
Sharing is Caring

A Decision Support Model for Multi-Tenant

Architectures

Master’s Thesis

Michiel Pors

Master Business Informatics
Department of Information and Computing Sciences

Utrecht University
m.pors@students.uu.nl

July 6, 2013

Abstract

Business software is increasingly moving from a traditional on-premises
deployment model to a Software as a Service deployment model. In a Soft-
ware as a Service deployment model, the possession and ownership of the
software application is separated from its use. The software is hosted by
a Software as a Service provider, relieving the customer organization from
the responsibility for supporting the software, and purchasing and main-
taining server hardware for it. The service provider can achieve substan-
tial cost savings by applying economies of scale. This involves a system
where customers share services, databases or resources and is known as
multi-tenancy.

The option to enable multi-tenancy is not binary. There exist various
multi-tenant architectures, because it can be applied at different levels in
the architecture. Also, multi-tenancy is not necessarily beneficial, certain
situations require a more single-tenant approach. The appropriate level
of resource sharing is crucial for a software provider, because it defines
an architectural decision. However, there is insufficient knowledge and
understanding to determine the most suitable multi-tenant architecture
for the software application of a specific Software as a Service provider.

This research focuses on the development of a Multi-Tenant Archi-
tecture Selection Model to assist service providers with this architec-
tural decision problem. First by means of a structured literature study
a set of twelve multi-tenant architectures is identified. These multi-
tenant architectures describe which resources in an application’s system
are shared among tenants, discriminating between the application and
database layer. With the same literature study a list of twenty two deci-
sion criteria, representing factors that influence the decision, is identified.
They are based on consequences, drawbacks and benefits, considerations

1

and requirements related to multi-tenancy. The multi-tenant architec-
tures and decision criteria are then evaluated by domain experts.

The Analytic Hierarchy Process is selected as the decision making
method, based on the complexity of the decision problem, the lack of
quantitative data, and the importance of weighing the decision criteria.
After this selection, all multi-tenant architectures are ranked on each de-
cision criterion, using domain experts. This results in a decision matrix
showing the performance score of each architecture with respect to each
criterion. This matrix can then be used by Software as a service providers
performing the analytic hierarchy process.

The set of multi-tenant architectures, the list of decision criteria, the
decision matrix and the final Multi-Tenant Architecture Selection Model
are the key deliverables of this research and support architects in choosing
the most suitable architectural pattern. This research is the first step in
helping architects of Software as a Service providers make better archi-
tectural decisions, saving them time, effort and potential problems in the
future.

2

Acknowledgments

This thesis describes the research I conducted and is the finalization of my study
Master Business Informatics at Utrecht University. This study allowed me to
develop myself on a more functional level and provided me a more concrete
picture of the actual use of IT. It gave me the opportunity to meet talented
people and have an inside look at multiple interesting organizations.

I would like to thank my first supervisor Jaap Kabbedijk in particular, pro-
viding me with guidance and assistance when both asked and unasked. Also, I
would like to thank Slinger Jansen, helping out Jaap and me when the research
came across complex issues. In addition, I would like to thank Centric, giving
me the opportunity to do research and write my thesis there. Finally, I would
like to thank my family and friends who supported me during this last chapter
of my student life.

3

Contents

1 Introduction 8
1.1 Problem Statement . 9
1.2 Thesis Outline . 11

2 Research Approach 12
2.1 Research Objective . 12
2.2 Research Questions . 13
2.3 Research Context . 14

2.3.1 Stakeholders . 14
2.3.2 Scope . 14
2.3.3 Scientific Relevance . 15
2.3.4 Social Relevance . 15

2.4 Research Design . 15
2.5 Research Process . 16
2.6 Research Model . 17

2.6.1 Multi-tenant Architectures & Criteria Identification . . . 17
2.6.2 Evaluation . 21
2.6.3 Decision Making Method Selection 21
2.6.4 Performance Identification 21
2.6.5 Decision Support Model Construction 21

3 Theoretical Background 22
3.1 Multi-Tenancy . 22
3.2 Decision Making . 22

3.2.1 Multi-Attribute Decision Making 22
3.2.2 Attributes’ Properties . 24
3.2.3 General Decision Making Process 24

4 Literature Study Protocol on Multi-tenancy Levels and Deci-
sion Criteria 26
4.1 Search Strategy . 26

4.1.1 Data Sources . 27
4.1.2 Search Terms . 27

4.2 Study Selection Criteria . 28
4.3 Study Selection Procedures . 29

4.3.1 Literature Gathering . 29
4.3.2 Multi-Tenancy Levels Identification 29
4.3.3 Criteria Identification . 32

4.4 Data Extraction Strategy . 33
4.5 Data Analysis Strategy . 33

5 Findings of Literature Study 34
5.1 Execution of the Literature Study 34
5.2 Data Extraction . 36

5.2.1 Multi-Tenancy Levels . 36
5.2.2 Criteria . 36

5.3 Data Analysis . 37
5.3.1 Multi-Tenancy Levels . 37

4

5.3.2 Multi-Tenant Architectures Structuring 40
5.3.3 Criteria . 45

6 Evaluation of Multi-tenant Architectures and Criteria 52
6.1 Strategy . 52

6.1.1 Instrument . 52
6.1.2 Experts . 52
6.1.3 Format . 53
6.1.4 Analysis Procedure . 53

6.2 Findings . 53
6.2.1 Multi-tenant Architectures Evaluation on Feasibility . . . 54
6.2.2 Decision Criteria Evaluation on Discrimination & Decid-

ing Factor . 55
6.3 Accommodation of the Multi-Tenant Architecture Selection Model 56

7 Decision Making Method Selection 58
7.1 Elementary Methods . 58
7.2 Cost-Benefit Analysis . 58
7.3 Multi-Attribute Utility Theory Methods 58

7.3.1 Weighted Sum Model . 59
7.3.2 Weighted Product Model 59
7.3.3 Analytic Hierarchy Process 59

7.4 Outranking Methods . 60
7.5 Selection of AHP Decision Making Method 61

7.5.1 Decision Hierarchy . 61
7.5.2 Selection Between Measurement Approaches 61

7.6 Accommodation of the Multi-Tenant Architecture Selection Model 64

8 Ratings of Multi-tenant Architectures on Criteria 65
8.1 Strategy . 65

8.1.1 Instrument . 65
8.1.2 Experts . 65
8.1.3 Format . 66
8.1.4 Analysis Procedure . 66

8.2 Findings . 66
8.3 Results . 67
8.4 Analysis . 68

9 Multi-Tenant Architecture Selection Model 71
9.1 Decision Criteria Assessment . 71
9.2 Priority Calculation . 71
9.3 Architecture Recommendation 72

10 Discussion 73
10.1 Limitations . 73

11 Conclusion 75
11.1 Further Research . 76

References 78

5

A List of Relevant Literature 89

B Concept Matrices 90

C Decision Criteria Minimization Process 96

D Evaluation Questionnaire Template 99

E Rating Questionnaire Template 113

F Expert Ratings 123

List of Figures

1 Structure of Multi-Tenant Architecture Selection Model 13
2 Design Science Research Process Model by Peffers et al. (2006) . 16
3 Research Process . 17
4 Research Model . 18
5 Decision Making Process by Baker et al. (2001) 25
6 PDD for the Identification of the Multi-Tenancy Levels and Criteria 30
7 Computing Stack . 38
8 Architecture Diagram . 40
9 Symbols . 41
10 MTA 1 with a Dedicated AS & a Dedicated DBS 41
11 MTA 2 with a Shared AS & a Dedicated DBS 41
12 MTA 3 with a Shared Application Instance & a Dedicated DBS . 42
13 MTA 4 with a Dedicated AS & a Shared DBS 42
14 MTA 5 with a Shared AS & a Shared DBS 42
15 MTA 6 with a Shared Application Instance & a Shared DBS . . 43
16 MTA 7 with a Dedicated AS & a Shared DB 43
17 MTA 8 with a Shared AS & a Shared DB 43
18 MTA 9 with a Shared Application Instance & a Shared DB . . . 44
19 MTA 10 with a Dedicated AS & a Shared DB schema 44
20 MTA 11 with a Shared AS & a Shared DB schema 44
21 MTA 12 with a Shared Application Instance & a Shared DB Schema 45
22 PDD to Minimize the Criteria List 45
23 Multi-Tenant Architecture Selection Model 56
24 Hierarchy of the Multi-Tenant Architecture Decision Problem . . 62
25 Multi-Tenant Architecture Selection Model 64
26 Multi-Tenant Architecture Selection Model 71
27 Decision Criteria Minimization Process: Part 1 96
28 Decision Criteria Minimization Process: Part 2 97
29 Decision Criteria Minimization Process: Part 3 98

List of Tables

1 Research Model Activity Table 19
2 Research Model Concept Table 20
3 Typical Decision Matrix . 23

6

4 MT Levels and Criteria Identification Activity Table 31
5 MT Levels and Criteria Identification Concept Table 32
6 Search String per Source . 34
7 list of all literature per source 34
8 list of candidate literature per source 35
9 list of relevant literature per source 35
10 Referenced Articles . 36
11 Multi-Tenancy Levels Identified in Selected Literature 37
12 Reducing Criteria List Activity Table 46
13 Reducing Criteria List Concept Table 46
14 Evaluation Criteria . 48
15 Evaluation Criteria linked to Quality Characteristics 49
16 Criteria Set . 51
17 Frequencies of Chosen Likert Items on the Feasibility of Multi-

tenant Architectures . 54
18 Frequencies of Chosen Likert Items on the Discrimination and

Deciding Factor of Decision Criteria 57
19 Ratings of the MTA’s Against the Decision Criteria 68
20 list of relevant literature 89
21 Concept Matrix - Multi-Tenancy Level Citations 90
22 Concept Matrix - Multi-Tenancy Levels 91
23 Concept List - Decision Criteria 92
24 Frequency List of Decision Criteria 95
25 Performance Ratings for MTA’s on Time Behavior 123
26 Performance Ratings for MTA’s on Resource Utilization 123
27 Performance Ratings for MTA’s on Throughput 124
28 Performance Ratings for MTA’s on Number of Tenants 124
29 Performance Ratings for MTA’s on Number of End-Users 124
30 Performance Ratings for MTA’s on Availability 125
31 Performance Ratings for MTA’s on Recoverability 125
32 Performance Ratings for MTA’s on Confidentiality 125
33 Performance Ratings for MTA’s on Integrity 126
34 Performance Ratings for MTA’s on Authenticity 126
35 Performance Ratings for MTA’s on Migration 126
36 Performance Ratings for MTA’s on Deployment Time 127
37 Performance Ratings for MTA’s on Variability 127
38 Performance Ratings for MTA’s on Diverse SLA 127
39 Performance Ratings for MTA’s on Software Complexity 128
40 Performance Ratings for MTA’s on Monitoring 128
41 Performance Ratings for MTA’s on Maintainability 128

7

1 Introduction

Business software is increasingly moving from a traditional on-premises deploy-
ment model to a Software as a Service (SaaS) deployment model (D. Ma, 2007;
W. Sun, Zhang, Chen, Zhang, & Liang, 2007). The traditional solution involves
developing software applications that get shipped to the customer to be de-
ployed on-site. This requires clients to own and maintain an in-house IT system
with servers running the software.

In this traditional model the clients buy a software license to use the soft-
ware. This is usually a one-time upfront fee. For line-of-business software this
fee potentially includes on-site installation and service visits from the software
vendor service teams. These services lead to vendor costs and affects the price
at which the software vendor can afford to sell the software application. There-
fore, such software is typically targeted at the larger businesses that can afford
these expenditures (Chong & Carraro, 2006).

Customers often have their own specific requirements for their software appli-
cations. The causes for this variance in customer wishes include: industry focus
differences; customer behavior differences; product offering differences; regula-
tion differences; culture differences and operation strategy differences (W. Sun,
Zhang, Guo, Sun, & Su, 2008). A software vendor can cater for these varying
user wishes by customizing the source code of the software application or give
the customer configuration options so the customer can change the application
to his liking. Consequently, clients in a traditional on-premises model each have
its own modified software application running.

Software as a Service focuses on separating the possession and ownership of
a software application from its use (Turner, Budgen, & Brereton, 2003). Within
a SaaS environment, software and data is hosted by the software vendor and
is delivered online (Dubey & Wagle, 2007). A SaaS customer can access the
service provider’s applications from various client devices. The applications are
running on a cloud infrastructure that is not under the control of the customer
(Mell & Grance, 2011). Because the software is hosted by the SaaS provider,
the customer organization is relieved from the responsibility for supporting the
software, and purchasing and maintaining server hardware for it (Chong &
Carraro, 2006).

Furthermore, in a SaaS deployment model, the customer usually does not
purchase a software license (W. Sun et al., 2007). Payment is typically based
on a subscription revenue model, e.g. the SaaS provider charges his clients
per use or on a monthly basis per user (Laplante, Zhang, & Voas, 2008). An
example is Salesforce.com, an early leader of the SaaS model, providing on-
demand Customer Relations Management and automation tools. Salesforce
uses a subscription revenue model and charges clients per user on a monthly
basis.

As mentioned before, a SaaS application is hosted by the SaaS provider.
Therefore, the customer no longer needs to maintain a large costly in-house
server running the software. In addition, the large upfront fee is replaced by a
small monthly sum. This enables small and medium-sized businesses to afford
otherwise costly business software. SaaS is typically targeted at these type of
customers.

One often addressed benefit of SaaS is the ability to apply economy of scale
(Sääksjärvi, Lassila, & Nordström, 2005). A SaaS vendor can serve his clients

8

from a centrally-hosted software service. This service, running on the vendor’s
server, supports multiple clients and enables distributing the server costs over
the clients, decreasing the total cost of ownership. Moreover, with each ad-
ditional client, the individual server costs are reduced. Compared with the
traditional model where each client dedicates an entire server to the application
substantial cost savings can be achieved.

This aspect of customers sharing servers can be extended to other parts
of an application system. For example, customers can share resources such as
databases, virtual machines or network connections. This sharing of resources
among customers is what in this thesis will be referred to as multi-tenancy.

Multi-tenancy receives increasing attention in scientific literature, but is still
a relatively new concept. Therefore, a lot of different definitions can be found
and there is yet no single definite description. Two often cited articles in the
domain of multi-tenancy are written in 2006 by Chong and Carraro and in 2007
by Guo et al. Chong and Carraro described multi-tenancy as follows: “A SaaS
vendor with x number of customers subscribing to a single, centrally-hosted soft-
ware service enables the vendor to serve all of its customers in a consolidated
environment.”(2006, p. 6). This description lacks detail and is more a descrip-
tion of an opportunity in a certain situation. Guo et al. do provide a description
more like a definition: “In a multi-tenancy enabled service environment, user
requests from different organizations and companies (tenants) are served concur-
rently by one or more hosted application instances based on a shared hardware
and software infrastructure.”(2007, p. 1). This definition however, states that
for a service environment to be multi-tenant, application instances need to be
shared. So according to this description service environments in which data tier
only resources – like databases – are shared among tenants are not multi-tenant.
Because there is disagreement with previous definitions, an other definition of
multi-tenancy is used throughout this work. The definition is as follows:

Multi-tenancy is a property of a system where multiple varying cus-
tomers and their end-users share the system’s services, applications,
databases, or hardware resources, with the aim of lowering costs.

By using this definition, multi-tenancy can be referred to the sharing of re-
sources in the complete system and not in just a single or a couple of layers or
tiers. In addition, multi-tenancy can be viewed as more than just the sharing
of application or data instances.

The opposite of multi-tenancy is – not surprisingly – called single-tenancy.
In a single-tenant system, no resources are shared among customers. A software
solution deployed using the traditional on-premises model is single-tenant.

1.1 Problem Statement

Multi-tenancy can entail many benefits. By serving the software service from a
centrally hosted location, clients are relieved from the responsibility of purchas-
ing and maintaining big in-house servers. The total cost of ownership decreases
and gives the SaaS provider access to new potential customers that previously
could not afford the expenses (Chong & Carraro, 2006). In addition, the uti-
lization rate of hardware in a multi-tenant environment is higher than in a
single-tenant environment (Sääksjärvi et al., 2005). Furthermore, when multiple

9

customers share application instances and data instances, the total number of
instances running will be much lower than in a single-tenant environment. This
lower amount of instances is beneficial for maintenance (Kwok, Nguyen, & Lam,
2008) and facilitates application development (Bezemer, Zaidman, Platzbeecker,
Hurkmans, & ’t Hart, 2010).

However, multiple barriers withhold SaaS providers from massively switching
to multi-tenant environments. The challenges of implementing multi-tenancy
involve issues with performance (Lin, Sun, Zhao, & Han, 2009), scalability,
security (Guo et al., 2007) and re-engineering the current software application
(C.-H. Tsai, Ruan, Sahu, Shaikh, & Shin, 2007).

In certain situations multi-tenancy can be very beneficial for a software ven-
dor, but in other circumstances a single-tenant approach will be more suitable.
Selecting the appropriate multi-tenant solution is a complex problem, there are
many considerations and consequences to take into account. Also, the solution
itself is complex, because there exist various multi-tenancy implementations.

Multi-tenancy is defined as a broad concept in this work. There exist mul-
tiple degrees of multi-tenancy, described as multi-tenancy levels. This means
there exist many configurations of a software system that meet the multi-tenancy
definition. Benefits and barriers of multi-tenancy are identified and described
in literature, but the aspect of choosing an appropriate multi-tenant architec-
ture based on SaaS providers’ preferences has received little attention to date.
Finding the most suitable multi-tenant architecture is crucial, because the archi-
tecture expresses a fundamental structural organization schema for a provider’s
software system. However, choosing the best solution is a complex task. Ac-
counting for all the challenges and benefits complicates the decision process
considerably.

Related to this problem is a model developed by Kabbedijk and Jansen
(2011) depicting deployment solutions that are considered best practices in spe-
cific situations. This model includes the following four deployment solutions:
Custom Software Solution, Software Product Line Solution, Standard Multi-
tenant Solution and Configurable Multi-tenant Solution.

The model shows the most suitable deployment model is based on the need to
share resources and the need to share functionality among customers. It ignores
the explicit levels of multi-tenancy and only distinguishes specific situations in
the context of the level of resources and the level of functionality shared between
tenants. More criteria that influence the decision problem are expected to exist,
for example the many barriers of multi-tenancy.

There are currently no other known papers that map multi-tenant architec-
tures to factors advocating or militating different multi-tenant solutions. The
formal problem statement for this research project is as follows:

The appropriate level of resource sharing is crucial for SaaS providers,
because it defines an architectural decision. However, there is insuf-
ficient knowledge and understanding to determine the right multi-
tenant architecture for the software application of a specific SaaS
provider.

10

1.2 Thesis Outline

This section introduced the reader in the domain of multi-tenancy and described
the problem statement this research addresses. Section 2 starts by describing
the research objective and research questions. The relevance is then touched,
followed by the research design and model. Then, in Section 3, some back-
ground knowledge on multi-tenant architectures and decision making theory is
provided. Sections 4 to 6 cover research SQ. 1 and SQ. 2. A set of multi-tenant
architectures and decision criteria is first identified from literature and then
evaluated using experts. The description of the literature study protocol is de-
scribed in Section 4 and the results thereof are in Section 5. Section 6 covers the
evaluation of these results. Then, an explanation for the selection of a specific
decision making method is given in Section 7. Next, in Section 8 an answer to
the third research subquestion is given. The Multi-Tenant Architecture Selec-
tion Model is presented in Section 9. The limitations of this research can be
found in Section 10 and the conclusions are defined in Section 11.

11

2 Research Approach

This section starts with describing the research objective. Then, the research
questions are showed, followed by the research context. After that, the research
design, research process and research model are explained.

2.1 Research Objective

Howard (1966, p. 56) was the first to coin the term decision analysis on which
he said the following:

Decision analysis is a logical procedure for the balancing of factors
that influence the decision. The procedure incorporates uncertain-
ties, values, and preferences in a basic structure that models the
decision. Typically, it includes technical, marketing, competitive,
and environmental factors. The essence of the procedure is the con-
struction of a structural model of the decision in a form suitable for
computation and manipulation.

Decision analysis addresses a decision problem that arises in many indus-
tries and business activities in which from a set of possible solutions one must
be chosen. The same type of problem is stated in the problem statement of this
research. The set of possible solutions then correspond to the various multi-
tenant architectures. Solving the decision problem is often difficult, because
the decision criteria are usually in conflict with one another. Decision making
methods help decision makers to choose among the set of solutions. Examples
of areas in which decision making methods are applied include vendor selection,
outsource location, layout design, technology investment decisions and engineer-
ing problems. This research addresses the problem statement by developing a
decision support model, called the Multi-Tenant Architecture Selection Model.
For a more detailed description of decision making and the concepts involved,
see Section 3.

This developed decision support model should be useful to various SaaS
providers. There exists a variety of SaaS providers. The amount of customers,
type of application, and domain sector are examples of variables that influence
how providers are situated. It describes the setting of those providers. Moreover,
these different conditions cause different interests among SaaS providers. The
Multi-Tenant Architecture Selection Model should account for this, it should be
generic and useful to any SaaS provider.

As is described in more detail in Section 3, decision making is a process con-
sisting of multiple activities in which several artifacts are created. This research
carries out some of these activities and develops some of these artifacts. The
decision support model should explain what activities remain to be performed
with which artifacts by the decision makers.

The Multi-Tenant Architecture Selection Model will have the structure shown
in Figure 1. The model illustrates three main phases, each of which consists of
a number of steps to be carried out by the decision makers. The first phase, As-
sessment, is responsible for assessing if all the required information is available
for the decision makers. If so, the second phase, Calculation, can be initiated
in which the actual calculation of the most suitable multi-tenant architecture

12

takes place. After this calculation, the final phase, Architecture Recommen-
dation, is started in which the decision makers evaluate the result from the
previous phase and a recommendation is provided. Apart from the steps, the
Multi-Tenant Architecture Selection Model also shows what artifact is to be
used in which phase. The exact steps and artifacts are not yet displayed, but
the Multi-Tenant Architecture Selection Model will be completed by the end of
this research.

Assessment Calculation
Architecture

Recommendation

Steps Steps Steps

Used Artifact Used Artifact

Used Artifact

Figure 1: Structure of Multi-Tenant Architecture Selection Model

2.2 Research Questions

Based on the problem statement and the research objective the main research
question is formulated as follows:

RQ. How can a SaaS provider be optimally supported in the de-
cision process of choosing the most suitable multi-tenant ar-
chitecture?

Several steps need to be carried out in order to develop the Multi-Tenant
Architecture Selection Model that solves the main research question. A general
decision support model consists of three fundamental elements, all of which
need to be identified. The first element is the in decision theory so-called set
of alternatives. It corresponds to the various multi-tenant architectures from
which a SaaS provider must decide. Hence, the first subquestion is defined as
follows:

SQ. 1 Which multi-tenant architectures currently exist?

A explained by Howard, a decision is influenced by several factors, the second
element to be identified. In decision theory, these factors are called decision
criteria or attributes. They discriminate among the alternatives and measure
the extent of preference. This leads to the second subquestion:

SQ. 2 What measurable decision criteria are of importance to SaaS
providers in choosing a multi-tenant architecture and define
a discrimination among these multi-tenant architectures?

13

Finally, the alternatives must be evaluated against the decision criteria, re-
sulting in performance scores. The final subquestion is stated as:

SQ. 3 How do the multi-tenant architectures perform on each de-
cision criterion?

2.3 Research Context

This section describes the involved stakeholders, and the scope and relevance of
this research.

2.3.1 Stakeholders

There exist several roles in the realm of software as a service. There are three
roles that are of most interest in this research. The SaaS Provider is the entity
hosting the service and selling the service. A SaaS Customer uses this service
by subscribing to it. Finally, the SaaS Application Developer is the company
developing the application that is hosted as a service. A single organization
can take on more than one of these roles, for instance a company developing an
application and also offering this application as a service to customers.

Other known roles in cloud computing are the infrastructure as a service
provider and the platform as a service provider, but this research will focus
mainly on the SaaS landscape.

This research use the term SaaS provider and service provider interchange-
ably. In this work, both a SaaS provider and service provider refer to a company
developing its own application and offering it as a service.

2.3.2 Scope

Two major categories of software as a service are identified by Chong and Car-
raro (2006, p. 3):

Line-of-business services, offered to enterprises and organizations
of all sizes. Line-of-business services are often large, customizable
business solutions aimed at facilitating business processes such as
finances, supply-chain management, and customer relations. These
services are typically sold to customers on a subscription-basis.

Consumer-oriented services, offered to the general public. Consumer-
oriented services are sometimes sold on a subscription-basis, but are
often provided to consumers at no cost, and are supported by ad-
vertising.

This research focuses on line-of-business solutions. The multi-tenant architec-
tures and criteria identified are based on that context. Some concepts however,
might apply to the scope of consumer-oriented services as well. In addition,
the multi-tenant architectures discussed in this work are structured for soft-
ware applications using the layered services pattern. This pattern separates
concerns by logically isolating each layer (Fowler, 2002). Also, the architec-
tures are structured for systems with a tiered distribution in mind. This means
the layers are physically separated and each tier addresses one or more layers
(Fowler, 2002). Thus, the multi-tenant architectures in this work are focused

14

on software applications using the layered services pattern in combination with
the tiered distribution pattern. Nevertheless, the Multi-Tenant Architecture Se-
lection Model can be of interest for service providers offering applications that
lack the tiered distribution pattern.

2.3.3 Scientific Relevance

Multi-tenancy is an important concept in system architecture and receives in-
creasingly more attention in scientific literature. Most of this literature is only
focused on problems in native or full multi-tenancy, i.e. in which a single ap-
plication instance is offered to multiple tenants. There are different types of
multi-tenancy however, and the question of how and where to apply multi-
tenancy remained hitherto neglected. This research fills this gap in literature
with the development of a decision support model by means of decision making
theory.

Furthermore, most research on multi-tenancy is focused on applying multi-
tenancy at one tier or level only. In contrast, this research takes a holistic view
at multi-tenant architectures and not just one layer or tier. The knowledge
base of scientific literature on multi-tenancy is increased with the structuring
of generic multi-tenant architectures. These architectures cover both the data
and application layer.

2.3.4 Social Relevance

The practical relevance of this research is represented by the key deliverable: the
Multi-Tenant Architecture Selection Model. It can be used by SaaS providers
struggling how to structure the system architecture for their software services
and to select the components to share among customers. When used by a
SaaS provider, the decision support model describes what activities to execute,
resulting in one or more multi-tenant architectures the provider can select or
apply deeper analysis on.

In addition to the result of the Multi-Tenant Architecture Selection Model
itself, the decision making process is also useful. It provides decision makers
with insight how their decision criteria relate to each other and which criteria
are considered more important.

2.4 Research Design

According to Hevner, March, Park, and Ram (2004) there are two paradigms
characterizing the research in the Information Systems discipline, these are be-
havioral science and design science. The behavioral science paradigm addresses
the development and verification of theories about human or organizational be-
havior. The design science paradigm aims to extend the knowledge base with
the development of new artifacts, solving important and relevant business prob-
lems. The objective of this research is the development of a decision support
model, it represents an artifact solving the business problem stated in the prob-
lem definition. Therefore, this research is defined as design-science research.

Peffers et al. (2006) developed a Design Science Research Process (dsrp)
model. This model shows the process elements that are present in design-
science research. It is based on seven papers and presentations discussing com-

15

ponents of the design-science research process (Archer, 1984; Takeda, Veerkamp,
& Yoshikawa, 1990; Nunamaker Jr & Chen, 1990; Eekels & Roozenburg, 1991;
Walls, Widmeyer, & El Sawy, 1992; Rossi & Sein, 2003; Hevner et al., 2004).
The dsrp model is depicted in Figure 2.

Observing A

Solution

Design &

Development

Centered

Approach

Objective

Centered

Approach

Problem Centered

Approach

Problem

Identification &

Motivation

Define problem

Show importance

Objectives Of A

Solution

What would a better

artifact accomplish?

Design &

Development

Artifact

Demonstration

Find suitable context

Use artifact to solve

problem

Evaluation

Observe how effective,

efficient

Iterate back to design

Communication

Scholarly publications

Professional

publications

M
et

ri
cs

,
an

al
y
si

s

k
n
o
w

le
d
g
e

H
o
w

 t
o

k
n
o
w

le
d
g
e

T
h
eo

ry

In
fe

re
n
ce

D
is

ci
p
li

n
ar

y

k
n
o
w

le
d
g
e

Possible entry points for research

Figure 2: Design Science Research Process Model by Peffers et al. (2006)

The process model consists of six activities in a nominal sequence: Problem
Identification & Motivation, Objectives Of A Solution, Design & Development,
Demonstration, Evaluation, and Communication. The model also depicts pos-
sible entry points for research approaches. Activities one to four can be start
positions for these different research approaches and move from there. This re-
search has a problem-centered approach, therefore this research starts activity
1, Problem Identification & Motivation. The problem definition and motivation
are described in Section 1.1. The second activity, which covers the objective of
the solution, is described in Section 2.1. The third activity, responsible for the
design and development of the artifact, is described in the next section. Due
to time constraints, this research omits the execution of the fourth and fifth
activity, i.e. demonstrating and subsequently evaluating the artifact developed
in the third activity. It is suggested these activities are of subject in further
research. Finally, the deliverable of the sixth activity, for the communication of
the performed activities, is this written thesis.

2.5 Research Process

The process of constructing the Multi-Tenant Architecture Selection Model is
illustrated in Figure 3 and consists of three core activities. First, a structured
literature study is carried out to identify both the multi-tenant architectures
and the decision criteria. Then, these two artifacts are evaluated with the aid
of domain experts. In the final core activity a questionnaire is conducted with
domain experts to construct a decision matrix showing the performance values
of the multi-tenant architectures with respect to each decision criterion. The
process model is explained in more detail in the following section.

16

Structured Literature Study

Multi-tenant Architectures Decision Criteria

Evaluation

Multi-tenant Architectures Decision Criteria

Questionnaire

Decision Matrix

Figure 3: Research Process

2.6 Research Model

A more detailed research model is explained using a process deliverable diagram
(PDD), see Figure 4. This type of diagram, as described by van de Weerd and
Brinkkemper (2009), consists of a meta-process model and a meta-data model
that are connected with each other. The left side shows the meta-process model
and displays the various activities and the sequence of their execution. The
right side depicts the meta-data model and shows the deliverables and their
relations. Each deliverable is linked with the activity that produced it. A PDD
is always accompanied by an activity table and a concept table. The activity
table lists the activities and describes them in more detail. The same applies
for the concept table: each deliverable is listed and described. The activity and
concept table of Figure 4 are shown in Tables 1 and 2.

The PDD consists of five phases, named Multi-tenant Architectures & Crite-
ria Identification, Evaluation, Decision Making Method Selection, Performance
Identification, and Decision Support Model Construction. The phases are visu-
alized as gray-colored round edge rectangles covering related research activities.
The following sections describe each phase in more detail.

2.6.1 Multi-tenant Architectures & Criteria Identification

The first two phases answer the fist two subquestions. The first subquestion is
responsible for finding existing multi-tenant architectures. As mentioned earlier,
the Multi-Tenant Architecture Selection Model should be generic. This means
the model should encompass a set of generic multi-tenant architectures. This
set should include all possible multi-tenant architectures, but a decision support
model can only include a certain number of solutions. So, a balance must
be found between a set of architectures that defines all possible multi-tenant
approaches and a set that is useful in a decision support model.

