
Utrecht University

Master Thesis (ICA-3565025)

Computing High Resolution Explicit
Corridor Maps using Parallel

Technologies

Author:
R. Bonfiglioli

Supervisor:
dr. R. J. Geraerts

July 22, 2013

Abstract — This work investigates the approximated construction of Explicit Corridor
Maps (ECMs). An ECM is a type of Navigation Mesh: a geometrical structure describing
the walkable space of an environment that is used to speed-up the path-finding and crowd-
simulation operations occurring in the environment. Additional geometrical routines that
take advantage of the GPGPU model are presented, which improve the current construction
method by increasing the number of computations performed on the GPU and reducing the
amount of data transferred back to the CPU. At the same time, a multi-tiled construction
approach is presented, which almost frees the geometrical computation from its current main
constraint, resolution, allowing high-resolution ECMs to be produced; moreover, we show
that this approach can benefit optimally from CPU-parallelism.
Both a GPGPU-aided and a CPU-parallel implementation are tested: experiments show that
high-resolution ECMs can be computed, and that the new implementations often outperform
the original one.
Acknowledgements. This research has been supported by the COMMIT/ project
(http://www.commit-nl.nl/).
Keywords: Crowd Simulation, Navigation Mesh, Explicit Corridor Map, GPGPU.

1

Computing High Resolution Explicit Corridor
Maps using Parallel Technologies

Rudi Bonfiglioli
Game and Media Technology Master Thesis, Utrecht University

July 22, 2013

Contents
1 Introduction 3

1.1 Project Motivation . 3
1.2 Project Goals . 5
1.3 Structure of this Work . 5

2 Preliminaries 6
2.1 Generalized Voronoi Diagram . 6
2.2 Medial Axis . 8
2.3 Explicit Corridor Map . 9

3 Current construction of an ECM 12
3.1 Exact and Inexact computation of a Generalized Voronoi diagram 12

4 GPGPU to improve ECM construction 20
4.1 General-purpose computing on graphics processing units 20
4.2 Computing Medial Axis on Graphics hardware: Relevant literature 22
4.3 Overview of the new Approach . 24
4.4 GPGPU optimization notes . 36

5 From a Single-tiled to a Multi-tiled construction 43
5.1 General Overview and Preliminaries . 43
5.2 Tracing a Tile . 44
5.3 Merging tiles . 49
5.4 From the final Medial Axis to an ECM . 53
5.5 Final Considerations concerning a multi-tiled construction 53
5.6 Towards a CPU-Parallel implementation . 54

6 Experiments 61
6.1 Experimental Setup . 61
6.2 Comparisons of Total Runtimes . 64
6.3 Additional Tests of the GPGPU Implementation 67
6.4 Additional Tests of the CPU-Parallel Implementation 71
6.5 Considerations about High Resolutions and Precision 75

7 Conclusions and Future Work 79

2

1 Introduction
An open problem in today’s simulations and games is pathfinding. Pathfinding is the basic
process that allows agents to effectively navigate a virtual environment, and modern appli-
cations need extremely efficient pathfinding routines in order to simulate a high number of
characters at interactive rates. Pathfinding solves the basic problem of highlighting the path
from one point to another of a map given its description in any form, by listing the ordered
sequence of points that have to be traversed. Typically, the description can be a graph or a
grid, and many popular search algorithms exist (Dijkstra, A*, D*-lite [KL02]) to solve this
problem. However, modern applications deal with complex or with high-quality environ-
ments which often can not be described efficiently by a simple graph or a grid. Therefore,
the problem of simultaneous computing a proper Navigation Mesh given an environment is
introduced: a Navigation Mesh aims at being a compact but rich description of (mostly)
the navigable space of an environment, and it will be used to perform pathfinding queries.
A Navigation Mesh can be computed at the beginning of the simulation, or even during an
off-line phase and stored, and if necessary, it must be modifyable at run-time. A Navigation
Mesh subdivides (explicitly or implicitly) an environment into a number of different zones,
the union of which will cover the navigable space of the input environment. Information
about zones can be "extended", for example by associating an additional value representing
the maximum height of the zone, or some kind of value representing the density of agents.
How to organize a Navigation Mesh, which information to store and how to update it are
all open problems, and they can all greatly influence the quality and the performance of the
simulations.

Standard pathfinding algorithms can still be applied to the mesh by using a graph struc-
ture "derived" (more or less directly) from it; the nodes of the graph can either lie inside the
zones or coincide with (some) vertices of the polygons forming the Mesh. Usually, Navigation
Meshes (and the related graphs) deal with a top-down view of the environment (footprint)
and thus compute a 2D structure than spans the free/walkable space. The graph associated
with such a Mesh that will be queried by the pathfinding routines is sometimes called "Road
Map" of the environment, because it intuitively defines some walkable routes that can be
used for navigation.

1.1 Project Motivation
The Explicit Corridor Map [Ger10] (ECM) is a known method that automatically generates
a Navigation Mesh from the description of a 2D environment: the ECM is a compact graph
that spans the walkable space of the environment. It incorporates information about closest
points on the obstacles to each node in the graph and thus provides clearance information
and subdivides the walkable space into polygons at the same time. In turn, the ECM is based
on the ideas of Medial Axis (and Voronoi diagram), and requires those geometrical structures
during construction. Computing a Medial Axis is known to be a computationally expensive
operation; since efficiency is a key factor, the ECM employs an approximated computation
of a Medial Axis that is dependent on the "resolution" parameter, which correlates with the
degree of approximation that will take place. A higher resolution ECM could provide a more
detailed description of the input environment but at the cost of increasing computational
times. Moreover, a limit exists on the maximum resolution value we can use. Since the
resolution in fact derives from the dimensions of the grid that is used during one of the steps
of the computation, we can express it with the number of total cells (or pixels) used. At the
same time, the input environment mostly uses "meters" as unit of measure, therefore we can
describe the precision of an ECM construction in terms of pixels used per squared meter of
the environment: in general, to have a detailed ECM we would like to achieve between 20
and 40 pixels per meter.

In this work, we will try to extend the ECM construction approach so that it becomes less
dependent on the resolution parameter, and on the related limitations. Practically, we will
try to take advantage of parallel technologies, both consolidated ones, like CPU parallelism,
and more emergent ones, like GPGPU. Hopefully, our new approach will always be able to

3

(a) A "waypoint graph", a simple but in-
efficient description of the walkable space

(b) An example of Navigation Mesh for the
areas: if we consider the graph having a
vertex per rectangle, we realize how more
efficient it is

(c) We can find a path using the Naviga-
tion Mesh and applying a natural smooth-
ing

(d) A better example of the use of a Road
Map

Figure 1: Navigation structures in a Virtual Environment. Images taken from the online
article http://www.ai-blog.net/archives/000152.html

4

http://www.ai-blog.net/archives/000152.html

produce an ECM at a sufficient resolution no matter what the size of the environment is,
and without excessive costs in terms of computational times.

1.2 Project Goals
We are now ready to state the main goals of the project.

• We will analyze the current ECM construction approach, and we will try to shape
a new approach that is not constrained by the current limitation on the resolution
parameters

• We will investigate whether the new approach can take advantage of CPU parallelism,
and how. Eventually, we will produce a new CPU-Parallel implementation that will
incorporate the new ideas

• We will then do the same with GPU parallelism (GPGPU)

In the end, we will test the two new implementations and we will perform the right com-
parisons with the original one.

1.3 Structure of this Work
This work is organized in the following way:

• Chapter 2 introduces some preliminaries and fundamental concepts, together with the
related definitions that will be required throughout the rest of the work.

• Chapter 3 introduces and analyzes the current ECM construction approach together
with some alternatives

• Chapter 4 introduces GPGPU, and investigates how it could be employed in the con-
struction of an ECM. First, some relevant literature is presented, then some conclusions
are drawn and finally some GPGPU-powered routines that perform geometrical com-
putations are shown. We introduce GPGPU first because the current ECM approach
already performs some computations on the GPU. Therefore, using GPGPU could
appear as a more natural extension

• Chapter 5 introduces a new approach that aims at removing the constraints related
to the total resolution by designing a multi-tiled construction. First, the logical and
geometrical ideas behind the approach are outlined. Then, we proceed with describing
how CPU parallelism could fit this new approach

• Chapter 6 presents and discusses the results of the various tests performed with the
two new implementations and the original one

• Chapter 7 wraps up the work by evaluating the benefits and limitations of the new
implementations, and by outlining possibilities for future work

5

2 Preliminaries
In this chapter we will present some preliminary ideas that will serve as a foundation for
the rest of the work.

2.1 Generalized Voronoi Diagram
A Voronoi diagram (also called Dirichlet tessellation, or Voronoi tessellation) is a fairly
widespread concept, although, as we will see, slightly different definitions for it are present
in literature. After having identified a set of objects E in the space that are called "seeds"
sites, or "generators", usually for an e ∈ E both a "Voronoi region" V R(e) and a "Voronoi
diagram" V D(E) of E are defined. One possible definition is:

Definition 2.1. The Voronoi region of a site e of E, denoted by V R(e), is the set of points
at least as close to e as to any other site in E. In symbols:

V R(e) = {p ∈ Rn|d(p, e) ≤ d(p, e′),∀e′ 6= e, e′ ∈ E}

The Voronoi diagram V D(E) then becomes:

V D(E)
.
=

⋃
i

∂V R(ei)

where d is a pre-existing distance metric and ∂ denotes the boundary of a set. More
simply, a so defined Voronoi region is a region of the space consisting of points p that are
closer to a single site e (the closest site) than to any other site; if this distance is d(p, e), the
distance from p to any other site will be equal to d(p, e) or greater.

Definition 2.1 can be found in [FEC02], a paper that aims (also) at discussing some
fundamental properties of Voronoi diagrams, but it can be commonly encountered in other
works such as [Aur91] and [BA92]. It is easy to notice that some points on the boundaries of
the regions will have 2 closest sites, while some will have even more than 2: both these kind
of points belong to V D(E) but the latter kind of points will be the vertices of the Voronoi
diagram (also called Voronoi vertices), contact points of 2 or more Voronoi regions. Instead,
the points that are part of V D(E) but are not vertices will form the edges (also called
Voronoi edges) connecting those vertices, and will have 2 associated closest sites. Hence, a
Voronoi diagram can be geometrically described (and stored) as a graph where the nodes
are our Voronoi vertices and the edges the Voronoi edges connecting them.

Figure 2 shows a simple case of Voronoi Diagram where the generating seeds are points
in the space: Voronoi edges and vertices can easily be recognized. Moreover, in the picture
some additional properties of the tessellation are easy to spot:

• The set of Voronoi edges is made of only bisector segments, because each point of a
Voronoi edge is equidistant from 2 generating seeds.

• If the set S of the generating seeds has n elements, the Voronoi Diagram will have n
edges and vertices, and therefore can be stored with linear complexity O(n).

• Voronoi edges form a connected component if the free space is also connected, therefore
a Voronoi Diagram can be effectively used as a Road Map [GO08].

Although our first definition of a Voronoi diagram was general, Picture 2 depicts a fairly
simple case of Voronoi diagram, where:

• Seeds are points.

• We assume the space to be Euclidean, and we use Euclidean distance as a distance
metric.

• The space is two-dimensional.

6

Figure 2: Example of Voronoi Diagram. Black points are the generating sites. Points with the same color
belong to the same cell.

However, Voronoi diagrams can be described in a general d-dimensional space and can
be generated by seeds which are not just points but segments, polygons, or conics, and
different distance metrics can be used, such as a 2D Manhattan distance. When the pre-
vious restrictions do not apply, the term "generalized Voronoi diagram" is normally used
to refer to the generated Voronoi diagram. In a d-dimensional space, a Voronoi diagram
with n generators can be stored with O(ndd/2e) complexity, meaning that in spaces with a
dimensionality higher than 2 it could be considered not efficient anymore.

Since this work will make use of 2D Voronoi diagrams where sites that are not just points,
it can be useful to outline the general shape of the bisectors in this scenario, depending on
the type of the generating site:

• Lines and segments: if we consider lines (endless extended), a bisector of two lines
is a line that evenly splits the angle between them (Figure 3a) in case of non parallel
lines, or if they are parallel, the bisector is another parallel line lying "between" them
at the same distance from the generating ones. In case of non parallel lines, the
bisectors are actually two, both running through the intersection points (Figure 3b).
The bisector of a line and a point is a parabola (Figure 3c), which is in fact commonly
defined as the set of point equidistant from a point and a non-intersecting line. In
case of line segments, things are trickier, because bisectors can be generated by the
segment itself and its two endpoints. Therefore, the bisector of two non-intersecting
line segments can contain up to seven parts, either line segments or parabolic arcs.
The topology of the part of the bisector changes when it "crosses" the normal vector
at a segments’ endpoint (Figure 3d).

• Polygons: most of the time, we can consider them a closed chain of edges, and treat
them as a set of line segments, with non-convex polygons being split into convex ones.

• Conics or curved segments: closed or non-closed curved segments seem to be quite
complicated to handle, even in the two-dimensional case. In many cases, then, they
are approximated to polygons, eventually not losing too many details. The ECM
implementation handles them this way.

However, even when generated from more complex scenarios than the one shown in Picture 2,
a generalized Voronoi diagram still maintains all the properties listed previously. Hence, we
will see how it can be a fairly viable option we can use to create a Road Map of our
environment starting from many different footprints.

7

(a)

(c) (d)

(b)

Figure 3: Bisectors in various scenarios.
(a,b) Two non-parallel lines have two linear bisectors (in red), cutting the two angles in between in halves.
(c) The bisector of a point and a line is a parabola (in green).
(d) Two line segments can induce up to seven connected bisector parts: lines (red) and parabolic arcs
(green).
Red dots indicate the intersection of a bisector with a normal vector.

We had initially mentioned that the definitions of Voronoi diagrams can differ slightly
among the literature. For example, we could employ the following one:

Definition 2.2. A Voronoi region of a site V R(e) can be defined as

V R(e) = {p ∈ Rn|d(p, e) < d(p, e′),∀e′ 6= e, e′ ∈ E}

which defines a region when points are strictly closer to a site e than to any other. Then a
Voronoi diagram V D(E) of the set E will be defined as

V D(E)
.
=

[⋃
i

V R(ei)

]

Definition 2.2 defines V D(E) as the region of the plane complementary to the union of
all the previously defined Voronoi regions. It is not difficult to see that all the properties
previously discussed still hold for the so generated constructions, but this different definition
can have different implications, as we will see int the next sections.

2.2 Medial Axis
As stated also by [FEC02], a common definition for the Medial Axis (MA) is

Definition 2.3. Consider S as a subset of the n-dimensional Euclidean space and its bound-
ary B.
An open ball inside B not contained in any other open ball inside B is called a maximal ball.
The Medial Axis of S is defined as the locus of centers of its maximal balls.

Basically, the MA is the locus of the centers of circles that are tangent to S in 2 or more
points, with all such circles not "crossing" S at additional points. If S is a simple polygon,

8

the MA is made only of line segments or parabolic arcs. If the polygon is convex, the MA
is completely inside the polygon.

Once again, literature [BA92, FEC02, Aur91] offers different definitions for the Medial
Axis, and for example we could employ the following one:

Definition 2.4. Consider S as a subset of the Euclidean n-space. An open ball B is said
to be a maximal ball of S if it satisfies the two following properties:

• B belongs to the set G of the open balls that does not have any points of S

• B is not a proper subset of any other ball in G

Definition 2.4 allows to handle some kind of inputs, for example open shapes or discon-
nected sets of points, which will not have an associated MA according to Definition 2.3. At
the same time, all the properties previously outlined (e.g. when input is a simple polygon)
are maintained.

Intuitively, if we consider the walkable space of an environment being our polygon P and
add the constraint of this space being bounded, the MA of P will be very similar to the set
of Voronoi edges and Voronoi vertices of P : Voronoi vertices are clearly centers of empty
balls, and points on the Voronoi edges are too since they are equidistant from 2 points on P .
Therefore, they are empty balls being tangent to P on those 2 points. But the generalized
Voronoi diagram and the Madial Axis of a polygon P do not always coincide. Equality
depends on:

• The definitions used for both concepts. Definition 2.1 and Definition 2.2 can lead to 2
different generalized Voronoi diagrams of the same input S when S is a subset of the
Euclidean n-space. The same can happen if the input is a polygon, depending on how
the input sites are defined. This of course can prevent the Medial Axis of the same
input to coincide with the (generalized) Voronoi diagram. Here, it is important to
notice that, when it comes to Medial Axes, Definition 2.4 allows to construct Medial
Axes of some configurations that are not handled by Definition 2.3, but if Medial Axes
are produced according to both definition, they should not differ.

• The way P is defined. Until now, we assumed that segments that are part of our
polygons are defined as single segments’ entities and not, for example, as discrete
collections of points, all being very close to each-other. In the latter case, Definition 2.1
leads to a generalized Voronoi diagram that is different from the Voronoi diagram
generated from the former case. This happens because generalized Voronoi diagrams
allow arbitrary aggregation of points to form the "generating sites", therefore non-local
characteristics are introduced, since the evaluation of proximity (performed during the
construction of the regions) takes into account the whole extension of the sites and
not just specific portions. On the opposite, a Medial Axis is alway "local", being
intrinsic to the data set independently of any grouping. If the sites of the input are
defined as a connected set of discrete points, the Voronoi diagram is constructed using
Definition 2.2 and a MA exists for that same input, then they coincide [FEC02].

If our input set is a polygon not specified as a set of connected, discrete points, its
generalized Voronoi diagram constructed according to Definition 2.1 or Definition 2.2 usually
includes some edges that are not present in the MA of the same input. Similarly, if the input
is a polygon and is specified as a set of connected, discrete points, but Definition 2.2 is not
employed, the resulting Voronoi diagram will present additional edges not part of the MA.
Figure 4 shows an example of this.

In conclusion, the Medial Axis of a 2D footprint is a generally better defined concept
than the one of (generalized) Voronoi diagram that depends only on local properties of the
input set, and it is the concept on which our Navigation Mesh structure will be built upon.

2.3 Explicit Corridor Map
Published in 2007, [GO07] introduces the Corridor Map Method (CMM) for path planning
of many agents simultaneously: this method is based on the notion of "corridor", a subset

9

Figure 4: The medial axis (in red) given a 2D environment (with black borders). Obstacles (or holes in
the "free space" polygon) are shown in gray and outlined in black. Dashed lines indicate edges that can
occur in a Generalized Voronoi Diagram of the same environment, depending on its definition.

of the collision-free walkable space which is in fact the union of many, collision-free balls
centered on some points inside it. More in detail, given a 2D footprint, a "backbone graph"
G is constructed, composed of a set of edges E and of vertices V . The edges of the backbone
graph will be sampled (divided into a finite and discrete sequence of points) and for each
point the radius of the largest, collision-free ball will be computed: for each e ∈ E, the
sequence of points with the associated radii of the ball will represent a corridor. Similarly,
a vertices v ∈ V will be associated with the radius of the largest collision-free ball centered
on it.

In the CMM, a path-finding query is answered by first connecting both the starting
point and the ending point of the query belonging to the walkable space to the closest
vertices v1, v2 ∈ V of the backbone path with a short, collision-free path; then, a global
path can be found on the graph itself by employing any existing path-finding algorithm
working on graphs such as A*. The so defined paths will be guaranteed to be collision-free.
Characters can be steered by using the sampled points of the corridors as attraction points,
and thus applying attractive forces that will move them towards their goals. Moreover,
corridors encode a clearance information: clearance can be used to add variation/smoothing
to characters’ paths, or to allow characters to avoid local obstacles inside the corridor, for
example by making sure that local obstacles apply repulsive forces to moving agents. If the
edge that is being followed by a character contains a sufficient number of sampled points,
this, together with the radii information, seems to be enough to ensure smooth, collision-free
paths that correctly avoid local obstacles.[GO07] defines this whole framework and tests it,
finding out that it is capable of computing these paths quite efficiently.

In 2010 [Ger10] introduced the Explicit Corridor Map (ECM) approach. As described
in the previous section, the CMM approach did not specify a unique way to compute the
needed backbone graph: [GO07], the original paper introducing CMM, cited the "Enhanced
Reachability Roadmap" [GO06] method as an option, while [GO08], an updated and im-
proved description of the CMM, proposes the use of the Medial Axis, but the framework is
stated generally enough to still allow different algorithms. Instead, with the ECM, corridors
are built "around" a Medial Axis of the footprint, chosen as a backbone graph, and these
edges are not sampled anymore because the computation of the balls forming the corridors is
not needed: all the points belonging to the same edge share the same clearance information,
therefore storing them once is sufficient. This results in a much more compact structure
(with O(n) storage complexity, n being the number of "event points" retrieved from the
MA), more efficient to store and navigate, but coming with no additional drawback.

In [Ger10] it is shown that the edges of the Medial Axis include all the information
relevant for any path-finding operation, therefore we can use it as a starting point for our
"backbone graph". Nonetheless, these edges carry with them useful information because

10

they "signal" a change of the closest generating site. In the ECM, edges are defined as
sequences of "event points": an event point is a point on an edge where a change of closest
points information happens. Every vertex of the Medial Axis is an event point, but edges can
exhibit more than 2 event points, because the change of closest point information coincides
with a change in the associated input segments’ normal (bottom-right part of Figure 3 can
be a reference here). For each event point of any edge, the ECM stores the (relative) left
and right closest points, together with the two distances. The structure should be clearer
when looking at Picture 5: at any point on an edge, we can query the distance from the
closest left and right obstacle, having therefore the same clearance information necessary to
define our corridor, but without the need of storing an expensive set of sampled points and
radii for each of them. In fact, considered that:

• Any obstacle will have a finite number of vertices m that will lead to at most m event
points,

• every obstacle can generate at most two edges,

• the storage complexity of a Medial Axis is linear in the number of obstacles’ vertices
n,

we can conclude that an ECM is an efficient data structure having storage complexity O(n),
linear in the number of obstacles’ vertices.

Figure 5: Example of an Explicit Corridor Map. For each edge of the ECM (in red) we store its event
points (smaller black dots) and its vertices (bigger black dots). In fact, vertices are event points themselves.
Together with vertices and event points we store the closest points (points connected in blue with event
points) and the associated distances. Closest points can range from 2 to 4. Notice that the "shape" of edges
is effectively defined by the event points and closest points information only (f.e: we have a parabolic arc
between two event points if from one side we have 2 closest points and only one on the other side), thus that
is the only thing we need to store.

11

3 Current construction of an ECM
In the previous chapter we have presented the Explicit Corridor Map and the geometrical
ideas related to it, like the Voronoi diagrams and Medial Axes. In this section we will discuss
some construction algorithms, outlining their advantages and disadvantages.
Given the 2D footprint of an environment, an ECM can be derived from the Medial Axis
of the same footprint: we have already discussed how Definition 2.3, and even better Defi-
nition 2.4, allow to construct Medial Axes that can be "augmented" into ECMs which are
optimal in terms of storage complexity. Vertices of the MA do not always become vertices
of the ECM: some of them "signal" a change of closest points’ information, but not a change
among the associated generating obstacles, and therefore are just stored as event-points on
the edges of an ECM. This happens because our input set can be made of polygons, which
are grouped in sets of segments and points. We recall that the MA is always "local", there-
fore an event-point of an ECM corresponds to a "local" change in the MA, and thus with
new associated closest points, but those points can lie on segments which are part of the
same input site (for example a polygon). If there is no change in the obstacles (for example:
the polygons) that generated the point, the point will be considered only an event point
(although with new closest points information) and not a vertex of the ECM. Moreover, the
geometrical description of the MA provides us with all the necessary points that we need to
construct our ECM, no matter if they will be vertices between edges or event points. Only,
we have to go through all of them, check their associated generating sites, and compute the
closest points information on those obstacles. Hence, constructing an ECM from a MA is a
computationally efficient operation.

