
Master Thesis: Optimization of Hybrid
Scenario ITER Ramp-Up

Jeroen van Dongen
Student Theoretical Physics

Studentnumber 3275299
Utrecht University

August 5, 2013



Contents

1 Introduction 3
1.1 Tokamak Device . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Simulation Codes . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Tokamak Physics 8
2.1 Grad-Shafranov equation . . . . . . . . . . . . . . . . . . . . . 10
2.2 Flux Averaging and Poloidal Flux Quantities . . . . . . . . . . 11
2.3 Transport Equations . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Poloidal Flux Diffusion . . . . . . . . . . . . . . . . . . 13
2.3.2 Particle Transport . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Energy Transport . . . . . . . . . . . . . . . . . . . . . 16

2.4 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Heating Systems . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Fusion Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Theory of Optimization 26
3.1 Direct Search Method . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Line Search Method . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Step Length . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Convergence of Line Search Methods . . . . . . . . . . 33

3.3 Sequential Quadratic Programming . . . . . . . . . . . . . . . 35

4 Alpha Particle Heating 37
4.1 Direct Deposition Model . . . . . . . . . . . . . . . . . . . . . 38
4.2 Simple Diffusion Model . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Validating The RAPTOR Code For ITER 43
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Baseline Comparison . . . . . . . . . . . . . . . . . . . . . . . 45



CONTENTS 2

5.2.1 Transport Model: Bohm-GyroBohm . . . . . . . . . . . 46
5.2.2 Conductivity . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.3 Evolution Comparison . . . . . . . . . . . . . . . . . . 48

5.3 Poloidal Flux Diffusion . . . . . . . . . . . . . . . . . . . . . . 51
5.3.1 Bootstrap Current . . . . . . . . . . . . . . . . . . . . 52

5.4 Energy Transport Equation . . . . . . . . . . . . . . . . . . . 52
5.4.1 Particle Flux . . . . . . . . . . . . . . . . . . . . . . . 52
5.4.2 Ion-Electron Heat Exchange . . . . . . . . . . . . . . . 54
5.4.3 Radiation Losses . . . . . . . . . . . . . . . . . . . . . 56
5.4.4 Auxiliary Heating . . . . . . . . . . . . . . . . . . . . . 59
5.4.5 Alpha Particle Heating . . . . . . . . . . . . . . . . . . 65

5.5 Full Transport Model Comparison . . . . . . . . . . . . . . . . 66
5.5.1 Electron-Ion Heat Exchange . . . . . . . . . . . . . . . 66

6 Optimization 67
6.1 Optimization set-up . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 Cost-Function . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.3 Local Minima . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 L-mode Optimization Results . . . . . . . . . . . . . . . . . . 73
6.2.1 Reference Case . . . . . . . . . . . . . . . . . . . . . . 73
6.2.2 Optimized Trajectories . . . . . . . . . . . . . . . . . . 75
6.2.3 Model Sensitivity . . . . . . . . . . . . . . . . . . . . . 84
6.2.4 Active Constraints . . . . . . . . . . . . . . . . . . . . 86

6.3 H-mode Optimization . . . . . . . . . . . . . . . . . . . . . . . 87

7 Conclusion 94
7.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 95

A Mathematical Derivations 96
A.1 Flux Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.2 Particle Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 98

B Bohm-GyroBohm Transport Model 100



Chapter 1

Introduction

Utilizing nuclear fusion for energy consumption purposes has been a topic of
research since the early 1920’s when it was discovered that 2 hydrogen atoms
where heavier then 1 helium atom. Ever since the realization that the sun
burned up hydrogen to produce power that counteracts gravity it has been
the goal of many scientists to build a nuclear fusion reactor that could supply
mankind with energy. Being able to exploit most abundant energy supply
method in the universe would mean a safe and overly abundant energy sup-
ply. Using 1 kg of hydrogen plasma fuel would release 108 kWh, equivalent
to running a 1 GW power station for a day. It has been reported that the
earth’s natural Lithium abundance would be able to supply us with enough
Tritium for several of hundreds of years. Deuterium is a stable isotope and
the Earth’s oceans are comprised of 0.0153% of Deuterium making it acces-
sible for thousands of year
During all the years of research it has become clear that achieving a profitable
fusion reactor would not be easily achieved. Many generations of scientists
have been set back by the discovery of plasma instabilities, making the con-
finement of the plasma more and more problematic. Two main schemes are
used to develop a fusion reactor. First is the magnetic confinement reactor
and secondly the inertial confinement. This thesis will focus solely on the
first method.
The reaction that achieves fusion easiest is with two isotopes of hydrogen:
Deuterium and Tritium which have 1 and 2 neutrons respectively. They pro-
duce an alpha (helium) particle and a free neutron:

2
1D + 3

1T → 4
2He (3.5 MeV) + 1

0n (14.1 MeV).

The reaction is induced through collisions between these particles and
it is therefore very important to know the cross-section. The cross section
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for different hydrogen isotopes can be seen in figure 1.1. It is clear that the
cross-section between Tritium and Deuterium is greatest and has a maximum
around 100 keV. The required reactions occur in the high energy tail of the
Maxwellian distribution and a plasma temperature of around 10 keV (100
million degrees centigrade) is therefore sufficient for fusion reactions. This
can be seen in figure 1.2a and the final result for the total reaction rate can
be seen in figure 1.2b. A large fusion reaction rate is not the only important

Figure 1.1: The fusion cross sections for different hydrogen isotopes

ingredient for net positive energy generation. To ensure the reaction becomes
self sustainable the energy released in the fusion reaction must be redeposited
into the plasma. This requires that the energy in confined for long enough
in a region sufficiently close to the active fusion region. This is expressed
to the so called energy confinement time (τE) defined by the ration between
total plasma energy and the power loss. An important goal for fusion plasma
physics is ignition. This means that the power generated by fusion reactions
is sufficient to overcome the power losses and thus maintain the plasma in the
burning regime. This goal is formulated by the well-known Lawson criterion
for flat density and temperature profiles (1.1):

nTτE ≥ 3× 1021keV s, (1.1)

where n is the density and T is the temperature of the plasma in keV. If
a typical tokamak temperature of 20 keV is used, we can require that the
nτE > 1.5 x 1020 m−3s to reach ignition.
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(a) The fusion cross sections for
different hydrogen isotopes (b) The total reaction rate for

a Tritium-Deuterium fusion re-
action

1.1 Tokamak Device

Within the two main research routes different approaches are being used. In
the inertial confinement research a high density is created but the confine-
ment time is poor whereas in the magnetic confinement scheme low density
plasma’s (n > 1020m−3) are confined for a longer period (τE > 1.5s). The
most generally excepted form of magnetic confinement is the geometry of a
tokamak (T2 Torus) which was designed by russian scientists in the 1960’s.
The magnetic fields in this device are generated (mostly) by the electrical
currents in the plasma itself. Unfortunately this plasma current is also re-
sponsible for creating instabilities through magnetic energy. This limits the
maximally achievable confinement time through global plasma instabilities or
locally enhanced transport. These instabilities have to be avoided as much
as possible but will not be the topic of this thesis. They will however be
briefly considered during the next chapters.
Another important downside to the tokamak geometry comes from the method
of generating the plasma current. At this point the plasma current is gen-
erated through inductance with a primary coil and using the plasma as a
secondary coil. By ramping up the current in this primary coil a current
is induced in the plasma, the magnitude being proportional to the current
ramp up rate. The downside of the tokamak geometry is that the primary
coil current can not be ramped up indefinitely. Therefore either the cur-
rent driving force has to be replaced at some point of the plasma operation
by a noninductive one or the tokamak has to be operated using a pulsed
scheme. Usually full noninductive current drive is not achievable but the
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time of operation is enlarged by using various noninductive current driving
schemes.

1.2 Simulation Codes

1.3 Research Questions

1. Can the RAPTOR code be adapted to effectively model the
physics in ITER and be an effective way to compute optimal
plasma scenarios?
This question arises because RAPTOR was formerly used to model
smaller sized tokamaks and at the beginning of the work on this thesis
not yet equipped with the proper physics to model an ITER scenario.
The question has two important aspects that need to be considered.
First is whether the code can be adapted such that it models the ap-
propriate physics to such an extent that it produces results that are rep-
resentative to the real world physics. The second question is whether
this can be done within the computational speed needed to preform
heuristic optimization, as opposed to the now more primitive approach
that is standard in the fusion physics society. When these two ques-
tions can be answered with a positive reply there will be a basis to start
looking for new optimized trajectories that might possible hold more
efficient possibilities.

2. How can alpha particle production and heating be modeled
within the RAPTOR code.
One of the important processes that were not yet included in RAPTOR
was the production of alpha particles through fusion reactions. These
alpha particles can be a considerable contribution to the total heating
of the plasma and also form the main goal of fusion reactors in the fu-
ture. The question is whether the deposition profile can be effectively
modeled in RAPTOR by making use of several assumptions. The prob-
lem with this process is the cooling down of alpha particles by collisions
with the plasma constituents. This is a process that is complicated by
diffusion of the energetic particles on the same time scale as on which
they loss their energy to the plasma. This diffusion would imply con-
siderable extra computation to correct model the process. This would
greatly diminish the effectiveness of the RAPTOR code. Therefore as-
sumptions have to be made to decrease computation time and these
assumptions need to be tested. The question remains whether these
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assumptions to not constraint the model to be inconsistent with the
real world physics.

3. Do the optimal trajectories proposed by RAPTOR yield a
difference from the previously obtained trajectories through
CRONOS?
The main objective of this thesis is to find new trajectories which will
more effectively heat an ITER discharge towards a hybrid scenario flat-
top. Previous work is based mostly on ’turn the knob’ optimization
which bases its effectiveness on the expertise of the researcher. RAP-
TOR provides a way to heuristically optimize the trajectories used for
heating a discharge at the cost of the level of detail in the physics. The
question is thus whether an updated version of RAPTOR will be able
to provide trajectories that yield better results then the ones previ-
ously obtained. The problems here could be that the resulting profiles
as a result of trajectory optimization is different in CRONOS. Another
problem could be that constraints or desirable trajectory traits can not
be included in the optimization procedure. Next there is a problem
with the cost function sensitivity. When the cost function landscape
is too flat in any direction, the optimization problem can taken con-
siderable amount of iterations. This is illustrated in the optimization
of the Rosenbrock function which has a long stretched valley, making
it difficult to reach the global minimum with standard optimization
procedures. The cost function for the problem at hand is a function
of many variables and therefore difficult to predict whether such a flat
landscape exists. This fact also prevents us from being able to make
any conclusion whether the solution is also the global solution. This
thesis will also try to find ways to maximize the chance that the solution
is a global solution.



Chapter 2

Tokamak Physics

This chapter will deal in greater detail with the physics of plasma’s confined
in a tokamak geometry. A lot of which will be based on the work in the Toka-
mak physics book by John Wesson[1]. First some general plasma properties
will be discussed after which more specialized physics will be discussed such
as tokamak heating and diffusion.
The three traditional states of matter (solids,liquids and gases) are build up
of neutral atoms. When the temperature of a gas is increased beyond the
ionization limit the electrons and positively charged nuclei are separated.
The transition happens in a narrow region of temperature and is very often
called a phase transition into the plasma phase. In the plasma state the ki-
netic energy exceeds the potential energy of the electrostatic coulomb energy.
The particles in the plasma typically collide quasi-elastically through their
coulomb interactions but when ions become sufficiently close together there is
a possibility that they tunnel through the coulomb barrier and fuse to form
a heavier nuclei. The quasi-neutrality condition states that ηe '

∑
j Zjηj

and still assumes that there are sources of electric fields: ∇ · E 6= 0. Even
though the plasma tends to this quasi-neutrality because of coulomb attrac-
tion between opposite charge, random thermal motion will cause small charge
fluctuations. These fluctuations will be limited by the fact that their poten-
tial energy due to their separation can not be much larger then their thermal
energy. This leads to a screening on length scales smaller then the charac-
teristic length scale called the Debye length: λD '

√
ε0kbT/e2n. Similarly

a characteristic time scale can be calculated called the plasma frequency:
ωp =

√
nee2/ε0me. The ions do not contribute to this time scale because

of there large mass. The plasma frequency is temperature independent and
electromagnetic waves with frequencies above this frequency can propagate
through the plasma. Electromagnetic waves with ω < ωp will be screened by
the electrons and will exponentially decay.
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The fact that all constituents of the plasma are charged makes them suscep-
tible to the Lorentz force. When the plasma is placed in a magnetic field the
particles are free to move parallel to the magnetic field while perpendicular
motion is restricted to gyration around the magnetic field lines. Therefore
the particles are more or less confined by a magnetic field. The gyration
radius is given by ρs = msv⊥

eZsB
and it can be seen that the larger the magnetic

field the smaller the gyration radius. Thus this leads to a stronger confine-
ment. A tokamak keeps the plasma in an axis-symmetric toroidal magnetic
chamber by using strong helical magnetic fields.
The particles do however drift across the magnetic field when they are sub-
jected to external forces or field inhomogeneities. This is a mechanism that
results in confinement losses. The first is the drift velocity due to an perpen-
dicular electric field:

vE =
E×B

B2
, (2.1)

which is independent of the type of species. A second drift velocity arises
from field curvature and ∇B inhomogeneities of the magnetic field:

vB =
ms(v⊥ + 2v‖)

2qs

B×∇B

B3
. (2.2)

The subscript s denotes the dependence on the species type and it can be seen
that this effect is in opposite directions for the ions and electrons. This effect
is also dependent on the velocity of the particles and is therefore temperature
dependent. This can give rise to charge separation and subsequently an ExB
drift.
Important quantities in plasma physics are the flux surfaces but to properly
introduce them we first require a description of the coordinate system used
in plasma physics. The coordinate system used here is that of a cylindrical
coordinate system (R,φ,z). Here z gives the vertical distance on the axis
of the tokamak, R gives the distance from the axis and φ of course gives
the angle. This coordinate system is depicted in figure 2.1: The magnetic
field can be decomposed into two components. One of which points parallel
to the toroidal direction (eφ) and the other orthogonal to eφ (the poloidal
direction). This is the following decomposition:

B = eφBφ + Bp. (2.3)

We can relate this decomposition to two different flux function. The first
is the poloidal flux function, usually denoted by ψ, which gives the magnetic
flux through the disk of radius R in the plane orthogonal to ez. This flux
function is then given by:

ψ(R, z) = −
∫

B · dAz (2.4)
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Figure 2.1: Coordinate system of Tokamak physics

which does not rely on φ because we assume the magnetic field is axis-
symmetric for a tokamak. Through this definition we can related the poloidal
magnetic field:

Bp = eφ ×
∇ψ
2πR

(2.5)

Figure 2.1 also shows the loci of constant ψ which are called magnetic flux
surfaces because it can be seen that ∇ψ·B = 0 always holds for an axis-
symmetric system. This implies that the magnetic field lines always line on
the constant poloidal flux surfaces.