By means of a literature study, these multi-tenant architectures are identi-
fied. Instead of searching directly for multi-tenant architectures and generalize
those, a different approach is taken. First, levels and tiers on which multi-
tenancy can be applied are identified. Then, generic multi-tenant architectures
are formed from these levels and tiers. The architectures used in the Multi-
Tenant Architecture Selection Model are represented by visual renderings dis-

17

Peformance Identification

Evaluation

Multi-tenant Architectures & Criteria Identification

LITERATURE STUDY PROTOCOL

LIST OF SELECTED LITERATURE

MULTI-TENANCY LEVEL

extracted from

obtained by using
1..*

1

1..*

1..*

EVALUATION QUESTIONNAIRE

TEMPLATE

1..*

PERFORMANCE QUESTIONNAIRE

TEMPLATE

PERFORMANCE QUESTIONNAIRE

RESULT

PERFORMANCE SCORE

extracted from

obtained by using
1..*

1

1..*
1..*

adjusted by

1

1

1..*

Decision Support Model Construction

1..*

EVALUATION QUESTIONNAIRE

RESULT

obtained by using

1..*

1

1..*

Gather literature

Identify multi-tenancy levels

Identify criteria structured by using

1..*

based on

1

Minimize criteria list

MULTI-TENANT ARCHITECTURE

CRITERION

1..*

1..*
1..*

1..*

1..*
1..*

Plan literature study

Structure multi-tenant architectures

Plan expert evaluation questionnaires

Conduct expert evaluation questionnaires

Evaluate mulit-tenant architectures

Evaluate decision criteria

Plan expert performance questionnaires

Conduct expert

performance questionnaires

Extract performance scores

Decision Making Method Selection

Select decision making method DECISION MAKING METHOD
1

1

uses

Construct decision support model DECISION SUPPORT MODEL

Construct decision matrix

DECISION MATRIX

1

1

1..*

Figure 4: Research Model

18

Table 1: Research Model Activity Table

Activity Sub-Activity Description

Multi-tenant
Architectures
& Criteria
Identification

Plan literature
study

A literature study protocol is composed which describes
how the literature review is conducted. Guidelines from
literature on how to write this are followed.

Gather
literature

After constructing the protocol, the collection of scientific
literature is started. Multiple libraries are searched and
inclusion and exclusion criteria is used to filter the initially
large set of articles. This results in a list of selected
literature.

Identify
multi-tenancy
levels

The list of selected literature is searched for various
degrees of multi-tenancy. Multi-tenancy can be applied at
different layers or tiers which requires different approaches.
This activity results in a set of multi-tenancy levels.

Identify
criteria

From the same list of selected literature, criteria are
searched for at locations where multi-tenancy levels are
identified. This leads to a set of criteria.

Structure
multi-tenant
architectures

The various multi-tenancy levels are structured in a set
of multi-tenant architectures.

Minimize
criteria list

The initially large list of criteria is minimized by merging
equal-meaning criteria and deleting infrequent ones.

Evaluation Plan
evaluation
questionnaires

A series of evaluation meetings is planned to evaluate
the constructed multi-tenant architectures and identi-
fied criteria with experts. An evaluation questionnaire
template is composed.

Conduct
evaluation
questionnaires

The questionnaires are administered with individual ex-
perts. This results in a set of evaluation questionnaire
results.

Evaluate
multi-tenant
architectures

After all questionnaires, the evaluation questionnaire re-
sults are used to analyze if each multi-tenant architecture
should be incorporated in the decision support model.

Evaluate
decision
criteria

As with the previous activity, the evaluation interview
results are used to analyze if each criterion should be in-
corporated in the decision support model.

Decision
Making
Method
Selection

Select decision
making
method

A specific decision making method is chosen based on the
characteristics and features of that method. It results in a
decision making method.

Performance
Identification

Plan
performance
questionnaires

A series of meetings is planned to obtain scores for the con-
structed multi-tenant architectures with respect to the
identified criteria with experts. A performance question-
naire template is composed.

Conduct
performance
interviews

The questionnaires are administered with individual ex-
perts. They result in a set of performance questionnaire
results.

Extract
performance
scores

The individual scores provided by the experts are aggre-
gated to obtain performances scores for all multi-tenant
architectures on each decision criterion.

Construct
decision matrix

The performance scores are combined with the multi-
tenant architectures and criteria resulting in a decision
matrix.

Decision
Support
Model
Construction

Construct
decision
support model

The actual Multi-Tenant Architecture Selection Model is
constructed.

19

Table 2: Research Model Concept Table

Concept Definition

literature
study protocol

A document describing how the literature study is conducted. It in-
cludes a search strategy with the used data sources and search terms;
a description of the study selection criteria; a procedure for the study
selection; and a strategy for data extraction and analysis. It is de-
scribed in Section 4.

list of selected
literature

A list of scientific articles remaining after applying inclusion and ex-
clusion criteria. The full texts of these papers are obtained.

multi-tenancy
level

A certain level, layer, or tier on which multi-tenancy can be applied,
or a degree or approach which involves multi-tenancy. They are shown
in Section 5.2.1.

multi-tenant
architecture

An arrangement of elements displaying which resources of an applica-
tion’s system are shared among tenants. They are listed in Figures 10
to 21.

criterion A measurable attribute discriminating among the multi-tenant ar-
chitectures. It defines an important factor for a SaaS provider to
evaluate the multi-tenant architectures against. They are de-
scribed in Table 16.

evaluation
questionnaire
template

A paper form containing evaluation questions for the multi-tenant
architectures and criteria. It is used in the evaluation question-
naire. It is included in Appendix D.

evaluation
questionnaire
result

An evaluation questionnaire completed by an expert. The data of the
paper questionnaire is transfered to statistical analysis software and
used to evaluate the multi-tenant architectures and criteria.
See Tables 17 to 18 for the results.

decision making
method

A technique for organizing and analyzing a decision problem. It usu-
ally consists of a series of steps in order to perform the method. There
exists different schools of thought for solving decision problems, each
with its own pros and cons. The selection and result is described in
Section 7.5.

performance
questionnaire
template

A paper form containing questions to rate the performance of the
multi-tenant architectures against the criteria. It is used to
conduct the performance questionnaires. The template is in Ap-
pendix E.

performance
questionnaire
result

A ratings questionnaire completed by an expert. The data of the
paper questionnaire is transfered to statistical analysis software and
used to calculate the performance of the multi-tenant architec-
tures against the criteria. Results can be found in Appendix F.

performance
score

A value representing the performance of a multi-tenant architecture
with respect to a criterion. It is an aggregated number based on a set
of values provided by several experts. A higher value means a higher
performance.

decision matrix A matrix displaying the performance scores of each multi-tenant
architecture with respect to the criteria. It is shown in Table 19.

decision
support model

A process model showing the steps that need to be carried out and the
artifacts that need to be used. It makes use of the selected decision
making method. It is described in detail in Section 9 and the main
deliverable of this research.

playing the arrangement of shared and non-shared resources among tenants.
This approach is considered less time-consuming. The literature study protocol

20

is described in detail in Section 4. The results of this literature study is the
subject in Section 5. To ensure the formed architectures represent feasible ar-
chitectures, they are evaluated. This evaluation is done in the second phase of
the research model.

The second research subquestion is responsible for identifying decision cri-
teria. These criteria are measurable attributes that discriminate among the
multi-tenant architectures. For a more detailed description, read Section 3.2.2.
The literature study in the first phase of the research model is also carried out
to identify the decision criteria. This identification process results in a large set
of criteria. Prior to evaluating this set, which is done in conjunction with the
multi-tenant architectures in the second phase, the list of criteria is analyzed to
merge similar and delete unimportant attributes.

2.6.2 Evaluation

The evaluation of the multi-tenant architectures and decision criteria is con-
ducted using a questionnaire. With this survey a dozen of experts are asked for
their opinions on the structured multi-tenant architectures and the composed
set of decision criteria. These two elements are subsequently adjusted based on
this evaluation. The overall evaluation process is described in Section 6.

2.6.3 Decision Making Method Selection

After the evaluation, a decision making method is selected. This comprises
the third phase of the research model. There exist many different decision
making methods and each method contains pros and cons. This selection is,
inter alia, based on the complexity of the decision problem, the cognitive load
of the method, its support for qualitative or quantitative data, and its support
for group decision making. The selection of a suitable decision making method
is discussed at length in Section 7.5.

2.6.4 Performance Identification

The final research subquestion, responsible for assessing the performance of the
multi-tenant architectures with respect to each decision criterion, is solved in
the fourth phase. This is carried out by means of a questionnaire completed by
several experts and is covered by Section 8. After extraction, the performance
values are combined with the decision criteria and multi-tenant architectures in
a decision matrix.

2.6.5 Decision Support Model Construction

As all key deliverables are developed, the actual Multi-Tenant Architecture
Selection Model can be constructed. This is done in the final phase. It is
described in Section 9.

21

3 Theoretical Background

This section elaborates on the concept multi-tenancy and explains decision mak-
ing theory in more detail. If the reader considers himself comfortable with one
of these topics, the corresponding section can be skipped.

3.1 Multi-Tenancy

Multi-tenancy in the realm of hardware and software systems features a rel-
ative recent attention in scientific literature with the first notion of the term
in a paper on the MSDN Library by Chong and Carraro (2006). There is yet
no well-established formal definition for multi-tenancy, but scientific literature
agrees multi-tenancy is about consolidating multiple customers on a shared op-
erational environment (Chong & Carraro, 2006; Guo et al., 2007; Jacobs &
Aulbach, 2007). The hardware and software infrastructure is shared in such an
environment, and a hosted application can serve user requests from multiple
companies concurrently (Guo et al., 2007).

Multi-tenancy is also regarded as a key attribute of well-designed SaaS appli-
cations (Chong & Carraro, 2006). Chong and Carraro developed a commonly-
used maturity model of SaaS that distinguishes a total four maturity levels. The
last two maturity levels in this model contain multi-tenancy, rendering it as a
requirement for a matured SaaS application. The National Institute of Stan-
dards and Technology (nist) regards multi-tenancy as an essential attribute of
cloud computing (Mell & Grance, 2011).

Multi-tenancy is not confined to specific resources, but applicable at different
levels in a system’s architecture. As a result, various approaches to a multi-
tenant architecture are possible (Osipov, Goldszmidt, Taylor, & Poddar, 2009;
Natis & Knipp, 2008). Each approach entails certain benefits and drawbacks
and the graphical representation of such an architecture should explain where
and to what extent multi-tenancy is applied. Part of this research is responsible
for identifying all these relevant multi-tenant architectures.

3.2 Decision Making

In 2005, Figueira et al. explained that a decision can be related to a plurality
of point of views, which can be defined as criteria. The approach of accounting
for pros and cons of a plurality of point of views is the domain of Multiple
Criteria Decision Making (mcdm). Mcdm can be divided in two major areas:
Multiple Attribute Decision Analysis (madm) and Multiple Objective Decision
Analysis (modm) (Zimmermann, 1991). In modm problems, the best alternative
is designed based on the given conflicting objectives (Hwang & Masud, 1979).
With madm the alternatives are already available and a preference is based on
the conflicting attributes of the alternatives (Hwang & Yoon, 1981).

3.2.1 Multi-Attribute Decision Making

This research addresses a problem that can be solved by using madm. Multi-
tenant architectures are already described on a high-level in literature, i.e. the
alternatives are available. Therefore, this research will use a decision making

22

technique based on madm. Problems addressed with madm can be very differ-
ent from one another, but they all share the following characteristics (Yoon &
Hwang, 1995):

Alternatives A finite number of alternatives that offer different approaches.
They are screened, prioritized, selected, and/or ranked. Other terms used,
among others, are option, policy, action, solution, and candidate.

Multiple Attributes Multiple attributes that discriminate among the alter-
natives. They define measures how well the alternatives achieve preferences of
the decision makers. The amount of attributes depends on the problem setting.
When the number of attributes is large, they can be arranged in a hierarchical
manner. The term criteria is frequently used too.

Incommensurable Units The attributes can have different units of mea-
surements.

Attribute Weights Defines the relative importance of the attributes, usually
according to an ordinal or cardinal scale. They can be directly assigned by the
decision maker or developed using certain weighing methods.

Decision Matrix Expresses the problem in a matrix format, where columns
represent the alternatives and rows the multiple attributes. The elements of the
matrix indicates the performance score of the corresponding alternative against
the corresponding attribute. Table 3 is an example of a decision matrix:

Table 3: Typical Decision Matrix

Criteria Weights
Alternatives

A1 A2 · · · AN

C1 W1 a1,1 a1,2 · · · a1,N

C2 W2 a2,1 a2,2 · · · a2,N

...
...

...
...

. . .
...

CM WM aM,1 aM,2 · · · aM,N

where:

C = {Ci, for i = 1, 2, ...,M} is a finite set of M criteria,
A = {Aj , for j = 1, 2, ..., N} is a finite set of N alternatives,
Wi is the weight belonging to criteria Ci,
ai,j represents the performance value of alternative Aj on criterion Ci.

Usually the performance values are described using maximization. This
means that if ai,k > ai,l, then ai,k performs better than ai,l on criterion Ci.
Minimization is the opposite.

23

3.2.2 Attributes’ Properties

According to Keeney and Raiffa (1993) there are five principles the criteria set
should meet. The set of attributes should be complete, operational, decompos-
able, non-redundant, and minimal. These principles are explained below.

Completeness First, the set should be complete. This means that all impor-
tant aspects of the problem are covered by the attributes.

Operational Another recommended property is that the set be operational.
In other words, the set of attributes should be useful to help the decision maker
choose the best option. They should be meaningful and understandable.

Decomposable In addition, it is desired that the set is decomposable. The
number of attributes defines the dimension of the decision problem. Solving
decision problems involves assessments that get more complex for higher di-
mensions. This complexity can be restrained by decomposing the assessments
in multiple parts of lower dimensions.

Non-redundancy Furthermore, the set should contain no redundancies. By
having no redundancies in the set, double calculations are avoided.

Minimum size Finally, it is desirable to keep the set of attributes as small as
possible. The higher the amount of attributes, the harder it becomes to obtain
attribute preferences and joint probability distributions.

3.2.3 General Decision Making Process

Baker et al. (2001) provides a step by step process applicable for solving any
decision problem. In shows in what order the characteristics and elements of
a decision making process should be identified. This process is illustrated in
Figure 5 using a meta-process model, which is the left hand side of a process-
deliverable diagram.

The first step is equivalent to the first activity in the Design Science Research
Process Model in Figure 2 in which by analyzing conditions and identifying
causes a clear problem statement is formed (Baker et al., 2001).

The next two steps cover the determination and gathering of requirements
and goals respectively. Requirements are conditions the alternatives must meet.
Goals represent desirable statements for solutions to have or do and may conflict.
Both requirements and goals are provided by experts in disciplines like opera-
tions, maintenance, safety etc. in concurrence with the decision makers. They
are normally developed prior to identifying alternatives, because solutions not
meeting these requirements or goals can be discarded. The Multi-Tenant Archi-
tecture Selection Model developed in this work, however, should be generic and
useful to any service provider. Therefore, no alternatives should be discarded
beforehand and requirements and goals should be defined and set by each SaaS
provider individually upon using the decision model.

Next is the identification of the alternatives. They represent different ap-
proaches to solve the problem statement and usually vary in their extent of

24

Define problem

Determine the requirements that the

solution to the problem must meet

Establish goals that solving the

problem should accomplish

Identify alternatives that will

 solve the problem

Develop evaluation criteria

based on the goals

Select a decision-making tool

Apply the tool to select

a preferred alternative

Check the answer to make

sure it solves the problem

Figure 5: Decision Making Process by Baker et al. (2001)

meeting requirements and goals. A written description and graphical expla-
nation can help to clarify the workings of the alternative and how it differs
from the other alternatives. Then, the evaluation criteria, or attributes, can
be identified. They should be based on the goals and discriminate among the
alternatives. Thereafter a decision making method is to be selected so the alter-
natives can be evaluated against the decision criteria. Finally, after the selection
of a preferred alternative, it should be validated to check if it in fact solves the
problem. Also, it should meet the requirements and goals.

This research follows the decision making process. All the activities are
therefore in certain way addressed in this research. The definition of the de-
cision problem, representing the first activity in the decision making process,
is described in the problem statement of this research. Activity two and three
are covered in the first phase of the Multi-Tenant Architecture Selection Model,
see Figure 1. The identification of the alternatives and criteria, representing
the fourth and fifth activity, is addressed in the first and second phase of the
research model. Activity four and five also correspond to SQ. 1 and SQ. 2, re-
spectively. The sixth activity, dealing with the selection of a decision method, is
the subject of the third phase of the research model. Finally, the second-to-last
and last activity correspond to the second and third phase of the Multi-Tenant
Architecture Selection Model, respectively.

25

4 Literature Study Protocol on Multi-tenancy
Levels and Decision Criteria

Research SQ. 1 and SQ. 2 are partly tackled by means of a structured literature
study. The rationale for this literature study is to identify multi-tenant architec-
tures and decision criteria, which discriminate among these architectures, using
an unbiased search strategy. In addition, it is necessary to identify possible
existing literature reviews on the topic of multi-tenancy.

This review follows the guidelines of Kitchenham and Charters (2007). Ac-
cordingly, first a literature review protocol is created, adhering to the first re-
view phase stated by Kitchenham and Charters. A literature review protocol
describes the method that will be used to conduct the systematic review and
helps to reduce researcher bias. It consists of the following components:

• Background;
• Research Questions;
• Search Strategy;
• Study Selection Criteria;
• Study Selection Procedures;
• Study Quality Assessment;
• Data Extraction Strategy;
• Data Analysis Strategy;
• Dissemination Strategy;
• Project Timetable;

The study quality assessment can be undertaken to provide even more de-
tailed inclusion and exclusion criteria (Kitchenham & Charters, 2007). This was
not necessary for this research and is therefore omitted from the literature review
protocol. The dissemination strategy is irrelevant, because the literature review
report is part of this thesis. The background and addressed research questions
are already discussed in this research, in Section 1.1 and in Section 2.2, respec-
tively. The findings of this literature review are provided in Section 5. A project
timetable is created in the internal protocol, but is irrelevant for this thesis and
therefore omitted. All other components are described in this section.

4.1 Search Strategy

According to Kitchenham and Charters (2007), a search strategy is necessary so
readers can assess the rigor of the strategy and the completeness and repeata-
bility of the process. A search strategy includes the resources and search terms
to be searched. Preliminary searches are conducted to identify possible exist-
ing systematic reviews on the topic of multi-tenant architectures. No already
existing systematic reviews on multi-tenant architectures are found.

26

4.1.1 Data Sources

The search process is an electronic search in digital libraries. The selected
libraries are the following:

• ACM Portal
• IEEE Xplore Digital Library
• ScienceDirect
• SpringerLink
• Scopus

The first three digital libraries are selected based on their relevance on the topic
of Software Engineering (Brereton, Kitchenham, Budgen, Turner, & Khalil,
2007). SpringerLink and Scopus are mentioned by Kitchenham and Charters
(2007) as good libraries on Software Engineering and are selected for this reason.
SciVerse Scopus’ content covers, inter alia, journals provided by publishers like
IEEE and Springer. Scopus’ database is therefore searched last and already
found articles from searches in the other databases are filtered out. The digital
libraries have slightly different practices for search commands. The search string
is modified to accommodate this.

4.1.2 Search Terms

The search terms used are derived from SQ. 1. A list of synonyms, abbreviations
and alternative spellings is drawn up by breaking up the research question into
individual facets. The search strings are then constructed using the Booleans
and and or. The reason only SQ. 1 is used to derive the search string, is
because research SQ. 2 and SQ. 3 refer to the facets in the first subquestion.
From SQ. 1 the following facets are derived:

• multi-tenant
• architecture

The term “software as a service” is added to clarify literature focusing on multi-
tenant architectures of software applications is seeked. The following synonyms
and alternative spellings are drawn up for these concepts:

• tenancy, tenant
• architecture, architectural
• software, service, application, SaaS, software as a service

Trial searches are conducted to examine how the search process can be car-
ried out and how the search string can best be constructed. The search strings
are based on various combinations of:

• multi-tenancy, multi-tenant
• software, service, application, architecture

The facet “software as a service” is covered by the terms software and service
and is therefore not used. Using search strings with search terms in phrases
surrounded by quotation marks, e.g. “multi-tenant architecture”, resulted in
the exclusion of some already known primary studies. On the other hand,
separate use of the search terms, e.g. (multi-tenancy or multi-tenant) and
(software or architecture), led to too many results.

27

New trial searches showed that studies identifying multi-tenant architectures
not always addressed these in their abstracts. Therefore, searching for the men-
tioned search terms in abstracts did not result in all relevant papers. But using
all search terms in full text ended up in too much literature. For that reason,
literature is first selected based on their relevance on multi-tenancy. This is car-
ried out by a search using the article’s abstracts and keywords. The following
search terms are used:

• tenan* or multitenan*
• software or service or application or saas

An asterisk is used as a wild-card and represents variations of the corresponding
word, e.g. tenan* represents tenant and tenancy. The top line is used for the
article’s abstract and keywords, the bottom line is only used for the abstract.
The search string is constructed by linking the two or lists using the Boolean
and. This results in the following generic search string:

abstract:((tenan* or multitenan*) and (software or service or
application or saas)) and keywords:(tenan* or multitenan*)

4.2 Study Selection Criteria

Study selection criteria assess the relevance of the literature found in the first
step. The selection criteria are piloted on a subset of primary studies. The
initial electronic search results in a large number of totally irrelevant papers,
and using these criteria a smaller, more relevant list of literature can be created.
The following criteria are used.

Inclusion Criteria

1. any article focusing on the topic of multi-tenancy in a hardware or software
environment.

2. any article that is cited by other literature in the description of multi-
tenancy levels.

Exclusion Criteria

1. articles that don’t appear in scientific papers or conference proceedings.
2. articles already obtained by other digital libraries.
3. articles written in a different language than English.
4. articles of which no full copy can be obtained.
5. articles with no description of multi-tenancy levels.
6. articles in which no prospective decision criteria can be found.

28

4.3 Study Selection Procedures

The study selection procedure and data collection procedure of this literature
study is depicted in Figure 6 using a PDD. The accompanying activity table
and concept table are represented in Tables 4 and 5, respectively. Three phases
can be identified:

1. Literature Gathering
2. Multi-Tenancy Levels Identification
3. Criteria Identification

4.3.1 Literature Gathering

The first phase deals with the gathering of the relevant scientific articles. The
first process in this phase involves conducting the search using the previous
mentioned search string on the selected digital scientific libraries and results in
a list of all literature on the topic of multi-tenancy. The next process
in this phase is applying the first inclusion criterion and exclusion criteria one
to four. All study selection criteria are applied by a single researcher. The
rejected papers are maintained in a list with the reasons for exclusion. The
accepted articles form the list of candidate literature. Next, representing
the third process Perform keyword query, another selection is carried out, again
by a single researcher. This selection involves a keyword query on the full texts
of the studies in the list of candidate literature. The rationale for this
keyword query is mainly simplifying the keyword scanning process rather than
reducing the list of candidate literature. This query is carried out using
qualitative data analysis software and highlights the keywords found in the full
texts. The following keywords are searched in this query:

• pattern
• type
• level
• degree
• approach

This query results in a list of relevant literature with highlighted key-
words.

The second and third phase consist of activities that focus on a single study
from the list of relevant literature. The final conditional branch in
Figure 6 clarifies this. When each candidate study has been subjected to the
activities in the second and third process, the procedure is finished.

4.3.2 Multi-Tenancy Levels Identification

The second phase deals with the second inclusion and the fifth exclusion cri-
terion. During the first process in the second phase, Scan for multi-tenancy
levels, the highlighted keywords are scanned for possible multi-tenancy levels.
If found, the follow-up process is to check if there exist citations at the mentioned
multi-tenancy levels. If not, the source is included in the list of selected lit-
erature on multi-tenancy levels. If there are citations, the multi-tenancy
levels are searched for in that cited source. There is a loop to handle situations

29

Criteria Identification

Multi-Tenancy Levels Identification

Literature Gathering

Conduct search

Apply inclusion criterion 1 and

exclusion criteria 1-4

Perform keyword query

Scan for criterion

[found][else]

LIST OF ALL LITERATURE

LIST OF CANDIDATE LITERATURE

LIST OF RELEVANT LITERATURE

CRITERION

Scan for multi-tenancy level

MULTI-TENANCY LEVEL

[else]

[found]

Scan for multi-tenancy definition

[found][else]

Extract criterion

[finished]

[else]

delivers
1
1

delivers
1
1

extracted from

1

1..*

1..*

Scan multi-tenancy

level in reference

[found]

[else]

Extract multi-tenancy level

Check for citation LIST OF SELECTED LITERATURE

ON MULTI-TENANCY LEVELS

SELECTED LITERATURE ON

CRITERIA

LIST OF SELECTED LITERATURE

ON CRITERIA

SELECTED LITERATURE

ON MULTI-TENANCY LEVELS

extracted from

delivers

1

1

part of

part of

1..*

1..*

1

1

1..*

1..*

Figure 6: PDD for the Identification of the Multi-Tenancy Levels and Criteria

30

Table 4: MT Levels and Criteria Identification Activity Table

Activity Sub-Activity Description

Papers
Gathering

Conduct search The defined search query is used on the selected
scientific libraries.

Apply inclusion
criterion 1 and
exclusion criteria 1-4

The corresponding inclusion & exclusion criteria
are applied on the papers found in the previous
process. The full texts of the resulting papers
are gathered and organized in reference manager
software and imported in data analysis software.

Perform keyword
query

The following keyword query is applied using
data analysis software: “pattern OR type OR
level OR degree OR approach”, to simplify the
keyword scanning process.

MT Levels
Identification

Scan for
multi-tenancy levels

The full texts are scanned for multi-tenancy
levels at the places where keywords are found

Check for citation When multi-tenancy levels are found, it is
checked if the multi-tenancy level includes a
citation to other papers or not.

Scan multi-tenancy
level in reference

If so, the reference is scanned to identify the orig-
inal multi-tenancy level.

Extract
multi-tenancy level

When an original multi-tenancy level is found,
it is extracted from the article using data analysis
software.

Attributes
Identification

Scan for
multi-tenancy
definition

When no multi-tenancy level is found, the in-
troduction of the definition of multi-tenancy in
the text is searched. If this cannot be identified,
the next scientific paper from the list of selected
literature is examined.

Scan for criterion If a multi-tenancy level or definition is iden-
tified, the full text is scanned for consequences,
benefits, drawbacks, or requirements.

Extract criterion When a criterion is found, it is extracted from
the article using data analysis software.

31

Table 5: MT Levels and Criteria Identification Concept Table

Concept Definition

list of all literature A list of all the results from applying the search string
on the various digital scientific libraries. This concept is
subjected to inclusion criterion 1 and exclusion criteria
1-4.

list of candidate literature A list containing the scientific articles resulted from us-
ing inclusion criterion 1 and exclusion criteria 1-4 on the
list of all literature. This concept is organized in
reference manager software and imported in data anal-
ysis software. It is subjected to a keyword query.

list of relevant literature A list of scientific articles resulted from using the follow-
ing keyword query in the data analysis software: “pat-
tern OR type OR level OR degree OR approach”.

list of selected literature
on multi-tenancy levels

A list of scientific articles resulted from using inclusion
criterion 2 and exclusion criterion 5 on the list of rel-
evant literature.

selected literature on
multi-tenancy levels

A single article from the list of selected literature
on multi-tenancy levels.

multi-tenancy level A certain level, layer, or tier on which multi-tenancy
can be applied, or a degree or approach which involves
multi-tenancy.

list of selected literature
on criteria

A list of scientific articles resulted from using exclusion
criterion 6 on the list of relevant literature.

selected literature on
criteria

A single article from the list of selected literature
on criteria.

criterion A benefit, drawback, consequence, requirement or con-
sideration related to multi-tenancy.

when a cited article itself is citing other sources when describing multi-tenancy
levels. Only the final original sources get included in the list of selected
literature on multi-tenancy levels.

4.3.3 Criteria Identification

The third phase is responsible for the sixth exclusion criterion and the identi-
fication of decision criteria. As described in Section 3.2.2, the set of attributes
should have five properties: complete, operational, decomposable, non-redundant,
and minimal. To meet the complete principle, the whole list of relevant lit-
erature is searched for possible decision criteria. This way, the examined scope
is maximized. If decision makers nevertheless feel the set of attributes covered
by the Multi-Tenant Architecture Selection Model insufficiently represents all
of their interests, extra criteria can be manually added to the model.

The first process of the third phase, Scan for multi-tenancy definition, is
only carried out when no multi-tenancy levels are found. In that case, the text
of the article is scanned for a description of the term multi-tenancy. When no
description is found, the next article from the list of relevant literature is
scanned for multi-tenancy levels. The second process, Scan for criterion, can be
accessed in two ways. It is responsible for scanning criteria at the description of
the term multi-tenancy or at previously identified multi-tenancy levels. When a

32

criterion is found, the corresponding article is included in the list of selected
literature on criteria.

Study selection results of the phases will be tabulated as follows:

• number of all literature studies per library source;
• number of relevant literature studies library per source;
• number of candidate literature studies library per source;

4.4 Data Extraction Strategy

Data extracted consists of the multi-tenancy levels from the articles in the list
of selected literature on multi-tenancy levels in the second phase
and the criteria from the studies in the list of selected literature on
criteria in the third phase.

4.5 Data Analysis Strategy

The Multi-Tenancy Levels Identification phase results in a list of original sources.
These will be tabulated to show which literature study cited which original
sources. The number of studies citing these original sources are counted. Fur-
thermore, the multi-tenancy levels will be tabulated to show from which article
– ordered alphabetically by first author name – which multi-tenancy levels are
identified. The number of studies that describe identical multi-tenancy levels
will be counted. These findings will be used to construct a series of multi-tenant
architectures, answering research SQ. 1.

The results of the Decision Criteria Identification phase will also be tabu-
lated to show which literature study described which decision criteria. For each
decision criterion the number of studies that describe it will be counted. These
results will be used to define a complete, non-redundant list of decision criteria,
in which each criterion is measurable and operational, resulting in an answer to
the research SQ. 2.

33

5 Findings of Literature Study

This section describes the execution of the literature study, the data extraction
and the analysis of the results.

5.1 Execution of the Literature Study

The search strings used in each library are shown in Table 6. Each search string
looks distinct, because each digital library uses specific practices for search com-
mands. They do have the same effect. Solely the search function of SpringerLink
does not allow to search for authors’ defined keywords in articles.

Table 6: Search String per Source

Digital Library Search String

ACM Portal Keywords:(tenan* or multitenan*) and
Abstract:((tenan* or multitenan*) and (saas or
software or service or application))

IEEE Xplore (“Index Terms”:tenan* or “Index
Terms”:multitenan*) and ((“Abstract”:tenan* or
“Abstract”:multitenan*) and (“Abstract”:software
or “Abstract”:service or “Abstract”:application or
“Abstract”:saas))

ScienceDirect Keywords(tenan* or multitenan*) and
Abstract((tenan* or multitenan*) and (“software” or
“service” or “application” or “saas”))

SpringerLink ab:((tenant or tenancy or multitenancy or multitenant)
and (software or service or application or saas))

Scopus KEY(tenan* or multitenan*) and ABS((tenan* or
multitenan) and (“software” or “service” or
“application” or “saas”))

Applying these search strings in the corresponding digital libraries resulted
in a total of 534 literature studies. The number of results per library is tabu-
lated in Table 7. Because SciVerse Scopus’ content covers journals provided by
publishers like IEEE and Springer, there exist many similar results.

Table 7: list of all literature per source

Digital Library Date Results

IEEE Xplore 4-Sep-2012 153
ACM Portal 4-Sep-2012 20
SpringerLink 10-Sep-2012 128
Scopus 11-Sep-2012 221
ScienceDirect 10-Sep-2012 12

34

After applying the first inclusion criterion and the first to fourth exclusion
criteria a total of 109 studies remained. Table 8 shows the results of these
selection criteria tabulated as the number of articles per library. They are
displayed in numerical order.

Table 8: list of candidate literature per source

Digital Library Results

IEEE Xplore 68
ACM Portal 16
SpringerLink 13
Scopus 10
ScienceDirect 2

Then the list of candidate literature is subjected to a keyword search
query. Studies get excluded when none of the keywords is found, resulting in
the list of relevant literature. This list is tabulated per library source
in Table 9. The full list can be found in Table 20 in Appendix A.

Table 9: list of relevant literature per source

Digital Library Results

IEEE Xplore 65
ACM Portal 17
SpringerLink 13
Scopus 10
ScienceDirect 1

In the second phase in Figure 6 original sources of multi-tenancy levels are
identified. These sources are shown in Table 10, the second column represents
the frequency f the article is cited by other literature. In the texts of Kwok,
Nguyen, and Lam (2008) and Kwok and Mohindra (2008) descriptions of multi-
tenancy levels with citations are found. However, upon checking the full texts of
the references of these citations, the mentioned multi-tenancy levels could not
be identified. Both articles are nevertheless included in Table 10 for reference.
Table 21 in Appendix B lists the articles that cite the original sources of the
multi-tenancy levels..

