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Abstract

Localization is a powerful mathematical tool to gain exact solutions for the partition function
and observables on closed manifolds. The origin and validity of several index theorems will be
discussed, specifically the Atiyah-Bott-Berline-Vergne theorem, and we will see how they are
related to localization as introduced by E. Witten in 1988. A proof of the Poincaré-Hopf index
theorem will be provided as an illustration of this method. Furthermore we will introduce
a N=1 off-shell supersymmetric Yang-Mills theory with matter on the 5-sphere and show
that the conditions for using localization can be satisfied to conclude by discussing how
localization techniques have been used by K. Hosomichi e.a. (arXiv:1206.6008) and J.Källén
e.a. (arXiv:1203.0371) to acquire exact results for the partition function.
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1 INTRODUCTION

1 Introduction

Ever since its conception half a century ago, at the hands of Richard Feynman and many others,
Quantum Field Theory (QFT) garnered increasing popularity, and rightly so. The theory has
made a lot of accurate predictions and forms the basis for, amongst others, our understanding of
modern day particle physics.
Though immensely useful and rather intuitive and elegant in its use, QFT has its fair share of
problems:

• It is perturbative, and results with higher precision usually come at the cost of an exponentially
growing computational effort.

• Even granted enough time and resources to compute an answer to high enough precision, an
exact result still has the advantage that it might lead to a better understanding of the theory.
Given relatable results we might be able to see new structures and device an improved or
maybe even a new theory.

• In spite of numerous attempts there is no rigorous mathematical definition of the notion of a
path integral. It is defined merely through a set of pertubational rules.

• Regularization and renormalization are required to get rid of infinities in solutions. There are
several explanations for why these methods might be valid, but one of the more popular ones
is the notion that at a certain energy scale our theory breaks down and should be substituted
for a more advanced theory.

So ideally we would like to swap this pertubational theory for a theory which would grant us exact
answers. And if it could somehow incorporate gravity into the standard model that would be even
more ideal.
While it does not do the latter, localization is a very powerful mathematical tool to gain exact
solutions for the partition function and observables of the theory. It is inspired by a wide variety of
index theorems present in mathematics. Though they come in many shapes and sizes, the central
conceit is always the same: some property (usually an integral) of the entire space can be reduced
to a property (usually a number or a set of numbers) of one or more points in this space. This is
somewhat reminiscent of the use of residues for the computation of contour integrals in complex
analysis. The value of a contour integral only depends on the residues of the poles enclosed in the
contour; not on the contours shape or size.

In his 1988 paper ‘Topological Quantum Field Theory’ [41] Edward Witten translated these
index theorems to the path integral formalism, proving that for certain QFTs1 we can prove that
certain quantities are ‘topological invariants’: they do not depend on the shape of the manifold
since their contribution is localized to a subset of it, which is called the localization locus. Since
then, this ‘localization procedure’ has been applied to several simple curved spaces. Two success
stories are that of the application to Chern-Simons theory on the four sphere in 2007 [35], where the
validity was confirmed of certain matrix models2 for both the partition function and some observ-
ables, which had been posed several years earlier [11, 8]. Another result came about when it was
applied to Chern-Simons theory on the three sphere. There it also lead to a matrix model [26, 21, 17].

In this project we will describe how the localization method came about, how it works, and
what its requirements are. Furthermore, as an example, we will discuss the N = 1 supersymmetric
Yang-Mills (SYM) theory on S5 as proposed by K. Hosomichi, R. Seong, and S. Terashima [20] and
how localization has been applied to it by J. Källén, J. Qiu and M. Zabzine [25]. The 5D N = 1
SYM theory is an interesting one, because it has been proposed that this theory is analogous to the
elusive six dimensional N = (2, 0) superconformal theory [7, 27]. Not that much is known about
this theory, yet it is linked through the AdS/CFT correspondence to M-theory on an AdS7 × S4

background. So understanding this theory might lead to a deeper understanding of M-theory, or
even the AdS/CFT correspondence itself.

1Which we in that case call topological quantum field theories.
2A matrix model is a non-perturbative model which is dependent upon a finite number of variables.
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1 INTRODUCTION

Structure

We will start by introducing SYM theory on S5. We need to introduce the vectormultiplet, which
contains the massless gauge field and all of its massless superpartners, and the hypermultiplet,
which contain the fields associated with ‘matter’. We also need to introduce the supersymmetry
transformations and the Lagrangians, and check whether these are consistent. Then we will study
the concept of localization as proposed by Witten. We will then take a short detour to study the
Poincaré-Hopf theorem, after which we will prove it with the help of a finite dimensional example
of localization in order to show how such a localization argument would work from start to finish.
We will also briefly discuss the Atiyah-Bott-Berline-Vergne theorem as it was the finite dimensional
inspiration for Witten to apply it to field theory. Combining the first two chapters we will then
show that the conditions for localization are satisfied, and compute the localization locus of the
theory. We finish by discussing (without a computation) the result gained in [25] for the partition
function.

This thesis does not produce any new results, and consists mainly of a literature research with
extended computations, discussion and argumentation. It is meant to be written as pedagogical
as possible, explaining this subject to a reader without prior experience with it. Hopefully this
paper provides a clear explanation. Should this, however, not be the case, I’m always willing to
try to elaborate on what I have written. I can be contacted via DLDKeijdener@gmail.com for the
foreseeable future.
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2 SUPER YANG-MILLS ON S5
R

2 Super Yang-Mills on S5
r

First a few words on supersymmetry (SUSY) would be in order. We will not need much, yet we
will need it now to keep the text in a fluent order. Therefor all readers not familiar with the bare
basics of supersymmetry would do best to read appendix A at this moment, before continuing with
this text.

We will introduce here N = 1 supersymmetric Yang Mills theory on the curved manifold S5
r :

the 5-sphere of radius r in R6.
We will start considering the vectormultiplet. The vectormultiplet is the set of fields containing
the gauge vector potential and its superpartners.3 The objective is to find the extension of the
Yang-Mills Lagrangian FµνFµν that is conserved under the supersymmetry transformations. For
this, we will use the Lagrangian and supersymmetry transformations suggested by Hosomichi,
Seong and Terashima in [20]. We will check the invariance of this Lagrangian explicitly, as an
exercise for the later computations needed for localization. In these kind of computations it is
important to keep track of the different structures one is working with. So after we have intro-
duced the fields that are necessary for this completion, together with the Lagrangian and the
transformations in section 2.1, we will examine the symmetries and structures on these fields in
sections 2.1.1 through 2.1.4. In section 2.1.5 we will study the supersymmetry transformations
a bit more in depth. In particular we will check if the transformations are closed: i.e. whether
the commutator of two supersymmetry transformations is a symmetry of the theory. In section
2.1.6 we will show directly that the Lagrangian is invariant under the supersymmetry transformation.

Thereafter we will discuss the hypermultiplet, which contains the fields representing matter.45

There is one additional structure left to study in section 2.2.1: the flavour symmetry Sp(N). In
section 2.2.3 we will study the Lagrangian as proposed in [20], and where its terms originate from.
Finally we will explicitly show that this Lagrangian is supersymmetric as well in section 2.2.2. We
should keep in mind, however, that this is not true off-shell supersymmetry, for it is said that this
is impossible to do with a finite number of auxiliary fields. It does follow a rather weaker criterion,
as we will discuss.

A few more notes about the Lagrangian are in order. The Lagrangian consists of two parts,
which we will treat separately. There is a part Lvector linked to the vectormultiplet. It is invariant
under a supersymmetry transformation of the fields in this multiplet. Besides that there is a part
linked to the hypermultiplet, with Lagrangian Lmatter. It is invariant under a supersymmetry
transformation of the fields in both the hypermultiplet and the vectormultiplet. Both Lagrangians
are invariant under ‘different’ supersymmetry transformation (for Lvector you only need the fields
of the vectormultiplet transforming), but since the supersymmetry transformations acting on these
multiplets do not anticommute, we will still have N = 1 (as opposed to N = 2) symmetry.

3In a more general supersymmetry context, a vectormultiplet is the set of fields resulting from the expansion of a
vector superfield : a superfield V that satisfies the relation V ∗ = V . However we will not treat superfields here, so
vectormultiplet will be used synonymous here with the supersymmetric fields following from the vector potential.
For more information on vector superfields, see [13].

4Just as the vectormultiplet, a hypermultiplet has a more general meaning in the general context of supersymmetry:
it is a combination of a chiral and an anti-chiral multiplet that will be introduced in section 2.2.1. Just like the
vectormultiplet, we shall not discuss the (anti-)chiral multiplet in detail. In short it is the set of fields resulting from
the expansion of a (anti-)chiral superfield, a superfield with restriction Dα̇Φ = 0 (or DαΦ = 0 for anti-chiral). Here
the Dα is the supercovariant derivative, which is an extension of the normal derivative for superspace. For more
information on chiral superfields, see [13].

5This nomenclature might be somewhat confusing, because the term hypermultiplet is usually reserved for a
matter multiplet in a N = 2 theory. This is not the case here, since we are working with N = 1 supersymmetry here.
But since it is very similar we will use the name hypermultiplet nevertheless. On a amusing side note: this is where
the name of the hypermultiplet stems from. Originally, before it turned out extended supersymmetries could go up
to N = 4 and higher symmetries, P. Fayet used the term hypersymmetry [12] to indicate N = 2 supersymmetry.
This name never stuck, yet ‘hypermultiplet’ did become a household name. Personally, the author thinks it is a pity
they did not name N = 4 and N = 8 supersymmetry gigasymmetry and ultrasymmetry respectively.
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2.1 Vectormultiplet 2 SUPER YANG-MILLS ON S5
R

2.1 Vectormultiplet

First we will discuss the contents of the vectormultiplet, the supersymmetry transformations on
them and the Lagrangian. Notation and concepts that might not be clear right now, will be
introduced in the sections 2.1.1 through 2.1.5. The vector supermultiplet contains the following
fields:

Aµ the non-abelian gauge field,

σ a real scalar field,

λI a set of gauginos6 labelled by an index I ∈ {0, 1},
DIJ a set of auxiliary7 real scalar fields with the restriction D[IJ] ≡ DIJ −DJI = 0.

These fields have the following supersymmetry relations, which can be found when considering the
internal relation of the vectormultiplet:

δξAµ = iξIΓµλ
I , (2.1)

δξσ = iξIλ
I , (2.2)

δξλI = −1

2
Fµν(ΓµνξI) + (ΓµξI)Dµσ − ξJDJI +

2

r
t JI ξJσ, (2.3)

δξDIJ = −iξIΓµDµλJ + [σ, ξIλJ ] +
i

r
t KI ξKλJ + (I ↔ J), (2.4)

where t JI = i
2 (σ3) J

I is the usual Pauli matrix, Dµ is the covariant derivative we will discuss around
equation (2.17), and ξI is the (infinitesimal) parameter of the transformation. ξI takes the form of
an odd spinor satisfying the Killing equation on S5

r . We will discuss this in detail around equation
(2.19) in section 2.1.5.
The Lagrangian of the vectormultiplet on S5

r is a completion of the Yang-Mills term 1
2Tr(FµνF

µν)
term under the supersymmetry transformations which have just been introduced:

Lvector =
1

g2
YM

Tr

[
1

2
FµνF

µν −DµσD
µσ − 1

2
DIJD

IJ +
2

r
σtIJDIJ −

10

r2
tIJ tIJσ

2

+iλIΓ
µDµλ

I − λI [σ, λI ]−
i

r
tIJλIλJ

]
, (2.5)

where tJI = i
2 (σi)

J
I is any of the three Pauli matrix and r is the radius of the sphere. This

Lagrangian is introduced and constructed in [20], where it is derived both by means of trail and
error and from the corresponding supergravity theory. Note that there is an odd choice in the
kinetic term of σ. Instead of the usual positive sign we have a negative one. This is done because of
the convention of choosing σ purely imaginary, as is also the case with DIJ . This has been done to
enable the localization argument later on. The limit r →∞ yields 5-dimensional Yang Mills theory
on flat, Euclidean R5. There are various non-trivial computations hidden in the notation of this
Lagrangian. The covariant derivative Dµ, for instance, has a different meaning when applied to
different fields. Because of that we will first discuss the four different structures in this Lagrangian,
before we perform the supersymmetry transformation to show explicitly that these transformations
define off-shell supersymmetry and conserve the Lagrangian.

6Which is the spinorial superpartner of the gauge field.
7The auxiliary fields are not physical, but they serve another purpose. They can be considered as extra degrees of

freedom with a boundary condition on them, imposed by the equations of motion. This is almost like an application
of Lagrange multipliers, just as one might use them in classical mechanics. This is the reason why the supersymmetric
variation, which will be introduced shortly, of these auxiliary fields ((2.4) and (2.48)) are 0 under the equations of
motion. The inclusion of these fields guarantees that the Lagrangian is even off-shell supersymmetric: i.e. without
the use of the equations of motion. We will justify the need for an off-shell Lagrangian in section 4.
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2.1 Vectormultiplet 2 SUPER YANG-MILLS ON S5
R

2.1.1 Spinor structure

The field λαI is a spinor for I ∈ {0, 1}. Since we work in Euclidean, and not Minkowskian, metric
the Γm8 do not denote the usual Gamma matrices from appendix B.1, but rather

{Γm,Γn} = 2δmn,

and Γn1...np denotes fully antisymmetrized tensor

Γn1...np =
1

p!
Γ[n1Γn2 . . .Γnp].

We then need a symplectic form in order to define an ‘inner product’ between two spinors. This
will be the charge conjugation matrix C, which is defined as the matrix satisfying

C−1(Γm)TC = Γm, for all m (2.6)

normalized with the conditions
CT = −C and C∗ = C. (2.7)

The transposed T in these past two equations indicates the matrix transposition with respect to
the spinor structure. The scalar product between two spinors is defined and abbreviated as follows:

(ψT )αC β
α χβ = ψTCχ ≡ ψχ.

This abbreviation and the symmetry properties of C lead to the equations

ψχ = (ψT )αC β
α χβ = ((ψT )αC β

α χβ)T = (χT )β(CT ) α
β ψα = −(χT )βC α

β ψα = −χψ,
ψΓmχ = χT (Γm)TCTψ = −χT (Γm)TCψ = −χTCC−1(Γm)TCψ = −χΓmψ,

ψΓmnχ = −χ 1
2 (Γ[n)T (Γm])TCψ = −χC 1

2Γ[nΓm]ψ = −χΓnmψ = χΓmnψ,

as long as either ψ or χ is a bosonic (even). If both spinors are fermionic (odd), then these three
equations will inherit another minus sign. These relations will be used often throughout the tet
without an explicit reference.
Another important relation is that Γn1n2n3n4n5 = εn1n2n3n4n5 (in five dimensions), where ε is the
Levi-Civita symbol. This has the implication that every product of three gamma matrices can be
rewritten as a sum of products of two gamma matrices. To be precise

5∑
n1,n2,n3=1

Γn1n2n3εn1n2n3n4n5 = −6Γn4n5 . (2.8)

We will also need the Fierz identity. This is an identity that can be derived using the fact that the
set of 16 matrices {I,Γm,Γmn,Γmno,Γmnop,Γmnopq} spans9 the entire space of 4 by 4 Hermitean
matrices. It states that for ζ, η and φ bosonic spinors:

ζ(ηφ) =
1

4
φ(ηζ) +

1

4
Γmφ(ηΓmζ)− 1

8
Γmnφ(ηΓmnζ). (2.9)

An identity that can be derived from the Fierz identity is

Γmχ(ηΓmφ) + χ(ηφ) = 2φ(ηχ)− 2η(φχ), (2.10)

still for bosonic spinors, and it will prove more directly useful. It can be proven by considering that

ζ(ηφ)− 1

4
φ(ηζ)− 1

4
Γmφ(ηΓmζ)

(2.9)
= −1

8
Γmnφ(ηΓmnζ) = −1

8
Γmnφ(ζΓmnη)

(2.9)
= η(ζφ)− 1

4
φ(ζη)− 1

4
Γmφ(ζΓmη) = η(ζφ) +

1

4
φ(ηζ) +

1

4
Γmφ(ηΓmζ)

8We will work with a notation where the upright Roman alphabet indicates Minkowski space, while the Greek
alphabet indicates curved space.

9Up to a few linear relations amongst them.
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R

When substituting bosonic spinors for fermionic spinors a few signs might flip, depending on
whether two fermionic are interchanged in the equations above. For all fermionic spinors ζ, η, φ we
have

ζ(ηφ) = −1

4
φ(ηζ)− 1

4
Γmφ(ηΓmζ) +

1

8
Γmnφ(ηΓmnζ). (2.11)

and
Γmχ(ηΓmφ) + χ(ηφ) = −2φ(ηχ)− 2η(φχ), (2.12)

2.1.2 SU(2)R symmetry

In appendix B, we study whether it is possible to impose Majorana and/or Weyl conditions on
spinors in d dimensions. Table 2 in that same appendix shows the results. As one can see it is
impossible to impose a Majorana condition on a spinor in 4 + 1 dimensional Minkowskian space.
But there are additional opportunities when we introduce an additional SU(2)R symmetry. This
additional symmetry is denoted by the index I in λI , and it transforms like

λI = εIJλ
J , and λI = εIJλJ

where εIJ is the antisymmetric tensor ε01 = −ε10 = 1. Note that these definition imply that
εIJε

KJ = δ K
I . The Majorana-like condition imposed on the λ field then takes on the following

form
(λαI )∗ = εIJCαβλ

β
J .

This is often called an SU(2)R Majorana spinor.

2.1.3 Non-abelian gauge theory

As a result of having a non-abelian gauge group, all above fields have to be considered Hermitean
matrices. These matrices transform under the gauge group in the adjoint representation10, which
is SU(N) in this case. Thus the Lagrangian is invariant under the transformation

φ 7→ UφU†, (2.13)

with U ∈ SU(N) and φ ∈ {Am, σ, λI , DIJ}. In order to obtain a scalar, all terms in the Lagrangian
will therefore have to be traced over. The cyclic property of the trace

Tr(AB) = Tr(BA), (2.14)

will be used often. Apart from this trace, however, all notation concerning this group will be
suppressed in the calculations. We will furthermore choose the fields to be Hermitean valued within
the gauge theory so that A† = A, λ = λ†. However σ† = −σ and D† = −D†, because these fields
are purely imaginary. One should keep in mind that fields never commute in a non-abelian setting.
This means the covariant derivative acting on σ will assume a different form

Dmσ = ∂mσ − i[Am, σ].

In a wider context, the covariant derivative working on all fields always contains a non-abelian
gauge term. When considered in the adjoint representation, this term looks like

Dmφ = ∂mφ− i[Am, φ]. (2.15)

10The fact that this is the adjoint representation is linked to the way in which the fields transform as (2.13), as
opposed to the way they would transform in the fundamental representation, when φ 7→ Uφ. Another difference with
the adjoint representation, is that in the fundamental representation φ would be considered a vector, not a matrix,
with respect to the gauge structure. We will encounter a set of fields which are in the fundamental representation
when we will study the hypermultiplet later on in section 2.2.
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2.1 Vectormultiplet 2 SUPER YANG-MILLS ON S5
R

This also effects the gauge field strength tensor Fmn, which is slightly different from the abelian
case. Acting in the adjoint representation it will look like

[Fmn, σ] = i[Dm, Dn]σ = [∂mAn − ∂nAm − i[Am, An], σ], (2.16)

The last term would normally vanish when applying minimal coupling (Dm = ∂m− iAm), but since
the fields are no longer abelian, this is no longer the case. One need to keep in mind that (2.16)
only holds if it acts on a scalar field, for with a spinor field an additional term in the covariant
derivative (which will be introduced in (2.17)) will add a curvature term to the right hand side of
(2.16), as we will explain in the next section.

2.1.4 Spatial structure

Putting the theory on S5
r , as opposed on flat space, has an influence on several aspects. The metric

on S5
r is given by

ds2 = dr2 + r2dΩ2
4,

with dΩ4 a four-dimensional angle. We shall not make much use of the explicit form of the metric,
however.
We define the vielbeins in the usual way11

gµν = eµae
ν
bδ
ab.

In the vielbein, and the following part of the text, we will use Greek indices to indicate coordinates
on curved space, and Latin indices to indicate coordinates on flat space. This also leads to new
curved Γ-matrices, which are defined like

Γµ = eµaΓa,

and satisfy of the Clifford algebra on this curved space

{Γµ,Γν} = 2gµν .

These new matrices transform under the metric

Γµ = gµνΓν .

And this also means equation (2.8) changes into

1

6
g

1
2 Γµνρε

µνρστ = −Γστ .

The Fierz identities following from this relation look identical to the ones stated in section 2.1.1.
Having a non-trivial metric will introduce another layer of complexity to our calculations. To keep
notation as simple as possible, the covariant derivative has up to three terms depending on which
object it acts. On a spinor ψ all extra terms are applicable, and the full covariant derivative looks
like:

Dµψ = ∂µψ − i[Aµ, ψ] +
1

4
ωµνρΓ

νρψ, (2.17)

where ωµνρ is the spin connection. It is given by

ωµνρ = eaνgµσ∂ρe
σa + gµσΩσνρ,

where Ωσνρ denotes the affine connection, or Christoffel symbol, given by

gµσΩσνρ =
1

2
(∂νgρµ + ∂ρgµν − ∂µgνρ).

11For Minkowskian spaces, one uses the Minkowskian metric ηab instead of the Euclidean metric δab, but we are
studying the Euclidean space S5

r .
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2.1 Vectormultiplet 2 SUPER YANG-MILLS ON S5
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We can prove that gρσωρσµ vanishes, by the following calculation:

gρσωρσµ = eaν∂µe
νa +

1

2
gρσδab(∂σ(eµaeρb) + ∂µ(eρaeσb)− ∂ρ(eσaeµb))

= eaν∂µe
aν +

1

2
gρσδab((∂σeµa)eρb + eµa∂σeρb + (∂µeρa)eσb + eρa∂µeσb − (∂ρeσa)eµb − eσa∂ρeµb)

= eaν∂µe
aν + eaν∂µeaν = ∂µ(ebνe

bν) = 0.

In the action, the fields are traced over the non-abelian gauge structure and integrated over the
whole space. Thus, for integration over a closed manifold M , we can perform integration by parts
with the covariant derivative just as well as with the normal derivative:∫
M

d5xTr [φΓµDµψ] =

∫
M

d5xTr

[
φΓµ∂µψ − iφΓµ[Aµ, ψ] +

1

4
ωµνρφΓµΓνρψ

]
=

∫
M

d5xTr

[
−∂µφΓµψ − iφΓµAµψ + iφΓµψAµ +

1

4
ωµνρφ

TCΓµΓνρψ

]
,

now we use the identity ΓµΓνρ = 2gµνΓρ − 2gµρΓν + ΓνρΓµ (E.1) to find

(2.14)
=

∫
M

d5xTr

[
−∂µφΓµψ − iφAµΓµψ + iAµφΓµψ +

1

4
ωµνρφ

TC(2gµνΓρ − ΓρνΓµ)ψ

]
(2.6)

(2.7)
=

∫
M

d5xTr

[
−∂µφΓµψ + i[Aµ, φ]Γµψ − 1

4
ωµνρ(Γ

νρφ)TCΓµψ +
1

2
ωµνρg

µνφΓρψ

]
=

∫
M

d5xTr

[
−(Dµφ)Γµψ +

1

2
ωµνρg

µνφΓρψ

]
. (2.18)

Now we can use gµνωµνρ = 0 to prove that we can still perform integration by parts with the
covariant derivative, independent of on which field it acts. Note that this derivation does not
depend on whether φ and ψ are even or odd spinors.

2.1.5 Supersymmetry

As we mentioned in section 2.1, the supersymmetry transformation is a continuous symmetry.
Therefor it has to be dependent on a (possibly infinitesimal) parameter ξI . This is a vector on the
manifold that indicates the direction and ‘amount’ of the supersymmetry transformation. It turns
out it has to satisfy the Killing equation on the sphere

DµξI =
1

r
t JI ΓµξJ , (2.19)

to be able to close the supersymmetry transformations (2.1) trough (2.4) under the supersymmetry
algebra. Furthermore it is chosen to be a Grassmann odd spinor, which means that the δξ in
(2.1) through (2.4) is an Grassmann even transformation. It is important to understand that ξI
is a gauge independent parameter, not a field. This means that ξI commutes with all fields when
considering the gauge structure. Concerning the spinor structure it will still anticommute because
of (2.7), and if the spinor is odd this will yield another minus sign.
This equation does rise the question whether or not such a spinor indeed exists on S5

r . The answer
is yes, for one can give an explicit construction of such a spinor. This we will not study, but an
explicit construction can be found in [20].
The next step is to check whether the supersymmetry transformation closes the supersymmetry
algebra. In other words we should check what the commutator [δξ, δη] does to the fields. When we

9
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apply it to Aµ we find

[δξ, δη]Aµ
(2.1)
= iεIJηIΓµδξλJ − (ξ ↔ η)

(2.3)
= − i

2
(ηIΓµΓνρξI − ξIΓµΓνρηI)Fνρ + i(ηIΓµΓνξI − ξIΓµΓνηI)Dνσ

+ i(ηIΓµξK − ξIΓµηK)DKI + 2i(ηIΓµξK − ξIΓµηK)
1

r
tIKσ.

