainz returns a ranked-list XML response
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for artist-search query as shown in Figure 4.1. We make use of three pieces of
information to link each query to the correct artist in the returned list:

• Relevancy score (see attribute < ext : score〉) which is computed based
on a MusicBrainz’s unknown internal function. It should be noted that
the top ranked artist is always assigned the maximum value of 1.

• Name (field < name〉) which corresponds to the artist’s name (e.g Don
Payne).

• Sort name (field < sort−name〉) which corresponds to a different ordering
of the name (e.g. Payne Don).

• Aliases (field < alias − list〉 which corresponds different name versions
such as abbreviations (e.g. Donald Payne, D. Payne).

Our approach assigns a similarity value between the query and each of the
returned artists based on the following formula:

sim(q, ai) =
scoreai + s1(q, ai) + s2(q, ai)

3
(4.1)

where s1(q, ai) the maximum of similar text() similarities between the query’s
permutations and ai’s name, permutations, sort name and aliases. s2(q, ai) de-
notes the maximum of similarities between the query’s and ai’s metaphones,
while scoreai

the returned MusicBrainz relevancy score.
Our preliminary experiments have shown that the method works really well,

except cases where synonymity appears. For example when trying to match
“Ken Griffin”, MusicBrainz returns a ranked-list where the two top artists are
“Ken Griffin” but correspond to different persons. In such a case, our method
will pick the first occurrence as the correct match. This example suggests that
a more sophisticated algorithm should be employed, probably similar to Rai-
mond’s [3]. However such an approach would require additional information to
be employed, such as discography.

4.3 Experiments and evaluation

Precise evaluation of our method is not feasible, considering the size of the S&V
database. In order to acquire a ground truth, we have to either manually inspect
all records or employ the “perfect” algorithm. This “chicken-egg” situation
leaves us with no choice but to employ manual labour. Therefore, the idea
behind our evaluation is to query for artist names that we know they appear
in the database, and manually count the number of true and false positives
returned.

We consider as baseline, MySQL’s internal, exact matching function. The
method that yields the highest positive predictive value (TP/(TP+FP )), would
be considered the best.

4.3.1 Experimental Setup

For our method, denoted from now on as “PMA” (Permuations Metaphones Ab-
breviations), given a set of 10 unique artist names, we gather all the matched
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Figure 4.1: An XML sample response for the search term “Jack Payne”.

records in the database. However, for MySQL’s simple matching function, de-
noted “MySQL 1”, the query terms to be used are really important. For ex-
ample, searching for “The Beatles” instead of “Beatles” significantly affects the
number and type of returned records. Therefore, in order to be fair, our evalu-
ation employs queries of the form “word1 AND word2 .. AND wordn”, where
wordi appears inside the artist’s name.

Two experimental configurations are investigated. In the first one, denoted
PMA−, our method does not take into consideration abbreviated name versions,
as opposed to second one denoted PMA+.

4.3.2 Results

The positive predictive value accompanied by the number of returned records
for the first ten artists are presented in Table 4.4.

It is worth examining certain thought-provoking cases, starting with “Jack
Payne”. Our method returns a list of all true-positive records. MySQL’s internal
function though yields a prediction value of 50%. If we examine the results in
detail we observe that MySQL returns also records in which “Jack Payne” is not
listed as the main artist (eg. conductor). Since our initial assumption is that
the main artist is the one listed first, the low positive predictive value of MySQL
makes sense. In cases where the user is interested in all records pertaining the
name “Jack Payne”, MySQL is more reliable.
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Artist PMA− MySQL 1 PMA− count MySQL 1 count
Jack Payne 100% 50% 23 36
Jo Vincent 100% 73% 11 15

Willy Derby 99.1% 98.3% 121 119
Duo Hofmann 100% 95.3% 40 43
Louis Noiret 100% 63.3% 11 30

August de Laat 100% 100% 10 9
Kees Pruis 100% 100% 54 53
Lou Bandy 82% 98.1% 62 54

Josef Marais 100% 61% 21 54
William Kimber 100% 100% 8 8

Table 4.4: Positive predictive value and counts for PMA− and MySQL 1.

Artist PMA+ MySQL 1 PMA+ count MySQL 1 count
Jack Payne 88% 50% 26 36
Jo Vincent 100% 73% 11 15

Willy Derby 99.1% 98.3% 121 119
Duo Hofmann 100% 95.3% 40 43
Louis Noiret 100% 63.3% 11 30

August de Laat 100% 100% 10 9
Kees Pruis 100% 100% 54 53
Lou Bandy 82% 98.1% 62 54

Josef Marais 100% 61% 21 54
William Kimber 100% 100% 8 8

Table 4.5: Positive predictive value and counts for PMA+ and MySQL 1.

The second worth-examining case is “Lou Bandy”, since our method’s pre-
dictive value is lower than MySQL’s. The reason for this behaviour relies on
the fact that “Lou Bennet” yields the same metaphone keys as “Lou Bandy”,
therefore they are erroneously considered the same artist. This fact suggests
that metaphones are too high abstractions to be used as artist name features.
We believe that a combination of metaphones and edit distance might work
more sufficiently; which remains to be investigated in future work.

Overall, PMA− yields a larger ratio of true positives (close to 100%) by
including typo versions of artist names and by excluding non-main artist listings.
MySQL fails to discover typo-versions but can present records where the artist
is listed as secondary.

Now let us examine the performance of PMA+ which takes into consider-
ation abbreviated forms (Table 4.5). It should be noted that PMA+ enforces
abbreviations whenever possible. For example, if “Willy Derby” is already in
the index and “Willeke Derby” appears in one of the database’s records, then
the abbreviated version of the latter will be computed.

By studying Table 4.5 above, it becomes clear that only “Jack Payne”
presents different performance from PMA−. The reason for this behaviour is
quite clear; there are no abbreviated forms present in the database for the rest
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of the artists. Given this fact, it is wise to examine the “Jack Payne” case more
thoroughly. PMA+ returns three more records that PMA− which correspond
to the artist “Jimmy Payne”. The matching occurred between the abbreviated
forms “J. Payne”. If the framework hadn’t enforced the abbreviated form then
this mismatch wouldn’t had occurred. Therefore, only if the actual artist name
was “J. Payne” a link would have been established (see Figure 4.2).

Figure 4.2: Two different cases of enforced and non-enforced abbreviations (red
and blue respectively). In the first case a mismatch occurs for “Jimmy Payne”.
In the second case the mismatch is avoided. In both cases, “J. Payne” is linked
to “Jack Payne” in the index, although the abbreviated form “J.” is ambiguous.

4.3.3 Discussion and Conclusions

This chapter’s aim has been to investigate record linkage between databases,
via main-artist-name entity detection. We described certain approaches that
employ name permutations, metaphones and naming abbreviations. The results
show that a certain amount of compromise is always required; it is extremely
difficult to embrace all possible name variations while at the same time, limit
ambiguities. However, our method(s) show better performance than MySQL’s
exact-matching function, as the first is well-tailored to the problem.

Future work should aim at limiting the effect of metaphone and abbreviated
forms matching. It is possible for example, to accept a metaphone match only
when the edit distance is higher than a certain threshold. Such a scheme would
reject linkage between “Lou Bennet” and “Lou Bandy”, although determining
the threshold might be a complex procedure. Regarding the abbreviated forms,
our results imply that non-forced abbreviation works better.

To summarize, even though our method presents room for improvement, the
current framework can be successfully applied on the S&V database.
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Chapter 5

Data Enrichment: Placing
Music Entities in Time

5.1 Introduction

The productive period of a music artist is an important piece of information
that is typically highly correlated to his style, influences and similarities to
other artists. As such, the productive years constitute a reliable, additional
feature for artist-recommendation, similarity calculation, genre classification,
etc. A song’s original year of release is also extremely valuable music-metadata
for users, archivists and musicologists. Both allow placing musical information
into a time context, thereby enhancing the semantic quality of that information.

This chapter investigates the novel task of situating music artists and songs
in time. The proposed method exploits editorial metadata in conjunction with
web mining techniques, in order to determine an artist’s productivity over time
and estimate the original year of release of a song. Evaluation on a test set of
Dutch music shows that the proposed methods are robust and present reliable
performance. In addition, the methods offers room for generalization to non-
music domains.

5.1.1 Problem definition

We define as a song’s year of release (YoR), the year on which it was firstly
released in either an album, single, etc. If the song was released in both an
album and a single, then it is the earliest release that corresponds to the YoR.
(check Dmitry definition).

We define as an artist’s years of productivity (AYoP), the years in which the
artists was alive, recording and releasing albums, singles, etc. In other words, a
compilation release after the death of an artist doesn’t contribute to his AYoP.
By default we assume that re-releases of songs/albums, while the artist was
alive, also do not contribute to the AYoP.
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Formulating YoR estimation

Given a tuple of the form < ArtistName, SongT itle, Y oR∗〉 where Y oR∗ the
true year of release, we want to find a function f(ArtistName, Songtitle) =
Y oRest, such that it minimizes |Y oRest − Y oR∗|.

Formulating Artist Years of Productivity estimation

We denote AY oPA = {b1, b2, ..., b130} the probability density function (pdf) of
an Artist A, where bi the value of the ith histogram bin corresponding to the
productivity of the year 1880 + i. For example, an artist with high productivity
during the 70’s will have a AYoP distribution that peaks between i = 90 and
i = 100. We want to find a function f(A) = AY oP est that minimizes the
distance d(AY oPA, AY oP est).

5.2 System Description

The YoR and AYoP estimation functions of the system are based on the same
set of tools. However, as we will see later, AYoP is a prerequisite for YoR and
therefore we will examine it first. Before any of these, we shall discuss the
system’s main sources of information, from which meaningful data is mined.

5.2.1 Sources

Our system exploits two distinct sources: Music Information Services (MIS)
and Search Engines. MIS correspond to (semi) commercial and non-academic
online systems and services that utilize or provide technologies related to music
databases. These vary from automatic music classification and recommendation
to metadata about artist discographies and information. The latter is usually
denoted “Editorial Metadata”, a convention that this paper will follow from
now on. Many companies and initiatives have implemented systems associated
with various aspects of music collections, however our approach employs those
that are well-established or have been previously employed by MIR researches.
These are Last.FM1, MusicBrainz2 and EchoNest3.

Last.FM

Last.FM can be considered a high-profile Internet radio station that encap-
sulates a music recommendation engine (AudioScrobbler). Last.FM has been
exploited by many previous researches since it has been particularly proactive
and helpful in providing access to their data through a powerful web API.

Figure 4.1 shows a sample response for the API method album.getInfo. Al-
though information about the release date of the album and the included tracks
is provided, release type information (e.g. single, album, compilation etc.) is
absent. Therefore, in our context of use, Last.FM is unable of providing reliable
release dates. If a certain song is matched against the Last.FM database, it is
uncertain whether this corresponds to the original or some later release.

1www.last.fm
2www.musicbrainz.org
3the.echonest.com
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Figure 5.1: A sample resonse for the API method album.getInfo. Apprarently,
no information regarding the release type is available. The release date is stored
in the field <releasedate〉.

The complement MusicBrainz ID field (<mbid〉) is an important piece of
information in the XML response. As we shall see later, MusicBrainz provides
more detailed data about an album or the discography in general of an artist.
Consequently, even if Last.FM is fruitless on its own, the mapping/link to Mu-
sicBrainz is extremely valuable and hence exploitable.

The EchoNest

EchoNest was founded in 2005 and started as part of a dissertation project
at MIT. It currently aims to provide music related services to developers and
media companies, including MTV, BBC, Warner Bros and others. Their services
are mostly based on a large, automatically generated, dataset of song features.
However, similar to Last.FM, EchoNest has been really proactive in providing
powerful tools via their API. Although the processing itself is a “black box”,
it does provide extensive functionality for analysing, retrieving metadata, and
processing music.

We are interested in EchoNest’s database rather in the provided audio-
content analysis. We want to extract as much date information as possible
regarding an artist or a song. Figure 5.2 shows the json-format response to an
artist-search query, which includes information about the artist’s active period
(field years active).
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Figure 5.2: A sample response for a search-artist query. The returned artist
(Radiohead) is accompanied by active-years information. Radiohead began their
career in 1985 and are still active.

The same query can include a link to a MusicBrainz profile, via the Mu-
sicBrainz ID, as shown in Figure 5.3.

Figure 5.3: A sample response for a search-artist query. The returned artist
(Radiohead) is accompanied by a MusicBrainz ID.

The song-related queries are fruitless in terms of date information, therefore
the only data relevant to our context is “active years” and MusicBrainz lD.

MusicBrainz

MusicBrainz offers a free fingerprinting (song identification) service that allows
users to access its huge recording metadata database using web services in addi-
tion to an API. The database contains various pieces of information about music,
from artists and their releases to works and their composers. The granularity of
MusicBrainz, with regard to discography information, is much higher compared
to Last.FM and EchoNest, probably due to MusicBrainz’ aim to become the
most complete music-metadata collection.