2.1 Grad-Shafranov equation

When were are looking at the force equation in equilibrium we find that
the electromagnetic force needs to counter the pressure gradient force. This
reads:

E
∑
j

njej +
∑
j

njejvj ×B = ∇p. (2.6)

For effects on larger length scale then the Debye length and similarly defined
time scale we can impose quasi-neutrality. This will cause the first term of 2.6
to vanish and this leads to the MagnetoHydroDynamics (MHD) equilibrium:

j×B = ∇p. (2.7)

This will of course lead to the following equations: B · ∇p = j · ∇p = 0.To
compute 2.7 in terms of the flux function we will need to do some work.
Firstly we can apply Faraday’s law to 2.3 to find an expression for the current
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density:

µ0j = µ0jφeφ +∇× (Bφeφ) = µ0jφeφ +
1

R
∇(RBφ)× eφ (2.8)

µ0jφ = ∇× (eφ ×
∇ψ
2πR

) =
1

2πR
R2∇ · (∇ψ

R2
) ≡ 1

2πR
4ψ (2.9)

Where the operator 4∗ is slightly different then the Laplace operator in
cylindrical coordinates. This relates the current density to the magnetic fields
and magnetic flux. It can be easily shown that ∇p‖∇ψ and ∇(RBφ)‖∇ψ
and thus that p(ψ) and T(ψ) = RBφ are constant on a flux surface. Now we
can compute the force balance equation in terms of ψ:

µ0∇p = µ0j×B

= −µ0jφ
∇ψ
2πR

− ∇T
R

T

R
(2.10)

∇ψ dp
dψ

=
∇ψ
2πR

1

2πR
4∗ψ +

∇ψ
R

dT

dψ

T

R
. (2.11)

Rewriting the last equation leads to the Grad-Shafranov equation which
is an equilibrium equation for the MHD:

4∗ψ = −4π2

(
µ0R

2 dp

dψ
+
dT

dψ
T

)
. (2.12)

The magnetic field and current density can be written in terms of T and ψ:

B = eφ
T (ψ)

R
+ eφ ×

∇ψ
2πR

(2.13)

µ0j0 =
1

R

dT

dψ
(∇ψ × eφ) + eφ

1

2πR
4∗ψ. (2.14)

2.2 Flux Averaging and Poloidal Flux Quan-

tities

As we have seen, quantities p(ψ) and T(ψ) are constant on the poloidal
flux surfaces. Other interesting quantities might not be and it is useful
to introduce the notion of flux-surface-averaging before proceeding. The
beginning of this description with the calculation of the volume and poloidal
area of a flux surface:

V =

∫
dV =

∫
Rdφ

dψ

|∇ψ|
dlp =

∫
dψ

∫
dlp
Bp

(2.15)

Aφ =

∫
dψ

|∇ψ|
dlp =

∫
dψ

∮
lp

2πRBp

(2.16)
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where dlp is an infinitesimal length along the poloidal flux surface perpen-
dicular to eφ. Quantities that are not constant across a flux-surface can be
averaged over this surface in the following way:

〈Q〉 =
∂

∂V

∫
QdV =

∂ψ

∂V

∂

∂V

∫
Q
Rdlp
|∇ψ|

dψdφ =

∮
Q
dlp
Bp

/

∮
dlp
Bp

. (2.17)

Another important magnetic flux is that of the toroidal flux defined as:

Φ =

∫
B · dSφ =

1

2π

∫
V

B · ∇ψdV =
1

2π

∫
V

T

R2
dV (2.18)

so that:
∂Φ

∂V
=

1

2π

∂

∂V

∫
V

T

R2
dV =

1

2π
〈T/R2〉. (2.19)

We can define a coordinate that is an effective minor radius with respect to
this toroidal flux:

ρ =

√
Φ

πB0

(2.20)

To look at some flux averaged quantities it is useful to introduce some
widely used notation:

J =
T (ψ)

R0B0

(2.21)

G2 =
V ′

4π2

〈(
(∇ρ)2

R2

)〉
(2.22)

V ′ =
∂V

∂ρ
. (2.23)

The function J is the normalized poloidal current function T and it reflects
the diamagnetic effect of the plasma and G2 is a geometric quantity that
depends on the flux surface configuration.Using these definitions we will cal-
culate some important quantities:

Plasma current and current density

Ipl(ρ) =
G2

µ0

∂ψ

∂ρ
(2.24)

jtorr = R0

〈
j · eφ
R

〉
(2.25)
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Safety Factor and Magnetic Shear
A widely used quantity related to plasma instabilities and transport are the
safety factor

q ≡ 2πρB0

dψ
dρ

(2.26)

and its rate of change, referred to as the magnetic shear:

s =
V

q

∂q

∂V
=

V

ρV ′

(
1− ρ∂

2ψ

∂ρ2

(
∂ψ

∂ρ

)−1
)

(2.27)

Poloidal Field and Magnetic Energy
We can cast the poloidal field strength in a different form:

Bp =
|∇ρ|
2πR

∂ψ

∂ρ
. (2.28)

In a cylindrical poloidal flux field it would be constant on the flux surface but
it is not constant on a flux surface in general. The magnetic energy density
of the plasma poloidal field is given by:

wi =
〈B2

p〉
2µ0

=
G2

2µ0V ′

(
∂ψ

∂ρ

)2

(2.29)

Integration over the volume inclosed by the flux surface ρ gives the total
magnetic energy enclosed by this flux surface:

Wi =
1

2µ0

∫ ρ

0

(
∂ψ

∂ρ

)2

G2dρ (2.30)

2.3 Transport Equations

Very important aspect of our simulations is going to be the transport of
different quantities through the plasma. These will tell us a lot about the
evolution of the system. These derivations will rely on definitions and calcu-
lations in the previous section. Most important are the poloidal flux diffusion,
energy transport and the particle transport because these quantities are all
important to the confinement time.

2.3.1 Poloidal Flux Diffusion

The poloidal flux diffusion equation as a function of ρ is a reexpression of
Ohm’s law averaged over a flux surface. The derivation needs some arith-
metics and intermediate steps but is insightful for the way the other diffusion
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equations are calculated in the flux averaging procedure. The starting point
of this calculation is Ohm’s law projected parallel to the magnetic field:

j‖ = σ‖E‖ + (jbs + jcd) (2.31)

with j‖ =
〈j ·B〉
B0

.

Some of the identities we will use to derive the full flux diffusion equation
are too detailed for this part of the thesis but they will be derived in the
Appendix. Two important quantities are:

〈∇ · F〉 =
∂

∂V
〈F · ∇V 〉, (2.32)

and for a scalar H(t) =
∫
V
FdV where the enclosed volume is characterized

by constant φ:

∂

∂t
H

∣∣∣∣
ψ=cst

=

∫
V

∂F

∂t
dV +

∮
S

Fuψ ·
∇ψ
|∇ψ|

dSψ (2.33)

Using these identities we can express the time derivative of the toroidal flux
enclosed by a surface S of constant poloidal flux as:

∂Φ

∂t

∣∣∣∣
ψ=cst

=
1

2π

∂

∂t

∫
V

B · ∇φdV (2.34)

=
1

2π

∫
V

∂B

∂t
· ∇φdV +

1

2π

∮
S

(B · ∇φ)(uψ · ∇ψ)
dS

|∇ψ|
(2.35)

We will need this expression later on to express the time derivative of the
poloidal flux. We will first want to further evaluate this expression. We can
express it using the poloidal and toroidal electric field using the following
identities. ∫

V

∂B

∂t
· ∇φdV = −2π

∮
S

E ·Bp
dS

|∇φ|
(2.36)

uψ · ∇ψ = −2πREφ. (2.37)

Using equations in (2.36 ) we can reexpress (2.34):

∂Φ

∂t

∣∣∣∣
ψ=cst

= −
∮
S

(E ·Bp +BφEφ)
dS

|∇ψ|

= −
∮

(E ·B)
dS

|∇ψ|

= −∂V
∂ψ
〈E ·B〉 (2.38)
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Now this expression is present in equation (2.31) as the parallel electric field.
Now we wish to relate this to the time derivative of the poloidal flux:

∂ψ

∂t

∣∣∣∣
Φ=cst

=
∂ψ

∂t

∣∣∣∣
ρ

+
∂ψ

∂ρ

∂ρ

∂t

∣∣∣∣
Φ

(2.39)

=
∂ψ

∂t
|ρ −

ρB.
0

2B0

∂ψ

∂ρ
(2.40)

but on the other hand:

∂ψ

∂t

∣∣∣∣
Φ=cst

=
∂ψ

∂V

∂V

∂Φ

∂Φ

∂t

∣∣∣∣
ψ=cst

(2.41)

= −∂V
∂Φ
〈E ·B〉 (2.42)

= −2π
〈E ·B〉
T 〈1/R2〉

using 2.19 (2.43)

The last ingredient from (2.31) we still need is the following expression,
derived in A.7:

〈j ·B〉
B0

=
2πR0J

2

µ0V ′
∂

∂ρ

(
G2

J

∂ψ

∂ρ

)
(2.44)

Putting everything together we arrive at the poloidal flux diffusion equation:

σ‖

(
∂ψ

∂ρ
− ρB.

0

2B0

∂ψ

∂ρ

)
=
R0J

2

µ0ρ

∂

∂ρ

(
G2

J

∂ψ

∂ρ

)
− V ′

2πρ
(jbs + jcd). (2.45)

2.3.2 Particle Transport

The continuity equation for a particular plasma particle species α reads the
following:

∂nα
∂t

+∇ · (nαuα) = sα, (2.46)

where nα is species α’s density, uα the fluid velocity of that particle species
and sα is the localized particle source. This expression can be reexpressed in
terms of flux averaging expressions. This derivation is done in the appendix.
The final result is the particle flux equation:

1

V ′

(
∂

∂t
− ρB.

0

2B0

∂

∂ρ

)
(〈nα〉V ′) +

1

V ′
∂

∂ρ
Γα = Sα. (2.47)

The particle fluxes Γα are set by various complex processes which will not
be further treated in this thesis. There are certain sources of fluxes which do
not lie in particle sources.
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2.3.3 Energy Transport

The derivation of the energy transport is a lengthy one but is done in a
similar manner as the particle transport equation (2.47). The end result of
this derivation can be written in a form that is very insightful and easily
displays the different contribution to energy transport in the plasma. The
details of the derivation will not be discussed but this (and all other transport
equations) can be found in Hinton [2]. The result:

3

2
V ′5/3

(
∂

∂t
− ρB.

0

2B0

∂

∂ρ

)[
V ′5/3nαTα

]
+

1

V ′
∂

∂ρ

(
qα +

5

2
TαΓα

)
= Pα (2.48)

Where Pα is the power supplied to the particular particle species. The heat
fluxes that are dissipated convectively and diffusively are given by:

Γα = −V ′G1nα

[ ∑
β∈species

(
Dα
nβ

1

nβ

∂nβ
∂ρ

+Dα
Tβ

1

Tβ

∂Tβ
∂ρ

)
+DE

E‖
Bp

]
(2.49)

qα = −V ′G1Tαnα

[ ∑
β∈species

(
χαnβ

1

nβ

∂nβ
∂ρ

+ χαTβ
1

Tβ

∂Tβ
∂ρ

)
+ χE

E‖
Bp

]
(2.50)

The coefficient G1 is again a geometric quantity and the transport coefficients
χαxβ , D

α
xβ

quantify the transport due to a gradient in a given profile. These
coefficients themselves may rely on the position in the plasma and other
plasma quantities such as the the profiles. Finding correct expressions for
these transport coefficients and solving this equation numerically is one of
the important tasks at hand.

2.4 Sources

Particle Sources
The most important sources of particles are:

• Gas injection system such as gas puffing and pellet injection

• Neutral beam injection

• particles released from the wall through collisions

• Fusion is a source of α-particles.

Whereas the following are particle sinks:
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• Cryogenic pumping at the wall

• Atomic processes such as ionization of injected particles

• Fusion acts as a sink of Tritium and Deuterium

Energy
Energy sources or sinks can be:

• Pe,i is the electron-ion equipartition power that attempts to decrease
the temperature difference. This loss term is given by:

Pei = neνei(Te − Ti), (2.51)

where νei is the ion-electron relaxation time.

• Prad is the radiation loss which can be divided up into bremsstrahlung,
line radiation and cyclotron radiation. The bremsstrahlung can be
quantified by a simple expression, taken from Wesson [1]:

Pbr = 5.35× 10−37Zeffn
2
eT

1/2
e W m−3 Tein keV. (2.52)

The line radiation is not so easily quantified and is different for each
plasma species.

• Patomic are atomic processes which cause energy losses and gains.

• Pfusion is a main source of energy through fusion reactions.

• Paux is a combined factor for all auxiliary heating systems such as
Neutral Beam Injection, Ohmic Heating and RF heating.

2.5 Heating Systems

To reach the required temperature of 10-20 keV we need to substantially
heat the plasma. The initial heating in all tokamaks comes from the ohmic
heating caused by the toroidal current. At low temperatures the ohmic heat-
ing is quite effective and can easily reach a temperature of a few keV. To
reach higher temperatures additional heating schemes are required to reach
ignition. There are two main external heating schemes available for further
heating. These are the injection of energetic neutral beams and the resonant
absorption of electromagnetic waves. After reaching the fusion regime the
heating will be assisted by the energetic alpha particles created during the
fusion process. The external heating systems used in ITER will be discussed
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in more detail in the following sections.

Ohmic Heating
Ohmic heating works just as in metals or other conductive materials. When
a current is applied to a system then it is heated through collisions. The
ohmic heating density is given by:

PΩ = ηj2. (2.53)

where η is the resistivity of the plasma and j the usual current density. As
mentioned earlier, ohmic heating cannot account for all the heating needed
to reach ignition. A problem with Ohmic heating of plasma’s is that the
resistivity of a plasma, in contrast to metals, decreases as the temperature
rises η ∝ T−3/2. Normally this would be favorable behavior but in this case
we cannot heat the plasma to the desired fusion temperature by solely using
Ohmic heating. There are also limitations to the achievable current density
imposed by plasma instabilities. The temperature achievable is dependent
on the scaling law of the confinement time τE but a particular choise called
the Alcator scaling leads to a peak temperature given by :

T̂ = 2.1

(
Zeff
qaq0

)2/5(
aBφ

R

)4/5

keV. (2.54)

For a particular configuration (Zeff = 1.5, qaa0 = and R/a = ) this leads to
a peak temperature of ... at magnetic field of ...

Neutral Beam Injection (NBI)
In order to inject energetic particles into the plasma they need to be neutrally
charged since otherwise they would be reflected by the magnetic fields of the
plasma. These neutral atoms travel into the plasma in straight lines until
they become ionized through collisions with plasma particles. The injected
atoms are subsequently slowed down and eventually they thermalize. This
mean of heating has 3 basic effects: heating, driving current and adding fuel
(when deuterium or tritium beams are used). There are 3 processes which
lead to ionization of the neutral beam:

Charge exchange Hb + H+
p → H+

b + Hp

Ionization by ions Hb + H+
p → H+

b + H+
p + e

Ionization by electrons Hb + e → H+
b + 2e

The absorption of the number of beam particles is governed by the cross-
sections for these different processes. The cross-sections for these processes
are shown in Figure 2.2: In a reactor the electron density will be around 1020
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Figure 2.2: The different ionization cross-sections for the NBI

m−3. For a deuteron beam energy of 100 keV the combined cross-sections
lead to a decay length of 30 cm. The injected beam energy needs to be suf-
ficiently high to avoid infringements on the reactor wall.
The beam ion heating is caused by a friction force between the plasma parti-
cles and the beam particles after ionization. The energy transfer is dominated
by the beam ions because of their high mass and therefore high energy. The
beam ions lose energy through collision with the plasma and each collision
transfers energy from the beam to the plasma. Sivukhin [3] showed in 1966
that the energy decrease of a particle due to the background species s with
Maxwellian distribution fs and thermal velocity vT,s is dictated by:

dEb
dt

= −4πZ2
b e

2

vb

∑
s

(ln Λ)nsZ
2
s e

2×
[

Erf(ws)

ms

− 2ws(ms +mb)

msmb

√
π

e−w
2
s

]
(2.55)

where ws = vb/
√

2VT,s and the index b refers to the beam ions. To make
a qualitative assessment of the energy transfer we can make the following
assumption: A 100 keV ion has a velocity of 3 · 106 m/s whereas in a 5 keV
plasma the thermal velocity of the electrons and ions are respectively 3 · 107

m/s and 5 ·105 m/s. Therefore we can simplify 2.55 by using Erf(x)≈ 2x/
√
π
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for x<< 1 and Erf(x)≈ 1 for x>> 1. The result can be written as:

dEb
dt

= −2Eb
τs

{
1 +

(
Ec
Eb

)}
, (2.56)

where the first term corresponds to the energy transfer to the electrons and
the second term to the plasma ions and Ec is the critical energy at which the
energy to ions is equal to that to the electrons. The beam velocity at which
this happens is called the critical velocity:

vc =

√
2kbT

me

(
3
√
π

4

∑
i

nineZ
2
i

me

mi

)1/3

. (2.57)

The fraction of the initial beam ion energy that is transferred to the plasma
ions can be calculated by using that:

Pi = − E
3/2
c

E
3/2
c + E

3/2
b

dEb
dt

(2.58)∫
Pidt = E3/2

c

∫ Eb0

0

dEb

E
3/2
c + E

3/2
b

(2.59)

1

Eb0

∫
Pidt =

Ec
Eb0

∫ Eb0/Ec

0

Ecd(Eb/Ec)

1 + (Eb/Ec)3/2
(2.60)

where the last integral is known.