Since ηIΓµξK − ξIΓµηK is antisymmetric in I ↔ K and DKI is symmetric, the third term vanishes.
For the first term we make use of ηIΓµΓνρξI = ξIΓ

νρΓµη
I and (E.1), while for the second term we

note that ηIΓµΓνξI = −ξIΓνΓµη
I . The last term we can rewrite with the Killing spinor equation

(2.19). Thus we arrive at

[δξ, δη]Aµ =− i

2
(ξI(ΓµΓνρ − 2δ ν

µ Γρ + 2δ ν
µ Γν)ηI − ξIΓµΓνρηI)Fνρ

− i(ηI{Γµ,Γν}ξI)Dνσ − 2i(DµξKηI + ξIDµηK)σ

=− 2i(ξIΓ
νηI)Fνµ +Dµ(−2iξIη

Iσ). (2.20)

We can also apply [δξ, δη] to σ. This results in

[δξ, δη]σ
(2.2)
= iεIJηIδξλJ − (ξ ↔ η)

(2.3)
= − i

2
(ηIΓ

νρξI − ξIΓνρηI)Fνρ + i(ηIΓ
νξI − ξIΓνηI)Dνσ

+ i(ηIξK − ξIηK)DKI + 2i(ηIξK − ξIηK)
1

r
tIKσ.

The third term vanishes on the same grounds as it did with the Aµ-case, and the first term also
vanishes trivially after a spinor exchange. This leaves us with

[δξ, δη]σ = −2i(ξIΓ
νηI)Dνσ − 2i(ξI

1

r
tIKηK − ηI

1

r
tIKξK)σ. (2.21)

The computation for λI is a bit more involved. To shorten the notation we use ξ̃I = 1
r t

J
I ξJ for

a spinor ξ. Furthermore one should pay attention to the position of the brackets, for they will
indicate which spinors will be multiplied. So

[δξ, δη]λI
(2.3)
= − ΓµνηIδξ(DµAν) + ΓµηIδξ(Dµσ) + ηJδξD

J
I + 2ξ̃Iδξσ − (ξ ↔ η).

Using that δξ(∂µAν − i[Aµ, Aν ]) = Dµ(δξAν)− i[δξAµ, Aν ], we have

(2.2)

(2.4)
= − iΓµνηI(ξ̃JΓµΓνλ

J + ξJΓνDµλ
J)− ΓµνηI(ξJΓµ[λJ , Aν ]) + iΓµηI(ξ̃JΓµλ

J + ξJDµλ
J)

+ ΓµηI(ξJΓµ[λJ , σ])− iηJ(ξJΓµDµλI + ξIΓ
µDµλ

J) + ηJ(ξJ [σ, λI ] + ξI [σ, λ
J ]) + iηJ(ξ̃JλI + ξ̃Iλ

J)

+ 2iη̃I(ξJλ
J)− (η ↔ ξ) (2.22)

We can start by grouping together the terms containing derivatives of λ. Then

−iΓµνηI(ξJΓνDµλ
J) + iΓµηI(ξJDµλ

J)− iηJ(ξJΓµDµλI)− iηJ(ξIΓ
µDµλ

J)− (ξ ↔ η)
(B.1)
=

iΓν(ΓµηI)(ξJΓνDµλ
J)− iηI(ξJΓµDµλ

J) + iΓµηI(ξJDµλ
J)− iηJξJΓµDµλI − iηJ(ξIΓ

µDµλ
J)− (ξ ↔ η).

We should now use the Fierz identity (2.12) to see that iΓν(ΓµηI)(ξJΓνDµλ
J ) + iΓµηI(ξJDµλ

J ) =
−2iDµλ

J(ξJΓµηI) − 2iξJ((Dµλ
J)ΓµηI). Simultaneously we note that through the same iden-

tity −iηJ(ξJΓµDµλI) − (η ↔ ξ) = −iηJ(ξJΓµDµλI) + iηJ(ξJΓµDµλI) = i
2ΓµDµλI(ξ

JηJ) +

10
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i
2ΓνΓµDµλI(ξ

JΓνηJ). Applying this leads to

+
i

2
ΓµDµλI(ξ

JηJ) +
i

2
ΓνΓµDµλI(ξ

JΓνηJ)− 2iDµλ
J(ξJΓµηI) + 2iDµλ

J(ηJΓµξI)

− (iξJ((Dµλ
J)ΓµηI) + iΓµνηI(ξJΓνDµλ

J)) + (iηJ((Dµλ
J)ΓµξI) + iΓµνξI(ηJΓνDµλ

J)).

The Fierz identity can be applied once again upon the last two pairs of two terms. This leads to

i

2
(εILεMN + εIN εLM + εIM εNL)ΓµDµλ

L(ξMηN )

+
i

2
(εILεMN + εIN εLM + εIM εNL)ΓνΓµDµλ

L(ξMΓνη
N ) + (εIN εML + εIM εLN )Dµλ

L(ξMΓµηN ).

We can recognize the Bianchi-like identity (E.4) in this to find that this is equal to−2i(DµλI)(ξJΓµηJ ).
Next we will group the terms of (2.22) containing [σ, λ]. On the term −ΓµηI(ξJΓµ[σ, λJ ]) we will
perform the Fierz identity (2.12), and then we will find

ξJ(ηI [σ, λ
J ])− ξI(ηJ [σ, λJ ]) + 2[σ, λJ ](ξJηI)− ξJ(ηJ [σ, λI ])− (ξ ↔ η) =

(εILεMN + εIN εLM + εIM εNL)ξL(ηM [σ, λN ]) + 2[σ, λJ ](ξJηI)− (ξ ↔ η)
(E.4)
=

(εIN εLM − εIM εLN )2[σ, λL](ξMηN )
(E.4)
= i[−2i(ξJη

J)σ, λI ].

The remaining terms

−iΓµνηI(ξ̃JΓµΓνλ
J) + iΓµηI(ξ̃JΓµλ

J) + iηJ(ξ̃JλI) + iηJ(ξ̃Iλ
J) + 2iη̃I(ξJλ

J)− (η ↔ ξ)

will prove to be equal to

−3iλI(ξJ η̃
J)− 3iλJ(ξI η̃

J + ξJ η̃I)−
i

2
ΓµνλI(ξ̃JΓµνη

J)− (ξ ↔ η)

In order to prove this we will show the difference of these two terms is 0. We start with applying
the Fierz identity (2.11) to −iΓµν(ξ̃JΓµΓνλ

J) = −iΓµν(ξ̃JΓµνλ
J) and − i

2ΓµνλI(ξ̃JΓµνη
J). This

leads us to

− 2iΓµηI(ξ̃JΓµλ
J)− 2iηI(ξ̃Jλ

J)− 8iλJ(ξ̃JηI) + iΓµηI(ξ̃JΓµλ
J) + iηJ(ξ̃JλI) + iηJ(ξ̃Iλ

J) + 2iη̃I(ξJλ
J)

+ 3iλI(ξJ η̃
J) + 3iλJ(ξI η̃

J + ξJ η̃I)− iΓµλI(ξ̃JΓµη
J)− iλI(ξ̃JηJ)− 4iηJ(ξ̃JλI)− (η ↔ ξ) =

− iΓµηI(ξ̃JΓµλ
J)− 2iηI(ξ̃Jλ

J)− 8λJ(ξ̃JηI)− 3iηJ(ξ̃JλI) + iηJ(ξ̃Iλ
J) + 2iη̃I(ξJλ

J) + 3iλJ(ξI η̃
J)

+ 3i(εILεNM + εIN εML)λL(ξM η̃N ) + (iΓµλI(ξ̃JΓµη
J) + iλI(ξ̃Jη

J))− (ξ ↔ η),

We then use that 3i(εILεNM +εIN εML)λL(ξM η̃N )
(E.4)
= −3iλJ (ξI η̃J ), furthermore iΓµλI(ξ̃JΓµη

J )+

iλI(ξ̃Jη
J)

(2.12)
= −2iηJ(ξ̃JλI) − 2iξ̃J(ηJλI), and −iΓµηI(ξ̃JΓµλ

J)
(2.12)

= iηI(ξ̃Jλ
J) + 2iλJ(ξ̃JηI) +

2iξ̃J(λJηI) to find

−iηI(ξ̃JλJ) + iηJ(ξ̃JλI) + iηJ(ξ̃Iλ
J) + 2iη̃I(ξJλ

J) + 2iη̃J(ξJλI) + 2iξ̃J(λJηI)− (ξ ↔ η),

which is equal to 0 due to the Bianchi-like identity (E.4). Thus we conclude that

[δξ, δη]λI =− i(2ξJΓµηJ)DµλI + i[−2iξJη
J , λI ]− 3i(ξJ η̃

J − ηJ ξ̃J)λI

− 3i(ξI η̃
J + ξJ η̃I − ηI ξ̃J − ηJ ξ̃I)λJ −

i

2
(ξ̃JΓµνηJ − η̃JΓµνξJ)ΓµνλI (2.23)

11
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Lastly, we should check what [δξ, δη] does to DIJ . We find

[δξ, δη]DIJ
(2.4)
= (−iηIΓµDµ(δξλJ)− ηIΓµ[δξAµ, λJ ] + [δξσ, (ηIλJ)] + [σ, ηIδξλJ ] + iη̃IδξλJ + (I ↔ J)− (ξ ↔ η)

(2.1)

(2.3)
=

i

2
(ηIΓ

µΓρσξJ)DµFρσ +
i

2
(ηIΓ

µΓρσΓµξ̃J)Fρσ − i(ηIΓµΓνξJ)DµDνσ − i(ηIΓµξK)DµD
K
J

− i(ηIΓµΓµξ̃K)DK
J − i(ηIΓµDµξ̃J)σ − i(ηIΓµξ̃J)Dµσ − iηIΓµ[(ξKΓµλ

K , λJ ]

+ i[(ξKλ
K), (ηIλJ)]− 1

2
[σ, Fµν ](ηIΓ

µνξJ) + [σ,Dµσ](ηIΓ
µξJ) + [σ,DK

J ](ηIξK)

+ 2[σ, σ](ηI ξ̃J)− i

2
(η̃IΓ

µνξJ)Fµν − i(η̃IΓµξJ)Dµσ + i(η̃IξK)DK
J + 2i(η̃I ξ̃J)σ

+ (I ↔ J)− (ξ ↔ η).

The [σ, σ] term drops out trivially, as do both [λI , λK ] terms. With the help of the symmetry
in I and J and the antisymmetry in ξ and η we find that all terms of the form (ηIΓξJ) with Γ
the identity matrix, Γµ or Γµνρ vanish. This means the terms [σ,Dµσ](ηIΓ

µξJ), 2i(η̃I ξ̃J)σ and

−i(ηIΓµξ̃J)Dµσ − i(η̃IΓµξJ)Dµσ drop out. Other vanishing terms are

−i(ηIΓµDµη̃J)σ = −i(ηIΓµΓµt
K
J t L

K ξL)σ = −i( i
2

)25(ηIξJ)σ = 0,

−i(ηIΓµΓνξJ)DµDνσ = − i
2

(ηI{Γµ,Γν}ξJ)DµDνσ − i(ηIΓµνξJ)DµDνσ

(B.1)
= −i(ηIξJ)D2σ − i

2
(ηIΓ

µνξJ)[Dµ, Dν ]σ

(2.16)
= −1

2
(ηIΓ

µνξJ)[Fµν , σ],which vanishes against the other [σ, Fµν ] term,

i

2
(ηIΓ

µΓρσΓµξ̃J)Fρσ
(E.1)
=

i

2
(ηI(Γ

ρσΓµ + 2gµρΓσ − 2gµσΓρ)Γµξ̃J)Fρσ =
i

2
(ηI(−4Γρσ + 5Γρσ)ξ̃J)Fρσ

= − i
2

(ξJΓρσ η̃I)Fρσ,which cancels with the other Fρσ term, and

i

2
(ηIΓ

µΓρσξJ)DµFρσ
(E.2)
=

i

2
(ηI(Γ

µρσ − gµρΓσ + gµσΓρ)ξJ)DµFρσ

=
i

2
(ηIΓ

µρσξJ)DµFρσ + i(ηIΓ
ρξJ)DσFρσ = 0,

where we suppressed the notation for the (anti)symmetries of the terms. This means that we are
left with

[δξ, δη]DIJ = −i(ηIΓµξK)DµD
K
J − i(ηIΓµΓµξ̃K)DK

J + [σ,DK
J ](ηIξK) + i(η̃IξK)DK

J

+ (I ↔ J)− (ξ ↔ η).

We can write

−i(ηIΓµξK)DµD
K
J = −i(εILεNM )(ηLΓµξM )DµD

N
J

(E.4)
=

−i(1

2
εILεNM +

1

2
εIN εML +

1

2
εIM εLN )(ηLΓµξM )DµD

N
J ,

where the first and third term drop out by the virtue of the antisymmetry between η and ξ, which
results in an antisymmetry between L and M . Thus only the term −i(ηKΓµξK)DµDIJ remains.
An identical strategy can be applied to show that [σ,DK

J ](ηIξK) = 1
2 (ξKη

K)[σ,DIJ ]. Then the
last step is noting that

5i(η̃KξI)D
K
J + i(η̃IξK)DK

J = i(5εIM εNL− εILεMN )(η̃LξM )DN
J

(E.4)
= i(3εIM εNL− 3εILεMN − 2εIN εLM )(η̃LξM )DN

J

= − 2i(ξK η̃
K)DIJ − 3i(ξI η̃

K + ξK η̃I)DKJ .

12
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Taking (2.20), (2.21), (2.23) and these last results for DIJ all together, we can state that

[δξ, δη]Aµ =− ivµFµν +Dµγ,

[δξ, δη]σ =− ivµDµσ + ρσ,

[δξ, δη]λI =− ivµDµλI + i[γ, λI ] +
3

2
ρλI +R J

I λJ +
1

4
ΘµνΓµνλI ,

[δξ, δη]DIJ =− ivµDµDIJ + i[γ,DIJ ] + 2ρDIJ +R K
I DKJ +R K

J DIK , (2.24)

where vµ = 2ξIΓ
µηI is a parameter for translation, γ = −2iξIη

Iσ is such that γ + ivµAµ is a
parameter for a gauge transformation, ρ = −2i(ξI η̃

I − ηI η̃I) is a parameter for dilation, RIJ =
−3i(ξI η̃J+ξJ η̃I−ηI ξ̃J−ηJ ξ̃I) is a parameter for an R-rotation12, and Θµν = −2i(ξ̃IΓ

µνηI−η̃IΓµνξI)
is a parameter for a Lorentz rotation13. This cöıncides with the results presented in (2.16) and
(2.17) of [20].
We have thus shown that [δη, δξ] acts as an even symmetry upon the theory, since it is a sum
of (known) even symmetries of the theory. This is an important fact that will play a role later
on. This means that the supersymmetry algebra is closed. It is even closed off-shell, for in this
construction we did not need the equations of motions. Furthermore we should note that all
parameters vµ, γ, ρ, RIJ and Θµν will vanish in the case that η = ξ. This should be the case,
because [δξ, δξ] is trivially 0.

2.1.6 Vectormultiplet Lagrangian

From now on ξI is chosen to be even in order for δξ to be odd, for we will need this crucial property
later on when studying localization, and we will explicitly check whether this has any effect on
computing the variation of the Lagrangian. This has its effects on the usual ‘Leibniz rule’ for
transformations. Define the ferm(a) function as 1 if a is a fermionic (Grassmann odd) spinor and 0
otherwise. Then

δ(ab) = δ(a)b+ (−1)ferm(a)aδ(b), (2.25)

with a and b any field. We will see why this trick is performed in section 4, but for now it suffices
to state that we need to check whether the Lagrangian is invariant under the ‘supersymmetry’-like
transformation.

We will label the terms in the Lagrangian according to

Lvector =
1

g2
YM

Tr

 A
1

2
FµνF

µν −
B

DµσD
µσ −

C
1

2
DIJD

IJ +

F
2

r
σtIJDIJ −

G
10

r2
tIJ tIJσ

2

+

D

iλIΓ
µDµλ

I −
E

λI [σ, λ
I ] −

H
i

r
tIJλIλJ

 , (2.26)

for the purpose of convenient reference. This Lagrangian should be invariant under the supersym-
metry transformations (2.1)-(2.4). In particular, it should also be invariant under the limit r →∞,
which corresponds with the flat case. The supersymmetry variation of the Yang-Mills term A is
given by

δξ(A) = δξ

(
1

2
FµνF

µν

)
(2.25)

=
1

2
(δξFµν)Fµν +

1

2
FµνδξF

µν (2.14)
= FµνδξF

µν

(2.16)
= Fµνδξ(∂

[µAν] − iA[µAν])

(2.25)
= 2Fµν(∂µδξA

ν − i(δξAµ)Aν − iAµδξAν),

12A rotation in the SU(2)R group.
13A spatial rotation.

13
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where we used the antisymmetry of Fµν in the last line. Integration by parts will give a total
derivative term (vanishing thanks to the the fact S5

r is closed, i.e. compact and without boundary)
and the leads to the following result

δξ(A)
(2.14)

= 2(−(δξA
ν)∂µFµν + i(δξA

ν)AµFµν − i(δξAν)FµνA
µ)

= −2δξA
ν(∂µFµν − i[Aµ, Fµν ])

(2.15)
= −2(δξA

ν)DµFµν .

The next step is searching for a term with which this could cancel. We fill in the supersymmetric
transformation (2.1) to find −2iξIΓ

νλIDµFµν = 2i(DµFνµ)ξIΓ
νλI . Thus we are searching for

terms with a covariant derivative of the field strength tensor. The variation of iλIΓ
µDµλ

I is the
only candidate, for the only other term containing a covariant derivative, −DµσD

µσ, will not
contain Fµν under supersymmetry variations. This leads to

δξ(D) = δξ(iλIΓ
µDµλ

I)
(2.25)

= i(δξλI)Γ
µDµλ

I − iλIΓµDµ(δξλ
I) + λIΓ

µ{δξAµ, λI}
(2.18)

= i(δξλI)Γ
µDµλ

I + iεIJ(Dµλ
I)Γµ(δξλ

J) + λIΓ
µ{δξAµ, λI}

(2.14)
= i(δξλI)Γ

µDµλ
I + iεJI(δξλ

J)ΓµDµλ
I + λIΓ

µ{δξAµ, λI}

= 2i(δξλI)Γ
µDµλ

I + λIΓ
µ{δξAµ, λI}. (2.27)

The second term is the supersymmetric variation of the gauge field hidden inside the covariant
derivative, and can sloppily, yet illustratively, be denoted as −λIΓµ(δξDµ)λI . This term we will
keep in mind for later use.
The first term can be worked out to be

2i(δξλI)Γ
µDµλ

I

(2.3)

(2.18)
= − i(DµFνρ)ξIΓ

νρΓµλI − iFνρ(DµξI)Γ
νρΓµλI

+ 2i

(
(ξIΓ

ν)Dνσ − ξJDJI +
2

r
t JI ξJσ

)
ΓµDµλ

I . (2.28)

The first term here will drop out against the variation of the Yang Mills term. It can, due to the
relation Γνρµ = ΓνρΓµ + gµνΓρ − gµρΓν (proven in (E.2)), be written as

−i(DµFνρ)ξIΓ
νρΓµλI = −i(DµFνρ)ξIΓ

νρµλI + i(DµFνρ)ξI(g
µνΓρ − gµρΓν)λI

= −i(D{µFνρ})ξIΓνΓρΓµλI − 2i(DρFνρ)ξIΓ
νλI

The second term drops out against the variation of the Yang-Mills. The first term vanishes because
D{µFνρ} = 0, as we can see by writing out

DµFνρ = (∂µ∂νAρ − ∂µ∂ρAν)− i∂µ[Aν , Al]− i[Aµ, ∂νAl] + i[Aµ, ∂ρAν ]− [Aµ, [Aρ, Aν ]],

where the ∂∂-terms vanish against each other under cyclic permutation, and [Aµ, [Aρ, Aν ]] vanishes
under cyclic permutation due to the Jacobi identity. For the rest of the terms we need to cyclicly
swap the indices to see that

= −i∂µ[Aν , Aρ]− i[Aν , ∂ρAµ] + i[Aµ, ∂ρAν ] = −i∂µ[Aν , Aρ] + i∂ρ[Aµ, Aν ] = 0

To summerize, we list the leftovers from (2.27) and (2.28).

δξ(A+D) =λIΓ
µ{δξAµ, λI} − iFνρ(DµξI)Γ

νρΓµλI + 2i

(
(ξIΓ

ν)Dνσ − ξJDJI +
2

r
t JI ξJσ

)
ΓµDµλ

I

(2.29)
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Filling in δξAµ in the first term on the right hand side (RHS) of (2.29), will yield iλIΓµ{(ξJΓµλJ ), λI} (2.14)
=

2i(λIΓµλ
I)(ξJΓµλJ), which is cubic in λ. The only other term cubic in λ will follow from δξE .

This becomes

δξE = δξ
(
−λI [σ, λI ]

) (2.25)
= −(δξλI)[σ, λ

I ] + λI{δξσ, λI}+ λI [σ, δξλ
I ]

(2.14)
= −(δξλI)[σ, λ

I ]− λIλIδξσ + λIλ
Iδξσ − (δξλ

I)λIσ + (δξλ
I)σλI

= −2(δξλI)[σ, λ
I ] + 2λIλ

Iδξσ (2.30)

The second term on the RHS of (2.30) is cubic in λ, and will vanish against the cubic λ term in
(2.29) with use the Fierz identity. When taking into account that λ is a Grassmann odd field, we
can rewrite (2.9) as

λJ(ξJλ
I) = −1

4
λI(ξJλ

J)− 1

4
ΓµλI(ξJΓµλ

J) +
1

8
ΓµνλI(ξJΓµνλ

J), while

ξJ(λJλI) = −1

4
λI(λJξJ)− 1

4
ΓµλI(λJΓµξJ) +

1

8
ΓµνλI(λJΓµνλJ)

= +
1

4
λI(ξJλ

J) +
1

4
ΓµλI(ξJΓµλ

J) +
1

8
ΓµνλI(ξJΓµνλ

J)

Taking the difference between both lines results in

λJ(ξJλ
I)− ξJ(λJλI) = −1

2
λI(ξJλ

J)− 1

2
ΓµλI(ξJΓµλ

J) (2.31)

Applying this to the second term on the RHS of (2.30) and the λ-cubic term in (2.29) will lead to

2i(λIλ
I)(ξJλ

J) + 2i(λIΓµλ
I)(ξJΓµλJ) = 2iλI

(
λI(ξJλ

J) + Γµλ
I(ξJΓµλJ)

)
= 4iλI(ξJ(λJλI)− λJ(ξJλ

I))

On the left term we can now apply (2.7), (2.14) and the fact that λ is odd to see that

= 4i(−(λIλJ)(ξJλI) + (λIλJ)(ξJλI))
(2.14)

= 0.