A sample artist-search response is shown in Figure 5.4. Such a response
returns a ranked list of artists with name similar to the query. The ranking is
based on an internal MusicBrainz function and given possible naming ambigu-
ities, it can be erroneous. However, it is important to notice that information
about the life and death of the artist is also provided (〈life-span〉 field). Such
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piece of information is really valuable when it comes to placing artists into a
time frame. Regarding song data, let us examine a song-search response, as
shown in Figure 5.6. The most important fields, in our context of use, are
〈date〉 and 〈release-group〉, corresponding the release date and the release type
(single, album, compilation etc.) respectively of the song.

Figure 5.4: A sample MusicBrainz response for an artist-search query.

It becomes quite obvious from the previous, that MusicBrainz constitutes
an important source of date information for both artists and songs. Therefore,
our system aims at exploiting it as much as possible, even if sometimes the
returned ranked lists lack confidence. Given that, our system makes use of the
fact that EchoNest and Last.FM can provide links to MusicBrainz profiles, via
MusicBrainz IDs, since it is quite common for a song/artist not to appear in all
databases (see Figure 5.6).

Search Engines

There are many ways to search through the Web, however dedicated search
engines, such as Google Search and Bing Search are the most powerful tools that
can be taken advantage of. Different search engines use a variety of algorithms
to search the web, ranging from semi to full-automatic web crawlers. The most
popular algorithm, for at least Web-MIR research, is Google’s PageRank, which
favors sites in the search results based on how many other sites link to them.
Google in addition employs other criteria to generate results, such as machine
learning.

It should be pointed out that such services act as gateways between the
user and all that is indexable on the Web. This clearly implies that, what is
called the “deep” web (flash pages, on the fly content, etc.), cannot be directly
accessed.
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Figure 5.5: A sample MusicBrainz response for an song-search query.

5.2.2 General framework

In general, given a set of 〈Artist, T itle〉 tuples, the system’s goal to estimate
the probability distribution function that best fits the artist’s productivity pdf.
For the YoR task the input is a single tuple while the output estimate is a single
integer number. Both tasks employ the same fundamental procedure which
comprises of three major components:

1. Editorial Metadata retrieval

2. Web Mining

3. Post-processing and estimation

We will now examine how these are implemented and vary for both distinct
cases.

5.2.3 Editorial Metadata retrieval for Artist Years of Pro-
ductivity estimation

Given the input I = {{a1, Sa1}, {a2, Sa2}, .., {ai, Sai}} where ai ∈ A an artist
name and Sai ∈ S a set song titles corresponding to the ai artist’s recordings,
the system firstly tries to match any of the artists to the databases of Last.FM,
EchoNest and MusicBrainz. We want to extract the following information about
ai:

1. Discography (from MusicBrainz)

2. Lifespan (from MusicBrainz)

3. Active years period (from EchoNest)
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Figure 5.6: A simple Venn diagram representing the song and artist spaces in
Last.FM, MusicBrainz and EchoNest. Songs or artists appear in none, one, two
or all three databases. Artist profile links, via MusiBrainz IDs (depicted as ar-
rows), may exist for both EchoNest and Last.FM. However, links to MusicBrainz
artist profiles, can apper in Last.FM songs only.

The retrieval is based on jSongMiner [1], which requires input of the form
〈ai, sj〉. In reality jSongMiner just passes the query to the MIS systems, retrieves
the results, merges and presents them in a comprehensive way. It become obvi-
ous that the EchoNest, Last.FM and MusicBrainz perform the actual matching
and ranking themselves.

We are only interested in either the MusicBrainz or EchoNest ID of the
artist, so as to extract the information in the list above. These can be provided
via links from any of the Editorial Metadata sources. For example, if we have
a Last.FM match for 〈ai, sk〉, this can provide a link to ai in MusicBrainz even
though sk is not listed as a recorded song by ai in the latter.

An issue that arises is that not all pairs can be matched to any of the
databases. This is because either no information about an artist ai exists, or
no information about any of his songs in Sai . In that case the system has to
compromise and try to match the artist name solely to the databases. Given
that the returned match has now higher probability of being erroneous (artists
with same or similar name), the system has to assign a confidence.

Given those factors we have identified four distinct cases:

1. The EchoNest profile exists and also the link to MusicBrainz. This is the
best-case scenario. The system then retrieves the “Active Years” data
from EchoNest and the “Life span”, discography data from MusicBrainz.
A confidence value of 1 is set for both sets of data.

2. Only the EchoNest profile exists with no link to MusicBrainz. In that
case, we query MusicBrainz ourselves using only 〈ai〉. The results of Mu-
sicBrainz can be noisy hence even the top ranked results may not be
very reliable. Therefore we set the confidence for EchoNest to 1, and for
MusicBrainz to 0.6. (Remember that MusicBrainz doesn’t offer links to
EchoNest, and therefore we cannot ensure that the artists retrieved from
both sources match).
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3. Only MusicBrainz data exist. In that case, we query EchoNest with
〈artist〉. Again we assume that the results may not be reliable. Therefore,
when the top ranked artists is received, we compare his corresponding Mu-
sicBrainz ID (if it exists) we the one already acquired. In case of a match
the confidence values for both EchoNest and MusicBrainz are set to 1.
In any other case the EchoNest data is discarded. However, if the link
between MusicBrainz and Echonest doesn’t exist, we set the confidence
value of the latter to 0.8.

4. Both MusicBrainz and EchoNest data is absent. In that case we query
Echonest with 〈Artist〉 and then try to find the link to MusicBrainz. If
the link exists, we set both the confidence values to 0.8. If the mapping
doesn’t exist we query MusicBrainz with confidence of 0.6. If the initial
EchoNest query doesn’t return a match, we simply query MusicBrainz
with a confidence of 0.6.

This complex procedure is depicted in the pseudo code below:

If (EC and MB) then

EC_conf=1

MB_conf=1

If (EC and NOT MB) then

EC_conf=1

MB=search_musicbrainz

if (MB) then MB_conf=0.6

if (MB and NOT EC)

EC=search_echonest

if mapping(EC,MB)

EC_conf=1

MB_conf=1

else

EC_conf=0.8

MB_conf=1

if (NOT MB and NOT EC)

EC=search_echonest

if (EC)

MB=search_musicbrainz

if mapping(EC,MB)

EC_conf=0.8

MB_conf=0.8

else

EC_conf=0.8

MB_conf=0.6

else

MB=search_musicbrainz

MB_conf=0.6

Histogram construction

After the previous process we now acquire a set of confidence values C =
{cmb, cec} for the data retrieved from MusicBrainz and EchoNest respectively.
EchoNest provides us with a maximum of two values corresponding to the start
and end years (stai

, endai
) of an artist’s activity. Given that, a histogram

denoted as Hec is created, with both Hec(stai
) and Hec(endai

) set to cec.
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A histogram Hmb,disc is also created for the MusicBrainz data, but populat-
ing it is more sophisticated. The discography data comprises of album names,
song titles accompanied by their release date and “release group” information.
The release group is either “album”, “single”, “compilation” etc. Our method
assumes that some release groups (e.g. singles) are more reliable than oth-
ers (e.g. compilations) with regard to the original date determination. This
is because singles are typically released some time before the actual album,
while compilations after the artist has released a considerable amount of works.
Therefore for each k date information (yeark,ai) retrieved from MusicBrainz,
we set:

Hmb,disc(yeark,ai
) =

wreleasegroup × cmb

Nreleasegroup
(5.1)

where wreleasegroup a weight value and Nreleasegroup a normalization factor cor-
responding to the number of recordings belonging to that particular release
group. Table 5.1 presents all the release groups and their assigned weights.

Release group Weight
Compilation 0.1

Album 0.15
Single 1

EP 0.6
Soundtrack 0.5
Spokenword 0.1

Interview 0.2
Audiobook 0

Live 0.3
Remix 0
Other 0.1

Table 5.1: Release groups and their corresponding weights.

Lifespan data corresponds to the start and end years (stai , endai) of an
artist’s life. Similar to the Active Years information we create a histogram
Hmb,life where both Hmb,life(stai

) and Hmb,life(endai
) are set to cmb. An

example of the resulting histograms is shown in Figure 5.7.

Figure 5.7: The three Editorial Metadata derived histograms for the artist Bob
Scholte (1902-1983). Data for the active years of the artist are absent. Even
after Scholte’s death, albums and compilations of his songs were released which
were low-weighted by our method.
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5.2.4 Web mining for Artist Years of Productivity esti-
mation

The next step in the process is to identify the Web pages that are related to
the artist under consideration. Typically this would include reviews, fan blogs,
MySpace or even Last.FM profile pages. As we have discussed previously, our
system employs the Google and Bing search engines.

However, as Schedl argues in [2], automatically querying a Web search engine
to determine pages related to a specific topic is a common and intuitive task,
which is nevertheless prone to a major flaw: when ambiguity is present (e.g.
people with common names), a lot of irrelevant pages are returned. Therefore,
the main challenge is to somehow, meaningfully restrict the search results to
pages related to the desired topic.

This problem, inside the music context, has been addressed by enhancing
the search query for the artist name with additional terms, such as “music” and
“review”. The aforementioned query scheme has been successfully applied to
even genre classification tasks [3].

Given that, for each artist ai ∈ A we query Google with the scheme “ai+music”
and retrieve the 100 top-ranked URLs, denoted as set G. We query Bing with
only ai, since we have identified that the API returns limited results when
queried with complicated terms. It should also be noted that the Bing API
results vary significantly when compared to the ones returned by Bing Web in-
terface. In addition, before 01-08-2011 Bing API allowed a maximum number
of 80 URLs per query, which was dropped to 50 after that specific date. For the
AYoP task, the retrieval was performed before 01-08-2011 and hence 80 URLs
per artist were gathered. We denote that set as B.

Since B and G might overlap with eachother, we compute Useed = B ∪
G. Retrieving the web-pages in Useed is performed by the Apache Nutch web
crawler4. Although a web crawler, Nutch can also simply gather the web-pages
indicated by the URL seed set.

Both Apache Solr5 and Lucene6 have been employed by previous researches
for indexing web-mined pages. We also employ Apache Solr. The resulting index
is now considered as the input for any of the procedures that will be discussed
later.

Histogram Construction

The next step in the process is calculating year-histograms for each artist based
on the indexed data. We aim at generating a probability distribution that would
best model the artist’s productivity as it is documented on the Web. We per-
form that by employing the following tools: page counts, co-occurrence analysis
(or cross-tabulation analysis) and tf ∗ idf -relevance-scoring as implemented by
Lucene.

• Page counts: Page counts are usually used in conjunction to web search
engines such as Google. The basic idea is to use the search engine’s number
of indexed Web pages for a given query, to assess its relevance. This

4nutch.apache.org
5lucene.apache.org/solr
6lucene.apache.org/core

71



number is usually referred to as page counts, and will be denoted as pcq
throughout this report. In our case the number of Solr pages for each
artist are usually around 100, however, as we shall see later, this number
can be affected by including additional terms to the query, thus retrieving
more meaningful values.

• Cross-tabulation analysis: Co-occurrence and cross-tabulation anal-
ysis were discussed thoroughly in the literature survey. Our approach
employs Zadel and Fujinaga’s [4] similarity measure (where C(t) the oc-
currences of the term t and C(t1, t2) the number of co-occurrences of the
terms t1, t2:

S(t1, t2) =
C(t1, t2)

min(C(t1), C(t2))
(5.2)

• Relevance score: Apache Lucene and Solr employ tf ∗ idf to calculate
the query-document similarity as shown in the formula below:

sim(q, d) =
∑
t∈q

tft,q · idft
normq

tft,d · idft
normd

· coordq,d · weightt (5.3)

for a collection D, document d, query q, query term t and:

tft,X =
√
freq(t,X) (5.4)

idft = 1 + log
|D|

freq(t,D)
(5.5)

normq =

√∑
t∈q

tft,q · idft (5.6)

normd =
√
|d| (5.7)

coordd =
|q ∩ d|
|q|

(5.8)

For each artist ai and year yj in Y = {1880, 1881, ..., 2010} we query Solr with
“ai+yj”. However, our initial experiments showed that such a scheme, although
intuitively correct, presents a major flaw. When two or more artists/entities
appear on the same web page accompanied with relevant date information, the
system might mistakenly relate the wrong dates to the wrong artists. This was
a prominent issue in web-pages offering birthdate information for “celebrities”
(e.g. www.born-today.com). To overcome this problem we introduce a proxim-
ity factor to the query; only pages where the word distance d(ai, yj) is smaller
than 300 would be returned. In other words, if the artist name ai appeared more
than 300 words later or earlier than the year yj , then the document pertaining
them would be considered irrelevant.

Our approach assigns a score to each query ai, yj using a modified cross-
tabulation formula:

s∗(ai, yj) =
score(ai, yj)

min(score(ai), score(yj))
(5.9)

72



where:

score(ai, yj) = max1<k<pcai,yj
[sim(“ai + yj”, dk)]× pcai,yj

(5.10)

Intuitively, the score() function corresponds to the product of the page
counts and the maximum relevancy. So instead of simply counting to occur-
rences of a term inside the indexed documents, our method additionally incor-
porates the relevancy factor to weight that value. We employed max instead of
mean relevancy, since the latter fails to amplify important years and returns a
more uniformally-distributed profile.