Extra articles not included in the list of relevant literature but added
to the list of selected literature on multi-tenancy levels because
they are cited by other articles, are from Chong et al. (2006); Natis and Knipp
(2008); Osipov et al. (2009); Reinwald (2010); Taylor and Guo (2007); Waidner
(2009).

35

Table 10: Referenced Articles

Article f

Guo et al. (2007) 8
Chong, Carraro, and Wolter (2006) 7
Jacobs and Aulbach (2007) 4
Kwok, Nguyen, and Lam (2008) 4
Z. Wang et al. (2008) 4
Osipov et al. (2009) 2
Aulbach, Grust, Jacobs, Kemper, and Rittinger (2008) 1
Kwok and Mohindra (2008) 1
Natis and Knipp (2008) 1
Reinwald (2010) 1
Taylor and Guo (2007) 1
Waidner (2009) 1

5.2 Data Extraction

Data extracted from each study consists of the identified multi-tenancy levels
and decision criteria as described in Section 4.4. According to Watson and
Webster (2002), a literature review should be concept-centric in contrast to
author-centric. These concepts correspond to the multi-tenancy levels and cri-
teria in this work. As recommended by Watson and Webster, a concept matrix
is constructed showing the concepts discussed in each article.

5.2.1 Multi-Tenancy Levels

The concept matrix showing the various multi-tenancy levels is shown in Ta-
ble 22 in Appendix B. The articles listed in that table form the list of se-
lected literature on multi-tenancy levels. Some articles describe the
multi-tenancy level separated, dedicated, different or isolated database and no de-
scription was found on what level resources are shared in the data tier (Aghera,
Chaudhary, & Kumar, 2012; Domingo et al., 2010; Hui, Jiang, Li, & Zhou, 2009;
Kwok, Nguyen, & Lam, 2008; Pippal, Sharma, Mishra, & Kushwaha, 2011; Tay-
lor & Guo, 2007). The shared level of the database server is chosen in these
cases. Table 11 lists the extracted multi-tenancy levels and the number of times
(f) they were identified from these articles.

5.2.2 Criteria

Table 23 in Appendix B illustrates from which articles which decision criteria
are identified. Table 24 in Appendix B lists all attributes identified from all the
articles of the list of selected literature. The number after the attributes defines
how many times the corresponding attribute is identified.

36

Table 11: Multi-Tenancy Levels Identified in Selected Literature

Multi-Tenancy Level f

Application Instance 16
Database Server 16
Database 15
Operating System 15
Hardware 14
Schema 14
Middleware 12
Virtual Machine 9
Application Server 4

5.3 Data Analysis

5.3.1 Multi-Tenancy Levels

The levels identified from literature at which multi-tenancy can be applied are
shown in Table 11. They describe certain levels at which that particular resource
can be shared among tenants. These levels can be depicted as layers in a stack
with decreasing granularity from top to bottom. Figure 7 illustrates this. A
distinction between the application layer and the data layer is made. They
correspond to primary layers commonly used in enterprise architecture in order
to separate concerns (Fowler, 2002). These different layers don’t have to run
on different machines, but when a separation is physical, the term tier is often
used (Fowler, 2002).

The granularity aspect translates to a sharing versus isolation continuum,
where the lowest layer has the lowest level of sharing with the highest level of
isolation. For the highest layer it is vice versa. When multi-tenancy is applied
at a certain level, the levels below that level are shared among tenants as well,
but isolation occurs at the levels above, i.e. for each tenant a dedicated in-
stance is running. This applies to the application and data layer independently.
For example, when multi-tenancy is applied at the application server level, the
application server, virtual machine instance and hardware are shared among
tenants. Isolation occurs at the levels above the application server, so each ten-
ants receives a dedicated application instance, but multi-tenancy in the data
layer can be applied differently.

Hardware & Virtual Machine The lowest level on which multi-tenancy can
be applied is hardware. It is comprised of processors, storage, memory, networks
and other fundamental computing resources. When multi-tenancy is applied at
this level, different tenants use the same machines on which their applications
are running, but for each tenant a separate virtual machine is running. At the
virtual machine level and the levels above, tenants are isolated from one another.
Because this multi-tenancy level occurs in the hypervisor layer through virtu-
alization, it is by some called hypervisor-level multi-tenancy (Kurmus, Gupta,
Pletka, Cachin, & Haas, 2011) or virtualization-level multi-tenancy (Truyen et
al., 2012; Walraven, Truyen, & Joosen, 2011). An example of a service using
this type of multi-tenancy is the Amazon Relational Data Service (Azeez et al.,

37

Hardware

Virtual Machine

Operating System

Application Server Middleware Database Server

Application Instance Database

Database Schema

Figure 7: Computing Stack

2010). Virtual machines are not required in a computing stack, but are usually
used for abstraction of the underlying hardware. When multi-tenancy is applied
at the virtual machine level and virtualization is used, tenants are consolidated
on the same virtual machine (Truyen et al., 2012). Multi-tenancy at the hard-
ware or virtual machine level is typically applied by Infrastructure as a Service
vendors (Mell & Grance, 2011).

Operating System & Middleware One level above virtual machine is the
operating system. When multi-tenancy is applied at this level, tenants share the
same operating system. At this level, the degree of isolation is still relatively
high, because for each tenant a dedicated application and database server is
running. An example is a Java Virtual Machine running on a operating system
process (Rodero-Merino, Vaquero, Caron, Muresan, & Desprez, 2012). The
middleware can be depicted at the same level of the application and database
servers. It provides services to software applications not available from the
operating system. Platform as a service providers are concerned with these
levels.

Application & Database Server The next level is that of the application
and database servers. They refer to computer programs providing services to
software applications or other computer programs and do not refer to physical
computer hardware systems. When multi-tenancy is applied up to and including
this level, the tenants are consolidated on a single server, but for each tenant
an isolated instance is running.

Application Instance The top of the stack in the application layer refers to
the ability to apply multi-tenancy to an application instance. If this is the case,
the application is developed in such a way that a single application instance can
be offered to multiple tenants concurrently (Guo et al., 2007).

38

Database & Schema The final two levels of the stack in the data layer are
database and database schema. A database schema can be regarded as a set
of database tables. These two approaches were first described by Chong et
al. (2006). When tenants are consolidated in a single database, each tenant
operates its own set of tables. In schema-level multi-tenancy, isolation occurs
at table row level.

Number of MTA’s Various architectures comprising of an application and
data layer can be constructed from the different multi-tenancy levels depicted
in Figure 7. The number of different architectures is the product of the number
of options in the application layer and the number of options in the data layer.
There are six options in the application layer: the five options from the stack
plus no multi-tenancy at all. The same applies to the data layer which sums
up to seven options. Therefore, the total amount of different architectures that
can be composed is 42.

Relevant MTA’s In cloud computing, an infrastructure provider manages
and controls the infrastructure consisting of processing, storage, networks and
other fundamental computing resources (Mell & Grance, 2011). If and to what
extent to apply multi-tenancy in the hardware, virtual machine and operating
system levels focuses on a load problem. For a service provider, which develops
the application and is the primary stakeholder in this research, the aspect of
multi-tenancy in the hardware, virtual machine and operating system levels is
of significant less importance. It has no influence on the development of the
service. The amount of servers, instances and databases is far more relevant for
a SaaS provider. For this reason, the three lowest levels are not considered in
structuring different types of multi-tenant architectures.

Consequently, a SaaS provider has the following three options in the appli-
cation layer:

1. A dedicated application server is running for each tenant, and therefore
each tenant receives a dedicated application instance.

2. A single application server is running for multiple tenants and each tenant
receives a dedicated application instance.

3. A single application server is running for multiple tenants and a single
application instance is running for multiple tenants.

The first option corresponds to multi-tenancy enabled at the hardware, vir-
tual machine or operating system level. The second alternative is equal to ap-
plication server multi-tenancy. The third choice corresponds to multi-tenancy
enabled at the application instance level. In the data layer, a service provider
can select one the following four options:

1. A dedicated database server is running for each tenant, and therefore each
tenant receives a dedicated database.

2. A single database server is running for multiple tenants and each tenant
receives a dedicated database.

3. A single database server is running for multiple tenants, data from multiple
tenants is stored in a single database, but each tenant receives a dedicated
set of tables.

39

4. A single database server is running for multiple tenants, data from multiple
tenants is stored in a single database and a single set of tables.

The first option is equal to multi-tenancy applied at the hardware, virtual
machine or operating system level. The second one corresponds to database
server multi-tenancy. The third alternative is multi-tenancy to the database
and the final one is equal to database schema multi-tenancy.

5.3.2 Multi-Tenant Architectures Structuring

From these options in both the application and data layer a set of multi-tenant
architectures (MTA’s) can be constructed. The number of possible architectures
is twelve. They can be displayed in a diagram with two axes, one axis describing
the extent of multi-tenancy in the application layer, the other axis in the data
layer. This diagram is shown in Figure 8.

1 4 7 10

2 5 8 11

3 6 9 12

MT Level in Data Layer

Operating System Database Server Database Database Schema

Operating

System

Application

Server

Application

Instance

M
T

 L
ev

el
 i

n
 A

p
p
li

ca
it

o
n
 L

ay
er

Figure 8: Architecture Diagram

Each individual architecture is schematically displayed in Figures 10 to 21
as a model in which three tenants (Tenant A, B and C) communicate with a
software application consisting of an application layer and a data layer. The
MTA’s are numbered and correspond to the numbering in Figure 8. The appli-
cation layer is represented as a set of application servers running one or multiple
application instances. The data layer is displayed as a set of database servers,
running one or more databases, in which one or multiple database schema’s ex-
ist. If one of these entities is shared among the tenants, its color is gray. If its
dedicated to only one tenant, its colored white. For the sake of simplicity only
three tenants are displayed in the architectures. A SaaS provider can of course
offer his software application to more than three tenants, the models merely
presents possible arrangements of shared resources. The symbols used in the
representation of the multi-tenant architectures are shown in Figure 9.

40

Client Organization
Connection Between

Two Entities

Application Server

Database Server

Application Instance

Database

Database Schema

Shared Application Server

Shared Database Server

Shared Application Instance

Shared Database

Shared Database Schema

Tenant A

App Server

DB Server

App

Instance

DB

App Server

DB Server

App

Instance

DB

Figure 9: Symbols

MTA 1 The first option describes an architecture in which the tenants share
no resources at all. For each tenant runs a dedicated application server (AS) and
a dedicated database server (DBS). This architecture is graphically explained
in Figure 10.

Tenant A

Tenant B

Tenant C

App Server

App Server

App Server

DB Server

DB Server

DB Server

DB

DB

DB

App

Instance

App

Instance

App

Instance

Figure 10: MTA 1 with a Dedicated AS & a Dedicated DBS

MTA 2 The second alternative describes an architecture in which the tenants
only share a common application server. In this server a dedicated application
instance is running for each tenant. They receive a dedicated database server
as well. This architecture is illustrated in Figure 11.

Tenant A

Tenant B

Tenant C

App Server DB Server

DB Server

DB Server

DB

DB

DB

App

Instance

App

Instance

App

Instance

Figure 11: MTA 2 with a Shared AS & a Dedicated DBS

41

MTA 3 The final option in which each tenant receives a dedicated database
server is an architecture in which the tenants share the application instance in
addition to the application server. The shared application instance communi-
cates to dedicated databases for each corresponding tenant. This is shown in
Figure 12.

Tenant A

Tenant B

Tenant C

App Server DB Server

DB Server

DB Server

DB

DB

DB

App

Instance

Figure 12: MTA 3 with a Shared Application Instance & a Dedicated DBS

MTA 4 The next three multi-tenant architectures cover those architectures
in which the tenants share a database server. The database server still contains
a dedicated database for each tenant. In the first architecture of that series, a
dedicated application server is running for each tenant, see Figure 13.

Tenant A

Tenant B

Tenant C

App Server

App Server

App Server

DB Server

DB

DB

DB

App

Instance

App

Instance

App

Instance

Figure 13: MTA 4 with a Dedicated AS & a Shared DBS

MTA 5 Another solution in that series is to make the application server multi-
tenant. In this case, tenants share an application server, in which for each tenant
an isolated application instance is running. These instances communicate with
dedicated databases. This architecture is illustrated in Figure 14.

Tenant A

Tenant B

Tenant C

DB Server

DB

DB

DB

App Server

App

Instance

App

Instance

App

Instance

Figure 14: MTA 5 with a Shared AS & a Shared DBS

42

MTA 6 The final alternative architecture in which a shared database server
exists, combines this with a shared application instance. This instance is running
on a shared application server and communicates with dedicated databases. The
corresponding figure is presented in Figure 15.

Tenant A

Tenant B

Tenant C

DB Server

DB

DB

DB

App Server

App

Instance

Figure 15: MTA 6 with a Shared Application Instance & a Shared DBS

MTA 7 The next three multi-tenant architectures have a shared database
in a shared database server in common. Isolation in the data tier occurs at
the database table level, i.e. each tenant communicates with a dedicated set
of database tables. The first of these three architectures is the one in which
each tenant receives a dedicated application server. It is graphically described
in Figure 16.

DB Server
Tenant A

Tenant B

Tenant C

App Server

App Server

App Server

App

Instance

App

Instance

App

Instance

Figure 16: MTA 7 with a Dedicated AS & a Shared DB

MTA 8 The next architecture combines the shared database with a shared
application server. For each tenant a dedicated application instance is running
in the application server communicating with a dedicated database table. The
architecture is illustrated in Figure 17.

DB Server
Tenant A

Tenant B

Tenant C

App Server

App

Instance

App

Instance

App

Instance

Figure 17: MTA 8 with a Shared AS & a Shared DB

43

MTA 9 The final architecture in the shared database series is the one in which
tenants share a application instance. It is running on a shared application server
and communicates with dedicated sets of database tables. The corresponding
figure is shown in Figure 18.

DB Server
Tenant A

Tenant B

Tenant C

App Server

App

Instance

Figure 18: MTA 9 with a Shared Application Instance & a Shared DB

MTA 10 In the last three multi-tenant architectures tenants share a set of
database tables. Isolation the data tier occurs at database table row level. The
first of these three architectures combines an application tier in which for each
tenant a dedicated application server is running. The architecture is presented
in Figure 19.

DB Server
Tenant A

Tenant B

Tenant C

App Server

App Server

App Server

App

Instance

App

Instance

App

Instance

Figure 19: MTA 10 with a Dedicated AS & a Shared DB schema

MTA 11 The next architecture combines the shared database table with an
application tier in which tenants share an application server. They receive a
dedicated application instance, see Figure 20.

DB Server
Tenant A

Tenant B

Tenant C

App Server

App

Instance

App

Instance

App

Instance

Figure 20: MTA 11 with a Shared AS & a Shared DB schema

44

MTA 12 The very last multi-tenant architecture is illustrated in Figure 21.
It shows it combines a shared set of database tables with a shared application
instance.

DB Server
Tenant A

Tenant B

Tenant C

App Server

App

Instance

Figure 21: MTA 12 with a Shared Application Instance & a Shared DB Schema

This concludes the structuring of the multi-tenant architectures and thereby
the analysis of the multi-tenancy levels. The next section describes the analysis
of the decision criteria.

5.3.3 Criteria

Minimizing the Criteria Set A total of 106 criteria are initially identified
from literature, see Table 24. This set still includes irrelevant and redundant
attributes. Thus, it does not yet adhere to the minimal and non-redundant
principle, mentioned in Section 3.2.2. The list of criteria should therefore be
reduced. Figure 22 illustrates the process how the initial list of criteria is mini-
mized. The activity and concept table belonging to the PDD in Figure 22 are
represented as Tables 12 and 13, respectively.

Criteria List Minimization

Identify criteria LIST OF ALL CRITERIA

LIST OF RELEVANT CRITERIA

LIST OF CANDIDATE CRITERIA

LIST OF EVALUATION CRITERIA

Merge synonyms

Merge specializations & generalizations

Remove infrequent criteria

subset of

subset of

subset of

Figure 22: PDD to Minimize the Criteria List

45

Table 12: Reducing Criteria List Activity Table

Sub-Activity Description

Identify criteria This activity is comprised of the sub-
activities in the Criteria Identification ac-
tivity in Figure 6

Merge synonyms Criteria that are synonyms, or have the
same meaning, or define equalities are
merged.

Merge specializations &
generalizations

Criteria that define specializations of gen-
eralizations are merged.

Remove infrequent criteria Criteria that are identified less than five
times are deleted from the final criteria
list.

Table 13: Reducing Criteria List Concept Table

Concept Definition

list of all criteria A list of all the criteria identified from
the list of selected literature. The
list of all criteria is displayed in Ta-
ble 24 in Appendix B.

list of candidate criteria A list of the criteria where synonyms in
list of all criteria are merged.

list of selected criteria A list containing criteria where specializa-
tions of generalizations from list of can-
didate criteria are merged.

list of evaluation criteria A list of criteria that omits the criteria
mentioned less than five times from list
of selected criteria.

Minimization Steps The first step in reducing the initial large set of
decision criteria is by merging synonyms. Those criteria that have an equal
meaning an define equalities are merged in this step too. Then, criteria that
represent specializations of other criteria are combined. This only happens when
the specializations define concepts so narrow, that assessing the multi-tenant ar-
chitectures on these criteria is considered ineffective and inefficient. The final
step to reduce the list is by deleting infrequent criteria, i.e. attributes that
are identified less than five times in literature. How the criteria list is sub-
jected to these steps is shown in Figures 27 to 29 in Appendix C. The majority
of the combinations will be straightforward, but on three notable decisions is
expanded.

Scalability Scalability is quite often identified in literature as a concept
of interest when multi-tenancy is mentioned or described. Bondi (2000) defines

46

scalability as a desirable ability of a system, network, or process to accommodate
an increasing amount of elements and process this accompanying extra volume
of work in a capable manner. Additional workload is required when the service
is offered to extra tenants or users. As a result, scalability is related to both the
number of tenants and the number of end-users an architecture can support.
For that reason, scalability is merged with both those corresponding attributes.

Fault Tolerance In the elaborated Computer Science Handbook (Tucker,
2004), fault tolerance and the metrics reliability and availability are defined.
Fault tolerance is described as “the total number of failed elements that can be
present without causing output errors” (Tucker, 2004, p. 649). The reliability
of a system is defined as “...the probability that the system will produce correct
outputs up to time t, provided it was producing correct outputs to start with”
(Tucker, 2004, p. 646). A highly reliable system will produce correct outputs
for a long time, even when there are failed elements. This requires a high fault
tolerance. The availability of a system is defined as “...the probability that the
system is operational at time t” (Tucker, 2004, p. 646). A highly available system
will stay operational even when failed elements occur. Again, this requires a
high fault tolerance. Therefore, fault tolerance is merged with both reliability
and availability.

Access Control Access control and its relationships with authorization
and authentication is extensively discussed by Sandhu and Samarati (1994).
The authors define access control as “to limit the actions or operations that a
legitimate user of a computer system can perform. Access control constrains
what a user can do directly, as well what programs executing on behalf of the
users are allowed to do. In this way access control seeks to prevent activity which
could lead to a breach of security” (1994, p. 1). Authentication is concerned with
“correctly establishing the identity of the user” (Sandhu & Samarati, 1994, p. 1).
Authorization occurs “to determine if the user attempting to do an operation
is actually authorized to perform that operation” Sandhu and Samarati (1994,
p. 1). The effectiveness of access control depends on proper authentication. and
correct authorization (Sandhu & Samarati, 1994). Therefore, access control is
merged with both corresponding criteria.

Criteria After Minimization The result of the activities listed in Ta-
ble 12 is the list of evaluation criteria, which is illustrated in Table 14.
The value after each decision criterion shows how many times (f) that criterion
is identified from the list of selected literature. This list does not yet
adhere to the operational principle described in Section 3.2.2. To obtain this
property, the list needs to be evaluated by experts – which is why this list is
given the name: list of evaluation criteria. More on this evaluation process is
discussed in Section 6.

The criterion operating cost covers a broad range of expenses, e.g. business
overhead costs and equipment operating costs. All attributes in Table 14 can be
associated with certain types of costs. The criterion operating cost encompasses
most costs associated with these other attributes. For this reason, operating cost
will not be included as a decision criterion in the Multi-Tenant Architecture
Selection Model.

47

Table 14: Evaluation Criteria

Criterion f Criterion f

Variability 65 Authorization 11
Number of Tenants 60 Response Time 11

Security 48 Operating Cost 10
Maintenance 45 Deployment Time 9

Number of End-Users 44 Flexibility 9
Resource Utilization Efficiency 42 Throughput 8

Performance 32 Monitoring 7
Software Complexity 32 Diverse SLA 5

Recoverability 23 Migration 5
Availability 16 Reliability 5

Authentication 12

Matching with Quality Characteristics Some of the criteria from Table 14
are equal or synonymous to the quality characteristics of software products
and computer systems defined in ISO/IEC 25010 (ISO, 2011). These quality
characteristics are used to define the quality of software and computer systems
and are part of a so-called product quality model. In addition, “..., many of
the characteristics are also relevant to wider systems and services” (ISO, 2011,
p. 1). So the characteristics are applicable on multi-tenant architectures too.
The links made between the criteria and the quality characteristics are shown in
Table 15. The number after each quality characteristic represents the numbering
of the section in ISO/IEC 25010 and can be seen as a subdivision between
the characteristics. Most connections are elementary, but two connections are
explained in more detail.

Capacity The criteria throughput, number of tenants, and number of end-
users can be grouped under the characteristic capacity. The description of
capacity in ISO/IEC 25010 states that parameters influencing the capacity are,
inter alia, the throughput and the number of concurrent users. In reviewing the
capacity of a multi-tenant system, the number of tenants is a parameter of the
capacity as well. Because these three criteria can be categorized as capacity, it
is added to the list of decision criteria. However, the three individual criteria
are considered to be too important and distinct to be excluded and are therefore
still part of the list of decision criteria.

Authorization The authorization criterion is linked with two different
quality characteristics. Confidentiality is the term used to ensure “...that infor-
mation is not made available or disclosed to unauthorized individuals, entities
or processes” (ISO, 2012, p. 2). Integrity means that information can not be
modified undetectably. Both characteristics cover the aspect of authorization,
therefore authorization itself is omitted from the list and confidentiality and
integrity are used instead.

Unmatched Criteria The quality characteristic adaptability initially looks
like a match for flexibility. However, adaptability as described in ISO/IEC 25010

48

Table 15: Evaluation Criteria linked to Quality Characteristics

Evaluation Criterion Quality Characteristic ISO Hierarchy

Performance → Performance Efficiency ..2

Response Time → Time Behavior ..2.1

Resource Utilization Efficiency → Resource Utilization ..2.2

Throughput
Capacity ..2.3Number of Tenants

Number of End-Users

Reliability → Reliability ..5

Availability → Availability ..5.2

Recoverability → Recoverability ..5.4

Security → Security ..6

Authorization
Confidentiality ..6.1
Integrity ..6.2

Authentication → Authenticity ..6.5

Maintenance → Maintainability ..7

Migration → Portability ..8

Deployment Time -

Flexibility -

Variability -

Diverse SLA -

Software Complexity -

Monitoring -

is concerned with the degree to which a product or system can be adapted and
flexibility as the evaluation criterion is concerned with the degree to which a
product or system itself can support various usage environments. The evaluation
criterion deployment time is not matched with the quality characteristic instal-
lability, because installation is considered a sub-activity of software deployment.
As such, these two decision criteria are not matched with quality characteris-
tics. For the other four decision criteria no corresponding quality characteristic
has been found. This is not considered as a shortcoming of ISO/IEC 25010.
There are additional factors influencing the use of multi-tenancy than just char-
acteristics measuring the quality of software products and computer systems.
Multi-tenant architectures are a special type of systems and the product qual-
ity model of ISO/IEC 25010 cannot account for all these specific systems. For
those criteria that are linked to a comparable quality characteristic, their name
is changed to that of the quality characteristic. Also, the descriptions of the
quality characteristics are used to describe the decision criteria.

49

Decomposable Property The product quality model decomposes the
quality properties in characteristics and sub-characteristics. This subdivision is
shown by the numbering of the quality characteristics, see the fourth column
in Table 15. The same composition of characteristics and sub-characteristics is
applicable to the decision criteria. This supports the decomposition of decision
criteria, another principle of the set of attributes, see Section 3.2.2.

Resulting Criteria A clear description of the decision criteria is essential for
a thorough understanding of them. When using the Multi-Tenant Architecture
Selection Model, decision makers will need to weigh these criteria to calculate
the relative importance and experts need to judge the performance of the archi-
tectures with respect to these criteria. For that reason, the descriptions of the
quality characteristics are used to describe the criteria. This applies only for
those criteria that are matched with a quality characteristic. For the other six
criteria descriptions are created. Table 16 shows the list of the decision criteria
together with its description. These criteria are selected for evaluation.

Recap The structuring of the twelve multi-tenant architectures and the cre-
ation of this set of decision criteria completes the first phase of the Research
Model depicted in Figure 4. The twelve multi-tenant architectures have been
constructed by identifying out literature various levels at which multi-tenancy
can be applied. Also, a list of consequences, requirements and pros and cons
related to multi-tenancy has been identified from which a set of decision criteria
is created. These two elements are an essential part of the final Multi-Tenant
Architecture Selection Model.

50

Table 16: Criteria Set

Criterion Description

1 Maintainability Degree of effectiveness and efficiency with which a product or
system can be modified by the intended maintainers. Modifi-
cations can include corrections, improvements or adaptation of
the software to changes in environment, and in requirements
and functional specifications. Modifications include those car-
ried out by specialized support staff, and carried out by busi-
ness or operational staff, or end users. It includes installation
of updates and upgrades.

2 Security Degree to which a product or system protects information and
data so that persons or other products or systems have the
degree of data access appropriate to their types and levels of
authorization. Survivability (the degree to which a product
or system continues to fulfill its mission by providing essential
services in a timely manner in spite of the presence of attacks)
is covered by recoverability.

2.1 Confidentiality Degree to which a product or system ensures that data are
accessible only to those authorized to have access.

2.2 Integrity Degree to which a system, product or component prevents
unauthorized access to, or modification of, computer programs
or data.

2.3 Authenticity Degree to which the identity of a subject or resource can be
proved to be the one claimed.

3 Portability Degree of effectiveness and efficiency with which a system,
product or component can be transferred from one hardware,
software or other operational or usage environment to another.

4 Performance Performance relative to the amount of resources used under
stated conditions.

4.1 Time Behavior Degree to which the response and processing times and
throughput rates of a product or system, when performing its
functions, meet requirements.

4.2 Resource Utilization Degree to which the amounts and types of resources used by a
product or system when performing its functions meet require-
ments.

4.3 Capacity Degree to which the maximum limits of a product or sys-
tem parameter meet requirements. Parameters can include the
number of items that can be stored, the number of concurrent
users, the communication bandwidth, throughput of transac-
tions, and size of database.

4.3.1 Throughput The average rate of successful message delivery over a commu-
nication channel, measured in bits per second.

4.3.2 Number of Tenants The extent to which the system can be scaled so it can be
offered to multiple tenants.

4.3.3 Number of End-Users The extent to which the system can be scaled so it can be
offered to multiple end-users.

5 Flexibility Degree to which the system can support different functional
and non-functional requirements of different tenants.

5.1 Variability Degree to which the system can support customized solutions
and tenant-dependent configurations, extension and evolution.

5.2 Diverse SLA Degree to which the system can support a variety of service
level agreements to tenants.

6 Software Complexity Degree of the software complexity of the software product if it
is developed and implemented in a multi-tenant architecture.

7 Reliability Degree to which a system, product or component performs
specified functions under specified conditions for a specified
period of time.

7.1 Availability Degree to which a system, product or component is operational
and accessible when required for use.

7.2 Recoverability Degree to which, in the event of an interruption or a failure,
a product or system can recover the data directly affected and
re-establish the desired state of the system.

8 Monitoring Degree of ease to which monitoring and controlling tasks can
be carried out in the system. Tasks include controlling server
availability, user activity, capacity and performance.

9 Deployment Time Degree of effectiveness and efficiency to which the software
product can be made available for use.

51

6 Evaluation of Multi-tenant Architectures and
Criteria

Prior to collecting performance values of the multi-tenant architectures on each
decision criterion, both these elements should be evaluated with experts. Reason
to evaluate the multi-tenant architectures is that the technical feasibility of
the twelve architectures in Figures 10 to 21 was excluded in structuring those
multi-tenant architectures. Of course, these architectures require to represent a
realistic architecture, that may be used in a real system. Therefore, they need
to be evaluated on the extent to which they represent a feasible architecture.

As mentioned in Section 3.2.2, the set of decision criteria should meet five
principles. One of those is that the set of criteria should be operational. This
means that the attributes should represent decision criteria that are important
to the decision makers. In addition, the attributes should discriminate among
the different multi-tenant architectures, thus it should be expected that the
performance values of the architectures evaluated on the criteria differ. The set
of decision criteria should be evaluated on both these points.

If the architectures and the criteria don’t meet these requirements, they can
be omitted from the final Multi-Tenant Architecture Selection Model.

6.1 Strategy

The research method used for the evaluation of the multi-tenant architectures
and criteria is a survey. This method is chosen, because it consists of system-
atic and standardized approaches for collection data on individuals (Marsden &
Wright, 2010). The collected data on individuals represent the expert opinions
on the multi-tenant architectures and decision criteria regarding the evaluation
points discussed in the previous section.

6.1.1 Instrument

The instrument, i.e. the data collection method, is a questionnaire. Question-
naires are considered less time-consuming than interview surveys. The question-
naires are administered on-site by an evaluator so questions can be asked by and
clarifications can be provided to the experts when needed. The questionnaire
questions are written out on paper and handed over to the respondent. The
native language of both the experts and evaluator is Dutch. To ease commu-
nication, the questionnaire is written in Dutch. An English translation of the
questionnaire can be found in Appendix D.

6.1.2 Experts

Expert selection is based on job function. The following job functions are se-
lected: architect, software development manager or technical manager. They
are chosen, because experts with one of these job functions have an in-depth
technical understanding on the structure of complete systems and software ap-
plications. All respondents work in the same large IT organization on different
software applications. A total of ten experts are involved in the evaluation.

52

6.1.3 Format

The on-site administered questionnaire starts with the evaluator explaining the
goal of this research, the Multi-Tenant Architecture Selection Model to be de-
veloped and the identification process of the twelve multi-tenant architectures.
Then, an introductory page and the schematics of the multi-tenant architectures
(Figures 10 to 21) are handed over to the respondent. A second piece is handed
over containing the actual questions. First, general open-ended questions like
name, date, job function, years of service and product type are asked. There-
after, for each multi-tenant architecture the extent to which it represents a fea-
sible architecture is asked. Subsequently, for each criterion the extent to which
it discriminates among the architectures, and the extent to which it defines a
deciding factor are asked. These are closed questions with an interval-level re-
sponse format. Experts are presented with a 7-point Likert scale. Reason this
scale is used, is because it provides a more reliable outcome when compared to
lower point scales (Preston & Colman, 2000). In addition, it’s still fairly easy
to describe the differences between scale attributes semantically as opposed to
the 10-point scale.

6.1.4 Analysis Procedure

Inclusion of the architectures and criteria in the Multi-Tenant Architecture Se-
lection Model depends on the median of the evaluation scores given by the
experts. The median describes a numerical value separating the higher half of
a list of numbers from the lower half. If the list has an even number of items,
the median is defined as the mean of the two middle values. The median is a
more robust measure of central tendency in the presence of outlier values than
the mean is. Moreover, the value of the median is more easily translated to a
semantic description than that of the mean. All answers in the questionnaire
use a 7-point Likert scale, so the lowest possible number is a 1 and the high-
est possible number is a 7. If an architecture’s median is equal to or greater
than 3, it’s included in the decision support model. This threshold is chosen,
because the third Likert item is semantically described as slightly feasible and is
considered as sufficiently feasible to be included in the decision support model.
The decision criteria are evaluated on two requirements, therefore inclusion of a
decision criterion depends on two medians. If these medians are both equal to
or greater than 3, the corresponding criterion is included in the decision support
model. This threshold is chosen, because the third Likert item, described as a
slight discrimination or deciding factor, is considered as sufficient.

6.2 Findings

This section presents the data of the completed evaluation questionnaires. Data
is presented in Tables 17 to 18. The columns, excluding the last one, represent
the 7-point Likert scale. The elements of these columns define the frequency
experts answered a question with the corresponding Likert item. The final
column defines the median of the frequencies for the corresponding architecture.
It is denoted by µ 1

2
. The frequencies of both the discrimination and deciding

factor are combined in a single table.