Radio Frequency Heating
The other important heating scheme is based on the resonant absorption
of radio frequency electromagnetic waves which is a collisionless process and
can produce strong heating. A magnetized, multi species plasma has multiple
resonant frequencies that give rise to absorption. This variety in wave modes
allows for many different radio frequency heating schemes, all of which consist
of the same general layout. The cold plasma dispersion relation gives a good
approximation to the propagation of electromagnetic waves in a plasma. This
model can therefore be used to investigate the three principal radio frequency
heating schemes. The cold plasma dispersion relation is give by:

ε⊥n
4
⊥ − [(ε⊥ − n2

‖)(ε⊥ + ε‖) + ε2xy]n
2
⊥ + ε‖[(ε⊥ − n2

‖)
2 + ε2xy] = 0 (2.61)

where x and y represent the radial and poloidal direction and the z-direction
is the equilibrium magnetic field direction. All ⊥ and ‖ direction are with
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respect to the equilibrium magnetic field direction and n is the refractive
index. The dielectric tensor has the following components:

εxx = εyy = ε⊥ = 1−
∑
j

ω2
pj

ω2 − ω2
cj

, (2.62)

εzz = ε‖ =
∑
j

ω2
pj

ω2
, (2.63)

εxy =
∑
j

iω2
pjω

2
cj

ω(ω2
cj − ω2)

and (2.64)

εyx = −εxy (2.65)

Where the summation is over electrons and all ion species, ωcj is the gy-
rofrequency of species j and ωpj is the plasma frequency of species j. Since
(2.61) is quadratic in n2

⊥, one of the solution will tend to infinity when the
coefficient of n4

⊥ becomes zero. So ε⊥ = 0 is the condition for a perpendicular
cold plasma resonance. There are three main heating scenarios using radio
frequency absorption. These will be briefly discussed in the order of their
resonance frequencies:

• Ion Cyclotron Heating (ICRH)
The lowest frequency resonance scheme is the ion cyclotron resonance
heating for frequencies ω ∼ ωci. This ion resonance has the limitation
that it needs two (or more) ion species present in the plasma. The
resonant frequency ωii with two ion species is:

ω2
ii =

ωc1ωc2(1 + n2m2/n1m1)

m2Z1/m1Z2 + n2Z2/n1Z1

(2.66)

and it gives a resonant frequency ∼ 40MHz.

• Lower Hybrid Heating and Current Drive (LHCD)
The lower hybrid resonance frequency lies between ωci and ωce and
relies on resonant coupling to a wave in the plasma. For central regions
of a tokamak and neglecting terms ∼ me/mi the lower hybrid resonance
is given by:

ω2
LH ≈

ω2
pi

1 + ω2
pi/ω

2
ce

. (2.67)

This resonance lies within the range ∼ 1-8 Ghz and for a fusion plasma
is typically around 5 GHz.
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• Electron Cyclotron Heating and Current Drive (ECRH/ECCD)
The highest frequency scheme is the electron cyclotron resonance for
frequencies ω ∼ ωce which couples to the electron cyclotron frequency.
The resonance frequency is given by the upper hybrid frequency:

ω2
UH = ω2

pe + ω2
ce (2.68)

This is just above the electron cyclotron frequency and is in the range
100-200 GHz. The disadvantage of these last two heating schemes is
that they heat the electrons instead of the more favorable ions.

2.6 Fusion Reaction

As most people know the most easily accessible fusion reaction is that be-
tween deuterium and tritium. This reaction produces an α-particle with 3.51
MeV and a neutron with 14.1 MeV that stems from the mass deficit of 17.6
MeV. This reaction is induced through collisions between the particles in the
plasma. The Coulomb barrier prevents the fusion reaction to take place at
low impact energies. The D-T fusion reaction is favorable because of quan-
tum mechanical tunneling and occurs at energies just below that needed to
overcome the Coulomb barrier. The cross section for this and other hydrogen
based fusion reactions is given in figure ??:

The reaction rate of the D-T fusion reaction can be calculated using the
distribution functions of the two species:

R =

∫ ∫
σ(v′)v′f1(v1)f2(v2)d3v1d

3v2 (2.69)

where v’ is the relative velocity between v1 and v2. We know that for the ions
in the plasma that are in thermal equilibrium we can write their distribution
function as:

fi(vi) = ni

( mi

2πT

)3/2

exp−
miv

2
i

2T (2.70)

so that the total reaction rate per unit volume after some computation be-
comes:

R =

(
8

π

)1/2

n1n2

(µ
T

)3/2 1

m2
1

∫
σ(ε)ε exp

(
− µε

m1T

)
dε. (2.71)

where µ is the reduced mass and ε the kinetic energy. Now we need to have
the cross-section of the fusion event to be able to calculate the total reaction
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Coefficient T(d,n)4He
BG(keV) 34.3827
mrc

2(keV) 1 124 656
C1 1.17302× 10−9

C2 1.51361× 10−2

C3 7.51886× 10−2

C4 4.60643× 10−3

C5 1.35000× 10−2

C6 −1.06750× 10−4

C7 1.36600× 10−5

Table 2.1: The coefficients for the reactivity as given in equation (2.72)

rate. This cross-section was measured for different fusion processes by Bosch
et al.[4]. The model of the reactivity used in this paper is given by:

〈σv〉 = C1 · θ
√
ξ/(mrc2T 3

i )exp(−3ξ), (2.72)

θ =
Ti

1− Ti(C2+Ti(C4+TiC6))
1+Ti(C3+Ti(C5+TiC7))

, (2.73)

ξ =

(
B2
G

4θ

)1/3

, (2.74)

where 〈σv〉 is in cm3/s and T is the ion temperature in keV. The original
results for the fitting of these coefficients are given in table 2.1:

The maximal error in the fitting of these parameter was .25% within 0.2 ≤
T (keV ) ≤ 100. It can be seen by calculating the reaction rate for an interest-
ing temperature that the fusion reactions come predominantly from the tail
of the Maxwellian distribution. Thus if we are given a density and tempera-
ture profile we can calculate, using equation (2.71), what the birth profile of
the fusion particles is.
The energy generated by the fusion reaction is transported for roughly 80%
by the neutrons and 20% by the α-particles. The neutrons have a very low
cross section with the plasma constituents and it is save to say they leave
the plasma without any collisions with the plasma and thus with 80% of
the energy released by the fusion reaction. The α-particles however do have
a substantial cross-section and will therefore collide with the plasma con-
stituents. This will result in energy transfer from α-particles to the plasma
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particle which in turn results in heating of the plasma. Similar equations as
for the NBI hold for the energy deposition of the α-particles but here were
are also interested in the distribution function of the α-particles in order to
see where they deposit their energy. The starting point of this computation
is the Fokker-Planck equation:

dfα
dt

=
∑
s

C(fα, fs) + C(fα, fα) + S + L, (2.75)

where the S and L represent a source and lost term, the sum over s implies all
plasma constituents and C(fα,fα) take into account the self collisions. The
derivation of this equation can be found in [3]. The collision term between
plasma particles and the α-particles can be expressed using the Landau form
of the collision integral:

C(fα, fs) =
Z2
αZ

2
s e

4 ln(Λ)

8πε20mα

∂

∂v
·
∫
u2I− uu

u3

[
fs(w

mα

∂fα(v)

∂v
− fα(v

ms

∂fs(w)

∂w

]
d3w

(2.76)
Solving equation (2.75) is a very complex problem[5] that is even heavy to
evaluate numerically. However a couple of simple assumptions can be made
that greatly simplify the problem. This equation becomes non-linear by
the self-collisional term C(fα,fα). This term can be neglected because of the
relatively low density compared to the plasma ions. Another assumption that
is used is that the plasma particles are isotropically Maxwellian. In this case
the collision integrals can be preformed analytically and the result depend
on expressions of the error function. Further simplification and computation
is available when the assumption previously made in the NBI section is also
used here: vT i �vα �vTe. In the case of the D-T reaction this assumption
is less valid since vα0 ∼ vTe. In addition to this there is the fact that during
the thermalization of the α-particles the velocity of these particles is reduced
and finally reaches a velocity that is of the order of magnitude of vT i. When
these problems are overlooked and computation is proceeded it is possible to
derive the following collision operator:

C1(fα) =
1

τsv3

[
v
∂

∂v
[(v3 + v3

c )fα] + Z2
v3
c

2

∂

∂µ
[(1− µ2)

∂fα
∂µ

]

]
, (2.77)

With Z2 =
∑
i niZi/mα∑
i niZi/mi

, τs is the characteristic stopping time, vc the critical

velocity defined in the NBI section (2.57) and µ =
v‖
v

. The resulting simplified
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Fokker-Planck equation can be solved for the following 2 source types:

S(v, µ) =
S0

v2
δ(v − v0)δ(µ− µ0) (2.78)

S(v) =
S0

v2
δ(v − v0) (2.79)

In the case of α-particles produced by fusion reactions the source terms (2.79)
is a suitable source term. Even though the produced α-particles will not be
represented by a delta function, the spread in their velocity is so small it
can be effectively modeled by this source term. The resulting steady state
distribution function is given by:

f(v) = τsS0
1

v3 + v3
c

Θ(v0 − v) (2.80)

where Θ(x) is the heaviside step function. This distribution function is ob-
viously very different from the Maxwellian distribution.



Chapter 3

Theory of Optimization

Optimization can be found in all sorts of scientific disciplines: from eco-
nomics to engineering and manufacturing to Mother Nature. Optimization
is an important tool in the analysis of physical systems. In able to make use
of this tool we need to identify an objective which need optimization. This
is a quantitative measure of the behavior of the system. This objective is
subject to change under certain characteristics of the system. The goal of
optimization is to find the variables that optimize the objective. Generally
speaking model of the system at hand has to be expressed. The model needs
to describe the characteristics and evolution of the system being analyzed.
In general this cannot be done with absolute detail. In this case the model
should be chosen such that it mimics the important characteristics but it
should not become to overly complex. This is however a delicate business:
make the model to simplistic and your answers will not give useful insights
but make it to complex and the problem will be unsolvable in the time avail-
able. After the formulation of the objective and modeling of the problem
the optimization can begin. The starting point of the actual calculation is
choosing the appropriate algorithm. There is no universal for an optimization
problem but a choose has to be made from a collection of different type of
algorithms. These choose of the algorithm is up to the user and is an impor-
tant one. This decision should be based on the type of problem and solution
that is being investigated. General optimization problems can be classified
according to the properties of the objective and constraints (convexity, lin-
earity), the number of variables (large or small) or the smoothness of the
problem (differentiable,non-differentiable). Different subsets of optimization
problems can be identified:

• Discrete vs Continuous:
Some problems rely on variables that can only take values from the set
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of integers whereas other problems can be based on variables that can
belong to a set that is uncountable big. Operations such as permuta-
tions of and ordered set are common in discrete optimization problems
but are not needed in continuous optimization problems. Another dif-
ference is the fact that depending on the smoothness of the continuous
optimization problem there is a level to which information in a certain
point can be related to nearby point or even give information about the
global problem. This is different from discrete optimization problems
where the behavior of the objective and the variables can significantly
change even if two points are ’close’ with regard to some measure.

• Constrained vs Unconstrained:
Some of the variables or the objective can be constrained by considera-
tions of the model. This leads to a classification between optimization
problems. Those that have constraints on the variables at hand and
those that do not. Some times it is even safe to discard constraint for
problems which would naturally posses constraints. This can be done
when the algorithm and the solution to the problem are unaffected by
lifting the constraint. The collection of these problems and those that
are unconstrained are dealt by unconstrained optimization algorithms.
These are in general more easy to solve then constrained optimization
problems.

• Linear vs Non-linear:
This classification is characterized by the nature of the objective func-
tion and it’s constraints. When all of these are linear functions of the
variables the problem falls in the linear-programming category. When
either the objective function or the constraints are of higher order in
any of the variables the problem falls in the non-linear programming
category.

• Global vs Local:
Many of the non-linear programming algorithm are restricted to finding
only a local solution of the optimization problem. This means that the
solution that is found yields a smaller value of the objective function
then all nearby feasible points. Some problems need to find the global
solution, which is the lowest value of the objective function of all feasible
points, but in most problems the global solution is hard to recognize
and even more difficult to locate. For problems that are convex or
linear it can be showed that the solutions obtained by looking for local
solutions are the global solutions. In general however, solutions to non-
linear constrained or unconstrained problems may posses local solutions
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that are not global solutions.

This chapter will investigate the mathematics of optimization algorithms
that are applicable to the problem of this thesis. 3 different algorithms are
being looked at and for one of these an important generalization is being
examined[6].

3.1 Direct Search Method

One of the most popular algorithms for unconstrained minimization of mul-
tidimensional problems is the Nelder-Mead algorithm[7], first published in
1965. It is a routine that is widely used in popular programs such as Mat-
lab. The Nelder-Mead algorithm at each step define a nondegenerate simplex
which is a geometrical figure in n dimensions with nonzero volume. At each
iteration the algorithm computes one or more test points and their associ-
ated function values. The algorithm works with four different parameters
that are specified before hand. These are the coefficients of reflection(ρ),
expansion(χ), contraction(γ) and shrinkage(σ). These parameters should
satisfy the following relations:

ρ > 0, χ > 1, χ > ρ, 0 < γ < 1 and 0 < σ < 1. (3.1)

A particular and widely used choice for these parameters are:

ρ = 1, χ = 2, γ =
1

2
and σ =

1

2
. (3.2)

To describe the algorithm it is best to walk through the steps of the algorithm:

1. Order
Order the n+1 vertices according to their function value: f(x1) ≤
f(x1) ≤ . . . ≤ f(xn+1)

2. Reflect
Compute the reflection point xr from

xr = x̂+ ρ(x̂− xn+1) (3.3)

where x̂ =
∑n

i=1 xi/n is the centroid of the n best points.
Evaluate fr = f(xr).
If f1 ≤ fr < fn accept the reflected point and terminate the iteration.
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3. Expand
If fr < f1, calculate the expansion point xe from:

xe = x̂+ χ(xr − x̂) = (1 + ρχ)x̂− ρχxn+1. (3.4)

and evaluate fe. If fe < fr, accept xe and terminate the iteration.
Otherwise accept xr and terminate the iteration.

4. Contract
If fr ≥ fn, preform a contraction between x̂ and the better of xn+1 and
xr.
Outside
If fn ≤ fr < fn+1 preform an outside contraction:

xc = x̂+ γ(xr − x̂) = (1 + ργ)x̂− ργxn+1. (3.5)

and evaluate fc. If fc ≤ fr accept xc and terminate iteration. Otherwise
preform step 5.
Inside
If fr ≥ fn+1 preform an inside contraction:

xcc = x̂− γ(x̂− xn+1) = (1− γ)x̂+ γxn+1. (3.6)

and evaluate fcc. If fc ≤ fn+1 accept xcc and terminate iteration.
Otherwise preform step 5.

5. Shrink
Perform a shrink of all but the best point:

vi = x1 + σ(xi − x1) (3.7)

where i = 2, . . . , n+ 1. The unordered vertices of the next simplex are
x1, v2, . . .,vn+1.