Now for each ai we create a histogram Hweb of 130 bins and set Hweb(yj) =
s∗(ai, yj) ∀y ∈ Y . However, date information is not always explicitly stated.
For example, it is quite common for an artist that was active during the period
1980-1990, to be considered and identified as an “80’s” artist. Based on this
fact we have identified a set of terms T that semantically correspond to date
information. These are presented in Table 5.2.

Date correspodence Term1 Term2 Term3 Term4 Term5 Term6 Term7
1910-1920 1910s 1910’s tens 10s 10’s jaren 10 jaren tien
1920-1930 1920s 1920’s twenties 20s 20’s jaren 20 jaren twintig
1930-1940 1930s 1930’s thirties 30s 30’s jaren 30 jaren dertig
1940-1950 1940s 1940’s fourties 40s 40’s jaren 40 jaren veertig
1950-1960 1950s 1950’s fifties 50s 50’s jaren 50 jaren vijftig
1960-1970 1960s 1960’s sixties 60s 60’s jaren 60 jaren zestig
1970-1980 1970s 1970’s seventies 70s 70’s jaren 70 jaren zeventig
1980-1990 1980s 1980’s eighties 80s 80’s jaren 80 jaren tachtig
1990-2000 1990s 1990’s nineties 90s 90’s jaren 90 jaren negentig

Table 5.2: Semantic terms and their actual time correspondence.

We query Solr with tuple of the form ai, tj , where tj in T , and then increase
the value of the corresponding bins by s∗(ai, tj)× 0.1. For example if the query
“fifties”+“Bob Scholte” returned a score s′, then:

Hweb(yf ) = Hweb(yf ) + s′ × 0.1,∀y ∈ {1950, 1951, .., 1959} (5.11)

The 0.1 factor corresponds to the uniform distribution of the s′ across the
10 bins. An example of an artist’s final histogram (on top of the Editorial
Metadata histograms) is shown in Figure 2.8.

5.2.5 Post-Processing for Artist Years of Productivity Es-
timation

After the two previous steps, Editorial Metadata information extraction and
Web mining, the system acquired four separate histograms (Hec,Hmb,disc,Hmb,life

and Hweb) for each artist. The question now is how to combine those pieces of
information in a meaningful way. We solve this issue in a three-step function.

Discography Processing

In many cases, it is very likely for the discography data to be incomplete for ap-
parent reasons. Monitoring music sales or archiving music records have emerged
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Figure 5.8: The four histograms (Editorial Metadata and Web derived) for the
artist Bob Scholte (1902-1983). The scoring function nicely amplified the birth
and death date years of the artist.

in the 70’s and early 80’s when music became easily distributed and more com-
mercialized. Today, artists of low popularity may lack fair representation on
MusicBrainz, EchoNest and Last.FM.

Whatever the reason, our method tries to compensate for that fact by the
following process; we create an 1-dimensional kernel k of size 10 with decreasing
values {1, 0.9, .., 0.1}. Then we convolve Hmb,disc with k:

Hmb,disc = Hmb,disc ∗ k (5.12)

This gives us the same effect as Bogdanov’s and Herrera’s method [5] for
determining a records’s authentic epoch. Authentic epoch, according to the
authors, represents the years when the music was firstly recorded, produced
and consumed. Intuitively our process is based on the assumption that the
probability of an undocumented record to have been released, is higher in the
years after the release of documented record. This assumption is debatable,
since nowadays artists tend to release albums and then occupy themselves with
other career related tasks, such as touring and promoting the record. Thus the
probability of releasing a song/recording immediately after the release of an
album is very small. However, for the sake of convenience and without loss of
generality, our method doesn’t follow this assumption.

Histogram Addition

After we process the discography histogram, we create a histogram Hf whose
bin values hold the sum of the the corresponding bins of the normalized Hweb

and Hmb,disc:

Hf (i) =
Hweb(i)

max(Hweb)
+Hmb,disc(i),∀i ∈ 1880, 1881, ..., 2010 (5.13)

Noise Removal Part I

Given that the Hmb,life and Hec are non-zero, and thus contain some infor-
mation, out method decreases the values of those bins in Hf that fall outside
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the life and active periods of the artist in hand. This agrees with our defini-
tion of AYoP that considers an artist active only during his life. Let’s assume
that Hmb,life and Hec contain two values each {begin, end} and {start, end′}
respectively. Noise removal is defined as:

Hf (i) = Hf (i)× cmb,∀i ∈ {begin, begin+ 1, .., end} (5.14)

Hf (i) = Hf (i)× cec,∀i ∈ {start, start+ 1, .., end′} (5.15)

and

Hf (j) = Hf (i)× (1− cmb),∀j ∈ {1880, .., begin−1}∪{end+ 1, .., 2010} (5.16)

Hf (j) = Hf (i)× (1− cec),∀j ∈ {1880, .., start− 1}∪{end′+ 1, .., 2010} (5.17)

Intuitively this corresponds to the process of minimizing the confidence
about the artist’s productive period given his lifespan, active period and our
confidence on these pieces of information. For example, if the system has iden-
tified that the lifespan information corresponds to the correct artist and thus
the confidence is 1, then all the bin values in Hf before his birth and after
his death will be set to 0. The same idea holds for the cases where only the
birthdate is available. Both end and end′ values are set to the year 2010.

Noise Removal Part II

Even after the previous processes, the data inside the lifespan or active period
of an artist contain a considerable amount of noise. The noise removal process
to be discussed, is based on the heuristic that artists cannot have released any
recordings during their early childhood. The exceptions are fairly limited (e.g.
Michael Jackson, Jordy) and thus no loss of generality.

However, as the artist approaches adulthood the probability of being musi-
cally active is getting higher. Based on our intuition we also assume that an
artist achieves his maximum productivity at the ages between 20 and 40 and
then slowly fades away.

This is modelled as an envelope-probability density function where the attack
and decay-sustain are generated by two Gaussian distributions of size 50 and
120 respectively, while the release by a linear function. The coefficients of the
Gaussian window w are computed by the following formula:

w(n) = e−
1
2 (a×

n
N/2

)2 (5.18)

where a = 5 and a = 1.25 for the attack and decay-sustain respectively.
The final productivity pdf W is then:

W (n) = w50(n),∀n ∈ {1, 2, .., 25} (5.19)

W (n) = w120(n+ 35),∀n ∈ {26, .., 80} (5.20)

W (n) = −0.001× x+ 0.09,∀n ∈ {81, .., 90} (5.21)

Before we continue, it should be noted that the envelope’s settings were
arbitrarily chosen, based on our early intuition and findings. It is possible for
other type of envelopes to be used, which model artists’ productivity better.
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Figure 5.9: The probability density function for artist productivity.

Now given the artist’s birth date, as provided by Hmb,life, we multiply Hf

with W , so that the peak of W ’s distribution to coincide with the artist’s 25th
year of life. This is formulated as follows, although the details of traversing W
are omitted:

Hf = Hf ×WT (5.22)

Smooth and Normalize

The final step in the whole process of AYoP estimation is smoothing Hf with
a Gaussian window w5 of size 5 and normalizing it so that its coefficients sum
up to 1:

Hf = Hf ∗ w5 (5.23)

Hf is now our final estimate for AYoP.

Noise Removal for Absent Birth Date Information

We have previously mentioned that obscure and old artists are usually poorly
represented in MusicBrainz, EchoNest and Last.FM. Consequently, it is very
likely for birth date information to be missing. This is a major drawback con-
sidering that both noise removal processes are based on such information.

In order to deal with this problem, we go back to Hweb which optimally
amplifies important years in the life of an artist. We have seen some cases
where sharp peaks perfectly coincide with the birth and death dates of an artist.
The idea is to locate these peaks and pick the one that fits our productivity
probability assumptions.

Our approach relies on an iterative peak finding function fp and the prob-
ability density function W . fp(Hweb) return peaks in Hweb that exceed their
neighbours by at least the value of r, where r an iteratively decreasing func-
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tion starting from r = 1. That scheme ensures that sharpest set of peaks
P = {p1, p2, ..., pd} will be eventually located.

In order to identify which peak corresponds to the true birthdate, our method
computes a set of histograms as such:

Hp
f = Hf ×WT

p ,∀p ∈ P (5.24)

Meaning that the window W is traversed so as its max to coincide with p+25
and then multiplied with Hf . The p with the largest product Hp

f is considered
the birth date estimate. This whole process is based on the assumption that after
a sharp peak corresponding to the birth date, Hweb will follow a distribution
modeled by W .

5.2.6 Editorial Metadata retrieval for Year of Release es-
timation

As previously mentioned, AYoP and YoR functions are based on the same set
of tools. Therefore during the following paragraphs we will only focus on the
elements that differ and omit the rest. Firstly, we shall revisit the goal of YoR
estimation; given the input I = {{a1, Sa1}, {a2, Sa2}, .., {ai, Sai}} where ai ∈ A
an artist name and Sai ∈ S a set song titles corresponding to the ai artist’s
recordings, our aim is to estimate a year value between 1880 and 2010 that
minimizes the distance between the truth and the estimate year of release for
each song in S.

We have already seen that Editorial Metadata offer discography data, with
MusicBrainz being the most sophisticated and complete service. Therefore, sim-
ilar to AYoP we query Editorial Metadata databases with tuples of the form
〈ai, sj〉 and retrieve the discography, lifespan, and active years, while also assign-
ing two confidence values cmb, cec for MusicBrainz and Echonest respectively.

It is now fairly easy to search into the discography of ai for any of the songs
in Sai . If we have a match, the release group is “Single” and the year of release
y is available, then a histogram Hmb,disc of 130 bins for the song in hand is
populated such that Hmb,disc(y) = cmb. Of course, if not all of the conditions
are met, then all bins in the song’s histograms are set to 0.

Figure 5.10: The discography based histogram for the song “Margaretta” by
Bob Scholte.
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5.2.7 Web mining for Year of Release estimation

During this step we query Google with “sj +music” for sj ∈ S and retrieve a set
of 100 URLs for each song denoted G. Bing is queried with “sj” and only the 50
top-ranked URLs are gathered for each song (set B). We retrieve 50 instead of
80 since the data for this task were gathered after 1-8-2012. Eventually B∪G is
computed and the corresponding web-pages are retrieved using Apatche Nutch.
An index is built on top of the harvested sources using Apache Solr.

Histogram Construction

In the case of AYoP, Solr was queried with “ai+yearj”. In contrast for YoR
we perform two set of queries for each tuple 〈ai, sj〉, namely “sj + yeark” and
“sj + ai + yeark” where yeark ∈ {1880, 1881, ..., 2010}. Similar to AYoP, we
additionally employ the term set T and of course the scoring functions 2.9,
2.10.

This results to the generation of two histograms Hweb,s and Hweb,s+a. The
first one represents the frequency/relevancy of the title accompanied by a year
value on the Web. The second represents the frequency/relevancy of the title
accompanied by a year value in addition to the corresponding artist name.

Figure 5.11: The Web-mined derived histograms “Title” and “Tile+Artist” on
top of the discography and Artist estimate histograms for “Havenmuziek” by
August de Laat.

5.2.8 Post-Processing for Year of Release Estimation

For each song sj we have acquired three histograms Hmb,disc, Hweb,s, Hweb,s+a

in addition to the AYoP derived histogram for the corresponding ai, denoted
from now on as Hf,ai

. We are once again faced with the problem of combining
information from these histograms in a meaningful way so as to compute the
optimal YoR estimate.

Our method treats the aforementioned histograms as probability density
functions, although the sum of each histogram’s coefficients is not always 1.
However, our method employs a conical combination or conical sum approach
that assumes that the input vectors correspond to pdfs or mixture components.
More formally, given a finite number of vectors x1, x2, ..., xn in a real vector
space, a conical combination or a conical sum of these vectors is a vector of the
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form:
a1x1 + a2x2 + ...+ anxn, ai ≥ 0 (5.25)

In our case the conical sum HCS of the computed histograms is:

HCS = w1 ×Hweb,s + w2 ×Hweb,s+a + w3 ×Hf,ai
+ w4 ×Hmb,disc (5.26)

with Wv = [w1, w2, w3, w4] the weight vector. The problem is reduced to finding
the optimal Wv. But before we deal with that problem we shall discuss the pre-
processing stage of the histograms.

Smoothing and Normalizing

Similar to AYoP, we convolve Hweb,s, Hweb,s+a with a Gaussian window of size
5. Hf,ai

has been normalized during AYoP, so that max(Hf,ai
) = 1. We could

have normalized the web-mined-derived histograms the same way or such that∑
iHweb,s(i) = 1 and

∑
iHweb,s+a(i) = 1. However, the disadvantages of such

process are obvious; we would be only keeping the relative relations between
the bins and throw away the actual values assigned by the scoring functions 4.9,
4.10. Therefore at this stage, only Gaussian smoothing is applied.

Conical Sum using a Genetic Algorithm

We are now faced with our original problem of calculating the weight vector Wv

that most meaningfully adds the four histograms. Our method employs a genetic
algorithm (GA), that iteratively modifies Wv so that the optimal configuration
is eventually found based on a training set.