53

6.2.1 Multi-tenant Architectures Evaluation on Feasibility

Table 17 shows the answers of the experts on the extent of feasibility per ar-
chitecture. MTA 1 receives a high degree of feasibility, seven experts defined it
as at least a very strongly feasible architecture. The opinions are more divided
MTA 2, but the majority agrees it represents at least a moderately feasible
architecture. MTA 3 proves to be the lowest feasible architecture with an ag-
gregate value between slightly and moderately. Three experts define MTA 4
as slightly feasible, yet five experts define it is at least very strongly feasible.
On MTA 5 no real consensus is reached as well, but the collective is stated as
having a value between moderately and strongly feasible. Opinions on MTA 6
are even more divided as each Likert item is checked. Its shared value is mod-
erately feasible. The extent of feasibility on MTA 7 is a bit higher with a value
between moderately and strongly. Half of the experts define MTA 8 as at least
very strongly feasible. On the extent of feasibility on MTA 9, the judgments
can divided in two equally large groups. One stating it is slightly feasible at
best, and the other stating at least strongly feasible. The joint value however is
moderately feasible. Six out of ten experts define MTA 10 as a strongly feasible
architecture, equal to its aggregate value. MTA 11 receives a strong degree of
feasibility and on MTA 12 experts concur on a very strong degree of feasibility.
For each median µ 1

2
in Table 17, µ 1

2
≥ 3 applies and therefore all architec-

tures will be included in the Multi-Tenant Architecture Selection Model. These
medians are not calculated to identify differences among the architectures, but
to check per architecture individually how they score on the feasibility aspect.
Therefore, the amount of difference between the maximum and minimum value
is of minor importance.

Table 17: Frequencies of Chosen Likert Items on the Feasibility of Multi-tenant
Architectures

Multi-Tenant Architecture
Feasibility

µ 1
21 2 3 4 5 6 7

1 Dedicated AS & Dedicated DBS 1 1 0 0 1 2 5 6.5
2 Shared AS & Dedicated DBS 0 1 2 3 2 1 1 4.0
3 Shared Instance & Dedicated DBS 1 2 2 4 1 0 0 3.5
4 Dedicated AS & Shared DBS 0 0 3 1 1 2 3 5.5
5 Shared AS & Shared DBS 0 0 2 3 1 2 2 4.5
6 Shared Instance & Shared DBS 1 1 2 2 1 2 1 4.0
7 Dedicated AS & Shared DB 0 0 2 3 2 1 2 4.5
8 Shared AS & Shared DB 0 0 2 2 1 3 2 5.5
9 Shared Instance & Shared DB 1 2 2 0 2 2 1 4.0

10 Dedicated AS & Shared Schema 1 0 1 1 6 1 0 5.0
11 Shared AS & Shared Schema 1 0 1 1 3 4 0 5.0
12 Shared Instance & Shared Schema 1 2 0 0 1 5 1 6.0

54

6.2.2 Decision Criteria Evaluation on Discrimination & Deciding
Factor

During one questionnaire with an expert, he admitted he did not had sufficient
knowledge to answer the questions related to the extent of deciding factor. This
is reflected in Table 18 as the frequencies on the deciding factor of a decision
criterion sum up to nine instead of ten.

Performance Efficiency is seen by the experts as having a high discriminating
and deciding factor. This applies to Time Behavior as well. According to the
experts, Resource Utilization holds a high discrimination, but on the deciding
factor opinions are more divided. Still, more than half define this criterion as
having at least a strong deciding factor. Experts agree that Capacity has at least
a strong discrimination and a strong deciding factor. On Throughput, they are
more divided. Four experts state Throughput as having a slight discrimination,
but five experts state is has at least a strong discrimination. The aggregate
value equates to moderate. On the deciding factor of Throughput, no Likert
item is checked more than twice. Here too, the aggregate value equals moderate.
There is a better consensus on the Number of Tenants criterion with a high
discrimination factor and a very strong deciding factor. Slightly less agreement
exists for the discrimination on the Number of End-users criterion, but still
seven experts define it at least as strong discriminating. Again a high consensus
on the deciding factor with a value equal to very strong. For Reliability there
are six experts stating it has at least a strong discrimination and seven experts
stating it has at least a strong deciding factor. This is also the case for the
Availability criterion. For Recoverability, the number of experts sharing the
opinion that it has at least a strong discrimination and deciding factor is even
higher. On Security and Confidentiality, all experts share that opinion. There
is less consensus on both factors of the Integrity criterion, yet six experts find it
has at least a strong discrimination and deciding factor. Authenticity receives
the lowest aggregate value on discrimination. Six experts state it discriminates
slightly among the architectures at best and five experts state it has at least a
strong deciding factor. On the Maintainability criterion experts are in a high
agreement stating it has both a very strong discrimination and is a very strong
deciding factor. On Portability too, there is a good consensus, but the degree
of discrimination and deciding factor is only moderate. The aggregate values
for Deployment Time is between those of Maintainability and Portability. This
applies to Flexibility as well. Eight experts state Variability discriminates to a
degree between moderately and very strong. Seven experts state its deciding
factor lies on moderate or strong. For Diverse SLA there are again eight experts
stating it discriminates moderately to very strong. A majority answered the
deciding factor with a moderate extent. For Software Complexity there are
seven experts defining it as at least discriminating strongly and six experts
defining it as an at least strong deciding factor. Finally, there exists a high
consensus for Monitoring where nine experts agree it discriminates strong or
very strong and seven experts agree it has a strong or very strong deciding
factor. All medians for each decision criterion are equal to greater than 3 and
therefore each decision criterion is included in the final decision model.

55

6.3 Accommodation of the Multi-Tenant Architecture Se-
lection Model

Now the evaluation of both the set of multi-tenant architectures and decision
criteria is finalized, it is known how these artifacts look. The decision support
model can be accommodated for this. It is presented in Figure 23. The first
phase, now named with the more descriptive title Decision Criteria Assessment,
is given actual steps that need to be performed in this phase and the used
artifact is described too. The steps are based on the third activity in Figure 5
in which goals are established on which the decision criteria should be based.
The set of criteria identified and evaluated in this research may not completely
match the interest of a SaaS provider, i.e. the set lacks certain factors that
are of interest to the decision makers to evaluate on or includes criteria not of
interest to the decision makers. Therefore, prior to the calculation phase, this
set of attributes needs to be assessed on the completeness and minimum size
property. These steps are now displayed in the first phase. The used artifact
during this assessment is the criteria set.

Decision Criteria

Assessment
Calculation

Architecture

Recommendation

Steps

1. Criteria set complete?

2. Criteria set minimum size?

Steps Steps

Used Artifact

 Criteria Set

Used Artifact

Figure 23: Multi-Tenant Architecture Selection Model

56

T
ab

le
18

:
F

re
q
u

en
ci

es
of

C
h

os
en

L
ik

er
t

It
em

s
o
n

th
e

D
is

cr
im

in
a
ti

o
n

a
n

d
D

ec
id

in
g

F
a
ct

o
r

o
f

D
ec

is
io

n
C

ri
te

ri
a

D
ec

is
io

n
C

ri
te

ri
on

D
is

cr
im

in
a
ti

o
n

µ
1 2

D
ec

id
in

g
F

a
ct

o
r

µ
1 2

1
2

3
4

5
6

7
1

2
3

4
5

6
7

P
er

fo
rm

an
ce

E
ffi

ci
en

cy
0

0
0

0
5

4
1

5
.5

0
1

0
0

2
5

1
6
.0

T
im

e
B

eh
av

io
r

0
0

0
2

4
3

1
5
.0

0
0

0
1

3
4

1
6
.0

R
es

ou
rc

e
U

ti
li

za
ti

on
0

0
0

4
4

2
0

5
.0

0
2

1
1

2
3

0
5
.0

C
ap

ac
it

y
1

0
1

0
5

3
0

5
.0

1
0

0
0

5
3

0
5
.0

T
h

ro
u

gh
p

u
t

1
0

4
0

3
2

0
4
.0

1
0

2
2

2
2

0
4
.0

N
u

m
b

er
of

T
en

an
ts

1
0

0
0

4
4

1
5
.5

1
0

0
0

3
3

2
6
.0

N
u

m
b

er
of

E
n

d
-u

se
rs

1
0

1
1

3
3

1
5
.0

1
0

0
0

2
4

2
6
.0

R
el

ia
b

il
it

y
0

0
2

2
2

4
0

5
.0

0
0

1
1

3
3

1
5
.0

A
va

il
ab

il
it

y
0

1
1

2
2

3
1

5
.0

0
1

0
1

2
3

2
6
.0

R
ec

ov
er

ab
il
it

y
1

1
0

1
4

2
1

5
.0

0
0

0
0

5
3

1
5
.0

S
ec

u
ri

ty
0

0
0

0
2

5
3

6
.0

0
0

0
0

1
4

4
6
.0

C
on

fi
d

en
ti

al
it

y
0

0
0

0
4

4
2

6
.0

0
0

0
0

2
3

4
6
.0

In
te

gr
it

y
1

0
1

2
3

2
1

5
.0

0
0

1
2

2
2

2
5
.0

A
u

th
en

ti
ci

ty
1

2
3

0
2

1
1

3
.0

0
0

3
1

1
2

2
5
.0

M
ai

n
ta

in
ab

il
it

y
0

0
0

1
3

5
1

6
.0

0
0

0
1

1
7

0
6
.0

P
or

ta
b

il
it

y
0

0
2

4
4

0
0

4
.0

0
0

3
3

2
1

0
4
.0

D
ep

lo
y
m

en
t

T
im

e
0

0
0

2
5

3
0

5
.0

0
0

0
2

4
3

0
5
.0

F
le

x
ib

il
it

y
0

0
0

4
2

3
1

5
.0

0
0

1
1

3
3

1
5
.0

V
ar

ia
b

il
it

y
0

0
1

3
2

3
1

5
.0

0
0

1
4

3
0

1
4
.0

D
iv

er
se

S
L

A
0

0
1

4
2

3
0

4
.5

0
0

2
5

1
1

0
4
.0

S
of

tw
ar

e
C

om
p

le
x
it

y
2

1
0

0
2

3
2

5
.5

1
0

2
0

1
4

1
6
.0

M
on

it
or

in
g

0
0

1
0

5
4

0
5
.0

0
0

1
1

4
3

0
5
.0

57

7 Decision Making Method Selection

A decision making process consists of multiple steps, see Figure 5. After the
identification and evaluation of both the alternatives and decision criteria, a
decision making method needs to be selected. This selection is an important
choice and there exist a multitude of decision making methods. Each method
has its drawbacks and benefits and as a result one is more suitable in a spe-
cific context than another. The method selection depends for a large part on
the complexity of the decision problem. A complex method can unnecessarily
complicate a simple problem.

As already mentioned in Section 3.2.1, the decision problem this research
addresses falls in the domain of Multiple Attribute Decision Making (madm).
Therefore, this research should use a decision making method based on madm.
There exist many different madm methods, but they share certain aspects too.
An example in which the methods differ is how the performance values are
processed to rank the alternatives. A couple of widely used madm methods are
discussed here. Go to Section 7.5 to go straight to the selected decision making
method and the argumentation for this selection.

7.1 Elementary Methods

Elementary decision methods are relative simple approaches and require no
mathematical computations. They are best suitable for decision problems with
few alternatives and criteria and a single decision maker. They can be imple-
mented rapidly. Examples of elementary decision methods are pros and cons
analysis (Baker et al., 2001), maximin and maximax methods, conjunctive and
disjunctive methods, and lexicographic methods (Linkov et al., 2005).

7.2 Cost-Benefit Analysis

In a cost and benefit analysis (CBA) the net present values (NPV) of competing
investments or projects are calculated (Layard & Glaister, 1994). The NPV of
an investment defines how much value can be added. This value is calculated by
first assigning monetary values to costs and benefits in each year of the program.
Then, these costs and benefits in future years are discounted back to the present
value. Finally, they are summed. Projects with a negative NPV should be
rejected, those with a positive value can be accepted. CBA is unsuitable when
benefits and costs exist that are unable to be quantified in monetary terms, but
is a popular tool for guiding public policy (Dodgson, Spackman, Pearman, &
Phillips, 2009).

7.3 Multi-Attribute Utility Theory Methods

The basis of Multi-Attribute Utility Theory (maut) methods is the use of util-
ity functions (Baker et al., 2001). The performance values of the alternatives
against the decision criteria can be quantitative or qualitative. Quantitative
values are objective and obtained from facts, qualitative values are subjective
and judgmental. Utility functions are useful, because they transform both qual-
itative and quantitative performance values to a common dimensionless scale
(Fülöp, 2005). This ensures the weights reflect the relative importance of the

58

criteria properly. Furthermore, utility functions convert performance values so
a higher preference corresponds to a higher utility value. Finally, usually a
normalization process takes place on non-negative rows in the decision matrix.
Some popular maut are now described in more detail.

7.3.1 Weighted Sum Model

The most commonly used approach is the weighted sum model (WSM), also
called simple additive weighting (SAW) (Zanakis, Solomon, Wishart, & Dublish,
1998). In case there are N alternatives and M criteria, the best alternative is
calculated using the following expression (Fishburn, 1967):

AWSM = max
j

M∑
i=1

aijwi, for j = 1, 2, ..., N (1)

where AWSM is the total performance value of the best alternative. This model
assumes that the total performance value of each alternative is defined by the
sum of the products given in Equation (1). When the units of the performance
values are the same, i.e. in single-dimensional cases, WSM can be used without
difficulty, but problems arise when it is applied in multi-dimensional problems
(Triantaphyllou, Shu, Sanchez, & Ray, 1998). The assumption will then be
violated.

7.3.2 Weighted Product Model

Another technique is the weighted product model (WPM). Very similar to the
WSM approach, it uses multiplication instead of addition. The method con-
siders a comparison between two alternatives. When alternatives Ak and Al

are compared, their ratio is calculated according to the following expression
(Bridgman, 1922):

R(Ak/Al) =

M∏
i=1

(aik/ail)
wi (2)

If R(Ak/Al) > 1, then Ak is better than Al, in the case of maximization.
The best alternative is the one where all ratios with each other alternative
are greater than or at least equal to one. WPM can be used in both single-
and multi-dimensional problems, because its structure eliminates any units of
measure (Triantaphyllou et al., 1998).

7.3.3 Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) is a systematic procedure in which the
decision problem, the decision criteria and the alternatives are hierarchically
represented (Saaty, 1990). The top of the hierarchy states the goal of the de-
cision, criteria are structured in intermediate levels, and the alternatives are
in the lowest level of the hierarchy. By use of a series of pairwise comparison
judgments, in which elements on equal level are compared with each other with
respect to the element immediately above it, the relative strength or intensity
of the elements can be expressed. Comparisons between criteria represent the
relative importance of one criterion over another. This way, a decision maker

59

expresses its interests over the various criteria. Comparisons between alterna-
tives represent the relative preference of one alternative over another. These
comparisons regularly use the following nine-point scale of absolute judgments:

1 = equal importance or preference
3 = moderate importance or preference
5 = strong importance or preference
7 = very strong or demonstrated importance or preference
9 = extreme importance or preference

There exist two measurement options in AHP, relative and absolute (Saaty,
1990). Both measurements use paired comparisons to obtain priorities for the
criteria with respect to the goal. In the relative measurement, paired compar-
isons are performed throughout the hierarchy in each level with respect to the
level immediately above. In absolute measurement, paired comparisons are also
performed throughout the hierarchy except at the lowest level, the one of the
alternatives. Instead, the alternatives are ranked in terms of rating intensities
or standards for each criterion. The intensities define variations of a criterion
so the performance of alternatives for that criterion can be classified. The in-
tensities can be expressed as numerical values when the criterion is measurable,
or in qualitative terms such as A, B, C, D, E, and F (Saaty, 1994). In addition,
the intensities themselves of each criterion are pairwise compared just like the
other paired comparisons. The advantage of the relative measurement is that
it’s more accurate. The absolute measurement has the advantage that a deci-
sion problem with of a large number of alternatives can be solved more quickly
(Saaty, 2008).

The comparisons are arranged in comparison matrices and from each matrix
the priority vector is calculated. The priority vector defines the best fit to the
judgments expressed in that matrix (Fülöp, 2005). One approach to calculate
this, is the logarithmic least squares method. In this method, the geometric
mean of each row in the matrix is calculated and each geometric mean is divided
by the sum of all geometric means in that matrix (Saaty & Vargas, 1984). The
individual priorities are used to weigh the priorities in the level immediately
below. This is done for every element. The final priorities of the alternatives
are obtained by adding these weighed values. The alternative with the highest
final priority is most preferred.

7.4 Outranking Methods

In outranking methods, alternatives are systematically compared on each cri-
terion. It is based on the principle that alternatives can dominate one another
(Kangas, Kangas, Leskinen, & Pykäläinen, 2001). Roy (1996) defined that an
alternative outranks another alternative if it performs better on some criteria
and at least as well on all other. An alternative is said to be dominated when it
scores less on some criteria and not better than equal on all others. According to
Linkov et al., “Outranking models are appropriate when criteria metrics are not
easily aggregated, measurement scales vary over wide ranges, and units are in-
commensurate or incomparable” (2005, p. 5). Well-known outranking methods
are electre (Roy, 1990) and promethee (Vincke & Brans, 1985).

60

7.5 Selection of AHP Decision Making Method

The decision making method applied in this research is the absolute measure-
ment of AHP. The elementary decision making methods are insufficiently exten-
sive to represent the complex decision problem addressed in this research. The
outranking methods require quantitative data to determine the best alterna-
tive. No sufficient quantitative data of the identified criteria exists to rank the
multi-tenant architectures. All quantitative data found was a study of Z. Wang
et al. (2008) who evaluated the performance of various isolation patterns in the
data tier in terms of the transactions per second and the active tenant number.
Contrarily, the multi-tenant architectures in this research are a combination of
isolation patterns in both the data tier and the application tier. Qualitative
data, on the other hand, is available and AHP can handle this type of data very
well, because subjective judgments are translated to performance scores.

Furthermore, weighing the relative importance of the decision criteria is
an extensive process within AHP. This is an important aspect, because the
values of these weights are assigned by a SaaS provider and need to represent
its interests. SaaS providers with different interests will thus define a different
set of weights for the decision criteria. These weights eventually result in the
best multi-tenant architecture for that service provider. It’s therefore of extreme
importance a decision method is chosen that incorporates this aspect thoroughly.
The analytic hierarchy process does this.

7.5.1 Decision Hierarchy

With the selection of AHP as the decision making method, the decision hierarchy
depicting the goal, criteria and sub-criteria, and architectures can be structured,
see Figure 24. The first level shows the goal of the decision problem, selecting
the best multi-tenant architecture. The second level consists of the decision
criteria, some of which divided in sub-criteria, which make up the third level of
the hierarchy. The sub-criteria capacity is categorized even further and these
define the fourth level. In the lowest level the alternatives, the multi-tenant
architectures named MTA 1 to MTA 12, reside.

7.5.2 Selection Between Measurement Approaches

Next is the argumentation of choosing one of the two measurement approaches
in AHP. The relative and absolute measurement can differ greatly on the num-
ber of values to be determined. This measure directly relates to the amount of
time and effort necessary to solve a decision problem. Both measurements only
differ in their approach at the bottom level of the hierarchy. So by calculating
the number of values to be determined in the bottom level of the hierarchy, the
difference in cognitive load of both measurements can be expressed. In rela-
tive measurement, this number VR equals to the amount of pairwise compar-
isons PCR performed. In absolute measurement, this number VA equals to the
summation of the amount of comparisons PCA and the amount of rankings R
performed. For the relative measurement, the amount of pairwise comparisons
PCR performed in the bottom level of the hierarchy depends on the number of
alternatives N and criteria M and is calculated as follows:

61

S
el

ec
t

th
e

b
es

t
M

u
lt

i-
T

en
an

t
A

rc
h
it

ec
tu

re

P
er

fo
rm

an
ce

T
im

e
B

eh
av

io
r

R
es

o
u
rc

e

U
ti

li
za

ti
o
n

C
ap

ac
it

y

N
u
m

b
er

 o
f

T
en

an
ts

R
el

ia
b
il

it
y

S
ec

u
ri

ty
M

ai
n
ta

in
ab

il
it

y
P

o
rt

ab
il

it
y

D
ep

lo
y
m

en
t

T
im

e
F

le
x
ib

il
it

y
S

o
ft

w
ar

e

C
o
m

p
le

x
it

y
M

o
n
it

o
ri

n
g

A
v
ai

la
b
il

it
y

R
ec

o
v
er

ab
il

it
y

C
o
n
fi

d
en

ti
al

it
y

In
te

g
ri

ty
A

u
th

en
ti

ci
ty

V
ar

ia
b
il

it
y

D
iv

er
se

 S
L

A

N
u
m

b
er

 o
f

E
n
d

-U
se

rs
T

h
ro

u
g
h
p
u
t

M
T

A
 3

M
T

A
 4

M
T

A
 5

M
T

A
 6

M
T

A
 7

M
T

A
 8

M
T

A
 9

M
T

A
 1

0
M

T
A

 1
1

M
T

A
 1

M
T

A
 1

2
M

T
A

 2

L
ev

el
 1

L
ev

el
 3

L
ev

el
 4

L
ev

el
 2

L
ev

el
 5

F
ig

u
re

24
:

H
ie

ra
rc

h
y

o
f

th
e

M
u

lt
i-

T
en

a
n
t

A
rc

h
it

ec
tu

re
D

ec
is

io
n

P
ro

b
le

m

62

VR = PCR =
1

2
(N2 −N)M (3)

For this research, where N = 12 and M = 17, PCR equals to 1122 comparisons
and thus VR equals to 1122 number of values. For the absolute measurement
applies:

VA = PCA +R (4)

In absolute measurement, PCA is defined as the sum of all of the number of
pairwise comparisons of the intensity levels for each criterion. To simplify, the
number of intensity levels I is identical for each criterion. Then, with the number
of criteria M , PCA is calculated as follows:

PCA =
1

2
(I2 − I)M (5)

The number of rankings R is calculated as:

R = M ×N (6)

where N is the number of alternatives. For this research, where N = 12, M = 17
and if I is set at 5, VA = 374.

As calculated, the relative measurement requires exactly three times more
values to be determined in the bottom level of the hierarchy than the absolute
measurement. Also, all PCA comparisons need to be provided by the decision
makers. These comparisons define the relative importance of the intensity levels,
thus partly represent the interest of a SaaS provider and are therefore unable
to be defined by experts. So in this research, the actual amount of values
to be determined through absolute measurement, VA is just R which is 204.
Relative to the relative measurement, the absolute approach requires significant
less values to be determined. Therefore, absolute measurement is chosen as the
decision making method in this research.

The following pairwise comparison matrices exist for the hierarchy in Fig-
ure 24 and with the selection of the absolute measurement approach. One for
the criteria in the second level with respect to the goal. Four matrices in the
third level: one for the sub-criteria under security, one for the sub-criteria un-
der performance, one for the sub-criteria under flexibility and finally one for the
sub-criteria under reliability. Then there is another comparison matrix in the
fourth level for the sub-sub-criteria under capacity. Finally, the intensity levels,
which define a classification of the range of performance, need to be pairwise
compared on preference, just like the criteria and sub-criteria. The intensity for
each criterion is expressed in the same qualitative terms. The relative preference
among these intensity levels is equal under different criteria, i.e. the degree of
preference of one intensity level to another intensity level under a specific cri-
terion is the same degree under a different criterion. This approach is used
in various decision problems (Islam & Rasad, 2006; C. Yang & Huang, 2000).
Therefore, one comparison matrix exist for the intensity levels bringing the total
number of comparison matrices to seven.

63

7.6 Accommodation of the Multi-Tenant Architecture Se-
lection Model

The decision support model can now be accommodated for the selection of the
decision making method. It is presented in Figure 25. The second phase is
given a more descriptive name - Priority Calculation - and the required steps
in this phase are added. The decision matrix is the used artifact in this phase,
the creation of this artifact is the subject of the following section.

Decision Criteria

Assessment

Priority

Calculation

Architecture

Recommendation

Steps

1. Criteria set complete?

2. Criteria set minimum size?

Steps

1. Assign criteria priorities

2. Calculate global priorities

3. Perform consistency check

Steps

Used Artifact

 Criteria Set

Used Artifact

 Decision Matrix

Figure 25: Multi-Tenant Architecture Selection Model

64

8 Ratings of Multi-tenant Architectures on Cri-
teria

In absolute measurement of AHP, the pairwise comparisons between the criteria
and between the intensity levels define the relative level of importance for the
decision makers. These pairwise comparisons are thus specific to a SaaS provider
and define the interest of that SaaS provider. This interest is what defines
the most suitable multi-tenant architecture for a particular SaaS provider and
depends on these pairwise comparisons.

How the multi-tenant architectures perform on the decision criteria is not
specific to a SaaS provider and thus can be determined in advance. As explained
in the previous section, these performance values are based on qualitative data.

The covering criteria, i.e. criteria not divided in further sub-criteria, are
categorized into intensity levels or standards. There exist no pre-defined inten-
sity levels for the decision criteria identified in this research. In addition, the
criteria can not be expressed in single measurable units. The intensity levels are
therefore expressed in qualitative terms. This is done for each covering criterion.

8.1 Strategy

The qualitative data is obtained in a similar manner as the expert evaluations
of the multi-tenant architectures and criteria in Section 6. Domain experts
are asked to provide their judgments on the performance of the multi-tenant
architectures on the criteria.

8.1.1 Instrument

A series of questionnaires is used to determine the performance values. They are
administered on-site by an evaluator. Therefore, questions by the experts can
be answered and clarification can be provided when needed. The language used
between the evaluator and experts is Dutch, because it is their native language.
The experts complete the questionnaire on paper. An English translation can
be found in Appendix E.

8.1.2 Experts

The experts involved in the questionnaire are the same experts involved in the
previous evaluation of the multi-tenant architectures and the decision criteria.
This was decided, because those experts were already familiar with this research
due to that earlier evaluation. One expert mentioned in that evaluation that
he was unable to answer the questions on the decision criteria with respect to
the deciding factor. Another expert from the previous questionnaire declared
he would not participate in a second one. Those experts were not involved in
this second questionnaire. Although this means two experts fewer are involved,
the amount of eight experts is considered sufficient to generalize carefully in
the domain of multi-tenant architectures. Even though this sample size is rel-
atively low, prior research shows that decision problems addressed with AHP
not necessarily require a large sample size (Lam & Zhao, 1998).

65

8.1.3 Format

This second on-site administered questionnaire starts with a short introduction
referring to the previous questionnaire that all multi-tenant architectures and
decision criteria passed the evaluation and will be included in the Multi-Tenant
Architecture Selection Model. Then, the questionnaire itself is handed over to-
gether with the schematics of the multi-tenant architectures, Figures 10 to 21.
The architectures in the questionnaire are referenced using the same numbering
used in this research. In the questionnaire, each expert is asked to rank the
multi-tenant architectures against the decision criteria in terms of intensity lev-
els. The intensity levels for all covering criteria are expressed in five qualitative
terms: poor, below average, average, good and excellent. This 5-point Likert
scale is used, because it provides sufficient grades of intensity levels.

In the previous questionnaire, experts were asked to define to what extent
they found the multi-tenant architectures to be feasible. It’s possible that if an
expert defined an architecture as not or weakly feasible in this previous ques-
tionnaire, he is not able to carefully judge the performance of that architecture.
Therefore, at the beginning of each ratings questionnaire, the expert is told it’s
not necessary to rate those architectures that were defined as not or weakly
feasible by him. The expert is allowed to rate those architectures, if he finds
himself comfortable to do so. The experts need to rate the architectures on all
decision criteria.

8.1.4 Analysis Procedure

Expert ratings from an architecture on a criterion are aggregated and, equivalent
as in the first questionnaire, the final score is calculated as the median. A total of
eight experts participated in rating the architectures, so there are eight ratings
for each architecture on a single criterion. Inherent to the median, this means
it is possible the median is located between two adjacent qualitative terms.

In addition to the median, the discrimination factor is described. The dis-
crimination factor of a criterion can be calculated numerically as the variance
of the performance scores for that criterion. The variance of a set of numbers
describes how far these values lie from the mean and is usually denoted as σ2.
If all scores are equal, the variance is 0. Maximum variance is 4.4 and achieved
when half of the architectures is rated with the lowest possible rating (1), and
the other half is rated with the maximum rating (5). This high degree of vari-
ance is not expected. For each multi-tenant architecture there exists another
architecture that only differs to a small extent. The performance ratings be-
tween these two architectures probably won’t differ much too. This causes the
discrimination factors of the criteria to be significant lower than the maximum
variance. However, the differences between these discrimination factors can be
of interest.

8.2 Findings

Most experts completed the questionnaire in roughly one hour. There were
more questions asked about the criteria during this questionnaire than during
the first questionnaire. This is noteworthy, because all criteria in the second
questionnaire are described in the first questionnaire too. The reason for this

66

might be that in the second questionnaire experts need to judge the actual per-
formance of the architectures on the criteria and the first questionnaire only asks
if a criterion discriminates among the architectures. The second questionnaire
requires a more thorough understanding of the criteria to make judgments.

The question about the decision criteria number of tenants in particular
received many questions. Most experts experienced indistinctness about the
aspect of scalability, declaring they view scalability as the complexity to offer
the application to extra tenants, with a high scalability translating to a low
complexity and vice versa. The viewpoint of scalability in this work however, is
the extent of extra resources necessary to offer the application to extra tenants,
with a high scalability translating to little extra resources necessary and vice
versa. After three consecutive experts indicated this lack of clarity, this view
was clarified in advance to the subsequent experts.

8.3 Results

This section presents the final decision matrix. It contains all previous identi-
fied multi-tenant architectures, decision criteria, and the performance values of
the architectures with respect to the criteria. It is displayed in Table 19. All
columns, except the last one, represent the multi-tenant architectures. The final
column displays the discrimination factor as the variance, denoted as σ2, of the
ratings. Decision criteria are illustrated in the rows of the table. The ratings,
described in terms of semantical qualitative terms, are transformed to numerical
values for calculation. The highest qualitative term, excellent, corresponds to
the value 5, the lowest qualitative term, poor, to the value 1. The values in
the table define the performance scores of the architectures against the decision
criteria. A performance score denotes the median of the series of ratings experts
gave to the matching architecture on the corresponding criterion.

For all the individual ratings provided by the experts, see Tables 25 to 41
in Appendix F. The median and standard deviation is included there too. The
standard deviation is a measure to show the extent of agreement among the
experts. A low standard deviation translates to a high agreement and vice
versa. Sets of ratings with a low agreement need to be considered with more
caution.

A small consistency check of the data provided by the experts can be carried
out. In the first questionnaire experts are asked to express their opinion on the
extent of discrimination of each criterion among the multi-tenant architectures.
In the second questionnaire they need to actually appoint ratings to the architec-
tures with respect to the criteria. Therefore, it is assumed that experts defining
a criterion as having no or a weak discriminating factor, their ratings of the
architectures on that criterion will lay close to on another. Several experts did
define some criteria with a low discriminating factor, but this is not reflected in
their second questionnaire. In contrast, some experts rated the architectures on
a criterion with little variance, but defined that criterion as having a strong or
very strong discriminating factor. Overall, the architectures get varied ratings
on criteria.