To summerize what we have so far:

δξ(A+D + E) =− 2

(
1

2
ξIΓ

µνFµν + ξIΓ
µDµσ − ξJDJI +

2

r
t JI ξJσ

)
[σ, λI ]

− iFνρ(DµξI)Γ
νρΓµλI + 2i

(
(ξIΓ

ν)Dνσ − ξJDJI +
2

r
t JI ξJσ

)
ΓµDµλ

I , (2.32)

where we can drop the fourth term, since 2
r t

J
I ξJ (σσλI − σλIσ)

(2.14)
= 0. We will now study δξC, it

becomes

δξC = −1

2
δξ(DIJD

IJ)

(2.25)

(2.14)
= −DIJδξD

IJ

(2.4)
= −DIJ

(
−iξ{IΓµDµλ

J} + [σ, ξ{IλJ}] +
i

r
(tIKξKλ

J + tJKξKλ
I)

)
= −2DIJ

(
−iξIΓµDµλ

J + ξI [σ, λJ ] +
i

r
tIKξKλ

J

)
, (2.33)

if we use the symmetry of DIJ for the last equality sign. The first and second term of (2.33) and
the seventh and third term of (2.32) clearly respectively cancel. As such we find

δξ(A+ C +D + E) =− ξIΓµνFµν [σ, λI ]− 2ξIΓ
µDµσ[σ, λI ]− 2

i

r
tIKDIJξKλ

J

− iFνρ(DµξI)Γ
νρΓµλI + 2iξIDνσΓνΓµDµλ

I +
4i

r
t JI ξJσΓµDµλ

I . (2.34)
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Adding the variation of B will let even more terms vanish

δξ(B) = −δξ (DµσD
µσ)

(2.25)
= −2Dµσδξ (Dµσ)

(2.25)
= −2Dµσ (Dµ(δξσ)− i[δξAµ, σ])

(2.14)

(2.18)
= −2(Dµδξσ)Dµσ + 2iδξA

µ[σ,Dµσ]

(2.2)
= −2i(DµξI)λ

IDµσ − 2iξI(D
µλI)Dµσ − 2ξIΓ

µλI [σ,Dµσ] (2.35)

Using the cyclicity of the trace, we can see that the third term of (2.35) and the second term of
(2.34) together vanish. Furthermore the second term of (2.35) can be rewritten as

−2iξI(D
µλI)Dµσ

(2.14)
= −2iξIg

µν(Dνσ)Dµλ
I (B.1)

= −iξI{Γµ,Γν}(Dνσ)Dµλ
I . (2.36)

On the other hand, we can take the first and fifth terms of (2.34), and rewrite them in the following
way

−ξIΓµνFµν [σ, λI ] + 2iξIDνσΓνΓµDµλ
I (2.14)

= − ξIΓµν [Fµν , σ]λI + 2iξIDνσΓνΓµDµλ
I

(2.16)
= − iξIΓµν(D[µDν]σ)λI + 2iξIDνσΓνΓµDµλ

I

= − 2ξIΓ
µν(DµDνσ)λI + 2iξIDνσΓνΓµDµλ

I

(2.18)
= 2i(DµξI)Γ

µν(Dνσ)λI + 2iξIΓ
µν(Dνσ)(Dµλ

I)

+ 2iξIΓ
νΓµ(Dνσ)(Dµλ

I)

= iξI{Γµ,Γν}(Dνσ)(Dµλ
I) + 2i(DµξI)Γ

µν(Dνσ)λI

This shows that the first term on the RHS of this equation cancels with (2.36). The second term
does not vanish, but can be combined with the first term on the RHS of (2.35) and it will become

−2i(DµξI)λ
IDµσ + 2i(DµξI)Γ

µν(Dνσ)λI
(2.19)

= − 2i

r
t JI ξJΓµλIDµσ +

2i

r
t JI ξJΓµΓµν(Dνσ)λI

(B.1)
= − 2i

r
t JI ξJΓµλIDµσ

+
i

r
t JI ξJ(2ΓµΓµΓν − 2Γµg

µν)(Dνσ)λI

= − 2i

r
t JI ξJΓµλIDµσ +

i

r
t JI ξJ(10− 2)Γν(Dνσ)λI

=
6i

r
t JI ξJΓµλIDµσ.

So adding everything together with (2.34) while using the Killing equation (2.19), we will find

δξ(A+ B + C +D + E) =− 2
i

r
tIKDIJξKλ

J +
6i

r
t JI ξJΓµλIDµσ

− i

r
Fνρt

J
I ξJΓµΓνρΓµλI +

4i

r
t JI ξJσΓµDµλ

I . (2.37)

It is important to note that all terms here depend on 1
r . This means that in the flat limit r →∞,

these terms vanish. Since the terms F , G and H in the Lagrangian disappear as well in this limit,
we have now found that our Lagrangian is invariant under the supersymmetry transformations in
the flat limit.
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Next we will examine the variation of H. It can be computed that

δξH = − i
r
tIJδξ (λIλJ)

(2.25)
= − i

r
tIJ ((δξλI)λJ − λI(δξλJ))

(2.14)
= − i

r
tIJ ((δξλI)λJ + (δξλJ)λI)

= − i

r
tIKFµνξIΓ

µνλK −
2i

r
tIKξIΓ

µDµσλK +
2i

r
tIKξJDJIλK

− 4i

r2
tIKt JI ξJσλK , (2.38)

where we used the symmetry tIJ = tJI in the last line. When we rewrite the third term in the
RHS of (2.37) like

− i
r
Fνρt

J
I ξJΓµΓνρΓµλI

(E.1)
= − i

r
Fνρt

J
I ξJ(ΓµΓµΓνρ − 2Γµg

µνΓρ + 2Γµg
µρΓν)λI

(B.1)
= − i

r
Fνρt

J
I ξJ(5Γνρ − 4Γνρ)λI =

i

r
Fνρt

IJξJΓνρλI ,

we can see it drops out against the first term on the RHS of (2.38). If we consider that the second
term of (2.38) − 2i

r t
IKξIΓ

µDµσλK = 2i
r t

I
K ξIΓ

µDµσλ
K , this leaves us with

δξ(A+ B + C +D + E +H) =− 2i

r
tIKDIJξKλ

J +
8i

r
t JI ξJΓµλIDµσ +

4i

r
t JI ξJσΓµDµλ

I

+
2i

r
tIKξJDJIλK −

4i

r2
tIKt JI ξJσλK . (2.39)

This term will simplify a lot when the variation of F is considered as well

δξ(F) = δξ

(
2

r
σtIJDIJ

)
(2.25)

=

(
2

r
(δξσ)tIJDIJ +

2

r
σtIJ(δξDIJ)

)
(2.2)

(2.4)
=

(
2i

r
(ξKλ

K)tIJDIJ −
4i

r
σtIJξIΓ

µDµλJ

+
4

r
σtIJ [σ, ξIλJ ] +

4i

r2
σtIJ t KI ξKλJ

)
, (2.40)

making use of the symmetry of tIJ during the last equality sign. The third term drops due to
cyclic behavior of the trace, and the fourth term vanishes together with the fifth term of (2.39)
under index relabelling. The first term of (2.40) and the first and fourth term of (2.39) become

2i

r
(−(tD)LKξL + (tD)KLξL + (tD)LLξ

K)λK , (2.41)

with some relabelling and using the rule ξIλI = −ξIλI . The (tD)IJ used here is defined as tIKD J
K .

This adds up to 0 using the Bianchi-like identity, and thus this shows that (2.41) is 0. Then we are
left with three last terms in (2.39) and (2.40):[

8i

r
t JI ξJΓµλIDµσ +

4i

r
t JI ξJσΓµDµλ

I

−4i

r
σtIJξIΓ

µDµλJ

]
=

8i

r
t JI ξJΓµλIDµσ +

8i

r
t JI ξJσΓµDµλ

I

(2.18)
=

8i

r
t JI ξJΓµ(λIDµσ − (Dµσ)λI)− 8i

r2
t JI t K

J ΓµΓµλIσ

(2.14)

(B.1)
=
−40i

r2
(tt) K

I ξKλ
Iσ,

17
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where (tt) K
I = t JI t K

J is proportional to the two by two identity matrix. Therefor we can rewrite

tt = Tr(tt)
Tr(I2×2)I2×2 = 1

2Tr(tt)I2×2, and thus

(tt) K
I ξKλ

I =
1

2
(tt) I

I ξKλ
K . (2.42)

And the result cancels exactly against the variation of G

δξG
(2.25)

= −20

r2
tIJ tIJσδξσ

(2.2)
= −20i

r2
tIJ tIJσξKλ

K =
20i

r2
t JI t I

J σξKλ
K (2.43)

This means that we have computed that

δξLvector = 0

2.2 Hypermultiplet

We now have a completed gauge theory, so it is time to add masses. When considering supersym-
metry the mass fields are typically part of a chiral multiplet. A chiral multiplet consists of three
sets of fields, that have underlying supersymmetry transformations (which are similar to those we
will define in (2.46) and onwards).
We need N hypermultiplets to contain N fields with masses and their underlying Sp(N) flavour
symmetry. A hypermultiplet consists of 2 chiral multiplets: one transforming in a chiral represen-
tation N , and one transforming in an anti-chiral representation N . The hypermultiplet contains
the following fields:

q A
I a set of 2N complex scalars indexed by A, with I still representing the SU(2)R symmetry,

ψA a set of 2N fermions,

F A
I a set of 2N auxiliary scalars.

The ith ‘single hypermultiplet’ is formed by all these fields with label A ∈ {i, i+ r}. All fields obey
a certain reality condition:

(qAI)
† = ΩABε

IJqBJ , (2.44)

(ψAα)† = ΩABCαβψ
Bβ , (2.45)

(FAI)
† = ΩABε

IJFBJ ,

The ΩAB here is a symplectic form which will be further explained in section 2.2.1, but for now it
suffices to say that it relates the fields with index A = i and A = i+N . Cαβ and εIJ are the same
as introduced in respectively section 2.1.1 and 2.1.2. The dagger indicates a Hermitean conjugate:
the complex conjugate and the transpose with respect to the gauge, SU(2)R and spinor structure
(when applicable). The supersymmetry transformations are once again generated by a fermionic
Killing spinor ξI , and they are given by

δξqI = −2iξIψ, (2.46)

δξψ = ΓµξIDµq
I + iξIσq

I − 3

r
tIJξIqJ + ξ̌I′F

I′ , (2.47)

δξFI′ = 2ξ̌I′(iΓ
mDmψ + σψ + λKq

K), (2.48)

where ξ̌I′ is a another supersymmetry parameter with a slight restriction imposed by the choice
of ξI .

14 And in addition, the fields in the vectormultiplet transform according to (2.1) through
(2.4). We will now first study the Sp(N) flavour symmetry in section 2.2.1 and how we can couple
this symmetry to the gauge symmetry. Afterwards we will study the composition of the terms in

14It will be further discussed in section 2.2.2.
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the Lagrangian in section 2.2.3. Then we have all the ingredients to show the invariance of the
Lagrangian

Lhyper = DµqID
µqI−qIσ2qI−2iψΓµDµψ−2ψσψ−iqIDIJqJ−4ψλIq

I+
15

2r2
tKLtKLqIq

I−F I′F I
′

(2.49)
under the supersymmetry transformation (2.1) through (2.4) and (2.46) through (2.48) in section
2.2.2. It is noteworthy that there is no trace in this formula, in contrary to the Lagrangian for
the vectormultiplet (2.5). This is because the fields in the vectormultiplet are all matrices, which
are mapped to the scalars by taking the trace. But the fields in hypermultiplet are vectors with
respect to the gauge structure, and they are mapped onto the scalars with the help of an inner
product, where contravariant vectors are defined in a way we will explain in (2.58).

2.2.1 Sp(N) colour symmetry

Embedding SU(N) in Sp(N) In the following section we will use Ũ as elements of a Lie algebra,
and U as the corresponding element of the Lie group.
Before we discuss how these groups come into play, we will first define the Sp(r) and SU(N) groups.
Sp(r) is the symplectic group. It is defined by it’s algebra sp(r): the set of all matrices Ã, that
satisfy

ΩÃ+ ÃTΩ = 0, (2.50)

where Ω is called the invariant tensor of Sp(r), and defined like

ΩAB =

[
0 IN
−IN 0

]
.

It is important to notice that ΩAB is anti-symmetric in its indices A and B.
On the other hand we have the Lie group SU(N), and its Lie algebra su(N). If a matrix Ũ ∈ su(N),
we know it satisfies15

Ũ† = −Ũ , and Tr(Ũ) = 0. (2.51)

Now we can embed su(N) into a subgroup of sp(N) by the following method: take Ũ ∈ su(N) and
define

Ã =

[
Ũ 0

0 Ũ∗

]
, (2.52)

where Ũ∗ is the matrix with the complex conjugate entries of Ũ . This new matrix satisfies (2.50),
since

ΩÃ+ ÃTΩ =

[
0 IN
−IN 0

] [
Ũ 0

0 Ũ∗

]
+

[
ŨT 0

0 Ũ†

] [
0 IN
−IN 0

]
=

[
0 Ũ∗

−Ũ 0

]
+

[
0 ŨT

−Ũ† 0

]
(2.51)

= 0.

If we would want to translate these properties –and specifically (2.52)– to Lie groups, rather than
Lie algebras, we need to study the relation

Uε = eεŨ , (2.53)

where U ∈ SU(N): the Lie group.

For Ũ∗, we find that eεŨ
∗

=
(
eεŨ
)∗

= U∗. Since we know that

UεU
†
ε = I, or equivalent U−1

ε = U†ε ,

15We use the convention of anti-Hermitean matrices here. It is possible to define them as Hermitean matrices, but
this would require an extra i in front of the ε in (2.53) in order to maintain consistent definitions.
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for an element Uε the Lie group SU(N), we find that U∗ε = (U†ε )T = (U−1
ε )T ≡ U−Tε . So we can

write (2.52) as

A =

[
Uε 0
0 U∗ε

]
=

[
Uε 0
0 U−Tε

]
. (2.54)

Note that since SU(N) is a group, elements of the form (2.54) form a subgroup in Sp(N). This
defines an embedding of SU(N) in Sp(N): a fact we will use to couple the hypermultiplet to the
gauge field.

Physical application and interpretation Now let us take two chiral multiplets: one trans-
forming in N (chiral) and one transforming in N (anti-chiral). For the scalar fields, for instance,
this would mean in the fundamental representation, that they transform as

φ+ → Uφ+,

φ− → U−Tφ−. (2.55)

From these two together we will create one of the scalar fields in the hypermultiplet by putting
them both in one vector

qA0 =
1√
2

[
φ+

φ−

]
, qA1 =

1√
2

[
−φ∗−
φ∗+

]
, (2.56)

just like they do in [25]. Note how this is consistent with the reality condition imposed in . The
index A here runs from 0 to 2N through the gauge structure N and N, and the indices 0 and
1 transform with respect to the SU(2)R symmetry. Corresponding conserved quantities to the
Sp(N) colour symmetry are for instance ΩABε

IJq B
J q A

I , for

ATΩA = Ω, (2.57)

for A ∈ Sp(N).16 Now we can rewrite this invariant quantity (qI)†qI like

= ΩABε
IJq B

J q A
I

= ΩABq
A

0 q B
1 − ΩABq

A
1 q B

0

(2.56)
=

1

2

[
φT+ φT−

] [ 0 IN
−IN 0

] [
−φ∗−
φ∗+

]
+

1

2

[
−(φ∗−)T (φ∗+)T

] [ 0 IN
−IN 0

] [
φ+

φ−

]
=

1

2
(φT+φ

∗
+ + φT−φ

∗
− + φ†−φ− + φ†+φ+),

at which point it will be apparent that it is invariant under the transformations (2.55).
The same can be done with the auxiliary scalar field F , but the fermion ψ requires a slightly
different approach. Instead of the 2N fermions with the reality condition (2.45), we take a N
unconstrained Dirac spinors ψα transforming in the fundamental representation N, and we define

ψA =
1

2

(
ψα

−Cαβ(ψβ)†

)
.

Although fields in the hypermultiplet are vectors, acted upon directly by matrices, elements of the
vectormultiplet are still matrices, transforming in the adjoint representation. This leads to gauge
invariant quantities like

ΩAB(ψA)TΓµ(Aµ)BCψ
C ,

16To show (2.57) is consistent with (2.50), we can write A = exp(εÃ) in (2.57), and study an in-
finitesimal transformation in ε. Then ∂ε(ATΩA)|ε=0 = ∂ε(Ω)|ε=0 = 0. The left hand side can
be worked out to ∂ε(exp(εÃ)TΩ exp(εÃ))|ε=0 = ∂ε(exp(εÃT )Ω exp(εÃ))|ε=0 = (exp(εÃT )ÃTΩ exp(εÃ) +
exp(εÃT )ΩA exp(εÃ))|ε=0 = ÃTΩ + ΩÃ, so we can construct the algebra defined by (2.50) from the group
by derivation of its elements.
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which is invariant under the transformation

ψA → ABAψ
A, (Aµ)BA → ABC(Aµ)CD(AAD)†, A ∈ Sp(N).

This becomes apparent when using the relations ATΩA = Ω, and A†A = I, where the latter is
courtesy of the embedded SU(N) group within Sp(N).
To simplify notation, we will use suppress the gauge indices from now on, and use the notation

ΩABψ
AC = (ψB)† ≡ ψ = ψB , (2.58)

and similar identities for q and F , which leads to gauge-invariant quantities like qIq
I and ψΓmAµψ.

This Hermitean conjugate is with respect to the gauge and spinor structure. The gauge indices are
often suppressed, but if they are added ψ is a covariant vector while ψ is contravariant. Because
the inner product results in a real scalar (with respect to the gauge structure), we can take the
Hermitean conjugate of the number with respect to the gauge structure

αqIAq
I = (αqIAq

I)† = α∗(qI)†A†(qI)
† (2.44)

= α∗qIA
†qI (2.59)

where A† is the Hermitean conjugate with respect to the gauge, spinor and SU(2)R structure. For
fields in the vectormultiplet A† = A holds, as we specified before in section 2.1, except for σ and
DIJ , for they are purely imaginary. If A is a product of several fields, say A = BC, then we should
take into account that transposing matrices changes the order, so A† = CB. The antisymmetry of
εIJ and ΩAB compensate each others signs.
There is one more aspect caused by the difference between the fundamental and adjoint representa-
tion. The covariant derivative will act differently on fields in the hypermultiplet than on fields in
the vectormultiplet. Recall that, for the scalar σ in the vectormultiplet,

Dµσ = ∂µσ − i[Aµ, σ].

The qI field in the hypermultiplet is a ‘gauge vector’ as opposed to the ‘gauge matrix’ σ, and thus
the covariant derivative will act like

DµqI = ∂µqI − iAµqI , and DµqI = ∂µqI − iqi(Aµ)T , (2.60)

and this also concerns the gauge field strength tensor, which becomes

Fµνq = i[Dµ, Dν ]q = (∂µAν − ∂νAµ − i[Aµ, Aν ])q, (2.61)

in the fundamental representation.
The computation necessary to prove that integration by parts still works with (2.60) is quite similar
to the one given in (2.18), and because of that it will not be repeated here. The central difference
is the method in which the gauge field is applied to the other side, which is done with the help of
(2.59).

2.2.2 Supersymmetry

It is supposedly impossible to close the supersymmetry algebra off-shell on flat R5 with a finite
number of auxiliary fields.17 But we need a weaker condition in order to apply supersymmetry.
We only need that

δ2
ξ = L (2.62)

for a single determined bosonic spinor ξ, and some symmetry of the theory L. Therefor we can
include a constant spinor ξ̌I

′
embedded in the supersymmetry transformations, like we mentioned

with the introduction of (2.46) through (2.48). This ξ̌I′ is uniquely determined by ξ and transforms

17A rigorous study of this statement can be found in [20].
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(like F I
′
) under a separate SU(2)R symmetry. In order to let the supersymmetry transformations

satisfy 2.62, we need that ξ̌ satisfies

ξIξ
I = ξ̌I′ ξ̌

I′ , ξI ξ̌J′ = 0, ξIΓ
µξI + ξ̌I′Γ

µξ̌I
′

= 0. (2.63)

Proving the existence of such a spinor is rather simple, yet it is not apparent. Given ξ1 and ξ2 are
specified with the usual ξ1ξ2 ≡ ξ1,αCαβ ξ

β
2 = 1, we have a plane spanned by these two vectors (C is

not the identity matrix). In the resting two dimensional plane18 we can choose another couple ξ̌1,
ξ̌2 which are perpendicular to ξ1 and ξ2, and which satisfies ξ̌1ξ̌2 = 1. We know the matrix Γµ

should be traceless, and the tracelessness should be conserved in any basis. So we could study Γµ

in the basis (ξ1, ξ2, ξ̌1, ξ̌2), to see that

0 = Tr(Γµ) = ξ1Γµξ2 − ξ2Γµξ1 + ξ̌1Γµξ̌2 − ξ̌2Γµξ̌1

= εIJξIΓ
µξJ + εI

′J′ ξ̌I′Γ
µξ̌J′ .

We now end up with a five dimensional N = 1 SUSY theory with 8 SUSY generators (degrees of
freedom): ξ1, ξ2 each contain 4 d.o.f.
Now in order to prove (2.62), which is the equivalent of ‘the supersymmetry of the vectormultiplet
being closed’ for the hypermultiplet, we study the effect of δ2 on the fields. For qI we find

δ2qI = −2iξIδψ = −2i(ξIΓ
µξJ)Dµq

J + 2(ξIξJ)σqJ +
6i

r
(ξIξJ)tJKqK − 2i(ξI ξ̌I′)F

I′ .

The last term drops out because of (2.63). The first term can be rewritten as −i(ξIΓµξJ)Dµq
J +

i(ξJΓµξI)Dµq
J (E.4)

= −i(ξJΓµξJ)DµqI . The same can be done with the indices I and J in the
second and third terms to show that they are respectively (ξJξ

J)σqI and 3i
r (ξJξ

J)t KI qK . Thus

δ2qI = −i(ξJΓµξJ)DµqI − i(iξJξJ)σqI +
3i

r
(ξJξ

J)t KI qK (2.64)

And applied to ψ the operator [δξ, δη] results in

δ2
ξψ

(2.47)
= ΓµξIDµ(δξq

I)− iΓµξI(δξAµ)qI + iξI(δξσ)qI + iξIσ(δξq
I)− 3

r
tIJξI(δξqJ) + ξ̌I′(δξF

I′)

(2.1)

(2.46)
= − 2iΓµξI(ξ̃

IΓµψ)− 2iΓµξI(ξ
IDµψ) + ΓµξI(ξJΓµλ

J)qI − ξI(ξJλJ)qI + 2σξI(ξ
Iψ)

+
6i

r
tIJξI(ξJψ) + 2iξ̌I′(ξ̌

I′ΓµDµψ) + 2σξ̌I′(ξ̌
I′ψ) + 2ξ̌I′(ξ̌

I′λJ)qJ .

We can show that ΓµξI(ξJΓµλ
J)qI − ξI(ξJλJ)qI + 2ξ̌I′(ξ̌

I′λJ)qJ = 0. In order to do that we

use the Fierz identity to write 2ξ̌I′(ξ̌
I′λJ)qJ = ξ̌I′(ξ̌

I′λJ)qJ − ξ̌I′(ξ̌I′λJ)qJ
(2.10)

= 1
2λJ(ξ̌I

′
ξ̌I′)q

J +

1
2ΓµλJ (ξ̌I

′
Γµξ̌I′)q

J (2.63)
= 1

2λJ (ξIξI)q
J − 1

2ΓµλJ (ξIΓµξI)q
J , and we use (2.10) on ΓµξI(ξJΓµλ

J )qI +

ξI(ξJλ
J )qI

(2.10)
= −2ξI(ξJλ

J )qI+2λJ (ξJξI)q
I−2ξJ (λJξI)q

I as well. On−2ξI(ξJλ
J )qI−2ξJ (λJξI)q

I

we use (E.4) in order to find 2ξJ(ξJλI)q
I . This leaves us with

(εIN εLM − εIM εLN +
1

2
εILεMN )λL(ξMξN )qI + 2ξJ(ξJλI)q

I − 1

2
ΓµλJ(ξIΓµξI)q

J (E.4)
=

−1

2
λJ(ξIξI)q

J + (ξJ(ξJλI)q
I − ξJ(ξJλI)q

I)− 1

2
ΓµλJ(ξIΓµξI)q

J (2.10)
= 0

18Reminder: the spinor space has dimension 2b
d
2
c, which is 4 in the case of d = 5.
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Furthermore we can say

2σξI(ξ
Iψ) = σξI(ξ

Iψ)− σξI(ξIψ)
(2.10)

=
1

2
σψ(ξIξI) +

1

2
σΓµψ(ξIΓµξI), while

2σξ̌I′(ξ̌
I′ψ) = σξ̌I′(ξ̌

I′ψ)− σξ̌I
′
(ξ̌I′ψ)

(2.10)
=

1

2
σψ(ξ̌I

′
ξ̌I′) +

1

2
σΓµψ(ξ̌I

′
Γµξ̌I′), which adds up to

2σξI(ξ
Iψ) + 2σξ̌I′(ξ̌

I′ψ)
(2.63)

= − (ξIξ
I)σψ,

with the use of (2.63). Identically we have

−2iΓµξI(ξ
IDµψ) = −iΓµξI(ξIDµψ) + iΓµξI(ξIDµψ)

(2.10)
= − i

2
ΓµDµψ(ξIξ

I)− i

2
ΓµΓνDµψ(ξIΓνξ

I), and

2iΓµξ̌I′(ξ̌
I′Dµψ) = iΓµξ̌I′(ξ̌

I′Dµψ)− iΓµξ̌I
′
(ξ̌I′Dµψ)

(2.10)
=

i

2
ΓµDµψ(ξ̌I′ ξ̌

I′) +
i

2
ΓµΓνDµψ(ξ̌I′Γν ξ̌

I′),

adding up to− 2iΓµξI(ξ
IDµψ) + 2iΓµξ̌I′(ξ̌

I′Dµψ)
(2.63)

= − i

2
{Γµ,Γν}Dµψ(ξIΓνξ

I)
(B.1)
= −i(ξIΓµξI)Dµψ.