Generally in GAs, a population of strings (binary commonly) encodes some
candidate solutions. The algorithm starts from a population of randomly gen-
erated individuals and happens in generations Ngen. At each generation, the
fitness of every individual in the population, usually referred a chromosomes, is
evaluated using a fitness function, while multiple individuals are stochastically
selected from the current population and modified (recombined and randomly
mutated) to form a new population. The new population is then used in the
next iteration/generation of the algorithm. The algorithm terminates when the
maximum number of generations has been reached, or when the fitness function
hasn’t increased for fixed amount of iterations. Pseudo code for this algorithm
is shown below:

1. Choose the initial population of individuals

2. Evaluate the fitness of each individual in that population

3. Repeat on this generation until termination: (Ngen reached.)

1. Evaluate the individual fitness

2. Select the best-fit individuals for reproduction

3. Breed new individuals through crossover and

mutation operations to give birth to offspring

4. Replace population with new individuals

In order to maximize the fitness function, while at the same time avoid stuck-
ing in local maximums, GAs typicaly employ three functions. The crossover
function which aims to “mate” candidates, hoping for better offspring, the mu-
tation function that stochastically inverts bits of the candidates and the eliti-
cism function which finds the best candidate in the population and adds it to
the population of the offspring.
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Discussing GAs in depth exceeds the scope of this report; it is the author’s
belief that the amount of information provided is more than enough to under-
stand the overall process. Details about the GA’s actual configuration will be
discussed later.

Final Estimation

After the summing of the histograms, the system now acquiresHf,s which can be
considered as a probability distribution if we normalize it such that

∑
iHf,s(i) =

1. Our YoR estimate is now as follows:

Y oRest = maxindex,0<i<130(Hf,s(i)) (5.27)

Where maxindex the index with the greatest value. In simpler words the esti-
mate is simply the actual year correspondence of the coefficient with the maxi-
mum value.

5.3 Experiments and Evaluation

5.3.1 Test and training set

There exists no standardized or previously used data set for this kind of task,
therefore we had to build one from the scratch. To this end, we manually
gathered 2323 Dutch song titles accompanied by original release dates, ranging
from the period of 1900 to 1959. Only a subset of 639 titles, corresponding to
7 Dutch artists (see Table 5.3), is used for evaluation due to storage capacity
constraints. From those, a set of 100 randomly selected songs were used as
input for the genetic algorithm. Overall, 26832 documents were downloaded
and indexed for the YoR and 3391 for AYoP including a set of “noise” web-
pages (irrelevant to the artists themselves).

Artist Name
1 August De Laat
2 Bob Scholte
3 Eddy Christiani
4 Kees Pruis
5 Lou Bandy
6 Louis Davids
7 Willy Derby

Table 5.3: The set of Dutch artists in the test set.

5.3.2 Ground Truth

The ground truth for the YoR estimation obviously corresponds the year of
release, associated with song in hand. For AYoP, generating the ground truth
is a more complex procedure. The reason is two-fold: a) we can never be sure
that the data for each particular artist is complete and b) we can never be sure
that the data is correct, since web sources often disagree with regard to release
dates. Point “b” holds for the YoR task also, however we assume that the cases
where YoR is debatable are limited.
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For each artist ai in the test set we create a 130-bin histogram Hgt corre-
sponding to the actual years 1880 to 2010. For each song sj ∈ Sai we modify
the histogram as such:

Hgt(ysj ) = Hgt(ysj ) + 1 (5.28)

where ysj the associated release year of the song sj . In other words, we simply
fill the histogram bins with the counts of release years. Intuitively, we assume
that the artist is more productive in the years where the maximum number
of songs were released. In many cases the supposition does not hold, since an
album A may contain 15 songs and 60 minutes of music and an album B 10
songs and 70 minutes of music. However for the sake of convenience we assume
that all songs tend to be of the same length.

In order to deal with point “a”, Hgt is smoothed using a Gaussian window
of size 5. Therefore, we intuitively assume that given a release year y, it is
very likely for other releases to have followed or came before y. Eventually we
normalize the histogram so that max(Hgt) = 1. Examples of ground truth for
AYoP are showing in Figures 5.12, 5.13.

Figure 5.12: The AYoP ground truth for August De Laat (1882-1966).

Figure 5.13: The AYoP ground truth for Bob Scholte (1902-1983).
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5.3.3 Evaluation Measures

Given N the number of songs in S, Y oR∗sj the true release date of the song sj
and Y oRest

sj the estimate. then we define as MeanError the following:

MeanError =

∑
sj∈S |Y oR

est
sj − Y oR

∗
sj |

N
(5.29)

“Accuracy” for a year-window of size x is defined by the following formula:

Accuracyx =

∑
sj∈S fx(Y oRest

sj , Y oR
∗
sj )

N
(5.30)

where

fx(t, e) =

{
1 for |t− e| ≤ x
0 for |t− e| > x

(5.31)

Function f considers as “hits” all the estimates that fall within a certain window
around the truth value. For example if the target year is 1950, for window of
size 5, every estimate between 1945 and 1955 would be considered as a hit.
Consequently Accuracyx is just the mean value of f for all the songs in S.

The aforementioned measures are employed for the YoR evaluation only. For
AYoP the idea is to examine the overlap between the ground truth and estimate
distributions. This is achieved by using measures such as precision, recall and
their harmonic mean usually denoted F-measure:

precision =
tp

tp+ fp
(5.32)

recall =
tp

tp+ fn
(5.33)

F = 2× precision× recall
precision+ recall

(5.34)

where tp, tn, fp, fn the number of true positives, true negative, false positives
and false negatives respectively.

5.3.4 Training Phase

In order to evaluate the optimal Wv set of weights for the conical sum of the
histograms (see 2.8.2), we run a genetic algorithm on the training set of 100
titles. The details of the genetic algorithm are presented in Table 5.4

The best Wv was found after 51 iterations and it is presented in Table 5.5.
It is worth discussing the effect and meaning of the weight vector Wv, since our
initial experiments have shown that slight modifications to the weights affect
accuracy at large. But what do the weights tell us about the usefulness of the
gathered information? Firstly, the small weight for the artist histogram Hf,ai

,
exposes to us its futility; given that the other information is present, the artitst’s
productivity distribution cannot provide us with an accurate YoR estimation.
However, when the rest of the histograms are empty, Hf,ai is our best choice.

Now, assuming that Hweb,s and Hweb,s+a roughly correspond to probability
density functions P (s) and P (s, a) respectively, it is sensible that w2 > w1. This
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Factor Value
Initial population size 20

Crossover Fraction 0.8
Elite Count 2-0.05*population
Generations 100

Migration Fraction 0.2
Migration Interval 20

Lower bounds [0,0,0]
Upper bounds [1,1,1]

Maximization function

∑
1≤x≤5 Accuracyx

5

Table 5.4: Genetic algorithm setup. Details about each variable’s meaning can
be found at www.mathworks.nl/help/toolbox/gads/gaoptimset.html

is because Hweb,s+a models better the co-occurrence of both the song title and
the artist name.

Finally, the weight w4 of the MusicBrainz derived histogram, reveals to us
that MusicBrainz can provide valid information but still not as valuable as
Hweb,s+a.

Weights w1 w2 w3 w4

Values 0.538 0.875 0.08 0.61

Table 5.5: Found weights for the conical sum, using a genetic algorithm on the
training set.

To sum up, given that the genetic algorithm locates a local and not the
global maximum, while also that the input histograms are not normalized in
any way, the aforementioned weight-meanings may lack validity. However, our
intuition agrees with the weightings and therefore assumed optimal.

5.3.5 Results

Artist Years of Productivity Results

The results for the AYoP task are presented in Table 5.6. At first glance,
given that we are more interested in high F-measure values, the numbers may
seem disappointing. However, precision, recall and F-measure fail to capture an
important aspect of the method’s results. As we shall later, by studying each
individual artist case, our approach always agrees with the ground truth with
regard to the date boundaries of the productivity. In other words placing the
artist into a time context is very successful. The distribution of productivity
inside that context, is what draws the numbers down. And since the ground
truth distribution depends on manually gathered data, it is safe to state that
either a modified or a completely new evaluation metric should be employed.
However, for the purposes of this experiment, precision, recall and F-measure
will be considered as the optimal measures.

We shall now discuss each individual artist case, since the number of artists is
small and valuable conclusions can be derived. Starting with “August De Laat”
(see Figure 5.14), the results show the lowest precision values. The artist is well
placed into the time context but our approach assumes large productivity from
1920 to 1933. The reason for this misbehavior can be twofold; a) the ground
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Artist Name Precision Recall F-measure
1 August De Laat 0.35692 0.94457 0.51808
2 Bob Scholte 0.66435 0.85348 0.74713
3 Eddy Christiani 0.53249 0.91053 0.67199
4 Kees Pruis 0.70479 0.78344 0.74204
5 Lou Bandy 0.54522 0.83328 0.65916
6 Louis Davids 0.37065 0.89438 0.5241
7 Willy Derby 0.75824 0.93309 0.83662

Mean 0.56181 0.87897 0.6713

Table 5.6: Precision, recall and F-measure for the seven artists in the test set.

Figure 5.14: (Top)The four input histograms, (bottom) the ground truth against
the estimate AYoP for August de Laat.

truth data for August De Laat inside that certain period is disproportionally
low compared to the data around 1935, and b) our method is truly incorrect.
We believe that point a) has high probability of being true, which faces us with
the problem of “ground truth normalization”; a large amount of acquired data
for a certain period will attenuate the AYoP values for years with incomplete
data. Solving this issue exceeds the scope of this study, so for now we will
assume that point b) is valid.

The “Bob Scholte” case (see Figure 5.15) presents some of the best results
in the test set. Firstly it should be pointed out that the “Active period” and
“Lifespan” information coincide ; an incorrect assertion by default. The active
period of an artist should begin immediately after his first release or concert.
However, this error does not affect the results. The final AYoP estimate not
only places Bob Scholte into the correct time context, but also perfectly models
his productivity. An interesting remark: the peak of the Web input histogram
at the year 1916 corresponds to the beginning of Scholte’s career.

The “Eddy Christiani” case (see Figure 5.16) shows great results in terms of
time-context placing and productivity modelling. However, our method assumes
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Figure 5.15: (Top)The four input histograms, (bottom) the ground truth against
the estimate AYoP for Bob Scholte.

that even after 1964 the artist was still active. This assertion is actually correct
(see artist’s rateyourmusic.com’s profile), but since our ground truth comprises
of songs up until 1959 a mismatch occurs. Future implementations of the ground
truth should include the complete discography of Eddy Christiani.

The “Kees Pruis” case shows remarkable results and therefore it will not be
discussed in detail. In contrast, it is worth examining the case of “Lou Bandy”
(1890-1959), where no data about his lifespan or active years were available. In
that case our method tried to estimate the birthdate. Then multiplication with
the window productivity W , later in the procedure, cleared some of the noise
right after the artist’s birth and death. Eventually, the final AYoP estimate was
close to the ground truth both in terms of time-context placing and distribution
modelling.

The same holds for the “Louis Davids” (1883-1939) case (see Figure 5.19).
However, the window W proved to be unfit for that particular artist, given
that the artist died in 1939. Consequently, we are faced with the problem of
death-date absence, which is more difficult to solve than the birth date. As
it becomes obvious, from all the previous cases and histograms, the birth date
peaks are more easily distinguishable, since the neighboring years do not contain
any significant information. This doesn’t hold for death dates unless the artist
passed away in years of low productivity. This whole issue will be addressed in
future implementations of our method.

Finally, the case of “Willy Derby” shows great results and therefore is not
worth discussing in detail.

Song Year of Release Results

Table 5.7 and Figure 5.21 present the Accuracyx for windows ranging from 1
to 10. The Mean Error is 2.892 years. As a general evaluation measure we will
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Figure 5.16: (Top)The four input histograms, (bottom) the ground truth against
the estimate AYoP for Eddy Christiani.

consider Accuracy5, assuming that this level of detail (or flexibility) is accept-
able for artists of the era 1900-1959. However, in a more general scenario, where
later artists are considered, a higher level of granularity should be employed.

Therefore, for a 5-year window around 86% of the cases are identified as
hits. This high number, in conjunction with the small Mean Error, delineate our
method’s strength. However, as we shrink the window the accuracy degrades.
For example, a 10% decrease is observed when moving from a 5 to a 2-year
window, although and accuracy of 76% is still considered high.

Window Size 1 2 3 4 5
Accuracy 0.61972 0.759 0.79499 0.83255 0.86228

Window Size 6 7 8 9 10
Accuracy 0.8748 0.89202 0.91862 0.9374 0.94992

Table 5.7: Accuracy for window size ranging from 1 to 10.

It is worth examining two different representations of the YoR results. Firstly,
Figure 5.22 presents the ground truth (axis X) and estimate (axis Y) for each
song in the test set. For a perfect algorithm, each song sj with coordinates
(xj , yj) should lie on the diagonal. In addition, the regression line (shown in
blue) should also coincide with the diagonal. Figure 5.22 additionally depicts
the 5 and 10-year window margins. This representation nicely emphasizes the
strength of our method; regression line matches nicely the diagonal and the
truth-estimate points are distributed along the diagonal with small error.