67

Table 19: Ratings of the MTA’s Against the Decision Criteria

M
T

A
1

D
ed

ic
a
te

d
A

S
&

D
ed

ic
a
te

d
D

B
S

M
T

A
2

S
h

a
re

d
A

S
&

D
ed

ic
a
te

d
D

B
S

M
T

A
3

S
h

a
re

d
In

st
a
n

ce
&

D
ed

ic
a
te

d
D

B
S

M
T

A
4

D
ed

ic
a
te

d
A

S
&

S
h

a
re

d
D

B
S

M
T

A
5

S
h

a
re

d
A

S
&

S
h

a
re

d
D

B
S

M
T

A
6

S
h

a
re

d
In

st
a
n

ce
&

S
h

a
re

d
D

B
S

M
T

A
7

D
ed

ic
a
te

d
A

S
&

S
h

a
re

d
D

B

M
T

A
8

S
h

a
re

d
A

S
&

S
h

a
re

d
D

B

M
T

A
9

S
h

a
re

d
In

st
a
n

ce
&

S
h

a
re

d
D

B

M
T

A
1
0

D
ed

ic
a
te

d
A

S
&

S
h

a
re

d
S

ch
em

a

M
T

A
1
1

S
h

a
re

d
A

S
&

S
h

a
re

d
S

ch
em

a

M
T

A
1
2

S
h

a
re

d
In

st
a
n

ce
&

S
h

a
re

d
S

ch
em

a

D
is

cr
im

in
a
ti

o
n

F
a
ct

o
r

(σ
2
)

Time Behavior 5.0 4.0 4.0 4.0 4.0 3.0 4.0 3.5 3.0 3.5 3.0 2.0 0.6

Resource Utilization 2.5 2.5 3.0 2.5 3.0 3.0 3.0 3.0 4.0 3.0 3.0 4.5 0.4

Throughput 4.5 3.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.2

Number of Tenants 1.0 3.0 3.0 3.0 3.5 4.0 3.0 4.0 4.0 3.0 4.0 5.0 1.0

Number of End-Users 2.5 3.5 3.0 3.0 3.5 3.5 3.0 3.5 4.0 3.5 4.0 4.0 0.2

Availability 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.1

Recoverability 5.0 4.5 4.5 4.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 1.1

Confidentiality 5.0 4.5 4.0 4.0 4.0 4.0 3.5 3.0 3.0 2.0 2.0 2.0 1.0

Integrity 4.5 4.0 3.0 4.0 3.5 3.0 3.5 3.0 3.0 3.0 2.5 2.5 0.4

Authenticity 4.5 3.5 3.0 3.5 3.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0 0.2

Migration 5.0 5.0 5.0 4.5 4.5 4.5 4.0 4.0 4.0 3.0 3.0 3.0 0.6

Deployment Time 1.5 3.0 3.0 2.5 3.5 4.0 3.0 4.0 4.0 3.0 4.0 5.0 0.8

Variability 5.0 4.0 2.0 5.0 4.0 2.0 4.5 3.5 2.0 2.5 2.0 1.0 1.9

Diverse SLA 5.0 4.0 3.0 4.0 3.5 2.5 4.0 3.0 3.0 3.0 2.5 2.0 0.7

Software Complexity 5.0 4.5 4.0 4.5 4.5 3.5 4.0 4.0 3.0 2.5 2.5 2.0 0.9

Monitoring 1.0 2.5 3.0 2.5 3.0 3.0 3.0 4.0 4.0 3.0 4.0 5.0 1.0

Maintainability 1.5 2.5 3.0 2.0 3.0 3.5 2.5 4.0 4.0 3.0 4.0 5.0 1.0

8.4 Analysis

This section describes notable findings that can be concluded from the results.
These findings are based on the performance related extent of shared resources
in the application or data tier, or both. The discrimination factor is described
as well.

Time Behavior Both tiers influence the performance of the time behavior
aspect. The less resources shared among tenants, the better the performance
will be. The discrimination factor is moderate with a 0.6 variance.

Resource Utilization Efficiency Again, both tiers are of influence to the
performance of the resource utilization efficiency. A higher degree of multi-
tenancy results in a higher efficiency. Ten of the twelve architectures receive
an average or slightly below average resource utilization efficiency performance.

68

Only MTA 9 and MTA 12 perform good and very good respectively. The dis-
crimination factor is low (σ2 = 0.4).

Throughput This criteria discriminates little (σ2 = 0.3) among the architec-
tures. Experts define all architectures as having a moderate throughput perfor-
mance, exceptions are MTA 1 and MTA 4 with a throughput performance of
very good and good respectively.

Number of Tenants There exists a high discrimination (σ2 = 1.0) between
the performance ratings of the architectures in respect to the scalability of the
number of tenants. Both tiers influence this performance and the more resources
are multi-tenant, the less extra resources are required for offering the application
to extra tenants.

Number of End-Users Both tiers affect the performance on scaling the ar-
chitectures so that a tenant can offer the application to more end-users. If more
resources are shared among tenants, the scalability increases too. Discrimina-
tion is low with a variance of 0.2.

Availability Very little discrimination (σ2 = 0.1) exists between the avail-
ability performance ratings. All architectures but one are rated as having a
moderate performance with only MTA 1 rated as good on availability.

Recoverability The extent of multi-tenancy in especially the data tier affects
the performance on recoverability. The deeper multi-tenancy is applied in the
data tier, the less it scores on recoverability. It has a high discrimination factor
with a variance of 1.1.

Confidentiality Also for confidentiality the performance is more affected by
the extent of multi-tenancy in the data tier. Less resources shared among ten-
ants means a higher confidentiality performance. Again a high discrimination
factor exists (σ2 = 1.0).

Integrity Both tiers play a role in the performance of integrity of the ar-
chitectures. Overall, a higher integrity score is achieved when there are less
multi-tenant resources. There is relative low discrimination (σ2 = 0.4).

Authenticity The decision criterion authenticity discriminates little (σ2 =
0.2) among the architectures. All architectures with a shared application server
and shared application instance but one are rated with an average authenticity
performance. The architectures with a dedicated application server and a dedi-
cated database server or a shared database have a higher performance rated as
very good and good respectively.

Migration Only differences of multi-tenancy in the data tier are of influence
in the migration performance of multi-tenant architectures. Architectures with
a shared schema perform moderate, those with a shared database good, the
architectures with a shared database server very good and the architectures

69

with a dedicated database server excellent. Discrimination is moderate with a
variance of 0.6.

Deployment Time Both tiers affect the performance of architectures with
respect to the deployment time. The deeper multi-tenancy is implement, the
less deployment time is necessary. There exists are relative high discrimination
(σ2 = 0.8).

Variability Both tiers are of influence in the performance on variability. All
architectures with a shared schema in the data tier or a shared application
instance in the application tier are defined as architectures with a poor or below
average variability performance. Multi-tenant architectures structured with a
dedicated or shared application server and a dedicated database server or shared
database server are rated with good and excellent variability scores. Variability
has the highest discrimination factor with a variance of 1.9.

Diverse SLA Both the application tier as well as the data tier affect the how
diverse the service level agreement can be offered to customers. An architecture
with less multi-tenant resources results in a greater ability to offer a diverse
SLA. There is moderate discrimination (σ2 = 0.7).

Software Complexity The data tier is more of influence than the application
tier when it comes to the software complexity of multi-tenant architectures.
Little shared resources result in a lower software complexity and there exists a
high discrimination with a variance of 0.9.

Monitoring Discrimination is high with a variance of 1.0. Both tiers affect
the ease with which monitoring tasks can be executed by service providers. The
deeper multi-tenancy is applied in the tiers, the higher the architectures score
on monitoring performance.

Maintainability Again both tiers are of influence. A higher maintainability
is achieved when more resources are shared among tenants. There is a high
discrimination (σ2 = 1.0).

70

9 Multi-Tenant Architecture Selection Model

This section presents the final Multi-Tenant Architecture Selection Model. It
is depicted in Figure 26. It should be noted that this model should be used to
support the decision makers of a SaaS provider in the selection of a multi-tenant
architecture. It is not intended to be used as the sole decision provider. It is
depicted as a roadmap consisting of three phases, in which several steps are
carried out using a specific artifact. In the following subsection each phase is
described in more detail.

Decision Criteria

Assessment

Priority

Calculation

Architecture

Recommendation

Steps

1. Criteria set complete?

2. Criteria set minimum size?

Steps

1. Assign criteria priorities

2. Calculate global priorities

3. Perform consistency check

Steps

1. Is deeper analysis required?

2. Validate preferred MTA

3. Select preferred MTA

Used Artifact

 Criteria Set

Used Artifact

 Decision Matrix

Figure 26: Multi-Tenant Architecture Selection Model

9.1 Decision Criteria Assessment

A SaaS provider starts the decision making process with the Decision Criteria
Assessment phase. This phase is comprised of assessing the criteria set on
completeness and minimum size. The artifact used by this phase is the criteria
set, depicted in Table 16.

The first step in this phase to be undertaken by the SaaS provider, is to assess
the completeness of the criteria set. This means to determine if each factor that
influences the decision problem for the specific SaaS provider is covered by a
criterion. If this is not the case, the decision makers of the SaaS provider can opt
to add criteria by their own. In case extra criteria are added, the resulting set
of criteria needs to be evaluated on the five properties that a desirable criteria
list should contain. These properties are explained in Section 3.2.2. In case
no criteria are added to the list, just the minimum size property should be
evaluated. It may be that the criteria set contains attributes which are of no
concern to the SaaS provider. If so, these criteria can be removed from the set.
If the resulting criteria set differs from the one in Table 16, a new hierarchy like
the one in Figure 24 can be created as well.

9.2 Priority Calculation

The next phase is called Priority Calculation in which the actual calculation
using AHP takes place. First, weights, also called criteria priorities, need to
be assigned to each criterion from the set resulting from the first phase. This
is possible by using an absolute measurement approach in which each criterion

71

directly receives a value lying between a predetermined range, representing the
importance of that criterion. Or, using the relative measurement approach in
which criteria on equal level in the hierarchy are compared with each other on
relative importance with respect to their common parent.

Then, together with the decision matrix depicted in Table 19, global priori-
ties can be calculated for each multi-tenant architecture. This requires a large
number of mathematical computations. Decision support software exists that
facilitates these operations. This software includes a consistency check to see if
the comparison matrices completed in the previous steps contains inconsisten-
cies.

9.3 Architecture Recommendation

It is possible that no multi-tenant architecture is the clear favorite but a number
of multi-tenant architectures receive high priorities lying close to one another.
If such a smaller set of alternatives is identified as preferred, these dominating
architectures can be used in a second, more thorough, analysis. For example,
Park and Hwan Lim (1999) first performed the absolute measurement of AHP
on a set of five usable interfaces, and subsequently subjected the two best alter-
natives in a relative measurement of AHP.

Such a second analysis may entail collecting additional qualitative or evalua-
tion data, e.g. on decision criteria defined as more important or on architectures’
performance where no good agreement exists across the decision makers. All
this data should be collected by the SaaS provider itself.

When there is a single preferred multi-tenant architecture, the decision
support staff need to validate if this architecture in fact meets requirements,
achieves the goals and results in a desired state. Finally, a recommendation
report can be written and presented to the decision makers.

72

10 Discussion

The following section describes the limitations of this research. The subsequent
section suggests further research.

10.1 Limitations

There are several limitations to the identification process of the decision criteria.
Decision criteria are extracted from literature to cover a large as possible reach.
This reduces bias compared to collecting criteria from a case company. Evalua-
tion of this list is based on the extent of defined discrimination and importance
to SaaS providers. However, the list of criteria is not evaluated on completeness.
Experts are not asked if they thought the set lacked criteria not included in the
set they evaluated. On the other hand, multi-tenant architectures are ranked
on a total of 17 criteria. This is no small set and according to the minimum
size principle this set should be kept as small as possible. In addition, extra
criteria can be added by SaaS providers manually, but then the performance
of the multi-tenant architectures with respect to these extra criteria should be
defined by the SaaS provider itself too.

The minimization process of the criteria set is performed by a single re-
searcher and not evaluated by others. It is possible that readers will not agree
with all the aggregation choices made, but notable decision are described in Sec-
tion 5.3.3 and the total process is illustrated in Figures 27 to 29 in Appendix C.

Also, no evaluation is conducted on the hierarchy of the decision criteria.
The hierarchy is partly adopted from the quality characteristics in the software
product quality model. It is assumed that this model is solidly composed of
characteristics with sub-characteristics. The same arrangement is used for the
hierarchy of the decision criteria identified in this research, because they re-
semble the characteristics in a large extent. The hierarchy of the criteria is
incorporated in the questionnaire via section numbering and no questions are
asked by experts about this. This does not mean that the hierarchy is evaluated
however.

Another limitation of the questionnaire is the number of participants in-
volved. The first questionnaire is completed by ten experts. In the second
questionnaire eight experts participated. In addition, all experts work at the
same company. This may result in bias, because all experts may work with
an equal company-wide procedure. To mitigate this effect, experts are chosen
that work in different business units and products. Although the number of
experts is still rather small, it is assumed it is sufficient to make a conservative
generalization based on their results.

Because no sufficient quantitative data yet exists, qualitative data from ex-
perts is used to rank the multi-tenant architectures on the various decision cri-
teria. Quantitative data is more precise than subjective judgments, but results
from experts can lead to very accurate results nonetheless.

There are a pair of limitations applying to the quality of the data provided
by the experts. First, experts had no option in the first evaluation questionnaire
to select a lack of opinion or knowledge. It is assumed that in such a case experts
defined a multi-tenant architecture as not or weakly feasible. Thus, the medians
of the feasibility factor of the architectures might in fact be slightly higher than
this research shows. The lack of an option for ‘Don’t know’ can be substantiated

73

by the fact that all participants are domain experts and therefore assume to
hold sufficient knowledge. Moreover, the questionnaire is administered by an
evaluator to which questions and clarifications are allowed to be asked.

Secondly, experts ranked all twelve multi-tenant architectures in the sec-
ond questionnaire with respect to the decision criteria. But, some experts de-
fined some multi-tenant architectures as not, weakly or slightly feasible in the
first questionnaire. This might mean that those experts did not have com-
plete knowledge on those multi-tenant architectures and their rankings of those
multi-tenant architectures is less accurate. This research does not make any
distinction between data from different experts and all data is evenly weighted.

Thirdly, some experts defined several decision criteria as having no or a
weak discriminating factor. This should be reflected in their second question-
naire where multi-tenant architectures are given approximately equal ratings on
those decision criteria. This is, however, not the case. Those experts defining
criteria as having no or a weak discriminating factor in the first questionnaire,
evaluated the multi-tenant architectures against the corresponding criteria with
varied ratings. Even more so, some experts gave the architectures on some cri-
teria equivalent ratings in the second questionnaire, but defined those criteria
as having a strong or extreme discriminating factor in the first questionnaire.
This may indicate the questionnaires are not completed thoroughly consistent.
A certain degree of inconsistency can always be expected when several series
of surveys are to be completed by the same participants. It is probable that
the experts had to think more thoroughly in the second questionnaire about
consequences they had not thought of in the first questionnaire.

74

11 Conclusion

This section covers the conclusions of this research. The research questions are
answered and notable findings are discussed. The main research question is
formulated as follows:

RQ. How can a SaaS provider be optimally supported in the de-
cision process of choosing the most suitable multi-tenant ar-
chitecture?

The objective of this research is to develop a decision support model useful
to all SaaS providers by supporting them in choosing the most suitable multi-
tenant architecture. Many different decision methods exist, but all methods
require three common elements to define the best alternative: a set of alterna-
tives, a set of decision criteria, and performance values of the alternatives with
respect to the criteria. Each of these three elements are covered by a research
subquestion. The first subquestion addresses which multi-tenant architectures
currently can be identified:

SQ. 1 Which multi-tenant architectures currently exist?

To tackle this question, first a literature study is conducted to identity levels
at which multi-tenancy can be applied. From these levels, twelve multi-tenant
architecture are constructed and then evaluated on feasibility by ten experts.
All architectures are at least defined as being slightly feasible. The architectures
are presented in Figures 10 to 21 and answer the first research subquestion. This
is the first key deliverable of this research. It is of value, because it provides
a complete overview of possible multi-tenancy options in the architecture that
are of interest to SaaS providers.

The second subquestion focuses on identifying decision criteria:

SQ. 2 What measurable decision criteria are of importance to SaaS
providers in choosing a multi-tenant architecture and define
a discrimination among these multi-tenant architectures?

The same literature study is conducted to identify these decision criteria.
First, discriminating attributes based on benefits, drawbacks, requirements and
considerations related to multi-tenancy are identified from literature, resulting
in a large set of attributes. This list is reduced by combining synonyms and
specializations with generalizations. Infrequent attributes are excluded. The
descriptions of the criteria are composed with support of quality characteristics.
Then, they are evaluated on the extent of discrimination and importance to
SaaS providers. No criterion is excluded based on the evaluation. The criteria
are listed in Table 16 and answer the second subquestion. It forms the second
key deliverable of this work and is valuable, because it describes the factors
that are of influence when evaluating multi-tenancy options. It supports SaaS
providers, because it forms a list of criteria that need to be considered in the
decision making process. Also, it provides SaaS providers with insight what
criteria are more important that other criteria.

Prior to ranking the architectures in respect to the criteria, a decision making
method is selected. The analytic hierarchy process with absolute measurement is

75

chosen, because it handles qualitative data very well, incorporates an extensive
process for defined weights for the decision criteria, and is less time-consuming
than the relative measurement approach.

The final research subquestion is directed at finding performance ratings of
the architectures on the criteria:

SQ. 3 How do the multi-tenant architectures perform on each de-
cision criterion?

Eight experts are asked to rank each multi-tenant architecture on each cri-
terion on a scale of one to five. The medians of all these rankings represent the
performance ratings of the architectures against the criteria and are shown in
Table 19. It answers the final research subquestion and is the third key deliver-
able of this research. Its value lies in the combination of the set of multi-tenant
architectures and the set of decision criteria. It brings these sets together and
shows the relation between them. It provides insight in the strengths and weak-
nesses of the multi-tenant architectures and is essential to execute the decision
making process.

With the identification of these three key deliverables, the analytic hierarchy
process decision making method can be carried out. The deliverables are part of
an overall Multi-Tenant Architecture Selection Model, described and explained
in Section 9. With this model, decision makers are supported in the process
of selecting a multi-tenant architecture. It describes the steps to be carried
out and the key deliverables used. The model will save effort, time and poten-
tial problems in the future for SaaS providers. The Multi-Tenant Architecture
Selection Model is the most valuable deliverable of this research. It puts all
previous mentioned key deliverables in a coherent whole.

In the first phase of the model, SaaS providers need to assess the decision
criteria set on completeness and minimum size. Then, in the second phase,
decision makers determine the weight of each criterion. The subsequent step
is the actual calculation of the preference of each multi-tenant architecture.
Decision making software packages exist that facilitates these calculations. The
final phase covers an evaluation to verify if deeper analysis is necessary and
validate the most preferred architecture.

In addition to the actual decision support model, this research is relevant
for the scientific community. This work fills a gap in literature by evaluating
multi-tenant architectures in the application and data layer as a whole.

11.1 Further Research

This work is the first step of using decision making theory for choosing the most
suitable multi-tenant architecture. For this purpose, twelve architectures are
constructed covering each possible arrangement of resources with regard to the
application and data tier. In addition, 22 decision criteria are defined on which
the architectures are rated. No demonstration and evaluation of these ratings
is conducted in this research. It is suggested further research should focus on
demonstrating the analytic hierarchy process in conjunction with the decision
matrix in Table 19 at several companies. Then, the ratings can be evaluated
resulting in possible adjustments for these performance values.

Furthermore, the ratings provided in this research are based on subjective
judgments of eight experts. The accuracy of the ratings can be increased in two

76

ways. First, a larger number of experts would decrease the standard deviation.
Second, ratings are now based on the subjective judgments of experts. Qualita-
tive data is less accurate than quantitative data. Further research should focus
on collecting quantitative data for those criteria that support it. This is possible
by defining measures for those criteria and evaluating the multi-tenant architec-
tures in test setups in order to collect more objective data. These measures can
be based on the quality measures used to quantify quality characteristics of the
product quality model in ISO/IEC 25023 which is still under development and
is based on ISO/IEC 9126-2 (ISO, 2003a) and ISO/IEC 9126-3 (ISO, 2003b).

77

References

Aghera, P., Chaudhary, S., & Kumar, V. (2012). An approach to build multi-
tenant saas application with monitoring and sla. In Communication sys-
tems and network technologies (csnt), 2012 international conference on
(pp. 658–661).

Almorsy, M., Grundy, J., & Ibrahim, A. S. (2012). Tossma: A tenant-oriented
saas security management architecture. In Cloud computing (cloud), 2012
ieee 5th international conference on (pp. 981–988).

Almutairi, A., Sarfraz, M., Basalamah, S., Aref, W., & Ghafoor, A. (2012).
A distributed access control architecture for cloud computing. Software,
IEEE , 29 (2), 36–44.

Archer, L. B. (1984). Systematic method for designers. In Developments in
design methodology (p. 57-82). John Wiley, London.

Aulbach, S., Grust, T., Jacobs, D., Kemper, A., & Rittinger, J. (2008). Multi-
tenant databases for software as a service: schema-mapping techniques.
In Proceedings of the 2008 acm sigmod international conference on man-
agement of data (pp. 1195–1206).

Aulbach, S., Jacobs, D., Kemper, A., & Seibold, M. (2009). A comparison
of flexible schemas for software as a service. In Proceedings of the 35th
sigmod international conference on management of data (pp. 881–888).

Aulbach, S., Seibold, M., Jacobs, D., & Kemper, A. (2011). Extensibility
and data sharing in evolving multi-tenant databases. In Data engineering
(icde), 2011 ieee 27th international conference on (pp. 99–110).

Azeez, A., Perera, S., Gamage, D., Linton, R., Siriwardana, P., Leelaratne, D.,
. . . Fremantle, P. (2010). Multi-tenant soa middleware for cloud comput-
ing. In Cloud computing (cloud), 2010 ieee 3rd international conference
on (pp. 458–465).

Baker, D., Bridges, D., Hunter, R., Johnson, G., Krupa, J., Murphy, J., &
Sorenson, K. (2001). Guidebook to decision-making methods. developed
for the department of energy (Tech. Rep.). WSRC-IM-2002-00002.

Bakshi, K. (2011). Considerations for cloud data centers: Framework, architec-
ture and adoption. In Aerospace conference, 2011 ieee (pp. 1–7).

Barker, S., Chi, Y., Moon, H., Hacigümüş, H., & Shenoy, P. (2012). Cut me
some slack: latency-aware live migration for databases. In Proceedings of
the 15th international conference on extending database technology (pp.
432–443).

Bezemer, C.-P., & Zaidman, A. (2010). Multi-tenant saas applications: Main-
tenance dream or nightmare? In Proceedings of the joint ercim workshop
on software evolution (evol) and international workshop on principles of
software evolution (iwpse) (pp. 88–92). New York, NY, USA: ACM.

Bezemer, C.-P., Zaidman, A., Platzbeecker, B., Hurkmans, T., & ’t Hart, A.
(2010). Enabling multi-tenancy: An industrial experience report. In
(Vol. 0, p. 1-8). Los Alamitos, CA, USA: IEEE Computer Society.

Bobrowski, S. (2011). Optimal multitenant designs for cloud apps. In Cloud
computing (cloud), 2011 ieee international conference on (pp. 654–659).

Bondi, A. B. (2000). Characteristics of scalability and their impact on perfor-
mance. In Proceedings of the 2nd international workshop on software and
performance (pp. 195–203).

78

Brassil, J. (2010). Physical layer network isolation in multi-tenant clouds. In
Distributed computing systems workshops (icdcsw), 2010 ieee 30th inter-
national conference on (pp. 77–81).

Brereton, P., Kitchenham, B., Budgen, D., Turner, M., & Khalil, M. (2007).
Lessons from applying the systematic literature review process within the
software engineering domain. Journal of Systems and Software, 80 (4),
571–583.

Bridgman, P. (1922). Dimensional analysis. Yale University Press.
Cai, H., Wang, N., & Zhou, M. (2010). A transparent approach of enabling

saas multi-tenancy in the cloud. In Services (services-1), 2010 6th world
congress on (pp. 40–47).

Chong, F., & Carraro, G. (2006). Architecture strategies for catching the long
tail. MSDN Library, Microsoft Corporation, 1–24.

Chong, F., Carraro, G., & Wolter, R. (2006). Multi-tenant data architecture.
MSDN Library, Microsoft Corporation.

Das, S., Nishimura, S., Agrawal, D., & El Abbadi, A. (2011). Albatross:
lightweight elasticity in shared storage databases for the cloud using live
data migration. Proceedings of the VLDB Endowment , 4 (8), 494–505.

Dodgson, J., Spackman, M., Pearman, A., & Phillips, L. (2009). Multi-criteria
analysis: a manual.

Domingo, E., Niño, J., Lemos, A., Lemos, M., Palacios, R., & Berb́ıs, J. (2010).
Cloudio: A cloud computing-oriented multi-tenant architecture for busi-
ness information systems. In Cloud computing (cloud), 2010 ieee 3rd in-
ternational conference on (pp. 532–533).

Dubey, A., & Wagle, D. (2007). Delivering software as a service. The McKinsey
Quarterly , 6 , 1–12.

Eekels, J., & Roozenburg, N. (1991). A methodological comparison of the
structures of scientific research and engineering design: Their similarities
and differences. Design Studies, 12 (4), 197–203.

Elmore, A., Das, S., Agrawal, D., & El Abbadi, A. (2011). Zephyr: live migra-
tion in shared nothing databases for elastic cloud platforms. SIGMOD (to
appear).

Erotokritou, S., Nair, S. K., & Dimitrakos, T. (2010). An efficient secure shared
storage service with fault and investigative disruption tolerance. In Pro-
ceedings of the 2010 39th international conference on parallel processing
workshops (pp. 259–267).

Espadas, J., Molina, A., Jiménez, G., Molina, M., Ramı́rez, R., & Concha, D.
(2011). A tenant-based resource allocation model for scaling software-as-
a-service applications over cloud computing infrastructures. Future Gen-
eration Computer Systems.

Figueira, J., Ehrogott, M., & Greco, S. (2005). Multiple criteria decision analy-
sis: State of the art surveys. International Series in Operations Research
& Management Science (78).

Fishburn, P. (1967). Additive utilities with incomplete product sets: Application
to priorities and assignments. Operations Research, 537–542.

Foping, F., Dokas, I., Feehan, J., & Imran, S. (2009). A new hybrid schema-
sharing technique for multitenant applications. In Digital information
management, 2009. icdim 2009. fourth international conference on (pp.
1–6).

79

Fowler, M. (2002). Patterns of enterprise application architecture. Addison-
Wesley Professional.

Fülöp, J. (2005). Introduction to decision making methods. Laboratory of
Operations Research and Decision Systems, Computer and Automation
Institute. Hungarian: Academy of Sciences.

Gao, B., An, W., Sun, X., Wang, Z., Fan, L., Guo, C., & Sun, W. (2011). A non-
intrusive multi-tenant database software for large scale saas application.
In e-business engineering (icebe), 2011 ieee 8th international conference
on (pp. 324–328).

Ghaddar, A., Tamzalit, D., & Assaf, A. (2011). Decoupling variability man-
agement in multi-tenant saas applications. In Service oriented system
engineering (sose), 2011 ieee 6th international symposium on (pp. 273–
279).

Ghaddar, A., Tamzalit, D., Assaf, A., & Bitar, A. (2012). Variability as a
service: outsourcing variability management in multi-tenant saas applica-
tions. In Advanced information systems engineering (pp. 175–189).

Glott, R., Husmann, E., Sadeghi, A., & Schunter, M. (2011). Trustworthy
clouds underpinning the future internet. The future internet , 209–221.

Guo, C., Sun, W., Huang, Y., Wang, Z. H., & Gao, B. (2007). A framework
for native multi-tenancy application development and management. In
(Vol. 0, p. 551-558). Los Alamitos, CA, USA: IEEE Computer Society.
doi: http://doi.ieeecomputersociety.org/10.1109/CEC-EEE.2007.4

Guo, C., Sun, W., Jiang, Z., Huang, Y., Gao, B., & Wang, Z. (2011). Study of
software as a service support platform for small and medium businesses.
New Frontiers in Information and Software as Services, 1–30.

Haller, K. (2011, January). Web services from a service provider perspective:
tenant management services for multitenant information systems. SIG-
SOFT Softw. Eng. Notes, 36 (1), 1–4. Retrieved from http://doi.acm

.org/10.1145/1921532.1921542 doi: 10.1145/1921532.1921542
Harris, I., & Ahmed, Z. (2011). An open multi-tenant architecture to leverage

smes. European Journal of Scientific Research, 65 (4), 601–610.
He, Q., Han, J., Yang, Y., Grundy, J., & Jin, H. (2012). Qos-driven service

selection for multi-tenant saas. In Cloud computing (cloud), 2012 ieee 5th
international conference on (pp. 566–573).

He, S., Guo, L., & Guo, Y. (2011). Elastic application container. In Grid
computing (grid), 2011 12th ieee/acm international conference on (pp.
216–217).

He, S., Guo, L., Guo, Y., Wu, C., Ghanem, M., & Han, R. (2012). Elastic appli-
cation container: A lightweight approach for cloud resource provisioning.
In Advanced information networking and applications (aina), 2012 ieee
26th international conference on (pp. 15–22).

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004, March). Design science
in information systems research. MIS Q., 28 (1), 75–105.

Howard, R. (1966). Decision analysis: Applied decision theory. In Proceedings
of the fourth international conference on operations research (pp. 55–72).

Hudli, A. V., Shivaradhya, B., & Hudli, R. V. (2009). Level-4 saas applica-
tions for healthcare industry. In Proceedings of the 2nd bangalore annual
compute conference (p. 19).

Hui, M., Jiang, D., Li, G., & Zhou, Y. (2009). Supporting database applications
as a service. In Data engineering, 2009. icde’09. ieee 25th international

80

http://doi.acm.org/10.1145/1921532.1921542
http://doi.acm.org/10.1145/1921532.1921542

conference on (pp. 832–843).
Hwang, C., & Masud, A. (1979). Multiple objective decision making, methods

and applications: a state-of-the-art survey. Springer-Verlag. Retrieved
from http://books.google.nl/books?id=Hz-yAAAAIAAJ

Hwang, C., & Yoon, K. (1981). Multiple attribute decision making: methods and
applications: a state-of-the-art survey. Springer-Verlag. Retrieved from
http://books.google.nl/books?id=X-wYAQAAIAAJ

Ishizaka, A., & Lusti, M. (2006). How to derive priorities in ahp: a comparative
study. Central European Journal of Operations Research, 14 (4), 387–400.

Islam, R., & Rasad, S. (2006). Employee performance evaluation by the ahp:
A case study. Asia Pacific Management Review , 11 (3), 163.

ISO, J. (2003a). Iso/iec 9126-2:2003, software engineering-product quality-part
2: External metrics. International Organization for Standardization.

ISO, J. (2003b). Iso/iec 9126-3:2003, software engineering-product quality-part
3: Internal metrics. International Organization for Standardization.

ISO, J. (2011). Iso/iec 25010: 2011, systems and software engineering-systems
and software quality requirements and evaluation (square)-system and
software quality models. International Organization for Standardization.

ISO, J. (2012). Iso/iec 27000: 2012, information technology-security techniques-
information security management systems-overview and vocabulary. In-
ternational Organization for Standardization.

Jacobs, D., & Aulbach, S. (2007). Ruminations on Multi-Tenant Databases.
BTW Proceedings, 102 , 514–521.

Jegadeesan, H., & Balasubramaniam, S. (2009). A method to support variability
of enterprise services on the cloud. In Cloud computing, 2009. cloud’09.
ieee international conference on (pp. 117–124).

Jing, J., & Zhang, J. (2010). Research on open saas software architecture based
on soa. In Computational intelligence and design (iscid), 2010 interna-
tional symposium on (Vol. 2, pp. 144–147).

Ju, L., Sengupta, B., & Roychoudhury, A. (2012). Tenant onboarding in evolving
multi-tenant software-as-a-service systems. In Web services (icws), 2012
ieee 19th international conference on (pp. 415–422).

Kabbedijk, J., & Jansen, S. (2011). Variability in multi-tenant environ-
ments: Architectural design patterns from industry. In O. De Troyer,
C. Bauzer Medeiros, R. Billen, P. Hallot, A. Simitsis, & H. Van Mingroot
(Eds.), Advances in conceptual modeling. recent developments and new
directions (Vol. 6999, p. 151-160). Springer Berlin / Heidelberg.

Kang, S., Kang, S., & Hur, S. (2011). A design of the conceptual architecture
for a multitenant saas application platform. In Computers, networks,
systems and industrial engineering (cnsi), 2011 first acis/jnu international
conference on (pp. 462–467).

Kangas, J., Kangas, A., Leskinen, P., & Pykäläinen, J. (2001). Mcdm methods
in strategic planning of forestry on state-owned lands in finland: applica-
tions and experiences. Journal of Multi-Criteria Decision Analysis, 10 (5),
257–271.