The last two terms are −2iΓµξI(ξ̃
IΓµψ) + 6i

r t
IJξI(ξJψ), which with the help of the Fierz identity

and the fact that ξ̃I = t JI ξJ can be written as − 4i
r ψ(ξJξI)t

IJ − 4i
r ξJ (ψξI)t

IJ + 8i
r ξI(ξJψ)tIJ . The

first term vanishes because it is antisymmetric in I and J when considering a switch of spinors,
while it is symmetric in I and J because of tIJ . The last two terms are equal to 4i

r ξJ(ψξI)t
IJ ,

which is, according to the Fierz identity (2.9), equal to − i
2rΓµνψ(ξIΓµνξJ)tIJ , where the other

terms vanished because of the simultaneous anti-symmetry and symmetry in I ↔ J .
So we conclude that

δ2
ξψ = −i(ξIΓµξI)Dµψ + i(−iξIξI)σψ +

1

4
(−2iξ̃IΓ

µνξI)Γµνψ (2.65)

The last step is to calculate

δ2
ξFI′

(2.48)
= 2iξ̌I′Γ

µDµ(δξψ) + 2(ξ̌I′Γ
µ(δξAµ)ψ) + 2ξ̌I′(δξσ)ψ + 2ξ̌I′σ(δξψ) + 2ξ̌I′(δξλJ)qJ

+ 2ξ̌I′λJ(δξq
J)

(2.1)

(2.46)
= 2i(ξ̌I′Γ

µΓνΓµξ̃J)Dνq
J + 2i(ξ̌I′Γ

µΓνξJ)DµDνq
J − 2(ξ̌I′Γ

µΓµξ̃J)σqJ

− 2(ξ̌I′Γ
µξJ)(Dµσ)qJ − 2(ξ̌I′Γ

µξJ)σDµq
J − 6i

r
(ξ̌I′Γ

µΓµξ̃J)tJKqK

− 6i

r
(ξ̌I′Γ

µξJ)tJKDµqK + 2i(ξ̌I′Γ
µDµξ̌J′)F

J′ + 2i(ξ̌I′Γ
µξ̌J′)DµF

J′

+ 2i(ξJΓµλ
J)(ξ̌I′Γ

µψ) + 2i(ξJλ
J)(ξ̌I′ψ) + 2σ(ξ̌I′Γ

µξJ)Dµq
J + 2iσ2(ξ̌I′ξJ)qJ

− 6

r
(ξ̌I′ξJ)tJKqK + 2(ξ̌I′ ξ̌J′)σF

J′ − (ξ̌I′Γ
µνξJ)Fµνq

J + 2(ξ̌I′Γ
µξJ)(Dµσ)qJ

+ 2(ξ̌I′ξK)DK
Jq
J + 4(ξ̌I′ ξ̃J)σqJ − 4i(ξ̌I′λJ)(ξJψ).

Because of (2.63) we can state that not only all terms containing (ξ̌I′ξJ) vanish, but all terms
containing (ξ̌I′ ξ̃J) = (ξ̌I′ξK)t K

J vanish as well. We have to note, however, that terms containing
(ξ̌I′ΓξJ ) do not vanish necessarily if Γ is some (product of) gamma matrices unequal to the identity.
The case where Γ = ΓµΓµ = 5 does vanish, of course, since the factor 5 can be pulled out. Crossing
out these terms, and dropping some terms that directly cancel with other terms, leaves us with

δ2
ξFI′ = 2i(ξ̌I′Γ

µΓνΓµξ̃J)Dνq
J + 2i(ξ̌I′Γ

µΓνξJ)DµDνq
J − 6i

r
(ξ̌I′Γ

µξJ)tJKDµqK

+ 2i(ξ̌I′Γ
µDµξ̌J′)F

J′ + 2i(ξ̌I′Γ
µξ̌J′)DµF

J′ + 2i(ξJΓµλ
J)(ξ̌I′Γ

µψ) + 2i(ξJλ
J)(ξ̌I′ψ)

+ 2(ξ̌I′ ξ̌J′)σF
J′ − (ξ̌I′Γ

µνξJ)Fµνq
J − 4i(ξ̌I′λJ)(ξJψ). (2.66)
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First off, start with rewriting the ΓµΓν in 2i(ξ̌I′Γ
µΓνξJ )DµDνq

J into 1
2{Γ

µ,Γν}+ Γµν . The term
containing 1

2{Γ
µ,Γν} = gµν vanishes by grace of (2.63), while in the second term can be rewritten

as i(ξ̌I′Γ
µνξJ )[Dµ, Dν ]qJ . With the help of (2.61) we can then show that this term vanishes against

−(ξ̌I′Γ
µνξJ)Fµνq

J in (2.66). Furthermore because ΓµΓνΓµ
(B.1)
= Γν(ΓµΓµ) − 2gµνΓµ = 3Γν , we

have that 2i(ξ̌I′Γ
µΓνΓµξ̃J )Dνq

J (B.1)
= 6i

r (ξ̌I′Γ
νξK)tKJDνqJ , which drops out against another term

in (2.66). Then lastly 2i(ξJΓµλ
J )(ξ̌I′Γ

µψ) + 2i(ξJλ
J )(ξ̌I′ψ) can be rewritten with the help of the

Fierz identity for fermionic spinors (since two of the three spinors of λ, ξ and ψ are fermionic). We
then find 4i(ξJψ)(ξ̌I′λ

J)− 4i(ξJ ξ̌I′)(ψλ
J) as an intermediate result, yet we have to keep in mind

that the fields of the vectormultiplet should act as matrices on the fields of the hypermultiplet. So
we should rewrite it as −4i(ξ̌I′λ

J)(ξJψ)− 4i(ψλJ)(ξJ ξ̌I′), where we pick up an extra minus sign
because ψ and λ are Grassmannian odd. The second term drops because of (2.63), and the first
term drops against another term of (2.66). Thus we are left with

δ2
ξFI′ = 2i(ξ̌I′Γ

µDµξ̌J′)F
J′ + 2i(ξ̌I′Γ

µξ̌J′)DµF
J′ + 2(ξ̌I′ ξ̌J′)σF

J′ ,

where we can rewritten the second and third term with the trick that 2i(ξ̌I′Γ
µξ̌J′)DµF

J′ =

i(ξ̌I′Γ
µξ̌J′)DµF

J′ − i(ξ̌J′Γµξ̌I′)DµF
J′ (E.4)

= −i(ξ̌J′Γµξ̌J
′
)DµFI′ . Taking (2.64), (2.65) and this last

calculation all together then yields

δ2
ξqI = −ivµDµqI + iγqI +R J

I qJ ,

δ2
ξψ = −ivµDµψ + iγψ +

1

4
ΘµνΓµνψ, and

δ2
ξFI′ = −ivµDµFI′ + iγFI′ +R J′

I′ FJ′ . (2.67)

In here vµ = ξIΓ
µξI is a parameter for the translation, γ + ivµAµ is a parameter for a gauge

transformation, with γ = −iξIξIσ, RIJ = 3i(ξKξ
L)tIJ is a parameter for the R−rotation, Θµν

a parameter for a spacial rotation and last R′I′J′ is a parameter for a rotation in the SU(2)′

space where the I ′ belongs. Thus we can state that δ2
ξ is an even symmetry of the theory for the

hypermultiplet. This we will use later on when we want to apply localization.

2.2.3 Hypermultiplet Lagrangian

We will now discuss the off-shell supersymmetric Lagrangian corresponding with the hypermultiplet
coupled to the gauge field by the gauge subgroup of Sp(N) explained in the section 2.2.1. We will
shortly discuss the origin of these terms, although we will not give a derivation. The Lagrangians
are posed by K. Hosomichi, R. Seong and S. Terashima in [20].
We start with a simple Lagrangian invariant under the supersymmetry transformations given in
section 2.2.2 (in addition to the usual Sp(N) gauge symmetries etc.). The Lagrangian corresponding
with these fields would be

Luncoupled = DµqID
µqI − 2iψΓµDµψ +

15

2r2
tKLtKLqIq

I − F I′F I
′
,

where the first two terms are kinetic terms, the third is a q mass-like term originating from the
curvature and the fourth term introduces the auxiliary fields in order to close this theory under
supersymmetry off-shell. This Lagrangian, however, contains the gauge group inside the covariant
derivative as soon as we couple it to the gauge field, and this Lagrangian is not invariant when the
supersymmetry transformations (2.1) through (2.4) are applied as well. This leads to additional
terms in the Lagrangian:

Lhyper =
A

DµqID
µqI −

B
qIσ

2qI −
C

2iψΓµDµψ −
D

2ψσψ−
E

iqID
IJqJ −

F
4ψλIq

I

+

G
15

2r2
tKLtKLqIq

I −
H

F I′F
I′ .
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The labeling of the terms will be used in section 2.2.2 to refer to the individual terms. We will start
by computing the variations of the terms of the hypermultiplet Lagrangian, with the bosonic Killing
spinors replaced by fermionic Killing spinors, just as we did in the case of the vectormultiplet. We
will name the terms of the Lagrangian according to 2.49.

δξA = δξ(DµqID
µqI)

(2.25)
= 2DµqIδξ(∂

µqI − iAµqI)
(2.18)

(2.59)
= −2(DµD

µqI)δξq
I − i2DµqI(δξA

µ)qI
(2.46)

(2.1)
=

A1

4i(DµD
µqI)ξ

Iψ +
A2

2(DµqI)(ξJΓµλJ)qI ,

δξB = δξ(−qIσ2qI)
(2.25)

= −(δξqI)σ
2qI − qIσ2δξq

I − qI{σ, δξσ}qI

(2.59)
= −2qIσ(δξσ)qI − 2qIσ

2δξq
I

(2.46)

(2.2)
=

B1

−2iqIξJσλ
JqI +

B2

4iqIξ
Iσ2ψ,

δξC = δξ(−2iψΓµDµψ)
(2.25)

= −2i(δξψ)ΓµDµψ + 2ψΓµ(δξAµ)ψ + 2iψΓµDµδξψ

(2.18)

(2.59)
= −4iDµψΓµδξψ + 2ψΓµ(δξAµ)ψ

(2.47)

(2.1)
=

C1
−4iDµψΓµΓνξIDνq

I
C2

+4DµψΓµξIσq
I

C3

+
12i

r
DµψΓµtIJξIqJ

C4
−4iDµψΓµξ̌I′F

I′

+
C5

2iψΓµ(ξIΓµλ
I)ψ,

δξD = δξ(−2ψσψ)
(2.25)

= −2(δξψ)σψ + 2ψ(δξσ)ψ + 2ψσδξψ
(2.59)

= 4ψσδξψ + 2ψ(δξσ)ψ

(2.47)

(2.2)
=

D1

4ψσΓµξIDµq
I

D2

+4iψσσξIq
I

D3

−12

r
ψσtIJξIqJ

D4

+4ψσξ̌I′F
I′

D5

+2iψ(ξIλ
I)ψ,

δξE = δξ(iqID
IJqJ)

(2.25)
= i(δξqI)D

IJqJ + iqI(δξD
IJ)qJ + iqID

IJδξqJ
(2.59)

= 2iqID
IJδξqJ + iqI(δξD

IJ)qJ
(2.46)

(2.4)
=

E1
4qID

IJξJψ
E2

+qI(ξ
{IΓµDµλ

J})qJ

E3
+iqI(ξ

{I [σ, λJ}])qJ

E4

−1

r
qI(t

IKξKλ
J + tJKξKλ

I)qJ ,

δξF = δξ(−4ψλIq
I)

(2.25)

(2.59)
= 4qI(λ

I)†δξψ + 4ψδξλIq
I − 4ψλIδξq

I

(2.46)

(2.3)
=

F1

−4qIλ
IΓµξJDµq

J
F2

−4iqIλ
IξJσq

J

F3

+
12

r
qIλ

IξKt
KJqJ

F4

−4qIλ
I ξ̌I′F

I′
F5

−2ψΓµνξIFµνq
I

F6

+4ψΓµξIDµσq
I

F7

+4ψξJDIJq
I

F8

+
8

r
ψt JI ξJσq

I
F9

+8i(ψλI)(ξ
Iψ),

δξG = δξ(
15

2r2
tKLtKLqIq

I)

(2.25)

(2.59)
=

15

r2
tKLtKLqIδξq

I (2.46)
=

G1

−30i

r2
tKLtKLξ

IqIψ,

δξH = δξ(−F I′F I
′
)

(2.25)
= −2F I′δξF

I′ (2.48)
=

H1

−4iξ̌I
′
F I′Γ

µDµψ
H2

−4ξ̌I
′
F I′σψ

H3

−4ξ̌I
′
F I′λJq

J .

The first term on the rightmost side of δξA we will label A1 and the second term A2. The same
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method of labeling we can apply on the other variations. Following this labeling, we will show that

A1 + C1 + C3 + F5 + G1 = 0,

A2 + E2 + E4 + F1 + F3 = 0,

B1 + E3 + F2 = 0,

B2 +D2 = 0,

C2 +D1 +D3 + F6 + F8 = 0,

C4 +H1 = 0,

C5 +D5 + F9 = 0,

D4 +H2 = 0,

E1 + F7 = 0 and

F4 +H3 = 0.

Let us start with showing A1 + C1 + C3 + F5 + G1 = 0. We can look up the terms, to find that

A1 + C1 + C3 + F5 + G1 =4i(DµD
µqI)ξ

Iψ − 4iDµψΓµΓνξIDνq
I +

12i

r
DµψΓµtIJξIqJ

− 2ψΓµνξIFµνq
I − 30i

r2
tKLtKLξ

IqIψ.

We will start with integration by parts of C1 to find

C1
(2.18)

= 4iψΓµΓνξIDµDνq
I + 4iψΓµΓν(DµξI)Dνq

I

(2.19)
= 2iψΓµΓνξI{Dµ, Dν}qI + 2iψΓµΓνξI [Dµ, Dν ]qI +

4i

r
ψΓµΓν(Γµt

J
I ξJ)Dνq

I .

Now we can use the definition of the field strength tensor in the fundamental representation (2.61)
and ΓµΓνFµν = 1

2 (ΓµΓν − ΓνΓµ)Fµν = ΓµνFµν , to show that the second term on the RHS will

cancel against F5. If we then also use that ΓµΓνΓµ
(B.1)
= (−ΓνΓµ + 2gµν)Γµ = −5Γν + 2Γν = −3Γν ,

we find

C1 + F5 = 2iψ{Γµ,Γν}ξIDµDνq
I − 12i

r
ψΓνt JI ξJDνq

I

(B.1)

(2.18)
= 4iψgµνξIDµDνq

I +
12i

r
(Dνψ)Γνt JI ξJq

I +
12i

r
ψΓνt JI (DνξJ)qI .

The first term on the RHS can be written as 4iψ(ξIDµD
µqI)

(2.59)
= −4i(ξIDµD

µqI)ξ
Iψ = −A1,

and therefore it cancels with A1. The second term on the RHS is equal to −C3, when we note the
symmetry of tIJ and that t JI qI = −tIJqI . So if we add

A1 + C1 + C3 + F5
(2.19)

=
12i

r2
ψΓνt JI Γνt

K
J ξKq

I =
60i

r2
ψt JI t K

J ξKq
I ,

so that we can use the relation (tt) K
I ξKq

I = 1
2 (tt) I

I ξKq
K , which is analogous to the identity

proven at (2.42). This results in

A1 + C1 + C3 + F5 + G1 =
30i

r2
ψt JK t K

J ξIq
I + G1 =

30i

r2
tKJ tJKξ

IψqI + G1

(2.59)
=

30i

r2
tKJ tJKξ

IqIψ + G1 = 0.

Which concludes the relation we were trying to prove. Next we will study

A2 + E2 + E4 + F1 + F3 =2(DµqI)(ξJΓµλJ)qI + qI(ξ
{IΓµDµλ

J})qJ −
1

r
qI(t

IKξKλ
J

+ tJKξKλ
I)qJ − 4Dµq

J(ξJΓµλI)q
I +

12

r
qJ(ξKλI)q

ItKJ .

We start by doing a integration by parts of half of the term F1

F1 = −2Dµq
J(ξJΓµλI)q

I + 2qJDµ(ξJΓµλI)q
I + qJ(ξJΓµλI)Dµq

I .
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We take the hermitean conjugate of the last term, do some relabelling, and add A2 in the process
to find

A2 + F1 = 2DµqI(ξJΓµλJ)qI + 2DµqI(ξ
IΓµλJ)qJ + 2DµqI(ξ

JΓµλI)qJ + 2qJDµ(ξJΓµλI)qI .

The first three terms drop out due to the Bianchi-like identity (E.4). We use the product rule for
the derivative in the last term, together with the conformal Killing spinor equation (2.19) to find

A2 + F1 =
2

r
qJ(ξKΓµΓµλI)qIt

JK + 2qJ(ξJΓµDµλ
I)qI ,

where ΓµΓµ = 5. Now note that the terms E2 and E4 can be written as 2qI(ξ
IΓµDµλ

J)qJ and
2
r qI(t

IKξKλ
J )qJ respectively when we use the hermitean conjugate. We can now see that the second

term of A2 + F1 drops out versus E2 and adding E4 to A2 + F1 + E2 results in 12
r qJ(ξKλ

I)qIt
JK .

This is exactly one sign different from F3, and so

A2 + E2 + E4 + F1 + F3 = 0.

Another vanishing set of term is

B1 + E3 + F2 = −2iqIξJσλ
JqI + iqI(ξ

{I [σ, λJ}])qJ +−iqIλIξJσqJ .

We can start by rewriting E3 as

E3 = iqI(ξ
{I [σ, λJ}])qJ = iqIξ

IσλJqJ − iqIξIλJσqJ + iqIξ
JσλIqJ − iqIξJλIσqJ

(2.59)
= −iqIξIσλJqJ + iqJξ

IσλJqI + iqIξ
JσλIqJ + iqJξ

JσλIqI

= −2iqIξ
IσλJq

J + 2iqIξ
JσλIqJ ,

and F2 as

F2 = −4iqIξ
JλIσqJ

(2.59)
= −4iqJξ

JσλIqI = 4iqJξ
JσλIq

I .

B1 can also be simplified to

B1 = −2iqIξJσλ
JqI

(2.59)
= 2iqIξJσλ

JqI .

These three terms combined will result in

B1 + E3 + F2 = 2iqIξ
IσλJq

J + 2iqIξ
JσλIqJ + 2iqIξJσλ

JqI

= (εIJεKL + εIKεLJ + εILεJK)qIξJσλKqL
(E.4)
= 0,

where the last step can be made with the help of the Bianchi-like identity (E.4). The next terms
we will study are

B2 +D2 = 4iqIξ
Iσ2ψ + 4iψσσξIq

I = 4iqIξ
Iσ2ψ + 4iψσ2(ξIq

I)

(2.59)
= 4iqIξ

Iσ2ψ − 4iξIqIσ
2ψ = 0.

To show cancellation of the next five terms is somewhat more involved

C2 +D1+D3 + F6 + F8 =

4DµψΓµξIσq
I + 4ψσΓµξIDµq

I − 12

r
ψσtIJξIqJ + 4ψΓµξIDµσq

I +
8

r
ψt JI ξJσq

I .

Integration by parts of C2 will simplify this equation

C2
(2.18)

= −4ψΓµ(DµξI)σq
I − 4ψΓµξI(Dµσ)qI − 4ψΓµξIσDµq

I ,
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with on the RHS the second and third term cancelling against F6 and D1 respectively. Using the
Killing spinor equation, this results in

C2 +D1 + F6
(2.19)

= −4

r
ψΓµΓµt

J
I ξJσq

I =
20

r
ψσtIJξJqI ,

which vanishes together with D3 and F8 and thus

C2 +D1 +D3 + F6 + F8 = 0.

C4 and H1 will vanish together as well, since

C4 +H1 = −4iDµψΓµ(ξ̌I′F
I′)− 4iξ̌I

′
F I′Γ

µDµψ

(2.59)
= 4i(ξ̌I

′
F I′)Γ

µDµψ − 4iξ̌I
′
F I′Γ

µDµψ = 0.

Another trio of vanishing terms is C5 +D5 + F9. One should pay attention in the following lines:
the parentheses are present to denote how the spinors are contracted with one another. If we do
this carefully we see that

C5 +D5 + F9 = 2iψΓµ(ξIΓµλ
I)ψ + 2iψ(ξIλ

I)ψ + 8i(ψλI)(ξ
Iψ)

(2.59)
= 2iψ(Γµ(ξIΓµλ

I)ψ + (ξIλ
I)ψ) + 4i(ψλI)(ξ

Iψ) + 4i(ξIψ)(λIψ)

(2.31)
= 4iψ(λI(ξIψ)− ξI(λIψ))− 4i(ψλI)(ξIψ) + 4i(ψξI)(λ

Iψ) = 0,

where the crucial step is based upon the Fierz identity for some odd and some even spinors (2.31).
The next term D4, will cancel against H2, which we will see after taking the hermitean conjugate
of D4

D4 +H2 = 4ψσ(ξ̌I′F
I′)− 4ξ̌I

′
F I′σψ

(2.59)
= 4(ξ̌I

′
F I′)σψ − 4ξ̌I

′
F I′σψ = 0.

Then we have two more vanishing pairs left to show. E1 and F7 vanish thanks to (2.59)

E1 + F7 = 4qID
IJξJψ + 4(ψξJ)DIJq

I (2.59)
= 4qID

IJξJψ − 4qIDIJξ
Jψ

= 4qID
IJξJψ − 4qID

IJξJψ = 0,

and F4 and H3 cancel on the same grounds

F4 +H3 = −4qIλ
I ξ̌I′F

I′ − 4(ξ̌I
′
F I′)λJq

J (2.59)
= 4qIλ

I ξ̌I′F
I′ + 4qJλJ(ξ̌I

′
FI′) = 0.

We have now shown all variations to vanish against each other, and the only thing left to show is
that they would not vanish when one term from the Lagrangian would be removed; in other words,
that the Lagrangian is minimally extended. The way to check this in one glance is by putting all
terms in a table, as done in table 1. All terms in a row vanish together, and all terms in a column
are resulting from the same term in the Lagrangian. As one can see in the table, all term are either
horizontally or vertically attached, which, in combination with

δξLhyper = 0,

proves that we have constructed the minimally extended N = 1 supersymmetric Lagrangian
corresponding to the hypermultiplet. When we also take into account that the vectormultiplet
Lagrangian is conserved, we now have constructed a Lagrangian on the 5-sphere containing matter,
that is N = 1 supersymmetric:

δξL = δξLvector + δξLhyper = 0.

And it is this symmetry that we will base our localization argument on.
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A1 C1,3 F5 G1

A2 E2,4 F1,3

B1 E3 F2

B2 D2

C2 D1,3 F6,8

C4 H1

C5 D5 F9

D4 H2

E1 F7

F4 H3

Table 1: The table with the terms from the hypermultiplet. Horizontally, terms will vanish together.
Vertically, all terms result from the same variation. The lack of ‘isles’ separated horizontally and
vertically from the rest is the proof that no terms could be left out of the Lagrangian without
breaking the N = 1 SUSY.
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3 LOCALIZATION

3 Localization

We will now make a rather large detour into the general theory of localization and index theories,
which historically are tightly related. We start by sketching the concept of localization, after which
we will look at the Poincaré-Hopf index theorem. This is a nice example since not only it is a
early example of an index theorem, which gives us the possibility to show what the general idea
is behind these types of theorems, but it is also a neat example of something that can be proven
using the principle we explained in the first section. In the final section we will close the circle by
discussing the Atiyah-Bott-Berline-Vergne theorem, which is a formal and proven theorem within
mathematics, which lies at the foundation of the localization argument of Edward Witten treated
in the first section.

3.1 Principle of localization

The basic concept of localization is rather easy, and is explained in various sources in an ‘intuitive’
method19. A more rigorous ‘proof’ based upon the Atiyah-Bott-Berline-Vergne localization theorem,
however, is a considerable harder affair. We will discuss that in section 3.3. We will first discuss
the intuitive method.
We will need several ingredients.

• First we need a (field) theory with an action S(φ). It’s partition function can then be written
as Z =

∫
Dφe−S(φ).20

• Acting on these fields, we need a Grassmann-odd symmetry δ that preserves the action:

δS(φ) = 0. (3.1)

This symmetry δ must be not anomalous.21

• The crucial ingredient is a Grassmann-odd operator V : φ→ R that satisfies

δ2V = 0, (3.2)

and
(δV )B ≥ 0, (3.3)

where (◦)B denotes the bosonic part of ◦.
• A δ-invariant operator A. We can then compute 〈A〉 =

∫
DφAe−S(φ). For the special case

that A is the identity operator, we can compute the partition function Z.

Because δ is Grassmann-odd, we know that δ2 is a Grassmann-even symmetry. Even though
δS(φ) = 0, that does not mean that δ2 does not have to be 0: it can still be a set of transformations
that leave the action invariant. For instance in a gauge invariant theory, δ2 can be a gauge
transformation. Therefor neither (3.2) nor (3.3) is a trivial statement.
We can now modify the partition function of the theory with an extra term tδV ,

〈A〉(t) ≡
∫
DφAe−S(φ)−tδV

with t ∈ R. It turns out that the expected value of A is independent of t. If we compute its
derivative

d〈A〉(t)
dt

= −
∫
DφA(δV )e−S(φ)−tδV ,

19[25] and [31], for instance.
20This is the partition function for a Euclidean theory. This notation was chosen in order to be directly applicable

to the Poincaré-Hopf proof and the N = 1 SYM. Yet there is no obstacle to apply localization to a Minkowskian
theory, other than that the regulator action (which will be introduced shortly) will have to be of the form iδV with
the bosonic part of δV positive.