Hence, one way to construct an ECM is to compute a MA of the footprint and then
"arrange" it as an ECM. Again, we can remember that the idea of Medial Axis is deeply
related to the one of Voronoi diagram, and that in fact by constructing a Voronoi diagram
according to Definition 2.4 and from an input specified as a set of connected, discrete points,
our structure will coincide with a MA. But even in case we employ a different definition,
or if our input set is made of sites that are groups of segments or points (and not only
single, connected points), we can still construct a MA from the (generalized) Voronoi di-
agram: basically, because of the non-local properties that will influence the construction
of a Voronoi diagram, additional edges can be constructed. [FEC02] shows that this is a
well-known fact and provides an overview of the methods to construct a Medial Axis from
a GVD: for example, [Lee82] is cited as a work that shows as a MA can be obtained from
a GVD of a polygonal input set. [Lee82] shows that we can obtain a MA by constructing
a GVD using Definition 2.1 considering as input an open straight-line edge for each edge
of the input and a point for each vertex of the polygon, and then removing from the GVD
the edges that incident on the concave vertices of the input. Works as [SN87] and [MS87]
extend a similar approach to have it work also with more general polygonal inputs (e.g. with
holes). In [Ger10] this same idea is presented, by making clear that the MA used as a basis
for an ECM should be pruned by those kind of edges; the paper also claims that they do
not represent necessary path-finding information.
Therefore, independently from the definitions that are used to compute Medial Axes or
(generalized) Voronoi diagrams and from the way the input is specified, we know how to
efficiently construct a MA from the product of the common methods that compute (gen-
eralized) Voronoi diagrams. Again, we reduced the problem of computing an ECM to the
problem of computing a GVD: having a geometrical description of its regions is now our
fundamental step. The next section will elaborate on the computation of this structure,
presenting some approaches with common characteristics, discussing their advantages and
disadvantages, too.

3.1 Exact and Inexact computation of a Generalized Voronoi diagram
3.1.1 Exact computation of a GVD

In [dBCvKO08] a standard plane-sweep algorithm to compute a Voronoi diagram of points
can be found: the n points are handled in a sorted order by a line that "sweeps" through

12

them and handles the so-called "events" that arise, denoting the updates that are per-
formed on the work–in-progress data structures. Since it can be proved that O(n) events
arise which can be handled in O(log(n)) time, the total complexity of the algorithm becomes
O(nlog(n)). [dBCvKO08] also shows that the same approach can be extended to compute
generalized Voronoi diagrams of non-intersecting line segments, maintaining the same com-
plexity.
Voronoi diagrams can be also constructed using a divide-and-conquer approach, as outlined
by [SH75]. Here, the input set is recursively divided into 2 halves, and 2 smaller Voronoi
diagrams are constructed from both sides and then merged together. This algorithm also
yields a O(nlog(n)) complexity, mostly because it requires sorting the sites. However, this
algorithm can be often easier to implement robustly.
Another existing approach is to compute a (generalized) Voronoi diagram incrementally,
starting from an empty/basic structure and then iteratively insert each site and update
the current tessellation; after all the generating sites have been inserted, we will have the
(generalized) Voronoi diagram of the entire input set. The insertion of input sites can be ran-
domized, and therefore, as it is common when randomized incremental search is employed,
we can reason about expect running times. A fairly advanced randomized incremental con-
struction algorithm which can compute generalized Voronoi diagrams of curved segments,
too, with an expected running time of O(nlog(n)) can be found in [ACV05].
Although most algorithms that deal with "general" (non-simple, non-convex) polygons have
a complexity of O(nlog(n)), a theoretical bound is still under discussion, and some work out-
line fairly complicated algorithms that achieve lower time complexities, such as O(nlog∗(n))
by [Dev92] or even O(n) by [CSW95]. However, whether those algorithms can lead to stable
and manageable implementations has still to be evaluated.
In theory, we could easily adapt all the algorithms described above so that they take advan-
tage of Definition 2.1, or we could pre-process the input to split it into a set of connected
points, computing thus a Voronoi diagram that is in fact the Medial Axis we need. Unfortu-
nately, in practice, these exact geometric algorithms rely on exact geometrical computations,
especially to handle degenerate cases, and ensuring stable and correct geometrical computa-
tions is difficult because of the finite numerical precision of computer. To specifically address
these needs, geometric libraries like CGAL [cga] exist: CGAL aims at offering a wide range of
common geometric algorithms that can be extended and geometric data structures to work
with. The fundamental idea behind CGAL is to abstract geometric operations (such as
intersection tests) which will be treated as "exact computations" by the underlying library,
exploiting numerical integrations and other techniques, making sure they always return the
correct result and preventing overflow/underflow errors at the same time. By using CGAL,
the above algorithms could be implemented, and a correct MA could be obtained, but gener-
ally the resulting code would be too slow to serve any practical scenario: exact arithmetical
operations are quite expensive, and their cost can become prohibitive when the geometrical
"degree" of the problem involved is high. A study of the geometrical degree of a Voronoi
diagram computation can be found in [LPT98].

More recently, the so-called "topology-oriented" methods drew some attention: a topology-
oriented implementation tries to specify a limited set of geometrical properties that must
hold at particular stages of the computation, properties that can be at the same time ver-
ified without relying on geometrical operations. It can be shown that a topology-oriented
approach always leads to a correct result without the requirement of checking if the arith-
metic is exact: (correct) geometrical computations are needed only to reach the right results
given the specified input. By decreasing the number of operations that require numerical
correctness and by formally separating them from the ones that instead do, clean and sta-
ble implementation can be obtained. In fact, algorithms are primarily described in terms
of combinatorial and topological computations that deal with the properties selected, and
numerical computations are used as secondary information. Thus, the inconsistency issue is
completely separated from the numerical error issue. Some examples of topology-oriented
geometric algorithms can be found in [SIII00], which also includes a brief description of
an algorithm to compute Voronoi diagrams of set of points. Upon this last method, the
VRONI approach was built [Hel01]: the motivation behind VRONI is exactly to develop a

13

stable implementation capable of computing correct Voronoi diagrams of sets of points fairly
efficiently, since it became clear how producing such an implementation was harder than it
seemed. VRONI adopts definition 2.1 and constructs tessellations incrementally while con-
tinuously checking for the presence of degenerate or "troublesome" topological cases, which
are then correctly handled; numerical sanity checks are also constantly performed, and the
system is designed to run "back-up" geometrical routines every time any of the standard
ones fail, and to automatically choose and relax the ε constraint bounding the geometrical
routines. Notice that VRONI, as the other topology-oriented approaches, aims at computing
correct structures using the standard float arithmethics. VRONI was later extended to con-
struct generalized Voronoi diagrams of input sets including also circular arcs [HH09, Hel11].

Figure 6: Example of an incremental topology-oriented construction of a Voronoi diagram of a set of
segments (VRONI framework - figure from [Hel01]).
(a) In order for the dashed line segment to be inserted as seed, its endpoints are marked for insertion and
topology-printed checks are performed to identify the seeds that will be eliminated (circled in gray).
(b) Once the new endpoints are inserted, the Voronoi diagram is updated, and additional topological checks
are performed to evaluate the correctness of the insertion and of the new Voronoi diagram.

3.1.2 Approximated computation of a GVD

As we have previously discussed, achieving a stable and correct implementation that com-
putes GVDs employing exact algorithms is not simple; moreover, issues like numerical mis-
takes can be difficult to spot (and therefore to handle), and preventing them would often
imply to perform additional "sanity checks" and "adjustment" operations on the input set,
which would introduce additional overhead. Some implementations deal with this by im-
posing constraints on the input set, limiting in fact the configuration that will be correctly
handled by the approach. Doing so hardly fits our case, since the ECM approach aims at
computing Navigation Meshes from real-life scenarios. The ECM approach employs instead
an approximate method to compute a GVD initially described in [HCK+99] which largely
exploits some properties of the graphics hardware. [HCK+99] defines a number of so-called
"distance meshes" for common type of obstacles that can appear in the footprint of envi-
ronments. In case of a 2D environment, 3D distance meshes can be associated with the 2D
obstacles depending on their types, and once they have been correctly shaped, positioned,
and rendered in a 3D space (using an orthographic top view), we will have a representation
of the Voronoi Diagram in the GPU frame buffer. Therefore, the computation of the dia-
gram is bounded to the size of the framebuffer, which will be our total "resolution". Some
example of distance meshes will follow:

• A point in the 2D space is associated with a 3D circular cone (approximated as a
triangle fan) whose radius at the base needs to be M

√
(2) for a resolution of M ×M

14

(Figure 7a). A higher number of triangles approximating the cone will lead to a reduced
error (if M is 1024, 85 are considered enough f.e.). The cone will have its bottom part
touching the top part of the view, at the x, y coordinates of the corresponding 2D
point.

• A segment in the 2D space is associated with a pair of cones (at the position of
the 2 endpoints) plus a "tent" distance mesh: two quadrilaterals sharing an edge, in
correspondence of the 2D segment (Figure 7b). Again, the upper part of the cones
will touch the top plane of the view, as well as the edge shared by the quadrilaterals.
Apart from the error induced by the cones at the endpoints, no additional error is
involved with this distance mesh.

• A polygon in the 2D space is considered a less general case of any kind of site which
is approximated as a collection of pre-defined features, namely, points and segments.
Therefore, a polygon is considered a collection of line segments (edges) and points (ver-
tices) in the same way as a curve arc is approximated with a number of segments and
considered as a non-closed polygon (Figure 7b, 7c). Positioning follows the guidelines
already defined for these features. The paper outlines that at vertices of polygons,
only "partial" cones are needed to be rendered, decreasing the number of triangles
rasterization operations.

Figure 7: Example of 3D distance meshes (pictures from [HCK+99]. Axis D is the depth of the 3D view.)
(a) A cone distance mesh, from a 2D point.
(b) A "tent" distance mesh, from a 2D segment. Cones must also be added, in correspondance with the
two end points.
(c) A curved segment can be approximated with a set of segments, and thus treated as a set of segments
and points.
(d) The same applies to a polygon, which is a closed chain of segments. Notice that in the last two scnarios,
only a section (or two) of the 3D cones corresponding to segments need to be rendered given that the
remaining ones would be occluded by the quads of the tent distance mesh.

In theory, by assigning to every seed a different color, while rendering the distance
meshes, the comparisons with the values in the z-buffer of the GPU will make sure that,

15

for example, when rendering the distance mesh of color Colori, a pixel at position x, y will
be colored with color Colori only if the mesh originated from a seed closer than the one it
currently stores, if the cones part of the distances meshes consist of a high enough number
of triangles.
Most approximated methods feature a parameter that regulates the correctness of the com-
putation: in our case this parameter is the total resolution of the framebuffer, since our
input geometry, and therefore the distance meshes, are discretized in a grid having the same
resolution of the framebuffer. Intuitively, a higher resolution of the framebuffer implies a
higher resolution grid, and thus a better, more fine-grained discretization.
It is important to notice that this method computes a "visual" representation of a GVD, and
not directly a geometrical description of the structure. Therefore, we still can not express
the GVD as a graph consisting of Voronoi vertices plus the Voronoi edges connecting them.
To do so, we need to transfer all the framebuffer data from the GPU to the CPU, and to
perform an additional "tracing" step on the CPU that searches through the whole color
buffer on the CPU and creates the geometrical structure.

3.1.3 Problems of the current approximated ECM construction

The errors in the current ECM construction method mostly derive from mistakes that can
occur in the approximate GVD construction approach previously described.
Part of these mistakes can occur because of the very nature of the algorithm: originally,
[HCK+99] states some upper-limits to the number of triangles that should be used at some
standard resolution for each 3D distance meshes to ensure correctness, but a further investi-
gation realized that those upper bounds could not be enough to ensure correctness in some
troublesome cases, as described in [Den03, SOM04, SGM05]. Those corrections alone seem
to be not enough to ensure correctness: [Den03] further addresses some cases where using
"correct" distance meshes still leads to problems, as in the case of two seeds lying both very
close to a corner and at the minimum distance of 1 pixel. Therefore, if the seed Si is located
at 0, 0 (bottom-left corner) and a different seed Sj is located at 1, 0, the bisector could still
be traced incorrectly (Figure 8) with many pixels could get the wrong color.
Additional mistakes occur when the input presents, for example, intersecting segments as
seeds, or point seeds that lie on segments seeds. These kind of scenarios can be considered
"degenerate" cases, and can eventually not be allowed in the description of the footprint,
but still, detecting them implies a careful pre-processing of the input data. Moreover, it can
happen that a point seed Spoint and a segment seed Ssegment are specified as not intersecting
objects according to the input footprint, but end up intersecting once they are discretized
on our grid. This is likely to generate mistakes in the GVD since the cone spawned by Spoint

will maybe not be perfectly overlapped by the cones that originated from the distance mesh
of Ssegment. As discussed in [SOM04, SGM05], in general, errors arise when the generating
sites are too close on the grid, because in those cases issues similar to z-fighting show up
when Voronoi regions have to be determined, and colors can be assigned wrongly. Hence,
correctness can be improved by subdividing the grid into small sub-tiles and then estimating
more accurately the "influence" of each site in the description of the Voronoi regions inside
the tile. Since the approach is in fact a GPU implementation, checking influence of the sites
means performing GPU occlusion queries during additional passes, and eventually adjusting
the color values. Mistakes can also show up when the discretization on the grid of the input
data changes the topology of the input set, for example by changing a small line segment
into a single point.

3.1.4 Final discussion on the current ECM computation process

In this chapter we have shown how the current ECM implementation computes a Navigation
Mesh by "augmenting" a Medial Axis that is correctly computed pruning an approximated
GVD of the input set. The GPU construction of the GVD is a central step since:

• Although it computes a "visual" representation of the GVD, it does not provide any
usable geometrical description of the Voronoi graph itself. This graph needs to be

16

Figure 8: Issues with the method proposed in [HCK+99]: the pixels close to the bottom-left
corner at coordinates (0,0) and (1,0) are our 2, but the 2 Voronoi cells generated can in fact
be wrong since the pixel colored in red in the image can randomly get assigned to the wrong
cell (depending on the unstable depth comparisons). Image from [Den03].

computed on the CPU. Therefore, the whole color data needs to be transferred back
from the GPU. The transfer and the subsequent CPU tracing take up together a
considerable amount of time.

• Tracing the graph requires having the whole color data on the CPU. Constraints exist
on the size of a single buffer that can be allocated on the CPU, therefore this limits
the resolution that can be used by the GPU step.

• Literature shows that the step can induce various mistakes.

Beginning to address the latest point, we can notice that literature describes also a
number of additions that improve the correctness of the original method. However, those
additions are quite complicated to implement and to extend, and although they seem to im-
prove the general scalability, they negatively impact the performances. If we better analyze
the method proposed by [HCK+99] and its improvements, we can notice that it seems to
consider the GVD computation as a naturally discretized computation. In fact, this could
also explain why no importance is given to the tracing of the geometrical structure itself:
the GVD is just displayed, and this is considered good enough as a result. Subsequent
work shows applications such as interactive 3D visualization of 2D/3D Voronoi diagrams,
or other applications in the image processing domain. Path-planning is also considered as
an application, but in fact it was not investigated in depth.
In our opinion, the algorithm, together with its evolution, was not always developed to
"serve" a geometrical purpose. If we assume instead the visualization domain as the main
field of application, the effort put into solving the geometric problems inside the discrete
GPU "framework" makes more sense, since it allows for example the output data to be
treated again as input set and it does not involve data transfers to the CPU.

In the ECM framework, instead, we are interested in computing a geometrically correct
description of the Medial Axis, and the step described in [HCK+99] was mostly adopted
because of its efficiency and its overall stability. However, our input set is specified as
primitives in (double) decimal format, and the grid discretization is performed just because
it is needed for the GVD computation. In fact, after the Medial Axis has been traced,
coordinates are converted again to the decimals domain. What we can observe is that the

17

(a) (b) (c)

Figure 9: Approximating the medial axis graphically. (a) In the GPU framebuffer, each coloured zone
corresponds to a unique closest obstacle. (b) Z-buffer of the GPU holds single channel data (greyscale).
Smaller values map to darker colors. Hence, pixels closer to their closest obstacles have almost black values,
while pixels close to Voronoi edges have more greyish/white values. (c) From the GPU information, a Medial
axis can be computed. Note that the small black dots denote the ‘event points’. Images by Geraerts [Ger10].

discretization of the input set over the framebuffer grid is what can cause many of the tricky
scenarios to arise. Since our input set always specifies a bounding box, i.e. a rectangle which
strictly includes all the other primitives, we can call BBoxWidth and BBoxHeight the
dimensions of the bounding box, while ResWidth and ResHeight represent the dimensions
of our framebuffer, therefore the resolution of our grid is ResWidth ∗ ResHeight. Hence,
each point of the grid is mapped to a corresponding decimal interval of size

(BBoxWidth/ResWidth)x(BBoxHeight/ResHeight)

Given that the bounding box is fixed by the description of the footprint, increasingResWidth
or ResHeight increases the resolution of the grid, and therefore the interval size mapped.
This means that, for example, a footprint having BBoxWidth == BBoxHeight == 4 and
two point seeds P1(x, y) = (0.1, 2.0) and P2(x, y) = (0.3, 2.0), when discretized over a grid
with ResWidth = ResHeight = 12, will feature the two point seeds neighboring on the
X-axis, since the grid coordinates of the input primitives are integers and are computed as

GridPointix = round(Pointix ∗ResWidth/BBoxWidth)

GridPointiy = round(Pointiy ∗ResHeight/BBoxHeight)

and therefore
GridPoint1x = round(0.1 ∗ 12/4) = round(0.3) = 0

GridPoint1y = round(2.0 ∗ 12/4) = round(6.0) = 6

GridPoint2x = round(0.3 ∗ 12/4) = round(0.9) = 1

GridPoint2y = round(2.0 ∗ 12/4) = round(6.0) = 6

assuming that round is defined as

round(f) = floor(f + 0.5)

Being so close, GridPoint1 and GridPoint2 can lead to mistakes in the computation
of the GVD. However, if we increase the resolution of the grid so that ResWidth =
ResHeight = 48, the new coordinates of the points on the grid become

NewGridPoint1x = round(0.1 ∗ 48/4) = round(1.2) = 1

NewGridPoint1y = round(2.0 ∗ 48/4) = round(24.0) = 24

NewGridPoint2x = round(0.3 ∗ 36/4) = round(3.6) = 4

18

NewGridPoint2y = round(2.0 ∗ 48/4) = round(24.0) = 24

and their distance on the X − axis is not anymore 1 but 3. Trivially, increasing the resolu-
tion can prevent some troublesome scenarios to appear in the input grid of the approximate
computation. Eventually, the input set could be pre-processed to check the minimum res-
olution that should be used in order to avoid the presence of problematic configurations in
the approximated grid.

This being said, increasing the resolution has some consequences. Since the method
described in [HCK+99] is based on rendering 3D primitives, computing 2D GVDs scales
well with the increase in the resolution because graphics hardware is extremely optimized
for this operations. However, increasing the resolution has a major negative impact on
the time spent on the transfer of the framebuffer data from the GPU to the CPU, and at
the same time the performance of the subsequent CPU tracing operation does not scale
well with the resolution. Moreover, the total resolution is limited both by the frame buffer
resolution of the GPU and by the constraint on the allocation of a single buffer on the
CPU. Luckily, the GPUs have evolved significantly in the last 10 years and they are today
capable of handling very big (High-Definition) resolutions, while the second limitation could
be overcome by changing the CPU tracing step so that the big CPU buffer containing the
framebuffer data is not needed anymore.

Having noticed that the use of higher resolutions can lead to ECMs with less mistakes,
we will now describe a modified approach that will aim at removing the limitation on the
resolution that can be used for the computation of a Navigation Mesh, and that will employ
modern GPU-parallel and CPU-parallel technologies and related ideas, in order to com-
pute higher resolution, and thus more correct, Navigation Meshes with similar or better
performance.

19

4 GPGPU to improve ECM construction
In this chapter we will investigate how the construction method of an ECM could be changed
in order to have an approach that allows higher resolutions and, eventually, performing at
the same time better than the original one. Ideally, after having computed a "visual"
representation of the GVD in the framebuffer, we will try to perform additional operations
on the GPU so that it will not be necessary anymore to transfer the entire color data back
to the CPU; moreover, since modern GPUs implement an efficient parallel programming
model, usually addressed with the term "GPGPU", we hope to increase the efficiency of the
procedure, too.

4.1 General-purpose computing on graphics processing units
The acronym GPGPU stands for "General-Purpose [Computing] on Graphics Processing
Units" and is generally used to refer to programs that use the graphics hardware to perform
more general and non-strictly graphical calculations. GPGPU roots back to the introduction
of the so-called "programmable pipeline" to GPUs: programmers started using the associ-
ated Shader APIs to write non-graphics related programs which would be then executed in
parallel on the graphics hardware, observing a performance boost. Eventually, both ATI
and NVIDIA, leading companies in the GPU hardware industry, released new APIs that
allowed an easier development of general, non-graphics programs that can be run on the
GPUs, called "NVIDIA CUDA" and "ATI Streams". A short description of the structure of
the API and of the GPU computing model will follow, in which we will use the terminology
adopted by CUDA, although all the concepts have their correspondent in other APIs.
GPGPU defines a parallel computing model called "Single Instruction, Multiple Thread"
(SIMT). In the SIMT model, some functions, called kernels, are executed on the "device"
(the GPU) by a high number of threads at the same time while referring to the same set
of input data. SIMT distinguishes itself from the SIMD (Single Instruction, Multiple Data)
model mostly because the shared working data, that has to be transferred from the CPU
(the "host" component) to the GPU "manually" (which means that transfers must be han-
dled by the programmer), can be arranged in a number of different ways, while instead the
SIMT model defines stricter rules and constraints on the format of the input data (such as
dimensions and padding). An example of SIMT is the SSE instruction set of modern Intel
processors. Notice that CUDA includes the SIMT model too, and also in a quite straight-
forward way given that it also defines instructions that can operate, for example, on sets of
4 floats packed together, mimicking in this way the SSE instructions.
Threads executing a kernel are logically organized into a "Grid" and divided into "Blocks":
Blocks share a limited amount of memory that has a very low read/write latency. Each
thread has its "index" mapped to a Grid position, with a different value for each of the
dimensions of the Grid (3 at most). At the same time, GPUs can be considered a collection
of "Streaming Multiprocessors" (SMs): up to a certain number of blocks can be assigned to
each SM (as long as the total number of threads is under a particular threshold). Threads
in Blocks are further subdivided into "Warps" (Warp size is 32 on most recent GPUs) which
are scheduled to execute concurrently on the assigned SM. Hence, SMs are capable of ad-
vancing at the same time 32 threads by executing concurrently the same instruction of a
kernel 32 times: warp scheduling has almost 0 latency (usually this is referred as "zero-
overhead thread scheduling"). With all this being said, it is easy to understand how GPUs
can claim such a high number of GFLOPS per second (Figure 10).

Considered that no assumptions can be made on the order in which Blocks and threads
are scheduled, GPGPU is usually well suited to solve problems involving computations that
can be subdivided into a big number of fairly independent, all equal operations, performed
on memory with strong locality properties. An example could be applying a change to all
the pixels of one image according to some external formula, which is in fact exactly what
Shader/GPGPU APIs were originally invented for, but not all algorithms can be expressed
by the SIMT model, or not entirely [KWmH10].

20

Figure 10: CUDA architecture (simplified). (a) CUDA Streaming Multiprocessor: a SM is composed of
many Streaming Processors (or CUDA Cores) that will execute the Blocks. CUDA Cores share texture
units, shared memory and constant cache. Device memory instead is shared among all SMs. (b) CUDA
execution model: A Grid is defined before the execution of a Kernel. Blocks are created inside, and threads
are split into these Blocks. Blocks and threads are assigned IDs. Blocks will be effectively scheduled to
Streaming Multiprocessors.

4.1.1 Common GPGPU characteristics and related issues

Developing kernels for the GPU involves getting acquainted with some basic ideas and
the common issues they raise; to not understand them correctly can prevent important
optimizations from occurring.
Proper use of the various kinds of memory. The standard GPU DRAM memory is
referred usually as "Global" memory. Global memory can be read and written by all threads
of a Grid executing a kernel, but it is also the slowest memory available. Blocks all share
a smaller amount of read/write "Shared" memory: shared memory is much faster that the
global one, but is quite limited (around 16KB on most GPUs). On the device we can also
have Constant memory, which can be read very quickly, but not written, by all the threads
of a Grid, and is also quite limited (65 KBs usually). Threads also have their own private
memory, which is mapped to registers of SMs. A common "pattern" that kernels can follow
is to start by initializing the shared Block memory, usually with some values read from the
Global memory, and then to perform the computations reading from and writing to the fast
shared memory, updating the Global memory only at the end of the process by reading the
partial result(s) from the Shared memory. To ensure consistency in read/write operations of
different threads belonging to the same Block, the instruction __synchronize() can be used:
a kernel encountering the __synchronize() function will be halted until all the threads of
the same Block will also reach that instruction. On most platforms, if a kernel performs at
least 2/3 reads from the global memory, using sharing memory in-between should be enough
to already grant a speedup (Figure 10).
Together with the idea of using all the different kinds of memory correctly comes the con-
cept of "Memory Coalescending": basically, given that warps execute together, they can
also read from memory together, if memory locations happen to be contiguous. Thus, if
threads from Thread 0 to Thread 15 read respectively from the locations global_array[0]
to global_array[15], the read operation will occur as a single memory load. Kernels usu-
ally have to be carefully designed to trigger coalescing, especially when moving data from

21

global to shared memory (or the inverse).