3.2 Line Search Method

One way of iteratively looking for the solution of a optimization method is
by searching for a direction that lowers the value of the objective function at
each iteration. The iteration is given by:

xk+1 = xk + αkpk (3.8)

where αk is a positive scalar that represents the length of the step taken. The
length of the step is decided upon at each iteration on the basis of necessary
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descend conditions. The search direction pk is generally a vector with the
same dimensionality as the variable of the problem at hand xk. It is often
written in the form:

pk = −B−1
k ∇fk (3.9)

Here Bk is a symmetric nonsingular matrix. Different descent methods adopt
different matrices. In the steepest descent method this is the unit matrix,
while in Newton’s method Bk is the exact Hessian ∇2fk. In quasi Newton
methods Bk is a local approximation of the Hessian updated at each iteration.
Using this definition we can show that pk is indeed a descent direction:

pTk∇fk = −(∇fk)TB−1
k ∇fk < 0. (3.10)

As mentioned before, different implementations of the algorithm can be cho-
sen. This affects the choose of the search direction pk and the step lengthαk.

3.2.1 Step Length

When computing the step length αk there is an inherent trade off choose
to be made. It would be advantageous to choose αk such that is the global
minimizer of the univariate function φ():

φ(α) = f(xk + αpk), α > 0. (3.11)

but in general this computation is far to expensive. A more practical strategy
would be to preform an inexact line search and identify a value of α which
adequately reduces the objective function f in order to reach convergence at
an acceptable rate. Sophisticated line search methods can be quit complex
and their entire description are beyond the scope of this thesis but an in-
terested reader is referred to a book by Nocedal and Wright[6] on which the
main lines of this chapter is based.
One of these more practical line search methods would require some neces-
sary conditions on the step lenght α and terminate the search for an adequate
step length once these conditions are met. The following two sets of condi-
tions are most used:

Wolfe Conditions:
The first important condition realizes a sufficient descent in the objective
function f and this is measured by the following inequality condition:

f(xk + αkpk) ≤ f(xk) + c1αk∇fTk pk, (3.12)
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for some constant c1 ∈(0,1) that is chosen by the user. In practice the
constant c1 is chosen to be quite small: c1 ∼ 10−4. The sufficient decrease
condition is illustrated in figure 3.1:

Figure 3.1: The sufficient descent condition (Eq 3.12) illustrated

The sufficient descent condition alone is not enough to ensure the algo-
rithm converges at an acceptable rate. The step length should also be chosen
such that the new point is sufficiently far away from our initial point. To
rule out such insufficiently short step length a second requirement called the
curvature condition is needed:

φ′(αk) = ∇f(xk + αkpk)
Tpk ≥ c2∇fTk pk, (3.13)

for some constant c2 ∈(c1,1). This condition ensures that the derivative
φ′(αk) is greater than c2φ

′(0). This condition can also be intuitively under-
stood because when the slope φ′(αk) is strongly negative we can significantly
reduce f by moving further whereas if φ′(αk) is only slightly negative we
do not gain much by moving allow and we can terminate the search. This
condition is illustrated in figure 3.2. Typical values of c2 range from 0.9 until
0.1 depending on the type of line search method employed.
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Figure 3.2: The curvature condition (Eq 3.13) illustrated

These two conditions make up the well known Wolfe conditions. A step
length may satisfy the Wolfe conditions without being particularly close to
a minimizer of φ. We can, however, modify the curvature condition to force
αk to lie in at least a broad neighborhood of a local minimizer or stationary
point of φ. The strong Wolfe conditions require αk to satisfy:

f(xk + αkpk) ≤ f(xk) + c1αk∇fTk pk (3.14)

|∇f(xk + αkpk)
Tpk| ≤ c2|∇fTk pk| (3.15)

The only difference with the Wolfe conditions is that we no longer allow the
derivative φ′(αk) to be too positive. Hence, we exclude points that are far
from stationary points of φ(α).

Goldstein Conditions:
A similar set of conditions are the Goldstein conditions. This set of condi-
tions also ensure the step lenght αk achieves sufficient decrease but is not to
short. They are given by:

f(xk) + (1− c)αk∇fTk pk ≤ f(xk + αkpk) ≤ f(xk) + cαk∇fTk pk, (3.16)

where c can again be chosen by the user and lies in the domain c∈(0,1/2).
The second inequality 3.16 again ensure sufficient decrease whereas the first
inequality now ensure the length of the step from below. A disadvantage of
the Goldstein conditions with respect to the Wolfe conditions is that there are
possible scenario’s where the first inequality rules out all possible minimizers
of φ(α). This set of conditions is depicted in figure 3.3:
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Figure 3.3: The Goldstein conditions (Eq 3.16) illustrated

3.2.2 Convergence of Line Search Methods

In order to have convergence of the algorithm to a minimizer of φ(α) we
need to not only choose the step length αk appropriately but also the line
search direction pk. The angle between pk and the steepest descent direction
-∇fk needs to meet certain requirements in order to reach convergence of
the algorithm. The following theorem by Zoutendijk quantifies the effect of
appropriately chosen step lengths and can be used to show requirements on
pk so that the algorithm converges. The theorem is as follows but the proof
is omitted:

Zoutendijk Theorem:
Consider any iteration of the form (3.8), where pk is a descent direction

and k satisfies the Wolfe conditions (3.13 & 3.12). Suppose that f is bounded
below in Rn and that f is continuously differentiable in an open set N con-
taining the level set L ≡ x : f(x) ≤ f(x0), where x0 is the starting point of
the iteration. Assume also that the gradient f is Lipschitz continuous on N .
Then ∑

k≥0

cos2 θk‖∇fk‖2 <∞. (3.17)

The Zoutendijk condition (3.17) implies that

lim
k→∞

cos2 θk‖∇fk‖2 = 0. (3.18)

and this limit can be used to derive what conditions on pk are needed to
reach convergence. If the algorithm ensures that θk ∈ (−π

2
, π

2
) then there is
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a positive constant δ such that:

cos θk ≥ δ > 0 for all k. (3.19)

Then it naturally follows by combining this with (3.18) that:

lim
k→∞
‖∇fk‖2 = 0. (3.20)

This shows that the algorithm that picks the direction of pk within the ap-
propriate direction with respect to −∇fk ensures that ‖∇fk‖ converges to
zero, provided that it obeys some form of the Wolfe or Goldstein conditions.
Equation (3.18) only ensures that the algorithm is attracted to a stationary
point of the objective function. More sophisticated generalization of the line
search method can ensure that the convergence reaches a local minimum.
The rate of convergence is of course an important aspect of the computa-
tional speed of the algorithm. As an example of the rate of convergence
we take here an ideal objective function that is a strongly convex quadratic
function (3.21) and employ the steepest descent method.

f(x) =
1

2
xTQx− bTx. (3.21)

The error norm, which quantifies the distance between a certain iteration
point and the optimum value x0, can be approximated for each iteration by:

‖xk+1 − x0‖2
Q ≤

(
λn − λ0

λn + λ0

)2

‖xk − x0‖2
Q. (3.22)

Here λn and λ0 are resp. the largest/smallest eigenvalue of Q and the ap-
proximation provides a worst case bound. The approximation (3.22) does
however give an accurate indication of the steepest descent behavior when
n¿2. The rate-of-convergence behavior for non-linear objective functions is
essentially the same.
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3.3 Sequential Quadratic Programming

One of the most widely used algorithm for small and large scale non-linear
constrained optimization problems is that of the sequential quadratic pro-
gramming (SQP). Also the optimization work presented in this thesis is based
largely on this optimization scheme. The SQP scheme is an algorithm that
generates iterative steps by solving quadratic programming (QP) subprob-
lems. The SQP has a significant advantage when dealing with significant
nonlinearities in the constraints of the problem. The SQP problem in its
most general form is given by:

min f(x) (3.23)

subject to ci(x) = 0, i ∈ E (3.24)

cj(x) ≥ 0, j ∈ I (3.25)

where I and E represent the collection of inequality resp. equality con-
straints. The functions f : Rn → R and c : Rn → Rm are smooth. One can
see that the constraints can be linearized by:

min
p

fk +∇fTk p+
1

2
pT∇2

xxLkp (3.26)

subject to ∇ci(xk)Tp+ ci(xk = 0, i ∈ E , (3.27)

∇cj(xk)Tp+ ci(xk ≥ 0, j ∈ I. (3.28)

Let us now, for the sake of clarity, abandon the inequality constraints and
replace ci(x) by c(x). The lagrangian of this problem is then given by
L(x, λ) = f(x) − λT c(x). The matrix A denotes the Jacobian matrix of
the constraints:

A(x)T = [∇c1(x),∇c2(x), . . . ,∇cm(x)] (3.29)

Under the following assumptions:

• The constraint Jacobian A(x) has full row rank

• The matrix ∇2
xxL(x, λ) is positive definite on the tangent space of the

constraints

problem 3.26 has the unique solution (pk, λk) that satisfies:

∇2
xxLkpk +∇fk − ATk λk = 0 (3.30)

Akpk + ck = 0. (3.31)
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This problem can be identified as the Quadratic Programming or Newton’s
method problem: [

∇2
xxLk −ATk
Ak 0

] [
pk
λk

]
=

[
−∇fk
−ck

]
. (3.32)

By restatement of the variables this can be made into a symmetric problem.
The algorithm needed to solve this problem is beyond the scope of this thesis.
The solution to this QP problem can be derived through many different
methods such as symmetric indefinite factorization, the Schur-complement
Method or the Null-space method. Explaining these methods in detail is also
not very insightful but the second method shall be addressed rather briefly.
The Schur-complement method is an useful way of solving the system of
(3.32) when one of the following conditions are met:

• ∇2
xxLk is well conditioned and easy to convert

• ∇2
xxL−1

k is known explicitly through a quasi-Newton updating formula

• the number of equality constraints is small

Through a procedure called Gaussian elimination it is then possible to derive
the block upper triangular system:[

∇2
xxLk ATk
0 −Ak(∇2

xxLk)−1ATk

]
. (3.33)

Through this procedure it is then possible to derive an explicit formula for
the inverse of the symmetric form of equation (3.32):[

∇2
xxLk ATk
Ak 0

]−1

=

[
C E
ET F

]
. (3.34)

where

C = (∇2
xxLk)−1 − (∇2

xxLk)−1AT (A(∇2
xxLk)−1AT )−1A(∇2

xxLk)−1, (3.35)

E = (∇2
xxLk)−1AT (A(∇2

xxLk)−1AT )−1 (3.36)

F = −(∇2
xxLk)−1AT (A(∇2

xxLk)−1AT )−1. (3.37)



Chapter 4

Alpha Particle Heating

A part of the work on this thesis was to develop a model for the alpha particle
heating to the electrons. This process, as mentioned before, is complex and
complicated. To describe the entire process would take considerable compu-
tation time but a simplification might suffice for RAPTOR. This assumption
was tried and tested within the work of this thesis. This chapter will describe
the models considered for implementation and the results from these models
with respect to the full model implemented in the CRONOS simulation code.
First of all it is very important to identify which assumptions made in the
theory section are violated and identify how much effect these violations have
on the calculated deposition profiles. The main problem is the fact that after
the alpha particles are created in a fusion event, the energy deposition to
the plasma constituents is not instantaneous. During the deposition process,
the fast alpha particles diffuse through the plasma, away from their ’birth’
magnetic surface. This causes the problem that the deposition process is not
completely described by the theory as described in the earlier section.

To completely describe the deposition and diffusion of the fast alpha particles
considerable computation would be needed to fully solve the Focker-Planck
equation in Eq (2.75) using Monte-Carlo simulations. This is implemented
in the CRONOS simulation code used for ITER-like discharge simulations in
a separate module called SPOT but this method is too computationally de-
manding to be feasible for RAPTOR. Therefore it was needed to find a simple
model that is less demanding in terms of computation time. To this end, two
different models were developed and tested against the SPOT model. In the
following sections the specifications of these models are discussed and the
results of the benchmark are shown.
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4.1 Direct Deposition Model

The first model is also the least complex and operates under the assumption
that the characteristic stopping time is long compared to plasma collision
times and short compared to the simulation time step. Also it is assumed
that the stopping time is several orders of magnitude smaller then the fast
ions and plasma constituents diffusion timescale. This way we may assume
that the diffusion of the fast ions plays a negligible role on the energy de-
position profile. These requirements lead to an estimate for the stopping
time between . . . s and . . . s for ITER. When this requirement is met the de-
position profile can be approximated by using the birth profile of the alpha
particles. The procedure to calculate the deposition profile is then straight-
forward: Given the ion and electron temperature and density profiles, the
birth profile (Eq (2.72)) and the energy fraction to electrons/ions (Eq (2.60))
can be calculated. Combining these results with the difference of initial and
final alpha particle energy gives the energy deposition profile to the electrons
and ions as the energy created by the fusion event at a certain position in the
plasma. Thus this model approximates the problem by completely neglecting
any transport of fast ions during the energy transfer.

4.2 Simple Diffusion Model

The second model that was considered does, to some degree and in a specific
way, take into account the diffusion of the fast alpha particles during the
energy transfer. As mentioned before, solving the diffusion equation is a
difficult and demanding task. As an example: keeping track of the position,
collisions and energy of the fast ions during their thermalization is a tedious
and computationally demanding job. For the model used here, however, a
different approach was used. To introduce the diffusion of the fast ions we
first turned to the well known result for the source free 1D diffusion equation.
This result is given by equation (4.1):

n(x, t) = n0
e−

x2

4Dt

2
√
πDt

(4.1)

In the simple diffusion model this result is used at each space point of
the space discretized grid to calculate a diffusion term. This is done by
using a diffusion coefficient taken from literature [8] (D = 0.1m2/s) and
calculating the alpha particle density and stopping time. These are then
used to calculate the density contribution from diffusion at each grid point.
This model then gives the result from a simplistic diffusion model for the birth
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density profile of fast alpha particles and should therefore give a better result
for the energy deposition profile. It is however a more complex calculation
and when the direct and simple diffusion model do not differ all that much
the direct approach will be preferable for RAPTOR. Especially since the
RAPTOR code also uses analytic first derivatives which are in the case of
the simple diffusion model much more complex. Figure ?? shows the simple
diffusion model contributions as a function of ρ:

This model can be used to describe a diffusion with respect to nearest
neighbors or to any degree of neighbors. In the work of this thesis the effect
of introducing higher orders of neighbors was also analyzed. The effects on
the fast ions particle flux are shown in figure 4.1 and it can be seen that the
higher orders correspond to bigger particle flux:

Figure 4.1: The effects of introducing higher orders of nearest neighbors on the
fast ions particle flux. Shown here are 1st (red), 2nd (blue) and 5th (green) nearest
neighbors and the result when all neighbor effects are taken into account (yellow)
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4.3 Benchmark Results

At this point two different models to simulate the heating of the plasma
through collisions with fast alpha particle produced in fusion events were de-
veloped. To evaluate the effectiveness and correctness of these models they
are compared with the results from the earlier mentioned Monte-Carlo code
SPOT (Schneider et al. [9]). This comparison is done on the basis of energy
deposition profiles to the electrons and the total (ions + electrons) energy
deposition. Figure 4.2 shows these profiles for SPOT, the direct deposition
model and the simple diffusion model at 3 different times during the ramp
up. This is to ensure that different regimes of the important plasma profiles
are tested.

Figure 4.2: The energy deposition profiles at 3 different time steps for SPOT (red
dashed line), direct model (blue line) and the simple diffusive model (cyan line)

It can be seen that the simple diffusion and the direct deposition model give
very different profiles with a clear diffusion signature when these models are
compared with respect to each other. However, neither models seem to be
particularly better when compared to the SPOT deposition profile. It can be
seen that the diffusion turning point (where the particle flux becomes zero),
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as seen in the simple diffusion model (around ρ ≈ 0.4) is found in the SPOT
model results at a different points (around ρ ≈ 0.6). It can also be seen that
the fraction of energy deposited to the electrons and ions seems to be differ-
ent in SPOT at certain times. This effect seems to have a larger impact than
the diffusion. Therefore a correction factor in the calculation of the energy
fraction to the electrons was added and tested. This can be seen in figure 4.3:

Figure 4.3: The energy deposition for different adaption factors: 110% (yellow
line), 100% (blue line), 95% (green line) and 90% (cyan line) of the original profile.