21An anomalous symmetry is a symmetry that preserves the action δS(φ) = 0, but does not preserve the partition
function δZ = δ

(∫
Dφe−S−tδV

)
6= 0. This can occur when the measure of the path integral is not conserved: in

other words when δ(Dφ) 6= Dφ.
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we can use that δ
(
AV e−S(φ)−tδV ) = (δA)V e−S(φ)−tδV + A(δV )e−S(φ)−tδV − V δ

(
e−S(φ)−tδV ) =

(δV )e−S(φ)−tδV−V e−S(φ)−tδV δ(−S(φ)−tδV ) = (δV )e−S(φ)−tδV−V e−S(φ)−tδV (−δS(φ)−tδ2V )

(3.1)

(3.2)
=

(δV )e−S(φ)−tδV , to see that

dZ(t)

dt
= −

∫
Dφδ

(
AV e−S(φ)−tδV

)
=

∫
Dφ
(
AV e−S(φ)−tδV

)
= 0,

where we used that the integration measure Dφ is invariant under δ in combination with the fact
that it is a total derivative term. This integral will not vanish if there are non-trivial boundary
terms 22, but otherwise we can conclude that Z is independent of t.
When we compute Z(t) for several values of t, we know they should be equal. For t = 0, Z(0)
would result in the measurable quantity that we had. In the limit t→∞ something interesting
happens. To explain this, let us discuss a sketch of a proof for an finite dimensional analogue.

Let us take an integral of the form ∫ b

a

dxef(x)−tg(x),

with f and g twice differentiable function and g(x) ≥ 0 for all x ∈ [a, b]. t is some real parameter.
Let us say we can want to study the limit of t→∞. In the case that g(x) 6= 0, ef(x)−tg(x) → 0.
In the points where g(x) = 0, however, will not vanish from the integral. Let us assume this is a
discrete set of points {xi}i ∈ {1, 2, . . . , n}, with xi ∈ (a, b). We are now going to apply something
very much alike to Laplace’s method.
Name x0 = a and xn+1 = b, and define for each i ∈ {1, . . . , n} a left limit ai = xi−1+xi

2 and a right

limit bi = xi+xi+1

2 . We should note that for t sufficiently large the function f(x)− tg(x) will have
a local maximum in xi (for we know g(x) ≥ 0 for all x ∈ [a, b])23. This automatically means that
∂x(f(x) − tg(x))(xi) = 0, and ∂2

x(f(x) − tg(x))(xi) < 0. Now let us make an expansion in local
coordinates around these xi, and split up the integral in many integrals over the intervals ai to bi.
For sufficiently large t, we can approximate the integral with∫ b

a

dxef(x)−tg(x) ≈
∑
i

∫ bi

ai

dξef(xi)−tg(xi)+ξ∂x(f(x)−tg(x))(xi)+
ξ2

2 (∂2
xf(xi)− 1

t ∂
2
xg(xi))+O(ξ3).

We can simplify this to a Gaussian integral using the fact that g(xi) = ∂x(f(x)− tg(t))(xi) = 0. If
we then use the substitution ξ → ξ

t , we find

∑
i

ef(xi)

∫ bi

ai

dξ

t
e
ξ
2 ( 1
t2

(∂2
xf(xi)− 1

t ∂
2
xg(xi)))+O( 1

t3
) (3.4)

Since for sufficiently large t the contributions of the intervals (−∞, ai] and [bi,∞) can be neglected,

we can approximate these integrals with the help of
∫∞
−∞ dxea

x2

2 =
√

2π√
−a , for a < 0. And so we find

∑
i

ef(xi)
1

t

√
2πt2√

−∂2
xf(xi) + 1

t ∂
2
xg(xi)

,

which in the limit of t→∞ becomes ∑
i

ef(xi)

√
2π√

−∂2
xf(xi)

. (3.5)

22[31] cites [33] as ‘a closely related example’
23Technically, the local maximum is not at xi, but it will near to that point for increasing t.
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Of course one would have to check whether the O( 1
t3 ) in (3.4) will not interfere, and to formalize

this proof exactly one would do best to study the proof of Laplace’s method.

Now back to field theory. After a proper rescaling of the fields in the new ‘partition func-
tion’ Z(t) (multiplying them with appropriate factors of t) we can note that contributions of the
path integral where δV > 0 will be suppressed. Since we do have (3.3), we find that there will
not occur infinite contributions to the path integral due to t tending to ∞. So the only points
contributing to the path integral are exactly the points of the manifold where

(δV )B = 0. (3.6)

The subset of the manifold where (3.6) holds is called the localization locus, zero locus or simply
locus. It can be a submanifold, or even a discrete set of points. The argument concerning t tending
to ∞ will be demonstrated explicitly when we will study the Poincaré-Hopf theorem (section 3.2)
and thereafter we will discuss a slightly more formal description of localization (section 3.3).

3.2 Example: Poincaré-Hopf fixed point theorem

The Poincaré-Hopf theorem is a many-dimensional generalization of the Poincaré theorem (which
only works on manifolds of dimension 2) due to the German mathematician Heinz Hopf.[19]
Probably the easiest way to explain it is to start with a very specific case: the ‘hairy ball theorem’.
It is also sometimes called the also known under the name Poincaré-Brouwer theorem, after Henri
Poincaré who proved it for the case n = 2, and Luitzen Brouwer who proved it for n > 2. It states
that ‘you cannot comb the hair on a coconut without creating a cowlick’. A cowlick is the ‘bald
spot’ on the top of the sphere in figure 1.
In mathematical terms, it states that there is no continuous vector field on the 2-sphere (or more
general: an even dimensional sphere) without points where it vanishes. This property is topological,
so it holds true for everything homeomorphic to the 2-sphere. In contrast, it is possible to put
a continuous non-vanishing vector field on a torus.24 In 1881 Henri Poincaré found a prove for
this 2-dimensional case, in the form of the Poincaré-theorem.[1] It was even slightly more general:
stating that the sum of the indices – an integer associated to these zero points of the vector field –
is equal to a topological invariant.
This concept proved to be conserved when we generalize this theorem to higher dimensional spheres.
We will find that such a vector field does not exist for the n-spheres with even n. These are
exactly the spheres with nonzero Euler characteristic χ. The Euler characteristic is a topological
notion that can be defined in several (ultimately identical) ways. We will give two descriptions,
a topological and an algebraic one. They are related by the Generalized Gauss-Bonnet theorem,
which we will introduce in the section 3.2.1 but not discuss in detail, for that belongs to a separate
field altogether.
Now let us look at the exact statement of the Poincaré-Hopf theorem, as proven in 1928. One can
read n = 2 in order to find the theorem as Poincaré proved it.

Theorem 1 (Poincaré-Hopf). Let M be a n-dimensional compact orientable differentiable manifold
without boundary and let V be a continuous vector field on M with isolated points {xi}i such that
V (x) = 0 if and only if x ∈ {xi}i. Then∑

i

indexxi(V ) = χM .

Here the index of a zero-point of the vector field is defined as follows: since the points {xi}i are
isolated, we can take a neighbourhood Di of a specific point xi, small enough such that xj /∈ Di for

i 6= j. On the boundary ∂Di of Di we can define the map u : ∂Di → Sn−1 as u(z) = V (z)
|V (z)| . The

24Though a ‘hairy doughnut’ does not sound particularly appetizing.
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Figure 1: An illustration of the ‘Hairy Ball Theorem’. A ‘cowlick’ is the bald spot on the top where
the vector field vanishes. On the right there is another example of continuous vector field with
zeroes.

V (x) = (x, y) V (x) = (r sin(2φ), r cos(2φ))

Figure 2: An illustration the index of zero of a vector field. We associate the space locally to Rn,
and study a small disk Di around xi. Then the index of the vector field is the wrapping number
of ∂Di → Sn−1. To put it simple: it is the amount of times the vector of the vector field rotates
when you trace around the red circle once.

degree25 of this map is the index of xi. For this purpose the degree means the amount of times
∂Di is mapped onto Sn+1; rather like a winding number. For the two dimensional case this is
illustrated in figure 2.
The ‘hairy ball theorem’ is a direct consequence of this theorem. For any manifold with a non zero
Euler characteristic (such as S2), any vector field V has to satisfy V (x) = 0 for at least a x ∈M ,
else theorem 1 is not satisfied.
In section 3.2.1 we will discuss the necessary prerequisites we will need for this theorem: the
definition of the Euler characteristic and the Gauss-Bonnet-Chern theorem. The proof for the
Poincaré-Hopf theorem will then be presented in section 3.2.2.

3.2.1 Euler characteristic and Gauss-Bonnet-Chern theorem

The topological definition is rather intuitive. We will not describe the mathematical details here,
but just give a general idea as given in [6]. More information can be found in an introductory
topology book. First we need the notion of an n-cell. A 0-cell is a point, a 1-cell is homeomorphic to
a open line, a 2-cell homeomorphic to an open disk, etc. Every n-dimensional Hausdorff topological

25Degree in the sense of the degree of a continuous mapping within the context of differential topology.
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space can be constructed out of a sum of 0-cells up to n-cells, with the restriction that an ‘open
boundary’ of the n-cell is glued to an (n − 1)-cell. This is called a cell-decomposition. We can,
for instance create the circle S1 by glueing the ‘endpoints’ of the open interval (0, 1) to one point.
Should we them glue the boundary of two 2-cells on these lines, we will arrive at something
homeomorphic to S2.
This cell-decomposition is not unique, yet it turns out that for a compact space

χM = 0-cells− 1-cells + 2-cells− 3-cells + 4-cells− . . . ,

is a constant independent of the decomposition. This constant χ called the ‘Euler characteristic’.
Since these cells are defined up to homeomorphisms, it is immediately clear that this is a topological
invariant quantity.
The Gauss-Bonnet-Chern theorem is another way to find the Euler characteristic of a manifold
M , this time in terms of the curvature of M . It is a generalization of the Gauss-Bonnet theorem
(which was only formulated for two dimensional manifolds) due to Shiing-Shen Chern in 1944 [5].
A formulation in more modern terms is used in chapter X of Volume II of [16] and appendix C of
[39]. We first need a reformulation of the connection and curvature tensors in local coordinates.
We can use the vielbein eaµ to consider the connection

Γαβj =
(
Γαβ

)
j
≡ Γj

as an so(n)-valued set of matrices know as the connection form, which can be done since the
Christoffel symbol Γαβj is anti-symmetric in the first two indices. Here one should keep in mind
that the Latin indices are in local ‘flat’ coordinates, while the Greek indices are on the manifold in
‘curved’ coordinates. We can apply the same method to the Riemann curvature tensor

Rαβjk =
(
Rαβ

)
jk
≡ Ωjk, (3.7)

to obtain the curvature two-form Ωjk, which is so(n)-valued as well and can be expressed in terms
of the connection form by

Ωjk = ∇[jΓk] = ∂jΓk − ∂kΓj + [Γj ,Γk].

Alternatively we can write the curvature form in terms of wedge (∧) and tensor (⊗) products on
the basis.26

Ω =
1

4
Rijkl(e

i ∧ ej)⊗ (ek ∧ el), (3.8)

with Einstein summation implied. We can now formulate the Gauss-Bonnet-Chern theorem.

Theorem 2 (Gauss-Bonnet-Chern27). Let M be a compact oriented Riemannian manifold of
dimension 2n, then

1

(2π)n

∫
M

Pf(Ω) = χM (3.9)

with Pf(Ω) the Pfaffian of the so(n)-valued matrix Ωjk.

The Pfaffian28 of this curvature form is to be understood in the sense of (E.6):
n
2 times︷ ︸︸ ︷

Ω ∧ . . . ∧ Ω = 2−n
∑
σ,τ∈Σ

R
σ(1)σ(2)

τ(1)τ(2) . . . R
σ(n−1)σ(n)

τ(n−1)τ(n)(e
1...n ⊗ e1...n)

≡
(n

2

)
!Pf(Ω)(e1...n ⊗ e1...n), (3.10)

with the definition of Ω as in (3.8), and e1...n = e1 ∧ e2 ∧ . . . ∧ en. With the help of this Gauss-
Bonnet-Chern theorem we can now turn our attention to proving the Poincaré-Hopf theorem.

26For more on the wedge product, see (C.4) in appendix C.
27Actually this is a special case of the Gauss-Bonnet-Chern theorem, even though it is more generalized than the

Gauss-Bonnet theorem. We do not need the power of the full Gauss-Bonnet-Chern theorem, and because it comes
at the expense of additional complexity, we will give this directly applicable case. In [39] it is introduced as theorem
8.1 in appendix C.

28For an introduction in the Pfaffian, see appendix E, equation (E.5).
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3.2 Example: Poincaré-Hopf fixed point theorem 3 LOCALIZATION

3.2.2 Proof of Poincaré-Hopf theorem with localization

We will now proof the Poincaré-Hopf theorem with the help of the localization argument.29 Consider
a supermanifold M of dimension 2n, n ∈ N. Denote the metric with gµν and the vielbein with eaµ.
Now take Vµ the vector field with isolated, simple zeroes on M as in theorem 1. Isolated in the
sense that it is a discrete set of spatially separated points, and simple in the sense that the vector
field can be expanded in a neighbourhood around the points p where V (p) = 0 as

V (x) = V (p) +
∂V

∂xµ
(p)(x− p)µ +

1

2!

∂2V

∂xµ∂xν
(p)(x− p)µ(x− p)ν +O((x− p)3),

with non-zero coefficients ∂V
∂xµ (p). We will express supercoordinates in the tangent bundle with

(xµ, ψµ) on the manifold and (ψµ, Bµ) in the tangent space. Here ψµ and ψµ are Grassmannian
valued, whereas xµ and Bµ are real-valued.
Now the action

S(t) = δΨ, where Ψ =
1

2
ψµ
(
Bτg

µτ + 2itV µ + Γστνψσψ
νgµτ

)
, (3.11)

is clearly invariant under the odd discrete symmetry δ, defined by

δxµ = ψµ, δψµ = Bµ
δψµ = 0, δBµ = 0.

We should note that δ2 is equal to 0 (independent of on which field it acts), and so we can prove
the invariance of the action: δS(t) = δ2Ψ = 0. It is also important to see that we can write the
action as

S(t) = S(0) + tδV, where V = iψµV
µ and S(0) = δ

(
1

2
ψµ
(
Bµ + Γστνψσψ

νgµτ
))

.

The partition function of the theory will then be written as

ZM (t) =
1

(2π)2n

∫
M

dxdψdψdBe−S(t).

We will now first derive an effective action by integrating over the coordinate Bµ, before we will
apply localization. Explicit computation of the action (3.11) leads to

S(t) =
1

2
Bµ
(
Bµ + 2itV µ + Γστνψσψ

νgµτ
)
− 1

2
ψµ [0 + (∂σg

µτ )Bτ (δxσ) + 2it(∂νV
µ)(δxν)

+ (∂ρΓ
σ
τν)(δxρ)ψσψ

νgντ + ΓστνBσψ
νgµτ

−0 + Γστνψσψ
ν(∂ρg

µτ )(δxρ)
]
,

where special attention should be paid because the metric and the connection are depending on the
coordinates, and thus transform under δ. Because the covariant derivative of the metric vanishes,
we know that

0 = Dτg
µσ = ∂τg

µσ + Γµτνg
νσ + Γστνg

µν (3.12)

Regrouping and relabelling the terms will yield

S(t) =
1

2
Bµ
(
Bµ + 2itV µ + (Γστνg

µτ − Γµτνg
στ − ∂νgσµ)ψσψ

ν
)
− itψµ(∂νV

µ)ψν

− 1

2
(∂ρΓ

σ
τν)ψµψ

ρψσψ
νgντ − 1

2
Γστνψµψσψ

νψρ(∂ρg
µτ )

(3.12)
=

1

2
Bµ
(
Bµ + 2itV µ + 2Γστνg

µτψσψ
ν
)
− itψµ(∂νV

µ)ψν

− 1

2
(∂ρΓ

σ
τν)ψµψ

ρψσψ
νgντ +

1

2
Γστν(Γµρλg

λτ + Γτρλg
µλ)ψµψσψ

νψρ.

29As done in [31].
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Doing a constant shift of the field Bµ over a length −itVµ − Γστνg
µτψσψ

ν will make it apparent
that this is a Gaussian integral. Writing the partition function and performing the integral over B
yields

ZM (t) =
1

(2π)2n

∫
M

dxdψdψdBe−
1
2 (Bµ)2+ 1

2 (itVµ+Γστνg
µτψσψ

ν)2+itψµ(∂νV
µ)ψν

·e+ 1
2 (∂ρΓστν)ψµψ

ρψσψ
νgντ− 1

2 Γστν(Γµρλg
λτ+Γτρλg

µλ)ψµψσψ
νψρ

=

(2π)n√
g

(2π)2n

∫
M

dxdψdψ e−
t2

2 VµV
µ+itψσψ

νΓσµνV
µ+ 1

2ψσψ
νψτψ

ρΓσµνΓτλρg
µλ+itψµ(∂νV

µ)ψν

·e+ 1
2 (∂ρΓστν)ψµψ

ρψσψ
νgντ− 1

2 Γστν(Γµρλg
νλ+Γτρλg

µλ)ψµψσψ
νψρ .

Rearranging indices and Grassmann-numbers leads to the effective action

Seff,M (t) =
t2

2
VµV

µ − itψµ(DνV
µ)ψν − 1

2
(∂ρΓ

σ
τν)ψµψ

ρψσψ
νgντ

+
1

2
Γστν(−Γτλρg

µλ + Γµρλg
λτ + Γτρλg

µλ)ψµψσψ
νψρ

=
t2

2
VµV

µ − itψµ(DνV
µ)ψν − 1

4
ψσψτψ

νψρgσλ
(
∂νΓτρλ + ΓτµνΓµρλ − (ν ↔ ρ)

)
=
t2

2
VµV

µ − itψµψνDνV
µ − 1

4
Rστνρψσψτψ

νψρ (3.13)

Using the vielbein we define local orthonormal coordinates

χa = eµaψµ.

The partition function then becomes

1

(2π)n

∫
M

dxdψdχe−
t2

2 VµV
µ+itχaψ

νeaµDνV
µ+ 1

4R
ab
νρχaχbψ

νψρ ,

where the factor
√
g vanishes as the Jacobian of the the transformation (3.2.2), using the Jacobian

for Grassmann variables (E.7).
We can now check whether we satisfy the conditions for localization posed in section 3.1. We
have a theory with an action S(0) and a partition function as prescribed. Furthermore we already
checked that the action is invariant under δ (so (3.1) holds), but we still need to check whether δ is
anomalous. We will do this later. Because δ2 = 0, it is also easy to see that δ2V = 0 (which means
(3.2) holds), and that (3.3) is true becomes clear when we look at the effective action (3.13): the
leading order term in t is quadratic in V µ, and as such positive. For the operator A we will take
the identity, which is δ-invariant.
In order to see that the δ is not anomalous, we need to check if the measure is invariant under our
discrete transformation. Using that δ(dxµ) = dδxµ, we find

δ
(
dxdψdψdB

)
= d(δx)dψdψdB + dxd(δψ)dψdB + dxdψd(δψ)dB + dxdψdψd(δB)

= dψdψdψdB + dx0dψdB + dxdψ0dB + dxdψdψdψ,

which vanishes in its entirety because ψ and ψ are fermionic, and so dψdψdψdB = −dψdψdψdB = 0.
This shows that the measure is invariant under δ.

Now the setup for localization is in place. The computation in section 3.1 tells us that

ZM (0) = lim
t→∞

ZM (t).

Let us start with computing

ZM (0) =
1

(2π)n

∫
M

dxdψdχe
1
4R

ab
νρχaχbψ

νψρ .
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3.2 Example: Poincaré-Hopf fixed point theorem 3 LOCALIZATION

We can perform the integration over the Grassmannian fields ψ and χ. This is much like a Gaussian
integral, but not quite. In order to compute this integral, we need to expand the exponential map.
The terms with not precisely one χa and one ψµ for each a, µ ∈ {0, 1, . . . , n} will vanish, because
of the properties of Grassmann integration and multiplication:

ψψ = 0 ,

∫
dψ ψ = 1 and

∫
dψ 1 = 0.

This automatically means that ZM (0) = 0 for any odd dimension 2n + 1, since dψ exist of
dψ1 . . . dψ2n+1, which is an odd number of dψ’s, which results in 0 when integrating over an even
number of ψ’s in (ψµψν)i, i ∈ Z. For an even number of dimensions, the relevant part of the
expansion of the exponential in (3.2.2) becomes

1

(2π)n

∫
M

dxdψ1 . . . dψ2ndχ1 . . . dχ2n 1

n!

(
1

4
Rabνρ(χa ∧ χb)(ψν ∧ ψρ)

)n
.

Sorting the powers from high to low (compare (3.10)), is what yields the result

1

(2π)n

∫
M

dxdψ1 . . . dψ2ndχ1 . . . dχ2n
(
χ2n . . . χ1ψ2n . . . ψ1Pf(Ω)

)
=

1

(2π)n

∫
M

dxPf(Ω),

which is χM , due to the Gauss-Bonnet-Chern theorem. We can conclude

ZM (0) = χM . (3.14)

This definition holds true not only for even dimensions, but for odd dimensions as well, since the
Euler characteristic of all closed (compact, without boundary) manifolds of odd dimension is 0.30

This coincides with our result of the integral.

We will now study the behavior of the partition function with t tending to ∞: limt→∞ ZM (t).
Around any point p ∈M we can expand

V µ(x) =
∑
n≥0

1

n!
∂µ1

. . . ∂µ2n
V µ(p)ξµ1 . . . ξµ2n

in local coordinates ξν , with nonzero first derivatives since our poles were simple. In the path
integral with the effective action (3.13) this becomes

1

(2π)n

∫
M

dξdψdχexp



− t
2

2 gµν [V µ(p)V ν(p) + 2ξµ1V µ(p)∂µ1V
ν(p)

+2ξµ1ξµ2V µ(p)∂µ1
∂µ2

V ν(p) + ξµ1ξµ2∂µ1
V µ(p)∂µ2

V ν(p)

+O(ξ3) + it∂µV
ν(p)e a

ν χaψ
µ + itΓνµτV

τ (p)e a
ν χaψ

µ

+itO ν
µ (ξ)e a

ν χaψ
µ + 1

4R
ab
µνχaχbψ

µψν


.

We can study the t→∞ limit better if we substitute

ξ → ξ

t
, ψ → ψ√

t
, χ→ χ√

t
.

30For a proof, see corollary 3.37 of [18].
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Keeping in mind that Grassmannian variables transform opposite to real numbers (see (E.7)), this

means that dξdψdχ→
√
t
√
t

t dξdψdχ. The partition function becomes

1

(2π)n

∫
M

dξdψdχexp



− t
2

2 gµνV
µ(p)V ν(p)− tgµνξµ1V µ(p)∂µ1V

ν(p)

−gµνξµ1ξµ2V µ(p)∂µ1
∂µ2

V ν(p)− 1
2gµνξ

µ1ξµ2∂µ1
V µ(p)∂µ2

V ν(p)

+O( 1
t ) + i∂µV

ν(p)e a
ν χaψ

µ + iΓνµτV
τ (p)e a

ν χaψ
µ +O( 1

t )

+ 1
4t2R

ab
µνχaχbψ

µψν


.

In the limit of t tending to ∞, several things happen: first of all both O( 1
t ) terms vanish, as does

the 1
t2R-term. Secondly the − t

2

2 V
µ(p)Vµ(p) suppresses all contributions of the path integral, safe

for the case that V µ(p) = 0. So in this particular case, the localization locus is the discrete set
of point {xi}i where V µ vanishes. V µ has isolated zeroes {xi}i as specified in theorem 1, so to
find the contribution to the path integral, we can expand our vector field on separate parts of the
manifold, each part containing a single xi. Using the shorter notation

H(i)µ
σ = ∂σV

µ(xi),

and the knowledge that V µ(xi) = 0, we find two Gaussian integrals∑
i

1

(2π)n

(∫
M

dξe−
1
2 ξ
ρH(i)µ

ρ gµνH
(i)ν
σ ξσ

)
·
(∫

M

dψdχe−iψ
µH(i)ν

µ e a
ν χa

)

=
∑
i

1√
det(H(i)g(H(i))T )

det(ieH(i)) =
∑
i

√
g det(H(i))

√
g
√

det(H(i))2

This means that

lim
t→∞

ZM (t) =
∑
xi

detH(i)

|detH(i)|
.

This fraction of determinants is equal to the index of the point in the case that it is a simple pole
(see [34]). Combining this with (3.14) provides the proof for the Poincaré-Hopf theorem

χM =
∑
xi

indexxi(V ),

with the index of a point xi described with

indexxi(V ) =
det(∂µV

ν(xi))

|det(∂µV ν(xi))|
.

We can also see that it only take on values equal to ±1, which also to the fact that we assumed V
only had simple poles.

3.3 Atiyah-Bott-Berline-Vergne localization formula

This section will make use of some general notions within geometry. For a short introduction to
forms, vector fields and other related issues, see appendix C.