Kapuruge, M., Colman, A., & Han, J. (2011a). Achieving multi-tenanted busi-
ness processes in saas applications. Web Information System Engineering–
WISE 2011 , 143–157.

Kapuruge, M., Colman, A., & Han, J. (2011b). Defining customizable busi-
ness processes without compromising the maintainability in multi-tenant

81

http://books.google.nl/books?id=Hz-yAAAAIAAJ
http://books.google.nl/books?id=X-wYAQAAIAAJ

saas applications. In Cloud computing (cloud), 2011 ieee international
conference on (pp. 748–749).

Keeney, R., & Raiffa, H. (1993). Decisions with multiple objectives: preferences
and value trade-offs. Cambridge University Press.

Kitchenham, B. A., & Charters, S. (2007). Guidelines for performing Systematic
Literature Reviews in Software Engineering (Technical Report No. EBSE-
2007-01). Keele University.

Kong, L., Li, Q., & Zheng, X. (2010). A novel model supporting customization
sharing in saas applications. In Multimedia information networking and
security (mines), 2010 international conference on (pp. 225–229).

Koziolek, H. (2011). The sposad architectural style for multi-tenant software
applications. In Software architecture (wicsa), 2011 9th working ieee/ifip
conference on (pp. 320–327).

Krebs, R., Momm, C., & Konev, S. (2012). Architectural concerns in multi-
tenant saas applications. In Proceedings of the 2nd international confer-
ence on cloud computing and service science (closer12). scitepress.

Krebs, R., Momm, C., & Kounev, S. (2012). Metrics and techniques for quan-
tifying performance isolation in cloud environments. In Proceedings of the
8th international acm sigsoft conference on quality of software architec-
tures (pp. 91–100).

Kurmus, A., Gupta, M., Pletka, R., Cachin, C., & Haas, R. (2011). A com-
parison of secure multi-tenancy architectures for filesystem storage clouds.
Middleware 2011 , 471–490.

Kwok, T., Laredo, J., & Maradugu, S. (2008). A web services integration
to manage invoice identification, metadata extraction, storage and re-
trieval in a multi-tenancy saas application. In e-business engineering,
2008. icebe’08. ieee international conference on (pp. 359–366).

Kwok, T., & Mohindra, A. (2008). Resource calculations with constraints,
and placement of tenants and instances for multi-tenant saas applications.
Service-Oriented Computing–ICSOC 2008 , 633–648.

Kwok, T., Nguyen, T., & Lam, L. (2008). A software as a service with multi-
tenancy support for an electronic contract management application. In
(Vol. 2, p. 179-186). Los Alamitos, CA, USA: IEEE Computer Society.
doi: http://doi.ieeecomputersociety.org/10.1109/SCC.2008.138

Lam, K., & Zhao, X. (1998). An application of quality function deployment
to improve the quality of teaching. International Journal of Quality &
Reliability Management , 15 (4), 389–413.

Lang, W., Shankar, S., Patel, J. M., & Kalhan, A. (2012). Towards multi-tenant
performance slos. In Data engineering (icde), 2012 ieee 28th international
conference on (pp. 702–713).

Laplante, P. A., Zhang, J., & Voas, J. (2008). What’s in a Name? Distinguishing
between SaaS and SOA. IT Professional , 10 (3), 46–50.

Layard, R., & Glaister, S. (1994). Cost-benefit analysis. Cambridge University
Press.

Lee, W., & Choi, M. (2012). A multi-tenant web application framework for
saas. In Cloud computing (cloud), 2012 ieee 5th international conference
on (pp. 970–971).

Li, J., Li, B., Wo, T., Hu, C., Huai, J., Liu, L., & Lam, K. (2012). Cyberguarder:
A virtualization security assurance architecture for green cloud computing.
Future Generation Computer Systems, 28 (2), 379–390.

82

Li, W., Zhang, Z., Wu, S., & Wu, Z. (2010). An implementation of the saas level-
3 maturity model for an educational credit bank information system. In
Service sciences (icss), 2010 international conference on (pp. 283–287).

Li, X., Liu, T., Li, Y., & Chen, Y. (2008). Spin: Service performance isolation in-
frastructure in multi-tenancy environment. Service-Oriented Computing–
ICSOC 2008 , 649–663.

Lin, H., Sun, K., Zhao, S., & Han, Y. (2009). Feedback-control-based per-
formance regulation for multi-tenant applications. In (Vol. 0, p. 134-
141). Los Alamitos, CA, USA: IEEE Computer Society. doi: http://
doi.ieeecomputersociety.org/10.1109/ICPADS.2009.22

Linkov, I., Varghese, A., Jamil, S., Seager, T., Kiker, G., & Bridges, T. (2005).
Multi-criteria decision analysis: a framework for structuring remedial de-
cisions at contaminated sites. In Comparative risk assessment and envi-
ronmental decision making (pp. 15–54). Springer.

Ma, D. (2007). The Business Model of “Software-As-A-Service”. In Ieee inter-
national conference on services computing (scc 2007) (pp. 701–702). Salt
Lake City, Utah, USA: IEEE Computer Society.

Ma, K., Yang, B., & Abraham, A. (2012). A template-based model transfor-
mation approach for deriving multi-tenant saas applications. Acta Poly-
technica Hungarica, 9 (2).

Marsden, P., & Wright, J. (2010). Handbook of survey research. Emerald Group
Pub Limited.

Mell, P., & Grance, T. (2011). The NIST Definition of Cloud Computing.
National Institute of Standards and Technology , 53 (6).

Mietzner, R., Leymann, F., & Papazoglou, M. (2008). Defining composite
configurable saas application packages using sca, variability descriptors
and multi-tenancy patterns. In Internet and web applications and services,
2008. iciw’08. third international conference on (pp. 156–161).

Mietzner, R., Metzger, A., Leymann, F., & Pohl, K. (2009). Variability modeling
to support customization and deployment of multi-tenant-aware software
as a service applications. In Proceedings of the 2009 icse workshop on
principles of engineering service oriented systems (pp. 18–25).

Mietzner, R., Unger, T., Titze, R., & Leymann, F. (2009). Combining differ-
ent multi-tenancy patterns in service-oriented applications. In Enterprise
distributed object computing conference, 2009. edoc’09. ieee international
(pp. 131–140).

Momm, C., & Theilmann, W. (2011). A combined workload planning ap-
proach for multi-tenant business applications. In Computer software and
applications conference workshops (compsacw), 2011 ieee 35th annual (pp.
255–260).

Mudigonda, J., Yalagandula, P., Mogul, J., Stiekes, B., & Pouffary, Y. (2011).
Netlord: a scalable multi-tenant network architecture for virtualized dat-
acenters. SIGCOMM-Computer Communication Review , 41 (4), 62.

Natis, Y. V., & Knipp, E. (2008). Reference architecture for multitenancy.
Gartner .

Nunamaker Jr, J., & Chen, M. (1990). Systems development in information
systems research. In Twenty-third annual hawaii international conference
on system sciences (Vol. 3, pp. 631–640).

Osipov, C., Goldszmidt, G., Taylor, M., & Poddar, I. (2009). Develop and
deploy multi-tenant web-delivered solutions using ibm middleware: Part

83

2: Approaches for enabling multi-tenancy. IBM Corp. Website.
Park, K., & Hwan Lim, C. (1999). A structured methodology for comparative

evaluation of user interface designs using usability criteria and measures.
International Journal of Industrial Ergonomics, 23 (5), 379–389.

Pathirage, M., Perera, S., Kumara, I., & Weerawarana, S. (2011). A multi-
tenant architecture for business process executions. In Web services (icws),
2011 ieee international conference on (pp. 121–128).

Peffers, K., Tuunanen, T., Gengler, C., Rossi, M., Hui, W., Virtanen, V., &
Bragge, J. (2006). The Design Science Research Process: A Model for
Producing and Presenting Information Systems Research. In First inter-
national conference on design science research in information systems and
technology (pp. 83–106).

Pippal, S., Sharma, V., Mishra, S., & Kushwaha, D. (2011). An efficient schema
shared approach for cloud based multitenant database with authentication
and authorization framework. In P2p, parallel, grid, cloud and internet
computing (3pgcic), 2011 international conference on (pp. 213–218).

Plattner, H., Zeier, A., Plattner, H., & Zeier, A. (2011). Scaling sanssoucidb in
the cloud. In In-memory data management (p. 193-204). Springer Berlin
Heidelberg.

Preston, C., & Colman, A. (2000). Optimal number of response categories in
rating scales: reliability, validity, discriminating power, and respondent
preferences. Acta psychologica, 104 (1), 1–15.

Reinwald, B. (2010). Database support for multi-tenant applications. In Ieee
workshop on information and software as services (Vol. 1, p. 2).

Rimal, B. P., & El-Refaey, M. A. (2010). A framework of scientific workflow
management systems for multi-tenant cloud orchestration environment. In
Enabling technologies: Infrastructures for collaborative enterprises (wet-
ice), 2010 19th ieee international workshop on (pp. 88–93).

Rodero-Merino, L., Vaquero, L., Caron, E., Muresan, A., & Desprez, F. (2012).
Building safe paas clouds: A survey on security in multitenant software
platforms. Computers & Security .

Rossi, M., & Sein, M. (2003). Design research workshop: A proactive research
approach. Action Research, 2005 (01.02. 2004), 1–20.

Roy, B. (1990). The outranking approach and the foundations of electre meth-
ods. In Readings in multiple criteria decision aid (pp. 155–183). Springer.

Roy, B. (1996). Multicriteria methodology for decision aiding (Vol. 12).
Springer.

Ruehl, S. T., Andelfinger, U., Rausch, A., & Verclas, S. A. (2012). Toward
realization of deployment variability for software-as-a-service applications.
In Cloud computing (cloud), 2012 ieee 5th international conference on (pp.
622–629).

Sääksjärvi, M., Lassila, A., & Nordström, H. (2005). Evaluating the software
as a service business model: From cpu time-sharing to online innovation
sharing. In Proceedings of the iadis international conference e-society (pp.
177–186).

Saaty, T. (1990). How to make a decision: the analytic hierarchy process.
European journal of operational research, 48 (1), 9–26.

Saaty, T. (1994). How to make a decision: the analytic hierarchy process.
Interfaces, 24 (6), 19–43.

84

Saaty, T. (2008). Decision making with the analytic hierarchy process. Inter-
national Journal of Services Sciences, 1 (1), 83–98.

Saaty, T., & Vargas, L. (1984). Comparison of eigenvalue, logarithmic least
squares and least squares methods in estimating ratios. Mathematical
Modelling , 5 (5), 309–324.

Sandhu, R. S., & Samarati, P. (1994). Access control: principle and practice.
Communications Magazine, IEEE , 32 (9), 40–48.

Saripalli, P., Oldenburg, C., Walters, B., & Radheshyam, N. (2011). Implemen-
tation and usability evaluation of a cloud platform for scientific computing
as a service (scaas). In Utility and cloud computing (ucc), 2011 fourth ieee
international conference on (pp. 345–354).

Schiller, O., Schiller, B., Brodt, A., & Mitschang, B. (2011). Native support of
multi-tenancy in rdbms for software as a service. In Proceedings of the 14th
international conference on extending database technology (pp. 117–128).

Schroeter, J., Cech, S., Götz, S., Wilke, C., & Aßmann, U. (2012). Towards
modeling a variable architecture for multi-tenant saas-applications. In
Proceedings of the sixth international workshop on variability modeling of
software-intensive systems (pp. 111–120).

Sengupta, B., & Roychoudhury, A. (2011). Engineering multi-tenant software-
as-a-service systems. In Icse workshop on principles of engineering service
oriented systems (pesos).

Sun, W., Zhang, K., Chen, S.-K., Zhang, X., & Liang, H. (2007). Software
as a service: An integration perspective. In B. Krmer, K.-J. Lin, &
P. Narasimhan (Eds.), Service-oriented computing icsoc 2007 (Vol. 4749,
p. 558-569). Springer Berlin / Heidelberg.

Sun, W., Zhang, X., Guo, C. J., Sun, P., & Su, H. (2008, September). Software
as a Service: Configuration and Customization Perspectives. In 2008 ieee
congress on services part ii (services-2 2008) (pp. 18–25). IEEE Computer
Society. doi: 10.1109/SERVICES-2.2008.29

Sun, X., Gao, B., Fan, L., & An, W. (2012). A cost-effective approach to
delivering analytics as a service. In Web services (icws), 2012 ieee 19th
international conference on (pp. 512–519).

Takahashi, H., Mori, K., & Ahmad, H. F. (2010). Efficient i/o intensive multi
tenant saas system using l4 level cache. In Service oriented system engi-
neering (sose), 2010 fifth ieee international symposium on (pp. 222–228).

Takahashi, T., Blanc, G., Kadobayashi, Y., Fall, D., Hazeyama, H., & Matsuo,
S. (2012). Enabling secure multitenancy in cloud computing: Challenges
and approaches. In Future internet communications (bcfic), 2012 2nd
baltic congress on (pp. 72–79).

Takeda, H., Veerkamp, P., & Yoshikawa, H. (1990). Modeling Design Processes.
AI Magazine, 11 (4), 37–48.

Tang, K., Jiang, Z., Sun, W., Zhang, X., & Dong, W. (2010). Research on
tenant placement based on business relations. In e-business engineering
(icebe), 2010 ieee 7th international conference on (pp. 479–483).

Taylor, M., & Guo, C. (2007). Data integration and composite business services,
part 3: Build a multi-tenant data tier with access control and security.
IBM Corporation, Armonk, NY, Dec.

Terlecki, P., Bati, H., Galindo-Legaria, C., & Zabback, P. (2009). Filtered
statistics. In Proceedings of the 35th sigmod international conference on
management of data (pp. 897–904).

85

Triantaphyllou, E., Shu, B., Sanchez, S., & Ray, T. (1998). Multi-criteria deci-
sion making: an operations research approach. Encyclopedia of electrical
and electronics engineering , 15 , 175–186.

Truyen, E., Cardozo, N., Walraven, S., Vallejos, J., Bainomugisha, E., Günther,
S., . . . Joosen, W. (2012). Context-oriented programming for customizable
saas applications. In Proceedings of the 27th annual acm symposium on
applied computing (pp. 418–425).

Tsai, C.-H., Ruan, Y., Sahu, S., Shaikh, A., & Shin, K. (2007). Virtualization-
based techniques for enabling multi-tenant management tools. In
A. Clemm, L. Granville, & R. Stadler (Eds.), Managing virtualization
of networks and services (Vol. 4785, p. 171-182). Springer Berlin / Hei-
delberg.

Tsai, W.-T., Huang, Y., Bai, X., & Gao, J. (2012). Scalable architectures for
saas. In Object/component/service-oriented real-time distributed comput-
ing workshops (isorcw), 2012 15th ieee international symposium on (pp.
112–117).

Tsai, W.-T., Huang, Y., & Shao, Q. (2011). Easysaas: A saas development
framework. In Service-oriented computing and applications (soca), 2011
ieee international conference on (pp. 1–4).

Tsai, W.-T., Li, W., Bai, X., & Elston, J. (2011). P4-simsaas: Policy specifica-
tion for multi-tendency simulation software-as-a-service model. In Simu-
lation conference (wsc), proceedings of the 2011 winter (pp. 3067–3081).

Tsai, W.-T., Shao, Q., & Elston, J. (2010). Prioritizing service requests on
cloud with multi-tenancy. In e-business engineering (icebe), 2010 ieee 7th
international conference on (pp. 117–124).

Tsai, W.-T., Shao, Q., Sun, X., & Elston, J. (2010). Real-time service-oriented
cloud computing. In Services (services-1), 2010 6th world congress on (pp.
473–478).

Tsai, W.-T., Sun, X., Shao, Q., & Qi, G. (2010). Two-tier multi-tenancy
scaling and load balancing. In e-business engineering (icebe), 2010 ieee
7th international conference on (pp. 484–489).

Tucker, A. B. (2004). Computer science handbook. Chapman & Hall/CRC.
Turner, M., Budgen, D., & Brereton, P. (2003). Turning Software into a Service.

Computer , 36 (10), 38–44.
van de Weerd, I., & Brinkkemper, S. (2009). Meta-modeling for situational

analysis and design methods. In Handbook of research on modern systems
analysis and design technologies and applications (p. 38-58). Idea Group
Publishing, Hershey.

Vincke, J., & Brans, P. (1985). A preference ranking organization method. the
promethee method for mcdm. Management Science, 31 (6), 647–656.

Waidner, M. (2009, November). Cloud computing and security. (Lecture Notes,
Universität Stuttgart)

Walls, J., Widmeyer, G., & El Sawy, O. (1992). Building an information system
design theory for vigilant eis. Information Systems Research, 3 (1), 36–59.

Walraven, S., Truyen, E., & Joosen, W. (2011). A middleware layer for flexible
and cost-efficient multi-tenant applications. Middleware 2011 , 370–389.

Wang, D., Zhang, Y., Zhang, B., & Liu, Y. (2009). Research and implementation
of a new saas service execution mechanism with multi-tenancy support. In
Information science and engineering (icise), 2009 1st international con-
ference on (pp. 336–339).

86

Wang, H., & Zheng, Z. (2010). Software architecture driven configurability
of multi-tenant saas application. Web Information Systems and Mining ,
418–424.

Wang, M., Bandara, K. Y., & Pahl, C. (2010). Process as a service distributed
multi-tenant policy-based process runtime governance. In Services com-
puting (scc), 2010 ieee international conference on (pp. 578–585).

Wang, R., Zhang, Y., Liu, S., Wu, L., & Meng, X. (2011). A dependency-
aware hierarchical service model for saas and cloud services. In Services
computing (scc), 2011 ieee international conference on (pp. 480–487).

Wang, W., Huang, X., Qin, X., Zhang, W., Wei, J., & Zhong, H. (2012).
Application-level cpu consumption estimation: Towards performance iso-
lation of multi-tenancy web applications. In Cloud computing (cloud),
2012 ieee 5th international conference on (pp. 439–446).

Wang, Z., Guo, C., Gao, B., Sun, W., Zhang, Z., & An, W. (2008). A study
and performance evaluation of the multi-tenant data tier design patterns
for service oriented computing. In e-business engineering, 2008. icebe’08.
ieee international conference on (pp. 94–101).

Watson, R., & Webster, J. (2002). Analyzing the past to prepare for the future:
Writing a literature review. Mis Quarterly , 26 (2).

Weiping, L. (2009). An analysis of new features for workflow system in the saas
software. In Proceedings of the 2nd international conference on interaction
sciences: Information technology, culture and human (pp. 110–114).

Weissman, C., & Bobrowski, S. (2009). The design of the force. com multitenant
internet application development platform. In Proceedings of the 35th
sigmod international conference on management of data (pp. 889–896).

Wood, K., & Anderson, M. (2011). Understanding the complexity surrounding
multitenancy in cloud computing. In e-business engineering (icebe), 2011
ieee 8th international conference on (pp. 119–124).

Xuxu, Z., Qingzhong, L., & Lanju, K. (2010). A data storage architecture
supporting multi-level customization for saas. In Web information systems
and applications conference (wisa), 2010 7th (pp. 106–109).

Yaish, H., Goyal, M., & Feuerlicht, G. (2011). An elastic multi-tenant database
schema for software as a service. In Dependable, autonomic and secure
computing (dasc), 2011 ieee ninth international conference on (pp. 737–
743).

Yang, C., & Huang, J. (2000). A decision model for is outsourcing. International
Journal of Information Management , 20 (3), 225–239.

Yang, E., Zhang, Y., Wu, L., Liu, Y., & Liu, S. (2011). A hybrid approach
to placement of tenants for service-based multi-tenant saas application.
In Services computing conference (apscc), 2011 ieee asia-pacific (pp. 124–
130).

Yoon, K., & Hwang, C. (1995). Multiple attribute decision making: an intro-
duction (No. 102-104). Sage Publications, Incorporated.

Yu, D., Wang, J., Hu, B., Liu, J., Zhang, X., He, K., & Zhang, L. (2011). A
practical architecture of cloudification of legacy applications. In Services
(services), 2011 ieee world congress on (pp. 17–24).

Yu, H., & Wang, D. (2011). A heuristic data allocation method for multi-
tenant saas application in distributed database systems. In Information
management, innovation management and industrial engineering (iciii),
2011 international conference on (Vol. 2, pp. 382–386).

87

Yuanyuan, D., Hong, N., Bingfei, W., & Lei, L. (2009). Scaling the data in multi-
tenant business support system. In Knowledge engineering and software
engineering, 2009. kese’09. pacific-asia conference on (pp. 43–46).

Zanakis, S., Solomon, A., Wishart, N., & Dublish, S. (1998). Multi-attribute
decision making: A simulation comparison of select methods. European
journal of operational research, 107 (3), 507–529.

Zhang, F., Chen, J., Chen, H., & Zang, B. (2011). Cloudvisor: Retrofitting
protection of virtual machines in multi-tenant cloud with nested virtual-
ization. In Proceedings of the twenty-third acm symposium on operating
systems principles (pp. 203–216).

Zhang, K., Li, Q., & Shi, Y. (2011). Data privacy preservation during schema
evolution for multi-tenancy applications in cloud computing. Web Infor-
mation Systems and Mining , 376–383.

Zhang, Y., Wang, Z., Gao, B., Guo, C., Sun, W., & Li, X. (2010). An effective
heuristic for on-line tenant placement problem in saas. In Web services
(icws), 2010 ieee international conference on (pp. 425–432).

Zhou, H., Wen, Q., & Yu, X. (2011). A productive time length-based method
for multi-tenancy-oriented service usage metering and billing. Advances
in Computer Science, Intelligent System and Environment , 163–168.

Zhou, Y., Wang, Q., Wang, Z., & Wang, N. (2011). Db2mmt: a massive multi-
tenant database platform for cloud computing. In e-business engineering
(icebe), 2011 ieee 8th international conference on (pp. 335–340).

Zhou, Y. C., Liu, X. P., Wang, X. N., Xue, L., Liang, X. X., & Liang, S. (2010).
Business process centric platform-as-a-service model and technologies for
cloud enabled industry solutions. In Cloud computing (cloud), 2010 ieee
3rd international conference on (pp. 534–537).

Zimmermann, H. (1991). Fuzzy set theory and its applications. Allied Publish-
ers.

88

A List of Relevant Literature

Table 20: list of relevant literature

Article Article

Aghera et al., 2012 Lin et al. (2009)
Almorsy, Grundy, & Ibrahim, 2012 K. Ma, Yang, and Abraham (2012)
Almutairi, Sarfraz, Basalamah, Aref, & Ghafoor, 2012 Mietzner, Leymann, and Papazoglou (2008)
Aulbach et al., 2008 Mietzner, Metzger, Leymann, and Pohl (2009)
Aulbach, Jacobs, Kemper, & Seibold, 2009 Mietzner, Unger, Titze, and Leymann (2009)
Aulbach, Seibold, Jacobs, and Kemper (2011) Momm and Theilmann (2011)
Azeez et al. (2010) Mudigonda, Yalagandula, Mogul, Stiekes, and Pouffary (2011)
Bakshi (2011) Pathirage, Perera, Kumara, and Weerawarana (2011)
Barker, Chi, Moon, Hacigümüş, and Shenoy (2012) Pippal et al. (2011)
Bezemer et al. (2010) Plattner, Zeier, Plattner, and Zeier (2011)
Bezemer and Zaidman (2010) Rimal and El-Refaey (2010)
Bobrowski (2011) Rodero-Merino et al. (2012)
Brassil (2010) Ruehl, Andelfinger, Rausch, and Verclas (2012)
Cai, Wang, and Zhou (2010) Saripalli, Oldenburg, Walters, and Radheshyam (2011)
Das, Nishimura, Agrawal, and El Abbadi (2011) Schiller, Schiller, Brodt, and Mitschang (2011)
Domingo et al. (2010) Schroeter, Cech, Götz, Wilke, and Aßmann (2012)
Elmore, Das, Agrawal, and El Abbadi (2011) Sengupta and Roychoudhury (2011)
Erotokritou, Nair, and Dimitrakos (2010) W. Sun et al. (2008)
Espadas et al. (2011) X. Sun, Gao, Fan, and An (2012)
Foping, Dokas, Feehan, and Imran (2009) H. Takahashi, Mori, and Ahmad (2010)
Gao et al. (2011) T. Takahashi et al. (2012)
Ghaddar, Tamzalit, and Assaf (2011) Tang, Jiang, Sun, Zhang, and Dong (2010)
Ghaddar, Tamzalit, Assaf, and Bitar (2012) Terlecki, Bati, Galindo-Legaria, and Zabback (2009)
Glott, Husmann, Sadeghi, and Schunter (2011) Truyen et al. (2012)
Guo et al. (2007) C.-H. Tsai et al. (2007)
Guo et al. (2011) W.-T. Tsai, Shao, Sun, and Elston (2010)
Haller (2011) W.-T. Tsai, Sun, Shao, and Qi (2010)
Harris and Ahmed (2011) W.-T. Tsai, Shao, and Elston (2010)
S. He, Guo, and Guo (2011) W.-T. Tsai, Huang, and Shao (2011)
S. He et al. (2012) W.-T. Tsai, Li, Bai, and Elston (2011)
Q. He, Han, Yang, Grundy, and Jin (2012) W.-T. Tsai, Huang, Bai, and Gao (2012)
Hudli, Shivaradhya, and Hudli (2009) Walraven et al. (2011)
Hui et al. (2009) Z. Wang et al. (2008)
Jegadeesan and Balasubramaniam (2009) D. Wang, Zhang, Zhang, and Liu (2009)
Jing and Zhang (2010) M. Wang, Bandara, and Pahl (2010)
Ju, Sengupta, and Roychoudhury (2012) H. Wang and Zheng (2010)
Kabbedijk and Jansen (2011) R. Wang, Zhang, Liu, Wu, and Meng (2011)
Kang, Kang, and Hur (2011) W. Wang et al. (2012)
Kapuruge, Colman, and Han (2011b) Weiping (2009)
Kapuruge, Colman, and Han (2011a) Weissman and Bobrowski (2009)
Kong, Li, and Zheng (2010) Wood and Anderson (2011)
Koziolek (2011) Xuxu, Qingzhong, and Lanju (2010)
Krebs, Momm, and Kounev (2012) Yaish, Goyal, and Feuerlicht (2011)
Krebs, Momm, and Konev (2012) E. Yang, Zhang, Wu, Liu, and Liu (2011)
Kurmus et al. (2011) D. Yu et al. (2011)
Kwok, Nguyen, and Lam (2008) H. Yu and Wang (2011)
Kwok and Mohindra (2008) Yuanyuan, Hong, Bingfei, and Lei (2009)
Kwok, Laredo, and Maradugu (2008) Y. Zhang et al. (2010)
Lang, Shankar, Patel, and Kalhan (2012) K. Zhang, Li, and Shi (2011)
Lee and Choi (2012) F. Zhang, Chen, Chen, and Zang (2011)
X. Li, Liu, Li, and Chen (2008) Y. C. Zhou et al. (2010)
W. Li, Zhang, Wu, and Wu (2010) Y. Zhou, Wang, Wang, and Wang (2011)
J. Li et al. (2012) H. Zhou, Wen, and Yu (2011)

89

B Concept Matrices

Table 21: Concept Matrix - Multi-Tenancy Level Citations

A
u

lb
a
ch

et
a
l.

(2
0
0
8
)

C
h

o
n

g
et

a
l.

(2
0
0
6
)

J
a
co

b
s

a
n

d
A

u
lb

a
ch

(2
0
0
7
)

G
u

o
et

a
l.

(2
0
0
7
)

K
w

o
k
,

N
g
u

y
en

,
a
n

d
L

a
m

(2
0
0
8
)

K
w

o
k

a
n

d
M

o
h

in
d

ra
(2

0
0
8
)

N
a
ti

s
a
n

d
K

n
ip

p
(2

0
0
8
)

O
si

p
o
v

et
a
l.

(2
0
0
9
)

R
ei

n
w

a
ld

(2
0
1
0
)

T
a
y
lo

r
a
n

d
G

u
o

(2
0
0
7
)

W
a
id

n
er

(2
0
0
9
)

Z
.

W
a
n

g
et

a
l.