It can be seen that this correction is more effective than the introduction of
the diffusion and that the simple model now seems to effectively model the
heating of the plasma through fusion events. To also quantitatively analyze
the model the profile of the relative error between the simple model with an
adaption factor and the SPOT model was determined. The result is shown
in figure 4.4:

The fact that the correction factor is more effective than the diffusion model
might be explained by the fact that there is a delay in the energy deposition
but no large diffusion. This delay can be of the order of the evolution time
step and is not modeled in RAPTOR. This difference can be slightly corrected
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Figure 4.4: Relative error for the different adaption factors, using same color
coding as , dashed line shows average of relative error

for a correction factor of 5% as seen in figure 4.4. The peaks in this figure
are caused by the switch on of NBI heating, causing a temporal and localized
increase of fusion events.



Chapter 5

Validating The RAPTOR Code
For ITER

As mentioned before, two different simulation codes are used during the work
described in this thesis. The RAPTOR code was previously validated for the
TCV tokamak using the simulation code ASTRA [10]. The work done in
this thesis is based on the international collaborated tokamak ITER which is
going to be different from the TCV tokamak in many aspects. The simulation
code RAPTOR should therefore be adapted to include all important physics
relevant to the ITER tokamak and this update should also be validated. The
following sections describe this validation.

5.1 Introduction

This validation is done using the fully integrated simulation code CRONOS,
which was previously mentioned. There are several differences between these
simulation codes. One of the main differences is that the geometry of the
nested flux surfaces are computed, except for the boundary, in CRONOS
whereas RAPTOR uses a prescribed equilibrium. This prescribed flux sur-
face equilibrium is taken, for a particular scenario, from the CRONOS results
and is kept fixed in all ITER simulations of that scenario in RAPTOR. This
means that the 2D Grad-Shafranov equilibrium (eq 2.12) is not evaluated
but presumed known. By also fixing the enclosed toroidal flux the spatial
distribution of ρtor are fixed. This in turn has the consequence that the ge-
ometric quantities such as G1, G2 and V ′ are fixed. This assumption was
analyzed in the original development of RAPTOR [10]. It was found that
differences in these profiles are limited and acceptable since a doubling of
β resulted in a variation of G2/J and V’ of less than 10%. This difference
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is one of the places where the physics in RAPTOR is different from the
more extensive CRONOS. Another difference is the fact that the evolution
of the ion-temperature is also pre-described. This can potentially have a
great impact on the evolution of the discharge through heat exchange with
the electrons. Other differences will become apparent during the rest of this
comparison.

Within the CRONOS code, it is possible to choose which profiles need to
be evaluated and which can be prescribed by predetermined profiles. During
the validation process we started by creating a baseline in which the equa-
tions evaluated in CRONOS match those considered in RAPTOR as much
as possible. The most important nonlinear coupling between plasma param-
eters during the evolution of tokamak profiles originate from the electron
temperature and q-profile. The particle density profiles are much harder to
model and more uncertain. Also the coupling of the profile with other plasma
profiles is quit weak. Therefore the density profiles are usually not modeled
but prescribed. The same holds for the ion densities with the exception that
the radiation from plasma ions can be important. The ion and electron den-
sity profiles are also correlated because of quasi-neutrality. Therefore these
can be approximated by typical profiles and be pre-described effectively. The
main evolution equations that are therefore considered in RAPTOR are the
energy transport equation (eq 2.48) and the poloidal flux diffusion equation
(eq 2.45). These equations hold several quantities which are addressed dif-
ferently in both simulation codes. These differences were analyzed in detail
during the work in this thesis and .

In the case of the poloidal flux diffusion equation the most important quantity
is the parallel conductivity σ‖(Te), the bootstrap current and the geometric
factors mentioned earlier. Since the differences arising from geometric fac-
tors were analyzed previously they are not considered here. The geometry
in the comparison runs are chosen such that they resemble the RAPTOR
equilibrium in the flat top of the CRONOS simulations. The conductivity
and the bootstrap current were considered during this validation and will be
addressed in the following sections.

In the case of the energy transport equation the heat and particle fluxes
are important as well as the sources and sinks considered. In the case of
the heat flux there are two important influences which need to be validated.
Firstly, the heat fluxes that are considered in RAPTOR is just the heat flux
due to electrons whereas CRONOS can also consider the ion temperature
(and its evolution/heat flux) as well as the heat exchange between electrons
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Physics RAPTOR CRONOS
Heat flux (q) χBgB, Te χBgB, Te , Ti

Particle flux (Γ) NB ne
Psource Pα, Pbrem, PΩ, Pei Pα, Pbrem, PΩ, Pei, Prad

Table 5.1: Schematic representation of simulation differences between RAPTOR
and CRONOS

and ions (when at different temperatures). Secondly the transport model
used to model the energy transport can be different. To minimize this differ-
ence, the transport model used to evaluate the energy transport was chosen
identical. The transport model used was taken from literature and devel-
oped and tested for RAPTOR during the work on this thesis. As mentioned
before, another difference in the energy transport is the particle flux which
can be evaluated in CRONOS but is not available in RAPTOR. Lastly the
energy sources and sinks considered can, in principle, be different or their
influence can be evaluated differently. These differences were also considered
and all the differences described above will be discussed in more detail in the
following sections. The differences are given schematically in Table 5.1:

5.2 Baseline Comparison

To start the comparison both models were stripped down to contain not
much more then the energy transport and parallel conductivity. This was
used as a baseline from which further comparison is done. Additional ingre-
dients to the full set of differential equations were added and their influence
analyzed. In this baseline comparison two major differences (besides the dif-
ferences already mentioned) and an important equivalence were identified.
The important equivalence is the energy transport model. We use a model
described in literature [11] that is also implemented and tested in CRONOS.
This model was also developed and tested for RAPTOR and were found to
be equivalent. However, major difference were found in the calculation of the
neoclassical term in the conductivity. Two different models are used for the
calculation of this correction term. Where CRONOS uses the NCLASS code
described in [12], RAPTOR uses the treatment based on Sauter(SA) et al.
[13]. Due to the coupling between the two differential equations the difference
in σ has effect on both the evolution of ψ and Te. A last major difference
is the numerics used in both codes. Where CRONOS uses . . . . RAPTOR
on the other hand uses spline functions and a general Crank-Nicholson dis-
cretization to arrive at Ordinary Differential Equations (ODE’s) which are
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solved using the previously mentioned Cholesky deomposition. The latter
differences can not be analyzed easily since they are inherent to the codes
used and have to be accepted as intrinsic features. For more information
about the numerics of both codes the reader is directed to [10] (RAPTOR)
and [14] (CRONOS). The (re-)development of the treatment of the transport
model and neoclassical conductivity is discussed in the following sections.

5.2.1 Transport Model: Bohm-GyroBohm

Over the years, many different energy transport models have been developed
based on very different physical or experimental arguments. We have chosen
to use a transport model that has already been implemented in CRONOS
and has proven its value in experiments from the ITER database, JET and
Tore-Supra discharges [11] and is widespread in the fusion community. This
model is based on transport on two length scales. The first is the scale of the
gyration around the magnetic field lines (gyro-Bohm, given in eq (B.7)) and
the second on the length scale of the tokamaks’ minor radius (Bohm, given in
eq (B.6)). By mixing the dependence on these two length scales, the authors
of the article show that the transport model can predict the transport of a
wide range of machine parameters. This transport model has shown to hold
the correct scaling properties that allow it to work in different machines and
represents a possible general transport model. A more elaborate derivation
and description of the Bohm-GyroBohm transport model is given in the
Appendix.

5.2.2 Conductivity

The calculation of the transport parallel to the magnetic field lines is believed
to be well described by the neoclassical theory. The neoclassical conductivity
and the bootstrap current are used in a wide range of tokamak simulations.
To calculate the neoclassical conductivity for a wide range of plasma param-
eters one needs to solve a set of multi-species fluid equations using multiple
odd velocity moments of the Fokker-Planck equation. The NCLASS solves
this set of equations but is inconvenient for use in rapid codes. It is also
known to not use the full collision operator which can, in some cases, lead
to errors as big as 20% according to [13]. The calculation of the neoclassical
conductivity as described in [13] is based on the code CQLP and CQL3D
which uses the linearized operator to solve the Fokker-Planck equation. The
SA neoclassical conductivity and bootstrap current are based on a polyno-
mial fit of the geometry (fraction of trapped particles) and collisionality (ν∗,
which is in turn based on plasma parameters such as density and tempera-
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ture) on the results from the CQLP and CQL3D codes. The main question in
this section is how to compare results from CRONOS and RAPTOR using
these different neoclassical corrections. An additional question that needs
to be asked is which of these approaches gives the best results for plasma
parameters in the ITER regime. This is however a very complex question
and the details of these different models are beyond the scope of this thesis.
Therefore a brief argumentation from the authors of the papers/models in
question is given:

• . . . . . .

Next, the difference in outcome of these models and its impact on the
evolution of the profiles is discussed. During the validation procedure it was
found that results for the conductivity were different by approximately 20%,
the difference is illustrated for a typical ITER scenario profile in figure 5.1:

Figure 5.1: Left figure shows the neoclassical resistivity for a typical profile cal-
culated using NCLASS (red dashed) and Sauter (blue). Right figure shows the
relative difference between the profiles

This difference in neoclassical conductivity causes a difference in the evo-
lution of both the ψ and Te profiles. Which in turn causes a difference in the
conductivity throught its temperature dependence, causing a feedback effect.
Determining its effect on the complete evolution of the profiles is therefore
complex and needs to be dealt with cautiously. Another problem in analyz-
ing this error is the fact that the numerical computation is different and that
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these errors occur simultaneously.

The conductivity is usually calculated by using the following form [1]:

σ‖ = σneoσspitzer. (5.1)

where σspitzer is the standard classical conductivity and the neoclassical con-
ductivity is the part that is different for the models used. Originally, RAP-
TOR used a typical profile (for a given tokamak) to calculate the neoclassical
conductivity and used this profile throughout the simulation. This would nor-
mally be acceptable because the neoclassical correction does not vary much.
It was found that a typical ITER-like simulation goes through such a wide
range of plasma parameters that this approach was no longer acceptable.
Therefore the model had to be modified accordingly such that it accommo-
dates the ITER plasma regime.

5.2.3 Evolution Comparison

Now that the differences in the models describing the transport in the evo-
lution equations have been discussed it is time to look at the comparison
between the RAPTOR and the CRONOS results. The baseline results con-
sists, as already mentioned, of nothing more then ohmic heating and current
drive and, in the case of RAPTOR, a pre-described magnetic equilibrium.
This gives a good insight into the differences in the profiles from the basis
of the two codes. In this comparison the profiles that we are looking at are
representative for the difference in any of the other profiles. These are the
electron temperature, ι, the plasma current Ip and the plasma loop voltage
Upl. The following figure 5.2 shows, for each profile, the results from RAP-
TOR and CRONOS at 4 different times. It can be seen that the codes seem
to be in good agreement from visual inspection:
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Figure 5.2: The comparison of 4 different profiles at 4 different time steps. Solid
blue line represents the results from RAPTOR and the dashed red line represents
CRONOS results.

The profiles seem to be in good agreement but to be more certain a
quantitative analysis of the results was also done. This quantitative analysis
was preformed by calculated the relative difference of the RAPTOR profile
with respect to the CRONOS profile. The mean of this error (Eq 5.2) and
its deviation say something about how good the profiles match each other.
It is insightful to look at the time dependence of the ρ-averaged difference:

∆O(t) =

∑
ρ
Orp(ρ,t)−Ocr(ρ,t)

Ocr(ρ,t)

Nρ

(5.2)

Throughout this comparison, the profiles will be quantitatively compared
using this method. For clarity, these results will be compared to (at least)
this baseline result. The time dependent result for the baseline comparison
is shown in figure 5.3:
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Figure 5.3: The results from ρ-averaged relative difference between RAPTOR
and CRONOS.

These relative differences show that the profile difference between RAP-
TOR and CRONOS are approximately 5% for the ohmic heating scenario,
where a correction factor of 15% was used to alleviate the difference in the
treatment of the neoclassical conductivity. A distinctive kink can be ob-
served at t = 60s but this can be associated to turning point for the ohmic
driven current going from uniformly increasing to flat-top. Another distinc-
tive feature of these profiles is the discontinuity at approximately t = 84s.
This is caused by numerical instabilities in CRONOS for which the reasons
are unclear and which could not be resolved. Since the flat-top was reached
far before this point we have been able to establish, with good confidence,
that the behavior of these difference profiles behave normally in the flat-top
and that no major differences arise.

The differences that do arise are, as mentioned, in the order of 5% and
can only be caused by differences in the neoclassical corrections of the con-
ductivity and numerical treatment of the evolution. The latter can not be in-
fluenced and thus be analyzed but the neoclassical correction can be adapted
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by a constant multiplication factor. The effect of tuning this factor is shown
in figure 5.4:

Figure 5.4: A comparison of the relative differences results for different σneo
adaption factors. Blue: original 15%, Green: 20%, Red: 5% and Cyan: 0%

5.3 Poloidal Flux Diffusion

The poloidal flux diffusion equation (Eq 2.45) holds, apart from the con-
ductivity another two ingredients that might alter the evolution during the
simulation besides the earlier mentioned G1, G2 and J . These are the sources
for current density from auxiliary sources and the bootstrap current. The
auxiliary current is normally always combined with an energy source in the
energy transport equation. Here we bench marked the auxiliary current and
heat sources also in combined fashion. This section provides an insight into
the bench marked bootstrap current only but the next section will treat the
auxiliary energy source and corresponding current drive.
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5.3.1 Bootstrap Current

As for the conductivity, the bootstrap current is also a neoclassically calcu-
lated quantity with turbulence induced variations. It is therefore subject to
the same form of calculations as the conductivity and the same difference
arises. Also the bootstrap current in RAPTOR is calculated using the fit
found in Sauter [13] whereas CRONOS uses the NCLASS routine to cal-
culated the neoclassical bootstrap current. This means that the different
calculation procedures yield differences in evolution which can not be ex-
cluded. Also, RAPTOR also uses a typical profile to calculate the bootstrap
current here but since the bootstrap current in L-mode does not contribute
greatly this will no affect results significantly. However, when the H-mode
regime is entered this is a different story and the bootstrap needs adaptation.
The comparison was done in L-mode and the results were equivalent to the
baseline comparison. No additional error was introduced by the bootstrap
current, mainly because its contribution is negligible in L-mode.

H-mode adaption for Bootstrap current. To be written.

5.4 Energy Transport Equation

The energy transport equation does not differ from CRONOS apart from the
already mentioned transport model. There are the energy sources and sinks
that are to be considered and their implementation that can differ between
RAPTOR and CRONOS. There are inherent power sinks and sources to
the plasma physics such as radiation losses, particle flux and heat exchange
between plasma species. On the other hand there are also multiple auxil-
iary power sources that can be applied to heat the plasma. These different
methods were already discussed in an earlier stage. The difference between
RAPTOR and CRONOS in the way they treat these external power sources,
along with the intrinsic power sources and sinks, will be discussed in coming
sections.

5.4.1 Particle Flux

In Eq 2.48 there are two different flux terms: the heat flux (eq 2.50) and the
particle flux (eq 2.49). In RAPTOR, only the first term is taken into consid-
eration because this will be the main contribution. However, it can be shown
from the profiles used in CRONOS that the energy flux due to the particle
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flux can be a contribution between −6%&8% but it averages out over the
profile then not much more then 4% of the energy transport. That should
mean that the energy transport equation is not affected much by neglecting
the particle flux. In figure 5.5 the relative contribution of the particle flux
to the time-derivative of the energy content of the plasma is considered with
respect to particle and heat flux. In this picture, the divergences have been
cut out to give a clearer picture:

Figure 5.5: The contribution of particle flux relative to total energy flux for a
typical ITER profile. The red dotted line shows the average over the profile of
−3.5%.