Inspired by the Poincaré-Hopf theorem (1928), many more ‘index theorems’ were found. In
1967 Raoul Bott mentioned additional identities extending the Poincaré-Hopf theorem for the cases
when the vector field was holomorphic or when the vector field was a infinitesimal symmetry of
the manifold[4]. A few years later H. Duistermaat and G. Heckman extended the latter idea to
symplectic manifolds (1982-1983,[9],[10]). It was noting the differences and the similarities between
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Figure 3: The normal bundle of F = S1 in M = R2. The green vectors compose a base of TM , the
red vectors represent TF and the blue vectors are a visualization of the normal bundle TM/TF
of S1 in R2. All vectors can gain switch direction depending on the choice of orientation of the
submanifold S1.

these two cases that then inspired Michael Atiyah, working together with Raoul Bott, for the
Atiyah-Bott31 index theorem[2]. This connection was more-or-less simultaneously also noted by
Nicole Berline and Michele Vergne, leading to the alternative name Atiyah-Bott-Berline-Vergne
index theorem.
We will discuss the Atiyah-Bott fixed point theorem in the notation used in [24] and [23]. It consists
of a general part and a special case; the localization method for path integrals is an extension of
the special case[3].

Theorem 3 (Atiyah-Bott-Berline-Vergne localization formula). Given a manifold M with an
metric invariant under a group H acting on M . Let d be the De Rham differential (C.6), v be
the vector field generated by the action of H and iva denotes the contraction with v as in (C.5).
Let F ⊂ M be the largest set for which i∗F v = 0 (the set of zeroes of v). Then define Q as the
equivariant32 form d− φaiva , with φa a parameter for the action (so Q2 = −φaLva). Then for a
Q-closed equivariant form α the following holds:∫

M

α =

∫
F

i∗Fα

e(NF )
, (3.15)

with e(NF ) the equivariant Euler class of the normal bundle of F (explained below).

This theorem needs some explanation. First we need to explain what the normal bundle NF means.
Since F , the set of zeroes of v, is a (possibly lower dimensional) subset of M , we have a natural
immersion

f : M |v=0 → F.

Although these two spaces might seem equal, there is a difference when one would consider their
tangent spaces. TM |v=0 has a (possibly) higher dimension then TF , as you can see in figure 3.3
for the special case of S1 embedded in R2. It is therefor possible to study the quotient space of
TM over TF , resulting (for Riemannian manifolds) in a vector bundle that is perpendicular to the
surface.
The Euler class of this bundle is a concept that we will not discuss in detail, but it is a measure
for the curvature of this vector bundle. Furthermore we find a i∗F on the right hand side of the
localization formula, which is the pullback of the contraction with F . This means that we will
integrate the form α only over the points of F , with the relevant vectors already contracted.

31Not to be confused with the Atiyah-Singer index theorem: another index theorem that states a useful equivalence
for elliptic operators on closed manifolds. This index theorem finds uses with theoretical physics as well. They use
it, for instance, in [25] to compute the one loop determinants.

32An equivariant form is a form which is invariant under the the action of H on M .
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There is also an more friendly version of the theorem when several restrictions are made. In
the special case that F = {xi}i is a set of discrete points, we can rewrite the theorem in a more
familiar form:33

Theorem 4. Given a manifold M and a vector field V with a discrete set F = {xi}i of zeroes. If
α is an equivariant form, then ∫

M

α =
∑
i

i∗xiω√
detLxi(V )

, (3.16)

where Lxi(V ) ∈ End(TxiM) is the endomorphism of FxiM induces by the Lie derivative with
respect to V at the zero xi.

As you can see we know have a sum on the right hand side instead of a integration. Furthermore
the concept of the Euler class of the normal bundle has been substituted by a determinant of an
endomorphism (a linear of a vector space to itself). This is to be understood in the following way:
we can take {aj}j as a base of the tangent space at point xi labeled, and act upon this with the
Lie derivative with respect to V as usual: LV (ai) = [V, ai]. Since this map is linear, we can write
down the matrix Ajk of coefficients that define the mapping of the Lie derivative by satisfying
[V, ai] =

∑
k Ajkak. The determinant of this matrix A is equal to detLxi(V ).

Edward Witten introduced the reasoning explained in section 3.1 in his 1988 paper ‘Topological
Quantum Field Theory’[41], in order to show that the partition function is a topological invariant.
In 1991 [42] he mentions that this is analogous to the Atiyah-Bott fixed point theorem. The link
between these two methods can easily be seen. The integral becomes an summation, and the
determinant of the matrix of the Lie derivative becomes the one-loop calculations. In terms of
the Laplace method (3.5), we can also see the links. The factor ef(xi) is the analogue of i∗pα and
√

2π√
−∂2

xf(xi)
would become a determinant in a higher dimensional case (as we know from higher

dimensional Gaussian integrals), and is therefor analogues to 1√
detLp

. The restriction that α

should be Q invariant translates to the condition that Dφe−S should be conserved in the path
integral formalism. This means that

1. δ should preserve Dφ (or equivalently: δ cannot be anomalous)

2. δS = 0

More recently Albert Schwarz and Oleg Zaboronsky [37] studied the exact conditions under which
the localization method is applicable in supersymmetry. They studied the conditions under which
this localization formula could be applied to a supermanifold in a mathematical manner. Like
many others they state explicitly that the symmetry used for the procedure should be odd, yet the
author of this work has not been able to distinguish a single step of the proof where this is used
explicitly.

33This formulation of the theorem is taken from [15].
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R

4 Localization of super Yang Mills on S5
r

Having studied two separated parts up until now, it is now time to bring them together and try to
apply the method of localization to the N = 1 super Yang Mills theory on the 5-sphere. In section
4.1 we will study in detail whether the conditions for applying localization are satisfied. This
almost immediately results in the localization locus of the theory, which we will discuss in section
4.2. Then we will go on with giving a matrix model for the theory in section 4.3, as computed by
Källén e.a. in [25]. Due to time constraints on this project the matrixmodel will be presented and
discussed, yet it will not be computed.

4.1 Conditions

As we discussed in section 3.1, we need the following things:

• A theory with partition function.

• A Grassmann-odd symmetry that is

– not anomalous.

– conserves the action.

• A Grassmann-odd operator V , such that

– δ2V = 0.

– the bosonic part of δV is positive.

The theory we use here is, of course, the N = 1 SYM theory placed on S5
r . It’s partition is given

by

Z =

∫
DADσDλDDDqDψDFe−Sfull , (4.1)

where

Sfull =

∫
S5

dx5(Lvector + Lhyper),

with Lvector as in (2.5) and Lhyper as in (2.49).
The next ingredient is a Grassmann-odd symmetry. We will use a symmetry inspired by the
supersymmetry on the theory. We use δξ as given by (2.1) through (2.4) and (2.46) through (2.48)
with ξ a Grassmann-even conformal Killing spinor, instead of the usual choice of a Grassmann-odd
conformal Killing spinor. Furthermore we will normalize the spinor ξI by its ‘length’ ξIξ

I , such
that ξIξ

I = −ξIξI = 1. This will not have any influence on the conformal Killing spinor equation
or any other relations. Furthermore we can see that ξ1ξ1 = −ξ1ξ1 = 0, since switching spinors
picks up a minus sign. We can do the same for ξ2, and thus we can conclude that ξ1ξ2 = −ξ2ξ1 = a,
and since ξIξJ = aεIJ and ξIξ

I = 1, we find that a = − 1
2 :

(ξIξJ) = −1

2
εIJ , and equivalently (ξIξJ) =

1

2
εIJ (4.2)

The choice of a Grassmannian even ξ will automatically mean that δξ, which was a Grassmann-even
symmetry, now is a Grassmann-odd symmetry, just as is required in the prerequisites. Furthermore
the coefficients associated to the transformation δ2

ξ = 1
2{δξ, δξ} will become vµ = ξIΓ

µξI , γ =

−iξIξIσ, ρ = −i(ξI ξ̃I−ξI ξ̃I) = 0, RIJ = −3i(ξI ξ̃J+ξJ ξ̃I) = − 3i
r (εIKt

K
J +εJKt

K
I ) = 3i

r (ξKξ
K)tIJ

and Θµν = −i2(ξ̃IΓ
µνξI).34 These coefficients coincide with the coefficients found for δ2

ξ acting
upon the hypermultiplet (2.67), thus we are working with one single valid even symmetry on our
theory.
In section 2.1.6 and 2.2.3 we found that this symmetry preserves respectively Lvector and Lhyper,
and therefor we can state that δξSfull = 0. This is also why we had to work with off-shell

34Note that all terms in the coefficients where η and ξ are reversed in place will pick up one additional sign. This
prevents RIJ and Θµν from vanishing, even though they seem to do that at first sight.
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supersymmetry, and thus introduced the auxiliary fields DIJ and FI′ , for the mere condition
that δξSfull would be equal to 0 only up to the equations of motion would not be enough. That
the symmetry is not anomalous, is something that we will have to assume for now, for these
computations are extremely complex and laborious. So this means that the symmetry satisfies the
required properties.
So this leaves us with the task to find a regulator Lagrangian δξLV (V =

∫
S5 dx

5LV ), such that
δ2
ξ (
∫
S5 dx

5LV ) = 0, and δξLV ≥ 0. Hosomichi [20] proposes the use of

LV = Tr
[
(δξλI)

†λI
]

+ (δξψ)†ψ.

We will refer to these terms with LV ,v and LV ,h respectively for the first and second term. In
order to prove the first condition (δ2

ξ (
∫
S5 dx

5LV ) = 0), we can use a trick. We know that from
(2.67) that δξ acts as an even symmetry on the hypermultiplet. On the vectormultiplet, this turns
out to be the case as well. The equations of (2.24) still hold even after switching from bosonic δξ
to fermionic δξ, albeit now for the anticommutator {δξ, δη} instead of the commutator. Thus this
means that δξ acts upon the vectormultiplet as an even symmetry as well.
Now LV does contain ξI , yet δξ does not explicitly act on it. It does, however, acts upon the fields
with which ξI is contracted with. δ2

ξ causes an R-rotation inside LV , rotating the fields that are

contracted with ξI with the coefficient R J
I . But since ξI is not acted upon by the transformation,

it does not rotate like this. All indices inside δ2
ξV = δ2

ξ

∫
S5 dx

5LV are properly contracted, and

therefor the only result of δ2
ξV that would transform properly under R J

I is the result

δ2
ξV = 0.

This leaves only for us to check whether δξV is positive. We do this separately for the vector and
the hypermultiplet by explicit computation. We start with the vectormultiplet:

δξLV ,v = Tr[(δ2
ξλI)

†λI ] + Tr[(δξλI)
†(δξλI)]

Since we know from (2.3) and (2.23) in combination with the new coefficients given above that

δξλI =− 1

2
Fµν(ΓµνξI) + (ΓµξI)Dµσ +D J

I ξJ +
2

r
t JI ξJσ,

δ2
ξλI =− i(ξJΓµξJ)DµλI + iξJξ

J [σ, λI ] +
6i

r
(ξKξ

K)t JI λJ −
i

2
(ξ̃JΓµνξJ)ΓµνλI ,

we can say that

(δξλI)
† =− 1

2
Fµν(ξIΓµν) + (ξIΓµ)Dµσ +DIJξJ +

2

r
tIJξJσ,

(δ2
ξλI)

† =i(ξJΓµξJ)Dµλ
I − (ξJξ

J)[λI , σ]− 6i

r
(ξKξ

K)tIJλJ −
i

2
(ξ̃JΓµνξJ)λIΓµν ,

where we have to take into account that both the σ and D field take values on the imaginary line.
So we can split δξLV ,v into two parts. The first part

Tr[(δ2
ξλI)

†λI ] =Tr[i(ξJΓµξJ)Dµλ
IλI − (ξJξ

J)[λI , σ]λI −
3i

r
(ξKξ

K)tIJλJλI −
i

2
(ξ̃JΓµνξJ)λIΓµνλI ]

is pure imaginary, and therefor will not have the suppressing purpose for which we added the
regulator Lagrangian. This is why we are only interested in the bosonic part of the regulator action

δξLV ,v,b = Tr[(δξλI)
†(δξλI)]

= Tr[
1

4
FµνFρσ(ξIΓµνΓρσξI)−

1

2
FµνDρσ(ξIΓµνΓρξI)−

1

2
Fµν(DJ

I +
2

r
σtJI)(ξ

IΓµνξJ)

− 1

2
DρσFµν(ξIΓρΓµνξI) +DµσDνσ(ξIΓµΓνξI) +Dµσ(DJ

I +
2

r
σtJI)(ξ

IΓµξJ)

− 1

2
(DJI +

2

r
σtJI)Fµν(ξJΓµνξI) + (DJI +

2

r
σtJI)Dµσ(ξJΓµξI)

+ (DIJ +
2

r
σtIJ)(DK

I +
2

r
σtKI)(ξJξK)]
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On the ΓµνΓρσ in the first term we can use (E.3) to find that it is equal to 1
4FµνFρσ(ξIΓµνρσξI) +

1
2F

µνFµν(ξIξI). We can also apply that Γµνρσ = εµνρστΓτ
35 to the first of these terms. For seeing

the second and fourth term vanish we can make use of the Gamma matrix identity (E.2) and the
cyclicity of the trace (2.14), leaving two terms. On is dependent on (ξIΓµνρξI) = (ξIΓρνµξI) =
−(ξIΓµνρ) = 0.

The other one becomes −2FµνD
νσ(ξIΓµξI)

(2.18)
= 2(DνFµν)σ(ξIΓµξI) + 4

r t
IJFµνσ(ξI(Γ

µΓν +
ΓνΓµ)ξJ), with the help of partial integration. This, in turn, vanishes since DνFµν = 0, and the
anticommutator in the second term is symmetric in µ and ν while Fµν is antisymmetric in those
indices.
The third and seventh term are both equal to each others save for a minus sign, and they
will therefor drop out. The fifth term we can rewrite by rewriting the spinors (ξIΓµΓνξI) =
1
2 (ξIΓµΓνξI) + 1

2 (ξIΓνΓµξI) = −gµν(ξIξ
I). The sixth and eighth term are simultaneously sym-

metric in I and J (when considering DIJ ) and antisymmetric (when you switch the spinors), and
therefor are equal to 0. On the last term we can use (4.2). Then we find in the end that

LV ,v,b = Tr[
1

2
FµνFµν −

1

4
vτ ε

µνρστFµνFρσ −DµσD
µσ − 1

2
(DIJ +

2

r
σtIJ)(DIJ +

2

r
σtIJ)],

with vτ = (ξIΓτξ
I). With the help of the Fierz identity (2.10), we can state that

vµv
µ = (ξIΓµξ

I)(ξJΓµξJ)
(2.10)

= −(ξIξ
I)(ξJξ

J) + 2(ξIξ
J)(ξJξ

I)− 2(ξIξJ)(ξJξI)

(4.2)
= −1 + 4(−1

2
εIJ)(

1

2
εJI) = −1 + 2 = 1. (4.3)

This enables us to write

δξLV ,v,b = Tr[
1

4
(Fµν −

1

2
εµνρστv

ρFστ )2 +
1

2
(vνFνµ)2 − (Dµσ)2 − 1

2
(DIJ +

2

r
σtIJ)2], (4.4)

when we keep in mind that εµνρστ ε
µναβγ = 1

2! (δ
α
ρ δ

β
σδ

γ
τ+δβρ δ

γ
σδ
α
τ +δγρ δ

α
σ δ

β
τ−δβρ δασ δγτ−δαρ δγσδβτ−δγρ δβσδατ ).

And thus we are left with a expression for LV ,v,b that is in the form of a summation of squares, if
we once again remind ourselves that we have chosen to let σ and DIJ take values on the real line.
Therefor LV ,v,b is positive.

We will now show that this strategy works as well for the hypermultiplet. First of all we write
LV ,h into two parts like

LV ,h = (δξψ)†(δξψ) + (δ2
ξψ)†ψ.

Recall that

δξψ = ΓµξIDµq
I + iξIσq

I − 3

r
tIJξIqJ + ξ̌I′F

I′ ,

δ2
ξψ = −i(ξIΓµξI)Dµψ + (ξIξ

I)σψ − i

2
(ξ̃IΓ

µνξI)Γµνψ,

and thus

(δξψ)† = (ξIΓ
µ)Dµq

I + iξIq
Iσ − 3

r
tIJξIqJ − ξ̌I′F

I′

,

(δ2
ξψ)† = i(ξIΓ

µξI)Dµψ − (ξIξ
I)ψσ − i

2
(ξ̃IΓ

µνξI)ψΓµν ,

if we take into account our purely imaginary choice for F and σ. Then again the part of LV ,h that
is squared in ψ is a real multiple of i, as

(δ2
ξψ)†ψ = i(ξIΓ

µξI)Dµψψ − (ξIξ
I)ψσψ − i

2
(ξ̃IΓ

µνξI)ψΓµνψ,

35This is a consequence of Γµνρστ = εµνρστ .
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and thus is does not contribute to a suppressing term. Meanwhile the bosonic part of LV ,h is

δξLV ,h,b =(ξIΓ
µΓνξJ)(Dµq

IDνq
J) + i(ξIΓ

µξJ)(Dµq
IσqJ)− 3

r
tIJ(ξKΓµξI)(Dµq

KqJ)

+ (ξIΓ
µξ̌J′)(Dµq

IF J
′
) + i(ξIΓ

µξJ)(qIσDµq
J)− (ξIξJ)(qIσ2qJ)

− 3i

r
tJK(ξIξK)(qIσqJ) + i(ξI ξ̌J′)(q

IσF J
′
)− 3

r
tIJ(ξIΓ

µξK)(qJDµq
K)

− 3i

r
tIJ(ξIξK)(qJσq

K) +
9

r2
tIJ tKL(ξIξK)(qIqL)− 3

r
tIJ(ξI ξ̌K′)(qJF

K′)

− (ξ̌I′Γ
µξJ)(F

I′

Dµq
J)− i(ξ̌I′ξJ)(F

I′

σqJ) +
3

r
tIJ(ξ̌K′ξI)(F

K′

qJ)− (ξ̌I′ ξ̌J′)(F
I′

F J
′
).

(4.5)

The four terms containing (ξ̌I′ξJ ) vanish because of (2.63). Furthermore we need another identity
like (4.2) for ξIΓ

µξJ . Since we can switch the spinors to show that it becomes −(ξJΓµξI), we know
that for I = J this should vanish and thus that (ξIΓµξJ ) = aεIJ . Multiplying with εIJ then learns
us that a = 1

2vµ. Thus

(ξIΓµξJ) = −1

2
vµεIJ , and equivalently (ξIΓµξ

J) =
1

2
vµε

IJ . (4.6)

Now let us consider individual terms of (4.5). The first term is equal to

1

2
(ξI{Γµ,Γν}ξJ)(Dµq

IDνq
J) + (ξIΓ

µνξJ)(Dµq
IDνq

J),

where we can use the Clifford algebra (B.1) and (4.2) to simplify. For the rest we will leave it
as it is. The second and fifth term will cancel against each other, for if we study the hermitean
conjugate (only with respect to the SU(N) gauge structure) of the second term, we would find
(i(ξIΓ

µξJ)(Dµq
IσqJ))† = i(ξIΓ

µξJ)(qJσDµq
I) = −i(ξIΓµξJ)(qIσDµq

J), because the first term is
antisymmetric in I and J . On the third and ninth term, we should use (4.6), to find that their sum
is equal to − 3

2rv
µtIJ(DµqIqJ) + 3

2rv
µtIJ(qJDµqI). We can then apply partial integration to the

first term. If we use that Dµv
µ = 2(ξIΓ

µDµξ
I) = −2(ξIΓ

µΓµξJ)tIJ = −2(ξIξJ)tIJ = 0, because
of simultaneous (anti)symmetry, then in the end we only keep 3

rv
µtIJqIDµqJ . The fourth term

can be rewritten by taking its Hermitean transpose like −(ξIΓ
µξ̌J′)(F

J′

Dµq
I). Note that we get a

sign change because of F being purely imaginary. If we then also change the order of the spinor

product we find (ξ̌J′Γ
µξI)(F

J′

Dµq
I), which adds up to 0 together with the thirteenth term.

It is apparent that with the use of (4.2) the sixth term becomes equal to − 1
2 (qIσ

2qI). The
seventh and tenth term can also shown to be 0 together directly after applying (4.2). The next
term not yet discussed is the eleventh, which is equal to − 9

2r2 t
IJ t LI (qJqL) with the help of (4.2).

This in turn can be written as 9
2r2 (tt) L

J (qJqL)
(2.42)

= 9
4r2 t

J
I t JJ (qKqK). Then the last term left

is −(ξ̌I′ ξ̌J′)(F
I′

F J
′
). On this we can use a direct analogue of (4.2) to see that it is equal to

− 1
2 (F I′F

I′). Taking this all into account we end up with

δξLV ,h,b =
1

2
DµqID

µqI + wµνIJDµq
IDνq

J + 3vµtIJqIDµqJ +
9

4r2
tIJ tIJqKq

K

− 1

2
qIσ

2qJ −
1

2
F I′F

I′ ,

where wµνIJ ≡ ξIΓµνξJ . Now it turns out that this can be written as

δξLV ,h,b =
1

8
(DσqK − vσ(vτDτqK)− 2wσµKIDµq

I)(Dσq
K − vσ(vρDρq

K) + 2wKJσν D
νqJ)

+
1

2
(vµDµqI −

3

r
t KI qK)(vνDνq

I − 3

r
tILqL)− 1

2
qIσ

2qI − 1

2
F I′F

I′ , (4.7)
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which would again be positive when we consider that both FI′ and σ are purely imaginary fields.
For the F 2 and σ2 this is apparent, but the rest of the terms is not so trivial. Let us first start
with deriving two identities we will need. First we want to show

2vµwIJµν =(ξKΓµξK)(ξIΓµνξ
J)

=
1

2
(ξKΓµξK)(ξIΓµ(Γνξ

J))− 1

2
(ξKΓµξK)((ξIΓν)Γµξ

J)

Then we use the Fierz identity (2.10) on ΓµξK(ξIΓµ(Γνξ
J)) and ΓµξK((ξIΓν)Γµξ

J). This yields

2vµwIJµν
(2.10)

= (
1

2
(ξKξ

K)(ξIΓνξ
J)− (I ↔ J)) + ((ξKΓνξ

J)(ξIξK)− (ξKξ
I)(ξJΓνξ

K)− (I ↔ J))

(4.2)

(4.6)
= 0 + (

1

4
vνδ

J
Kε

IK − 1

4
δIKε

JKvν − (I ↔ J)) = 0.

Likewise we can compute

2wµνJIw
JK
µρ =2(ξJΓµνξI)(ξ

JΓµρξ
K)

=
1

2
(ξJΓµ(ΓνξI))(ξ

JΓµ(Γρξ
K))− 1

2
((ξJΓν)ΓµξI)(ξ

JΓµ(Γρξ
K))

− 1

2
(ξJΓµ(ΓνξI))((ξ

JΓρ)Γµξ
K) +

1

2
((ξJΓν)ΓµξI)((ξ

JΓρ)Γµξ
K),

at which point we want to use (2.10) in the same way we did to prove vµwIJµν = 0. We can already

drop the terms of the form 1
2 (ξJΓνξI)(ξ

JΓµξ
K), for they will vanish against each other. If we then

apply (4.2) and (4.6), we find

2wµνJIw
JK
µρ =− 1

4
vρv

νδKI − (ξKΓρΓ
νξI)−

1

2
(ξKΓρΓ

νξI)−
1

2
vρv

νδKI

− 1

2
(ξKΓρΓ

νξI)−
1

2
vρv

νδKI −
1

4
vρv

νδKI − (ξJΓµΓρξ
J)(ξIξ

K)

=− 3

2
vρv

νδKI − 2(ξKΓρΓ
νξI)−

1

2
(ξJΓνΓρξ

J)δKI .

The second term we will write like (ξKΓρΓ
νξI) = gµρ(ξ

KΓµνξI)+
1
2gµρ(ξ

K{Γµ,Γν}ξI) = gµρε
KJwµνJI−

δνρδ
K
I . In the third term we will change 1

2gρν(ξJΓνΓνξJ ) into 1
4gρν(ξJΓνΓνξJ ) + 1

4gρν(ξJΓµΓνξJ ) =
1
2δ
µ
ρ with the help of changing the order of spinors. Thus

wµνJIw
JK
µρ = −3

4
vρv

νδKI +
3

4
δµρ δ

K
I − gµρεKJw

µν
JI .