Figure 5.23 in addition represents the year distribution of the ground truth
and estimates. The important thing to notice is the non-uniformal distribution
of the test set; most of the date values fall within 1930-1940, which of course
slightly reduces the validity of the results. However, we believe that our system
can be generalized easily, since no preference towards the 1930-1940 period was
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Figure 5.17: (Top)The four input histograms, (bottom) the ground truth against
the estimate AYoP for Kees Pruis.

modelled. Whatever the case, future evaluations should include earlier and later
dates for the sake of completeness.

It should be mentioned that examples of input and estimate histograms can
be found in Appendix.

5.3.6 Discussion and Conclusions

We presented a simple system for determining an artist’s era of productivity
and a song’s year of release. Our approach is based on the exploitation of Edi-
torial Metadata from sources such as MusicBrainz and EchoNest, while also on
Web harvested data. The employment of simple heuristics, although debatable,
shows room for future improvement and research. The evaluation illuminates
the strength of the proposed method for YoR estimation; around 86% of the
estimates fall within a ±5-year window, with a mean error of 2.9 years.

The results for determining the artist’s productivity are less impressive and
the reason is twofold: a) no meaningful evaluation measures were found, b) the
ground truth generation assumes complete knowledge of the artist’s discogra-
phy, which is not always the case. However, the results show great potential
since artists are well placed into time, and when the discography is complete,
modelling the productivity distribution is accurate.

Future implementation will encapsulate larger number of artists, from vary-
ing countries and periods of time. The usage of heuristics will be limited by
the employment of a well-researched productivity window, that can actually
correspond to real life data. The genetic algorithm should be also replaced
with a more generalized scheme. Different querying and scoring functions for
histogram construction can also be used to improve noise reduction.

To summarise, determining release dates for songs and productivity distri-
butions for artists, is a new MIR task with lots of potential for research and
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Figure 5.18: (Top)The four input histograms, (bottom) the ground truth against
the estimate AYoP for Lou Bandy.

improvement.
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Figure 5.19: (Top)The four input histograms, (bottom) the ground truth against
the estimate AYoP for Louis Davids.

Figure 5.20: (Top)The four input histograms, (bottom) the ground truth against
the estimate AYoP for Willy Derby.
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Figure 5.21: Accuracy values for window sizes ranging from 1 to 10.
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Figure 5.22: The (truth, estimate) couples represented as points on the Carte-
sian space. A fitted regression line is shown in blue. The dotted red lines
represent the 5 and 10-size year windows.
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Figure 5.23: The distribution of the truth and estimate values for the whole
test set.
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5.4 Appendix

A set of 10 randomly selected examples of input and output histograms for YoR
estimation.
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Figure 5.24: (Top)The four input histograms, (bottom) the ground truth against
the estimate.

Figure 5.25: (Top)The four input histograms, (bottom) the ground truth against
the estimate.
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Figure 5.26: (Top)The four input histograms, (bottom) the ground truth against
the estimate.

Figure 5.27: (Top)The four input histograms, (bottom) the ground truth against
the estimate.
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Figure 5.28: (Top)The four input histograms, (bottom) the ground truth against
the estimate.

Figure 5.29: (Top)The four input histograms, (bottom) the ground truth against
the estimate.
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Figure 5.30: (Top)The four input histograms, (bottom) the ground truth against
the estimate.

Figure 5.31: (Top)The four input histograms, (bottom) the ground truth against
the estimate.
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Figure 5.32: (Top)The four input histograms, (bottom) the ground truth against
the estimate.

Figure 5.33: (Top)The four input histograms, (bottom) the ground truth against
the estimate.
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Chapter 6

Data Enrichment: Country
of Origin Determination

An artist’s country of origin is a substantial piece of information that usualy
correlates to his influences and consequently to his style and similarities. The
importance of such data becomes more prominent when considering pre-50’s
eras, when communicating and sharing music outside a country’s boundaries
was much harder than today. Based on these observations, this report presents
a simple method for country of origin determination using editorial metadata
and web mining techniques. Evaluating the method on a standardized test-set
shows almost 9% higher accuracy than the state of the art.

6.1 Introduction

Similar to the problem of placing music entities in time, country of origin deter-
mination allows placing artists in a semantic context. The importance of such
a procedure is not apparent for modern music, since currently the distribution
of music may exceed a country’s boundaries. For instance, people from Turkey
or India can be exposed to American music on the same amount as their own.
Additionally, searching for artists from less popular countries can be an easy
task as a result of the world wide web.

However, music distribution before the existence of the internet and music’s
commercialization was almost non-existent. Therefore the passing of influences
between remote countries was rather difficult. For example, Greek music before
the 50’s was not influenced by USA, as opposed to early 60’s and on. Given
these facts, it is safe to state that the country of origin constitutes one of the
fundamental factors affecting a pre-50’s artist’s style and similarities.

6.1.1 Problem Definition

Following Schedl’s work [2], we define as “country of origin” the country in
which either the performer or musician was born or the band was founded. This
definition leads to interesting results considering that band members might have
followed a solo career prior the creation or after the disbandment of the band.
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The problem of correctly determining the country of origin could have been
obsolete if metadata hubs offered complete and reliable information. However,
as we have seen before, old and obscure artists are poorly represented in such
services. Incorporating the geographical location shows us that artists from
non-popular, non-western countries are also misrepresented.

Given that the Web contains vast amount of also non-reliable information,
the problem is transformed in finding the optimal way of combining the two
sources in a meaningful way.

Formulating CoO Determination

Given a tuple of the form 〈ai, cai〉 where ai is an artist and cai is his country
of origin, we want to find a function f such that f(ai, C) = cai , where C =
{c1, c2, .., cj} a set of countries.

6.2 Method Description

Country of origin determination and time placement rely almost on the same
methods. Therefore we will omit any information that has been provided in
the previous parts of this thesis. For the sake of completeness we will give brief
descriptions of the previously explained notions, however the reader should be
forwarded to the initial, corresponding parts for further details.

6.2.1 Sources

Similar to the task of time placement, our system exploits two distinct sources:
Music Information Services (MIS) and Search Engines. MIS correspond to
(semi) commercial and non-academic online systems and services that utilize or
provide technologies related to music databases. Typically, these are Last.FM1,
EchoNest2 and MusicBrainz3, however only the latter is employed for CoO de-
termination.

MusicBrainz

A sample artist-search response is shown in Figure 6.1. It is obvious that besides
the name, lifespan and disambiguation, MusicBrainz provides the country of
origin of the artist. This piece of information is really valuable in our context.
However, once again given name ambiguities, it is possible for the top-ranked
artist to not correspond to the query. Relying on the MusicBrainz, internal
scoring function is not an option, since the top artist is always scored 100.
Dealing with that issue will be discussed thoroughly later. It should be noted
that EchoNest and Last.fm might also offer such kind of information but not so
explicitly. Therefore only MusicBrainz is employed by our method.

1www.last.fm
2the.echonest.com
3www.musicbrainz.org
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Figure 6.1: A sample MusicBrainz response for an artist-search query.

6.2.2 General Framework

Given a string representing an artist name ai, the system’s goal is to correctly
determine his corresponding country of origin, by just using that string. Similar
to the method for time-context placement, the fundamental procedure comprises
of three major components:

1. Editorial Metadata retrieval

2. Web Mining

3. Post-processing and estimation

The first step optimally returns a country estimate cmb accompanied by a
score value scoremb, while the second returns ranked list of countries Cweb =
{{c1, score1}, {c2, score2}, .., {cn, scoren}}. During the thirds step those two
pieces of information are combined, in order to compute the final country of
origin estimate.

6.2.3 Editorial Metadata Retrieval for Country of Origin
Determination

The first step in the process is to match ai to MusicBrainz, in order to extract
the 〈country〉 data. As we have previously seen, MusicBrainz returns a ranked
list for search-artist queries. The scores of the list are normalized such that the
top ranked artist gets a max score of 100. Optimally, retrieving only the top
ranked artist would suffice. However, the MusicBrainz internal name-matching
algorithm does not always agree with human intuition. For instance, given the
query “Bob Scholten” (which includes a typo), MusicBrainz returns “Grietje
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Scholten” at the top and “Bob Scholte” way below with a score of 61 (see
Figure 6.2). This fact suggests that the last name is more important; although
in terms of complete string distance, “Bob Scholte” is closer to “Bob Scholten”
than “Grietje Scholten”.

Figure 6.2: A returned list for the query “Bob Scholten”.

The artist query “Grigor Jeghiasaryan”, delineates more vividly the type of
erros that may arise using MusicBrainz for name matching. The returned artist
names do not agree at all with the query. As a result, the 〈country〉 field, for
any of the top ranked artists, would not be correct.

Our method deals with both aforementioned issues by firstly retrieving all
the artists with a score higher than 50. Then, for each artist name, his aliases
are gathered and permuted. Each permutation relies on the process of swapping
the word order of the alias string. For example given the alias “Willy Derby”,
its permutations would be {“Derby Willy”}. It is obvious that the number of
possible permutations grows exponentially as the number of words in a name
increases. Finally, for each alias and its permutations, a string similarity with
regard to the query is computed. The similarity function is based on PHP’s
similar text function, which is described in [1]. Eventually, the maximum of all
similarities is considered the confidence value for that artist. For instance, in the
previous example “Gerod Grigor” would yield a score of 0.58064, and therefore
our confidence that Grigor Jeghiasaryan’s country of origin is the same as Gerod
Grigor’s would be 0.58064.

Figure 6.3: A returned list for the query “Grigor Jeghiasaryan”.

6.2.4 Web Mining for Country of Origin Determination

This step of the process aims at retrieving all possible web-pages related to an
artist ai and then exploiting them to determine his country of origin. Similar
to the time context placement method, we employ the Google Search and Bing
API’s for retrieving URLs and Apache Nutch for harvesting their content.

Google is queried with string of the form“ai + music”, Bing only with “ai”
while the top 100 and 50 URLs are gathered respectively. After harvesting the
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URLs’ union for all artists, the gathered web-pages are indexed using Apache
Solr. The resulting index is now considered as the input for any of the procedures
that will be discussed later.

6.2.5 Generating Country Ranked-List

In order to generate a list containing country name with corresponding scores for
each artist, we employ two previously-encountered tools: a) Page counts which
correspond to the number of returned indexed Web pages for a given query and
b) Solr’s relevance score which employs a variation of tf ∗ idf to calculate the
query-document similarity sim(q, d).

For each artist ai and year cj in C we query Solr with “ai + cj + music”.
However, we also introduce a proximity factor of 50, meaning that if the artist
name appears more than 50 words later or earlier than the country cj , then the
document pertaining them would be considered irrelevant. Our method assigns
a score to each query ai, cj using the following two formulas:

s∗(ai, cj) = mean1<k<pcai,cj
[sim(“ai + cj”, dk)]× pcai,cj (6.1)

and

s∗(ai, cj) = pcai,cj (6.2)

Intuitively, the first s∗() function corresponds to the product of the page
counts and the mean relevancy, while the second one to just the page counts.

However, following Govaerts and Schedl work [2, 3], querying with only
country names has proven inadequate. This relies mostly on the fact that stating
an artist’s origin on the Web is not always explicit. For example, it is quite
common to say “Queen is a British band” rather than “Queen is a band from
UK”. Therefore both researchers have employed demonyms and synonyms,
although the distinction between them is not very apparent. Our method querys
Solr with “ai+d

j
k” where djk ∈ Dcj and Dcj the set of demonyms/synonyms4

for that particular country. The country’s final score is then computed using
two different formulas:

score(ai, cj) = s∗(ai, cj) +
∑

dj
k∈D

cj

s∗(ai, d
j
k) (6.3)

and

score(ai, cj) = s∗(ai, cj) +

∑
dj
k∈D

cj s
∗(ai, d

j
k)

|Dcj |
(6.4)

Therefore, (6.3) simply aggregates the scores of each demonym while (6.4) takes
their mean.

6.2.6 Post-processing and Estimation

After the previous steps, the system has acquired a country estimate cmb ac-
companied by a score value scoremb, and a ranked list of countries Cweb =
{{c1, score1}, {c2, score2}, .., {cn, scoren}}. Before we merge those two, we first

4www.cp.jku.at/-people/schedl/music/countries syn.txt
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normalize the latter so that its maximum score is 1. We then find the country
in the ranked list that corresponds to cmb and increase its score by scoremb.
The country with the highest score is considered the artist’s country of origin.

6.3 Experiments and Evaluation

6.3.1 Test Collection and Evaluation Measures

The problem of determining the country of origin has been addressed by both
Govaerts and Schedl. However, only the latter offers a freely available test set. It
contains 578 artists from 69 countries, gathered from sources such as Wikipedia,
Last.fm and Allmusic.com.

Schedl employs the measures of precision, recall and F-measure. Recall, in
our context of use, denotes the percentage of artists for which a country of origin
could be determined. However, in both our method and Schedl’s, recall is always
100% and therefore, calculating the F-measure is futile. Precision constitutes
the main measure of evaluating our method.