Dynamic (re)redistribution of the resources. GPGPU APIs usually provide functions
to query the underlying hardware on which the program is being executed, thus it is possi-
ble to know what the maximum number of threads/Blocks that we can run are, and all the
related information. As programmers, our goal is to maximize the use of all the resources:
every time we start a GPGPU computation, parameters such as the Grid dimensions and
the amount of Shared memory to allocate must be selected, thus all these resources are
dynamically allocated, and they should be chosen with maximization in mind, remembering
at the same time that, depending on the current status of the computation and the current
hardware usage, the same kernel could require to be executed with (quite) different dynamic
parameters (such as: the Blocks’ number and Blocks’ size) every time to achieve the best
performance.
Dynamic resources sometimes are not explicitly declared when launching a kernel, but im-
plicitly, and we have to keep in mind that this could still impact performances. For example,
the hardware defines a limit on the number of total registers that can be allocated at the
same time on a SM. Since threads’ private variables are usually stored in registers, we have
to take the number of these variables into account when deciding our Block/Grid size: just
by adding one variable to a kernel, we could end up with a Block dimension that does not
allow maximum utilization anymore (because of the new total number of registers requested
by the Blocks of threads), even though at the same time a quick accessed private variable can
save time on memory fetching parts. Therefore, a number of tradeoffs arise, and evaluation
through extensive testing can be the only solution. Nvidia released a useful "Occupancy
Calculator" in the form of a simple spreadsheet to help dealing with these issues.

Diverging Threads. When threads of the same warp follow different paths of control
flows, we say that these threads diverge. Divergence has a severe impact on performance,
because the instructions that the threads of the same warp do not "share" can’t be executed
in parallel, but are instead serialized. The situation can become even worse if we combine
this scenario with non-optimized memory accesses. Typical constructs that can lead to di-
vergence, and thus should be employed carefully, are if/then/else constructs and for loops.
Divergence can be avoided, for example, by re-designing algorithms, by adjusting the Block
and Grid sizes taking into account warp size, and by "padding" the memory accesses de-
pending, again, on warp size.

Latency Hiding. Given that GPUs have so many cores and can execute so many math-
ematical instructions at the same time, bottlenecks in GPGPU applications can easily be
represented by the time spent in creating/destroying a kernel and in the idle time that oc-
curs when all kernels have to wait for a read operation to complete in order to continue. A
simple but important solution to deal with this is to increase the number of mathematical
instructions performed by threads, for example by having each thread modifying the values
of many pixels instead of just one. This way, a SM will better employ the time that it
would probably instead spend waiting for a read operation to be finished, thus "hiding"
(not avoiding) the latency of the read operations. Also, the number of threads spawned and
destroyed will then probably decrease, too, granting an additional improvement.

4.2 Computing Medial Axis on Graphics hardware: Relevant literature
Computing a Medial Axis or a (generalized) Voronoi diagram on the GPU seems to be
a fairly active applied research field. We have already introduced the paper by Hoff et
al. [HCK+99] and the updates that followed it: the method takes advantage of the sole
GPU rasterization operations, with no involvement of any GPGPU techniques, nor any use
of the GPU programmable pipeline. Moreover, it is important to remark that the method
only "draws" a generalized Voronoi diagram on the framebuffer, without computing in fact
any useful geometrical description of the structure.

A technique named "Jump Flooding" was introduced in 2006 by [RT06] to compute 2D
Voronoi tessellations (even generalized) on the GPU. Basically, the x and y coordinates

22

of each seed are stored in the correspondent point of a big texture. Points of the texture
that are not seeds will be initialized with the pair of values (nil, nil). A value stepsize
is also picked. Then, a pixel-shader program is launched, spawning a GPU thread per
pixel: each thread will read the values of the 9 pixels at coordinates (x + i, y + j), where
i, j ∈ {−stepsize, 0, stepsize}, and in case any of them yields a value (a pair of coordinates),
the thread will compute the distance between pairs of coordinates and the current (x, y)
pair identifying the pixel. If any of these distances is smaller than the distance between the
pair (x, y) identifying the pixel and the pair stored in the pixel, then the correspondent pair
will be the new pair stored at position (x, y). After an entire round of GPU threads, the
values stepsize is updated: the paper shows, if the resolution of the texture is n × n, by
starting with stepsize0 = n and then subsequently updating stepsize so that stepsizet+1 =
log2(stepsizet), that we end up with a fairly correct propagation of the values among all
the pixels in about log(n) rounds. This approach is expanded in [RT07] that shows how
to generalize it to obtain 3D Voronoi tessellations, how to reduce the errors significantly
with little cost, or how to speed up the whole computation by "downsampling" the texture
data. The approach eventually evolved in the "Parallel Banding" approach [CTMT10] that
computes the "Euclidean Distance Transform", a concept similar to the Voronoi diagram
that instead aims at storing for each point the closest distance to a site, rather than the
position of the seed itself. The novelty of the method is the use of a GPGPU technology
as CUDA, and thus the attempt at creating an algorithm that fits the related parallel
model. The "Jump Flooding" and "Parallel Banding" approaches seem to scale better with
the number of input seeds than the approach by Hoff et al., but again, these approaches
compute no geometrical description of the structure.

The interesting fact is that, originally, basic algorithms such as the "Marching Cubes"
and its 2D counterpart "Marching Squares", that aimed at computing the isosurface (or
isoline, when in 2D) of a scalar field were considered "embarrassingly parallel": an isoline of
a 2D scalar field is similar to a Voronoi diagram of only 2 seeds, and thus such algorithms
could be easily extended to compute a Voronoi diagram. The Marching Squares algorithm
subdivides the input into groups of 8 neighboring "voxels" and computes the parts of the
isosurface that each group would generate; it is clear that, given the locality of the approach,
the algorithm is easily parallelizable. However, at the end of the process the various parts
have to be "merged" into the final isosurface (or isoline): originally, the algorithm only
displays the final mesh, therefore acting again in parallel by having each "working unit"
drawing a part of the final mesh, but no geometrical description is computed.

In fact, "cell-by-cell" approaches that try to take advantage of the massively parallel
GPUs, as the ones shown above, are known to face issues when they have to assemble a
final description of the geometrical structure, incurring in a double penalty: they can hardly
take advantage of parallelism, and are therefore required to use a smaller number of threads,
threads that at the same time suffer from the irregular memory access patterns that a phase
of graph re-construction induces. This has been already discussed in the literature, and for
example [Ble10], the paper that describes the way the current NVIDIA "GPU AI - Path
Finding" framework computes Navigation Meshes, notices how the GPU graph search that
has to mark which samples of the 3D space form a good coverage of the free-space is the
step that takes up, on average, 78% of the computational times alone, exhibiting as well
fairly un-coalesced (and thus unoptimized) read and write operations. A more recent arti-
cle [HKKOO11] from the Computer Systems Laboratory of Stanford University offers a good
overview on the problem, and explains more carefully why the GPU programming model
pays a performance penalty when it comes to graph-based algorithms, mostly because it leads
to frequent threads’ branching and to irregular memory accesses. The paper also shows that
good GPU parallel implementations of algorithms such as Breadth-First Search benefit from
the SIMT model when used on large graphs (order of magnitude ≥ 103), probably because
the advantage of using so many independent threads at the same time overcomes the perfor-
mance penalty caused by branching/irregular accesses. Moreover, [HKKOO11] also presents
a new GPGPU programming technique that aims at executing with "thread granularity",
and thus at the same time by many GPU threads, only those operations that are clearly not
branching (such as copy/read of memory buffers), while performing the others with "Warp

23

granularity": since branching and coalescence are measured only "per thread", the negative
effect is minified. Clearly, this means that some groups of (up to) 32 threads (32 is the
warp size of most CUDA capable GPUs) will execute the same set of instructions at the
same time, thus reducing the number of simultaneously active working units by a factor
of 1/32 (at maximum), but reducing threads’ branching in fact seems to grant anyway a
performance boost.

Taking into account the considerations above, it seems clear that working on a GPU
parallel algorithm that computes an ECM, or even one of its "basis" structure such as
a GVD, will be at the same time difficult and probably not beneficial, considering also
that currently ECMs, being compact descriptions of the walkable space of an environment,
exhibit graph having only up to a couple of hundreds of edges. Therefore, in our case, the
penalties that can originate from branching and irregular memory accesses will maybe not
be counterbalanced by the advantage of having a huge amount of working units. Moreover,
as opposed to the case of a simple BFS, we would like not to simply visit and mark the
nodes of a graph, but also to store them in a common organized structure, which can pose
the additional read/write synchronization issues.
Therefore, the approach that we will present will focus on:

• Performing additional steps on the GPU that seem to naturally fit the GPGPU model,
while basically leaving out those that are shown not to do so (for example assembling
the final graph).

• By keeping in mind the geometrical nature of the ECM structure, we will try to
compute the biggest possible amount of information required by an ECM construction
on the GPU, ending up with transferring back only relevant information.

4.3 Overview of the new Approach
As a starting point, we assume to have a visual representation of a GVD on the GPU. This
can be the output of the method by Hoff et al. or could be also generated using the Jump
Flooding technique. Both have advantages and disadvantages in terms of speed, with the
former one scaling better with the resolution of the grid, while the second one scales better
with the number of input primitives. We choose to adopt the algorithm by Hoff et al., since
the errors it can generate are clearer, and because its property of scaling better with the
resolution resonates with our goal of reaching very high resolutions.
Given the color data representing a GVD on the GPU, we define a 2D grid(x, y) of points,
with 0 ≤ x < bufferWidth and 0 ≤ y < bufferHeight; bufferWidth and bufferHeight
are the dimensions of the framebuffer that define the total resolution. Points are placed so
that they have, when possible, 4 touching pixels around them, apart from those touching
any of the borders which exhibit instead less than 3 neighboring pixels. The origin of the
axes is located at the topmost left corner; the x axis runs from left to right while y runs
from top to bottom. In case of a grid point having 4 neighboring pixels, and thus colors,
we call the colors ColorLU , ColorRD, ColorLU and ColorRU . Pictures 11a and 11b show
these assumptions. To each pixel of the grid we can assign an ID = (y ∗ bufferWidth)+x,
a single value that identifies the 2D position in the grid.

Then, we observe that transferring the whole color data to the CPU for further tracing
is a big waste, since most of the information on the GPU is in fact useless. Considering the
definition of the ECM, the information that we actually need is:

• The locations of the Voronoi vertices, because a subset of them will become the vertices
of our ECM.

• The locations of all the edge-points, which are the points that will form the edges
connecting our ECM vertices.

• Among the edge-points, we need to know which ones will be event-points of the ECM
edges, according to the definition of [Ger10]. They can be either Voronoi vertices or
edge-points in our GVD.

24

(0,0) (9,0)

(0,9)

ColorRD

ColorRU ColorLU

ColoLD

ColorLeft ColorRight
(c)

(b)

(a)

Figure 11: Example of the adopted grid.
(a) A grid, together with the associated pixels’ data.
(b) Color data of a vertex with 3 different pairs of neighboring color values.
(c) An edge-point, with its pair of different color values (to its left and to its right)

• For each vertex and event-point of the ECM, the location of the closest points to them
that lie on obstacles.

Trivially, the information specified above is a smaller subset of all the points of the grid. If
we could compute it on the GPU efficiently, then we would save a considerable amount of
time in the data transfer, and at the same time we can expect an easier tracing routine on
the CPU, since there will be no need to compute any additional information.
In the following section, we will describe how to compute all the needed information on the
GPU.

4.3.1 Locating Voronoi vertices and Voronoi edge-points

With the color data on the CPU, computing a list of all the locations of the Voronoi vertices
is trivial, and is shown in Algorithm 1. Since each point has (up to) 4 neighboring colors
(squares of the grid), we can use the function GetDirections to check the number of pairs
of colors that

• share a side of the grid

• are different from each-other

• are both different from black (color assigned to obstacles of the footprint)

Points that yield 3 or 4 "local directions" are degree 3 or 4 points and are thus Voronoi ver-
tices. Similarly, points with degree 2 are Voronoi edge-points. However, Algorithm 1 calls
the function GetUniqueDirections, that also checks whether to a pair of different neigh-
boring colors are also associated two distinct Closest Points before counting an additional
direction. This function allows to select only the vertices of the Medial Axis, but performs
the additional expensive computation of the Closest Points. At the end of the routine, we
will have all the locations of vertices and edge-points, respectively, in lists verticesList and
edgePointsList.

Locating Voronoi vertices and Voronoi edge-points directly on the GPU poses some addi-
tional challenges. For each point, the original CPU function can call either the single Get-
Directions function or both GetDirections and GetUniqueDirections, and these
two very different control flows can rapidly increase the branching of the routine, deterio-
rating the GPGPU performance. At the same time, GetUniqueDirections includes the
computation of the Closest Points, a fairly expensive geometrical computation that, instead,
we would prefer to treat more carefully separately, to try to achieve maximum efficiency.
Therefore, at this point, we will not perform any operation similar to GetUniqueDirec-
tions, thus limiting the routine to the computation of non-unique directions. This means
that we will also detect vertices of the GVD that will eventually prove not to be vertices of

25

Algorithm 1 FindVoronoiVerticesAndEdgePoints(colorbuffer, bufferWidth,
bufferHeight, verticessList, edgePointsList).
Input: A CPU buffer colorbuffer with width and height bufferWidth and bufferHeight
holding the color data representing our GVD, two empty lists verticessList and
edgePointsList that will hold the results.
Output: Output is appended to lists verticessList and edgePointsList.
1: for x = 1→ bufferWidth do
2: for y = 1→ bufferHeight do
3: nDirs← getDirections(colorbuffer[y ∗ bufferWidth+ x])
4: if nDirs > 2 then
5: nUniqueDirs← getUniqueDirections(colorbuffer[y ∗ bufferWidth+ x])
6: if nUniqueDirs > 2 then
7: sample← CreateSample(x, y, colorbuffer)
8: verticessList.Append(sample)
9: end if

10: else if nDirs > 1 then
11: sample← CreateSample(x, y, colorbuffer)
12: edgePointsList.Append(sample)
13: end if
14: end for
15: end for

Algorithm 2 FindVoronoiVerticesAndEdgePointsGPGPU(colorbuffer,
bufferWidth, bufferHeight, verticesMarkers, edgePointsMarkers).
Input: A CPU buffer colorbuffer with width and height bufferWidth and
bufferHeight holding the color data representing our GVD, two buffers verticesMarkers
andedgePointsMarkers as big as colorbuffer that will be written.
Output: Output is written to the buffers verticesMarkers and edgePointsMarkers.

1: {This function is being executed by multiple threads on the GPU}
{Threads have an ID that depend on the distribution of the workload}

2: x = GetXCoordinateFromGPGPUID()
3: y = GetYCoordinateFromGPGPUID()
4: nDirs← getDirections(colorbuffer[y ∗ bufferWidth+ x])
5: if nDirs > 2 ∨ (nDirs > 0 ∧ (x == 1 ∨ x == bufferWidth − 1 ∨ y == 1 ∨ y ==
bufferHeight− 1)) then

6: verticesMarkers[y ∗ bufferWidth+ x] = 1
7: else if nDirs > 1 then
8: edgePointsMarkers[y ∗ bufferWidth+ x] = 1
9: end if

the Madial Axis, and edge-points that are parts of edges that will not appear in the final
ECM. Filtering out those points that will not be part of the ECM will be performed during
subsequent steps, as well as the computation of Closest Points. The GPGPU version of
FindVoronoiVerticesAndEdgePoints will launch a CUDA kernel spawning an inde-
pendent thread for each grid point, and each thread will examine the 4 colors ColorLU ,
ColorLD, ColorRU and ColorRD neighboring the assigned point. Spawning a thread per
grid point, and thus a thread per pixel, means anyway subdividing the work-load in the
standard, parallel-friendly CUDA entities (shown in Figure 12).

Re-designing Algorithm 1 for the GPGPU model poses a more subtle but additional
challenge: Algorithm 1 stores the vertices/edge-points detected in two separate lists that
are continuously updated. Since GPGPU defines a parallel model, and considering that is
desirable to have the highest possible number of GPU threads performing non-interfering
computations, we face the problem of multiple threads updating some shared buffers. On
the GPU, because of the high number of threads and all the issues related to divergence,

26

Warp (32 th)

Block
(16 x 8 th)

 Thread

Figure 12: Example of input color data, and its CUDA subdivision for the first step. The GPGPU step that
will locate Voronoi vertices and edge-points will spawn a CUDA thread (represented by a single rectangle) for
each pixel, checking the neighboring color data through the use of Texture memory. Threads are advanced in
parallel in groups called "warps" (depicted in purple), with every thread of the warp executing instructions
simultaneously. Warps are then grouped into CUDA Blocks (in green): CUDA Blocks are what is sent to
the Streaming Multiprocessors of the GPU. The size of a CUDA Block should be specified: in general, we
use bigger Blocks than 16x8, used in the picture.

the problem can strongly impact the performance, and is at the same time harder to solve
efficiently because of the different types of memory available, with different advantages and
limitations.
A first possible way to solve the problem is to use atomic operations, which are defined by
the CUDA API and available on many (not all) CUDA capable GPUs. Atomic operations
abstract the use of synchronization mechanisms, adding the cost of such synchronization to
the routine. This cost can be quite high for a CUDA routine, especially considering that
our buffers are located in Global Memory and that are thus accessed at the same time by
all the threads of the kernel, that will eventually have to be synchronized. A known way
to address this is to define many different and smaller buffers in Shared Memory to use as
lists, and make sure that threads of each CUDA Block will first update their "Block Shared"
buffer, copying the content of these buffers to Global Memory only at the end of the whole
computation. Threads will synchronize only for the accesses to Shared Memory, decreasing
the total cost of synchronization since less threads will concur for the use of each buffer.
However, this solution requires a more complex implementation, together with the use of
atomics that act on Shared Memory, which are defined by the CUDA API but available on a
significantly smaller number of CUDA capable GPUs than the number of GPUs supporting
atomics that act on Global Memory.

In the end, we decided to adopt a different solution, adapted from the techniques usually
employed to perform "stream compaction" of "sparse" data on the GPU. Two big output
buffers verticesMarkers and edgePointsMarkers, as large as the grid, are allocated on the
GPU, with all their values initialized with 0. During the GPGPU FindVoronoiVertice-
sAndEdgePoints routine (Algorithm 2), if a Voronoi vertex is recognized by a thread, a 1
is written at the correspondent position of the buffer holding the "markers", and the same

27

happens for the edge-points (Figure 13). This way, we have no concurrence involved if we
spawn one thread per point, since each point has a separate and defined location to perform
its write operation to. Then, we perform an exclusive "prefix sum" on the two output buffers
that "mark" the positions of vertices and edge-points.

1

1 1 1 1 1 1 1 1

Warp
Threads

Vertices
Markers

EdgePoints
Markers

Colordata
(Warp)

Figure 13: Example of Voronoi vertices and edge-points detection on Warp basis: each CUDA thread
checks neighboring pixel values associated to point of the grid, and eventually writes a 1 at the corresponding
position of either the V erticesMarkers or EdgePointsMarkers arrays.

The prefix sum (also "prefix scan" or just "scan") of an input sequence of values
{x0, x1, . . . , xn} is defined as the sequence {x0, x0+x1, . . . ,

∑n
i=0 xi}. A Pefix sum is easy to

compute sequentially, but a parallel computation is not trivial and used to be the subject of
many fundamental studies concerning parallel algorithms [Ble90], since its generalization can
be considered an important "building block" for many parallel algorithms, such as sorting.
Prefix sums are now known to be a strongly parallelizable algorithm on the GPU [HSO07],
too. We will perform an "exclusive" prefix sum, which is simply a standard prefix sum
"shifted" right by one position, with a 0 as first element. If we compare, for example, the
array marking the vertices with the "scanned" one we can notice that if we consider the
sequence of values located only at the positions where there used to be ones, then we have
an increasing sequence of values starting with 0 (Figure 14). Both verticesMarkers and
edgePointsMarkers will be "scanned" and the results will be written to the 2 additional
buffers, verticesMarkersScanned and edgePointsMarkersScanned, having the same size.
At this point, we can also notice that if we sum the last element of the scanned buffer with
the last element of the original correspondent one (this latter element can be either 0 or
1) we have the total number of vertices (or edge-points) detected. Therefore, we can then
allocate two more GPU buffers verticesIDs and edgePointsIDs of the right size that will
host the IDs of the detected vertices and edge-points, and then call another GPU kernel
that will spawn multiple threads, one per pixel, each thread checking if the associated pixel
identifies a vertex (or an edge-point) by looking at the buffers with markers verticesMarkers
and edgePointsMarkers; if it does, the thread will write the ID of the associated pixel at
index i of verticesIDs or edgePointsIDs, where i is the value that can be read from either
verticesMarkersScanned or edgePointsMarkersScanned (shown by Figure 14, too). In
addition, threads of this kernel will also take care of copying the color data associated with
the points to the 3 additional arrays EPColorsLeft, EPColorsRight and V PColors. The
reason why the edge-points’ color information is split in 2 separate arrays will be clear later
in this work.

The described approach involves 4 separate operations (1 one kernel that marks positions,
2 prefix-scans and 1 additional launch that re-organizes the IDs of the points and downloads
color data), thus 4 separate launches of CUDA kernels, and 4 additional big but temporary
buffers (2 used for the markers and 2 more to hold the results of the scans) on the GPU,
but it allows to launch at each step the maximum possible number of threads (one per
pixel of the grid) that always perform independent or parallel-friendly (as in the case of

28

Figure 14: Stream compaction steps (taken from [HSO07]). First, the elements that we want to preserve
are "marked" with 1s, in a separated array, which we then scan (performing an exclusive prefix sum). In
the scanned array, at the positions of the elements we have marked previously, an increasing sequence of
numbers starting with 0 can be observed. Moreover, if we add the last element of the scanned array to
the last value of the "markers" array we obtain the number of values marked (4 in the picture). Therefore,
we can allocate a new array of size 4 and then copy the element i of the input array (with letters) only if
it is marked (1 in the second array) and at the location stored at position i of the scanned array. In our
implementation, we perform the same exact operations but on 2D arrays.

the prefix sum) operations. The first kernel reads 4 values per thread, all at spatially-
neighboring locations; the same applies for the fourth kernel which has to download up to 4
color values per pixel. The first and third kernels write values at consecutive, contiguous and
non-overlapping locations. Therefore, the write operations should be coalesced/optimized.
At the end of the three launches, the GPU buffers verticesIDs and edgePointsIDs will
contain the IDs of the n Voronoi vertices and the m IDs of the Voronoi edge-points, while
the arrays V PColors, EPColorsLeft and EPColorsRight will contain, respectively, 4n,
m and m color values.

4.3.2 Computing Normals to the Obstacles’ Segments

For the following steps of an ECM construction we need to compute the normals generated
from the primitives’ data, which is the set of normals perpendicular to each segment defining
a primitive. An obstacle is defined and stored by the ECM framework as a list of points
(P1, P2, . . . , Pi, . . . Pn). Therefore, n normals to segments (P1P2, . . . , PiPi+1, . . . , PnP1) are
generated per obstacle; each normal Ni starts at obstacle point Pi and points outwards.
Normals are needed during the computation of an ECM to locate the event-points on the
edges [Ger10].

We can compute the primitives’ normals directly on the GPU if have the primitives’ data
on the device, too. In the current ECM framework, primitives’ data is not explicitly loaded
on the GPU, therefore we will have to transfer it: since any primitive can be expressed as
a set of segments, the whole primitives’ data can be represented as a long set of segments,
hence as a long set of pairs of points. We will store primitives points in 2 separate arrays
Primitives1 and Primitives2 that will hold consecutive points of the segments: if segment
S defined by the 2 points Sp1 and Sp2, Primitives1 will hold Sp1 and Primitives2 Sp2.
We will also store the number of segments per primitive in the array NSegsPerPrim.

The type of each primitive prim can be:

• Point: a point primitive PPoint can be considered a segment with two coincident
points. In this case, we will add PPoint to both Primitives1 and Primitives2

• Line Segment: a line segment PSeg is defined by the two points PSegP1 and
PSegP2. Moreover, a line segment generates 2 normals, in both orientation. There-
fore, we will store the segment two times, in inverted order: Primitives1 will get
PSegP1 and PSegP2 while Primitives2 will receive PSegP2 and PSegP1.