(2
0
0
8
)

Azeez et al. (2010) × ×

Barker et al. (2012) × ×

Bezemer and Zaidman (2010) × ×

Bobrowski (2011) ×

Das et al. (2011) ×

Elmore et al. (2011) ×

Espadas et al. (2011) × ×

Foping et al. (2009) ×

Gao et al. (2011) ×

Glott et al. (2011) ×

Guo et al. (2011) ×

Harris and Ahmed (2011) × ×

Kong et al. (2010) ×

Krebs, Momm, and Kounev (2012) × × × ×

W. Li et al. (2010) ×

Lin et al. (2009) ×

K. Ma et al. (2012) ×

Pathirage et al. (2011) × ×

Plattner et al. (2011) ×

Schiller et al. (2011) × × ×

Tang et al. (2010) ×

Yaish et al. (2011) ×

D. Yu et al. (2011) ×

Y. Zhou et al. (2011) ×

90

Table 22: Concept Matrix - Multi-Tenancy Levels

H
a
rd

w
a
re

V
ir

tu
a
l

M
a
ch

in
e

O
p

er
a
ti

n
g

S
y
st

em

M
id

d
le

w
a
re

A
p

p
li
ca

ti
o
n

S
er

v
er

D
a
ta

b
a
se

S
er

v
er

A
p

p
li
ca

ti
o
n

In
st

a
n

ce

D
a
ta

b
a
se

S
ch

em
a

Aghera et al. (2012) × ×

Aulbach et al. (2008) × × × × ×

Azeez et al. (2010) × × × ×

Bezemer and Zaidman (2010) × ×

Cai et al. (2010) × × × × × × ×

Chong et al. (2006) × × ×

Domingo et al. (2010) × ×

Guo et al. (2007) × × ×

Guo et al. (2011) × × × ×

Hui et al. (2009) × × ×

Kabbedijk and Jansen (2011) × ×

Kwok, Nguyen, and Lam (2008) × × × × × × ×

Kwok and Mohindra (2008) × × × ×

Kurmus et al. (2011) × × ×

Lang et al. (2012) × × × ×

X. Li et al. (2008) × × × ×

Lin et al. (2009) ×

Natis and Knipp (2008) × × × × ×

Osipov et al. (2009) × × × × × × × ×

Pippal et al. (2011) × × ×

Reinwald (2010) × × × × × ×

Rodero-Merino et al. (2012) × ×

X. Sun et al. (2012) × × × × × ×

Taylor and Guo (2007) × × ×

Truyen et al. (2012) × × × ×

Waidner (2009) × × × × × × × ×

Walraven et al. (2011) × × × ×

Z. Wang et al. (2008) × × ×

W. Wang et al. (2012) × × ×

91

Table 23: Concept List - Decision Criteria

Article Criteria

Aghera et al. (2012) backup, database access, monitoring, configurability, extensi-
bility, database privacy

Almorsy et al. (2012) availability, customization, configurability, resource utilization
efficiency, security, identity management, authorization, cryp-
tography, authentication

Almutairi et al. (2012) security, access control, authorization
Aulbach et al. (2008) contention for shared resources, extensibility, security, number

of tenants, budget of tenant, complexity of application
Aulbach et al. (2009) performance, response time, extending base schema, evolution

of base schema, economy of scale, scalability
Aulbach et al. (2011) development, complexities in app. development, support for

master data, variability, extending base schema, evolution of
base schema, resource utilization efficiency, operating cost

Azeez et al. (2010) performance, throughput, response time, administration, scal-
ability, security, number of tenants

Barker et al. (2012) system uptime, flexibility in database migration, query latency,
throughput, development, overhead, memory overhead

Bezemer et al. (2010) system downtime, maintenance, upfront app. reengineering
costs, deployment, fault isolation, configurability, resource uti-
lization efficiency, scalability, security, authentication

Bezemer and Zaidman
(2010)

system downtime, performance, maintenance, deployment,
data aggregation opportunities, update, customization, con-
figurability, resource utilization efficiency, memory overhead,
scalability, security, number of tenants

Bobrowski (2011) backup, data integration, recovery, performance, complexities
in app. development, re-education process for developers, mon-
itoring, software patching, overhead, scalability

Brassil (2010) performance, management, complexities in app. development,
dynamic reconfiguration, security, privacy, robustness to failure

Das et al. (2011) performance, query latency, extending base schema, resource
utilization efficiency, scalability, elastic scaling, footprint of
tenant

Elmore et al. (2011) on-demand tenant migration, flexibility, resource utilization ef-
ficiency, overhead

Espadas et al. (2011) customization, scalability, number of tenants
Foping et al. (2009) implementation challenges, customization, configurability, ex-

tensibility, scalability, security, operating cost
Gao et al. (2011) availability, transactions per second, development, flexibility,

customization, diverse SLA, scalability, security, operating cost
Ghaddar et al. (2011) development, complexities in app. development, re-education

process for developers, administration, variability
Ghaddar et al. (2012) maintenance, deployment, variability
Guo et al. (2007) availability, backup, restore, performance, management, ad-

ministration, customization, configurability, scalability, secu-
rity, access control, authentication, information protection,
number of tenants, budget of tenant, quality of service, busi-
ness logic monitoring, service integration, service subscription,
upgrade

Guo et al. (2011) availability, backup, restore, performance, maintenance, man-
agement, development, update, customization, configurabil-
ity, scalability, security, access control, information protection,
QoS isolation

Haller (2011) tenant import, export, update
Harris and Ahmed
(2011)

availability, system downtime, performance, maintenance, up-
front app. reengineering costs, versioning, update, configura-
bility, resource utilization efficiency, overhead, scalability, se-
curity, authentication, number of tenants

Continued on next page

92

Table 23 – continued from previous page

Article Criteria

S. He et al. (2012) availability, throughput, response time, number of end-users
Hudli et al. (2009) development, support, customization, infrastructure cost, scal-

ability, security, operating cost
Hui et al. (2009) maintenance, scalability, security
Jegadeesan and
Balasubramaniam
(2009)

configurability

Ju et al. (2012) performance, development, flexibility, security
Kabbedijk and Jansen
(2011)

performance, maintenance, variability, number of tenants

Kang et al. (2011) maintenance, configurability, scalability
Kapuruge et al. (2011a) variability
Kong et al. (2010) implementation challenges, customization, configurability, ex-

tensibility, scalability, security
Koziolek (2011) maintenance, customization, resource utilization efficiency,

scalability, elasticity
Krebs, Momm, and
Konev (2012)

performance, customization, configurability, QoS differentia-
tion, overhead, operating cost

Kurmus et al. (2011) performance, development, scalability, security
Kwok, Nguyen, and
Lam (2008)

customization, security, authorization, authentication

Kwok and Mohindra
(2008)

maintenance, deployment, update, flexibility, infrastructure
cost, software license fees, security, number of tenants, sup-
port staff, provision

Lang et al. (2012) performance, management, security, operating cost
X. Li et al. (2008) performance, management, resource utilization efficiency
W. Li et al. (2010) maintenance, development, complexities in app. development,

administration, customization, configurability, diverse SLA,
scalability, security, authorization

Lin et al. (2009) performance, throughput, response time, management, dy-
namic resources, customization, resource utilization efficiency,
overhead, security, number of tenants, regulation

K. Ma et al. (2012) backup, restore, maintenance, development, security, number
of tenants

Mietzner et al. (2008) performance, configurability, economy of scale, regulation
Mietzner, Metzger, et
al. (2009)

flexibility, economy of scale, data privacy

Mietzner, Unger, et al.
(2009)

performance, configurability

Momm and Theilmann
(2011)

risk of overload situations, customization, resource utilization
efficiency

Pathirage et al. (2011) resource utilization efficiency
Pippal et al. (2011) performance, development, flexibility, scalability, authoriza-

tion, authentication
Plattner et al. (2011) flexibility in database migration, administrative operations in

bulk, contention for shared resources, ability to realize query
optimization, economy of scale, security

Rimal and El-Refaey
(2010)

availability, business continuity, data availability, real-time
replication, backup, fail-over and dynamic election, partial
data and config. recovery, recovery, maintenance, customiza-
tion, extensibility, economy of scale, scalability, security, data
access protection, number of end-users, regulation

Rodero-Merino et al.
(2012)

resource utilization efficiency, security

Ruehl et al. (2012) performance, flexibility, customization, security, privacy

Continued on next page

93

Table 23 – continued from previous page

Article Criteria

Schiller et al. (2011) backup, recovery, data dictionary lookup times, complexities in
app. development, statistic, extending base schema, resource
utilization efficiency, overhead, scalability, security, main mem-
ory per tenants, number of tenants, number of end-users, foot-
print of tenant

Schroeter et al. (2012) configurability, resource utilization efficiency, number of ten-
ants, operating cost

Sengupta and
Roychoudhury (2011)

performance, maintenance, implementation challenges, flexibil-
ity, customization, configurability, overhead, security

W. Sun et al. (2008) customization, configurability
X. Sun et al. (2012) performance, throughput, resource utilization efficiency, over-

head, security, number of tenants
T. Takahashi et al.
(2012)

maintenance, update, security, authorization, secure data stor-
ing, authentication, operating cost

Tang et al. (2010) performance, security, number of tenants
Terlecki et al. (2009) extensibility, budget of tenant
Truyen et al. (2012) maintenance, complexities in app. development, customiza-

tion, resource utilization efficiency, scalability, operating cost
C.-H. Tsai et al. (2007) correctness of results, response time, overhead, scalability,

number of tenants, operating cost
W.-T. Tsai, Shao, Sun,
and Elston (2010)

availability, performance, management, development, cus-
tomization, overhead, scalability, security

W.-T. Tsai et al. (2012) recovery, fault tolerance, database access, scalability, auto-
mated migration, number of end-users

Walraven et al. (2011) maintenance, upfront app. reengineering costs, flexibility, in-
frastructure cost, number of tenants

Z. Wang et al. (2008) backup, restore, transactions per second, management, devel-
opment, lifecycle management, monitoring, customization, in-
frastructure cost, scalability, security, number of tenants

D. Wang et al. (2009) maintenance, development, resource utilization efficiency, num-
ber of tenants

H. Wang and Zheng
(2010)

configurability

W. Wang et al. (2012) performance, infrastructure cost, overhead, scalability
Weiping (2009) management, complexities in app. development, deployment
Weissman and
Bobrowski (2009)

amount of code bases, size of administrative staff, data aggre-
gation opportunities, update, economy of scale, resource uti-
lization efficiency, budget of tenant

Wood and Anderson
(2011)

performance, customization, economy of scale, scalability, se-
curity, privacy, information protection, legislation

Yaish et al. (2011) performance, management, development, complexities in app.
development, customization, overhead

E. Yang et al. (2011) availability, throughput, response time, overhead, number of
end-users, reliability

D. Yu et al. (2011) performance, customization, resource utilization efficiency, se-
curity, number of end-users

H. Yu and Wang (2011) backup, restore, extensibility, security
Yuanyuan et al. (2009) configurability, scalability, security
Y. Zhang et al. (2010) number of tenants
K. Zhang et al. (2011) customization, data privacy
Y. Zhou et al. (2011) backup, restore, performance, maintenance, statistic, cus-

tomization, scalability, security
H. Zhou et al. (2011) usage metering, billing

94

Table 24: Frequency List of Decision Criteria

Criterion f Criterion f

security 39 ability to realize query optimization 1
scalability 31 administrative operations in bulk 1
performance 29 amount of code bases 1
customization 27 automated migration 1
configurability 20 billing 1
resource utilization efficiency 20 business continuity 1
maintenance 19 business logic monitoring 1
number of tenants 19 complexity of application 1
development 15 correctness of results 1
overhead 14 cryptography 1
backup 10 data access protection 1
management 10 data availability 1
operating cost 10 data dictionary lookup times 1
availability 9 data integration 1
complexities in app. development 9 database privacy 1
flexibility 9 delete 1
authentication 7 dynamic reconfiguration 1
economy of scale 7 dynamic resources 1
extensibility 7 elastic scaling 1
update 7 elasticity 1
authorization 6 export 1
number of end-users 6 fail-over and dynamic election 1
response time 6 fault isolation 1
restore 6 fault tolerance 1
throughput 6 identity management 1
deployment 5 legislation 1
infrastructure cost 5 lifecycle management 1
variability 5 main memory per tenants 1
administration 4 merge & split 1
budget of tenant 4 on-demand tenant migration 1
extending base schema 4 partial data and config. recovery 1
recovery 4 provision 1
access control 3 QoS differentiation 1
implementation challenges 3 QoS isolation 1
information protection 3 quality of service 1
monitoring 3 real-time replication 1
privacy 3 reliability 1
regulation 3 risk of overload situations 1
system downtime 3 robustness to failure 1
upfront app. reengineering costs 3 secure data storing 1
contention for shared resources 2 service integration 1
data aggregation opportunities 2 service subscription 1
data privacy 2 size of administrative staff 1
database access 2 software license fees 1
diverse SLA 2 software patching 1
evolution of base schema 2 support 1
flexibility in database migration 2 support for master data 1
footprint of tenant 2 support staff 1
memory overhead 2 system uptime 1
query latency 2 tenant import 1
re-education process for developers 2 upgrade 1
statistic 2 usage metering 1
transactions per second 2 versioning 1

95

C Decision Criteria Minimization Process

This section illustrates the steps taken to minimize the initially large set of
criteria. A total of four steps can be identified, the same steps as those described
in Table 12. In each activity a number of attributes are combined with one or
two other attributes. An attribute is displayed as a box, within its name and
frequency presented. Arrows show combinations between merges of criteria, the
frequency of the resulting attribute is the sum of the frequencies of the criteria
combined. Because the list of criteria is so large, the process is displayed in
three parts.

Criteria Identification Synonyms Merging
Specializations &
Generalizations

Merging
Infrequency Deletion

9availability

1system uptime

3system downtime

1business continuity

1data availability

1real-time replication

10backup

1data integration

1tenant import

1on-demand tenant migration

1export

1fail-over and dynamic election

1partial data and config. recovery

2flexibility in database migration

6restore

4recovery

1fault tolerance

29performance

2query latency

6throughput

2database access

1correctness of results

6response time

1data dictionary lookup times

2transactions per second

19maintenance

10management

3upfront app. reengineering costs

3implementation challenges

15development

9complexities in app. development

2re-education process for developers

4administration

1administrative operations in bulk

1amount of code bases

1support

2contention for shared resources

1ability to realize query optimization

1size of administrative staff

1support for master data

5deployment

1risk of overload situations

1versioning

1lifecycle management

1dynamic reconfiguration

1dynamic resources

1fault isolation

2statistic

3monitoring

2data aggregation opportunities

1usage metering

1billing

1software patching

7update

9flexibility

5variability

27customization

20configurability

4extending base schema

2evolution of base schema

1QoS differentiation

2diverse SLA

7extensibility

7economy of scale

20resource utilization efficiency

5infrastructure cost

1software license fees

14overhead

2memory overhead

31scalability

1automated migration

1elasticity

1elastic scaling

39security

3access control

1identity management

6authorization

1database privacy

1cryptography

3privacy

2data privacy

1secure data storing

7authentication

3information protection

1data access protection

1main memory per tenants

19number of tenants

4budget of tenant

6number of users

2footprint of tenant

1reliability

1robustness to failure

1quality of service

1business logic monitoring

1service integration

1service subscription

1upgrade

1support staff

10operating cost

3regulation

1complexity of application

1provision

1QoS isolation

1legislation

9availability

1system uptime

3system downtime

1business continuity

1data availability

1real-time replication

10backup

1data integration

1tenant import

1on-demand tenant migration

1export

1fail-over and dynamic election

1partial data and config. recovery

2flexibility in database migration

6restore

4recovery

1fault tolerance

29performance

2query latency

8throughput

2database access

1correctness of results

6response time

1data dictionary lookup times

33maintenance

32software complexity

1administrative operations in bulk

1amount of code bases

1support

3contention for shared resources

1ability to realize query optimization

1support for master data

5deployment

1versioning

1lifecycle management

1dynamic reconfiguration

1dynamic resources

1fault isolation

5monitoring

2data aggregation opportunities

1usage metering

1billing

8update

9flexibility

5variability

27customization

20configurability

2evolution of base schema

3QoS differentiation

2diverse SLA

11extensibility

34resource utilization efficiency

5infrastructure cost

1software license fees

2memory overhead

38scalability

1automated migration

2elasticity

42security

5access control

6authorization

1cryptography

6privacy

1secure data storing

7authentication

22number of tenants

4budget of tenant

6number of end-users

2reliability

1business logic monitoring

1service integration

1service subscription

1upgrade

2support staff

10operating cost

1complexity of application

1provision

4legislation

16availability

23recoverability

1data integration

32performance

8throughput

11response time

45maintenance

32software complexity

1amount of code bases

1support

1ability to realize query optimization

1support for master data

9deployment time

1versioning

1lifecycle management

1dynamic resources

7monitoring

2data aggregation opportunities

1billing

9flexibility

65variability

5diverse SLA

42resource utilization efficiency

5migration

2elasticity

48security

11authorization

2secure data storing

12authentication

60number of tenants

4budget of tenant

44number of end-users

5reliability

10operating cost

1complexity of application

1provision

4legislation

16availability

23recoverability

32performance

8throughput

11response time

45maintenance

32software complexity

9deployment time

7monitoring

9flexibility

65variability

5diverse SLA

42resource utilization efficiency

5migration

48security

11authorization

12authentication

60number of tenants

44number of end-users

5reliability

10operating cost

Figure 27: Decision Criteria Minimization Process: Part 1

96

Criteria Identification Synonyms Merging
Specializations &
Generalizations

Merging
Infrequency Deletion

9availability

1system uptime

3system downtime

1business continuity

1data availability

1real-time replication

10backup

1data integration

1tenant import

1on-demand tenant migration

1export

1fail-over and dynamic election

1partial data and config. recovery

2flexibility in database migration

6restore

4recovery

1fault tolerance

29performance

2query latency

6throughput

2database access

1correctness of results

6response time

1data dictionary lookup times

2transactions per second

19maintenance

10management

3upfront app. reengineering costs

3implementation challenges

15development

9complexities in app. development

2re-education process for developers

4administration

1administrative operations in bulk

1amount of code bases

1support

2contention for shared resources

1ability to realize query optimization

1size of administrative staff

1support for master data

5deployment

1risk of overload situations

1versioning

1lifecycle management

1dynamic reconfiguration

1dynamic resources

1fault isolation

2statistic

3monitoring

2data aggregation opportunities

1usage metering

1billing

1software patching

7update

9flexibility

5variability

27customization

20configurability

4extending base schema

2evolution of base schema

1QoS differentiation

2diverse SLA

7extensibility

7economy of scale

20resource utilization efficiency

5infrastructure cost

1software license fees

14overhead

2memory overhead

31scalability

1automated migration

1elasticity

1elastic scaling

39security

3access control

1identity management

6authorization

1database privacy

1cryptography

3privacy

2data privacy

1secure data storing

7authentication

3information protection

1data access protection

1main memory per tenants

19number of tenants

4budget of tenant

6number of users

2footprint of tenant

1reliability

1robustness to failure

1quality of service

1business logic monitoring

1service integration

1service subscription

1upgrade

1support staff

10operating cost

3regulation

1complexity of application

1provision

1QoS isolation

1legislation

9availability

1system uptime

3system downtime

1business continuity

1data availability

1real-time replication

10backup

1data integration

1tenant import

1on-demand tenant migration

1export

1fail-over and dynamic election

1partial data and config. recovery

2flexibility in database migration

6restore

4recovery

1fault tolerance

29performance

2query latency

8throughput

2database access

1correctness of results

6response time

1data dictionary lookup times

33maintenance

32software complexity

1administrative operations in bulk

1amount of code bases

1support

3contention for shared resources

1ability to realize query optimization

1support for master data

5deployment

1versioning

1lifecycle management

1dynamic reconfiguration

1dynamic resources

1fault isolation

5monitoring

2data aggregation opportunities

1usage metering

1billing

8update

9flexibility

5variability

27customization

20configurability

2evolution of base schema

3QoS differentiation

2diverse SLA

11extensibility

34resource utilization efficiency

5infrastructure cost

1software license fees

2memory overhead

38scalability

1automated migration

2elasticity

42security

5access control

6authorization

1cryptography

6privacy

1secure data storing

7authentication

22number of tenants

4budget of tenant

6number of end-users

2reliability

1business logic monitoring

1service integration

1service subscription

1upgrade

2support staff

10operating cost

1complexity of application

1provision

4legislation

16availability

23recoverability

1data integration

32performance

8throughput

11response time

45maintenance

32software complexity

1amount of code bases

1support

1ability to realize query optimization

1support for master data

9deployment time

1versioning

1lifecycle management

1dynamic resources

7monitoring

2data aggregation opportunities

1billing

9flexibility

65variability

5diverse SLA

42resource utilization efficiency

5migration

2elasticity

48security

11authorization

2secure data storing

12authentication

60number of tenants

4budget of tenant

44number of end-users

5reliability

10operating cost

1complexity of application

1provision

4legislation

16availability

23recoverability

32performance

8throughput

11response time

45maintenance

32software complexity

9deployment time

7monitoring

9flexibility

65variability

5diverse SLA

42resource utilization efficiency

5migration

48security

11authorization

12authentication

60number of tenants

44number of end-users

5reliability

10operating cost

Figure 28: Decision Criteria Minimization Process: Part 2

97

Criteria Identification Synonyms Merging
Specializations &
Generalizations

Merging
Infrequency Deletion

9availability

1system uptime

3system downtime

1business continuity

1data availability

1real-time replication

10backup

1data integration

1tenant import

1on-demand tenant migration

1export

1fail-over and dynamic election

1partial data and config. recovery

2flexibility in database migration

6restore

4recovery

1fault tolerance

29performance

2query latency

6throughput

2database access

1correctness of results

6response time

1data dictionary lookup times

2transactions per second

19maintenance

10management

3upfront app. reengineering costs

3implementation challenges

15development

9complexities in app. development

2re-education process for developers

4administration

1administrative operations in bulk

1amount of code bases

1support

2contention for shared resources

1ability to realize query optimization

1size of administrative staff

1support for master data

5deployment

1risk of overload situations

1versioning

1lifecycle management

1dynamic reconfiguration

1dynamic resources

1fault isolation

2statistic

3monitoring

2data aggregation opportunities

1usage metering

1billing

1software patching

7update

9flexibility

5variability

27customization

20configurability

4extending base schema

2evolution of base schema

1QoS differentiation

2diverse SLA

7extensibility

7economy of scale

20resource utilization efficiency

5infrastructure cost

1software license fees

14overhead

2memory overhead

31scalability

1automated migration

1elasticity

1elastic scaling

39security

3access control

1identity management

6authorization

1database privacy

1cryptography

3privacy

2data privacy

1secure data storing

7authentication

3information protection

1data access protection

1main memory per tenants

19number of tenants

4budget of tenant

6number of users

2footprint of tenant

1reliability

1robustness to failure

1quality of service

1business logic monitoring

1service integration

1service subscription

1upgrade

1support staff

10operating cost

3regulation

1complexity of application

1provision

1QoS isolation

1legislation

9availability

1system uptime

3system downtime

1business continuity

1data availability

1real-time replication

10backup

1data integration

1tenant import

1on-demand tenant migration

1export

1fail-over and dynamic election

1partial data and config. recovery

2flexibility in database migration

6restore

4recovery

1fault tolerance

29performance

2query latency

8throughput

2database access

1correctness of results

6response time

1data dictionary lookup times

33maintenance

32software complexity

1administrative operations in bulk

1amount of code bases

1support

3contention for shared resources

1ability to realize query optimization

1support for master data

5deployment

1versioning

1lifecycle management

1dynamic reconfiguration

1dynamic resources

1fault isolation

5monitoring

2data aggregation opportunities

1usage metering

1billing

8update

9flexibility

5variability

27customization

20configurability

2evolution of base schema

3QoS differentiation

2diverse SLA

11extensibility

34resource utilization efficiency

5infrastructure cost

1software license fees

2memory overhead

38scalability

1automated migration

2elasticity

42security

5access control

6authorization

1cryptography

6privacy

1secure data storing

7authentication

22number of tenants

4budget of tenant

6number of end-users

2reliability

1business logic monitoring

1service integration

1service subscription

1upgrade

2support staff

10operating cost

1complexity of application

1provision

4legislation

16availability

23recoverability

1data integration

32performance

8throughput

11response time

45maintenance

32software complexity

1amount of code bases

1support

1ability to realize query optimization

1support for master data

9deployment time

1versioning

1lifecycle management

1dynamic resources

7monitoring

2data aggregation opportunities

1billing

9flexibility

65variability

5diverse SLA

42resource utilization efficiency

5migration

2elasticity

48security

11authorization

2secure data storing

12authentication

60number of tenants

4budget of tenant

44number of end-users

5reliability

10operating cost

1complexity of application

1provision

4legislation

16availability

23recoverability

32performance

8throughput

11response time

45maintenance

32software complexity

9deployment time

7monitoring

9flexibility

65variability

5diverse SLA

42resource utilization efficiency

5migration

48security

11authorization

12authentication

60number of tenants

44number of end-users

5reliability

10operating cost

Figure 29: Decision Criteria Minimization Process: Part 3

98

D Evaluation Questionnaire Template

A decision model for multi-tenant
architectures

In my research I will develop a decision model that supports choosing the
most suitable multi-tenant architecture. For this, I would like you to evaluate
the multi-tenant architectures and decision criteria identified from literature.
The questionnaire will approximately take 30 minutes to complete. Your an-
swers will be processed anonymously.

The questionnaire makes use of the following definitions:

Application server
A computer program providing services to software applications

Application instance
A copy of an executable of the program written to a computer’s memory

Database server
A computer program providing services to another computer program

Database
A structured collection of data

Database schema
A collection of tables

A service provider is hosting and developing its own software. The provider
needs to make a decision what type of multi-tenant architecture it will use for
its software system. These architectures differ on the extent of shared resources.
At the application tier a provider has the following three options:

1. For each tenant a dedicated application server is running.
2. For multiple tenants a single application server is running, where for each

tenant a dedicated application instance is running.
3. For multiple tenants a single application server is running, where for mul-

tiple tenants a single application instance is running.

At the data tier a provider has the following four options:

1. For each tenant a dedicated database server is running.
2. For multiple tenants a single database server is running, where for each

tenant a dedicated database is running.
3. For multiple tenants a single database server is running with a single

database, where for each tenant a dedicated schema exist.
4. For multiple tenants a single database server is running with a single

database and a single schema.

Consequently, there are 3×4 = 12 possible architectures from which the service
provider can choose.

99

Multi-tenant Architectures

Name (optional): .

Date:. .

Job: .

Years of service: .

Product type: .

Determine for each of the twelve multi-tenant architectures to what extent you
think it represents a feasible multi-tenant architecture which can be used in a
real system.

The following scale is used:

1. = no feasibility
2. = weak feasibility
3. = slight feasibility
4. = moderate feasibility
5. = strong feasibility
6. = very strong feasibility
7. = extreme feasibility

100

1. dedicated application server⇔ dedicated database server, dedicated databases

Tenant A

Tenant B

Tenant C

App Server

App Server

App Server

DB Server

DB Server

DB Server

DB

DB

DB

App

Instance

App

Instance

App

Instance

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

feasibility feasibility

2. dedicated application server⇔ shared database server, dedicated databases

Tenant A

Tenant B

Tenant C

App Server

App Server

App Server

DB Server

DB

DB

DB

App

Instance

App

Instance

App

Instance

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

feasibility feasibility

3. dedicated application server ⇔ shared database server, shared databases,
dedicated schema’s

DB Server
Tenant A

Tenant B

Tenant C

App Server

App Server

App Server

App

Instance

App

Instance

App

Instance

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

feasibility feasibility

101

4. dedicated application server ⇔ shared database server, shared databases,
shared schema’s

DB Server
Tenant A

Tenant B

Tenant C

App Server

App Server

App Server

App

Instance

App

Instance

App

Instance

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

feasibility feasibility

5. shared application server, dedicated application instance⇔ dedicated database
server, dedicated databases

Tenant A

Tenant B

Tenant C

App Server DB Server

DB Server

DB Server

DB

DB

DB

App

Instance

App

Instance

App

Instance

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

feasibility feasibility

6. shared application server, dedicated application instance⇔ shared database
server, dedicated databases

Tenant A

Tenant B

Tenant C

DB Server

DB

DB

DB

App Server

App

Instance

App

Instance

App

Instance

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

feasibility feasibility

102

7. shared application server, dedicated application instance⇔ shared database
server, shared databases, dedicated schema’s

DB Server
Tenant A

Tenant B

Tenant C

App Server

App

Instance

App

Instance

App

Instance

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

feasibility feasibility

8. shared application server, dedicated application instance⇔ shared database
server, shared databases, shared schema’s

DB Server
Tenant A

Tenant B

Tenant C

App Server

App

Instance

App

Instance

App

Instance

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

feasibility feasibility

9. shared application server, shared application instance ⇔ shared database
server, dedicated databases

Tenant A

Tenant B

Tenant C

App Server DB Server

DB Server

DB Server

DB

DB

DB

App

Instance

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

feasibility feasibility

103

10. shared application server, shared application instance⇔ shared database
server, dedicated databases

Tenant A

Tenant B

Tenant C

DB Server

DB

DB

DB

App Server

App

Instance

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

feasibility feasibility

11. shared application server, shared application instance⇔ shared database
server, shared databases, dedicated schema’s

DB Server
Tenant A

Tenant B

Tenant C

App Server

App

Instance

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

feasibility feasibility

12. shared application server, shared application instance⇔ shared database
server, shared databases, shared schema’s

DB Server
Tenant A

Tenant B

Tenant C

App Server

App

Instance

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

feasibility feasibility

104

Decision Criteria

The multi-tenant architectures are evaluated on a set of decision criteria. These
criteria represent attributes that discriminate among the different multi-tenant
architectures, i.e. they reflect differences among the architectures. In addition,
the criteria are based on goals the architectures should achieve.

What follows is a list of decision criteria. Each criterion is briefly described.
Evaluate the criteria on each of the following points.

1. Define for each criterion to what extent you think the criterion discrimi-
nates among the different multi-tenant architectures. In other words, to
what extent the criterion defines a difference among the multi-tenant
architectures. This difference can refer to a difference in implementation
complexity of the corresponding criterion too.

2. Define for each criterion to what extent you think the criterion is a de-
ciding factor in the decision process for the service provider. In other
words, to what extent is the criterion of impact and relevant for the
service provider to evaluate the different multi-tenant architectures.

The following scale is used:

1. = no discrimination or deciding factor
2. = weak discrimination or deciding factor
3. = slight discrimination or deciding factor
4. = moderate discrimination or deciding factor
5. = strong discrimination or deciding factor
6. = very strong discrimination or deciding factor
7. = extreme discrimination or deciding factor

105

1 Performance Efficiency
Performance relative to the amount of resources used under stated conditions.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

1.1 Time Behavior
Degree to which the response and processing times and throughput rates of a product

or system, when performing its functions, meet requirements.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

1.2 Resource Utilization
Degree to which the amounts and types of resources used by a product or system when

performing its functions meet requirements.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

1.3 Capacity
Degree to which the maximum limits of a product or system parameter meet require-

ments. Parameters can include the number of items that can be stored, the number

of concurrent users, the communication bandwidth, throughput of transactions, and

size of database.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

106

1.3.1 Throughput
The average rate of successful message delivery over a communication channel,
measured in bits per second.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

1.3.2 Number of Tenants
The extent to which the system can be scaled so it can be offered to multiple
tenants.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

1.3.3 Number of End-Users
The extent to which the system can be scaled so it can be offered to multiple
end-users.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

2 Reliability
Degree to which a system, product or component performs specified functions
under specified conditions for a specified period of time.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

107

2.1 Availability
Degree to which a system, product or component is operational and accessible
when required for use.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

2.2 Recoverability
Degree to which, in the event of an interruption or a failure, a product or system
can recover the data directly affected and re-establish the desired state of the
system.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

3 Security
Degree to which a product or system protects information and data so that
persons or other products or systems have the degree of data access appropriate
to their types and levels of authorization.

NB Survivability (the degree to which a product or system continues to
fulfill its mission by providing essential services in a timely manner in spite of
the presence of attacks) is covered by recoverability (2.2).

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

108

3.1 Confidentiality
Degree to which a product or system ensures that data are accessible only to
those authorized to have access.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

3.2 Integrity
Degree to which a system, product or component prevents unauthorized access
to, or modification of, computer programs or data.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

3.3 Authenticity
Degree to which the identity of a subject or resource can be proved to be the
one claimed.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

109

4 Maintainability
Degree of effectiveness and efficiency with which a product or system can be
modified by the intended maintainers. Modifications can include corrections,
improvements or adaptation of the software to changes in environment, and in
requirements and functional specifications. Modifications include those carried
out by specialized support staff, and those carried out by business or operational
staff, or end users.

NB Maintainability includes installation of updates and upgrades.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

5 Portability
Degree of effectiveness and efficiency with which a system, product or component
can be transferred from one hardware, software or other operational or usage
environment to another.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

6 Deployment Time
Degree of effectiveness and efficiency to which the software product can be made
available for use.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

110

7 Flexibility
Degree to which the system can support different functional and non-functional
requirements of different tenants.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

7.1 Variability
Degree to which the system can support customized solutions and tenant-
dependent configurations, extension and evolution.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

7.2 Diverse Service Level Agreement
Degree to which the system can support a variety of service level agreements to
tenants.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

111

8 Software Complexity
Degree of the software complexity of the software product if it is developed and
implemented in a multi-tenant architecture.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

9 Monitoring
Degree of ease to which monitoring and controlling tasks can be carried out in
the system. Tasks include controlling server availability, user activity, capacity
and performance.

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

discrimination discrimination

©——————©——————©——————©——————©——————©——————©
no weak slight moderate strong very strong extreme

deciding factor deciding factor

112

E Rating Questionnaire Template

Note that if an expert defined a multi-tenant architecture as not or weakly
feasible in the previous questionnaire, this multi-tenant architecture is omitted
from this questionnaire and therefore not ranked by that expert.

Ratings of multi-tenant architectures
with respect to decision criteria

This research is focused on the development of a decision model that supports
service providers in choosing the best suitable multi-tenant architecture. Earlier,
a set of multi-tenant architectures is identified. This set exists of options service
providers can select and includes all generic multi-tenant architectures. They
differ in the extent to which resources in the application tier and the data tier
are shared among tenants.

The architectures are evaluated against a set of decision criteria. Each cri-
terion defines a discrimination among the architectures and is a deciding factor
in the decision of the service provider. These criteria en the multi-tenant archi-
tectures are evaluated earlier, inter alia, by you.

To complete the development of the decision model it’s of importance to ac-
tually evaluate the architectures against the criteria. This evaluation represent
the performance of an architecture with respect to a criterion. You are asked at
each criterion to rate the performance of each architecture with respect to that
criterion. This performance score is expressed in the following terms:

1. = poor
2. = below average
3. = average
4. = good
5. = excellent

113

Time Behavior
Degree to which the response and processing times and throughput rates of a
product or system, when performing its functions, meet requirements.

Architecture poor below average average good excellent

1 ©————————©————————©————————©————————©

2 ©————————©————————©————————©————————©

3 ©————————©————————©————————©————————©

4 ©————————©————————©————————©————————©

5 ©————————©————————©————————©————————©

6 ©————————©————————©————————©————————©

7 ©————————©————————©————————©————————©

8 ©————————©————————©————————©————————©

9 ©————————©————————©————————©————————©

10 ©————————©————————©————————©————————©

11 ©————————©————————©————————©————————©

12 ©————————©————————©————————©————————©

poor below average average good excellent

Resource Utilization
Degree to which the amounts and types of resources used by a product or system
when performing its functions meet requirements.

Architecture poor below average average good excellent

1 ©————————©————————©————————©————————©

2 ©————————©————————©————————©————————©

3 ©————————©————————©————————©————————©

4 ©————————©————————©————————©————————©

5 ©————————©————————©————————©————————©

6 ©————————©————————©————————©————————©

7 ©————————©————————©————————©————————©

8 ©————————©————————©————————©————————©

9 ©————————©————————©————————©————————©

10 ©————————©————————©————————©————————©

11 ©————————©————————©————————©————————©

12 ©————————©————————©————————©————————©

poor below average average good excellent

114

Throughput
The average rate of successful message delivery over a communication channel,
measured in bits per second.