6.3.2 Results

In order to examine our method’s strength we determine the country of origin
using three approaches: a) Web information only, b) MusicBrainz information
only and c) the proposed method of fusing both with demonyms score aggrega-
tion(sum) and mean (avg). We also experimented with the two scoring functions
5.9, 5.10 while also with the exclusion of terms such as “tour”. The latter is
based on the assumption that many country names appear along with artists in
documents containing information about the artist’s tour.

Method Scoring Demonyms score Excluding terms Precision
Web 6.1 sum - 0.6130

MusicBrainz - - - 0.5355
Web+MusicBrainz 6.1 sum - 0.7833
Web+MusicBrainz 6.2 sum - 0.7573
Web+MusicBrainz 6.1 avg - 0.8024
Web+MusicBrainz 6.1 avg tour 0.7920

Table 6.1: Precision values for the different experimental configurations.

It becomes obvious that the fusion of Web mined and MusicBrainz data
yields the highest performance. The precision of the best configuration is ac-
tually almost 8% higher than Schedl’s best, which delineates out method’s
strength. However, since Schedl’s approach employs only Web mining tech-
niques, its superiority as compared to ours is obvious. In other words, if only
the Web techniques were compared, our method would have been ranked second.
Taking this a step further, if our method employed Sched’s relevancy function,
then the fusion of techniques might have yielded much higher precision.

6.3.3 Discussion and Conclusions

We presented a simple method for country of origin determination, that employs
a fusion of editorial metadata and Web mining techniques. The evaluation on
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a standardized test collection showed that our method performs significantly
better than the state of the art. However, there is room for further improve-
ment since our Web mining procedure is inferior to Schedl’s. Therefore, future
research will investigate the integration of more sophisticated relevancy func-
tions. To summarize, our method’s contribution relies on the fusion of sources
which proves that the whole is better than the parts it pertains.
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Chapter 7

Data Enrichment: Genre
Estimation

Genre constitutes the most fundamental classification feature for music entities
and especially artists. A simple visit on the Web would show vividly that most
of today’s music recommendation systems base their services on the stylistic
information about artists. Even though some musicologists and music purists
would argue regarding most of genre-related factors (eg. groups, sub-genres,
relation to reality), it remains a fact genre is a valuable piece of information.
This chapter of the thesis describes our approach not only in terms of tools but
also in terms of formulating the problem itself.

7.1 Introduction

Genre-based artist classification and genre estimation are topics well studied
inside the audio domain. Describing the published methodologies exceeds the
scope and main interest of this study, however it is worth mentioning the related
MIREX competition. Music Information Retrieval Evaluation eXchange[2], is
an an annual event where various MIR algorithms are evaluated and compared
in a series of research domains including genre classification. Its importance,
in our context, relies on the publicly available training-set (or ground truth),
which includes audio tracks accompanied by genre tags (eg. “rock”, “pop”).
By going through the audio, it becomes obvious that tags often fail to capture
the stylistic variations of a song. Music can be both “pop” and “rock, or even
“jazz” and “electronic”.

Genre estimation based on metadata is a relatively new field. We have pre-
sented certain approaches in the literature survey that employ tools ranging
from community metadata to social media. Now, most of the published evalu-
ations employ a ground truth set that is either publicly available or compiled
for the particular problem in hand. In an ideal situation the public, well doc-
umented benchmarks would suffice for fair evaluation, however certain issues
arise:

• Genre tags, across different ground-truth sets, are inconsistent with each
other. This makes perfect sense considering the lack of a universal genre-
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measure or scale. For example, what is it that makes a band “rock”
instead of “pop”? Even though each individual has its own internal genre
classification function, it is a fact that most times they don’t agree with
each other.

• Artists and songs cannot be represented by just a single tag even if it
contains more than one term (eg. “alternative rock”).

• The orthogonality of genres is debatable. For example, how is “rock”
orthogonal to “alternative”, or “pop” orthogonal to“rock”?

Based on these observations, we believe that genre estimation has an ill-
posed problem definition. Ground truth sets capture just one of the possible
perspectives. Genre terms on the other hand are confusing while also many
times overlapping with each other. Therefore, increasing the genre classification
accuracy of any state-of-the-art methods, is just a matter of over-fitting to the
particular problem and its manifestations.

On top of that, it is worth pointing out the inconsistency of genre terms
throughout time. In other words, the perception of a term in the current cultural
context may disagree with its perception 50 years ago. For example, the music
artist Jack Payne (1899 - 1969) is considered a “dance” artist of the “British
dance band” era. Does the “dance” term of that era correspond to our current
perception? Certainly not, therefore each genre estimation method should take
that factor into account.

Genre definition In our context, genre denotes to a set of features, corre-
sponding to typical genre terms. In other words, genre is represented as a profile
that encodes the relation of an artist to each particular style. To formulate this
a bit more, we denote as G a set of genre terms e.g. “rock”, “pop”, “jazz” and
Hai the genre profile for each artist ai, such that:∑

g∈G
Hai(g) = 1 (7.1)

An example of a genre-profile, which we will call just profile from now on, is
shown in Figure 7.1.

Figure 7.1: An example of a genre-profile.
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7.2 Method Description

Similar to time placement and country of origin determination, genre estima-
tion relies on editorial metadata and web-mining techniques. Therefore, once
again we will be omitting any information previously provided, and focus on
the problem in hand.

7.2.1 Sources

Similar to the previous tasks, our method uses Music Information Systems and
Search Engines. The latter correspond to Google’s and Bing’s search API, while
the first to MusicBrainz and Last.fm.

MusicBrainz Figure 7.2 shows an XML sample response for a MusicBrainz
artist-search query. Clearly, no genre information is explicitly provided. How-
ever, a list of user tags is present. Tags are not picked from a pre-defined pool,
but they are rather free-text. They are also accompanied by a number corre-
sponding to counts. In our example, the most popular tag for the band “Metal-
lica” is “thrash metal”, which actually provides some kind of genre-information.
However, since we are dealing with free-text tags, not all of them are genre-
related or even marked by good intentions (see tag “douchebag metal”).

Last.fm Last.fm’s API, similar to MusicBrainz, does not provide genre - in-
formation but offers the query “artist.getTopTags”, which returns a list of the
top user-defined tags for the artist in hand. An example is shown in Figure 7.3.
By examining the XML response it becomes apparent that last.fm, in contrast
to MusicBrainz, normalizes the tag counts. Therefore for the artist “Metallica”
the top tag is “trash metal”, although the precise number of users who tagged
Metallica as such is unknown.

7.2.2 General Framework

Given a string representing an artist name ai, the system’s goal is to estimate
his genre profile, simply by using that string. Similar to the previous methods,
the general procedure comprises of three major components:

1. Editorial Metadata retrieval

2. Web Mining

3. Post-processing and estimation

The first two steps optimally return profiles of the form:

Hai
= {{genre1, score1}, {genre2, score2}, .., {genren, scoren}}. (7.2)

During the third step those two pieces of information are fused, for the final
profile to be computed.
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Figure 7.2: An example of a MusicBrainz artist-search response.

7.2.3 Genres and Related Terms

Before we go deep into the method’s details, we present our view on the division
of genres. First of all, we consider intra-genre divisions useless, at least in
out context. Considering that we are dealing with massive amount of genre-
varying artists, a separation of jazz into “jazz dixielan” and “jazz post-bop” is
meaningless.

Our genre terms are partially derived from the CODAICH test set [1]. CO-
DAICH contains 15 coarse genre categories, which are subdivided to even more
parts. The genre breakdown is shown below.

Alternative Pop / Rock

Blues - Contemporary Blues

Blues - Country Blues

Blues - Urban Blues

Classical - 20th Century Classical

Classical - Baroque

Classical - Classical

Classical - Renaissance & Med.

Classical - Romantic

Country

Dance Pop

Electronica

Hip Hop / Rap

Instrumental Pop

Jazz - Acid Jazz

Jazz - Avant-Garde Jazz

Jazz - Bebop

Jazz - Cool Jazz

Jazz - Dixieland
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Jazz - Hard Bop

Jazz - Latin Jazz

Jazz - Post-Bop

Jazz - Soul Jazz

Jazz - Swing

Modern Folk - Alternative Folk

Modern Folk - Singer / Songwriter

R&B - Contemporary R&B 285

R&B - Funk

R&B - Gospel

R&B - Rock & Roll

R&B - Soul

Reggae

Rock - Alternative Metal / Punk

Rock - Classic Rock

Rock - Metal

Rock - Roots Rock

Spoken

World - African

World - Americas

World - Arabic

World - Asian

World - Calypso

World - Celtic

World - Chanson

World - Cuban

World - European

World - Flamenco

World - Fusion

World - Gypsy

World - Indian

World - Klezmer

World - Latin American

World - Mixed Traditional

World - Tango

World - U.S. Traditional

Figure 7.3: An example of a Last.fm response for the query artist.getTopTags.

From those, our approach keeps only the high level categories. Based on
our intuition the coarse categories were modified and are as follows: alternative,
pop, rock, blues, classical, electronica & dance, hip-hop & rap, jazz, folk, R &
B, funk & soul, reggae, metal, punk, world music.

As we shall see later, it is quite common for genres categories to not explicitly
appear in web-documents or tags. For example, it is uncommon for the term
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Genre Terms
Alternative brit-pop, british pop, alternative pop, indie,

britpop, contemporary pop, alternative dance, alternative rock
pop ballad, candy-pop, teen pop, pop hit, dance pop, AM pop
rock hard rock, rock & roll, rock ’n’ roll, british psychedelia

psychedelic, garage, blues-rock, surf
blues contemporary blues, country blues, urban blues,

modern electric blues, soul-blues, memphis blues, early blues, early r&b
classical baroque, renaissance, medieval, romantic

film score, ensemble, orchestra, conductor, winds, strings,
soprano, tenor, ballet

electronic & dance club, trance, progressive trance, electronic
disco, house, acid house, techno, synths, big beat, triip-hop

dance, synthesizer, drum beat
hip-hop & rap hip hop, rap, east cost rap, west coast rap

hardcore rap, pop rap, gangsta rap
jazz acid jazz, avant-garde jazz, bebop, dixieland, hard bop

latin jazz, post-bop, soul jazz, swing, trumpet jazz
modal jazz, crossover jazz, fusion, guitar jazz

folk modern folk, celtic folk, irish folk, traditional irish folk
contemporary celtic, country music, bluegrass, folk-rock

folk-pop
R&B r’n’b, rhythm and blues, r and b, contemporary r&b

funk & soul soul, psychedelic soul, chicago soul, blaxploitation
uptown soul, funk metal, punk-funk

reggae political reggae, jamaica, roots reggae, dub, ragga
rocksteady, soca

metal heavy metal, death metal, progressive metal, gothic metal
trash metal, doom metal, power metal, riff, lead guitar

blastbeat, black metal
punk hardcore punk, punk/new wave, L.A. punk, new york punk

british punk, ska, oi!, power-pop, straight edge
world music ethnic, african, asia, calypson, celtic, chanson, cuban

gypsy, latin, tango, flamenco

Table 7.1: Coarse genres and their related terms. We assume that the latter,
when appearing inside a document, highly correlate to the coarse genre.

“world music” to appear in an artist’s biography. It is rather more probable
that term “ethnic” or “latin” to appear instead. Based on this observation we
have identified certain terms, that may appear in a document or tag, and are
highly related to the genres themselves. These are presented in Table 7.1.

The terms are a concatenation of CODAICH’s sub-genres and AllMusic’s
genre divisions1. By studying the table, it becomes clear that certain terms
appear in more that one genres. For example the term “power-pop” contributes
to both pop and punk. This is acceptable in our context, since we assume no
orthogonality between genres.

7.2.4 Editorial Metadata Retrieval for Genre Estimation

The first step of the whole process is to generate a genre-profile for each artist,
based on the tags of MusicBrainz and Last.fm. In order to do that we first
have to ensure that the returned tags correspond to the correct artists. This
is achieved by using the same procedure as described in 5.2.3. The outcome of

1http://www.allmusic.com/
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that function is two values cmb and clast representing our confidence that the
artist returned and the query-artist are the same (for MusicBrainz and Last.fm
respectively). For each artist we merge the corresponding tag lists, while first
ensuring that the MusicBrainz one is normalized, similar to Last.fm.

Now, we create an empty genre profile for each artists e.g:

Hai
= {{alternative, 0}, {pop, 0}, ..., {worldmusic, 0}} (7.3)

For each tag t ∈ T we check whether each of the genre terms g ∈ G appear
inside. If so, then the corresponding genre coefficient is updated as follows:

Hai
(genre) = Hai

(genre) + value(t)× c (7.4)

where value(t) the normalized tag counts, and c the confidence value (either
cmb or clast). The whole function is represented in Figure 7.4.

Figure 7.4: An example of profile updating using tags. The genre term “folk”
appers in the tag “old folk” therefore the “folk” coefficient of the artists profile
is increased.

7.2.5 Web Mining for Genre Estimation

For each artist ai ∈ A we query Google with the scheme “ai+music” and retrieve
the 100 top-ranked URLs, denoted as set G. We query Bing with only ai, and
retrieve a set B of 50 URLs per artist. We later compute Useed = B ∪ G and
retrieve the web-pages in Useed using the Apache Nutch web crawler. Once
again an index is built using Apache Solr.