29

• Border: the ECM framework defines the "border" primitive, which is a segment
part of the bounding box enclosing the footprint. Unlike standard segments, borders
"generate" only one normal, pointing inside the footprint. However, to keep things
simpler, we will just treat borders as standard segments and have them generate an
additional (unused) normal.

• Polygon a polygon primitive PPolygon is defined by n > 2 points

{PolP1, PolP2, PolP3, . . . , PolPn}

and therefore by the n segments

{(PolP1, PolP2), (PolP2, PolP3), . . . , (PolPn, PolP1)}

We will then store the segments of the primitive by adding {PolP1, PolP2, . . ., PolPn}
to Primitives1 and {PolP2, PolP3, . . ., PolPn, PolP1} to Primitives2.

A1

A1 A2

Px1 Px2 Py1 Py2

A1x A1x A1y A1y

A1x A2x A1y A2y

A1
A2

A3

A1x A2x A1y A2y

A2x A3x A2y A3y

A3x A1x A3y A1y

A2x A1x A2y A1y

Figure 15: Organizing Primitives’ data using the Structures of Array principle. For each primitive, its
coordinates are added to the arrays that describe obstacles data, which are Primitive1X, Primitive2X,
Primitive1Y , Primitive2Y .
A point will be considered as a segment with two coincident endpoints, therefore Primitive1 and Primitive2
will all receive the same pair of values at X and Y positions. Points will not spawn any normal, but they
have to be stored f.e. for rendering.
A segment, or a border, will add 2 values to all the 4 arrays, thus 2 normals will be generated (in both
directions).
A general polygon follows the generalization of segment, therefore an n-sided polygon will add n values to
all the 4 arrays, spawning n normals, 1 per segment, in the outward direction.
Reading vertically, we can see the sequence of values that each array will store at the end of the process.
This organization of the data conforms to the SoA principle more and allows more efficient GPGPU reads.

Additionally, we will split the points of Primitives1 and Primitives2 in 4 additional lists
PrimitivesX1, PrimitivesY1, PrimitivesX2 and PrimitivesY2, in order to store x and y
coordinates separately. These choices allow us to have each segment i belonging to the prim-
itives’ data defined by the points (PrimitivesX1[i], PrimitivesY1[i]) and (PrimitivesX2[i],
PrimitivesY2[i]). Storing the data in those 4 arrays complies to a "Structure of Arrays"
(SoA) organization of the data which leads to more efficient memory accesses for GPGPU
applications when compared to an "Arrays of Structures" (AoS) organization, typically used
in standard softwares (as discussed f.e. in [Wm11], Chapter 31). All 4 arrays holding prim-
itives’ data will have the same length m, therefore we can (pre) allocate on the GPU the
2 output buffers outputNormalsX and outputNormalsY of m elements that will hold the
normals data.

At this point, the 4 arrays need to be transferred to the GPU, with the consequent
consumption of time. However, primitives’ data on the GPU could be used also for rendering
during the construction of the GVD using the method described in [HCK+99].

With this organization, we can compute the normal Normali as

Normali = (PrimitivesY2[i]− PrimitivesY1[i], P rimitivesX1[i]− PrimitivesX2[i])

30

and therefore we can compute all the normals with a CUDA kernel that spawns m GPU
threads, each thread computing a normal i according to the formula above. Figure 16
illustrates the behavior of this kernel. Accesses of this kernel are optimized since the input
data is organized as a SoA, and memory writes are optimized since each thread only write
two values at position i of outNX and outNY , therefore accessing a contiguous region of
GPU memory.
To retrieve the normals for each primitive, we can perform an exclusive prefix-sum of the
array NSegsPerPrim and store it in the new array segmentsOffs that will then hold, at
each position i, the starting index of the normals’ points. Therefore, primitive i will have
its normals stored in the range

outNX[segmentsOffs[i]], . . . , outNX[segmentsOffs[i] +NSegsPerPrim[i]]

and

outNY [segmentsOffs[i]], . . . , outNY [segmentsOffs[i] +NSegsPerPrim[i]]

PrimitivesX1
PrimitivesX2
PrimitivesY1
PrimitivesY2

Cuda Threads
P1x

P2x

P1y

P2y

P2x

P3x

P2y

P3y

P3x

P4x

P3y

P4y

P4x

P1x

P4y

P1y

NormalsX

NormalsY

N1x

N1y

N2x

N2y

N3x

N3y

N4x

N4y

Figure 16: Computation of primitives’ normals. Given our organization of the obstacles’ data, each thread
can read a pair of points from the same position i of the 4 arrays and then compute a normal. Each thread
then will write the 2 values computed at the same position i of both outNormalsX and outNormalsY .
Thanks also to a SoA organization, each CUDA thread works independently from the others and performs
efficient memory read/writes.

4.3.3 Computing Normals’ Indices Associated to Points

From [Ger10] we can understand that the positions of the event-points on ECM edges,
which inform us on the geometrical topology of the curves describing the edge, depend on
the change of the normal from the Closest Point to an edge-point; each edge-point of the
Voronoi diagram is generated by 2 obstacles, hence it is associtated with 2 Closest Points
on 2 different obstacles, and an event-point is located wherever either of the 2 previously
defined normals change. Originally, [Ger10] describes how to compute the set S of event
points on one edge (ei) as follows:

First, we compute for each obstacle its normals. We associate normal ni with
edge ei and vertex vi with normals ni and ni+1. The event points then correspond
to the points on the edge which intersect with the half lines starting at vi with
directions ni and ni+1, respectively.

The index i that refers to a normal of a closest obstacle to a point is what we call "normal
index". In the current computation of an ECM, at this stage of the construction, an edge
e is represented as a discrete list of neighboring points in our grid, hence we can consider e
being be parameterized by E[t], where 0 ≤ t ≤ 1, having 2 closest points on its left and right
l[t] and r[t] and 2 normals denoted as nl[t] and nr[t] and formed by vectors E[t] − l[t] and
E[t]− r[t]. For each edge-point, we consider the closest obstacle on its left and we assign to

31

the point an index nil[t] if it lies in the vector space spanned by normal ni and ni+1, and
the same we do for the index nir[t] and the obstacle on the right of the point. Then, during
tracing, the event-points on the edge occur when two consecutive points have either indexes
different, which means, when nir[t] 6= nir[t+ ε] ∨ nil[t] 6= nil[t+ ε].
We can now recall that we have already computed a list of edge-points belonging to the
edges, together with their color information and thus associated obstacles. We also have
a description of the obstacles’ data in terms of 4 arrays, PrimitivesX1, PrimitivesY1,
PrimitivesX2 and PrimitivesY2, that sequentially list the x and y coordinates of the points
defining the segments, and a description of the normals they induce in terms of the 2 arrays
outNX and outNY that sequentially list the x and y coordinates of the normals associated
to each obstacles’ segments. Therefore, we notice that the computation of of the normal
indices nil and nir for a point P involves

1. Checking the left color of P , and thus the obstacle associated

2. Iterating over the 1 ≤ i ≤ n normals associated with this obstacle, and for each pair
of consecutive normals check if P lies inside the space they span; if it does, we assign
i as left index normal, without continuing our iteration

3. Repeating the process from step 1 but checking the right color of P instead

Normal indices relative to "left" obstacles are written to outNILeft while the ones rela-
tive to "right" obstacles to outNIRight. Assigning normal indices to m edge-points can
be performed in parallel by m threads that read from array edgePointsIDs at position i
the (encoded) coordinates values of an edge-point, then read the PrimitiveID of the left
and right closest obstacles, respectively, from EPColorsLeft[i] and EPColorsRight[i], and
then use PrimitiveID to know at which positions to read the obstacles segments in the
4 arrays that describe the obstacles data, thus starting f.i. with the segment defined by
points (PrimitivesX1[i], P rimitivesY1[i]) and (PrimitivesX2[i], P rimitivesY2[i]). In the
end, each thread will perform the check of step 2, and then write 2 values, at position i of
outNILeft and outNIRight. Figure 17 illustrates the behavior of this kernel.
Adapting this parallel algorithm for GPGPU poses the problem that different threads will
want to read at the same time the same obstacles segments values, and that in general the
normals’ coordinates are read not sequentially but in a sparse order, and both factors can
prevent coalesced reads from happening, thus slowing down the whole process. This issue
could be solved by "unrolling" the primitives segments in a couple of long lists with repeated
elements to make sure that thread i processing edge-point at position edgePoints[i] would
read different memory locations from the ones read by thread i+1, although they can consist
in the same segments data; the same should be done with the normals’ coordinates. The
so-organized data could be arranged on the CPU, but this would cost additional memory
transfers between CPU and GPU, or it could be created in parallel directly on the GPU, but
once again, since the values would be then read in the same sparse manner, we will incur
in the same penalties. Therefore, it would make sense to simply perform, at the same time,
all the other remaining operations.
Until now, we described the computation of normal indices associated to edge-points, but
in fact we have to perform the same operations also for vertices: in this latter case, the
procedure is totally similar, thus the same parallel algorithm will be used, with the only
difference that every GPU thread will read 4 colors and thus assign 4 indices; moreover,
normals indices for vertices will all be written to the same array outNIV ertices.

4.3.4 Computing All the Needed Closest Points on Obstacles

To compute the Closest Points on each obstacle to a point P belonging to the Voronoi
diagram we have to recall that the color data associated to P indicates which primitives
contributed in "generating" the point, which means that P is the point with the minimum
distance to those primitives, according to the definition of the Voronoi diagram. Hence, the
Closest Points to P should lie on those obstacles. A point P can have up to 4 different

32

Cuda Threads

EdgePointsIDs

EPColorLeft

PrimitivesO�sets

PointsPerPrim

NormalsX

NormalsY

PrimPointsX

PrimPointsY

NormalIndicesLeft

Figure 17: Computation of normals’ indices associated to edge-points. Each CUDA thread first reads an
input point (grid ID) and an associated color (left, for example). From the color ID, the thread extrapolates
where to find the coordinates of the primitive associated with the color by reading a primitiveOffset and
a nPrimitiveSegments from 2 separate arrays: now the thread knows the memory locations to read the
primitive’s segments and normals from. Normals and segments are then read and the computation of the
associated normal index is performed. The index is then written to an output array. The same process is
then carried out for the other colors associated to the point (1 more in case of an edge-point, 3 more in case
of a vertex.
In the picture, continuous arrows indicate optimized CUDA reads, while dashed ones indicate scattered,
non-parallel friendly reads (such as reading the obstacles data depending on the varying primitiveOffset
and nPrimitiveSegments.

neighboring colors, and thus up to 4 different points on those obstacles. The original imple-
mentation would then compute closest points by querying the obstacles’ data corresponding
to the colors information associated to the point P , iterating over the l lists of segments
describing the l associated obstacles and then computing the closest points to P on each
segment of the l lists, eventually keeping it as closest point if closer to P than the one
considered as the closest until that moment; in the end, we will have the l closest points to
each of the l primitives as a result.

It is clear that the whole computation of the closest points’ to P depends only on the
segments belonging to the l lists of segments segmentsListi=1...l representing the obstacles’
data, which then can be then all merged into a single list segmentsCP having m elements,
where m is the sum of the elements in each list segmentsListi. We can then observe that

33

the whole computation can be reduced to:

1. Compute the Closest Point on every segment of the list segmentsCP to the point P
together with its distance. These will be the lists outputCP and outputDistances,
both with m elements.

2. Group the outputCP points and the outputDistances values according to the primitive
they refer.

3. For each group, select the Closest Point by considering the lowest distance value stored
in outputDistances.

The above idea still holds if we had initially n lists segmentsCP , and therefore a total
collection of totalNSegments, where totalNSegments is the sum of the elements in all the
initial lists. Step 1 can be executed in parallel by totalNSegments threads at the same
time, all reading and writing to distinct and ordered positions of input and output arrays.
The 2 other steps are in fact reduction operations [MG11] and can benefit from parallelism
too. However, we have to compute the closest points to not only just a point P , but for
example to all the points in the set pointsCP : if |pointsCP | is the number of points in
pointsCP , we can still perform a parallel computation as outlined above by just increasing
the number of threads. For each P in pointsCP we will have a number n of associated
primitives, equal to the number of distinct colors among the neighboring colors, and thus a
total totalNSegments associated to P . The input set of the entire computation is then the
set inputCP with total number of segments:

|inputCP | =
∑|pointsCP |

i=1
totalNSegmentsi

and thus |inputCP | is the total number of threads that we would require in order to perform
a totally parallel computation.

Since we have all the Voronoi vertices and edge-points IDs computed, inputCP can
be easily derived: however, in practice, creating inputCP has a cost, because we would
like to instantiate it on GPU memory as well, and using GPU parallelism. Therefore, we
could reconstruct it by executing |inputCP | threads that in parallel take care of copying
the right "portion" of segments data from PrimitivesX1, PrimitivesY1, PrimitivesX2 and
PrimitivesY2, to the right position of the output arrays of unrolled data for Closest Points
computation OutDataCPX1, OutDataCPX2, OutDataCPY1 and OutDataCPY2. At the
same time, 2 additional output arrays will be created, oudPID and outPoint, containing
respectively, at position i the primitive ID associated with the segment defined by values at
position i of the 4 arrays describing the primitives, and the original associated point (grid
ID) from inputCP . Figure 18 illustrates the behavior of the kernel that unrolls the data in
preparation of the computation of all the Closest Points. Figure 19 instead illustrates the
following CUDA steps required to compute all the Closest Points.
The parallel implementation we have just described could suffer on the GPU because the
values that describe the primitives’ segments are not read in sequential, contiguous "bulks"
(which allows coalesced reads) but sparsely (depending on the primitives associated to each
point of inputCP), but this is un-avoidable. Moreover, since we are forced to perform
sparse reads of the input primitivesSegments for each P ∈ inputCP , incurring into thread
serialization, the question of whether to perform already the computation of the closest
point to P on any of the segments of the obstacles associated to it, instead of subdividing
the computation in 2 separate steps (unroll/compute), arises. Therefore, we will keep the
possibilities separated and then test both of them.

What is left to be discussed is for which points we should compute the closest points
on obstacles, which means, what are the members of the set inputCP . All the vertices of
the Voronoi diagram should be included, since we want to compute their closest points to
either add them to the final ECM (if those points are also vertices of the Medial Axis) or
to realize that those points are in fact not vertices of the Medial Axis (and thus of the final
ECM). In addition, 2 edge-points that are part of the same edge, neighboring, but with a

34

different associated normal to an obstacle segment should also ∈ inputCP since one of the
2 will be an event-point of the final ECM, and thus will have some associated closest points
information.
We recall that our data is specified in the following arrays:

• edgePointsIDs having n elements representing the x and y coordinates (encoded) of
the point in the grid;

• EPColorsLeft and EPColorsRight having each n elements representing, respec-
tively, the left and right color information of each edge-point;

• outNILeft and outNIRight having each n elements representing, respectively, the
indices of the segments of the obstacle associated with the left, or right, color that
generated the normal.

Then, we can proceed as follows:

1. We can sort all the vectors (they all have n elements) using the X coordinates encoded
by the values of edgePointsIDs as keys.

2. For each pair of consecutive values in the sorted edgePointsIDs at positions i and
i + 1 we can check whether they are neighboring (consecutive x coordinates), if
they belong to the same edge-point (same pairs of values from EPColorsLeft and
EPColorsRight) and if they have either of the indices stored in outNILeft or outNIRight
different. If all these 3 conditions are satisfied, then the pair is marked to be inserted
in inputCP .

3. Then, the 2 above points are repeated but the sorting is now performed using the y
coordinates encoded by the values of edgePointsIDs as keys.

Sorting, as well as sorting more vectors using the values of one of them as keys, is known
to be a parallel friendly operation, also on the GPU [HSO07]. Regarding step 2, it can be
performed in parallel by n threads, each checking a pair of consecutive values in the various
arrays. On the GPU, in order not to have an overlap between the values that are read by
different threads, it could make sense to first "unwrap" the values of the arrays (after they
have been sorted) so that all the original pairs of values at position i and i+ are mapped to
different but consecutive positions in the new arrays, that will then have (n−1)∗2 elements.
Once the edge-points are marked, they can be eventually compacted using the same stream
compaction technique described at the end of Section 4.3.1.

4.3.5 Constructing the ECM

At this point of the construction, we have computed the coordinates of Voronoi vertices
and edge-points, the normals to the segments describing the obstacles, the indices of the
associated normal to the closest obstacle’s segment for each vertex and edge-point, and the
location of closest-points for vertices and event-points. According to [Ger10], this is all the
information we need to compute an Explicit Corridor Map from a GPU-rasterized GVD of
the footprint information, and thus we proceed to transfer this information to the CPU from
the GPU. It is important to notice that, if we exclude the transfer of the primitives’ data
from the CPU to the GPU (required also for rendering of the Voronoi diagram on the GPU),
this is the first and only data we will transfer between the CPU and the GPU. Hopefully,
this amount should be less than the entire size of the frame buffer (as it was instead in
the original implementation that did not take advantage of GPGPU) and thus the whole
transfer should be quicker.

On the CPU, we will fill an instance of the new object ClosestPointsCache with all
the freshly transferred information. We will describe ClosestPointsCache better later in
this work, but essentially, it uses a hash-map to associate points (in the form of integer grid
coordinates) with their "local directions", color information, closest points on obstacles and
normal indices. Therefore, to construct the final ECM, the same operations that occurred in

35

P1 P2

C1 C2 C3 C4

O1 O2 O3 O4

3 2 2 3

P1 P1 P1 P1 P1 P2 P2 P2 P2 P2

C1 C1 C1 C1 C1 C3 C3 C4 C4 C4

PP11 PP12 PP13

PP12 PP13 PP11

PP21 PP22

PP22 PP21

PP31 PP32

PP32 PP31 PP42

PP41 PP42

PP43

PP43

PP41

Unroll Segments

OutCP
Data1

OutCP
Data2

OutPID

OutPoint

InputPoints

InputColors

PrimitivesO�sets

PointsPerPrimitive

Figure 18: Unrolling data to prepare a Closest Points computation. Each CUDA thread reads an input
point (edge-points in the picture) and the associated color data (2 colors per point in the picture). Each
color value identifies a primitive; therefore, both a primitiveOffset and a nPrimitiveSegments are read
from the respective arrays, in order to be able to locate the primitives segments in the arrays that hold
the description of primitives. The goal of this kernel is to fill up the 4 arrays outCPData1, outCPData2,
outPID and outPoint: the first 2 arrays will receive the points describing the primitives associated with the
colors read by the thread, while outPID will receive the associated primitive ID (mostly the color bound
to it) and outPoint the ID describing the original input point. It is clear how to those 2 latter arrays some
repeated sequences of input points/primitive IDs, all equal, will be written; this data repetition will allow
uniform memory accesses during the following CUDA step.
In the picture, the green dashed lines indicate scattered (and thus not efficient) memory accesses, while
continuous ones indicate uniform memory accesses to the buffers.

the original framework will be performed, but nothing more will be computed, only a hash-
map will be queried. In the end, we are maintaining the naturally "branching" algorithm
that assembles an ECM on the CPU, but having nonetheless already performed all its major
related computations on the GPU, and keeping all the necessary data in a memory-inefficient
but fast to query structure such as a hash-map.

4.4 GPGPU optimization notes
The design and implementation of the various computational steps described in the previous
section on the GPU using the GPGPU paradigm derived (and took advantage) from a
number of important characteristics of the model. Although some of them have already
been introduced at the beginning of this chapter, in this section we will elaborate on them,
and at the same time we will outline in which parts of the computation they are used. Notice
that the CUDA-specific considerations refer to the SDK version used for the development
and testing of the implementation, which is, version 5.0 of the NVIDIA CUDA Toolkit.

36

Parallel Computation of CPs (Map)

C1 C1 C1 C2 C2 C3 C3 C4 C4 C4

P1 P1 P1 P1 P1 P2 P2 P2 P2 P2

PP11 PP12 PP13

PP12 PP13 PP11

PP21 PP22

PP22 PP21

PP31 PP32

PP32 PP31 PP42

PP41 PP42

PP43

PP43

PP41

CP To
Segments

CP
S11

CP
S12

CP
S13

CP
S21

CP
S22

CP
S31

CP
S32

CP
S41

CP
S42

CP
S43

CP
S12

CP
S22

CP
S32

CP
S41

Distances 2.2 1.9 3.1 6.0 5.2 4.9 7.1 1.1 3.1 3.8

C1 C2 C3 C4

P1 P1 P2 P2

Associated
Primitives

CP To
Primitives
Distances To
Primitives 1.9 5.2 4.9 1.1

Parallel Reduction

Input Points

OutCP
Data1

OutCP
Data2

OutPoint

OutPID

Figure 19: Computation of closest points. Each CUDA thread starts with reading 4 values at position
i from the 4 arrays arranged during the previous unrolling step: the first 2 values read are 2 endpoints of
a segment S, the third value was the original input point P and the fourth is the ID of the primitive S
belongs to. Hence, the thread can now perform a closest point computation, computing CP , the closest
point to P on S, and the distance D, which will be written at position i of CPToSegments and Distances,
respectively. We recall that the new distance and closest point can still be easily associated with the original
point P (position i of outPoint) and primitive ID (position i of outPID).
Since, for each input point P , we are interested in the closest point to all the associated primitives, we can
now sort the values of outPoint, outPID, CPToSegments and Distances over the values of Distances.
Moreover, we will perform a "segmented sort" operation using the content of outPID to delimit our seg-
ments: performing a segmented sort will make sure that we will order, independently, all the values that
belong to the same primitive, having thus the closest point (and the associated distance) to each primitive.
We can further process the output to extract only the first elements of each segment, ending up with the
4 final arrays shown in the picture. The dimensionality m of those arrays will be smaller of the input one,
but we have anyway everything we need (input point, primitive ID, output data) to reconstruct the closest
points information from them.
As a result of the previous pre-processing, this whole GPGPU computation involves parallel-friendly calcu-
lations and memory accesses. We can also notice how this step follows the typical parallel pattern "map"
(each threads maps a distance and a closest points to the 4 input values) and "reduce" (the segmented sort,
plus filtering of elements with lowest distances per segment).

4.4.1 Use of Texture Memory

Textures come from the domain of computer graphics. They can be bound to memory
buffers and instantly provide some benefits:

• Texture queries are cached, and optimized for 2D spatial locality, although Texture
contain only 8 KB of cache per SM

37

• Textures have some limited processing capabilities that can efficiently unpack and
broadcast data (hence, a single float4 texture read is faster than four separate 32-bit
reads)

• Texture have separate 9-bit computational units that perform out-of- bounds index
handling, interpolation, and format conversion from integer types (char, short, int)
to float.

On the other side, GPUs can only use a limited number of Textures at the same time, and
can pose additional requirements on the type of memory Textures can be bound to (mostly
alignment). Also, Textures are read-only, although newer GPUs provide writing-to-texture
capabilities using "Surface" Textures, assumed that a few additional conditions are met. As
a GPGPU layer, CUDA comes with a number of functions that allow programmers to take
advantage of Textures, which can then be bound only to GPU Global Memory; about the
caching capabilities of Textures both CUDA and NVIDIA GPUs specifications are not totally
clear, but what is clear is that, for example, a single thread reading neighboring locations
of a 2D buffer in Global Memory representing a 2D space, like (x, y), (x + i, y), (x, y + i),
(x − i, y − i), should incur into a speed-up if the 2D buffer is read through a 2D Texture
fetch, although for which values of i this holds is unclear, and it seems to largely depend
on the hardware. Literature shows that a smart use of Texture memory alone can lead to
significant improvements [GM07]. Examples of algorithms that usually benefit from the use
of Texture memory include graphical filters used for image processing/computer vision, but
also simulations in 2D/3D spaces which involve continuous propagation of information to
neighbors.

We can now observe that checking the degree of our grid-points after a rasterization of
a GVD involves reading, for each thread associated with the point at location (x, y), the
color values at memory locations (x, y),(x − 1, y),(x, y − 1),(x − 1, y − 1), and this is one
of the memory access patterns which benefit from the use of Textures. Hence, our CUDA
implementation will initialize 2D Textures to read the input color data and, in subsequents
steps, to read the "markers" from buffers verticesMarkers and edgePointsMarkers. It is
important to notice that, for example, when marking points of the grid depending on the
color data, we can not bind verticesMarkers and edgePointsMarkers to Textures since
Textures are read-only.
The GVD color data is rendered to a simple OpenGL renderbuffer: the current CUDA
API version defines a rather mature set of calls that allow to directly manipulated memory
created inside OpenGL (or DirectX) contexts with limited overhead. Therefore, to use the
input color data we only needed to associate the OpenGL context and the OpenGL buffer
index with the CUDA context, and then ask CUDA a "handle" to this GPU memory.