If we now take (4.7) and write out the squares we find

1

2
vµvνDνqIDνq

I − 3

r
vµ(DµqIqL)tIL +

9

2r2
(tt)KL(qKqL) +

1

8
DµqID

µqI

− 1

4
vµvν(DµqIDνq

I) +
1

2
wIJµν(DµqID

νqJ) +
1

8
(vµvµ)vνvρ(DνqIDρq

I)

− 1

2
vµvνwIJνρ (DνqID

ρqJ)− 1

2
wµνJIw

JK
µρ Dνq

IDρqK −
1

2
qIσ

2qI − 1

2
F I′F

I′

We need to use (2.42) (which says that (tt)KL = 1
2δ
K
L ), vµvµ = 1 and the two identities we just

derived to show that this is

(
1

2
− 1

4
+

1

8
− 3

8
)vµvνDνqIDνq

I + 3vµtIJqIDµq
I +

9

4r2
tIJ tIJqKq

K + (
1

8
+

3

8
)DµqID

µqI

+ (
1

2
+

1

2
)wIJµν(DµqID

νqJ) = δξLV ,h,b

Thus showing what we wanted to prove.
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4.2 Localization locus

From now on the text will start to have more of a descriptive character. Not everything will be
proven, and most of the things will only be explained intuitively.

Having the expressions (4.4) and (4.7) leads directly to the localization locus. The localiza-
tion locus was the set of points for which (δξV )B ≥ 0, and since both (4.4) and (4.7) are written as
a sum of squares, we know that the localization locus for the theory are exactly that set of points
where the individual terms are 0. So from (4.4) we conclude that the localization locus for the
vectormultiplet is:

Fµν =
1

2
εµνρστv

ρFστ Dµσ = 0

vµFµν = 0 DIJ = −2

r
σtIJ .

If we would want to, we could drop the restriction vµFµν = 0, because it is implied by vµ(Fµν) =
vµ( 1

2εµνρστv
ρFστ ), which shows that vµFµν = 0 because the right hand side is symmetric in µ

and ρ through vµvρ and antisymmetric in the same indices through ε. Furthermore the condition
Dµσ = 0 implies that σ is a constant function on all of S5

r . Since σ is still an element of the
gauge group SU(N), we can consider σ from now on a constant matrix. The last condition then
automatically states that the DIJ field is merely a constant multiple of the matrix σ. Furthermore,
according to [25], the equation Fµν = 1

2εµνρστv
ρFστ also implies the equation of motion.

Next they use vµFµν = 0 to construct submanifolds S1 of S5 that has a zero field strength.36

Therefor we can switch to a gauge where A is constant on each S1. One can consider the space over
which the connection varies. This is S5/S1 ' CP 2: the complex projective plane.37 One therefor
needs to consider solutions of the equations of motion on CP 2 in order to find the localization locus
of the theory. The case where the connection A = 0 everywhere is one of them, but others are
possible as well. They call these solutions ‘contact instantons’, an instanton on a contact manifold38.
So our localization locus for the vectormultiplet consists of all possible contact instantons on CP 2

times all possible constant matrices σ. Because of this, we still expect our final result for the
partition function to be integrated over σ, albeit this time normal integration, not path integration.
For the hypermultiplet we can follow the same reasoning to arrive from (4.7) to

DσqK = vσ(vτDτqK) + 2wσµKIDµq
I σqI = 0

vµDµqI =
3

r
t KI qK FI′ = 0.

The condition FI′ = 0 is clear, yet the other conditions on qI are less apparent. According to [25],
however, things will drastically simplify when we consider the case when we are in the localization
locus of both the vector and the hypermultiplet simultaneously. First of all, σ becomes a constant
matrix, and thus according to the condition σqI = 0 we can conclude that qI = 0 if σ is a constant
matrix with nonzero determinant. But even if σ has 0-eigenvalues, the condition Aµ = 0 (up to
gauge transformations) together with the conditions on qI should lead to restrictions upon q that
are such that q cannot have continuous solutions.39 Therefor the localization locus of the theory is
defined by

A = contact instanton, σ = const., DIJ = −2

r
σtIJ , qI = 0, FI′ = 0. (4.8)

As one can see this is only dependent on a constant σ. Thus for the resulting localized integral for
the partition function (4.1), which we are now going to study, we will expect that we still have an
integration over all constant σ solutions.

36Given a point we can take this S1 as the flow of this point under the vector field vµ.
37This is the set C3 modulo overall rescaling by nonzero elements from C. So CP 2 = {(x, y, z) ∈ C3}/{(x, y, z) h

λ(x, y, z), λ ∈ C}
38A manifold consisting of points in the manifold with their corresponding tangent spaces. A 1-form called a

’contact form’ then describes the notion of ’parallel transport’ on the tangent spaces.
39p. 19 of [25].
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4.3 A matrix model

Because of time constraints on this project there was no time to perform this calculation, but in
order to give a complete picture, we will discuss the results by Johan Källén, Jian Qiu and Maxim
Zabzine presented in [25] here.
Let us start with repeating the discrete version of the Atiyah-Bott theorem (3.16):∫

M

α =
∑
p∈F

i∗pα√
detLp

.

We will now discuss several points we would expect the localized result for the partition function
(4.1). First of all the sum over p ∈ F will be trivial in this case, since (4.8) corresponds with a
single point in the space of fields. As part of i∗pα we would expect an integral over all constant

fields σ, and furthermore a factor e−S(Fµν=0,σ=const.). In the place of detLp, one should compute
the superdeterminant of the operator

d = iLv − i[σ, ],

with Lv the Lie derivative in the direction v and [σ, ] the commutator between σ and the field upon
which it acts. The vector field v in the Lie derivative is induced by the Killing spinor: vµ = ξIΓ

µξI .
We can view this as a differential acting on the space of fields, since

d2 = 0.

Now before we mention the matrix model for the partition function, it should be mentioned this
is merely the result for what Källén e.a. call the perturbative partition function: the partition
function with contributions where the connection A = 0 and σ is a constant. When computing
the full partition function, one should also take into account the instanton solutions on CP 2. The
exception is the case when the gauge group is U(1) (which in practice means SU(N) for the case
N = 1), for then it can be shown there are no non-trivial instantons on the complex projective
plane. In the end they found that the partition function (4.1) becomes

Z =

∫
Cartan

Dφ e
− 4π3r

g2
YM

Tr(φ2)
det
Ad

(
sin(iπφ)e

1
2 f(iφ)

)
·det
R

(
(cos(iπφ))

1
4 e−

1
4 f( 1

2−iφ)− 1
4 f( 1

2 +iφ)
)

+O
(
e
− 16π3r

g2
YM

)
, (4.9)

up to irrelevant overall numerical factors. The perturbative partition function is fully written out,
and the instanton solutions are indicated by O. Furthermore f is the function given by

f(y) =
iπy3

3
+ y2 ln(1− e−2πiy) +

iy

π
Li2(e−2πiy) +

1

2π2
Li3(e−2πiy)− ζ(3)

2π2
, (4.10)

φ = rσ is a dimensionless parameter containing the remaining d.o.f. of the theory and the integral
over φ is thus an integral over only constant functions. Therefor it is essentially the same as a
usual integral

∫
dφ, up to possibly some sort of Jacobian.

We will need to make a few remarks about this function and define all of its elements, but let
us first take a step back and consider the implications of this model. The feat achieved here is
quite remarkable. Starting with with a partition function (4.1) that is only defined through a set
of perturbative Feynman rules we a find, through a mathematical trick, an exact solution that
depends on a finite number of variables. This does not only lead to a useful way to obtain values
of observables, but might also lead to a deeper understanding of the theory and the path integral
formalism itself.
But to get back to the equation (4.9): the integration over φ is still an integration over a matrix,
which can be interpreted as an integration over its matrix entries. Yet it is restricted to a Cartan
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subset, which is a maximal subset of (in this case) SU(N) which is simultaneously diagonalizable.
The dimension of this integral is therefor N − 1 (N integrals over it’s diagonal matrix entries, yet
restricted by 1 dimension since A ∈ SU(N) should satisfy det(A) = 1). Furthermore φ takes values
on the imaginary axis, just as σ, which explains the at first sight rather odd cos(iπφ) notation
rather than cosh(πφ). Furthermore the detAd denotes that we should take the determinant of with
respect to the gauge structure in the adjoint representation. R is the representation considered for
the hypermultiplet. In section 2.2.1 we have described in the fundamental representation of the
gauge group, yet other representations are an option as well.
The function f defined in (4.10) has some unspecified contents as well. First of all we should take
into account that φ is a matrix, and all functions acting upon it should be understood in terms of
their Taylor expansions. That said, we know the Taylor expansion of ln(1 + x) to be

ln(1 + x) =

∞∑
i=0

(−1)i+1xi

i
.

Yet Li2(x) and Li3(x) are less well know. They are called the dilogarithm and trilogarithm
respectively and they are particular cases of polylogarithms Lin(x). They are defined as

Lin(x) =

∞∑
i=0

zi

in
.

It is easy to see that for n = 1 this results in −
∑∞
i=0

(−x)i

i = − ln(1− x), which is why it can be
considered as a generalization of a logarithm. Last of all we should note that ζ(x) is the Riemann
zeta function. For values in N, it is equal to

ζ(x) =

∞∑
i=1

1

ix
,

leading to ζ(3) ≈ 1.2020569. This particular value is also known as Apery’s constant. The ζ
function appears in many problems within number theory40 and often rears its head within physics.
Of course many more things about this model can and should be said, but this would require
substantially more time and is therefor beyond the scope of this work. In section 5.2 we will
refer to several more papers that go more in depth on this and related subjects, if the reader is
interested in more on this subject. We will finish here, with the knowledge that the use localization
techniques results in some special cases in impressive exact results that might grant us a deeper
understanding of the physics of the world we live in, and the mathematics we use to describe it.

40It has a important connection to the distribution of prime numbers amongst the natural numbers.

48



5 CONCLUSION

5 Conclusion

5.1 Summary

It is now time to look back upon what we discussed. We started by putting 5D SYM on S5
r ,

which can be seen as a one-parameter deformation of the flat 5D SYM theory. We first introduced
the fields in the vectormultiplet, together with their supersymmetry transformations and the
corresponding Lagrangian. We then discussed the different structures of the theory in detail in
order to be able to do calculations with them later on. Next it was shown explicitly that these
supersymmetry transformations close the supersymmetry algebra and that they conserve the
Lagrangian. The same was also done for the hypermultiplet, with the one exception that we only
showed that δ2

ξ was an even symmetry of the theory for a bosonic ξ.
A study of the concept of localization as proposed by Witten was next, followed by a section
explaining the Poincaré-Hopf theorem and thereafter proving it with the help of localization applied
on a mock theory. Then we briefly discussed the Atiyah-Bott-Berline-Vergne theorem, and shown
the link between that and the localization method.
Then finally we showed that all conditions for localization apply when you try to localize it with
the supersymmetry operator with an even spinor ξ. The localization locus was found to be (4.8)
and we discussed (yet not computed) the matrix model for the perturbative partition function that
follows after the localization.

All in all we can state that localization is a powerful and useful tool to get exact results for
a path integral.

5.2 Outlook

As always every question answered leads to many more questions, and even though this is recent
work at the time of writing some of these question have already been studied. We will refer to
several papers the localization of N = 5 SYM has been used for and several areas for future
research, divided into these two groups.
Several examples of future research performed in this area:

• In [22] they continued the result of the matrix model and studied the large N -behaviour of the
theory, where N is the variable in the symmetry SU(N), and the corresponds to the amount
of colours in the language of the strong interaction force.41 It can be argued that under some
conditions the rest term O becomes negligible. They show in this limit that the free energy
F = − ln(Z) grows cubic in N . This coincides with the results for the 6D (2, 0) theory.

• Minahan e.a. studied in [32] the value of several observables with the help of localization. To
be exact more exact: they studied a subclass of Wilson loops that are invariant under the
supersymmetry transformation.42 In the same paper they also study the link with 6D (2, 0)
theory in greater depth. They show that, under strict conditions, the expectation value for
certain supersymmetric Wilson loops within both theories coincide, although they stress that
there is a lack of knowledge of the Euclidean variant of 6D (2, 0) theory.

Possible future research areas include

• As they note in [25], 5D SYM theory is non-renormalizable, and putting the theory on a
sphere will not change this. This makes it rather surprising that it is possible to get an exact
result. So somewhere in this localization step there is a regularization hidden. Where this
step is (implicitly) done and how it works is as of yet unknown.

41QCD is non-renormalizable, and this is caused by the absence of small parameters we can expand about. In
1974 [38] proposed to study the limit where the amount of colours was large, and then use 1

N
as an expansion

variable. For more information on this at an introductory level, see [30].
42Wilson loops are measurables that consist of some line integral on a closed loop of the gauge field. Wilson

introduced them in 1974 [40] and they can be used to reformulate QCD in a way where the gauge-invariance is
directly apparent. For more information, see [30].
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• The matrix model computed in (4.9) is merely the perturbative partition function. It would
be very interesting to consider the full partition function, where also the non-trivial instantons
on CP 2 should be taken into account. This severely complicates the calculations, but the
result could be useful to have.

• The localization procedure tells us that the contribution to the path integral from almost all
points save for a few can be neglected. This leads to the question whether these states might,
in some way, be special. Can they be interpreted as some kind of meta-particles? And in the
case that some field vanishes in the localization locus, does that then mean that the minimal
description of the theory shouldn’t contain that field?
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A A few words on supersymmetry

The basic premise behind supersymmetry is well known: to every particle we associate a super-
partner. Bosons have fermionic superpartners and vice versa.
Just like in translational symmetry leads the conserved charge of the momentum pµ, the super-
symmetry generates a conserved quantity as well. This is called the supercharge, which will be
denoted like qα in this work. Where εµpµ is a operator that instigates a infinitesimal translation
in the ‘direction’ of a vector εµ, so is δξ ≡ ξαqα a infinitesimal supersymmetry transformation
with ξα a Grassmann-odd spinor that indicate the ‘direction’ of the supersymmetry. Here qα is
always a Grassmannian odd operator, because it should make a boson (Grassmann even field) into
a fermion (Grassmann odd field). Conventions are such that ξ is chosen Grassmann odd such that
δξ is Grassmannian even.

Furthermore these operators should be such that they close the supersymmetry algebra. That is,
given two spinors ξ and η, we need that δξ and δη are transformations such that

[δξ, δη]Ψ = −(ξα(Γµ)αβη
β)pµΨ,

with pµ again the momentum operator and Γµ the gamma matrices adhering the Clifford algebra
(B.1), acting upon a field Ψ. For more on the spinors, the Clifford algebra and gamma matrices
and their explicit construction, see appendix B.1.

Since we are given this one Dirac spinor ξ to determine the direction of the supersymmetry,
this means that we have 2b

d
2 c degrees of freedom, since this is the number of degrees of freedom

for a spinor in d dimension (see appendix B for more details). It is possible to create even more
symmetry by creating more supercharges. These supercharges should anticommute if they are of
a different type. Following this logic we use the notation N = n symmetry for supersymmetry
with n different supercharges. It turns out n can take on only multiples of 2 up to 16. This way
we multiply the amount of degrees of freedom when considering a supersymmetry transformation.
Because we will not explicitly study extended supersymmetric models, we will not go more in
depth than this rough concept, but we will mention their existence on several occasions.
Furthermore we will have to work on supermanifolds now, which, in practice, means that part of
coordinates are anticommuting instead commuting. This has ramifications on nearly every aspect,
and as such there excist superdeterminant (like a determinant with with slightly different sign
conventions on odd coordinates), superfields and many more ‘super’s. Most of the times the exact
way such a supervariant works is irrelevant. When it is important, it will be discussed at that
point.
This was a very brief discussion on supersymmetry. For more information one could try either [13]
or for a shorter, more condensed read [28].

B Classification of spinors in d dimensions

In this appendix we will take a look at the existence of several types of spinors (Dirac, Majorana
and Weyl) in d dimensions.43 Then the restriction that supersymmetry impose on this classification
are studied.44 But first the definitions and conventions used in this paper will be specified.

B.1 The Clifford and Lorentz algebra

The Clifford algebra describing spinor behavior in d dimensions is spanned by the d Dirac matrices
Γµ. These need to satisfy to the defining property

{Γµ,Γν} = 2ηµν , (B.1)

43We follow Appendix B of Polchinski [36].
44Like Figueroa-O’Farrill does in [13].
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B.1 The Clifford and Lorentz algebraB CLASSIFICATION OF SPINORS IN D DIMENSIONS

with {, } the standard anticommutator brackets and ηµν the d dimensional Minkowski metric
diag(−1,+1, . . . ,+1). When we work in d = 2k+ 2 dimensions (k ∈ N, including 0), we can denote
a set of raising and lowering operators

Γ0± =
1

2
(±Γ0 + Γ1), (B.2)

Γa± =
1

2
(Γ2a ± iΓ2a+1) , with a ∈ {1, . . . , k}. (B.3)

They anticommute in the all cases except for

{Γa+,Γb−} = δab, with a, b ∈ {0, 1, . . . , k}.

So {Γa+,Γb+} = {Γa−,Γb−} = 0, with the special case (Γa+)2 = (Γa−)2 = 0. Hence, if we have a
certain spinor ζ, this spinor will have to become 0 after applying (Γa−)2 to it. This means either
Γa−ζ = 0 or Γa−(Γa−ζ) = 0. Applying this logic for all possible a ∈ {0, . . . k}, means that there
exists a spinor ζ which will be annihilated by all lowering operators.

Γa−ζ = 0,∀a ∈ {0, . . . , k}

In this way we can find a representation by acting with all possible Γa+ on this ‘lowest’ state ζ,
resulting in the following,

ζs ≡ (Γk+)sk+ 1
2 . . . (Γ0+)s0+ 1

2 ζ,

where s is a d-dimensional vector containing elements of ± 1
2 . This means each raising operator

acts either once or never on the state, which is important because otherwise the state would vanish.
This is a useful basis for our spinor space and it allows us to write the Dirac matrices explicitly.
Constructing them in d dimensions is a recursive process. Let us first consider the case d = 2, with:

Γ0 =

[
0 1
−1 0

]
, Γ1 =

[
0 1
1 0

]
These two matrices satisfy the Clifford algebra (B.1) as we can check explicitly. In higher even
dimensions of the form d = 2k + 2 we can then define

Γµ = γµ ⊗
[
−1 0
0 1

]
, for µ ∈ {0, . . . d− 3},

Γd−2 = I ⊗
[

0 1
1 0

]
, Γd−1 = I ⊗

[
0 −i
i 0

]
, (B.4)

with γµ the d − 2 dimensional Dirac matrices and I the identity matrix, both of which are
2k × 2k dimensional matrices. As such the Γµ in d dimensions are 2k+1 × 2k+1 dimensional
matrices. By induction you can check these satisfy (B.1) as well. The Γµ matrices in odd dimen-
sions d = 2k+3 can be constructed from the even 2k+2 dimensional case as will be studied later on.

The elements of the Clifford algebra can be used to create generators of the SO(d− 1, 1) Lorentz
group by antisymmetrising ΓµΓν and defining

Σµν = − i
4

[Γµ,Γν ].

In this way Σµν satisfies

i[Σµν ,Σρσ] = ηνσΣµρ + ηµρΣνσ − ηνρΣµσ − ηµσΣνρ.

Now note that we could take all k + 1 generators of the form Σ2a,2a+1 with a ∈ {0, 1, . . . , k}, and
that all generators commute with each other. This is a sign that we can diagonalize all these
operators simultaneously. Luckily, they turn out to be diagonalized already, for

Sa ≡ iδa,0Σ2a,2a+1 = Γa+Γa− − 1

2
.
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Letting Sa act on ζ(s) results in

(Γa+Γa− − 1

2
)ζs =

{
(1− 1

2 )ζs if (Γa−)1 is in ζs

(0− 1
2 )ζs if (Γa−)1 is not in ζs

}
= saζ

s.

Because of the half-integer eigenvalues we can recognize this as a spinor representation. Hence this
is a basis for the Lorentz group SO(2k + 1, 1) in 2k+1 dimensions, called the Dirac representation.
This representation is reducible, since Σµν is quadratic in the Γ matrices. The subspaces of ζs with
an even or an odd number of + 1

2 ’s in s will be send to themselves. We will now create a ‘chirality’
operator to reflect that fact. We define

Γ = i−kΓ0Γ1 . . .Γd−1.

Note that
(Γ)2 = 1, {Γ,Γµ} = 0, [Γ,Σµν ] = 0 and Γ = 2k+1S0S1 . . . Sk. (B.5)

The last identity in (B.5) tells us that Γζs =

{
+ζs if the number of 1

2 is even
−ζs if the number of 1

2 is odd
.

Now we study the Dirac matrices in the odd dimensions (d = 2k + 3). We can take the matrix Γ
and add it as Γd to the the matrices for the 2k + 2 Clifford algebra. The first two equations of
(B.5) already proof these satisfy the Clifford algebra (B.1).
We have now constructed the irreducible representation of the Γ matrices and we have done it in
such a way that we know that every other representation differs just on a change of basis.

B.2 Weyl and Majorana spinors

In the previous section we already inexplicitly encountered the Weyl spinors in the derivation of
the Lorentz algebra. The chirality matrix Γ divided the spinors ζs into two groups: spinors with
an even or an odd number of + 1

2s. The right cosets of the chirality matrix Γ are the two Weyl
representations, with a chirality of either +1 or −1. Because the matrix Γ commutes with all Σµν ,
this property is conserved under the action of the generators of the Lorentz group. So in the even
dimensions we can impose an extra restriction on our spinors, namely the sign of their chirality.
Then we will call such a spinor a Weyl spinor. Note that this is only possible in even dimensions
2k + 2. In 2k + 3 dimensions the representation is not reducible in two Weyl representations, for
Σµd = − i

4 [Γµ,Γd] does not commute with the chirality operator Γ = ±Γd. Thus there are no Weyl
spinors in odd dimensions.
There is, however, also another condition we can imply: we can force the spinor to be real-valued
in some dimensions.

As we argued in section B.1 the representation of the Clifford algebra is unique up to a change of
basis. Would we for instance take the complex conjugate of equation (B.1) the right-hand he side
would stay the same. This shows that Γµ∗ satisfies the Clifford algebra as well. So the Γ and Σ
matrices are related to their own complex conjugates by transformation of basis. So we would like
an equation of the following form

BΓµB−1 = ±Γµ∗, (B.6)

for some matrix B. Notice that in both cases (positive and negative) we find for Σ

BΣµνB−1 = −Σµν∗,

because Σµν is quadratic in Γµ (which gives (±1)2 = 1) and it is proportional to i. We will study
the even dimensions d = 2k + 2 first. In order to find the matrices B that satisfy these properties,
we first want to know what Γµ∗ is. We know that in the basis we used so far the Γa± are real. The
definitions of the raising/lowering operators (B.2) and (B.3) tell us that

Γµ∗ =

{
−Γµ for µ ∈ {3, 5, 7, . . .}
Γµ else

. (B.7)
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This is the inspiration to define

B1 = Γ3Γ5 . . .Γd−1, B2 = ΓB1. (B.8)

By performing the anticommutation k times (or k − 1 times if µ ∈ {3, 5, . . . , d− 1}) in order to
switch the Γ matrices in B1 with Γµ and using (B.6), we see that:

B1ΓµB−1
1 = (−1)kΓµ∗, B2ΓµB−1

2 = (−1)k+1Γµ∗

Thus either B = B1 or B = B2 makes sure (B.6) is satisfied. The chirality matrix Γ satisfies for
both B matrices:

B1ΓB−1
1 = B2ΓB−1

2 = (−1)kΓ∗. (B.9)

Depending on k, conjugation either conserves or switches the eigenvalues of the chirality. This
means that for even k, which corresponds with d = 2 mod 4, a Weyl representation is conserved
under conjugation. For k is odd, which would mean d = 0 mod 4, the conjugation sends a Weyl
representation to the other one. This is noted in table 2 at the end of this appendix, for this will
turn out later on to have significant effects on the existence of Majorana-Weyl spinors.

Analogously to the Weyl condition in the previous paragraph, we can now impose the Majo-
rana condition on a spinor by requiring the following relation between the spinor and its complex
conjugate

ζ∗ = Bζ, (B.10)

where B is either B1 or B2. Should this hold true, then the complex conjugate of this equation
should hold as well. So ζ = B∗ζ∗ = B∗Bζ. Hence this Majorana condition is consistent only if
B∗B = 1. Because we can choose to use either B1 or B2 this gives us two possibilities to constitute
such condition. If we use the commutation relations and conjugation conditions of Γµ, together
with (B.9), we can reduce B∗B to the following power of −1

B∗1B1 = (−1)k(k+1)/2 and B∗2B2 = (−1)k(k−1)/2.

In the first case this vanishes if k(k+1)
2 = 0 mod 2, i.e. k = 0 mod 4 or 3 mod 4. In the second

case this vanishes for k(k−1)
2 = 0 mod 2, i.e. k = 0 mod 4 or k = 1 mod 4. The overlap at 0

mod 4 does not mean you can impose a double Majorana condition with B1 and B2 simultaneously,
because a basis transformation will bring both conditions into each other.
Expanding this to odd dimensions, we need to notice that the definition for B2 (B.8) does not
satisfy the important property (B.9) in this case, since in odd dimensions Γ itself has been added
to Γµ. As such imposing the Majorana condition on spinors in odd dimensions is only possible by
using B1.
This leads to the conclusion that we can either impose (B.10) using B1 in dimensions d = 0, 1, 2, 3
mod 8, and we can impose it using B2 in dimensions d = 2, 4 mod 8. This means that Majorana
spinors exist in d = 0, 1, 2, 3, 4 mod 8. All this is summerised in table 2.