The next step in the process is to calculate genre-histograms for each artist
based on the indexed data. We aim at generating a distribution that would
best model the artist’s genre-variations as they are documented on the Web.
We perform that by employing the same set of tools as in the previous tasks:
page counts, co-occurrence analysis (or cross-tabulation analysis) and tf ∗ idf -
relevance-scoring as implemented by Lucene.

For each artist ai and genre term gj ∈ G we query Solr with “ai + gj”, while
also introducing a proximity factor of 200 (only pages where the word distance
d(ai, yj) is smaller than 200 are returned).
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Our approach assigns a score to each query ai, gj using the following cross-
tabulation formula:

s∗(ai, gj) = (
score(ai, gj)

score(ai)
+
score(ai, gj)

score(gj)
)× 0.5 (7.5)

where:

score(ai, gj) =

∑
1<k<pcai,gj

sim(“ai + gj”, dk)

pcai,gj

× pcai,gj (7.6)

Intuitively, the score() function corresponds to the product of the page
counts and the mean relevancy of the returned documents. Eventually, the
genre profile is computed as such:

Hai(genre) =

∑
gf∈genre s

∗(ai, gf )

|genre|
(7.7)

simply meaning that the coefficient value of each coarse genre corresponds
to the mean of the scores of the genre-terms comprising it.

7.2.6 Post-processing and Estimation

By the end of the previous process the method acquired two genre profiles; one
derived from user tags, denoted Ht and one from the Web denoted Hw. Now
we aim at fusing the two profiles into one. Prior to any fusion, both profiles
are normalized such that their sum of coefficients is 1. The final genre-profile is
just the weighted sum of the profiles:

Hf =
(1− w)×Hw + w ×Ht

2
(7.8)

Examples of estimated genre-profiles are shown in the figures below. It is
worth discussing them starting from Figure 7.5, representing the artist Nine Inch
Nails (NIN). The estimated profile captures precisely the stylistic variations of
the band. NIN are an alternative pop/rock band with many electronic and
metal elements. The CODAICH ground-truth for NIN is “Rock - Alternative
Metal Punk”, an inadequate representation according to our own perspective.

Figure 7.6 represents the artist Shakira, who frequently uses Latin elements
in her music. The user-tags failed to capture that fact, but the final profile in-
corporates it nicely. Shakira in general is a pop artist with electronic, dance and
hip-hop elements. The high value of the “rock” coefficient is surely debatable,
but the definition of “rock” varies from person to person. CODAICH defines
Shakira as “Dance - Pop” artist.

Figure 7.7 represents the artist “The Prodigy”. According to our own view,
Prodigy are an electronic band with lots of rock elements. Although our estimate
assumes that the rock part of Prodigy is more prominent, it is still a very
good representation of the artist’s genre-variation. CODAICH tags Prodigy as
“electronica”.

Finally, let us have a look at another “Dance Pop” artist (according to
CODAICH). Rihanna (Figure 7.8) based on our knowledge, is a pop artist with
many dance, R& B and hip-hop elements. This is very well captured in the
estimate genre-profile. The comparison between Shakira and Rihanna, shows us
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Figure 7.5: The estimated genre-profile for the artist Nine Inch Nails (red
columns). The Ht profile based on tags is shown in blue.

that the term “Dance - Pop” is too limited to incorporate the stylistic differences
of the two artists.

It is worth pointing out certain issues that arise when looking at the figures.
Firstly, the term “alternative” appears prominently in most examples. This was
actually expected since the definition of “alternative” is pretty vague. Secondly,
for all examples, there are no coefficients with zero values which proves that
our method is susceptible to noise. However, in most cases the “signal-to-noise”
ratio is high enough to capture the artist’s style.

7.3 Experiments and Evaluation

Due to our digression from the typical formulation of the genre-estimation prob-
lem, evaluating our method is rendered impossible. This is also supported by
the fact that our genre divisions do not agree with any available test-sets. How-
ever, in the next paragraphs we will present simple evaluating scheme that helps
us understand the method’s strength and weaknesses.

7.3.1 Test-set & Evaluation Measures

For our simple experiment we use a subset of 200 random artists from the
CODAICH test-set. As we have previously seen, this particular test-set assigns a
genre tag of the form “Genre - Sub genre 1, Sub Genre 2...” to each artist. There
are even cases, e.g. “Dance Pop”, where the main genre can be divided into
two. Based on these observations, we generated a mapping from the CODAICH
ground truth genre-division to ours. For example an “Alternative Pop/Rock”
artist would be assigned three tags, namely “alternative”, “pop” and “rock”.
An “R&B - Funk” artist would be assigned two tags: “R&B” and “Funk”.

Our experiment employs the measures of 1st and 2nd Tier. Given c the
number of relevant items and v the number of visible or correctly retrieved

114



Figure 7.6: The estimated genre-profile for the artist Shakira (red columns).
The Ht profile based on tags is shown in blue.

items, k-th Tier is defined as follows:

v

k(c− 1)
× 100 (7.9)

Tiers are typically employed in retrieval tasks, therefore the −1 ensures
that the retrieved query will not be taken into consideration. In our scenario
though the denominator becomes k× c. For instance, if our method top-ranked
the genre terms “alternative” ,“metal” and “jazz” while the ground-truth was
“alternative”,“pop” and“rock”, the 1st Tier would be 1/3 or 33%.

7.4 Results

Table 7.2 presents the 1st an 2nd Tier for different profile-addition weightings.
At first sight, the 1st-Tier results support the expected; our genre estimation
frequently disagrees with CODAICH. As a consequence, it is more meaningful to
investigate the effect of summing the individual profiles (Web and Tag based).
In both cases, where the Tag and Web profiles are neglected respectively, the
results show mediocre performance. In simpler words, if we choose to use either
Web mining or user tags, the performance would be lower than a combination
of those.

To conclude, although our method lacks substantial evaluation, it yields
results that well-agree with our intuition. We believe that the genre-profiles are
better representation of an artist, while at the same time offering the possibility
of computing genre-distances in a continuous domain. This characteristic is
crucial for the next part of our thesis, which aims at computing artist similarity
based on era, location and genre features.
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Figure 7.7: The estimated genre-profile for the artist The Prodigy (red columns).
The Ht profile based on tags is shown in blue.

Measure Tag Weight Value
1st-Tier 0 59.58%
2nd-Tier 0 80.75%

1st-Tier 0.3 61.04%
2nd-Tier 0.3 80.07%

1st-Tier 0.5 62.08%
2nd-Tier 0.5 79.20%

1st-Tier 0.8 63.25%
2nd-Tier 0.8 77.33%

1st-Tier 1 60.45%
2nd-Tier 1 77.29%

Table 7.2: 1st and 2nd Tier.
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Figure 7.8: The estimated genre-profile for the artist Rihanna (red columns).
The Ht profile based on tags is shown in blue.
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Chapter 8

Data Enrichment: Artist
Style Similarity based on
Time, Geographical
Location and Genre

We have previously stated that the lack of information is critical when it comes
to placing its music entities in a semantic context. As a consequence, style
similarity between artists cannot be efficiently established and therefore music
recommendation is rendered impossible. This chapter investigates the novel
hypothesis that stylistic similarity can be computed just by the employment
of three distinct, music-artist related features: era, geographical location and
genre.

8.1 Introduction

Artist similarity, as a typical high-level concept, lacks a precise definition. How-
ever, assigning a numerical similarity value for each pair of artists is an extremely
useful procedure for music recommendation. Therefore, a lot of MIR research
has focused on that particular task, but without taking into consideration the
following [1]:

1. Individual variation: People’s similarity assessment vary to the same
extent as their music tastes. Given this fact, it is almost impossible to
generate a similarity ground truth that agrees with the general opinion.

2. Multiple dimensions: The features that taken into consideration for
artist similarity are unclear among people. In some cases that would be
the genre and in others the vocal-style or the instrumentation, lyrics etc.

3. Asymmetry: Similarity between artists is not symmetric. For instance,
people consider the band Blind Guardian to be similar to Queen, but not
the other way around. is This raises the issue of using a Euclidean model
for similarity, which is the typical case in MIR studies.
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4. Variability and span: Artists tend to explore different styles and genres
throughout their career. Therefore, their similarity to others may vary
over time.

All these factors convert the task of assessing artist-similarity into a sophis-
ticated problem. Developing a similarity framework is as difficult as generating
a reliable ground-truth; and without a proper ground-truth how can the frame-
work be enhanced? These considerations, although valid, have not stopped the
MIR community from working on the subject.

Artist similarity and recommendation have been well researched inside the
audio domain. Extracting and comparing audio-derived features has been the
typical methodology for many years now. Such an approach relies on the pre-
requisite of the actual audio track which can not be always satisfied.

The recent field of Web-MIR, has partially solved the problem by utilizing
metadata information only, in conjunction to the power of the Web. The fun-
damental concept behind such an approach is based on the assumption that
similar artists will co-appear frequently inside the web-harvested documents.
This assumption, although valid at first sight, is subject to a major flaw: old
and obscure artists are not clustered based on some particular features when
documented on the Web. Or to be more precise, the features used, do not follow
any rules. For example, there exist plenty of web-pages containing information
about old Dutch artists, where genre variations are not taken into consideration.
In other web-pages, containing information about jazz music from the beginning
of the previous century until today, the origin of the artists is neglected. In both
cases the co-occurrence of artists inside the web-documents does not constitute
proof of any similarity.

As a consequence, similarity for old and obscure artists cannot be calculated
using any of the aforementioned methods (audio MIR, Web MIR). We aim at
surpassing this problem by firstly placing artists in a meaningful context and
then using that context to quantify similarities.

8.1.1 Hypothesis

Based on a set of preliminary experiments and our own intuition (although
musicological support is also possible), we have identified three features that
may define an artist’s style: genre, location and period of activity or era. Our
assumption was initially based on the fact that music distribution prior to 1950’s
was so limited, that each artist’s style was amalgamated by his local and current
cultural context. It is important to point out that stylistic similarity differs from
genre similarity. Artists that belong to the same genre, don’t necessarily share
the same style.

We therefore assume that stylistic similarity between pre-1950’s artists can
be calculated just by using three high level features: genre, era and geographical
location. In addition, we hypothesize that such a method would yield more
meaningful recommendations than EchoNest for that particular era.

8.1.2 Prerequisites

Our hypothesis assumes that information about the artist’s origin, era and lo-
cation is present. However, since we are dealing with pre-1950’s artists, such
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information is difficult to acquire but not impossible. Chapters 4, 5 and 6 sup-
port, via experiments and evaluation, that good estimates for all three features
can be computed via Web mining techniques.

8.2 Computing Similarity

In order to test our hypothesis we first need place artists in a 3-dimensional
space. This will convert the high level problem of artists-similarity to the simple
geometric problem of computing distances between points in space. Therefore
for each artist T in the dataset we compute its distance to the query Q as
follows:

d(T,Q) =
w1 ∗ dy(Ty, Qy) + w2 ∗ dg(Tg, Qg) + w3 ∗ dl(Tl, Ql)

3
(8.1)

where dy(Ty, Qy), dg(Tg, Qg), dl(Tl, Ql) the distances in terms of year, genre
and location.W correspond to the weight vector that encodes the relative strength
of the features. All of the distances are normalized so that the maximum dis-
tance is 1 and the lower 0.

Figure 8.1: An example of artists placed in a 3D space. The coordinates of each
artist correspond to its distance in terms of era, genre and location, from the
query. The color represents the inverse-similarity or dissimilarity to the query.

Figure 8.1 presents an example of artists placed in the 3D space relative to
the query (at the origin). Each artist has four coefficients:

{dy(Ty, Qy), dg(Tg, Qg), dl(Tl, Ql), d(T,Q)} (8.2)

The first three define its location in space while the fourth its artist-distance
compared to the query. Artists with small distance to the query have a blueish
colour.
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8.3 Experiment

The question we are trying to answer is twofold: a) is similarity based on our
method meaningful and b) how does it compare to the EchoNest similarity?
“Meaningfulness” cannot be computed by evaluation measures but only via
means of community opinion. Therefore we created an online audio experiment
where subjects are subjected to an audio file for each artist, accompanied by
audio files corresponding to its similar artists as computed by our method and
Echonest. The subjects are asked to rate the similarity of the audio tracks they
are listening (as opposed to the query) in terms of style.

8.3.1 Test-set

For our experiments we use the Million Song Dataset, which contains latitude,
longitude data and genre tags for artists, while also year of release information
for songs. The number of artists whose first song was released before 1950 and
the geographical information is present, are 98. In addition to those, we included
a set of 46 artists from the period 1950-1960.

Each artist A is represented by a three features: Ay the year of the first
documented release, Ag a genre profile as extracted from the tags and Al a
set of two coefficients corresponding to latitude and longitude. The year of first
release gives us an indication of an artist’s era, as tags an indication of an artist’s
genre profile. Therefore the artists features are less than precise.

Each artist is also accompanied by a size-10 list of similar artists as compiled
by EchoNest itself. The mechanics behind this function are unknown, however,
as we mentioned before, the similarity list is employed for comparison.