Some additional Textures-related optimizations could be tried:

• Surface writing could be added to allow write-to-texture. The current implemen-
tation seems to fulfill the requirements for Surface writing; however, only modern
GPUs/drivers support it.

• New GPUs and GPU APIs permit what is called "bindless use" of Textures, which
allows to fetch Textures’ values without performing a bind operation before. How-
ever, using bindless Textures seems to save only a couple of nanoseconds per Texture
bind, therefore it probably makes a difference only in those scenarios that involve long
sequences of kernels operating on Textures.

4.4.2 Coalesced reads/writes and Structure of Array

As we have already explained, a coalesced memory access means that the hardware can
coalesce, or combine, the memory requests from different threads that are part of the same
warp into a single wide memory transaction. Clearly, coalesced accesses make a big differ-
ence in performance. However, coalesced accesses are a somehow complicated subject in
CUDA since GPUs have different warp sizes, alignment requirements, and in general newer
GPUs are becoming better at performing coalesced transfers even when the memory accesses

38

of threads are not perfectly aligned, because of the additional cache levels introduced. As
a simple rule, threads with consecutive thread indices that read consecutive memory ad-
dresses located into a 128-bytes aligned range of addresses should trigger a coalesced access.
Figure 20 shows some examples of coalesced memory accesses while Figure 21 shows some
examples of non-coalesced memory accesses.

Figure 20: Examples of coalesced CUDA memory accesses (adapted from figures of the CUDA notes of
the Oxford Computing lab).
Top: A sequence of consecutive threads belonging to the same CUDA warp read a sequence of contiguous
values.
Bottom: On most (recent) GPUs, even if some of the threads belonging to the same CUDA warp do not
read some of the values of the sequence, the memory reads can still be coalesced.

The benefit of coalesced accesses leads to the necessity of organizing data as a Struc-
ture of Arrays (SoA) instead of Array of Structures (AoS): traditionally, for example,
when a structure Point having two float elements, x and y, is created and then concate-
nated in a sequence of n elements, we usually end up with a long buffer with the layout
(P1X,P1Y, P2X,P2Y, . . . , PnX,PnY), and thus literally, an array of the various structure
elements. Instead, a SoA organization would lead to a memory layout like
(P1X,P2X, . . . , PnX,P1Y, P2Y, . . . , PnY): this organization is in fact a number of separate
arrays (2 in our case) that form a complex structure together, therefore those arrays could
be split in different memory buffers (as in our case, where for example outNX and outNY
are distinct GPU buffers). With a SoA organization stored in two separate arrays PX and
PY , threads (ti, ti+1, ti+2 that want to read each one point location will respectively read
positions (PX[i], PX[i+1], PX[i+2]) for the x coordinate and (PY [i], PY [i+1], PY [i+2]),
resulting in both reads coalesced. The same would not happen with the AoS layout since,
for example, ti, ti+1 would not read neighboring memory locations when reading the x co-
ordinates alone.

Around the CUDA API an entire ecosystem of libraries exists, both maintained by
NVIDIA and the community. The Thrust library [HB10] is a collection of GPU-accelerated
primitives and helper functions that also tries to "enforce" a SoA organization of the data; it
was used by our implementation in the steps that compute the primitives’ normals, normal
indices associated to points and Closest Points on obstacles.

4.4.3 Shared Memory and Optimized Scan/Sorting

Again, we have already introduced Shared Memory, which consists in either 16 KB or 48
KB per SM arranged in banks that are 32 bits wide, shared among threads of the same

39

Figure 21: Examples of non-coalesced CUDA memory accesses (adapted from figures of the CUDA notes
of the Oxford Computing lab).
Top: Not all the threads of the warp access elements sequentially, breaking the required uniformity. This
access can be referred to as "scattered" access of values in a buffer.
Middle: Memory alignment is crucial when it comes to coalescing. A simple guideline to follow (which
guarantees coalesced accesses on most CUDA capable GPUs) is to make sure that the address of the value
read by the first thread of the warp is located at an address (in bytes) which is a multiple of 32 (in the
picture, the location with address 132 is read by t0 as opposed to the location with address 128, which is a
multiple of 32 instead.
Bottom: Thread t2 breaks the sequence of contiguous accesses by skipping "its" value and reading instead
a neighboring value in the buffer. Notice the difference between this case and the one displayed in the lower
part of Figure 20.

block, and for which memory accesses from threads of warps belonging to the Block should
be always coalesced. However, when multiple requests are made by different threads for
data within the same bank, the so-called "bank conflicts" can occur. These requests can
either be for the same address or for multiple addresses that map to the same bank. When a
bank conflict happens, the hardware serializes the memory read/write operations. Moreover,
benchmark show that, contrary to early NVIDIA documentation, Shared Memory is not as
fast as register memory, registers which are instead more and more present in newer GPUs.
This, together with the difficulty in using it effectively, makes Shared Memory less and less
crucial in achieving high performance.
This being said, the use of Shared Memory can be very important in maximizing the work-
efficiency of algorithms, especially if they are expressively parallel: a common pattern is to
first load data from Global to Shared Memory, then perform many operations per single
thread of each block reading/writing to shared memory (thus taking advantage of Shared
Memory during the repeated reads/writes) and only at the end writing data from Shared
Memory back to Global Memory. This pattern is illustrated, for example, in [HSO07] that
describes among others an efficient GPGPU implementation of the parallel friendly "prefix
scan" operation.
Operations like "prefix sum" and sort, mostly "radix sort", derive their efficient parallel
implementations from the ideas behind parallel prefix scan: they become then important
"building blocks" for parallel algorithms, included our implementation. The prefix sum and

40

sorting implementations we used are in fact fairly advanced GPGPU algorithms that have
been carefully shaped and thought to take advantage of various hardware characteristics (as
explained in [MG11]), going significantly beyond the sole correct use of the different types
of memory. The main and general ideas behind them are:

• Reducing Aggregate Memory Workload: many optimized scan algorithms
[HSO07] would usually try to distribute the total workload into chunks that would be
then independently submitted to SMs of the GPU, since they could be elaborated in
parallel. Instead, [MG11] evolves from a simple "two-level reduce-then-scan" approach,
that does not scale only by allocating one thread per input element and then parti-
tioning them in chunks, but instead allocates a fixed-size grid of C threads per input
element that are kept and reused through the whole computation. Therefore, partial
sums are executed with results stored in threads’ registers instead of global/shared
memory, reducing the cost of reads/writes. Also, less CUDA launches are performed
in total since threads are kept and reused, and since each thread performs many differ-
ent parts of the computation, the total workload results more balanced and resources
end up being distributed better.

• Employing Specialized Local Multi-scan Algorithms: for the scan phase, a new
GPGPU specialized variant of the general multi-scan pass was developed. It features a
better use of threads’ registers, the encoding and unrolling of indices data that avoids
some memory reads, and specific intra-warp communication.

• Flexible Algorithm Serialization: this characteristic is mainly a consequence of
the previous two. In more classical [HSO07] or histogram-based approaches [DCSM96],
different phases are carried out in parallel but subsequently require to "communicate"
with the following ones, mostly in terms of writes and subsequent reads of Global
Memory. In [MG11] this is not needed anymore, permitting at the same time a more
dynamic distribution of the workload, since many dependencies between the "chunks"
of data that need to processed cease to exist.

The routines described and tested in [MG11] are the result of a collaboration between
the University of Virginia and NVIDIA itself. The code resulted from the research is part
is part of the Thrust project since its version 1.3.0. Version 1.5.0 of Thrust is currently
shipped also together with the latest CUDA Toolkit and therefore was the one employed by
this work.

4.4.4 Use of Pinned GPU Memory

Through the entire work, many words have been spent elaborating on the correct use of GPU
memory and its different types. However, it is well-known that moving data from/to the
GPU is by itself a very important aspect, often representing a bottleneck of computations.
This can be very significant in our case because our process includes a long phase performed
on the CPU, and at the same the GPU computations are not "massive" as in many other
cases involving GPGPU. Therefore, the un-avoidable cost of memory transfers could end up
not being counterbalanced by the parallel speed-up.

GPGPU offers some ways to mitigate these costs, the easiest one being the use of the
so-called "Pinned", or page-locked, host memory. The immediate speed-up comes from the
fact that in systems with a front-side bus (as many modern ones are) the bandwidth be-
tween host memory and device memory is higher if host memory is allocated as Pinned.
The downside is that page-locked memory is generally quite scarce, and that reducing the
amount of available physical memory can degrade performance of the whole system. Page-
locked memory is also required to perform asynchronous transfers between GPU and CPU,
or to be mapped directly to the addresses of the device (eliminating then the need to copy
it to or from the device).
In our implementation, all the CPU buffers that will at some point hold data transferred
from the GPU will be allocated as Pinned host memory, if possible. Pinned memory can
be marked as " Write-Combining" memory too, which leads to additional speed-ups if the

41

memory is only written, but this never applies to any buffer of our implementation that will
receive data from the GPU. It is unclear whether the use of Mapped memory leads to speed-
ups. especially when it comes to recent hardware or hardware with dedicated memory: in
the end, we decided not to add it since it would have required additional work on the code.
Another related further optimization that could be to investigate is the integration of asyn-
chronous data transfers in order to allow the execution of memory transfers and CPU code
at the same time, or even, on some hardware, the execution at the same time of memory
transfers and GPU calculations. However, including asynchronous memory transfer would
require to re-think the general structure of the entire approach, and, therefore, it was left
out.

42

5 From a Single-tiled to a Multi-tiled construction
Currently, the ECM framework incorporates a "limited" multi-tiled creation approach: since
the total resolution is bound to the original GPU resolution of the Voronoi construction,
the method can perform multiple rasterization passes to render high-resolution Voronoi
diagrams. However, after each pass, the framebuffer data is moved back to CPU and con-
catenated with the previously transferred data, if any, in the same buffer. We have already
showed that the use of a big CPU buffer is a limit, and how we can remove this requirement
by performing for example more operations on the GPU, as the previous chapter describes.
This, in turn, fairly naturally leads to the idea of subdividing the computation of a high-
resolution ECM into the computation of many, lower resolution Voronoi diagrams, which
could be then used to compute a final, high-resolution.
This new approach involves changing the original tracing algorithm since it involves, for
example, a more careful treatment of the borders. Also, merging the partial Voronoi dia-
grams together with their associated information (Closest Points) into a final ECM is not
straightforward; this chapter will address these issues.

5.1 General Overview and Preliminaries
We consider a visual representation of a high-resolution Voronoi Diagram as our start-
ing point, representation that can be easily rendered according to the method described
in [HCK+99] together with the movement of the OpenGL viewport that allows rendering its
multiple parts. Again, visually, we can subdivide this pixel-approximated Voronoi Diagram
into neighboring tiles, by just partitioning the pixels into squares, or rectangles. We will use
squares for simplicity, in this work. We imagine to define a grid over the entire initial visual
representation of a generalized Voronoi diagram in the same way we did in the previous
chapter (Figure 11). This pre-defined grid can be applied, in the same way, too separate
tiles as well.
At this point, we assume to be able to "trace" (which means, to compute a geometrical defi-
nition of the Voronoi diagram) each tile independently, and then to be able to "merge" those
descriptions into a final ECM, which can be defined as an "augmented" Voronoi diagram.
Therefore, we also compute and store the Closest Points information, thus having at the end
a sort of "encoded" description of the ECM of that tile. It is important to notice that the
final ECM would be exactly equal to another ECM computed in a single-tiled "fashion" (for
example using the original framework); however, a single-tiled computation is in fact often
not possible due to technical limitations (maximum CPU buffer dimensions, maximum size
of a GPU render target).

A first possible subdivision of the tiles is shown in Figure 22b: there, each pixel is assigned
to only one tile. This subdivision has an important problem: some points belonging to the
left and bottom borders of the tiles will have 2 or more missing neighboring colors, which
is a known problem also in the original method However, in the original framework the left
and bottom borders are always "outmost" borders, and thus it is assumed that ignoring
that missing information would be harmless. Unfortunately, this is not the case anymore
now for most of our tiles, where left or bottom borders are mapped to central points of the
initial grid.
Hence, we will adopt a different subdivision, shown in Figure 22c: there, pixels that are
located on right and top borders of tiles will be also part of the left and bottom borders of
those tiles that will share that common "boundary", if any. If we assume squared tiles with
tileWidth == tileHeight, and consider two tiles t0 and t1 "sharing" a vertical border, the
following property will hold for point p0 located at coordinates (tileWidth− 1, yi) of tile t0
and point p1 located at coordinates (1, yi) of tile t1:

ColorRUp0 == ColorLUp1 ∧ ColorRDp0 == ColorLDp1,

and similarly, if the two tiles share instead an horizontal borders, for two points with the
same xi coordinate belonging to different tiles but lying on the border will hold that

ColorRDp0 == ColorLDp1 ∧ ColorRUp0 == ColorLUp1.

43

This means as well that point q1 belonging to tile t1 located at coordinates (0, yi) is mapped
to the same grid point mapped by p0 belonging to t0: however, q1 would miss at least 2
among the neighboring color information. By mapping some points of the tiles to the same
points of the grid we indeed "waste" some space, but this allows us to have no "gaps"
in the color data information between neighboring tiles. To achieve this subdivision, the
rasterization part of the method should be changed so while moving the OpenGL viewport
a stripe of overlapping pixels is maintained.
Once the color data of a Voronoi tile is produced, we can proceed with "tracing" it.

Tile 1Tile 0

Tile 2 Tile 3

(c)

(b)

(a)

Tile 0 Tile 1

Tile 2 Tile 3

Entire Grid

Figure 22: Discrete input grid and subdivision into tiles.
(a) An example of color data representing a GVD, showing the locations of the points. Vertices of the GVD
are marked in black. The input is the same as the one depicted in Figure 12.
(b) The same input subdivided into 4 tiles, with no overlapping of pixels among different tiles. We can
notice that every point of any tile (light-blue) is mapped to a distinct point of the original input. However,
some points lying on the borders of tile 1,2 and 3 have some missing neighboring colors, since those pixels
in fact belong to a different tile.
(c) The same input subdivided into 4 tiles, with tiles featuring some "stripes" of pixels in common. We can
notice that the points that lie on a border "shared" by more than 1 tile (shown in brown) are in fact not
mapped to distinct points of the input grid (which means, some input points are mapped to a more that
1 point on more than 1 tile), therefore, we are "wasting" some memory with storing this information more
than once. We will not process some of those points (the ones having missing color information) in order to
have a one-to-one correspondence between points of the original grid and points of the tiles.

5.2 Tracing a Tile
Originally, tracing consisted of basically two steps: finding the starting tracing points (the
Voronoi vertices) and then subsequently tracing from those points the Voronoi edges that
would form our resulting graph. The main difference now is that part of a Voronoi edge can
lie inside a tile without any of its points being a Voronoi vertex.

The original method that searched for starting points (Algorithm 3) simply iterated
over all the points of the grid and stored those that featured at least 3 unique directions,

44

Algorithm 3 FindVoronoiSeeds(colordata_buffer, tileWidth, tileHeight).
Input: Pointer to a CPU buffer of size tileWidth * tileHeight * sizeof(color_type) holding
the GPU color data.
Output: The array containing the vertices found.

1: outV ertices ← []
2: for x = 1→tileWidth-1 do
3: for y = 1→tileHeight-1 do
4: vertex ← MakeVertexFromColordata(colordata_buffer, x, y)
5: dirs ← GetDirections(vertex)
6: if dirs.length > 2 then
7: udirs ← GetUniqueDirections(vertex)
8: if udirs.length > 2 then
9: outV ertices.AppendVertex(vertex)

10: end if
11: end if
12: end for
13: end for
14: return outV ertices

which in our discrete case identifies Voronoi vertices. From those points the "tracing" of
edges started. An edge was then considered finished when it reached either another point
featuring 3 or more "unique directions" (a Voronoi vertex), another point featuring 1 unique
direction only (mostly a concave corner of an obstacle) or a point lying on the border of the
grid.

The main problem with adapting this method is that we should consider as starting
points also normal "edge-points", thus points that feature only 2 unique "directions", but
lie on the borders of our tiles, otherwise we could end up not having any point to to start
tracing those edges that do not lie completely inside the tile (Figure 23a). Moreover, we will
include also those points that feature only 1 unique direction but include "black" among
their color information, signaling that they are endpoints of edges running towards an ob-
stacle (because of the color black) and touching a "convex" corner (because they feature
an "unique" direction). We can correctly locate all those points since our subdivision of
the tiles involves no missing color information. Algorithm 4 shows the new routine Find-
VoronoiSeedsUpdated.
After all those points have been gathered, we can proceed with tracing the edges. Because
of the possibility of incomplete edges, we will have to treat the set borderPoints separately.
Hence, the tracing step needs to be further subdivided into two sub-steps:

• First, we will identify "standard" Voronoi vertices and "border" vertices, points that
are, topologically, only edge-points but that are close to a border of our tile. We will
use points in both sets to start tracing edges

• Then, we will trace edges in the same way the original implementation did

• In the end, we will trace additional edges starting from "border" vertices. In this
phases, edges will be traced different, since additional checks must be performed

5.2.1 Tracing "standard" edges

During this step, each of the points in outV ertices is used as starting point for tracing an
edge of the diagram. This is step is the same as the original one, hence edges are constructed
in the same way, with just a difference: when we have to decide upon a stopping point, we
treat points that are 1 pixel away from borders as if they were touching the border itself.
For example, we consider reaching a point with coordinate x == 1 a stopping point as if it
was lying on the a left border of a tile, although points that really lie on the left border have
of course x == 0. This way, edges belonging to different tiles will not include those points

45

Algorithm 4 FindVoronoiSeedsUpdated(colordata_buffer, tileWidth, tileHeight).
Input: Pointer to a CPU buffer of size tileWidth * tileHeight * sizeof(color_type) holding
the GPU color data.
Output: The arrays containing the vertices found and the edge-points touching any of the
borders that we should also use as starting points of tracing.

1: outV ertices ← []
2: borderPoints← []
3: for x = 1→tileWidth-1 do
4: for y = 1→tileHeight-1 do
5: vertex ← MakeVertexFromColordata(colordata_buffer, x, y)
6: dirs ← GetDirections(vertex)
7: if dirs.length > 2 then
8: udirs ← GetUniqueDirections(vertex)
9: if udirs.length > 2 then

10: outV ertices.AppendVertex(vertex)
11: end if
12: else if vertex.x == 1 ∨ vertex.x == tileWidth− 1

∨ vertex.y == 1 ∨ vertex.y == tileHeight− 1 then
13: if dirs.length > 0 then
14: udirs ← GetUniqueDirections(vertex)
15: if udirs.length == 2 ∨ (udirs.length == 1 ∧ PointHasBlack-

Color(colordata_buffer, x, y)) then
16: borderPoints.AppendVertex(vertex)
17: end if
18: end if
19: end if
20: end for
21: end for
22: return outV ertices, borderPoints

that are not uniquely mapped to other points of the global grid. Moreover, every time an
edge-point is added to any edge, the list borderPoints, which is in fact implemented as a
C++ std::map, is queried for the existence of that edge-point, and in case it exists, it is
removed. We do this because we know that each point can belong to up to one Voronoi edge,
hence if any edge-point gets assigned, there is no need to process it further. Unfortunately,
it is important to observe that the additional lookup of the borderPoints array adds to the
tracing a non-negligible computational cost of log(m) for each edge-point found to belong
to an edge, where m is the number of elements in the ordered list borderPoints.

5.2.2 Handling border points

Points in the list borderPoints could be part of partial edges which would not have been
traced by the original tracing routine. Since we stored these points, the easiest thing to
do now is to iterate over them and to use them as "starting points" for tracing new edges.
A point p1 ∈ borderPoints features either exactly two unique directions or one unique
direction and the color "black" among its neighboring colors: we first ignore the directions
that point "outside" the tile (eg. the direction "right" assigned to a point with coordinate
x == tileWidth− 1). Then, we analyze the remaining directions dirs:

• First, if a "perpendicular" direction perpDir exists in dirs, which is, a direction point-
ing instead "inside" the tile, we start tracing an edge starting from point p1 and
direction perpDir. We finish tracing when any of the original stopping condition
is satisfied, and during tracing, we again make sure to remove the edge-point that
we encounter from the list borderPoints. We will name an edge traced this way
perpendicularEdge. Figure 23a shows an example of "perpendicular edge" traced
from a point ∈ borderPoints.

46

• Then, we check if a particular "parallel" direction parallelDir exists in dir: paral-
lel directions are "up"/"down" for vertical borders and "left"/"right" for horizontal
borders. We always check the existence of either "right" for horizontal borders or
"up" for vertical borders. If a parallel direction exists, we start tracing an edge start-
ing from point p1 and direction parallelDir, again removing encountered edge-points
from borderPoints, until we encounter p2 satisfying any of the stopping conditions.
Eventually, we will name this edge parallelEdge. The edge pointing upward in Fig-
ure 23 is an example of "parallel edge".

If we end up with only either a perpendicularEdge or a parallelEdge, we add it as
an edge of the Voronoi diagram. If instead both edges have been traced, we can observe
that they are in fact part of the same edge: if they were not, point p1 would feature 3
unique directions instead, and thus would not be in the borderPoints (but instead would
be a member of outV ertices). Therefore, we merge the 2 edges into one and add this final
edge to our diagram. Figures 23a and 23b show the first and second scenario, respectively.
It must be noted that, in order to trace a parallelEdge, we only checked the presence of
one particular parallel direction, while the point could in fact feature 2 parallel directions.
However, we keep the list borderPoints sorted lexicographically, and by checking only the
direction in which the border points are sorted, we ensure that all the points that should
belong to a parallel edge are processed in an order that allows to all of them to be added,
and in the right order. In fact, if we take two points that should belong to a parallel edge
pi−1 and pi and we are currently processing pi, we can observe that:

• If point pi−1 featured 3 or 4 unique directions, it would be a member of outV ertices,
which are processed during the previous step, and because of the nature of edge tracing,
pi would be already a part of an edge including also pi−1.

• If point pi−1 featured 1 or 2 unique directions, it would have been a member of
borderPoints since we have assumed it to be also a member of the same parallel
edge, and in such edges all points have the same value for either the x or y coordinate.
By checking always the "increasing" direction for each border point, we know that in
this case pi−1 would have been, again, already processed and would be thus already
part of an edge that will include also pi, since border points are stored and processed
in lexicographical order.

During the processing of borderPoints we make sure not to add any edge made of only
one point. Once it is finished, we iterate again over the leftovers (if any) to add as edges
with length == 1 the points that feature at least 1 unique direction pointing "outside"
the tile. Any additional point not satisfying this condition probably signals an error in the
generation of the Voronoi color data, since it highlights an edge-point belonging to an edge
which should lie completely inside the tile, but that it was not surrounded by any other
edge-point/Voronoi vertex with "compatible" color data and thus compatible unique direc-
tions information. We can choose to report these points and/or ignore them.
After the second step is completed, we can assume to have a description of all the edges
that either completely or partially lie inside the tile.
Regarding the computational complexity of the whole step, we are performing O(m) itera-
tions over the m elements of the STL map borderPoints to perform every time the tracing
of one edge, to which we assign constant complexity.