Architecture poor below average average good excellent

1 ©————————©————————©————————©————————©

2 ©————————©————————©————————©————————©

3 ©————————©————————©————————©————————©

4 ©————————©————————©————————©————————©

5 ©————————©————————©————————©————————©

6 ©————————©————————©————————©————————©

7 ©————————©————————©————————©————————©

8 ©————————©————————©————————©————————©

9 ©————————©————————©————————©————————©

10 ©————————©————————©————————©————————©

11 ©————————©————————©————————©————————©

12 ©————————©————————©————————©————————©

poor below average average good excellent

Number of tenants
The extent to which the system can be scaled so it can be offered to multiple
tenants.

Architecture poor below average average good excellent

1 ©————————©————————©————————©————————©

2 ©————————©————————©————————©————————©

3 ©————————©————————©————————©————————©

4 ©————————©————————©————————©————————©

5 ©————————©————————©————————©————————©

6 ©————————©————————©————————©————————©

7 ©————————©————————©————————©————————©

8 ©————————©————————©————————©————————©

9 ©————————©————————©————————©————————©

10 ©————————©————————©————————©————————©

11 ©————————©————————©————————©————————©

12 ©————————©————————©————————©————————©

poor below average average good excellent

115

Number of end-users
The extent to which the system can be scaled so it can be offered to multiple
end-users.

Architecture poor below average average good excellent

1 ©————————©————————©————————©————————©

2 ©————————©————————©————————©————————©

3 ©————————©————————©————————©————————©

4 ©————————©————————©————————©————————©

5 ©————————©————————©————————©————————©

6 ©————————©————————©————————©————————©

7 ©————————©————————©————————©————————©

8 ©————————©————————©————————©————————©

9 ©————————©————————©————————©————————©

10 ©————————©————————©————————©————————©

11 ©————————©————————©————————©————————©

12 ©————————©————————©————————©————————©

poor below average average good excellent

Availability
Degree to which a system, product or component is operational and accessible
when required for use.

Architecture poor below average average good excellent

1 ©————————©————————©————————©————————©

2 ©————————©————————©————————©————————©

3 ©————————©————————©————————©————————©

4 ©————————©————————©————————©————————©

5 ©————————©————————©————————©————————©

6 ©————————©————————©————————©————————©

7 ©————————©————————©————————©————————©

8 ©————————©————————©————————©————————©

9 ©————————©————————©————————©————————©

10 ©————————©————————©————————©————————©

11 ©————————©————————©————————©————————©

12 ©————————©————————©————————©————————©

poor below average average good excellent

116

Recoverability
Degree to which, in the event of an interruption or a failure, a product or system
can recover the data directly affected and re-establish the desired state of the
system.

Architecture poor below average average good excellent

1 ©————————©————————©————————©————————©

2 ©————————©————————©————————©————————©

3 ©————————©————————©————————©————————©

4 ©————————©————————©————————©————————©

5 ©————————©————————©————————©————————©

6 ©————————©————————©————————©————————©

7 ©————————©————————©————————©————————©

8 ©————————©————————©————————©————————©

9 ©————————©————————©————————©————————©

10 ©————————©————————©————————©————————©

11 ©————————©————————©————————©————————©

12 ©————————©————————©————————©————————©

poor below average average good excellent

Confidentiality
Degree to which a product or system ensures that data are accessible only to
those authorized to have access.

Architecture poor below average average good excellent

1 ©————————©————————©————————©————————©

2 ©————————©————————©————————©————————©

3 ©————————©————————©————————©————————©

4 ©————————©————————©————————©————————©

5 ©————————©————————©————————©————————©

6 ©————————©————————©————————©————————©

7 ©————————©————————©————————©————————©

8 ©————————©————————©————————©————————©

9 ©————————©————————©————————©————————©

10 ©————————©————————©————————©————————©

11 ©————————©————————©————————©————————©

12 ©————————©————————©————————©————————©

poor below average average good excellent

117

Integrity
Degree to which a system, product or component prevents unauthorized access
to, or modification of, computer programs or data.

Architecture poor below average average good excellent

1 ©————————©————————©————————©————————©

2 ©————————©————————©————————©————————©

3 ©————————©————————©————————©————————©

4 ©————————©————————©————————©————————©

5 ©————————©————————©————————©————————©

6 ©————————©————————©————————©————————©

7 ©————————©————————©————————©————————©

8 ©————————©————————©————————©————————©

9 ©————————©————————©————————©————————©

10 ©————————©————————©————————©————————©

11 ©————————©————————©————————©————————©

12 ©————————©————————©————————©————————©

poor below average average good excellent

Authenticity
Degree to which the identity of a subject or resource can be proved to be the
one claimed.

Architecture poor below average average good excellent

1 ©————————©————————©————————©————————©

2 ©————————©————————©————————©————————©

3 ©————————©————————©————————©————————©

4 ©————————©————————©————————©————————©

5 ©————————©————————©————————©————————©

6 ©————————©————————©————————©————————©

7 ©————————©————————©————————©————————©

8 ©————————©————————©————————©————————©

9 ©————————©————————©————————©————————©

10 ©————————©————————©————————©————————©

11 ©————————©————————©————————©————————©

12 ©————————©————————©————————©————————©

poor below average average good excellent

118

Portability
Degree of effectiveness and efficiency with which a system, product or component
can be transferred from one hardware, software or other operational or usage
environment to another.

Architecture poor below average average good excellent

1 ©————————©————————©————————©————————©

2 ©————————©————————©————————©————————©

3 ©————————©————————©————————©————————©

4 ©————————©————————©————————©————————©

5 ©————————©————————©————————©————————©

6 ©————————©————————©————————©————————©

7 ©————————©————————©————————©————————©

8 ©————————©————————©————————©————————©

9 ©————————©————————©————————©————————©

10 ©————————©————————©————————©————————©

11 ©————————©————————©————————©————————©

12 ©————————©————————©————————©————————©

poor below average average good excellent

Deployment time
Degree of effectiveness and efficiency to which the software product can be made
available for use.

Architecture poor below average average good excellent

1 ©————————©————————©————————©————————©

2 ©————————©————————©————————©————————©

3 ©————————©————————©————————©————————©

4 ©————————©————————©————————©————————©

5 ©————————©————————©————————©————————©

6 ©————————©————————©————————©————————©

7 ©————————©————————©————————©————————©

8 ©————————©————————©————————©————————©

9 ©————————©————————©————————©————————©

10 ©————————©————————©————————©————————©

11 ©————————©————————©————————©————————©

12 ©————————©————————©————————©————————©

poor below average average good excellent

119

Variability
Degree to which the system can support customized solutions and tenant-
dependent configurations, extension and evolution.

Architecture poor below average average good excellent

1 ©————————©————————©————————©————————©

2 ©————————©————————©————————©————————©

3 ©————————©————————©————————©————————©

4 ©————————©————————©————————©————————©

5 ©————————©————————©————————©————————©

6 ©————————©————————©————————©————————©

7 ©————————©————————©————————©————————©

8 ©————————©————————©————————©————————©

9 ©————————©————————©————————©————————©

10 ©————————©————————©————————©————————©

11 ©————————©————————©————————©————————©

12 ©————————©————————©————————©————————©

poor below average average good excellent

Diverse Service Level Agreement
Degree to which the system can support a variety of service level agreements to
tenants.

Architecture poor below average average good excellent

1 ©————————©————————©————————©————————©

2 ©————————©————————©————————©————————©

3 ©————————©————————©————————©————————©

4 ©————————©————————©————————©————————©

5 ©————————©————————©————————©————————©

6 ©————————©————————©————————©————————©

7 ©————————©————————©————————©————————©

8 ©————————©————————©————————©————————©

9 ©————————©————————©————————©————————©

10 ©————————©————————©————————©————————©

11 ©————————©————————©————————©————————©

12 ©————————©————————©————————©————————©

poor below average average good excellent

120

Software complexity
Degree of the software complexity of the software product if it is developed and
implemented in a multi-tenant architecture.

Architecture poor below average average good excellent

1 ©————————©————————©————————©————————©

2 ©————————©————————©————————©————————©

3 ©————————©————————©————————©————————©

4 ©————————©————————©————————©————————©

5 ©————————©————————©————————©————————©

6 ©————————©————————©————————©————————©

7 ©————————©————————©————————©————————©

8 ©————————©————————©————————©————————©

9 ©————————©————————©————————©————————©

10 ©————————©————————©————————©————————©

11 ©————————©————————©————————©————————©

12 ©————————©————————©————————©————————©

poor below average average good excellent

Monitoring
Degree of ease to which monitoring and controlling tasks can be carried out in
the system. Tasks include controlling server availability, user activity, capacity
and performance.

Architecture poor below average average good excellent

1 ©————————©————————©————————©————————©

2 ©————————©————————©————————©————————©

3 ©————————©————————©————————©————————©

4 ©————————©————————©————————©————————©

5 ©————————©————————©————————©————————©

6 ©————————©————————©————————©————————©

7 ©————————©————————©————————©————————©

8 ©————————©————————©————————©————————©

9 ©————————©————————©————————©————————©

10 ©————————©————————©————————©————————©

11 ©————————©————————©————————©————————©

12 ©————————©————————©————————©————————©

poor below average average good excellent

121

Maintainability
Degree of effectiveness and efficiency with which a product or system can be
modified by the intended maintainers. Modifications can include corrections,
improvements or adaptation of the software to changes in environment, and in
requirements and functional specifications. Modifications include those carried
out by specialized support staff, and those carried out by business or operational
staff, or end users.
NB Maintainability includes installation of updates and upgrades.

Architecture poor below average average good excellent

1 ©————————©————————©————————©————————©

2 ©————————©————————©————————©————————©

3 ©————————©————————©————————©————————©

4 ©————————©————————©————————©————————©

5 ©————————©————————©————————©————————©

6 ©————————©————————©————————©————————©

7 ©————————©————————©————————©————————©

8 ©————————©————————©————————©————————©

9 ©————————©————————©————————©————————©

10 ©————————©————————©————————©————————©

11 ©————————©————————©————————©————————©

12 ©————————©————————©————————©————————©

poor below average average good excellent

122

F Expert Ratings

This section shows the experts ratings of all the multi-tenant architectures
against the decision criteria. They are presented in a separate table for each
criterion. The first column represents the architectures, they are clickable ref-
erences to the schema’s shown in Section 5.2.1 in the digital version of this
work. The five columns after that one represents the 5-point Likert scale items
experts used to rate the architectures. The values in these columns define the
frequencies of the corresponding ratings. The penultimate column defines the
median of the frequencies, denoted by µ 1

2
. The final column shows the standard

deviation of the frequencies, denoted by σ.

Table 25: Performance Ratings for MTA’s on Time Behavior

Multi-Tenant Architecture
Time Behavior Performance µ 1

2
σ

1 2 3 4 5

1 Dedicated AS & Dedicated DBS 0 0 0 1 7 5.0 0.3
2 Shared AS & Dedicated DBS 0 0 0 6 2 4.0 0.4
3 Shared Instance & Dedicated DBS 0 0 3 4 1 4.0 0.7
4 Dedicated AS & Shared DBS 0 0 2 4 2 4.0 0.7
5 Shared AS & Shared DBS 0 0 3 4 1 4.0 0.7
6 Shared Instance & Shared DBS 0 2 4 2 0 3.0 0.7
7 Dedicated AS & Shared DB 0 1 2 3 2 4.0 1.0
8 Shared AS & Shared DB 0 1 3 3 1 3.5 0.9
9 Shared Instance & Shared DB 0 1 6 1 0 3.0 0.5

10 Dedicated AS & Shared Schema 0 1 3 4 0 3.5 0.7
11 Shared AS & Shared Schema 1 2 3 2 0 3.0 1.0
12 Shared Instance & Shared Schema 1 4 2 0 1 2.0 1.1

Table 26: Performance Ratings for MTA’s on Resource Utilization

Multi-Tenant Architecture
Resource Utilization Efficiency µ 1

2
σ

1 2 3 4 5

1 Dedicated AS & Dedicated DBS 3 1 2 0 2 2.5 1.6
2 Shared AS & Dedicated DBS 1 3 1 3 0 2.5 1.1
3 Shared Instance & Dedicated DBS 0 3 3 2 0 3.0 0.8
4 Dedicated AS & Shared DBS 0 4 2 2 0 2.5 0.8
5 Shared AS & Shared DBS 0 0 5 3 0 3.0 0.5
6 Shared Instance & Shared DBS 0 2 3 3 0 3.0 0.8
7 Dedicated AS & Shared DB 0 1 6 1 0 3.0 0.5
8 Shared AS & Shared DB 0 2 3 2 1 3.0 1.0
9 Shared Instance & Shared DB 0 3 0 4 1 4.0 1.1

10 Dedicated AS & Shared Schema 0 3 4 0 1 3.0 0.9
11 Shared AS & Shared Schema 1 1 3 1 2 3.0 1.3
12 Shared Instance & Shared Schema 1 2 0 1 4 4.5 1.6

123

Table 27: Performance Ratings for MTA’s on Throughput

Multi-Tenant Architecture
Throughput Performance µ 1

2
σ

1 2 3 4 5

1 Dedicated AS & Dedicated DBS 0 1 2 1 4 4.5 1.1
2 Shared AS & Dedicated DBS 0 0 5 3 0 3.0 0.5
3 Shared Instance & Dedicated DBS 0 0 6 2 0 3.0 0.4
4 Dedicated AS & Shared DBS 0 1 2 5 0 4.0 0.7
5 Shared AS & Shared DBS 0 0 7 1 0 3.0 0.3
6 Shared Instance & Shared DBS 0 2 4 2 0 3.0 0.7
7 Dedicated AS & Shared DB 0 1 4 3 0 3.0 0.7
8 Shared AS & Shared DB 0 2 4 1 1 3.0 0.9
9 Shared Instance & Shared DB 0 2 4 1 1 3.0 0.9

10 Dedicated AS & Shared Schema 0 2 3 3 0 3.0 0.8
11 Shared AS & Shared Schema 0 2 4 2 0 3.0 0.7
12 Shared Instance & Shared Schema 1 1 4 1 1 3.0 1.1

Table 28: Performance Ratings for MTA’s on Number of Tenants

Multi-Tenant Architecture
Number of Tenants Performance µ 1

2
σ

1 2 3 4 5

1 Dedicated AS & Dedicated DBS 6 1 0 1 0 1.0 1.0
2 Shared AS & Dedicated DBS 0 3 5 0 0 3.0 0.5
3 Shared Instance & Dedicated DBS 0 3 4 1 0 3.0 0.7
4 Dedicated AS & Shared DBS 0 3 4 1 0 3.0 0.7
5 Shared AS & Shared DBS 0 4 2 2 0 3.5 0.8
6 Shared Instance & Shared DBS 0 0 3 3 2 4.0 0.8
7 Dedicated AS & Shared DB 0 2 4 2 0 3.0 0.7
8 Shared AS & Shared DB 0 0 2 3 3 4.0 0.8
9 Shared Instance & Shared DB 0 0 1 5 2 4.0 0.6

10 Dedicated AS & Shared Schema 0 2 4 2 0 3.0 0.7
11 Shared AS & Shared Schema 0 0 1 4 3 4.0 0.7
12 Shared Instance & Shared Schema 0 0 2 0 6 5.0 0.9

Table 29: Performance Ratings for MTA’s on Number of End-Users

Multi-Tenant Architecture
Number of end-users Performance µ 1

2
σ

1 2 3 4 5

1 Dedicated AS & Dedicated DBS 2 2 1 1 2 2.5 1.5
2 Shared AS & Dedicated DBS 0 3 1 4 0 3.5 0.9
3 Shared Instance & Dedicated DBS 0 2 3 3 0 3.0 0.8
4 Dedicated AS & Shared DBS 0 2 3 3 0 3.0 0.8
5 Shared AS & Shared DBS 0 0 4 3 1 3.5 0.7
6 Shared Instance & Shared DBS 0 1 3 3 1 3.5 0.9
7 Dedicated AS & Shared DB 0 1 4 3 0 3.0 0.7
8 Shared AS & Shared DB 0 1 3 3 1 3.5 0.9
9 Shared Instance & Shared DB 0 1 1 5 1 4.0 0.8

10 Dedicated AS & Shared Schema 0 1 3 4 0 3.5 0.7
11 Shared AS & Shared Schema 0 1 2 3 2 4.0 1.0
12 Shared Instance & Shared Schema 0 0 1 4 3 4.0 0.7

124

Table 30: Performance Ratings for MTA’s on Availability

Multi-Tenant Architecture
Availability Performance µ 1

2
σ

1 2 3 4 5

1 Dedicated AS & Dedicated DBS 0 2 2 0 4 4.0 1.3
2 Shared AS & Dedicated DBS 0 0 5 3 0 3.0 0.5
3 Shared Instance & Dedicated DBS 0 1 5 2 0 3.0 0.6
4 Dedicated AS & Shared DBS 0 0 5 3 0 3.0 0.5
5 Shared AS & Shared DBS 0 0 5 3 0 3.0 0.5
6 Shared Instance & Shared DBS 0 1 4 3 0 3.0 0.7
7 Dedicated AS & Shared DB 0 0 7 1 0 3.0 0.3
8 Shared AS & Shared DB 0 2 3 3 0 3.0 0.8
9 Shared Instance & Shared DB 1 1 3 2 1 3.0 1.2

10 Dedicated AS & Shared Schema 0 0 6 2 0 3.0 0.4
11 Shared AS & Shared Schema 0 2 3 3 0 3.0 0.8
12 Shared Instance & Shared Schema 1 1 3 2 1 3.0 1.2

Table 31: Performance Ratings for MTA’s on Recoverability

Multi-Tenant Architecture
Recoverability Performance µ 1

2
σ

1 2 3 4 5

1 Dedicated AS & Dedicated DBS 0 1 1 1 5 5.0 1.1
2 Shared AS & Dedicated DBS 0 1 1 2 4 4.5 1.1
3 Shared Instance & Dedicated DBS 0 1 1 2 4 4.5 1.1
4 Dedicated AS & Shared DBS 0 1 2 4 1 4.0 0.9
5 Shared AS & Shared DBS 0 1 2 4 1 4.0 0.9
6 Shared Instance & Shared DBS 0 1 2 4 1 4.0 0.9
7 Dedicated AS & Shared DB 0 2 5 1 0 3.0 0.6
8 Shared AS & Shared DB 0 2 5 1 0 3.0 0.6
9 Shared Instance & Shared DB 0 2 5 1 0 3.0 0.6

10 Dedicated AS & Shared Schema 0 6 2 0 0 2.0 0.4
11 Shared AS & Shared Schema 1 5 2 0 0 2.0 0.6
12 Shared Instance & Shared Schema 1 5 1 0 1 2.0 1.1

Table 32: Performance Ratings for MTA’s on Confidentiality

Multi-Tenant Architecture
Confidentiality Performance µ 1

2
σ

1 2 3 4 5

1 Dedicated AS & Dedicated DBS 0 0 0 2 6 5.0 0.4
2 Shared AS & Dedicated DBS 0 0 0 4 4 4.5 0.5
3 Shared Instance & Dedicated DBS 0 0 3 3 2 4.0 0.8
4 Dedicated AS & Shared DBS 0 0 1 5 2 4.0 0.6
5 Shared AS & Shared DBS 0 0 1 5 2 4.0 0.6
6 Shared Instance & Shared DBS 0 0 3 4 1 4.0 0.7
7 Dedicated AS & Shared DB 0 1 3 3 1 3.5 0.9
8 Shared AS & Shared DB 0 1 4 2 1 3.0 0.9
9 Shared Instance & Shared DB 0 1 6 0 1 3.0 0.8

10 Dedicated AS & Shared Schema 1 4 3 0 0 2.0 0.7
11 Shared AS & Shared Schema 1 5 2 0 0 2.0 0.6
12 Shared Instance & Shared Schema 2 6 0 0 0 2.0 0.4

125

Table 33: Performance Ratings for MTA’s on Integrity

Multi-Tenant Architecture
Integrity Performance µ 1

2
σ

1 2 3 4 5

1 Dedicated AS & Dedicated DBS 1 0 0 3 4 4.5 1.3
2 Shared AS & Dedicated DBS 0 1 1 6 0 4.0 0.7
3 Shared Instance & Dedicated DBS 0 2 4 2 0 3.0 0.7
4 Dedicated AS & Shared DBS 0 1 1 5 1 4.0 0.8
5 Shared AS & Shared DBS 0 0 4 4 0 3.5 0.5
6 Shared Instance & Shared DBS 0 1 7 0 0 3.0 0.3
7 Dedicated AS & Shared DB 0 1 3 3 1 3.5 0.9
8 Shared AS & Shared DB 0 1 5 2 0 3.0 0.6
9 Shared Instance & Shared DB 0 2 6 0 0 3.0 0.4

10 Dedicated AS & Shared Schema 0 1 5 1 1 3.0 0.8
11 Shared AS & Shared Schema 0 4 2 2 0 2.5 0.8
12 Shared Instance & Shared Schema 2 2 4 0 0 2.5 0.8

Table 34: Performance Ratings for MTA’s on Authenticity

Multi-Tenant Architecture
Authenticity Performance µ 1

2
σ

1 2 3 4 5

1 Dedicated AS & Dedicated DBS 1 0 2 1 4 4.5 1.4
2 Shared AS & Dedicated DBS 0 0 4 3 1 3.5 0.7
3 Shared Instance & Dedicated DBS 0 2 4 2 0 3.0 0.7
4 Dedicated AS & Shared DBS 1 0 3 3 1 3.5 1.1
5 Shared AS & Shared DBS 0 0 5 2 1 3.0 0.7
6 Shared Instance & Shared DBS 0 1 4 2 1 3.0 0.9
7 Dedicated AS & Shared DB 0 1 2 4 1 4.0 0.9
8 Shared AS & Shared DB 0 0 5 3 0 3.0 0.5
9 Shared Instance & Shared DB 0 2 4 2 0 3.0 0.7

10 Dedicated AS & Shared Schema 0 1 5 2 0 3.0 0.6
11 Shared AS & Shared Schema 0 2 4 2 0 3.0 0.7
12 Shared Instance & Shared Schema 3 0 4 0 1 3.0 1.3

Table 35: Performance Ratings for MTA’s on Migration

Multi-Tenant Architecture
Migration Performance µ 1

2
σ

1 2 3 4 5

1 Dedicated AS & Dedicated DBS 1 0 0 1 6 5.0 1.3
2 Shared AS & Dedicated DBS 0 1 0 2 5 5.0 1.0
3 Shared Instance & Dedicated DBS 0 0 1 2 5 5.0 0.7
4 Dedicated AS & Shared DBS 0 1 0 3 4 4.5 1.0
5 Shared AS & Shared DBS 0 0 2 2 4 4.5 0.8
6 Shared Instance & Shared DBS 0 0 1 3 4 4.5 0.7
7 Dedicated AS & Shared DB 0 1 2 5 0 4.0 0.7
8 Shared AS & Shared DB 0 0 3 5 0 4.0 0.5
9 Shared Instance & Shared DB 0 0 3 5 0 4.0 0.5

10 Dedicated AS & Shared Schema 1 2 4 1 0 3.0 0.9
11 Shared AS & Shared Schema 1 1 5 1 0 3.0 0.8
12 Shared Instance & Shared Schema 1 1 5 0 1 3.0 1.1

126

Table 36: Performance Ratings for MTA’s on Deployment Time

Multi-Tenant Architecture
Deployment Time Performance µ 1

2
σ

1 2 3 4 5

1 Dedicated AS & Dedicated DBS 4 1 2 0 1 1.5 1.4
2 Shared AS & Dedicated DBS 0 3 3 2 0 3.0 0.8
3 Shared Instance & Dedicated DBS 0 1 4 2 1 3.0 0.9
4 Dedicated AS & Shared DBS 1 3 3 1 0 2.5 0.9
5 Shared AS & Shared DBS 0 2 2 4 0 3.5 0.8
6 Shared Instance & Shared DBS 0 0 1 6 1 4.0 0.5
7 Dedicated AS & Shared DB 1 2 5 0 0 3.0 0.7
8 Shared AS & Shared DB 0 2 1 4 1 4.0 1.0
9 Shared Instance & Shared DB 0 0 2 3 3 4.0 0.8

10 Dedicated AS & Shared Schema 1 1 6 0 0 3.0 0.7
11 Shared AS & Shared Schema 0 1 2 4 1 4.0 0.9
12 Shared Instance & Shared Schema 0 1 0 1 6 5.0 1.0

Table 37: Performance Ratings for MTA’s on Variability

Multi-Tenant Architecture
Variability Performance µ 1

2
σ

1 2 3 4 5

1 Dedicated AS & Dedicated DBS 0 0 0 1 7 5.0 0.3
2 Shared AS & Dedicated DBS 0 0 1 5 2 4.0 0.6
3 Shared Instance & Dedicated DBS 0 5 1 2 0 2.0 0.9
4 Dedicated AS & Shared DBS 0 0 0 3 5 5.0 0.5
5 Shared AS & Shared DBS 0 0 2 4 2 4.0 0.7
6 Shared Instance & Shared DBS 0 5 2 1 0 2.0 0.7
7 Dedicated AS & Shared DB 0 0 2 2 4 4.5 0.8
8 Shared AS & Shared DB 0 0 4 2 2 3.5 0.8
9 Shared Instance & Shared DB 0 6 1 1 0 2.0 0.7

10 Dedicated AS & Shared Schema 0 4 2 1 1 2.5 1.1
11 Shared AS & Shared Schema 0 6 0 2 0 2.0 0.9
12 Shared Instance & Shared Schema 5 2 1 0 0 1.0 0.7

Table 38: Performance Ratings for MTA’s on Diverse SLA

Multi-Tenant Architecture
Diverse SLA Performance µ 1

2
σ

1 2 3 4 5

1 Dedicated AS & Dedicated DBS 0 0 0 1 7 5.0 0.3
2 Shared AS & Dedicated DBS 0 0 1 5 2 4.0 0.6
3 Shared Instance & Dedicated DBS 0 3 3 1 1 3.0 1.0
4 Dedicated AS & Shared DBS 0 0 0 7 1 4.0 0.3
5 Shared AS & Shared DBS 0 0 4 3 1 3.5 0.7
6 Shared Instance & Shared DBS 0 4 3 1 0 2.5 0.7
7 Dedicated AS & Shared DB 0 0 3 5 0 4.0 0.5
8 Shared AS & Shared DB 0 0 6 2 0 3.0 0.4
9 Shared Instance & Shared DB 0 3 5 0 0 3.0 0.5

10 Dedicated AS & Shared Schema 0 1 4 3 0 3.0 0.7
11 Shared AS & Shared Schema 0 4 4 0 0 2.5 0.5
12 Shared Instance & Shared Schema 3 5 0 0 0 2.0 0.5

127

Table 39: Performance Ratings for MTA’s on Software Complexity

Multi-Tenant Architecture
Software Complexity Performance µ 1

2
σ

1 2 3 4 5

1 Dedicated AS & Dedicated DBS 0 0 0 2 6 5.0 0.4
2 Shared AS & Dedicated DBS 0 0 1 3 4 4.5 0.7
3 Shared Instance & Dedicated DBS 0 1 1 6 0 4.0 0.7
4 Dedicated AS & Shared DBS 0 0 1 3 4 4.5 0.7
5 Shared AS & Shared DBS 0 0 2 2 4 4.5 0.8
6 Shared Instance & Shared DBS 0 1 3 4 0 3.5 0.7
7 Dedicated AS & Shared DB 0 1 1 4 2 4.0 0.9
8 Shared AS & Shared DB 0 0 3 3 2 4.0 0.8
9 Shared Instance & Shared DB 0 1 5 2 0 3.0 0.6

10 Dedicated AS & Shared Schema 0 4 3 1 0 2.5 0.7
11 Shared AS & Shared Schema 0 4 3 1 0 2.5 0.7
12 Shared Instance & Shared Schema 2 3 2 1 0 2.0 1.0

Table 40: Performance Ratings for MTA’s on Monitoring

Multi-Tenant Architecture
Monitoring Performance µ 1

2
σ

1 2 3 4 5

1 Dedicated AS & Dedicated DBS 5 2 0 0 1 1.0 1.3
2 Shared AS & Dedicated DBS 0 4 3 1 0 2.5 0.7
3 Shared Instance & Dedicated DBS 0 1 7 0 0 3.0 0.3
4 Dedicated AS & Shared DBS 1 3 4 0 0 2.5 0.7
5 Shared AS & Shared DBS 0 1 4 3 0 3.0 0.7
6 Shared Instance & Shared DBS 0 0 6 2 0 3.0 0.4
7 Dedicated AS & Shared DB 0 3 4 1 0 3.0 0.7
8 Shared AS & Shared DB 0 0 3 4 1 4.0 0.7
9 Shared Instance & Shared DB 0 0 1 5 2 4.0 0.6

10 Dedicated AS & Shared Schema 0 3 4 0 1 3.0 0.9
11 Shared AS & Shared Schema 0 1 0 5 2 4.0 0.9
12 Shared Instance & Shared Schema 0 1 0 2 5 5.0 1.0

Table 41: Performance Ratings for MTA’s on Maintainability

Multi-Tenant Architecture
Maintainability Performance µ 1

2
σ

1 2 3 4 5

1 Dedicated AS & Dedicated DBS 4 3 1 0 1 1.5 1.3
2 Shared AS & Dedicated DBS 1 3 3 1 0 2.5 0.9
3 Shared Instance & Dedicated DBS 0 2 4 2 0 3.0 0.7
4 Dedicated AS & Shared DBS 2 3 2 0 1 2.0 1.2
5 Shared AS & Shared DBS 0 2 4 2 0 3.0 0.7
6 Shared Instance & Shared DBS 0 0 4 4 0 3.5 0.5
7 Dedicated AS & Shared DB 0 4 3 1 0 2.5 0.7
8 Shared AS & Shared DB 0 1 2 5 0 4.0 0.7
9 Shared Instance & Shared DB 0 0 2 4 2 4.0 0.7

10 Dedicated AS & Shared Schema 0 1 5 2 0 3.0 0.6
11 Shared AS & Shared Schema 0 0 1 5 2 4.0 0.6
12 Shared Instance & Shared Schema 0 0 0 2 6 5.0 0.4

128

	Introduction
	Problem Statement
	Thesis Outline

	Research Approach
	Research Objective
	Research Questions
	Research Context
	Stakeholders
	Scope
	Scientific Relevance
	Social Relevance

	Research Design
	Research Process
	Research Model
	Multi-tenant Architectures & Criteria Identification
	Evaluation
	Decision Making Method Selection
	Performance Identification
	Decision Support Model Construction

	Theoretical Background
	Multi-Tenancy
	Decision Making
	Multi-Attribute Decision Making
	Attributes' Properties
	General Decision Making Process

	Literature Study Protocol on Multi-tenancy Levels and Decision Criteria
	Search Strategy
	Data Sources
	Search Terms

	Study Selection Criteria
	Study Selection Procedures
	Literature Gathering
	Multi-Tenancy Levels Identification
	Criteria Identification

	Data Extraction Strategy
	Data Analysis Strategy

	Findings of Literature Study
	Execution of the Literature Study
	Data Extraction
	Multi-Tenancy Levels
	Criteria

	Data Analysis
	Multi-Tenancy Levels
	Multi-Tenant Architectures Structuring
	Criteria

	Evaluation of Multi-tenant Architectures and Criteria
	Strategy
	Instrument
	Experts
	Format
	Analysis Procedure

	Findings
	Multi-tenant Architectures Evaluation on Feasibility
	Decision Criteria Evaluation on Discrimination & Deciding Factor

	Accommodation of the Multi-Tenant Architecture Selection Model

	Decision Making Method Selection
	Elementary Methods
	Cost-Benefit Analysis
	Multi-Attribute Utility Theory Methods
	Weighted Sum Model
	Weighted Product Model
	Analytic Hierarchy Process

	Outranking Methods
	Selection of AHP Decision Making Method
	Decision Hierarchy
	Selection Between Measurement Approaches

	Accommodation of the Multi-Tenant Architecture Selection Model

	Ratings of Multi-tenant Architectures on Criteria
	Strategy
	Instrument
	Experts
	Format
	Analysis Procedure

	Findings
	Results
	Analysis

	Multi-Tenant Architecture Selection Model
	Decision Criteria Assessment
	Priority Calculation
	Architecture Recommendation

	Discussion
	Limitations

	Conclusion
	Further Research

	References
	List of Relevant Literature
	Concept Matrices
	Decision Criteria Minimization Process
	Evaluation Questionnaire Template
	Rating Questionnaire Template
	Expert Ratings