To check the influence of this affect on the total evolution of the profile
during the ramp-up phase we have set the same conditions as in the baseline
test but now added the evolution and contribution of the particle flux. In the
following figure (5.6) the results of this simulation were added to the original
results from figure 5.3:
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Figure 5.6: The result when introducing the particle flux power loss (green line),
compared to the baseline results (blue line).

It can be seen that the effect of adding the particle flux to the energy
transport equation affects the Te and Upl profiles with respect to the baseline
run but only slightly and this effect is negligible.

5.4.2 Ion-Electron Heat Exchange

The ion-electron heat exchange occurs when different species in the plasma
have different temperatures. In a typical ITER discharge, the ion tempera-
ture is expected to be lower then the electron temperature by approximately
10 − 20%. Due to this temperature difference there will be a power loss for
the electrons and a power gain for the ions. In RAPTOR, the ion tempera-
ture is not simulated but the power loss to the electrons can be of significant
magnitude depending on the ion temperature. The heat loss for the electrons
due to this process is given in equation (2.51)

The fact that the ion temperature is not simulated in RAPTOR makes it
difficult to correctly simulate this power loss. The choice was made to take
the ion temperature as a fraction of the electron temperature. Thus assum-
ing that the profile has the same shape but a space-independent constant
multiplication factor that induces this loss process. When the factor changes
greatly over time or space due to, for instance, only heating to the elec-
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trons/ions this factor can be adapted.
The effect on the difference of implementation was first evaluated using a
CRONOS run which had predetermined ion temperature and density profiles
such that the ion temperature was 90% of the original electron temperature.
During this new run, only the electron temperature was simulated to see
what the effect would have been on the electron temperature and no addi-
tional heating was used. The results, compared to the baseline comparison,
can be seen in figure 5.7:

Figure 5.7: The result when introducing the heat exchange power loss (green
line), compared to the baseline results (blue line).

Next is a comparison of the same RAPTOR run with a CRONOS run
in which the ion temperature was actually simulated. It was found that the
ratio changed a little over time. However it did significantly changed over the
plasma radius. Therefore the correction factor was made linearly dependent
on the plasma radius. This new ratio was 90% in the center and 100% at the
edge. A new adaption coefficient was chosen such that it would match the
ratio between the ion and electron temperature of the CRONOS run. The
results of this comparison are shown in figure 5.8:
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Figure 5.8: The result when introducing the heat exchange power loss(red line),
now for a simulated ion temperature, compared to the baseline results (blue line).

5.4.3 Radiation Losses

Multiple types of radiation play a role in tokamak plasma physics but only 2
can cause significant losses. These are the bremsstrahlung, caused by accel-
eration of a charged particle, and the line radiation which is most significant
for the impurity ions. The power loss due to the bremsstrahlung is given in
Eq (2.52) and is affected by the impurities but only globally through Zeff .
The line radiation however is affected by the impurities in a more complex
manner. Information about each impurities’ temperature, density and ion-
ization is needed to be able to construct a full power loss profile. Such an
extensive calculation is beyond the scope of the RAPTOR code and would
significantly slow down the computation, making it less useful for the opti-
mization. The bremsstrahlung loss was implemented in RAPTOR as part of
this thesis using expression (2.52). The effect on the evolution of adding this
radiation can be seen in figure 5.9:
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Figure 5.9: The result when introducing the bremsstrahlung power loss (green
line), compared to the baseline results (blue line).

It can be seen that the difference is minimal when introducing the bremsstrahlung
radiation. It can therefore be assumed that the bremsstrahlung radiation
model in RAPTOR is equivalent to CRONOS. As an additional test we also
compare the power loss profiles. The results for 3 different time steps are
given in figure 5.10. The remaining difference in these profiles stem from
differences in the evolution of the electron temperature.
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Figure 5.10: Power loss profiles due to bremsstrahlung at 3 different time steps
for RAPTOR (blue) and CRONOS (green)

The line radiation is a more complex process. Although it is hard to
model exactly, it does have a significant affect on the discharge. Therefore
it is necessary that a loss term is modeled that mimics the physics of line
radiation. This is done in RAPTOR by adding a loss term that is propor-
tional to the ohmic power to the electrons. In addition to this, the peaks of
line radiation from the largest contributor (Argon) are modeled by gaussian
peaks. These peaks are centered around certain temperatures at which the
contributing ions radiation is peaked. The multiplicative factors to these
peaks are proportional to the ion density and chosen constant factor such
that the peaks match the results from CRONOS as good as possible. The
results from this procedure can be seen in figure 5.11:
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Figure 5.11: The result when introducing the line radiation power loss (green
line), compared to the baseline results (blue line).

5.4.4 Auxiliary Heating

The auxiliary heating plays a crucial role in the heating of the plasma dis-
charge. It is therefore vital to properly model the physics of the auxiliary
heating to be able to do the optimization. As a first comparison we will
introduce to RAPTOR the heating and current drive profiles due to electron
cyclotron resonant heating (ECRH/ECCD). By using the profiles given in
CRONOS the difference due to the way of calculating these profiles is elim-
inated and the effect of heating/current drive on the evolution is isolated.
The next step is to let RAPTOR calculate the deposition profiles itself but
still using similar models (gaussian distribution). The final step in this com-
parison will be between the RAPTOR model (Gaussian distribution) and the
more complex model used in CRONOS. Another means of auxiliary heating
was also developed for RAPTOR, parallel to the work done in this thesis.
This model was bench marked by P. Geelen [] in his thesis. The difference
between this model and the model used in CRONOS is also analyzed here.

For the electron cyclotron resonant heating, we have chosen a rather er-



5.4 Energy Transport Equation 60

ratic profile to make any differences apparent. The heating profile used is
shown in figure 5.12:

Figure 5.12: Energy deposition over time

Firstly, the most general case, where the deposition profiles from CRONOS
are used, will be analyzed. The results can be seen in figure 5.13. This shows
the results with heating compared to the baseline results. It can be seen
that the heating causes an increase in the errors, especially in Upl, but that
the errors are still within the acceptable range. Also it can be seen that the
errors increase when the input power is changed.
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Figure 5.13: The results of adding a heat source to the evolution (green) compared
to the baseline (blue)

Next up is the comparison between similar models which give a gaussian
deposition profile at a given radius and with a given width. In principle,
both models should give the same (or at least similar) deposition profiles.
Since the difference for identical profiles is known from the previous result
this will show a difference in the calculation of the deposition model. The
following figures show: (5.14) the difference between the calculated deposi-
tion profiles and (5.15) the impact on the evolution of the profiles. It can be
seen that the deposition profiles for these models are very similar and that
the error caused is therefore also quite similar. There is however a small dif-
ference in the error of the temperature profile and in the plasma loop voltage.
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Figure 5.14: Gaussian deposition profiles calculated in CRONOS (red dashed
line) and RAPTOR (blue line)

Figure 5.15: Similar figure as 5.13 but now using RAPTOR ECCD/ECRH heat-
ing model (red line)
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The CRONOS code also has a model which is based on experimental pa-
rameter such as inclination and frequency of EM waves. This was it is more
realistic model for the power deposition but also more difficult to control and
model. This is however a realistic test for the way this heating his controlled
in the future by experimentalists. It is therefore useful to identify the dif-
ferences in the calculated deposition profile by this model and RAPTOR’s
model. The difference in these profiles can be seen in figure ??. Also the im-
pact on the evolution gives, again, valuable insight, this is shown is figure ??:

It can be seen that . . . . . . and bla bla bla

Now the same results are depicted for the comparison with ECCD (elec-
tron cyclotron current drive) using the same procedure only now show the
results of the first two steps in a single picture in figure 5.17. First the com-
parison between the CRONOS deposition profiles and the RAPTOR model
is shown in figure 5.16:

Figure 5.16: Current drive deposition profiles for the gaussian RAPTOR model
(blue lines) and the gaussian CRONOS model (red dashed lines).
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Figure 5.17

It can be seen that the results are very similar to that of the ECRH
heating. The deposition profiles for the current drive are, however, not as
similar as the power deposition is. The fact that this does not seem to have
a large effect on the evolution suggests that the current drive is not of great
influence. It was found that the current drive from the ECCD is not more
then a few percent of the total current density. In figure ?? the comparison
is shown for the complex ECCD model from CRONOS with respect to the
gaussian RAPTOR model:

Another important heating scheme is the injection of energetic neutral
beams. As mentioned before, this was implemented and tested for RAPTOR
by P. Geelen. The comparison between this model and the most sophisti-
cated model in CRONOS is however done here. The results can again be
seen in the same format in figure ??:
It can be seen that bla bla bla and bla bla bla
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5.4.5 Alpha Particle Heating

As described in Chapter 4, important work in this thesis was to implement
the process of alpha particle heating of the plasma as a result of the fusion
process. The implementation and bench marking of the model used in RAP-
TOR was described in Chapter 4. It was however not yet shown how this
interaction influences the evolution of the Te and ψ profiles with respect to
the CRONOS evolution. This section will show the results from the compar-
ison for the alpha particle heating.

Figure 5.18: This figure shows the influence of introducing the fusion power
(green line) with respect to the simulation with only heating (blue line).

Figure 5.18 shows the results of including the alpha particle heating to
the electrons in the model. This is done with respect to the ECCD heated
evolution. This is because the alpha particle production needs considerable
pressure to be significant in the heating of the plasma. It can be seen that
introducing this effect has only little effect on the evolution compared to
ECCD heated evolution.
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5.5 Full Transport Model Comparison

At this point it is time to test the RAPTOR model with all the necessary
ingredients combined. This means that all different interactions are taken
into account in the following comparison. However, we do want to look at
the effect of the electron-ion heat exchange separately because of the pre-
described ion temperature and density profiles in RAPTOR.

5.5.1 Electron-Ion Heat Exchange

As previously for the ohmic heating case, we now investigate the impact of
also introducing the electron-ion heat exchange to the evolution of the full
model. The same procedure of comparison for this plasma interaction is used
as before: First use an ion temperature of 90% of the original electron tem-
perature in CRONOS and secondly, let CRONOS evaluate the ion tempera-
ture and adapt the RAPTOR coefficient to match the average temperature
difference.



Chapter 6

Optimization

The previous chapter shows the verification of the validity of the RAPTOR
simulation code with respect to the CRONOS simulation code. We are now
in the position to start the numerical optimization procedure for ITER sim-
ulations. In this optimization procedure we will use the sequential quadratic
programming (SQP) method to optimize the trajectories of the plasma cur-
rent Ip and the ECCD/ECRH sources. At this point the NBI power is not
yet optimized. This is mainly because the power, in ITER, can not be set
at continuously distributed powers but only at full or half power. This com-
plicates the optimization of this actuator and given the limited freedom for
this actuator it was decided that we fix the NBI trajectory for now. The
actuators are parameterized by a piecewise linear function. The discretiza-
tion of this function is determined by the user by choosing a set of time grid
points. The choice on the number of time grid points corresponds to a choice
in number of optimization parameters. This parameters are then optimized
in an optimization program using SQP. The resulting trajectories will also be
simulated using the CRONOS simulation code to check their validity. Ad-
ditionally, the sensitivity of the trajectories with respect to changes in the
model will be investigated.

6.1 Optimization set-up

In order to do the optimization the resulting profiles from simulations have
to be translated to a scalar which reflects their performance with respect to
some requirements, introduced in Chapter 3 as the cost function. This cost
function can be motivated by many different aspects of tokamak operation
such as: instabilities or turbulence suppression, coil limits and efficiency.
Additionally, some areas of the parameter space might be unfavorable or
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inaccessible due to limits on, for instance, the coils or plasma stability. These
parts of the parameter space can be avoided by imposing constraints on
the actuators or on the plasma profiles. The set of possible cost functions
and constraint together with their motivations are discussed in the following
sections.

6.1.1 Cost-Function

In the original optimization work in the thesis by F. Felici [10] several dif-
ferent cost functions were motivated and tested. All these cost functions are
dependent only on the final state of the plasma, x(tf ), and its derivative
ẋ(tf ). Depending on the problem one is trying to solve, different contribu-
tions to the cost function can be taken into account. The cost functions are
generally defined by a continuous norm function given by:

||f(a, b)||2W ≡
∫ b

a

[W (ρ′)f(ρ′)]
2
dρ′ (6.1)

where W (ρ) is a weight function and the function f(ρ) describes the
penalization with respect to the desired profile characteristic. As mentioned
previously, several cost functions were defined in the original work. Their
form and motivation were:

• The first cost function choose to penalize any deviations from a desired
final rotational transform profile ι. It was defined as:

Jι = ||ι(tf )− ιref ||2Wι
(6.2)

• To reach a steady-state scenario, in which the operation could in theory
be continuous instead of pulsed, the final loop voltage profile would
have to be zero. Therefore any contribution to the loop voltage profile
is penalized in this cost function:

JUpl = ||Upl(tf )||2WUpl
= ||ψ̇(tf )||2WUpl

(6.3)

which is only dependent on the time derivative of the plasma state at
the final time

• After the initial ramp-up phase, it is desired that a stationary state
is reached. The degree of stationarity is determined by looking at the
ρ derivative of the loop voltage profile. The cost-function is therefore
given by:

Jss =

∣∣∣∣∣∣∣∣∂Upl∂ρ
|tf

∣∣∣∣∣∣∣∣2
Wss

(6.4)
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• In order to maximize the duration of the flat-top operation phase one
has to minimize the ohmic flux consumption. Therefore the consump-
tion of ohmic flux is penalized by:

JψOH = ∆ψ2
OH = [ψOH(tf )− ψOH(t0)]2 (6.5)

Which has a slightly different form that the general cost function form.

• It can also be desirable to penalize any deviations from a desired final
electron temperature profile:

JTe = ||Te(tf )− Te,ref ||2WTe
(6.6)

During the work on this thesis it was found that two additional cost
functions can be preferable to the ones originally used. The first one is a
different approach to penalizing the distance from a stationary state. This
was needed because the original cost function definition was insensitive to
final loop voltage profiles which have a long current diffusion timescale. This
meant that these discharges would be relatively close to a stationary state
but the final evolution would take considerable time. Therefore the discharge
would most likely evolve into a plasma state that would violate some of the
plasma constraints. The cost function for stationarity that was added to the
possible choices is given by:

J (2)
ss =

∣∣∣∣σ‖ (Upl(ρ)− Upl(ρ = 1))
∣∣∣∣2
W

(2)
ss

(6.7)

It was found that this definition of the stationarity state cost function is
less likely to reach a loop voltage profile with a long diffusion timescale. It
is worth noting that a stationary state Upl-profile would be approximately
described by:

U ss
pl ≈ σ‖

∂ψ

∂t
(6.8)

Another cost function that was added is motivated by a result from a
article by J. Citrin [15]. In this article it was found that the threshold
at which a turbulence process known as Ion Temperature Gradient (ITG)
mode sets in can be raised by increasing the factor s(ρ)/q(ρ). The threshold
is typically described by the behavior given in 6.9 :

|∇Ti|
Ti
∼ 1 +

s(ρ)

q(ρ)
(6.9)

This is schematically illustrated in figure (6.1):
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Figure 6.1: Schematic representation of the improvement of the ITG threshold

It is therefore favorable for a hybrid scenario in ITER to have an as
broad as possible q-profile at the end of the ramp-up phase. We therefore
wish to maximize the volume-averaged factor s

q
. This is represented by a

cost function that has a slightly different form as the other cost functions:

Js/q = −
∫ 1

0

V ′
s(tf , ρ)

q(tf , ρ)
dρ (6.10)

6.1.2 Constraints

The operation of ITER is, of-course, limited by constraints on the specifica-
tions of the machine. The limitations have to be properly taken into account
in order to reach feasible actuator trajectories after the optimization. These
constraints have to be translated to constraints on the actuator trajectories
and the (predicted) plasma profiles during operation. These constraints are
formulated as constraints on the 1D profiles, not on the coil currents or power
supply specifically. These constraints typically have 2 different forms:

• Direct linear (in-)equality constraints on the actuator trajectories. These
are typically in the form:

Aeqp = beq (6.11)

Aineqp ≤ bineq (6.12)

where the actuator trajectories are parameterized by a vector p. One
example would be a limitation on the ramp-up speed of the plasma
current:

∂Ipl
dt

.