5.2.3 Organizing edges of a tile

It is useful to the separate edges that lie completely inside a tile from those that do not,
since only the latter ones will eventually have to be processed during merging. Hence, for
each tile, we will create 4 new lists of edges, one for each border, where we will store the
edges that have one (or both) of the edge points touching the associated border. We will
call those lists topBorderEdges", "bottomBorderEdges", "leftBorderEdges" and "rightBor-
derEdges". Edges of those lists will be indexed by the value of the y coordinate (for the
lists "leftBorderEdges" and "rightBorderEdges which are associated to vertical borders) or

47

(a)

(b) (c)

Figure 23: Handling border points.
(a) If we consider the input GVD described by the 3 tiles merged together, we can notice an edge connecting
2 Voronoi vertices locate inside the left-most and right-most tiles (black points), running through all the 3
tiles. However, if we consider only the color values of the tile in-between, we can notice that no Voronoi edge
would be normally traced from it, since no Voronoi vertex would be recognized, preventing then an edge to
be present in the final ECM. On that tile, the gray points are examples of "border points" that we use as
starting points to trace additional edges.
(b) Both points in gray will be considered border points since they line on a border of the tile and feature 2
unique directions. From either of them, a "parallel" edge will be traced, ending at the position of the other
point, which will be then not processed any further.
(c) From the border point on the right both a "parallel" edge and a "perpendicular" edge will be spawned.
Then, testing the color data associated with the end-point in common will make clear that those 2 edges are
in fact parts of the same edge. Hence, they will be merged and added to our list of edges.

x coordinate (for the lists "topBorderEdges" or "bottomBorderEdges" which are associated
to horizontal borders) of the point of the indexed edge touching the border: in case of both
endpoints touching it, we will index the edge using the lowest value among the possible ones.
We recall that no edge can have a length > 1 and the starting point that coincides with the
endpoint. However, at each position of any list we could have more than one edge indexed
because different edges can start/end with the same point touching a border. Because of
the properties of Voronoi diagrams, it can be observed that only up to 2 different edges can
be indexed by a single value. It can be noticed also that a same edge can touch 2 borders at
the same time: in case of an edge touching both an horizontal and a vertical border, we will
store that edge twice in the 2 different lists, but in case of an edge touching either 2 vertical
borders or 2 horizontal borders, we will choose one of the 2 borders and store the edge only
in the list associated with that border. The final graph will be correct independently from
this choice. In the end, lists associated with vertical borders could store up to tileHeight
indexed pairs of edges, while those associated with horizontal borders could store up to
tileWidth indexed pairs of edges. Lists will be kept sorted by their index values. In our
C++ implementation, the 4 lists are implemented using STL multi-map containers storing
pointers to edge structures.
Populating the 4 new lists for each tile is a matter of iterating over all the edges traced
and checking whether the first and/or last points of each edge touches one or more of the
borders, eventually inserting the edge in the corresponding lists: edges that do not touch
any border will be inserted in another list internalEdges. At the end, we will also sort all
the edges in any border list. The computational complexity of the entire process is O(n) for
the first insertion of the n edges in the right list, and then O(nlog(n)) for the sorting, thus
O(nlog(n)) is a final complexity measure.

5.2.4 About the computation of Closest Points

We have already defined the idea of "unique" directions, and the fact that it implies checking,
for a point, the Closest Points on the obstacles that "generated" the point according to
the definition of the Voronoi diagram. Unique directions are checked multiple times even
during tracing, as it should be clear from Algorithms 3 and the descriptions of the tracing

48

operations above. In terms of arithmetic operations, checking the unique directions, and
thus computing the Closest Points, can be one of the most expensive operations to perform;
at the same time, the Closest Points information do not change during a single construction
since the footprint is always the same. While the original ECM framework recomputes the
Closest Points information and associated unique directions every time they are "queried",
a new class called ClosestPointsCache has been created in the new implementation, to
represent the colors and Closest Points information of points lying on a tile: when such
information is requested for a point, it is computed on-the-fly only if the cache does not
contain it already, and is then eventually stored. Information is "cached" using an hash-map
container indexed by the coordinates of the point: ideally, we hope the query cost of the hash
maps to be less than the cost of computing the Closest Points, and this should eventually
lead to an overall speed-up since the same information is often needed more than once.

5.3 Merging tiles
Once we have stored correctly in our border lists the edges touching the borders of each tile,
we can proceed with merging the content of all the tiles together to have our final Medial
Axis. For each pair of tiles having a border in common, we have to process the edges indexed
in the 2 lists correspondxent to the 2 borders. Now, we know that

• edges at position i of a single list associated with a border will share an endpoint (and
thus its color data);

• both arrays at index i will store a list of edges that will all have at least an endpoint
with either the x or y coordinate equals to i.

Algorithm 5 shows the "skeleton" of a function that merges 2 tiles horizontally, sharing a
vertical border. Logically, we notice that the two lists taken into account have only at the
same indexes the edges that will eventually need to be merged together. We can also notice
that two edges that should be merged have no points in common, thus merging their points
will result in the right sequence of distinct edge-points. However, the "contact points" of
the two edges that will be merged will have some color data in common, but "swapped":
we have already called this condition "compatible color data", and we will use it to make
sure we are performing a correct merge. If we consider the content of two lists involved in
a merge, at index i, being not empty at both sides, only 5 different scenarios can appear,
which we will now cover more in depth. Although the following description univocally refers
to the "horizontal merge" case, once this has been understood, it can be easily adapted to
the "vertical merge".

• Scenario A (Figure 24a): This is the case when only 2 edges (one per side) are
stored at the same index (and thus having the same y coordinate) and have both
only 2 unique pairs of colors among the (common) color data. This scenario shows
that, in the new merged tile, the 2 edges should become just one. The new edge will
be created by taking the vertex of edgeTouchingFromLeft that does not touch the
border, adding all the points (together with the color data) of edgeTouchingFromLeft
until the other vertex, then adding all the points, from the vertex touching the border
to the non-touching one, of edgeTouchingFromRight. This new resulting edge will
have a length:

newEdge.length == edgeTouchingFromLeft.length

+edgeTouchingFromRight.length

• Scenario A-2 (Figure 24b): This case is similar to the previous one because we need
to merge 2 edges into one, but to figure it out we had to compute first the "unique"
directions. Ideally, we would not merge the 2 edges if either of them ended up with a
point having 3 or more different pairs of colors, since that would show that one of the
edges ends with a vertex of the Medial Axis, but noticing that the "unique" directions
are 2 for both endpoints leads to the conclusion that the point is a vertex of the Voronoi

49

diagram but not of the Medial Axis, therefore we merge as we did in the previous case.
The only difference is that now we could have more than one edge indexed per side:
since we computed the uniqueDirections, we will use this information to discriminate
which edges to merge. A pair of edges, then, will become a newEdge as described
above, while the rest will remain unchanged.

• Scenario B (Figure 24c): This is the case when we have one vertex of the Medial
Axis as endpoint, touching the shared border and belonging to the
edgesTouchingFromLeft, while instead the endpoint touching the shared border
and belonging to the edgesTouchingFromRight is not. Notice that in this case we
can assume that the list edgesTouchingFromRight contains only one edge, given
that the point vertex touching the shared border exhibits only 2 "unique" direc-
tions. Therefore, the edges of edgesTouchingFromLeft will be kept as they are,
while instead the edge edgeTouchingFromRight will be extended with the addi-
tional point vertexTouchingFromLeft after the current endpoint (becoming a new
endpoint itself), together with its color data. In the end we will have a new edge
newEdgeFromRight with length:

newEdgeFromRight.length == edgeTouchingFromRight.length+ 1

• Scenario B-2: This scenario is similar to Scenario B, only with "inverted roles".
Hence, it will be the edge in edgesTouchingFromLeft that will be extended with
the additional point vertexTouchingFromRight as a new endpoint after the current
endpoint that touches the border. We will then have a new edge newEdgeFromLeft
with length:

newEdgeFromLeft.length == edgeTouchingFromLeft.length+ 1

• Scenario C (Figure 24d): This is the last case: both lists of edges share endpoints
touching the border that feature 3 or more uniqueDirections. We will not perform
any merge or extension in this case, all the edges will be kept as they are. However,
color data of the 2 end points shared by the 2 lists of edges show that this 2 points
should be merged into a new edge newEdge since they are mapped to different points
of the grid of the new tile, are both vertices, and have also compatible color data.
Thus, we will create and add the new edge newEdge connecting these points, with
length:

newEdge.length == 2

In all of the above scenarios, additional actions are applied to both newly created and
untouched edges. First, the values of the coordinates of edge-points are updated since each
tile stores points using a "local" reference system. Then, we check the end points of the
edges to see if they touch the border shared by the two tiles: in case of an old, unchanged
edge, we will check only the endpoint that did not touch the border already, while in case of
a newly created one we will check both of them. If an edge has 1 endpoint touching again the
border and if that point has a value of the coordinate associated with the merge operation
(y in case of horizontal merge, x in case of vertical merge) that is greater that the index
value currently being processed, then we re-insert the edge in one of the two arrays at the
new position. Otherwise, we just put it in the list newTileEdges. In our implementation,
edges have a flag that specifies if they are updated or not, which is used during this merge
step to avoid mis-interpreting coordinate values.
Similar operations have to be performed when, while iterating, the current lists of elements
being inspected from both arrays are not indexed by the same value. In this case, we
will work only on the list of edges indexed by the lowest value: we will first update the
coordinates of those edges, then for each of them we will check if the other endpoint touches
again the same border: if it does, we will re-insert it again in the same array, otherwise we
will add it to newTileEdges. In the end, we will also update the list of edges to process at
the next iteration for that side of the border by calling GetNext(). Algorithm 5 shows it.

50

(a) Connection scenario A: the endpoint
of the edge touching the common border
from the left has NDirections = 2 and
NUniqueDirections = 2. The same applies
to the endpoint of the edge touching the bor-
der from the right; endpoints have compat-
ible color data. Therefore, the connection
results in a fused edge out of the two.

(b) Connection scenario A-2: the end-
point of the edge touching the common bor-
der from the left has NDirections = 2
and NUniqueDirections = 2. The end-
point of the edge touching the border from
the right instead has NDirections = 3
but NUniqueDirections = 2 (the pair
blue/purple does not represent a unique di-
rection). Endpoints have compatible color
data, hence again, the connection results in
a fused edge out of the two.

(c) Connection scenario B: the endpoint of the
edge touching the common border from the left
has NDirections = 2 and NUniqueDirections =
2. The endpoint of the edge touching the border
from the right instead has NDirections = 3 and
NUniqueDirections = 3. Hence, the endpoint
of the second edge is a vertex, and is exactly the
vertex that will end the first edge. We will then
append the vertex to the end of the edge on the
left, while keeping the edge on the right. The
result is 2 edges, one old and one new.

(d) Connection scenario C: the endpoint
of the edge touching the common border
from the left has NDirections = 3 and
NUniqueDirections = 3. The endpoint
of the edge touching the border from the
right instead has NDirections = 3 and
NUniqueDirections = 3. Hence, the end-
points of both edges are vertices, and we
should not modify those edges. Moreover,
since the two endpoints are mapped to dif-
ferent points of the grid and with compatible
color data, we will create an additional edge
out of the 2 endpoints. The result will be 2
old edges a newly created one.

Figure 24: Connection scenarios - horizontal merge. During a vertical merge the same
scenarios show up, only with color data at different positions.

A merge operation only deals with the edges of both tiles that touch the shared border.
Therefore, to have a full description of the edges of the new tile, we have to add the edges
from the previous tiles that touched no border/not the border involved in the merge to
the new edges newTileEdges. Moreover, the coordinate values of these edges have to be

51

Algorithm 5 MergePartialEdges(rightBorderEdges, leftBorderEdges).
Input: Border array with edges touching the right border of a tile t rightBorderEdges and
border array with edges touching the left border of tile t− 1 leftBorderEdges. This border
is shared between the 2 tiles.
Output: New edges after merge operation.

1: newTileEdges ← []
2: currentEdgesFromLeft ← rightBorderEdges.GetNext()
3: currentEdgesFromRight ← leftBorderEdges.GetNext()
4: while !rightBorderEdges.IsFinished() ∧ !leftBorderEdges.IsFinished() do
5: vertexTouchingFromLeft ← GetVertexTouchingRightBor-

der(rightBorderEdges)
6: vertexTouchingFromRight ← GetVertexTouchingLeftBor-

der(leftBorderEdges)
7: nDirsLeft ← GetDirections(vertexTouchingFromLeft)
8: nDirsRight ← GetDirections(vertexTouchingFromRight)
9: if vertexTouchingFromLeft.y == vertexTouchingFromRight.y then

10: if nDirsLeft == 2 ∧ nDirsRight == 2 then
11: Assert(currentEdgesFromLeft.size ==1 ∧ currentEdgesFromRight.size

==1)
12: Assert(Compatible Color Data)
13: Scenario A
14: else
15: nUniqueDirsLeft ← GetUniqueDirections(vertexTouchingFromLeft)
16: nUniqueDirsRight ← GetUniqueDirections(vertexTouchingFromRight)
17: if nUniqueDirsLeft == 2 ∧ nUniqueDirsRight == 2 then
18: Assert(Compatible Color Data)
19: Scenario A - 2
20: else if nUniqueDirsLeft > 2 ∧ nUniqueDirsRight == 2 then
21: Assert(Compatible Color Data)
22: Scenario B
23: else if nUniqueDirsLeft == 2 ∧ nUniqueDirsRight > 2 then
24: Assert(Compatible Color Data)
25: Scenario B - 2
26: else if nUniqueDirsLeft > 2 ∧ nUniqueDirsRight > 2 then
27: Assert(Compatible Color Data)
28: Scenario C
29: end if
30: currentEdgesFromLeft ← rightBorderEdges.GetNext()
31: currentEdgesFromRight ← leftBorderEdges.GetNext()
32: end if
33: else if vertexTouchingFromLeft.y > vertexTouchingFromRight.y then
34: UpdateEdges(currentEdgesFromRight)
35: CheckEndpointsAndReinsert(currentEdgesFromRight, leftBorderEdges,

newTileEdges)
36: currentEdgesFromRight ← leftBorderEdges.GetNext()
37: else if vertexTouchingFromLeft.y < vertexTouchingFromRight.y then
38: UpdateEdges(currentEdgesFromRight)
39: CheckEndpointsAndReinsert(vertexTouchingFromLeft, rightBorderEdges,

newTileEdges)
40: currentEdgesFromLeft ← rightBorderEdges.GetNext()
41: end if
42: end while
43: return newTileEdges

52

updated as well. All the border shared by two tiles lead to a merge operation, thus, up to
4 merge operations can occur per tile.

5.4 From the final Medial Axis to an ECM
Once merge operations are finished, we will end up with a big tile representing the whole
grid and thus the final Medial Axis. Edges will still be organized between the 5 ordered lists
that distinguish between edges touching at least one border and and edges not touching any
of them. However, the ECM structure is organized as an array of vertices of the Medial
Axis, with each vertex indexing the edges that it originates. Therefore, we will reorganize
the content of the final tile in the same way: mainly, we need to iterate over all the edges
in all the 5 lists, store their starting points and endpoints as vertices, and then add them to
the final list ECMGraph at the position of the spawning vertex. While iterating, we can
encounter an edge e that in fact originates from a vertex v that has already been found and
added to the new list. Therefore, we should add e to ECMGraph at the index of v: to
recognize such vertices we will make sure to store in an additional structure every vertex we
find, together with the index where they are located in ECMGraph, and we will use this
structure for the various look-ups. Since in the implementation we are using hash-tables
that can be queried in amortized constant time, we can assume that the final complexity of
the reorganization of the edges is O(n) where n is the total number of edges stored in all
the 5 lists resulted from the merge operations.

At this point, ECMGraph does not describe an ECM yet, but a few more steps must
be performed. As [Ger10] illustrates, an ECM is a graph made of vertices, edges connecting
the vertices, and event points lying on the edges; as a Navigation Mesh, it is considered
an optimal description of the walkable space of an environment. At this stage ECMGraph
already includes all the necessary vertices and edges, but it could miss some event points
that lie on our traced edges. Unfortunately, the only way to locate those event points is to
iterate over all the edge-points of all the edges while checking if 2 consequent edge-points
feature a change into the associated colors, or a change in the index of either of the normals
associated in case they are associated to the same obstacles. The final ECM will include
the vertices and edges connecting those vertices described as lists of 2 or more event points
(an edge is described, at least, by its starting and ending vertices).

An ECM also includes the Closest Points’ information, associated to each vertex or event
point. In fact, Closest Points information have been already used thorough the tracing of
MA edges, therefore they have been already computed and stored in the various instances
of the the class ClosestPointsCache associated to the tiles. Two instances of Closes-
tPointsCache can be easily merged like tiles are, since they mostly require the "fusion"
of the hash maps storing the information of the points, and fusing such hash-maps is trivial
because they do not contain information that refer to the same points. At this final stage,
we should have all the information stored in just one instance of ClosestPointsCache,
having in fact all the closest points information that we need already computed, and what
is left to do is simply to query this instance for the Closest Points that have to be associated
with the corresponding points of our final ECM .

The very final step is to transform the coordinates of vertices and event points from
the reference system of the frame buffer grid back to the reference system of the original
footprint. The frame buffer grid enforces integer coordinates while of course the original
coordinates of the footprint are decimal: we have already discussed a transformation that
allows mapping points of the original footprint to frame buffer coordinates (SECTION) and
a similar one that allows to map points back. At this stage, we will just apply the latter
to vertices, event points and Closest Points in order to have a final ECM that refers to the
initial coordinates system.

5.5 Final Considerations concerning a multi-tiled construction
Indeed, subdividing the computation into tiles with partial data that refer to a global Medial
Axis and subsequently merge them proved to be quite tricky: although the subdivision we

53

defined is quite advantageous since it leads to no missing color information for edges of a
tile, it still implies dealing with overlapped OpenGL reads of the same frame buffer and
with points of different tiles that are in fact mapped to the same coordinates. Additionally,
it requires careful treatment of points lying close to borders so that "partial edges" are cor-
rectly traced and can be then merged into the final edges of the Medial Axis.
The merging of the edges themselves is also not trivial: however, in this case, we just had
to enumerate all the possible configurations that could have been found at the borders of
the tiles, and then derive what is the correct way to handle each case. Unless we missed
something, all the cases should have been correctly covered. This being said, in the im-
plementation of the routines care must be taken since they involve many different types
of containers (and their related operations), and this can easily lead to wrong or poorly
performant code.

5.6 Towards a CPU-Parallel implementation
From the previous sections it can be noticed how tracing any of the tiles is a quite self-
constrained operation, which could then fit a multi-tiled parallel construction approach. In
this section we will outline and discuss such a multi-tiled construction taking advantage of
many CPU threads. Algorithm 6 is a first draft that describes a new parallel implementation.
It includes a number of assumptions and simplifications:

• the number of tiles per row NTilesHor and tiles per column NTilesV ert of the
hypothetical grid we subdivided our initial framebuffer data in will be the same. Thus,
NTilesV ert == NTilesHor and NTiles = NTilesV ert ∗NTilesHor will hold.

• the number of CPU buffers we will employ NBuffers will be equal to the number of
tiles in the grid NTiles

• the number of threads executing in parallel NThreads will be equal to the number of
CPU buffers NBuffers

Algorithm 6 ComputeECMMultiTiledParallel(NTilesHor, NTilesV ert,
tileWidth, tileHeight).
Input: Number of tiles per row NTilesHor and tiles per column NTilesV ert in our grid
of tiles, width tileWidth and height tileHeight of every tile.
Output: An ECM mesh.

1: NTiles ← NTilesHor * NTilesV ert
2: NBuffers ← NTiles
3: NThreads ← NTiles
4: CPUBuffers ← AllocateHeap(tileWidth * tileHeight, NBuffers)
5: for t = 0→ NTiles− 1 do {For loop executed in parallel by NThreads threads}
6: tx ← t Mod NTilesHor
7: ty ← t Div NTilesHor
8: DownloadGPUData(tx ∗ tileWidth, ty ∗ tileHeight, tileWidth, tileHeight,

CPUBuffers[t])
9: GVDData[t] ← TraceGVDTile(CPUBuffers[t])

10: ArrangeEdgesTouchingBorders(GVDData[t])
11: end for
12: sync_threads
13: PerformParallelMerge(NTilesHor, NTilesV er, GVDData, NThreads)
14: ECM ← FinalizeECMGraph(GVDData[0])
15: return ECM

The instruction sync_threads (used in Algorithm 6 for the first time) ensures that
every thread will wait for all the other active threads to reach that point in the code before
proceeding with the next instruction. From Algorithm 6 we can observe that:

54

Colordata
download
GPU to CPU
bu�ers

Parallel
Tracing

Parallel
Horizontal
Merge

Parallel
Vertical
Merge

Figure 25: Overview of the parallel approach. Steps which are performed in parallel are outlined with
multiple arrows.

• Both the tracing (function TraceGVDTile) and re-arrangement of the edges (func-
tion ArrangeEdgesTouchingBorders) of each tile can be executed in parallel by
our NThreads threads. Moreover, the tracing of an tile also involves computing (and
then storing) the closest points information and the index of the normals associated
with every edge-point/vertex, hence, we are in fact distributing all the geometrical
computations among the various threads.

• Each tile t gets assigned a color data buffer and an instance of the Closest Points’
cache, which are used during construction. Since every different thread deals with the
processing of a different tile, no read-write conflicts are generated by different threads
accessing the same shared data.

• We need to enforce the synchronization of all threads at the end of the main loop
since the function PerformParallelMerge, that will merge the partial edges of all
the tiles, assumes that all tiles have been already filled. We will cover this function
separately later.

55

However, the implementation described by Algorithm 6 has a number of issues. First,
the function DownloadGPUData is called by different threads, and in parallel, but this
function performs a GPU memory transfer operation from an OpenGL context: accessing
the same OpenGL context in parallel from many threads is quite troublesome, especially
if we need to perform memory transfers, and generally not recommended. Therefore, our
implementation will perform all the required GPU transfers sequentially as a first thing.
An additional shortcoming of Algorithm 6 is that we simplified it by assuming

NTiles == NBuffers == NThreads

but this is in general not desirable. In fact, we would like to put a limit on the total CPU
memory that our approach will employ during the whole process, which also means putting
a limit on the number of CPU buffers holding the color data that we will use, given that they
often represent a big majority of the CPU memory used. Nonetheless, we don’t want the
(limited) number of CPU buffers to constrain the total number of tiles of our construction,
because this would in turn limit the total resolution of the construction (the dimension of
a tile is constrained by the limit on the size of a GPU frame buffer). At the same time,
we don’t want the number of CPU buffers to drive the amount of parallel threads we can
employ, too. Hence, the construction will proceed by first determining the number of tiles
NTiles to use and their dimensions, and then:

• If possible, we will try to instantiate a buffer per tile and a thread per tile, if this is
allowed by the system and is in accordance with what was specified by the user. In
case that was possible, we will have NTiles == NBuffers == NThreads, which is
in fact the easiest situation, since then we can just loop (in parallel) over all the tiles
following Algorithm 6.

• If we end up with NTiles 6= NBuffers, and in general NBuffers < NTiles, we will
try to instantiate a thread per CPU buffer, having thus NThreads == NBuffers.
In case that was possible, we will proceed with processing the NTiles tiles in mul-
tiple "passes", processing up to NBuffers tiles at each iteration in parallel. The
NBuffers CPU buffers will be re-used during the various passes by the concurrent
threads.

• If NBuffers < NTiles and we could not have a thread per CPU buffer, thus
NThreads < NBuffers, we will further decrease the number of CPU buffers to
instantiate so that it matches the number of threads, thus NBuffers← NThreads,
and the rest will proceed as described in the previous point. We will do so because it
is pointless to instantiate more CPU buffers than the number of parallel threads that
will then work during each of the passes.

The implementation allows the user to specify a value forNTiles, NBuffers andNThreads,
either explicitly or implicitly, and then the policies illustrated above are applied. In addi-
tion, we will limit the number of threads NThreads to 1 per processor, or 2 per processor
supporting either Intel Hyper-threading or the AMD "Bulldozer" micro-architecture (or a
better one): although OSes allow programs to spawn almost as many threads as they wish,
too many threads end up overloading the system itself, leading to oversubscription and in
general to a saturation of the system and its computational capacities.

In Algorithm 7 we can observe how the issues discussed above led to a modified parallel
implementation. We made again some simplifying assumptions, basically that all tiles have
the same width and height and that the number of NBuffers picked evenly divides the
total number of tiles NTiles. These assumptions lead to a cleaner implementation, although
extending the whole approach so that they are not required would be a minor adjustment.
Each pass processes NBuffers tiles in parallel by NThreadsToUse == NBuffers that
are then synchronized at the end of the pass: this is required to perform the data transfer
from the GPU for the execution of the next pass (if any), since GPU transfers from a unique
OpenGL context to the CPU can not be performed in parallel. This being said, OpenMP
abstracts the creation and destruction of threads themselves, which depends on a variety of

56

Algorithm 7 ComputeECMMultiTiledParallelImproved(NTilesHor,
NTilesV ert, tileWidth, tileHeight, NBuffers).
Input: Number of tiles per row NTilesHor and tiles per column NTilesV ert in our grid
of tiles, width tileWidth and height tileHeight of every tile, and maximum number of CPU
buffers to use at the same time to hold the color data NBuffers.
Output: An ECM mesh.