8.3.2 Online Audio Experiment

Given the two similarity lists for each artist (EchoNest and ours), we want to
investigate at which extent both of them agree to human intuition. The online
experiment presents a simple interface to the user (Figure 8.2), while asking
him to first listen to the query. The user is also presented with four other
audio tracks. Two of them are randomly picked from our similarity list and two
from EchoNest’s (via the 7digital1 service). The audio tracks correspond to the
earliest release of the artist in hand. The order of which they are listed is also
random.

The user is asked to rate the similarity between the artists in the tracks in a
non-continuous scale of 1 to 5 corresponding to “Not at all”, “Rather dissimilar”,
“Just a bit”, “Similar” and “Very similar”. The experiment can be performed
infinite amount of times and each time the user is presented with a random set
of audio tracks.

8.4 Results

After a period of almost one month, during which experiment was online, we
gathered around 200 answers mostly from experts (musicologists and music re-
searchers). Given that the similarity rating scale expands from 1 to 5, it is fairly

1www.7digital.com
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Figure 8.2: The interface for the online audio experiment.

easy to simply compute the mean for both our method and EchoNest’s. How-
ever such an approach is not informative, considering that the time-context and
relative comparison between methods are crucial to our hypothesis. Therefore
for each year y ∈ {1930, 1931, ..., 1960} we compute the ratio R such that:

R(y) =
mean(My(i))

mean(Ecy(i))
(8.3)

where My(i) the mean of the ratings for our method in the period 1930-y,
and Ecy(i) the mean of the ratings for EchoNest in the same period. Therefore,
R(y) takes into consideration the accumulative mean of the previous years in
addition the current year y. Figure 8.3 presents the plot of R.
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Figure 8.3: The ratio R through time.

Our hypothesis assumes that R should be greater than 1 for years prior to
1950. Therefore, it is clearly obvious the plot supports our assumption. Despite
the fluctuations along the curve, it is still clear that as we approach 1945-
1950 our similarity method becomes meaningless. We carefully chose the term
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“meaningless” instead of “futile”, since the R is not drastically dropped; hence
our method still produces acceptable similarities, considering that EchoNest
constitutes our baseline of “acceptable” recommendation.

The ratio R of the means gives a relative perspective of both methods, but
fails to capture how well they agree with human intuition. Do people think that
the audio derived from both methods is similar to the original queries and it
which extent? This is presented in Figure 8.4 where bothmean(My(i)),mean(Ecy(i))
are plotted. Ideally the mean of any method should be close to 5 (rating “Very
similar”), however, in both the compared methods, the mean is centered around
3 (rating “Just a bit”). For years prior to 1950 both methods are over the 3-
threshold , and under it from then on.

What does this say to us? Simply, both methods yield acceptable recom-
mendations for pre-1950’s artists, but slowly degrade as we reach the 1970’s.
We are not sure how the EchoNest similarity will behave for later years (e.g.
1980’s, 1990’s); for our algorithm though we can safely assume a continuing
degradation.
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Figure 8.4: The ratios Rhigh (blue) and Rlow (red) through time.

Figure 8.5 presents the plot of Rhigh and Rlow corresponding to the R vector
for the ratings {4, 5} and {1, 2} respectively. In other words, instead of just
taking the mean of the ratings, we spilt it those corresponding to high (“Very
similar”, “similar”) and low (“Not at all”, “Rather dissimilar”).
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Figure 8.5: The ratios Rhigh (blue) and Rlow (red) through time.
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8.4.1 Issues

So far the results have shown a slight superiority of our method over EchoNest’s
for pre-1950’s artists, and thus proving both our hypotheses. However, certain
issues arise when taking into consideration the small size of the user responses.
Significance tests (T-test) have shown that the superiority of our method, based
on the data, cannot be verified. In other words, both methods seem to show a
normal-distribution behaviour with the same means.

On the other hand, it is important to consider the error introduced to our
method based on:

1. The approximation of the productivity distribution of an artists, by using
his earliest, documented release. The MSD dataset offers release date in-
formation for certain artists and for certain songs. Therefore some artists,
who might be very similar to the query, may have been neglected due to
their lack of release dates. In some cases, the earliest release date might
have not corresponded to the actual release date. This would result to an
erroneous large distance from the query.

2. The approximation of an artist’s genre based on the user tags. Since we
are dealing with old artists it is very likely for user tags to be absent or very
limited. This results to a meaningless genre profile and consequently to an
erroneous artists similarity. In addition, the distribution of genres in the
test-set is non uniformal (Figure 8.6). Most of the artists are considered
“blues”, hence the the genre distance function is rendered meaningless.
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Figure 8.6: The overall distribution of genres in the test-set.

3. The limited amount of geographical information for artists. Most of the
MSD data, for which geographical location is present, correspond to Amer-
ican artists (Figure 8.7). Therefore, the effect of geo-graphical distance on
the artists similarity function is limited.

4. Finally, audio snippets for every artist cannot be provided. It is possible
that EchoNest can not provide a 7digital audio link for the artist’s earliest
release. Therefore some artists were neglected.

These issues affect the validity of the results presented in the previous sec-
tion. However, the extend of this effect is rather unknown. Would a richer,
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Figure 8.7: The overall distribution of genres in the test-set.

more complete test-set support better our hypothesis? We believe that it prob-
ably would, but compiling such a set would require a huge amount of effort. In
the context of this experiment, these issues act as pros and cons at the same
time, since even with approximate values for genre and eras, our method com-
petes face to face with EchoNest’s. However, given that the country of origin is
mostly USA, its employment in the distance function is debatable. To sum up,
the aforementioned issues are too crucial to ignore and should be investigated
further in future implementations.

8.5 Conclusions

This chapter investigated the novel hypothesis that artist similarity for pre-
1950’s can be computed by means of three distinct features: time, geographical
location and genre. The validity of the hypothesis was evaluated using an online
experiment where participants were asked to rate similarities between audio
tracks. The results support our hypothesis but lack significance. In addition,
many issues related to the precision of the test-set arose, while further reducing
our confidence on the results. We strongly believe that a more concrete test-
set would reveal our method’s strength, but this remains to be investigated in
future works.
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Chapter 9

Conclusions

The aim of this thesis has been to investigate two topics: interoperability and
data enrichment inside a music context. Although interoperability lacks a pre-
cise definition, placing it inside the music domain helped us understand its
underlying concepts and possible issues that may arise when trying to achieve
it. Furthermore, we examined a specific case of record-level interoperability,
namely linking Sound and Vision’s music collection to MusicBrainz. Our pro-
posed approach comprising of artist name permutations, metaphones and nam-
ing abbreviations (e.g. M. Jackson) shows great potential while room for further
improvement.

Current data enrichment for music databases using Web-mining techniques,
although thoroughly studied and researched, has been proven futile when dealing
with old and obscure artists. As a consequence, we proposed three Web-based
techniques tailored to that particular case. We showed that that high-level
features such as time, geographical location and genre can be computed using
a combination of Web search engines and music hubs such as MusicBrainz,
Last.fm and EchoNest.

As a proof of concept we assessed the viability of computing artist similarity
based solely on the aforementioned features. Our experiments revealed that
such a scheme is more than adequate and can be employed efficiently for artist
recommendation. Therefore, we proved that high quality data enrichment is
possible simply by using artist names and song titles.

9.1 Putting the Pieces Together

Any of the aforementioned methods would be rendered useless if it wasn’t for
their applicability. Therefore, as a final demonstration of our methods’ usabil-
ity, we will present a prototype interoperable infrastructure, implemented for
the COGITCH project. The general framework employs both the notions of
interoperability and data enrichment and more specifically:

1. Interoperability: Federated search, Record linkage.

2. Data Enrichment: Placing music entities in time, Artist country of origin
determination, Artist-genre estimation, Artist similarity.
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However, before we continue to the details, it is worth describing the remote
COGITCH collections.

9.1.1 Collections Description

The S&V song collection comprises of a just one table of around 355000 records.
Each record is represented by the following fields: song title, artist, composer,
original title, track length and other fields of internal usage. The most important
elements in our case are “Song title” and “Artist” , with the latter being the
most noisy. It has been previously discussed that it contains tags (e.g. [zanger].
[guitar]), secondary artists (e.g. instrumentalists) with the addition of typos,
name variations etc.

The Meertens folksong collection comprises of a set of tables corresponding
to “Artists”, “Songs”, “Sources”, “Genres”, “Tune families” and many more.
All of them create a complex scheme of relations that render any attempt of
reorganizing it impossible. However as compared to S&V most of the fields
contain noise-free information.

Achieving interoperability is the main goal for COGITCH and as a conse-
quence the most important fields in the Meertens database are those that overlap
with S&V, namely “Songs” and “Artists”. Therefore, similar to Arampatzis,
we performed an unconditional merging of the important tables and flattening
of all metadata structure (Figure 9.1). This procedure allowed us to retrieve all
the important pieces of information without the employment of complex and
time-consuming JOIN queries.

Figure 9.1: A simple representation of the flattening and merging of Meertens’
tables. All the important information is stored into a new table.
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9.1.2 Interoperability: Federated Search, Record Linkage

Out method for achieving interoperability relies on the notion of federated search
as it was described in 2.3.3. Therefore our framework firstly transforms the user
query and propagates to the databases. The results of both collections are then
merged and sorted based on a string matching function (see Figure 9.2).

Figure 9.2: A schematic representation of the federated search for the COG-
ITCH project.

The transformation of the original query assumes some kind of interoper-
ability at the schema-level. In other words, a semantic mapping between the
corresponding fields of both collections should exist. The “Artist” and the “Song
Title” fields of both sources are therefore semantically linked.

A screen-shot of the frameworks response to the query “hallo” is shown in
Figure 9.3. It can be easily observed that only the overlapping fields are always
present (unless their value is NULL). For example, in cases where the “Source”
is “S&V”, the “Year” field is empty since such information was not provided
originally.

Regarding record linkage, our framework incorporates it via links to Mu-
sicBrainz and unique artist name identifiers. This is shown in Figure 9.4, where
the fields “ArtisID” and “MusicBr” are populated accordingly. The linkage is
an off-line process and therefore it has not been applied to all the records and
artists of S&V. In our example the “Artist” field values “Hofmann duo zang”
and “Willy Derby zang” are linked to the unique artists “Hofmann Duo” and
“Willy Derby” and them to MusicBrainz IDs. We shall later see in which way
we utilize the latter link.

9.1.3 Data Enrichment: Placing music entities in time,
Artist country of origin determination, Artist-genre
estimation, Artist similarity.

Data enrichment is an off-line process similar to record linkage. A computed year
of release of a song and the country of origin of an artist are placed in the “Year”
and “Country” fields respectively (see Figure 9.4). This kind of information lets
us generate visualizations as shown on Figure 9.5. The interface presents the
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Figure 9.3: An example of implemented interface presenting the results of the
query “hallo”.

Figure 9.4: An example of implemented interface presenting the results or the
query “hallo”, focusing on two songs by “Hofmann Duo” and “Willy Derby”

distribution of countries on a world map, in addition to the distribution of years.
This gives the user a global perspective of the returned results, and lets him
place the information in a strong semantic context. Aside from the estimated
data, the visualization presents the distribution of the S&V records in terms of
media types (LP, ST, 45 rpm etc.), and also the distribution between sources
(S&V and MI).

Clicking on any of the records in the main table presents the user with a new
screen, denoted “Overlap”. The main idea behind “Overlap” is to show to the
user which records from the MI database match the song title he was interested
in. For example, when clicking on the record with fields “Hallo Bandoeg” by
“Willy Derby zang”, the interface will return a list of MI song titles with the
highest similarity to “Hallo Bandoeg”.

But aside from that, the interface also provides the audio track for that
particular song (when available) in addition to the artist’s productivity profile,
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Figure 9.5: A set of data visualization as offered by the framework’s interface
(query “hallo”). Country of origin has been computed for only three artists
(corresponding to five songs). Three out of five songs are from Germany and
the rest from Netherlands. Most of the songs were recorded around the 1930’s.

and YouTube matches (Figure 9.6). This function lets the user place the artist
and song in context. This interface is a work in progress, hence genre profiles
have yet to be incorporated.

The linkage of the artists to MusicBrainz is exploited by offering to the user
the corresponding MusicBrainz profile page (see Figure 9.7). Therefore, most
of the information that is available on the Web regarding the song and artists
are provided by our framework.

Finally, since genres profiles have not been incorporated yet, artist similarity
cannot be calculated. However, our vision for visualizing that information is
presented in Figure 9.8. Artists are represented as spheres in a 3-dimensional
space. The axes correspond to the time, genre and geo-location distance from
a user-selected or simply the top-ranked artist. The size of each sphere denotes
its similarity to the artist of reference. In such an representation the user would
be able to interact with the environment (rotate, scale), while also interact with
the spheres themselves (play audio, show additional information etc.).
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Figure 9.6: Additional information provided for the query “Hallo Bandoeg” by
“Willy Derby”.

Figure 9.7: The MusicBrainz profile for “Willy Derby” as provided by our in-
terface.
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Figure 9.8: Artists represented as points in a 3d-space.

134