• Constraints on the (predicted) plasma profiles. These typically show
non-linear behavior with respect to the parametrization of the actuator
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trajectories. A constraint is usually described by a function ci(t, x(t)) ≤
0. The full constraint is normally casted into an integral form:

Ci =

∫ tf

t0

(max(0, ci(t, x(t))))2dt− ε ≤ 0 (6.13)

where ε > 0 is a small relaxation parameter.

Different motivations for the relevant constraints have been identified
during the work for this thesis. Some were already used in the original work,
others were updated to resemble ITER relevant values and yet others were
introduced during the work on this thesis to accommodate ITER simulations.
A list of all the constraints used in the optimization results is given here:

• Constraint on lowest q:
The hybrid scenario feature q-profiles which are slightly above one.
This way it avoids sawtooth crashes which can trigger NTM’s or dis-
ruptions. This is imposed as a constraint on q or ι:

q(ρ, t) > 1 ∀t, ρ (6.14)

• Constraints on Ip:
Due to limits on the ITER coils the plasma current is limited but also
the ramp-up and ramp-down speed of the plasma current is limited.
These constraints, for ITER, are given by:

0.5MA ≤ Ip ≤ 15MA (6.15)

−0.4MA/s ≤ ∂Ip
∂t
≤ 0.25MA/s (6.16)

• Constraint on l
(3)
i :

The ITER team uses an normalized internal inductance denoted by l
(3)
i .

It is given by:

l
(3)
i =

2V 〈B2
p〉

(µ0Ip)2R
. (6.17)

This internal inductance is limited from above by the vertical plasma
positioning provided by the coils. Therefore the operational limits on
the coils can be tranlated to a physical upper limit constraint on the
internal inductance. The MHD stability of the plasma puts a constraint
on the lower limit of l

(3)
i . The complete constraint for ITER is given

by:
0.65 ≤ l

(3)
i ≤ 1.2 (6.18)
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• Constraint on PECCD:
The energy source for the ECCD sources are limited which puts a
constraint on the total input power by ECCD sources:∑

i

PECCD
i ≤ 20 MW (6.19)

• Constraint on PNBI:
Similarly, the energy source for the NBI is also limited, putting a sep-
arate constraint on the total input power from the NBI sources.∑

i

PNBI
i ≤ 33 MW (6.20)

6.1.3 Local Minima

A problem for non-linear optimization problems is that the obtained mini-
mum of the cost function might not be a global minimum for the parameter
space investigated. Mathematically it is very hard to prove that a global
minimum even exists but proving that the obtained minimum is the global
minimum is even harder to prove. A method to alleviate this problem and
reducing the chance of reaching a local minimum at the end of the ramp-
up was described in the previously mentioned thesis by F. Felici [10]. This
method is based on increasing the parameter space of free parameters and
will be briefly reviewed here for the reader.

The procedure followed to minimize the chance of not ending in a global
minimum is inspired by multi-grid methods. It starts by choosing a minimal
number of optimization parameter, which in our case is typically one free
parameter per actuator (apart of course from the fixed NBI actuator). The
optimization problem is solved for this case and the solution is taken as the
starting point for a new iteration. In this iteration a new time point is added
to increase the number of free optimization parameters per actuator. Since
the starting point is chosen to be the solution of the previous iteration, the
algorithm can always return to the previous solution if no better solution is
available. This procedure is repeated until the time grid is divided in enough
grid points such that the cost function is no longer decreasing significantly
upon increasing the number of free optimization parameters.
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An additional problem regarding local minima is caused by the initial con-
ditions. One important point is that the initially chosen actuator trajectory
can affect the optimized trajectory. A way to avoid this is by computing a
normal distributed set of initial trajectories from which the optimization is
done for a relatively small number of iterations. From this set a new set of
the best optimized trajectories that differ significantly are then taken to be
optimized further for a larger number of iterations.

6.2 L-mode Optimization Results

Now that the optimization set-up has been discussed we are ready to start
applying this optimization procedure to the case of ITER simulations. The
objective of this research was to see whether this method of optimizing the
actuator trajectories yields better results than the more experience based
heuristic optimization done in literature. In order to do a comparison be-
tween these different optimization methods we need to take a reference case
from literature. For our comparison in the L-mode optimization we choose
the recently published results by D. Hogeweij et al. [16]. This reference
case and the results obtained in this article are discussed in the next section.
After this the numerical optimization results are discussed and compared to
this reference case in the following sections. Subsequently the optimal tra-
jectories sensitivity to changes in the model, as well as the active constraints
during the ramp-up, are investigated.

6.2.1 Reference Case

The previously introduced reference case reported two different results on the
optimization of ITER hybrid scenario. The first optimization results were
obtained by using NBI, ECCD and LHCD auxiliary heat and current drive
sources. The second results were obtained with only NBI and ECCD sources.
Both these results only involve the L-mode confinement regime during the
entire simulation. Here we have chosen to only look at the second set of
results because the LHCD is not contained in the ITER baseline design and
not (yet) simulated in RAPTOR. The article also reported on differences in
the actuator trajectories between different transport models. For our pur-
poses it is enough to look only at the previously discussed Bohm-gyroBohm
transport model. These results were taken as a starting point and reference
case for our numerical optimization. This reference case is characterized by
a plasma current ramp-up until t = 80 sec, an off-axis NBI source of 16 MW
and two ECCD sources located at ρ ∼ .4 & .55 with a combined power of 20



6.2 L-mode Optimization Results 74

MW. A time trace of the actuator trajectories can be found in figure (6.2):
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Figure 6.2: A schematic picture of the actuator trajectories in the reference case.
Blue line is the plasma current, ECCD sources at ρ ∼ .4 (red line) and ρ ∼ .55
(green line) and the NBI source (cyan line)

The specifications of the simulation, both hardware and plasma specifi-
cations, were taken from the ITER modeling team predictions on the ITER
L-mode hybrid scenario. These specifications include but are not limited
to the plasma current ramp rate, ne and Zeff evolution and the geometry.
These specification were taken from the simulation results as an input to the
RAPTOR simulation. The evolution of the geometry is a exception in the
sense that it is kept fixed in RAPTOR as previously explained. We chose
therefore to start the RAPTOR simulation at t = 20 seconds because the
last closed magnetic surface reaches it final form at this time. The goal of
the optimization in [16] was to reach an as broad as possible q-profile at the
end of the ramp-up phase. The authors did not however pay attention to
the degree of stationarity at the end of the ramp-up. In our optimization we
therefore did the optimization for two different cost functions. First was with
a cost function that best resembles the goal of the reference case: broadening
the q-profile. To this purpose we used the cost function Js/q introduced in
previous section (eq. 6.10) as our optimization goal. The second optimiza-
tion was done with an extra cost function contribution, namely: the degree
of stationarity reached at the end of the ramp-up. This was done by using a
composite cost function given by:

J = νssJss + νs/qJs/q (6.21)
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The reason to do this is because the fact that stationarity is not reached
at the end of the ramp-up could mean that the evolution can cause problems
during the flattop phase. These problems could be that the constraints are
violated in the flat-top (such as q < 1) or that the improved results on
the broadening of the q-profile vanish by evolution. The results from the
numerical optimization in RAPTOR are shown in the next section.

6.2.2 Optimized Trajectories

Here we will discuss the results from the numerical optimization procedure as
discussed in the previous sections and compare their results to the reference
case. While obtaining these results we used the procedure of increasing the
number of free parameters but the results shown here are the final results,
the results at intermediate stages will be discussed in a different section. The
time grid points chosen are:

t = (20 30 40 50 60 70 80 90 100) (6.22)

As mentioned before we did two different optimizations with two different
cost functions. We will first look at the results that had the same objective
as the reference case. Subsequently we will look at the results were the ob-
jective of increasing stationarity was also introduced. Finally the difference
in the resulting trajectories will be shown and discussed.

Optimized volume averaged s/q: broad q-profile
The first case will try to match the objective of the author in the reference
case as closely as possible and achieve better results. There are two ways
to track our progress with respect to our objectives. The first is comparing
the resulting q-profiles visually. This is the way the authors assessed their
progress. The second is by comparing the value of the cost function in both
RAPTOR and CRONOS. This is a more direct and decisive way of compar-
ing but also slightly more complicated. The complication in comparing the
results in this way lies in the fact that the optimal value for the cost function
relies on the magnetic equilibrium. For most of the cost functions described
in the first section the optimal value is zero. For instance the cost function
for stationarity is zero when the plasma reaches a stationary state. This is
however not so easy with the cost function Js/q. For RAPTOR, because the
equilibrium is fixed, the optimal value for Js/q is also fixed. The optimal value
and the corresponding q-profile can be calculated by solving an optimization
procedure for the available base functions for the different plasma quantities.
The optimal value for Js/q in RAPTOR was determined at Js/q = −253.15
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and the optimal q-profile can be seen in figure (6.3). The same is not true
however for CRONOS and this calculation is unfortunately not possible in
the CRONOS simulation code. Additionally the optimal value will also dif-
fer for each run because the magnetic equilibrium will change which makes a
comparison between a RAPTOR and a CRONOS simulation unreliable when
using the cost function values. However the comparison of cost function val-
ues is still a reliable tool to measure the increase in the ITG threshold, even
in CRONOS.
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Figure 6.3: The optimal q-profile with largest 〈s/q〉 for equilibrium used in RAP-
TOR as a function of ρ. Whether this profile is physically feasible is not known

During the work on the optimization it was found that an increase in Js/q
could be obtained using the same sources as in the reference case. However it
became clear that even better results could be obtained when a more central
ECCD source was added to the optimization. Here we will only look at the
results from this optimization because they were significantly better then
with just two sources. First we will look at the differences in the actuator
trajectories. Figure (6.4a) shows the difference in the plasma current ramp-
up and figure (6.4b) shows the different ECCD trajectories:



6.2 L-mode Optimization Results 77

20 40 60 80 100
2

4

6

8

10

12

14

16

t

Ip
 [

M
A

]

 

 

Optimized
Reference

(a) Ip

20 40 60 80 100
0

5

10

15

20

t

P E
C

C
D

 [
M

W
]

 

 

EC @ .4
EC @ .55
EC @ .2

(b) PECCD

Figure 6.4: The differences in actuator trajectories form the reference case (solid
lines) and the numerical optimization (dashed lines)

It can be seen in these picture that for the Ip a current overshoot is
favorable for obtaining a broad q-profile at the end of the ramp-up phase.
This is in accordance with results found experimentally at JET (Hobirk et
al. [17]) and with previous results from numerical optimization for TCV.
When looking at the ECCD sources is can be seen that the power deposition
is moved from the center of the plasma towards more off-axis near the end
of the ramp-up phase.

It is also very interesting to look at the improvement in the cost function
and to look at the q-profile at the end of the ramp-up. In table (6.2a) the
cost function values are shown for the different RAPTOR and CRONOS
runs. For RAPTOR there is an extra quantity called relJs/q defined as:

relJs/q =
Jopt − Js/q

Jopt − Js/q,ref
. (6.23)

Which gives a measure of the improvement on the distance towards the op-
timal value of the cost function. It can be seen from this table that cost
function is decreased significantly in both RAPTOR and CRONOS. How-
ever we cannot speak about the decrease in distance from the optimal value
in CRONOS since the optimal value is not known.

Additionally it is very interesting to look at the resulting q-profile as sim-
ulated by CRONOS. To this end we have done a CRONOS simulation with
the resulting actuator trajectories from the numerical optimization. Figure
(6.5) shows a comparison between the q-profile at the end of the ramp-up
between the reference case and the numerically optimized case:
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RAPTOR Js/q rel Js/q CRONOS Js/q

Reference case -146.14 1 -215.52
Optimized case -230.93 0.208 -289.10

Table 6.1: The cost function values for the numerical optimization and the ref-
erence case, as calculated by CRONOS and RAPTOR
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Figure 6.5: Comparison of resulting q-profile as simulated by CRONOS by refer-
ence case and with optimized actuators

It is also interesting to look at other profiles at the end of the ramp-up
and compare these to the results from RAPTOR. This can be seen in figure
(6.6). Here it can be seen that again these seem to match quite well.
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Figure 6.6: Comparing resulting profiles from CRONOS (red dashed line) and
RAPTOR (blue solid line) at the end of the ramp-up phase

Adding Stationarity
Now we have seen that it is possible to significantly decrease the cost function
using numerical optimization, when looking at a cost function that aims to
broaden the q-profile, it is time to also seek to improve on the degree of
stationarity. This is done, as mentioned previously, by adding a term to
the cost function looking to flatten the Upl-profile. The same numerical
optimization is then done with this new cost function. Figures (6.7a) and
(6.7b) show the resulting actuator trajectories compared to the reference
case.
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Figure 6.7: The differences in actuator trajectories form the reference case (solid
lines) and the numerical optimization (circles)

A table with the results for the different cost functions. The different con-
tribution were weighted using νss and νs/q such that their contributions have
the same order of magnitude. The table shows the unweighed contributions
in order to compare with previous results.

RAPTOR Js/q rel Js/q CRONOS Js/q

Reference case -146.14 1 -215.52
Js/q case -230.93 0.208 -289.10

Composite case -218.29 0.326 -257.61

(a) The Js/q values.

RAPTOR Jss rel Jss CRONOS Jss rel Jss

Reference case 8.993× 10−3 1 7.958× 10−3 1
Js/q case 0.7546 8.392 2.6437 332.20

Composite case 3.126× 10−4 0.035 9.67× 10−4 0.122

(b) The Jss values.

Table 6.2: The unweighed cost function values for the optimized case and the
reference case, as calculated by CRONOS and RAPTOR. This optimization was
done for a composition cost function: J = νssJss + νs/qJs/q

Again, additional insight into the improvement of the optimization can
be gained by looking at the new q-profile as simulated by CRONOS. The
q-profile at the end of the ramp-up phase is shown in figure (6.8a) were it is
compared to the reference case and the previously optimized case were only
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Js/q was optimized. Since now we have also tried to optimize the Upl-profile
it is also interesting to look at this for the different trajectories. Figure (6.8b)
shows the Upl-profile for the reference case, the Js/q optimized case and the
case were J = νssJss + νs/qJs/q was optimized.
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Figure 6.8: A comparison of the q and Upl-profiles at the end of the ramp-up
for the reference case (dashed lines), the Js/q optimized case (circles) and the
composite case (squares).

Just as in the previous case it is also interesting to look at the differences
in the resulting profiles from RAPTOR and CRONOS. Figure (6.9) shows
the most relevant profiles as calculated by the two different simulation codes:
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Figure 6.9: Comparing RAPTOR and CRONOS resulting profiles at the end of
the ramp-up phase when using the optimized actuators

It is clear from figure (6.4) and (6.7) that the resulting actuator trajec-
tories are significantly different when optimizing for different cost functions.
It is interesting to see where these trajectories differ from each other. Figure
(6.10) shows a comparison of the two different trajectories. It can be seen
that the biggest change is in the trajectory of the most off-axis ECCD source.
This is also the general picture in other L-mode optimization that were done
during the work on this thesis. The more off-axis the ECCD source, the more
sensitive it is to changes in the composition of the cost function.
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Figure 6.10: The differences in actuator trajectories form the Js/q optimization
(dashed lines) and the composite optimization (circles)

A different way to show the differences between the optimized cases and
the reference cases is given here. Figure 6.11 shows the actuators trajectories,
a contour plot of the q and Te-profiles. Lastly the final time q, Upl and Te-
profiles are shown to show the improvement of the different objectives.
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Figure 6.11: Comparison of the results from RAPTOR simulations of the opti-
mized actuator trajectories, contour plot of the q and Te profiles and the q, Te and
Upl profiles at t = tf . First column (gray lines) shows the reference case, second
column (blue lines) show results from Jsq optimization and the last column (red
lines) are from Jcomp optimization.