We can also try to impose both conditions in order to create a Majorana-Weyl spinor. This
is, however, only possible if the Weyl spinors are conserved under complex conjugation. Else (B.10)
would have a spinor on the left hand side that does not have the same chirality as the right hand
side. Then the spinor would not necessarily be Weyl anymore by imposing the Majorana property.
This means Majorana-Weyl spinors only exist in d = 2 mod 8.

B.3 Restrictions of Supersymmetry

Since we are interested in supersymmetric theories, we have another important dimensional
restriction on our spinors. Since supersymmetry casts all fermions into bosons and vice-versa,
we need that all present spinors in that dimension have to have the same amount of degrees of
freedom as a certain boson in that theory. This leaves two options open: you can have either
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d.o.f. for spinors d.o.f. for bosons possible superfield
d Dirac Majorana Weyl Maj-Weyl Massive Massless Massive Massless

2 2 1 self, 1 1
2 (one real) 1 0 W. or M. -

3 2 1 - - 2 1 Dirac Maj.
4 4 2 complex, 2 - 3 2 - W. or M.
5 4 - - - 4 3 Dirac -
6 8 - self, 4 - 5 4 - Weyl
7 8 - - - 6 5 - -
8 16 8 complex, 8 - 7 6 - -
9 16 8 - - 8 7 Maj. -
10 32 16 self, 16 8 9 8 - Maj-Weyl
11 32 16 - - 10 9 - -
12 46 32 complex, 32 - 11 10 - -

Table 2: Possible SO(d− 1,1) spinors and their degree’s of freedom. − means that for some reason
that type of spinor cannot appear in that dimension. Also noted is the number of d.o.f. for massless
(= d− 2) and massive (= d− 2) bosons. If this matches to some type of spinor, it is possible to
create a superfield with this type of spinor.

massive bosons, with d− 1 degrees of freedom, or a massless boson, with d− 2 degrees of freedom.
These numbers are listed in table 2.
Now it helps that we deduced the number of degrees of freedom for the spinors in section B.2.
We found in (B.4) that a Dirac spinor possesses 2l degrees of freedom, with l = bd2c. Being either
Majorana or Weyl, yet not both, reduces that amount with a factor 2. In the case of Majorana
spinors this decrease comes from imposing a reality condition that restricts the imaginary part
when the real part is fixed. In the case of Weyl spinors it stems from the division into 2 subspaces
of equal size with different chirality sign. Imposing both restrictions in a Majorana-Weyl spinor
will reduce the degrees with a factor 2 twice: a factor 4 in total. In the case of d = 2, this might
seem to imply that there is only 1

2 degree of freedom (d.o.f.) left, but since these are complex
degrees of freedom, in truth there will be just one (real) degree.
In table 2 all this information, complete with the degrees of freedom, has been summerised. In
the final two columns conclusions are drawn whether or not a massive or massless spinor in that
dimension could exist, and of what type it would be. The list goes from d = 2 up to d = 12. Cases
for d > 12 will not result in new possible spinors, since the d.o.f. of the spinors are higher and grow
exponentially (as opposed to linear with bosons). You could nevertheless extent it effortlessly by
using the fact that the second till fourth column are identical up to a multiplication with 24 = 16,
for all properties of spinors are d mod 8.

C Geometry

Since a lot of differential geometry is used in this work, here a short overview of the used definitions
and notation. For a more extensive discussion, I would advise a book on geometry, for instance the
one of T.Frankel [14], where this section is based upon.

C.1 Vector fields and the Lie derivative

Let M be a Riemannian manifold of dimension n and TpM be its tangent space in the point p. In this
tangent space, there are vectors v, which can be denoted in local coordinates v =

∑
i v
i d
dxi = vi∂i.

TM is then the tangent bundle: the collection of all tangent vectors at all points on the manifold.
In other words it is the collection of all sets (v, p), where p ∈M and v ∈ TpM . A vector should,
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however, behave in a particular way under a transformation of basis:

v′i(x) =

n∑
j=1

∂yj
∂xi

vj(x).

It is possible to let these vector fields acts upon functions f : M → R. Letting vector field v act on
function f works just like the suggestive notation we used suggested: vf =

∑
i v
i∂if .

Often it is interesting to study how one vector field would change when it would be slightly
altered by another vector field. For this purpose the Lie derivative Lv was defined. It is a mapping
from vector fields to vector fields, defined as

Lv(w) = [v,w], (C.1)

where the commutator should be understood as the commutator of composition when applied
to functions. In other words the vector field Lv(w) = [v,w] is defined by [v,w]f = v(w(f)) −
w(v(f)) = Lv(f) for all possible differentiable function f . If we have a base and would write
v =

∑
i v
i(x)∂i and w =

∑
j w

j(x)∂j for function vi, wj : M → R, then it is pretty straightforward

to see that we can write Lv(w) =
∑
ij(v

i(∂iw
j)− wi(∂ivj))∂j .

C.2 Exterior Algebra

We can also study a generalization of a vector (field): a tensor (field). To define this we first need
the notion of a cotangent. A cotangent at point p is the dual of a vector. It is a map TpM 7→ R,
that can be written in local coordinates as α =

∑
i aidx

i. Here dxi is the dual of ∂i, that is, dxi

sends ∂j to δij . As such α(v) =
∑
i aiv

i. All covectors at a point are elements of the cotangent
space T ∗pM , and the cotangent bundle is the space of all sets (α, p), with p ∈M and α ∈ T ∗pM .
From a tangent space E ≡ TpM we can define a tensor as a multi-linear map W : E∗ ×E∗ × . . .×
E∗ × E × E × . . . × E → R. This function W (dxi, . . . , dxj , ∂k, . . . , ∂l) is often written as W i...j

k...l .
A tensor with only upper indices is called contravariant, and with only lower indices it is called
covariant. The multi-linearity can be translated into the following rule for a transformation of
basis for the tensor:

W ′i...jk...l = (
∂x′i

∂xc
) . . . (

∂x′j

∂xd
)(
∂xr

∂x′k
) . . . (

∂xs

∂x′l
)W c...d

r...s . (C.2)

The next step is the definition of a p-form. It is a covariant tensor of rank p (with p entries) that
is antisymmetric in each pair of its indices. So W 1,2,...,i,...,j,...,p−1,p = −W 1,2,...,j,...,i,...,p−1,p for all
i, j with i < j. These p-forms live in a vector space

∧p
E∗ ⊂ ⊗pE∗, where ⊗ is the tensor product.

Per definition we will set
∧0

E∗ = R. The vector space containing all forms of any degree is called
the exterior algebra. If n is the dimension of E, it is denoted by

∧
E∗ ≡ ⊕p=np=1

∧p
E∗, with ⊕ the

direct sum.
To simplify notation we shall sometimes use a multiindex I = (i1, . . . , ip). This is means that if α
is a p-form, then α(∂I) ≡ α(∂i1 , . . . , ∂ip) = ai1,...,ip = aI . Because of the antisymmetry of p-forms
it suffices to know how it is defined when the indices are in increasing order. If this is the case,
we will denote the multiindex as I−→. Notice that we can always say they are in strict increasing

order I−→ = (i1 < i2 < . . . < ip), for would two components be equal, the resulting form would be 0
because of its antisymmetry.
The definition of increasing order is directly linked to the notion of orientation. An orientation of
a set of base vectors in the tangent space is the same if the coordinate transformation between it
has a a positive determinant. Otherwise, the orientation is opposite. We can also define a ‘form’
that changes its sign with a switch of orientation. This is a pseudo form, and the most common
example is the volume element:

voln ≡
√
|g|o(∂I)dx1 ∧ . . . ∧ dxn,
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where g is the determinant of the metric and I a n-long multiindex, and o is a ± sign depending
on orientation: it is + if I is an even permutation of I−→ and else −. We do not want to have a
volume that switches sign as soon as we switch orientation, and therefore this extra sign change is
necessary.
There is a geometric meaning associated to forms in Rn. One could associate 1-forms with
infinitesimal line elements in space. Then 2-forms are infinitesimal surface areas, 3-forms tiny
volume elements, etcetera.

C.3 Operations on the Exterior Algebra

Because the tangent spaces are linear, we already have the usual addition and multiplication
with constants. We can in addition multiply with functions depending on the coordinates on the
manifold. But we have more operations. In order to define several of those key operations on forms,
we will first need the following “generalized Kronecker delta”:

δIJ =

 1 if J is an even permutation of I,
−1 if J is an odd permutation of I,
0 else.

We will often need the special case where I has the dimension of the manifold n, and J = I−→.
Therefore we will denote this as

εI = εI ≡ δI1,2,...,n. (C.3)

We can not speak of the exterior algebra without having a product, and we will now define two:
the exterior and interior product. The former is also called the wedge or Grassmann product, and
is denoted like

∧ :

p∧
E∗ ×

q∧
E∗ →

p+q∧
E∗. (C.4)

If it works on α and β, it is defined as

(α ∧ β)I =
∑
K−→

∑
J−→

δJKI αJβK .

Should α and β of order p and q respectively, one can show

αp ∧ βq = (−1)pqβq ∧ αp.

The exterior product is therefore not commutative. It can be proven that it is associative and
distributive [14]. The non-commutativity will mean that the multiplication of two identical odd
forms will be 0, and in particular:

dx ∧ dy = −dy ∧ dx and dx ∧ dx = 0.

The other product, the interior product, is defined between a vector v and a p-form. It will create
a (p− 1)-form by contracting the first index:

iv(αp(w1,w2, . . . ,wp)) = αp(v,w2, . . . ,wp) (C.5)

It is not hard to see this operation is bi-linear and furthermore it also adheres to a sort of Leibniz
rule:

iv(αp ∧ βq) = (ivα
p) ∧ βq + (−1)pαp ∧ (ivβ

q)
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C.4 Derivatives and integration of forms

As we discussed before, 0-forms are real numbers in the tangent space. We can multiply a 0-form
in the tangent bundle with a function depending on the coordinates of the manifolds. We define the
differential df to be the 1-form df = (∂if)dxi, or equivalently df i = ∇if . Geometrically speaking,
this is the vector of steepest descent at a point of the manifold. We will now try to generalize that
notion. We start by defining a operation

d :

p∧
M →

p+1∧
M, (C.6)

which we call the exterior derivative. We want it to satisfy the following 4 properties:

• d(α+ β) = dα+ dβ;

• for a function α0, dα0 = (∂iα
0)dxi;

• d(αp ∧ βq) = dαp ∧ βq + (−1)pαp ∧ dβq;
• d2α ≡ d(dα) = 0, for all forms α.

It can be proven that this map is unique and well defined and independent of coordinates.

Normally, we denote our integrals as
∫
dx. In this normal definition, dx is a form. This might inspire

us to design a more general notion of integration over forms. Given a p-form αp = a(u)du1∧. . .∧dup,
we define a integral over an oriented region (U, o) ⊂ Rp as∫

(U,o)

α =

∫
(U,o)

a(u)du1 ∧ . . . ∧ dup ≡ o(u)

∫
U

a(u)
√
|g|du1 . . . dup,

where o(u) = ±1, depending on whether the orientation of du
I−→ is equal (+) or opposite (−) to

o. Integrals over 1-forms correspond to line integrals, integrals over 2-forms to surface integrals,
integrals over 3-forms to volume integrals, etcetera. That these integrals are invariant under a
coordinate transformation, follows from the transformation rule for tensors (C.2).

External differentiation and integration leads to a generalization of Stoke’s theorem. For a
compact oriented submanifold V p ⊂Mn with boundary ∂V in Mn, the following holds true for
ωp−1 a continuously differentiable p− 1-form:∫

V

dωp−1 =

∫
∂V

ωp−1.

We can also define the following global scalar product between p-forms

(αp, βp) ≡
∫
M

〈αp, βp〉voln, (C.7)

where 〈αp, βp〉 denotes a point-wise scalar product between p-forms, given by

〈αp, βp〉 ≡ α I−→
βI =

∑
i1<i2<...<ip

αIβ
I .

The global definition for the inner product is only possible if the integral doesn’t diverge: if α or β
has compact support. Under this product, the space of forms on a Riemannian manifold will form
a pre-Hilbert space.45

45The space is not complete, for example the limit of a series of square integrable forms might be discontinuous.
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C.4.1 The Hodge dual and codifferential

The inner product (C.7) does tempt us to find out what the adjoint of the exterior derivative is.
To figure this out, we will need one more operator: the Hodge dual ∗. It is defined as follows:

∗αp ≡ α∗J−→dx
J , where

α∗J−→
=
√
|g|αKεK−→ J−→

.

The g mentioned in the previous equation is the determinant of the metric, and ε is defined by
(C.3). Notice that ∗ sends

∗ :

p∧
→ pseudo-

n−p∧
,

with the target space the pseudo(n− p)-forms. Geometrically in R3, this is taking the ‘opposite’ of
your form: if one had a little area, the Hodge dual would be a perpendicular vector and vice versa.
And should one have a function, one would get a little volume. We can formulate this exactly in
any dimension, which leads to the following being true:

∗ 1 =
√
|g|ε12...ndx

1 ∧ . . . ∧ dxn = voln, and

αp ∧ ∗βp = (δJK12...nα J−→
(∗β)K−→

)dx1 ∧ . . . ∧ dxn = (εJKα J−→
βLεL−→K−→

)
√
|g|dx1 ∧ . . . ∧ dxn

= α J−→
βJvoln = 〈αp, βp〉voln.

The latter equation also leads to a faster computational method. Let σI with I = (i1, . . . , ip) be a
orthonormal, and let σ1 ∧ . . . ∧ σn = ±voln. Then

∗σI = ±σJ ,

with J chosen to be complementary to I. For Riemannian manifolds we also have the relation

∗(∗αp) = (−1)p(n−p)αp.

Using the Hodge dual operator, we can define the codifferential operator d∗ :
∧p → ∧p−1

as

d∗βp ≡ (−1)n(p+1)+1 ∗ d ∗ βp. (C.8)

To see why this definition has been chosen, we can study

d(α∧∗β) = dα∧∗β+ (−1)p−1α∧d ∗β = dα∧∗β+ (−1)n(p+1)α∧∗∗d ∗β = dα∧∗β−α∧∗(d∗β).

And thus we know

(dαp−1, βp)− (αp−1, d∗βp) =

∫
M

d(αp−1 ∧ ∗βp),

as long as α or β has compact support. As long as we have a compact manifold46 we have to study
two cases. The first case is when we have a closed manifold47: then the right hand side vanishes
because of Stoke’s theorem. And thus d∗ is the pre-Hilbert space adjoint of d. In the other case
the use of Stoke’s theorem is not enough to make the right hand side disappear. We need either to
restrict us to the forms which have the property that the restriction of the form to the boundary is
0, or the restriction of its Hodge dual to the boundary is 0. If the manifold is not compact, we can
restrict us to the support of either α or β (for we assumed they had compact support), and than
this framework will still work.
It can be proven, with some additional work, that

(d∗βp)K = ∇jβjK .
46The definition of a compact topological space is rather unintuitive. We do know that compact manifolds can

always be embedded in Rn following Whitney’s embedding theorem. And then it is possible to state, from the
formal definition, that these embeddings of a compact manifold have to be within a ball centering the origin for a
large enough finite radius.

47A compact manifold M is closed when M does not have any boundaries. Examples are the sphere and the torus.
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D Lie algebras

In this section we will discuss BRST quantization as treated in [29].

D.1 BRST quantization

When ghost fields are introduced into a theory, one creates a larger Fock space where it is not
always clear which states are physical, and which are not. BRST (named after Becchi, Rouet, Stora
and Tyutin) quantization can help with this problem in providing a framework to quantize the
problem, while keeping track on processes such as anomaly cancellation. But is serves a even more
general purpose in computing cohomologies of Lie algebras. For some theories a BRST operator
might be a viable option as localization operator.
We start with a closed Lie algebra L with the structure constants fkij , antisymmetric in ij, and
operators Ki, such that

[Ki,Kj ] = fkijKk.

The Lie algebra structure will impose the Jacobi identity on the structure constants. That is

fkijf
p
km + fkmif

p
kj + fkjmf

p
ki = 0

We now introduce introduce a covariant tensor bi, which is called an anti-ghost, and a contravariant
tensor ci, which is called a ghost. They have to satisfy the anticommutation relation

{ci, bj} = δij .

We can then define two operators: the BRST operator Q and the ghost number operator U

U = cibi and

Q = ciKi −
1

2
fkijc

icjbk,

where Einstein summation convention is applied. Let Ck be the set of state for which Uχ = kχ, and
call elements of this set states of degree k. Now the two operators Q,U satisfy a few system-defining
equations

[U,Q] = Q and (D.1)

Q2 = 0, (D.2)

which we will prove here. First of all, using the antisymmetry in ij and the anticommutation
relation, we find

[U,Q] =clblc
jKj −

1

2
fkijc

lblc
icjbk − cjclblKj +

1

2
fkijc

icjbkc
lbl

=clblc
jKj + clδjlKj − clblcjKj −

1

2
fkijc

lblc
icjbk −

1

2
fkijc

lδilc
jbk

+
1

2
fkijc

lciδjl bk +
1

2
fkijc

icjδlkbk +
1

2
fkijc

lblc
icjbk

=cjKj −
1

2
fkijc

icjbk = Q.

The consequence of this relation is that the operator Q changes the ghost number by 1. For example:
should ψ be a state with ghost number N , then UQψ = (QU+[U,Q])ψ = (QN+Q)ψ = (N+1)Qψ.
The Hilbert space of states with ghost number U = k is called Ck. Now we will show (D.2). Using
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the anticommutation relation and symmetry arguments, we find

Q2 = (ciKi −
1

2
fkijc

icjbk)(clKl −
1

2
fnlmc

lcmbn)

= ciKic
lKl −

1

2
f jijc

icjbkc
lKl −

1

2
ciKic

lcmbn +
1

4
fkijf

n
lmc

icjbkc
lcmbn

=
1

2
([ci, cl]KiKl + (−fkijcicjbkclKl + fnlmc

lcmbnc
iKi)− fnlmclcmδinKi) +

1

4
fkijf

n
lmc

icjbkc
lcmbn

=
1

2
(cicl[Ki,Kl]− fnlmclcmδinKi) +

1

4
fkijf

n
lmc

icjbkc
lcmbn

=
1

2
(ciclf jilKj − fnlmclcmδinKi) +

1

4
fkijf

n
lmc

icjbkc
lcmbn

=
1

4
fkijf

n
lmc

icjbkc
lcmbn

=
1

8
fkijf

n
lm((cicjbkc

lcmbn − clcmbncicjbk) + clcmcjbkδ
i
n − ciclcmbkδjn + cicjcmbnδ

l
k − cicjclbnδmk ).

Using the symmetry in (i, j, k)↔ (l,m, n), the first two terms vanish, and the other four become
identical. Then we need to use the symmetry properties of the ghost fields. This becomes

Q2 =
1

2
fkijf

n
lmc

lcmcjbkδ
i
n

=
1

6
fnlmf

k
nj(c

lcmcj + cmcjcl + cjclcm)bk

=
1

6
(fnlmf

k
nj + fnjlf

k
nm + fnmjf

k
nl)c

lcmcjbk = 0,

due to the Jacobi identity.

D.2 Cohomology classes

There is a parallel between this BRST operator and the De Rham operator d. Q is a map of the
space of states with ghost number N to the space of states with ghost number N + 1, just like d
is an operator from the space of p-forms to (p+ 1)-forms. Furthermore Q2 = 0 and also d2 = 0.
This inspires the following idea. We call a state χ ∈ Ck BRST invariant if

Qχ = 0. (D.3)

We are interested in the solutions of this equation. However, states of the form Qλ, with λ ∈ Ck−1,
are always solutions of (D.3), because of (D.2). So we would like to consider two forms χ and
χ′ ∈ Ck to be equivalent if

χ− χ′ = Qλ,

with λ ∈ Ck. The equivalence class that arises in this manner is a cohomology group, often denoted
as

Hk(G;R) =
equivariant (closed) states of degree k

exact states of degree k
.

Here G is representing the Lie group, R stands for the representation of the Lie group in the
generators Ki and k refers to the ghost number of the states (or the number of the forms in the
case of the De Rham operator d). A equivariant state (closed form) is a state adhering to (D.3)
(respectively dα = 0), and an exact state χ (form α) is a state satisfying χ = Qλ for some λ of
ghost number k − 1 (α = dβ, with β a k − 1-form).

E Miscellaneous computations

Here we present some general short calculation that did not really fit in elsewhere.
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Spinor identity I With the use of the Clifford algebra (B.1), we can compute

ΓµΓνρ =
1

2
(ΓµΓνΓρ − ΓµΓρΓν)

(B.1)
=

1

2
(2gµνΓρ − 2gµρΓν − 2Γνgµρ + 2Γρgµν + ΓνΓρΓµ − ΓρΓνΓµ)

= 2gµνΓρ − 2gµρΓν + ΓνρΓµ. (E.1)

Spinor identity II We also need the similar identity

Γµνρ =
1

6
(ΓµΓνΓρ + ΓνΓρΓµ + ΓρΓµΓν − ΓνΓµΓρ − ΓµΓρΓν − ΓρΓνΓµ)

(B.1)
=

1

6
(3ΓµΓνΓρ − 3ΓνΓµΓρ + 2gµρΓν + 2gµρΓν − 2gνρΓµ − 2gνρΓµ − 2gνρΓµ + 2gµρΓν)

= ΓµνΓρ + gµρΓν − gνρΓµ. (E.2)

Spinor identity III Using (E.1) and (E.2) simultaneously will result in Γµνρ = ΓρΓµν −gµρΓν +
gνρΓµ. This we can use in turn to prove that

Γµνρσεµνερσ =
1

4
εµνερσ(ΓµΓνρσ − ΓνΓµρσ + ΓρΓµνσ − ΓσΓµνρ)

=
1

4
εµνερσ(ΓµΓνΓρσ − gνσΓµΓρ + gνρΓµΓσ − ΓνΓµΓρσ + gµσΓνΓρ − gµρΓνΓσ

+ ΓρΓσµν − ΓσΓρµν)

=
1

4
εµνερσ(2ΓµνΓρσ − 4gνσΓµΓρ − 4gνσΓρΓµ + 2ΓρσΓµν)

=
1

2
(ΓµνΓρσ + ΓρσΓµν)εµνερσ − 2gµρgνσεµνερσ, (E.3)

where εµρ is any antisymmetric tensor.

SU(2)R Bianchi-like identity There is also a Bianchi-like identity for the εIJ forms introduced
in section 2.1.2. It can be found by simple computations

(εIJεKL + εIKεLJ + εILεJK)AIJKL = + (A1212 +A2121 −A1221 −A2112)

+ (A1221 +A2112 −A1122 −A2211)

+ (A1122 +A2211 −A1212 −A2121)

= 0. (E.4)

It is no cöıncidence that this identity looks like the Bianchi identity, since εIJεKL has the same
symmetries as the Riemann tensor.

The Pfaffian of a matrix When dealing with an anti-symmetric 2n× 2n-matrix M , one can
define the Pfaffian as

Pf(M) =
1

2nn!

∑
σ∈Σ

sign(σ)

n∏
i=1

M
σ(2i−1)

σ(2i), (E.5)

where Σ is the permutation group. For an odd dimensional matrix the Pfaffian is defined to be
equal 0 and it is ill-defined if M is not anti-symmetric. These definitions are chosen such that the
square of the Pfaffian becomes the determinant of the matrix:

Pf(M)2 =
∑
σ

sign(σ)

n∏
i=1

M i
σ(i) = det(M).
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It is not hard to see that this definition of the Pfaffian coincides with the following: associate the
antisymmetric matrix with a form

ω =
∑
i<j

Mije
i ∧ ej ,

then the Pfaffian is the scalar Pf(M) that satisfies

1

n!

n times︷ ︸︸ ︷
ω ∧ ω . . . ∧ ω= Pf(M)e1 ∧ e2 . . . ∧ en. (E.6)

Central to the proof is the observation that only the terms with all distinct ei, for i ∈ {1, . . . , 2n},
will survive, and the relevant multiplicative factor is the sign of the permutation used to put all ei

in ascending order.

Jacobians and Grassmann variables Making a variable substitution leads to a Jacobian. For
real numbers we have

x→ αy , then dx→ αy.

This is consistent with 1
2 = 1

2 (12 − 02) =
∫ 1

0
xdx =

∫ 1
α

0
αyαdy = α2 1

2

((
1
α

)2 − 02
)

= 1
2 . There

happens something different with Grassmann variables. Assuming ψ becomes αφ, we want to find
a factor β such that dψ becomes βdφ. We see that 1 =

∫
ψdψ =

∫
αφβdφ = αβ. So we need that

β = 1
α in order to keep consistency. Thus

ψ → αφ , then dψ → 1

α
φ. (E.7)
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