1: NTiles ← NTilesHor * NTilesV ert
2: NThreadsToUse← Min(NThreads, MaxThreadsAvailable)
3: NBuffers← NThreadsToUse
4: Assert(NTiles ≥ NBuffers)
5: CPUBuffers← AllocateHeap(tileWidth * tileHeight, NBuffers)
6: GVDData← AllocateHeap(NTiles)
7: NPasses← NTiles/NBuffers
8: for p = 0→ NPasses− 1 do
9: for b = 0→ NBuffers− 1 do

10: t ← (p ∗NBuffers) + b
11: tx ← t Mod NTilesHor
12: ty ← t Div NTilesHor
13: DownloadGPUData(tx ∗ tileWidth, ty ∗ tileHeight, tileWidth, tileHeight,

CPUBuffers[b])
14: end for

{For loop executed in parallel by NThreadsToUse threads}
15: for b = 0→ NBuffers− 1 do
16: t← (p ∗NBuffers) + b
17: GVDData[t] ← TraceGVDTile(CPUBuffers[b])
18: ArrangeEdgesTouchingBorders(GVDData[t])
19: end for
20: sync_threads
21: end for
22: PerformParallelMerge(NTilesHor, NTilesV er, GVDData, NThreads)
23: ECM ← FinalizeECMGraph(GVDData[0])
24: return ECM

different factors, like compiler’s flags/hints, the OpenMP version of the machine where the
code is being run on and its associated behavior, and the policies of the operating system.
Specifically, in our implementation, OpenMP will try to "pool" the threads employed by
the construction instead of continuously create/destroy them at the beginning/at the end
of the second for loop, avoiding the related unnecessary performance overhead.

5.6.1 Merging Tiles in Parallel

Parallelism can be exploited also during the merge step: Figure 26 shows the (simplified)
scenario where we have a big environment subdivided into NTiles, all of them having the
same tileWidth and tileHeight, with tileWidth and tileHeight being equal. Moreover, here
NTilesHor = NTilesV ert, and they are a power of 2 (8).
From Picture 26 we can observe that we can merge horizontally all the tiles sharing a vertical
border at the same time. In fact, those merge operations do not depend on each others.
They could be executed in any order and the result will still be the same; hence, we can
execute them in parallel. After the first "cycle" of horizontal merges we can execute a second
cycle of horizontal merges, again in parallel, until no more horizontal merge operations are
possible. At that point, we could proceed with merging the resulting tiles vertically, again
until no more vertical merges are possible.

We can call our cycles of merge operations "merge steps". A merge step will perform
a number of parallel merges, either horizontally or vertically, at the same time. At merge

57

Figure 26: Parallel merge of 16 tiles. Arrows connect tiles that are merged together. Arrows of the same
color represent "merge steps": lists of operations that can be performed in parallel by different threads. The
order in which the merge steps are performed is outlined above the diagram. All the necessary horizontal
merge operations can be performed in 2 "steps" if we have NThreads/2 = 8 at our disposal, ending up with
NTilesV ert = 4 tiles. Again, all the vertical merge operations can be performed in 2 parallel "steps". In
the end, we will perform O(log(NTiles)) merge steps.

step s = 0 we will always perform horizontal merges: the number of operations will be
NTiles/2, therefore we would achieve maximum performance by employing NTiles/2 par-
allel threads. At merge step s = 1 we will have NTiles/2 tiles in total, and therefore we
could achieve maximum performance by employing NTiles/4 threads simultaneously. As-
suming our NThreads = NTiles/2, we can see that the number of horizontal merge steps
NHorizontalSteps is

NHorizontalSteps = log2(NTiles) = log2(NThreads ∗ 2)

and at each step sj with j = 0 . . . NHorizontalSteps− 1 we will perform a total number of
merge operations NHorMergesj

NHorMergesj = NTiles/(2j+1).

At most, we will perform NHorMergesj = NTiles/(21) = NTiles/2 operations when
j = 0, at the first step. Therefore, we should achieve maximum performance in all the steps
when

NThreads = NBuffers ≥ NTiles/2. (1)

Eventually, after NHorizontalSteps horizontal steps, we will exhaust all the necessary hor-
izontal merge operations. This means we will end up with NTilesV ert tiles with a new
tileWidth = totalWidth and tileHeight unchanged.
We will now perform some vertical merges: again, we can derive our NV erticalSteps as

NV erticalSteps = log2(NTilesV ert)

58

Algorithm 8 MergeTilesParallel(tilesGrid, NTiles, NTilesHor, NTilesV ert,
NThreads).
Input: Merging the GVD data of a a grid TilesGrid of NTiles organized by NTilesHor
per row and NTilesV ert per column in parallel using NThreads. In the end, tilesGrid[0]
will hold the whole new data.
Output: void.
1: step = 1
2: while step < NTilesHor do
3: for i = 0 → (NTiles / 2 * step)-1 do {Loop is executed in parallel by NThreads}
4: indexSRC ← 2 * step * i
5: indexDST ← (2 * step * i) + step
6: MergeRight(tilesGrid[indexSRC], tilesGrid[indexDST])
7: end for

single_thread_start
8: step = step * 2

single_thread_end
9: end while

sync_threads
single_thread_start

10: step = 1
single_thread_end

11: while step < NTilesV ert do
12: for i = 0 → (NTilesV ert / 2 * step)-1 do {Loop is executed in parallel by

NThreads}
13: indexSRC ← 2 * step * i * NTilesHor
14: indexDST ← (2 * step * i) + step) * NTilesHor
15: mergeBottom(indexSRC, indexDST)
16: end for
17: end while

and at each step i = 0 . . . NV erticalSteps we will perform NV ertMergesi operation, with

NV ertMergesi = NTilesV ert/(2i+1).

Thus, this time, we need NThreads = NBuffers ≥ NTilesV ert/2 to have maximum per-
formance, a condition which is always fulfilled if we fulfill the previously defined property 1.
Algorithm 8 shows the whole approach.
What we notice is that both sequences of horizontal and vertical merges are an applica-
tion of the parallel reduce idiom, a well-known parallel idiom introduced by [Ble90], with
the only difference that merge operations are performed instead of simple sums. In case
NTilesHor == NTilesV ert is a power of 2, we can observe that the number of vertical
merge operations that have to be performed during the first vertical merge step is simply
NTilesV ert/2 = NTilesHor/2, therefore we can organize the vertical merge steps following
the horizontal ones in a binary tree, in the same way [Ble90] does. As the paper outlines,
if we have to reduce n elements using p = n/2 processors working at the same time, the
complexity of the reduction is

O(log2(n))

which is
O(log2(NTiles)

in our case.
The cases in which NTilesHor 6= NTileV ert, or either of them is not a power of 2, are
anyway correctly handled in our implementation, although those scenarios require a more
careful treatment: for example, in case NTilesHor%2 6= 0, a thread that wants to perform
an horizontal merge between tile t and tile t+ 1 has to check in advance whether tiles t+ 1
shares a vertical border with tile t. Often, this leads to less merge operations in total, but in

59

fact they not always lead to better performance since threads can end up being under-used,
for example. In addition, the theoretical complexity of the whole merge changes depending
on the number of threads NThreads available, decreasing, but as [Ble90], the speedup
granted by the parallelization is always optimal.

60

6 Experiments
The previous chapters described the ideas behind 2 new implementations that aim at con-
structing high-resolution ECMs. In this chapter, we will test them together with the original
one. We will mainly compare the difference in running times between the 3, and we will
show that the new implementations allow to build ECMs of environment at resolutions that
are higher that the maximum one reachable by the standard implementation, illustrating
also some of the additional benefits.

6.1 Experimental Setup
We will test 3 different implementations:

• GPGPU is a multi-tiled implementation that uses CUDA to perform some additional
computations on the GPU, as described in Chapter 4. Given the input parameters total
resolution r and tile resolution t, it produces ECMs at resolution r× r by sequentially
processing a number of tiles of resolution t× t which are then merged together into the
final ECM. Due to the nature of the GPGPU operations, which at some point require
3 buffers with a size of t ∗ t ∗ 4 bytes of pinned GPU memory, t can be at most 4096
on most GPUs. This imposes a constraint on the resolution of the tile, but not on the
final resolution r of the ECM. Moreover, since it includes some CUDA instructions,
this implementation requires an NVIDIA GPU and a fairly recent driver version.

• CPU Parallel is a multi-tiled implementation that employs OpenMP to spawn many
CPU threads and parallelize the construction of an ECM, as described in Chapter 5.
Given the input parameters total resolution r, tile resolution t and number of threads
to use T , it produces ECMs at resolution r × r by processing a number of tiles of
resolution t × t in parallel using up to T CPU threads, merging them together in
parallel into the final ECM. The resolution of a single tile is subjected to the same
constraint that applies to the standard ECM implementation (due to the maximum
size of a buffer than can be allocated on the CPU, buffer required to host and process
the frame buffer data from the GPU), therefore t can not be greater than 16000. If no
value for T is specified, the implementation uses the value returned from the OpenMP
function omp_get_num_threads().

• Original is a standard version of the ECM implementation. Given the input pa-
rameters total resolution r, it produces ECMs at resolution r × r using the approach
described in [Ger10]. Due to reasons already outlined, r can not be greater than 16000.
"Original" is a not totally updated version of the ECM framework, and it uses 32-bit
color values for the GPU rasterization part, while more recent versions use 16-bit color
values. Lowering color-depth lowers the number of maximum obstacles supported, but
increases the total resolution that can be achieved and improves efficiency. However,
since the GPGPU implementation uses 32-bit color values to perform its computa-
tions, we decided to test "against" a version of the ECM framework that uses the
same color-depth. This being said, changing the GPGPU implementation so that it
supports using 16-bit color values is indeed possible.

During our experiments, we will construct Navigation Meshes of a selection of environ-
ments:

• Military is the 2D footprint of the McKenna MOUT training site at Fort Benning.
Therefore, this is a real-life scenario, although only moderately big and complex (Fig-
ure 27a). It is 200 by 200 meters big and it includes 23 primitives.

• City is the 2D representation of a part of a city neighborhood. It is a fairly big, real
environment with some irregular and narrow passages that lead to complex configura-
tion of the Medial Axis (Figure 27b). It is 500 by 500 meters big and it includes 548
primitives.

61

• UUTest is the 2D representation of a small city neighborhood, including streets and
sidGewalks. It is a test environment meant to be used by the simulator of the company
"Greendino". Being so big, it benefits from high resolutions (Figure 27c). It is 993 by
993 meters big and includes 1271 primitives.

• aa64 is a fairly big environment featuring 4096 rectangles, all equally spaced, orga-
nized in 64 grids and columns. This is an example made for testing purposes only
(Figure 27d). It is 160 by 160 meters big.

• degpoints32 is a moderately big environment featuring 128 points, all equally spaced,
lying on a circumference. This is an example made for testing purposes only, repre-
senting a known degenerate case for the computation of a Medial Axis: theoretically,
the MA would feature 128 vertices, each one located equally distant from a pair of
input points, all connected with edges to an additional vertex which would lie exactly
on the center of circumference. However, approximated methods (like the one we are
employing) are known to have problems locating the central vertex univocally, and
thus with tracing all the other edges (Figure 27e). It is 334 by 334 meters big.

• simplePrecision is a big environment featuring only two seeds: a point, situated
almost at the middle of the environment, and a vertical segment, situated on right
of the point, very close to it. The Medial Axis of this environment mainly involves a
single parabola. However, this environment can be useful to make some considerations
about the precisions of the implementations (Figure 27f). It is 400 by 400 meters big
and it includes only 2 primitives.

For all the tests a machine with the following specifications was used: Intel i7-3930K
CPU clocked at 3.20 GHz, NVIDIA GeForce GTX 680 GPU, 16 Gigabytes of RAM and a
64-bit Windows 7 as operating system. The CPU employed features 6 cores and the Intel
Hyper-threading technology, which allows each core to be treated as 2 logical computing
units. Therefore, it is made to support the simultaneous execution of up to 12 threads with
little effort. All the running times are averaged over a total of 40 runs. Throughout the
entire chapter, we will use the phrases "significant" and "not significant" with their scientific
statistical meaning. We used t-test to discriminate whether two independent samples are
significantly different. Therefore, we use the term "significant" when the null-hypothesis
was rejected with an α = 0.052tail at most.

62

(a) Military environment. (b) City environment.

(c) UUTest environment. (d) aa64 environment.

(e) degpoints32 environment. (f) simplePrecision environment.

Figure 27: Environments tested.

63

6.2 Comparisons of Total Runtimes
Figures 28 and 29 show a plot of the construction times of ECMs of the different implemen-
tations at different total resolutions, grouped by environment. We do not list the used tile
size for the GPGPU and CPU-Parallel implementation. Instead, given a total resolution, we
show the run with the tile size that yields best results (we will discuss scenarios separately
in the next section). We do not show a chart for the simplePrecision environment since it
leads to a very simple and thus extremely quick to compute ECM. While picking the total
resolutions, we picked multiples of 1024 since this lead to the most memory friendly and
compatible scenarios for the GPGPU implementation.
What we can observe from the charts is that, in 4 environments out of 5, from a certain
resolution onwards both "GPGPU" and "CPU Parallel" become significantly faster than
"Original", with "GPGPU" being the fastest, leading to construction times that are, on
average, 62% lower than the original ones for "GPGPU", and 28% lower than the original
ones in case of "CPU-Parallel".
This being said, the environment aa64 shows a different picture: ECMs constructed using
the "CPU Parallel" implementations give results that are not significantly better than the
ones of "Original", while "GPGPU" achieves significantly better results only for some, high
resolutions.
The previous results can be explained if we consider that what makes the "GPGPU" imple-
mentation more efficient is the GPGPU-aided filtering of vertex points and edge-points, the
GPGPU computation of their associated directions, and in turn the transfer of only the data
relevant to that points back to the CPU. For most environments, this leads to a noticeable
speed-up, because keeping only the "useful" points is performed very quickly and subse-
quently a lot of "useless" data is not processed/transferred any further. This also explains
the improved scalability with resolutions, since using higher resolutions increases the degree
of the resulting graph by little (eventually nothing). However, in an environment with a high
number and density of vertices and edge-points, like aa64, this speedup is almost nullified
by the general costs of employing GPGPU. The same seems to apply to "CPU-Parallel":
the big amount of workload that needs to be done anyway by all the threads, together with
the cost of spawning those threads, nullifies the benefits of parallelization.
This being said, is important to notice that in the other environments, most of them repre-
senting real-life scenarios, the speed-ups are very good. Moreover, the new implementations
allow us to build very high-resolution Navigation Meshes, and it’s during those exact runs
that we benefit more from the improved scalability.

64

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

0

1,000

2,000

3,000

4,000

Resolution (pixels per side)

C
on

st
ru
ct
io
n
T
im

e
(m

se
c)

Military

GPGPU CPU parallel Original

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

0

1,000

2,000

3,000

4,000

5,000

Resolution (pixels per side)

City

GPGPU CPU parallel Original

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

0

1,000

2,000

3,000

4,000

5,000

Resolution (pixels per side)

C
on

st
ru
ct
io
n
T
im

e
(m

se
c)

UUTest

GPGPU CPU parallel Original

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

0

0.2

0.4

0.6

0.8

1

1.2

·104

Resolution (pixels per side)

aa64

GPGPU CPU parallel Original

Figure 28: Comparisons between running times of the 3 implementations, environments
Military, City, UUTest and aa64. In handling with the first 3 environments "GPGPU" and
"CPU-Parallel" exhibit significantly lower computational times at most resolutions.

65

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

0

1,000

2,000

3,000

4,000

5,000

Resolution (pixels per side)

C
on

st
ru
ct
io
n
ti
m
es

(m
s)

degpoints32

GPGPU CPU Parallel Original

Figure 29: Comparisons between running times of the 3 implementations, environment
degpoints32. Both "GPGPU" and "CPU-Parallel" exhibit significantly lower computational
times at most resolutions.

66

6.3 Additional Tests of the GPGPU Implementation
In the previous section, we have outlined the general performance of the "GPGPU" im-
plementation, but we omitted the incidence of the tile size t on the whole computations,
showing instead the runs that exhibited the best runtimes. Figure 32 shows instead the
construction times for ECMs of the environments Military, UUTest and aa64 at various
resolution r × r, varying the tile resolution t × t. What we can see is that, simply, using
a smaller number of bigger tiles leads to lower construction times. This is a fairly logical
result, since tiles are processed sequentially by the "GPGPU" implementation, and using
less tiles saves time during the various GPGPU launches and during merging. However,
this also rules out the "myth" that operating with GPU buffers of certain sizes would lead
to better results because some dimensions are more "GPU friendly" than others: such a
"phenomenon" does not appear in our implementation.

We also tracked the amount of memory transferred from the GPU to the CPU by
"GPGPU" and compared to the amount transferred by the "Original" implementation (Fig-
ures 30 and 31). We can notice that we definitely achieved our initial goal of decreasing the
amount of memory transferred by performing additional steps on the GPU, since even at
fairly high resolutions we end up transferring less than 50 MBs, versus the maximum of 976
MBs transferred by the original method. However, two additional considerations must be
added:

• The maximum amount of GPU memory used by GPGPU can be rather high at high
resolutions, ranging between 1500 and 1800 MBs. Luckily, most recent GPUs can
deal with this requirement. Moreover, the amount of GPU memory employed is so big
because we tried to minimize the memory allocations and the use of in-place operations
(both computationally expensive), therefore lowering this memory requirement at the
price of higher computational times could be investigated.

• "GPGPU" allocates pinned GPU memory for all the buffers that will have to be
transferred to the CPU, in order to speed-up those operations. Without the use of
pinned memory, the incidence of memory transfers on the total times would be higher.

67

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

0

200

400

600

800

1,000

Resolution (pixels per side)

M
em

or
y
tr
an

sf
er
re
d
(M

B
)

Military

GPGPU Original

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

0

200

400

600

800

1,000

Resolution (pixels per side)

City

GPGPU Original

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

0

200

400

600

800

1,000

Resolution (pixels per side)

UUTest

GPGPU Original

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

0

200

400

600

800

1,000

Resolution (pixels per side)

aa64

GPGPU Original

Figure 30: Amount of memory transferred from GPU to CPU (in MBs) by "GPGPU" and
"Original" for Military, City, UUTest and aa64. 0 means less than 1 Megabyte. The amount
of memory transferred by the new GPGPU implementation is very low: never greater than
50 MB. At the same time, we can notice how the memory transferred by "Original" does
not depend on the environment tested but only on the total resolution, and how it scales
quadratically with the with it.

68

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

0

200

400

600

800

1,000

Resolution (pixels per side)

M
em

or
y
T
ra
ns
fe
rr
ed

(M
B
)

degpoints32

GPGPU Original

Figure 31: Amount of memory transferred from GPU to CPU (in MB) by "GPGPU" and
"Original" for degpoints32. 0 means less than 1 Megabyte. The amount of memory trans-
ferred by the new GPGPU implementation is very low: being greater than 15 MB. Again,
the amount of memory transferred by "Original" depends only on the total resolution and
scales quadratically with it.

69

4096 8192 16384 32768

0

1,000

2,000

3,000

4,000

Resolution (pixels per side)

C
on

st
ru
ct
io
n
T
im

e
(m

se
c)

Military - GPGPU

TS 1024 TS 2048 TS 4096

4096 8192 16384 32768

0

1,000

2,000

3,000

4,000

5,000

6,000

Resolution (pixels per side)

UUTest - GPGPU

TS 1024 TS 2048 TS 4096

4096 8192 16384 32768

0

0.5

1

1.5

2

2.5

3

·104

Resolution (pixels per side)

C
on

st
ru
ct
io
n
T
im

e
(m

se
c)

aa64 - GPGPU

TS 1024 TS 2048 TS 4096

Figure 32: Incidence of the tile size in the construction times of the "GPGPU" implemen-
tation, environments Military, UUTest and aa64. We observe that using fewer but bigger
tiles leads to the lowest times

70

6.4 Additional Tests of the CPU-Parallel Implementation
In this section we will outline the results of some additional tests performed with the "CPU-
Parallel" implementation. We have already noticed how this new implementation can per-
form significantly better than the "Original" one, but now we will inquiry the incidence of
the tile size parameter t in the performance.
Figures 33, 34 and 35 show the construction times of ECMs of 5 environments at certain
total resolutions, varying the tile size. For each environment we plot both the result using
the number of CPU threads employed by default by OpenMP on our test machine (usually a
decent measure of the maximum load the hardware can support with no effort), 12, and the
results using instead half of those threads, thus 6. The different environments show more
or less the same "trends", with "aa64" slightly departing away once again. Given a total
resolution r×r, we tested using a tile t× t big, with t being one among 512, 1024, 2048, 4096,
or a subset of these values. A smaller tile size increases the total number of tiles the con-
struction is split into: the constructions we are showing employed a number of tiles ranging
from 4 to 4096. In the charts, lower bars represent better results (smaller times).

When 12 threads have been employed, from values of r that range from 4096 to 16384,
the significantly lowest results are mostly obtained when a total number of 64 tiles is used.
This translates to t = 512 for r = 4096, t = 1024 for r = 8192 and t = 2048 for r = 16384.
For the environments Military and City, when r = 16384, the use of even more tiles, 128,
yields even significantly lower results. Using 128 tiles in total instead is beneficial for ECMs
produced when r = 32768, therefore having t = 2048. The environment aa64 presents
similar results, but differences among values of t = 64, 128 are non significant when r is 4096
or 32768.

Things change when we use instead 6 threads in total. First, if we consider the best
time for each total resolution, we notice a significant, but little, increase in times in all
environments but aa64. Therefore, halving the number of threads negatively impacts the
efficiency, although not strongly. Then, we can observe that now, for r = 16384, the best
results are observed when only 16 tiles are used (instead of 64 or 128 as it was previously),
therefore with t = 4096. Similarly, for r = 32768, the use of only 64 tiles, and therefore
t = 4096, seems to be the most beneficial solution, as opposed to the previous 128. Once
again, aa64 differs from these trends by exhibiting less significant differences.

In general, we notice that using a higher amount of smaller tiles yields better results, and
this is quite logical since, unlike "GPGPU", "CPU-Parallel" processes the tiles in parallel.
However, using too many small tiles then results in a "diminishing return" effect, with the
amount of work being just too much for the number of CPU threads. This being said,
the number of threads used during the construction is also a crucial factor: the use of less
threads puts a limit on the amount of processing that can be done in parallel, therefore with
only a few threads decreasing the number of total tiles employed (by increasing the tile size)
proves to be beneficial. Picking the right value for t appears to be a tricky operation that
would require perhaps additional investigation. In our experiments, setting t as t = r

16 or
t = r

8 seemed to lead to the best results overall when 12 threads were employed, while in
case of only 6 threads used, setting t = r

4 seemed to be the best option for higher resolution.

71

4096 8192 16384 32768

0

0.2

0.4

0.6

0.8

1

1.2

·104

Resolution (pixels per side)

C
on

st
ru
ct
io
n
T
im

e
(m

se
c)

Military - 12 Threads

TS 512 TS 1024 TS 2048 TS 4096

4096 8192 16384 32768

0

0.2

0.4

0.6

0.8

1

1.2

·104

Resolution (pixels per side)

Military - 6 Threads

TS 512 TS 1024 TS 2048 TS 4096

4096 8192 16384 32768

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·104

Resolution (pixels per side)

C
on

st
ru
ct
io
n
T
im

e
(m

se
c)

City - 12 Threads

TS 512 TS 1024 TS 2048 TS 4096

4096 8192 16384 32768

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·104

Resolution (pixels per side)

City - 6 Threads

TS 512 TS 1024 TS 2048 TS 4096

Figure 33: Incidence of the tile size in the construction times of the "CPU-Parallel" imple-
mentation, environments Military and City. Charts on the left employed 12 threads, while
charts on the right only 6. Unlike "GPGPU", bigger using bigger tiles does not always lead
to the lowest times. Picking the right tile size is hard.

72

4096 8192 16384 32768

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·104

Resolution (pixels per side)

C
on

st
ru
ct
io
n
T
im

e
(m

se
c)

UUTest - 12 Threads

TS 512 TS 1024 TS 2048 TS 4096

4096 8192 16384 32768

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·104

Resolution (pixels per side)

UUTest - 6 Threads

TS 512 TS 1024 TS 2048 TS 4096

4096 8192 16384 32768

0

0.5

1

1.5

2

2.5

3

3.5

4

·104

Resolution (pixels per side)

C
on

st
ru
ct
io
n
T
im

e
(m

se
c)

aa64 - 12 Threads

TS 512 TS 1024 TS 2048 TS 4096

4096 8192 16384 32768

0

0.5

1

1.5

2

2.5

3

3.5

4

·104

Resolution (pixels per side)

aa64 - 6 Threads

TS 512 TS 1024 TS 2048 TS 4096

Figure 34: Incidence of the tile size in the construction times of the "CPU-Parallel" imple-
mentation, environments UUTest and aa64. Charts on the left employed 12 threads, while
charts on the right only 6. Same considerations stated previously apply; however, the trend
is less significant in aa64.