6.2.3 Model Sensitivity

The optimization done in the above pictures were all based on both theory
and empirical based models for the conductivity, transport and many other
aspects of tokamak physics. These models are however not yet tested for the
ITER tokamak since it is still under construction. The resulting trajectories
for this specific model might not be generalizable for a wider range of model
parameters. This problem is encountered in a wider range of computational
sciences and it is important to investigate to what extend the solutions are
appropriate for other model parameters. To this extend we do additional sim-
ulations of the optimal trajectories found in the optimization but now with
different model parameters. These new model parameters are perturbations
of the original model parameters with a gaussian distribution of 5− 25% for
the differen parameters. The resulting profiles from these new simulations
are analyzed and the renewed cost function values are calculated. The distri-
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bution of the new cost function values gives information about how general
the optimal trajectory is with respect to the model. In this analysis we have
chosen to perturb the following model parameters:

• σpert
‖ ∼ 90%− 110% ∗ σold

‖

• apert
gB ∼ 75%− 125% ∗ aold

gB

• apert
B ∼ 95%− 105% ∗ aold

B

• Zpert
eff ∼ 95%− 105% ∗ Zold

eff

As mentioned before, measures are taken to minimize the chance of reach-
ing a local minima by increasing the number of free time grid points per
actuator. Here this method can be used to identify the optimal number of
free points while still reaching a result that is generalizable to a wider range
of model parameters. This can be seen in figure (6.12) where, for the optimal
trajectory at each number of free points a set of 30 new model parameters
are recalculated. This figure shows that the nominal cost function value de-
creases with increasing number of free time grid points. It also shows that
with increasing number of free points the spread of cost function values de-
creases until 6 free times points is reached, after which the spread increases
again. The combined effect of a decrease in nominal cost function and spread
after perturbations at the 6th free time point make this the optimal number
of free points. This is however a choice which can be different when other
purposes are investigated. Because the decline in nominal cost function after
5 free points might also be related to the specific time point added at that
step in the optimization procedure, it is probable that this decline is not a
generic feature of the optimization. An optimization with a different adding
sequence, so adding the different time grid points at different iterations of
the optimization procedure, lead to the discovery that this is indeed not a
generic feature of the optimization.
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Figure 6.12: Cost function values for increasingly larger number of parametriza-
tion points. The solid blue line shows the nominal Js/q decreasing with increasing
number of free time points. Also shown are the cost function values for simulations
with perturbed model parameters (boxplot and red dots). The boxes show the range
of 25%− 75% from the mean value of the distribution.

6.2.4 Active Constraints

In this section we look at which constraints limit the further improvement of
the cost function.
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Figure 6.13: Blue dashed lines show the time traces of the constraints as simulated
for the Jsq optimized actuators. The dashed dotted red lines show the constraint
as simulated for the Jcomp optimized actuators. The dashed green lines show the
implemented constraints

6.3 H-mode Optimization

The optimization in the L-mode shows an improved result over the heuristic
method of optimization because the complexity of the actuator trajectories
considered is far greater with the numerical optimization. Therefore this
method considers trajectories normally not considered with heuristic opti-
mization. To give a complete overview of the capabilities of this method of
optimization we also like to show optimized trajectories for a H-mode hybrid
scenario. To this extend we show here the results from optimization for the 3
different cost function compositions when employed in the H-mode discharge
simulation. As a starting point for the H-mode optimization we simulated
a baseline scenario which resembles the typical ITER hybrid scenario envi-
sioned by the ITER modeling team. To this extend the transport model was
adapted, as mentioned previously, to simulate the H-mode pedestal. The
pedestal height is set by using a control method at Te,ped ∼ 5 keV and the
pedestal width is fixed at ρped = 0.9. Additionally the electron density ne
parametrization was adapted to resemble the L-H transition and simulate
the typical H-mode evolution. Using this density parametrization and the
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modifications in the transport model we set up a baseline H-mode simulation.
The goal of this baseline scenario is to reach H-mode hybrid scenario with
Te0 ∼ 20 keV , ne0 ∼ 9.5 · 1019 and Q ∼ 5 while using full NBI (33 MW) and
ECCD power (20 MW) and satisfying q > 1. The results from this baseline
scenario are shown in figure 6.14:
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Figure 6.14: The first row shows the time traces of the actuator trajectories and
second row the core electron temperature and density. Figure (c-h) show the Upl,
q, Te and ne-profiles at 3 different times

This baseline scenario was used as a starting point for the H-mode opti-
mization. The same procedure was used as for the L-mode optimization and 3
different cost functions were considered: Js/q, Jss and Jcomp = νssJss+νsqJsq.
The weights are chosen such that the optimization of Jcomp reaches an inter-
mediate state between Jss and Jsq. The results of the optimized trajectories
are shown in figure 6.15. This figure shows the Ip actuators, contour plots of
V ‘PECCD(ρ, t), q and Te and final time q, Te and Upl-profiles.
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Figure 6.15: The first row show the Ip and NBI actuators. The second row figures
show the contour plots of V ‘PECCD, the third row figures show the q contour plots
and the fourth row show the Te contour plots. The last row shows the final time
plots of the q,Upl and Te profiles of Jsq (blue lines), Jss (red lines) and Jcomp (green
lines)

Again the time traces of the constraints give extra insight in the limita-
tions on the optimization. The time traces plots are shown in figure (6.16)
.
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Figure 6.16: time traces of the implemented constraints for the different optimized
actuators simulated. The Jsq constraints are in blue dashed lines, the Jss in red
dashed dotted lines and Jcomp in solid black lines. The dashed green lines show the
implemented constraints

In H-mode the model sensitivities were also investigated by evaluating the
cost function values for 30 model perturbations. Figure 6.17 shows the distri-
bution of the cost function values after simulating the optimized trajectories
at each intermediate step with the perturbed model.
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Figure 6.17: shows the nominal (blue line) decrease with increasing number of
free time points. Additionally it shows the cost function values when simulating
the optimized trajectory with a set of 30 different perturbed model parameters (red
dots). The boxes show the 25th and 75th percentile interval

In addition to the model perturbations we also did the full optimization
procedure with different ne evolution and L-H transition timing. We altered
the global density by a multiplication factor of both ne = 0.9 · ne,old and
ne = 1.1 · ne,old. The L-H transition was shifted by 10 seconds in both
direction: tLH = 60 and tLH = 80. Figure (6.18-6.19) show the differences
between the original optimization and the optimization for these perturbed
scenarios.
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Figure 6.18: shows the differences between the nominal optimization (gray lines),
an optimization with ne = 0.9 · nnome (blue lines) and with ne = 1.1 · nnome (red
lines)
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Figure 6.19: shows the differences between the nominal optimization tLH = 70sec
(gray lines), an optimization with tLH = 80sec (blue lines) and with tLH = 60sec
(red lines)



Chapter 7

Conclusion

This work has shown that the optimization of actuator trajectories can be
successfully done by means of a numerical optimization procedure such as is
implemented in the RAPTOR simulation code. The fact that the non-linear
plasma physics is in some cases not the full theoretical description does not
outweigh the fact the trajectories considered are far more complex then any
trajectory ever considered under heuristic optimization. The performance
can be a factor of 10 times better as the heuristic optimization as verified by
the more complete simulation code CRONOS. It is however still uncertain
wether a global or local minima was reached at the end of the optimization.
It is however nearly impossible to prove that a global minima is reached
in such a complex non-linear optimization problem. Certainly in the case
where a composition cost function is employed we know that either of the
contributions can not attain its most favorable final time profile.

7.1 Outlook

A great opportunity in improving this work lies in doing the work for the
JET and ASDEX-Upgrade tokamaks. The numerical optimization done here
for ITER has not been verified experimentally since ITER is still under con-
struction. Applying this optimization tool to existing tokamaks and there-
fore verifying its performance with experimental data can greatly increase
the validity of numerical optimization is the fusion plasma physics commu-
nity. Further more new procedures can be developed to minimize the chance
of reaching a local minimum at the end of the optimization. A few examples
would be to start from an ensemble of un-optimized actuator trajectories is
order to remove any bias from these begin conditions. An other would be
to perturb the optimized trajectories in order to escape a local minimum.
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A final point of improvement would be to also do the L-mode optimization
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Appendix A

Mathematical Derivations

A.1 Flux Diffusion

〈∇ · F〉 =
∂

∂V

∫
(∇ · F)dV =

∂

∂V

∫
(∇ · F)Rdφdlp

dψ

|∇φ|

=
∂

∂V

∮
F · ∇V
|∇V |

Rdφdlp by Gauss

=
∂

∂V
2π

∮
F · ∇V ∂ψ

∂V

Rdlp
|∇V |

=
∂

∂V
〈F · ∇V 〉 (A.1)

We can derive for a general scalar field F(t,x,y,z) that defines a scalar function
H(t) =

∫
V
FdV , where the integral is taken over a volume enclosed by a flux

surface, the following:

∂

∂t
H

∣∣∣∣
ψ=cst

=

∫
V

∂F

∂t
dV +

∮
Fuψ · dSψ =

∫
V

∂F

∂t
dV +

∮
Fuψ ·

∇ψ
|∇ψ|

dSψ.

(A.2)
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In order to reach the identities in (2.36) we use the following:∫
V

∂B

∂t
· ∇φdV = −

∫
V

((∇× E) · ∇φ)dV

= −
∫
V

∇ · (E×∇φ)dV

= −
∮
S

(E×∇φ) · ∇ψ
|∇ψ|

dS

= −
∮
S

E · (∇φ×∇ψ)
dS

∇ψ

= −2π

∮
S

E ·Bp
dS

|∇ψ|
(A.3)

and by using
B · ∇ψ = cst (A.4)

we can derive for the toroidal electric field:

−B · ∇∂ψ
∂t

= ∇ψ · ∂B

∂t
= −∇ψ · (∇× E)

= ∇ · (∇ψ × E)

= ∇ · (∇ψ × Eφ)

= ∇ · (∇ψ ×∇φREφ)

= −∇ · (2πBpREφ)

= −B · ∇(2πREφ) (A.5)

Therefore, using the continuity equation for ψ

uψ · ∇ψ = −2πREφ (A.6)

Last derivation is that of the parallel current term in (2.31):

〈j ·B〉
B0

=

〈
T

2πµ0R2
4∗ψ − 1

2πµ0R2

∂T

∂ψ
(∇ψ)2

〉
=

1

2πµ0

(
T

〈
∇ · (∇ψ

R2
)

〉
−
〈
∇T∇ψ
R2

〉)
=

1

2πµ0

(
T
∂

∂V

〈
∇ψ
R2
· ∇V

〉
−
〈
∇T∇ψ
R2

〉〉
(A.7)
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Then using the following relations:

∇ψ =
∂ψ

∂x
=
∂ψ

∂ρ
∇ρ,

∇T =
∂T

∂ρ
∇ρ,

∇V =
∂V

∂ρ
∇ρ = V ′∇ρ and

∂

∂V
=

1

V ′
∂

∂ρ
. (A.8)

We can rewrite the last term in (A.7) into:

. . . =
1

2πµ0

(
T

V ′
∂

∂ρ

(〈
(∇ρ)2

R2
V ′
∂ψ

∂ρ

〉)
−
〈

(∇ρ)2

R2

〉
∂T

∂ρ

∂ψ

∂ρ

)
(A.9)

=
1

2πµ0

(
T4π2

V ′
∂

∂ρ

(
G2
∂ψ

∂ρ

)
− 4π2

V ′
G2
∂T

∂ρ

∂ψ

∂ρ

)
(A.10)

=
2πR0

V ′µ0

(
J
∂

∂ρ

(
G2
∂ψ

∂ρ

)
−G2

∂J

∂ρ

∂ψ

∂ρ

)
(A.11)

=
2πR0J

2

V ′µ0

∂

∂ρ

(
G2

J

∂ψ

∂ρ

)
. (A.12)

A.2 Particle Diffusion

As said in the main part of this thesis the particle transport equation starts
at the continuity equation for a given particle species α (2.46). Next we take
the volume integrated form of the continuity equation over a volume enclosed
by a toroidal flux surface:∫

∂nα
∂t

dV +

∮
nαuα · ∇Φ

dS

|∇Φ|
=

∫
sαdV (A.13)

Now we can use (A.2) to write this as:

∂

∂t

∣∣∣∣
Φ

∫
nαdV +

∮
S

nαuΦ · ∇Φ
dS

|∇Φ|
+

∮
nαuα · ∇Φ

dS

|∇Φ|
=

∫
sαdV (A.14)

Now using the fact that ∇ρ ‖ ∇Φ:

∂

∂t

∣∣∣∣
Φ

∫
nαdV +

∮
S

nα(uΦ + uα) · ∇ρ dS

|∇ρ|
=

∫
sαdV (A.15)
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Using the flux averaging definition:

∂

∂t

∣∣∣∣
Φ

∫
〈nα〉V ′dρ+ V ′〈nα(uΦ + uα · ∇ρ)〉 =

∫
V ′〈sα〉dρ. (A.16)

When we take the radial derivative of this expression we get:

∂

∂t

∣∣∣∣
Φ

(〈nα〉V ′) +
∂

∂ρ
(V ′〈nα(uΦ + uα) · ∇ρ〉)︸ ︷︷ ︸

Γα

= 〈sα〉V ′ (A.17)

Using the definition of the time derivative derived in (2.34) we conclude this
derivation:

1

V ′

(
∂

∂t
− ρB.

0

2B0

∂

∂ρ

)
(〈nα〉V ′) +

1

V ′
∂

∂ρ
Γα = Sα (A.18)



Appendix B

Bohm-GyroBohm Transport
Model

This appendix chapter is dedicated to the motivation and mathematical ex-
pressions of the Bohm-GyroBohm transport model as reported in the original
paper by Erba et al. [11]. The basis of their model is the fact that the coef-
ficient of the thermal diffusion in plasmas can be written as:

χ = χ0F (x1, x2, . . .) (B.1)

where χ0 has the correct dimensions and the function F is a function of
dimensionless plasma parameters. Most standard choice for χ0 is the usual
Bohm expression B.2:

χ0 = c
Te
eBt

. (B.2)

The dimensionless plasma parameters that enter the function F are the
plasma normalized gyro-radius ρ∗, the plasma pressure β, safety factor q and
the normalized scale length Lp. These are given in expressions (B.3)-(B.5):

ρ∗ =
m

1/2
i T

1/2
e

eaB
(B.3)

β =
8πp

B2
(B.4)

Lp =
p

a∗|∇p|
(B.5)

When F is proportional to ρ∗ the plasma turbulence scale length is of
the order of the plasma gyro-radius. In this case the diffusivity depends on
local plasma parameters and is said to by gyro-Bohm like. However, when the
function F does not depend on ρ∗, the scale length of the plasma turbulence is
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in the order of the plasma minor radius. In this case the transport properties
are called Bohm like. When these two different types of transport are mixed
with appropriate coefficients, they form a transport model that is effective
at modeling the transport for a wide range of plasma parameters. When
the Bohm term (B.6) and the gyro-Bohm (B.7) are added appropriately they
form the Bohm-GyroBohm transport model used in RAPTOR and CRONOS
as given in Eq (B.8):

χBe,i =
Te

BtLpe
q2 (B.6)

χGBe,i =
a∗∇Te
Bt

ρ∗i (B.7)

χe,i = αBe,iχ
B
e,i + αGBe,i χ

GB
e,i (B.8)
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