73

4096 8192 16384 32768

0

0.2

0.4

0.6

0.8

1

1.2

·104

Resolution (pixels per side)

C
on

st
ru
ct
io
n
T
im

e
(m

se
c)

degpoints32 - 12 Threads

TS 512 TS 1024 TS 2048 TS 4096

4096 8192 16384 32768

0

0.2

0.4

0.6

0.8

1

1.2

·104

Resolution (pixels per side)

degpoints32 - 6 Threads

TS 512 TS 1024 TS 2048 TS 4096

Figure 35: Incidence of the tile size in the construction times of the "CPU-Parallel" imple-
mentation, degpoints32 environment. Charts on the left employed 12 threads, while charts
on the right only 6. Same considerations stated previously apply.

74

6.5 Considerations about High Resolutions and Precision
We have already showed how the 2 new implementations lead to considerably lower con-
struction times for ECMs. Nonetheless, a multi-tiled approach also grants the advantage of
computing Navigation Meshes at very high resolutions, basically almost removing any con-
straints related to the resolution of the approximated construction. If the total resolution
is expressed as r × r, the 2 implementations can compute ECMs up to r = 4294967295 (or
better, the value of the MAX_UNSIGNED_INT C symbol). Previous charts show results
for resolutions only up to about 32000 squared pixels for readability (at very high resolu-
tions construction times trespass a certain order of magnitude), but we have also computed
ECMs at resolutions greater than 100k squared pixels. In the new implementations, the
main limits are represented by the maximum number of obstacles supported (which derives
from the GPU color-depth used) and by a maximum number of Voronoi vertices and edge-
points supported; the latter constraint is derived by the fairly high memory usage of the
data-structures employed during the steps of the constructions, that can again require more
memory than the available one, or single-buffer allocations that exceed again the limit of
allocability.
Therefore, it becomes interesting to make some considerations on the effect that higher reso-
lutions can have on the precisions of the Navigation Meshes. In the first 2 chapters we have
explained how the approximated construction of the Medial Axis we employ can lead to
some known issues, and we observed how some of them are mostly related to the resolution
employed, assuming that increasing the resolution would have a positive impact on the final
precision.

In order to investigate this, we included the environment "degpoints32" in our set of
tested environments. As we have already noticed, an approximated construction like the
method described in [HCK+99] fails at computing a correct MA of "degpoints32" because
it fails at locating the single vertex in the center of the circumference, and it also fails
at distinguishing distinct edges when they get too close to that central vertex. In [Cib13]
these artifacts are named "weaving effect" and "flower effect", and are observed to appear
because additional vertices and event-points are detected on the edges too. Therefore,
an agglomeration of incorrect vertices/event-points are detected in the part close to the
center of the circumference, and from the agglomeration pairs of almost overlapping edges
are spawned. [Cib13] shows that the computation of an ECM of "degpoints32" based on
the topology-oriented VRONI framework can instead generate a correct Navigation Mesh.
Since our implementations support higher resolutions, we computed ECMs of "degpoints32"
at resolutions that range from 4096 squared pixels to more than 80000 squared pixels. The
ECM of "degpoints32" computed at 4096× 4096 and 80000× 80000 are shown in Figure 36.
What we can notice is that at a high resolution the "flower effect" is slightly less accentuated,
but in general, we can conclude that some tricky scenarios can not be computed correctly
by an approximated method even if we massively increase the resolution. However, since an
approximated method presents other advantages and could end up being used to compute
ECM of error-prone scenarios anyway, being able to process them at high resolutions, having
then less artifacts in the result, could still prove to be useful.

However, increasing the resolution of our approximated method does improve the preci-
sion of some of the ECMs computed, and it can potentially remove some mistakes that derive
from the low resolution of the approximation taking place. We created the example "simple-
Precision" to try to outline this: "simplePrecision" is a very big environment of 200 x 200
meters, bigger than any other environment tested, featuring a point and a line segment at a
distance of 0.025 meters on the X axis. Hence, the point P is located at position (2.0, 0.0)
and the closest point to P on the segment S, Q, is located at position (2.025, 0.0). Both the
x values of P and Q are perfectly representable by the float and double datatype. The point
P and the segment S should generate a parabola as part of their MA, being the a parabola
the locus of points exhibiting the same distance between a point and a line. Figure 37a
shows an ECM of "simplePrecision" produced at resolution 8192: we can observe something
similar to a parabola between the point and the segment, but in fact, geometrically, that
configuration consists of 5 segments overlapping, 3 of them connecting the 2 points that,

75

being very close, are incorrectly visualized as just one. Figure 37b instead shows an ECM
of the same environment computed at a resolution of 32768 squared pixels: we can notice
how no vertices appear on the parabolic part of the Medial Axis, which is this time instead
geometrically expressed as a parabola that correctly goes between the point and the line. It
is worth noticing that the second ECM could not have been computed with the "Original"
implementation, given its high resolution.

Understanding why this happens is, unfortunately, quite hard: what is clear is that
at lower resolutions, the GPU rasterization step described in [HCK+99] fails at producing
a configuration where 2 pixels signaling the presence of obstacles (black) are separated
by at least 2 other pixels to which two different colors (other than black) are assigned.
More precisely, considering the case of "simplePrecision" with seeds (obstacles) point P and
segment S, if pixel Pixel1(p1x, p1y) is assigned to seed point P , then we need:

1. A pixel to its right at position Pixel2(p1x+1, p1y) that must feature the color assigned
to the distance mesh of point P ;

2. Then, a pixel Pixel3 to the right of Pixel2 at position (p1x+2, p1y) that must feature
the color assigned to the distance mesh of segment S, color that should be different
from the color of pixel Pixel2;

3. In the end, a third pixel Pixel4 located at position (p1x+3, p1y) that must be mapped
as part of the obstacle segment S, featuring thus color black.

We can then notice that, given the obstacle P , we need 3 distinct pixels in order to have a
correct configuration involving the closest obstacle S, 2 plus the pixel identifying the other
obstacle. The "virtual" size of a pixel can be expressed as

pixelSize =
BBoxWidth

r

where r comes from the resolution used for the construction while BBoxWidth is the width
of the environment in world coordinates. Then, to produce the correct configuration of 2
obstacles at distance dist in world coordinates we should make sure that

dist >= ceil(3 ∗ pixelSize).

We can notice how this can explain the example of the previous paragraph. This being
said, this is a very simplistic way of reasoning that ignores the exact way in which OpenGL
translates the world coordinates into grid coordinates of rasterization, and that also does
not take into account possible precision problems due to the use of floats in the process.

76

(a) Lower resolution ECM of "degpoints32" computed at 4096 squared
pixels. We can notice the "black treacle" of points that are generated
close to the center of the circumference (flower effect), that generate at
some point pairs of partially overlapping edges (visualized as thicker)
(weaving effect).

(b) Higher resolution ECM of "degpoints32" computed at 80000
squared pixels. The "black treacle" of black points around the cen-
ter is slightly smaller (noticeable in the areas closer to the boundaries
of what looks like a black circle). However, the ECM is still fundamen-
tally incorrect.

Figure 36: Low resolution and high resolution ECMs of environment degpoints32
77

(a) At a resolution of around 16000 squared pixels, we observe an incorrect config-
uration. We should see a "thin" parabola as part of the Medial Axis (blue). We
can notice a similar curve, although this curve is in fact represented by 4 pairs of
overlapping edges connecting the 2 vertices on right (black) to the 2 other vertices on
the left, and an additional invisible edge connecting the 2 black vertices on the right.
The 2 black vertices, being too close, are incorrectly displayed as one.

(b) At a resolution of around 32000 squared pixels, we observe a configuration. Part
of the Medial Axis (blue) now forms a parabola. We can notice it because no vertices
(black points) are located on what looks like a parabola, although visualization of
vertices is clearly on since the ones on the left are correctly visualized.

Figure 37: Part of the ECM of "simplePrecision" computed at two different resolutions. The
only obstacles are a segment (red) and point (also red), which is hardly noticeable being too
close to the segment, but they can be observed by zooming-in Figure 27f.

78

7 Conclusions and Future Work
In this work we showed how to introduce parallelism, both CPU-based and GPGPU, in
the construction of ECM Navigation Meshes. Doing so involved shaping a new multi-tiled
approach that allows first to compute and store correctly parts of a Medial Axis, and then
to merge this parts into a final, high-resolution ECM. We have also shown how we can use
multiple CPU threads during both the processing of the tiles and the merge step, assembling
the "CPU-Parallel" implementation. Moreover, we have investigated the use of GPGPU
for speeding up the construction of an ECM, describing a couple of GPGPU steps that
extend the work already performed by the GPU in the current ECM framework, and then
implemented them in the new implementation "GPGPU".

We have tested both implementations on a mixture of real-life scenarios and made-up
examples: in most environments, "GPGPU" leads to construction times that are on average
62% smaller than the original ones, while "CPU-Parallel" similarly leads to construction
times that are on average 28% smaller. In addition, the new implementations allow to
compute approximated ECMs but at very high resolutions: although this is not enough to
compute correct ECMs of some degenerate cases, it can still decrease the number of artifacts
introduced in the Navigation Meshes. At the same time, we showed as some precision errors
instead can be completely solved if we are allowed to use any kind of value (or very big ones)
as a total resolution.

Still, the new described and implemented approaches have a number of limitations.
Mainly, not being able to handle correctly some known degenerate cases is still a big issue,
considered also that some topology-oriented approaches seem instead to be capable of solving
those cases [Cib13, HH09] at "bearable" computational costs. However, our "GPGPU"
implementation seems to be significantly more efficient, which poses again the familiar trade-
off between precision and speed. Moreover, subdividing an ECM computation into tiles that
are then merged together at the end is a very tricky operation, and because of this our
implementations are still quite "unstable", especially when more complicated environment
needs to be handled at high resolution or using a very small tile size. Although the main
geometrical ideas behind the approach have been outlined and handled correctly, there are
still probably many specific/degenerate cases that require further investigation, and that are
causing the errors of current implementations.
Another thing to consider is that the "GPGPU" implementation comes with additional
drawbacks: it relies heavily on GPU memory and GPGPU optimizations, and thus the code
is fairly complicated, and can eventually prove to be difficult to maintain. Again, it would be
more reasonable to consider the "GPGPU" implementation as a "starting point" prototype
that shows how GPGPU can be used to achieve certain benefits, but different solutions and
additional GPGPU-related optimizations need to be investigated and probably included
before the prototype can be considered a mature implementation. Moreover, the current
GPGPU implementation relies on CUDA, and, therefore, being CUDA a technology from
NVIDIA, it works only on configurations featuring a fairly modern (1/2 years old maximum)
NVIDIA GPU and updated NVIDIA drivers. Sure, the codebase could be adapted to make
use of similar but more cross-supported technologies such as OpenCL; unfortunately, the
current code is built upon the "CUDA Runtime API", a higher-level layer that abstracts
many of the lower-level calls of the "CUDA Kernel API". Being the OpenCL API more
similar to the CUDA Kernel API, modifying the code would require additional logical work,
considered also that not all the CUDA calls have a clear, direct counterpart in the OpenCL
API. In this sense, a solution could be to employ a simple library that abstracts common
functionalities of both CUDA and OpenCL, allowing to write host-code that can be executed
on both platforms by just changing a flag: the project "GPGPUUnit" [Bon10] aims at doing
that, and it was developed in parallel to this work. This being said, CUDA still offers some
features that OpenCL instead lacks, and it seems to perform better.

A more-general drawback outlined by the work is that it can be difficult to take ad-
vantage, at the same time, of CPU-based parallelism and GPGPU for the construction of
ECMs, because the initial construction steps involve graphics hardware, and until they are
finished we don’t have any input data (Voronoi diagram description) for computations that

79

can use CPU threads. Therefore, we managed to increase the degree of parallelism only
when not increasing the amount of steps performed on the GPU, and similarly, when we in-
crease the number of GPU-powered steps we decrease the degree of CPU-based parallelism:
the two implementation are almost mutually exclusive. It is also important to keep in mind
that memory transfers between GPU and CPU can not be parallelized. This being said, the
"GPGPU" approach could be extended to use multiple GPUs, which would process at the
same time different tiles. This will in turn require additional work with CPU parallelism
since each GPU needs to be "controlled" by a different CPU thread.

Therefore, there are many possibilities for future work. We have already discussed the
ones that involve extending and improving the GPGPU/CPU-Parallel routines. Additional
studies could inquire the relationship between a certain resolution/size of an environment/its
complexity and the kind of mistakes that appear in the approximated ECM computed. In
the same way, since the resolution parameter is almost not a constraint anymore, new in-
vestigations on which kind of configurations, and thus which kind of environments, require
very-high resolutions to be handled correctly/well enough could follow, especially if paired
with comparisons to solutions produced by topology-oriented or exact approaches.
Given the low computational times produced by the new implementations, it could be inves-
tigated if any of them could be adapted for computing dynamic changes of an ECM during a
simulation. In the same way, either of them could become part of a new "mixed" framework
that could construct Navigation Meshes by first employing an approximated but very fast
approach (like "GPGPU") and by subsequently "post-process" the output structure using
a more exact approach (topology-oriented) in order to try to correct possible mistakes or
precision errors.

If successful, the above studies could have a strong impact on practical applications. A
framework that could precisely distinguish very close objects, computing a correct graph,
would increase the number of environments that could handled automatically. Currently,
crowd simulation approaches are advanced enough to be able to handle a huge number of
characters moving inside very big environments that are reproductions of existing ones (air-
ports, big train stations). Those environments can feature narrow passages or oddly-shaped
obstacles being very close to each-other, which are scenarios that can lead to incorrect auto
generated Navigation Meshes due to precision errors, even using state of the art approaches.
Those errors in the supporting data structures are generally corrected manually by users,
which is a costly and inefficient solution. Hence, a gap appears to exist in the area of crowd
simulation, with advanced approaches that are able to simulate convincing flows of a huge
amount of characters in huge environments, but that are not capable of autonomously gen-
erate the correct support structures that those simulation would require. This research work
could help filling this game.
At the same time, being able to compute dynamic changes of a Navigation Mesh would mean
running convincing crowd simulations on adaptable environments, environments that could
then change according to user input or as a consequence of other emerging events (i.e. fire
burning tree obstacles). This is a known open problem in the field of crowd simulation, since
it is hard to find/design a Navigation Mesh structure which is at the same time a compact
and efficient description of the walkable space of an environment and can be dynamically
changed efficiently. Since crowd simulation is often used as a validation mechanism for archi-
tectural design/planning, overcoming the issue of dynamic changes would lead to softwares
in which users could draw and place on the screen objects in the most crowded areas dur-
ing crowd simulations, receiving real-time feedback on the impact of the new object in the
behavior of the crowd. This would drastically cut the costs of such important validations.
Dynamically changing Navigation Meshes are also a known issue of current video games, that
more and more feature crowds of humans that are not only added to increase immersion, but
often play an important role in terms of interaction with the players. Since crowd simulation
and path-planning can strongly impact the final artificial behavior of characters, it is im-
portant that they always keep coherent with the changes in the environment that surrounds
them. Recently, modern first-person shooters like "Battlefield" and "Call of Duty" strongly
emphasize how all their new maps can be dynamically altered by the missiles shot or by the

80

airstrikes, leading to an immersive and always diverse game experience. Since first-person
shooters usually feature a rather small number of total characters on the field (up to 25),
the technical constraints can still be "bypassed". However, achieving the same result in a
more populated "sandbox game" (like a modern Grand Theft Auto) would probably require
crafting a complex and stable solution for the problem of dynamically modifiable Navigation
Meshes. Therefore, the approaches and results illustrated in this work could be used also as
a starting point to improve modern interactive games, eventually making them capable of
supporting the high number of explosions and ignitions that players deserve to experience.

81

References
[ACV05] H. Alt, O. Cheong, and A. Vigneron. The voronoi diagram of curved objects.

Discrete & Computational Geometry, 34(3):439–453, 2005.

[Aur91] F. Aurenhammer. Voronoi diagrams - a survey of a fundamental geometric
data structure. ACM Computing Surveys (CSUR), 23(3):345–405, 1991.

[BA92] J.W. Brandt and V.R. Algazi. Continuous skeleton computation by voronoi
diagram. CVGIP: Image Understanding, 55(3):329–338, 1992.

[Ble90] G.E. Blelloch. Pre x sums and their applications. Synthesis of Parallel Algo-
rithms, pages 35–60, 1990.

[Ble10] A. Bleiweiss. Parallel compact roadmap construction of 3d virtual environ-
ments on the gpu. In Intelligent Robots and Systems, 2010 IEEE/RSJ Inter-
national Conference on, pages 5007–5013. IEEE, 2010.

[Bon10] R Bonfiglioli. Gpgpuunit library, 2010.
https://bitbucket.org/winterismute/gpgpuunit/.

[cga] Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.

[Cib13] A Cibotaru. Alternative algorithms for computing explicit corridor maps using
exact and topology-oriented paradigms. Master’s thesis, Utrecht University,
2013.

[CSW95] F. Chin, J. Snoeyink, and C. Wang. Finding the medial axis of a simple
polygon in linear time. Algorithms and Computations, pages 382–391, 1995.

[CTMT10] T.T. Cao, K. Tang, A. Mohamed, and T.S. Tan. Parallel banding algorithm
to compute exact distance transform with the gpu. In Proceedings of the 2010
ACM SIGGRAPH symposium on Interactive 3D Graphics and Games, pages
83–90. ACM, 2010.

[dBCvKO08] M. de Berg, O. Cheong, M. van Kreveld, and M.H. Overmars. Computational
Goometry : Algorithms and Applications. Springer, 3rd edition, 2008.

[DCSM96] A C Dusseau, David E. Culler, Klaus E. Schauser, and Richard P. Martin.
Fast parallel sorting under logp: Experience with the cm-5. Parallel and
Distributed Systems, IEEE Transactions on, 7(8):791–805, 1996.

[Den03] M. Denny. Solving geometric optimization problems using graphics hardware.
In Computer Graphics Forum, volume 22, pages 441–451. Wiley Online Li-
brary, 2003.

[Dev92] O. Devillers. Randomization yields simple o(nlog ∗ n) algorithms for difficult
omega (n) problems. International Journal of Computational Geometry and
Applications, 2(1):97–111, 1992.

[FEC02] R. Fabbri, LF Estrozi, and L.D.F. Costa. On voronoi diagrams and medial
axes. Journal of Mathematical Imaging and Vision, 17(1):27–40, 2002.

[Ger10] R. Geraerts. Planning short paths with clearance using Explicit Corridors. In
Proceedings of the IEEE International Conference on Robotics and Automa-
tion, pages 1997–2004, 2010.

[GM07] N K Govindaraju and Dinesh Manocha. Cache-efficient numerical algorithms
using graphics hardware. Parallel Computing, 33(10):663–684, 2007.

[GO06] R. Geraerts and M.H. Overmars. Creating high-quality roadmaps for motion
planning in virtual environments. In Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on, pages 4355–4361. IEEE, 2006.

82

[GO07] R. Geraerts and M.H. Overmars. The corridor map method: a general frame-
work for real-time high-quality path planning. Computer Animation and Vir-
tual Worlds, 18(2):107–119, 2007.

[GO08] R. Geraerts and M.H. Overmars. Enhancing corridor maps for real-time path
planning in virtual environments. Computer Animation and Social Agents,
pages 64–71, 2008.

[HB10] J Hoberock and N Bell. Thrust: A parallel template library, 2010. Version
1.3.0.

[HCK+99] K.E. Hoff, III, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast computa-
tion of generalized Voronoi diagrams using graphics hardware. International
Conference on Computer Graphics and Interactive Techniques, pages 277–286,
1999.

[Hel01] M. Held. Vroni: An engineering approach to the reliable and efficient com-
putation of voronoi diagrams of points and line segments. Computational
Geometry, 18(2):95–123, 2001.

[Hel11] M. Held. Vroni and arcvroni: Software for and applications of voronoi dia-
grams in science and engineering. In Voronoi Diagrams in Science and Engi-
neering, 2011 Eighth International Symposium on, pages 3–12. IEEE, 2011.

[HH09] M. Held and S. Huber. Topology-oriented incremental computation of voronoi
diagrams of circular arcs and straight-line segments. Computer-Aided Design,
41(5):327–338, 2009.

[HKKOO11] S. Hong, S. Kyun Kim, T. Oguntebi, and K. Olukotun. Accelerating cuda
graph algorithms at maximum warp. SIGPLAN Notices, 46(8):267, 2011.

[HSO07] M. Harris, S. Sengupta, and J.D. Owens. Parallel prefix sum (scan) with cuda.
GPU Gems, 3(39):851–876, 2007.

[KL02] S. Koenig and M. Likhachev. Dˆ* lite. In Proceedings of the National Confer-
ence on Artificial Intelligence, pages 476–483. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2002.

[KWmH10] D. Kirk, W.H. Wen-mei, and W. Hwu. Programming massively parallel pro-
cessors: a hands-on approach. Morgan Kaufmann, 2010.

[Lee82] D.T. Lee. Medial axis transformation of a planar shape. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, (4):363–369, 1982.

[LPT98] G. Liotta, F.P. Preparata, and R. Tamassia. Robust proximity queries: An
illustration of degree-driven algorithm design. SIAM Journal on Computing,
28(3):864–889, 1998.

[MG11] D Merrill and A Grimshaw. High performance and scalable radix sorting: A
case study of implementing dynamic parallelism for gpu computing. Parallel
Processing Letters, 21(02):245–272, 2011.

[MS87] S.N. Meshkat and C.M. Sakkas. Voronoi diagram for multiply-connected
polygonal domains ii: Implementation and application. IBM journal of re-
search and development, 31(3):373–381, 1987.

[RT06] G. Rong and T.S. Tan. Jump flooding in gpu with applications to voronoi
diagram and distance transform. In Proceedings of the 2006 symposium on
Interactive 3D graphics and games, pages 109–116. ACM, 2006.

83

[RT07] G. Rong and T.S. Tan. Variants of jump flooding algorithm for computing
discrete voronoi diagrams. In Voronoi Diagrams in Science and Engineering,
2007. ISVD’07. 4th International Symposium on, pages 176–181. IEEE, 2007.

[SGM05] A. Sud, N. Govindaraju, and D. Manocha. Interactive computation of dis-
crete generalized voronoi diagrams using range culling. In Proc. International
Symposium on Voronoi Diagrams in Science and Engineering, 2005.

[SH75] M.I. Shamos and D. Hoey. Closest-point problems. In Foundations of Com-
puter Science, 1975., 16th Annual Symposium on, pages 151–162. IEEE, 1975.

[SIII00] K. Sugihara, M. Iri, H. Inagaki, and T. Imai. Topology-oriented implementa-
tionÑan approach to robust geometric algorithms. Algorithmica, 27(1):5–20,
2000.

[SN87] V. Srinivasan and L.R. Nackman. Voronoi diagram for multiply-connected
polygonal domains i: Algorithm. IBM Journal of Research and Development,
31(3):361–372, 1987.

[SOM04] A. Sud, M.A. Otaduy, and D. Manocha. Difi: Fast 3d distance field compu-
tation using graphics hardware. In Computer Graphics Forum, volume 23,
pages 557–566. Wiley Online Library, 2004.

[Wm11] W Hwu Wen-mei. GPU Computing Gems Jade Edition. Morgan Kaufmann,
2011.

84

	Introduction
	Project Motivation
	Project Goals
	Structure of this Work

	Preliminaries
	Generalized Voronoi Diagram
	Medial Axis
	Explicit Corridor Map

	Current construction of an ECM
	Exact and Inexact computation of a Generalized Voronoi diagram

	GPGPU to improve ECM construction
	General-purpose computing on graphics processing units
	Computing Medial Axis on Graphics hardware: Relevant literature
	Overview of the new Approach
	GPGPU optimization notes

	From a Single-tiled to a Multi-tiled construction
	General Overview and Preliminaries
	Tracing a Tile
	Merging tiles
	From the final Medial Axis to an ECM
	Final Considerations concerning a multi-tiled construction
	Towards a CPU-Parallel implementation

	Experiments
	Experimental Setup
	Comparisons of Total Runtimes
	Additional Tests of the GPGPU Implementation
	Additional Tests of the CPU-Parallel Implementation
	Considerations about High Resolutions and Precision

	Conclusions and Future Work

